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Abstract 

We present the foundations of a computer-aided system for the design of solvents for reactions. We 
propose the use of the multi-parameter solvatochromic equation (Abraham et al., 1987), which 
correlates a small number of solvent properties (empirical solvatochromic parameters and cohesive 
energy density parameter) with the logarithm of the reaction rate constant. For a given reaction, the 
proposed methodology consists of three steps. The first step is concerned with the development of a 
model of solvent effects on the reaction. It involves gathering the rate data for a small number of 
predetermined solvents and generating the solvatochromic equation by obtaining its coefficients from 
linear regression. The second step involves the formulation and solution of a mixed integer optimization 
problem, with the objective to identify a solvent in which the reaction rate under given conditions is 
maximized. Group contribution methods for the estimation of solvent properties have been developed 
for this purpose. The third step is a verification of the results obtained by experimentation or 
computational chemistry. This methodology is applied to t-Butyl Chloride solvolysis reaction. 
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In the chemical industry, solvents play an important role 
as transport agents, separation agents or as reaction media. 
Because of the high cost and time requirements of 
experimental testing, computer-aided systems for 
identifying promising solvent candidates are an attractive 
approach to the solvent design and selection problem. 

Computer-Aided Molecular Design (CAMD) is a 
synthesis activity, which aims to identify a list of 
candidate molecules that perform a task most effectively 
(Gani and Brignole, 1983). Molecular Design methods are 
based on the fact that, from a small set of structural 
groups, a large number of molecules can be generated and 
evaluated with respect to a certain performance index.  

In the past decade, a lot of work has been done in the 
development of CAMD approaches (Achenie et al., 2003). 
However, most of the work has focused on design of 
solvents to be used in separation processes and currently 
there is hardly any tool available for the design of solvents 

to be used as reaction media even though the effect of 
solvent on reaction rate can be great and the reaction rate 
constant can vary by several orders of magnitude from one 
solvent to the other. Modi et al. (1996) have developed a 
predictive tool to estimate the effects of reaction rates in 
solution called the 'reaction fingerprint'. However, this 
approach applies only to predetermined solvent molecules 
and therefore would be most suitable for the verification 
of predicted optimal solvents. Due to the lack of 
systematic techniques, solvents are usually chosen based 
on intuition, previous knowledge, databases, and possibly 
some use of heuristic guidance, potentially leading to sub-
optimal decisions with detrimental effects on performance 
and economy. 

In this paper, a methodology is presented for design 
of solvents for reactions based on their effect on reaction 
rate constants. Currently, the methodology can be applied 



  
 
to one-step reactions. We consider reaction systems where 
solvents are inert i.e. their sole role is solvation. 

The structure of this paper is as follows: first the 
methodology is introduced, second, a case study is 
presented and the conclusions are given in the last section. 

Methodology for solvent design 

Prediction of Reaction Rates  

In order to be able to quantify solvent effects on 
reaction, the key issue is to relate solvent properties with 
reaction rate data. For this purpose we use the 
solvatochromic equation (Abraham et al., 1987) that 
correlates the logarithm of the reaction rate constant with 
solvent solvatochromic parameters and solvent cohesive 
energy density parameter. The solvatochromic equation is: 
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where:  
log k  is the logarithm of the rate constant; 
π* is a solvatochromic parameter that scales with 
solvent dipolarity/polarisability;  
α is a solvatochromic parameter that scales with 
solvent HBD (hydrogen-bond donor) acidity;  
β is a solvatochromic parameter that scales with 
solvent HBA (hydrogen-bond acceptor) basicity;  
δ is a ‘polarizability correction term’ equal to 0.0 for 
nonchlorinated aliphatic solvents, 0.5 for 
polychlorinated aliphatics and 1.0 for aromatic 
solvents;  
δH

2 is the solvent cohesive energy density parameter in 
cal/cc, a measure of the solvent/solvent interactions 
that need to be overcome to create a cavity for the 
solute; 
s, d, a, b, h are coefficients that measure the relative 
susceptibility of log k to the indicated solvent 
properties; 
log k is a constant.  
π*, α, β, δ and δH

2 are referred to as solvent parameters 
and s, d, a, b, h and log k0 are referred to as reaction 
parameters. 

This simple equation takes into account all the 
interactions in the system considered (in the case a solvent 
is inert and its only role is solvation). π* is a descriptor of 
solvent-solute interactions by non-specific, long-range 
forces, while α and β are descriptors of solvent-solute 
interactions by specific, short-range intermolecular forces. 
The cohesive energy density parameter δH

2 is a descriptor 
of solvent-solvent interactions.  

Depending on the mechanism of the reaction and the 
structure of the transition state, some interactions can be 
more pronounced than others from one reaction to another. 
This can be judged by the statistical significance of the 
coefficients in the equation and the less significant terms 

can be left out without affecting the quality of the 
predictions.  

For a given reaction, it is necessary to know values of 
the rate constant and solvent parameters for a number of 
solvents in order to be able to obtain the reaction 
parameters in equation (1) by linear regression. Rate 
constant data are obtained from experiments, while solvent 
parameter values can be predicted by group contribution 
(GC) methods. 

Prediction of Bulk Solvent Properties 

GC methods are based on the principles of 
transferability and additivity and are widely used for 
property prediction in CAMD. In order to make 
integration with existing CAMD approaches easy, we use 
the UNIFAC groups as building blocks for solvents.  

All the properties are predicted directly with the 
exception of δH

2. Its prediction relies on the prediction of 
the molar volume of the solvent, Vm and its enthalpy of 
vaporization, HV, and it is defined as: 
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Correlations for predicting HV and Vm were taken 
from the literature (Constantinou and Gani, 1994 and 
Constantinou et al., 1995). 

Group contributions for α and β were obtained by 
performing a regression on 215 solvents described by 41 
first-order UNIFAC groups (Sheldon et al., 2004). The 
regression was performed using a statistical add-in in MS 
Excel spreadsheet program NAG (Numerical Algorithms 
Group) Ltd.  

The predicted values for parameters α and β are 
obtained from Eq. (3):  
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where: 
P is the value of the property;  
Pi are the values of the contributions for group i used 
in the calculation of the value of the property;  
ni is the number of groups of type i in the molecule;  
P0  and m are constants defined for the property of 
interest.  
Group contributions for π* were derived for the present 
work from 195 solvents described by 32 UNIFAC 
groups using m=0 in Eq. (3).  

Optimization Formulation 

The objective we consider is to maximize log k as 
calculated from Eq. (1). The constraints involve GC 
methods for solvent parameters prediction and chemical 
feasibility constraints. 



  

Chemical feasibility constraints include standard 
constraints on the maximum and minimum number of 
groups in the molecule, constraints on the maximum 
number of main and functional groups as well as 
constraints that forbid or limit occurrence of some groups 
together. The octet rule (Odele and Macchietto, 1993) and 
the bonding rule (as modified by Buxton et al., 1999) are 
included as well.  

This formulation is a Mixed-Integer Nonlinear 
Programming (MINLP) problem. It is solved using the 
outer approximation algorithm (Viswanathan and 
Grossmann, 1990).  

Integer cuts are included to allow the generation of 
successive ‘best’ solutions, giving a ranked list of 
candidate solvents.  

The formulation is given as: 
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Overall Methodology 

1. First, we obtain the reaction coefficients in the 
solvatochromic equation for the reaction studied. 
In order to do this, rate data (log k values) should 
be gathered. As there are six parameters 
(including the constant log k0), the minimum 
number of solvents that must be used is six. 
Statistically, the results based on such a small set 
of solvents are not very reliable and the accuracy 
of predictions is low. The choice of the number 
of solvents to be used for linear regression is 
based on a trade-off between the cost of 
experiments to acquire the data and the statistical 
quality of the regression results. The chosen 
solvents should represent various classes of 
chemicals (e.g. an aromatic, a nitrate, an amide, 
an alcohol, a carboxylic acid, a halosubstituted 
compound) and be of different polarity (e.g. a 
nonpolar solvent, a polar aprotic solvent, a protic 

solvent). To classify solvents based on their 
polarity we use the ET

N solvent polarity scale 
(Reichardt, 1988). Here, we present two 
comparative cases with the coefficients in 
solvatochromic equation obtained based on linear 
regression in 8 solvents (Case 1) and 15 solvents 
(Case 2). 

2. After obtaining the solvatochromic equation for 
the studied reaction we formulate and solve the 
CAMD optimization problem .  

3. The final step provides a way to verify the 
solutions obtained and it results in a final ranking 
of solvents which can be used as reaction media 
for the reaction studied. Verification can be done 
by performing experiments to test the best 
solvents generated. It can also involve more 
detailed calculations (e.g. computational 
chemistry methods) for solvent parameter 
predictions. 

Case Study 

The methodology presented is tested on t-Butyl 
Chloride solvolysis reaction. Solvolysis is a reaction that is 
induced by the solvent and the products are derived from 
it. The mechanism of t-Butyl Chloride solvolysis is 
thought to be a unimolecular nucleophilic substitution, 
SN1.  

There have been many kinetic studies of this reaction 
(Abraham, 1972, Abraham et al., 1981, Abraham et al., 
1987, Gonçalves et al., 1992, Dvorko et al., 2002) and 
kinetic data were gathered for 38 solvents that can be built 
from the available UNIFAC groups.   

Based on the regression performed for Case 1 
(glycerol, propane-1,3-diol, diethylene glycol, acetic acid, 
dimethylacetamide, chlorobenzene, benzene and pentane), 
the following equation was obtained:  
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Based on the regression performed for Case 2 
(glycerol, phenol, propane-1,3-diol, diethylene glycol, 
triethylene glycol, aniline, acetic acid, N-methylacetamide,  
ethanol, n-butanol, dimethylacetamide, 1,2-
dichloroethane, tetrahydrofuran, benzene and pentane), the 
following equation was obtained:  
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Comparison of the statistical quality of the two 
regressions is given in Table 1, as well as the ranking of 
the first 13 solvents for both cases (Table 2).  



  
 

Table 1. Statistics of Linear Regression   

Case 1 (Eq. (5)) Case 2 (Eq. (6)) 
R2 = 0.96 R2 = 0.81 
Adjusted R2 = 0.86 Adjusted R2  = 0.7 
Standard Error = 1.54 Standard Error = 1.78 

Table 2. Experimental vs. Predicted Solvent Ranking  

Experimental 
ranking 

Case 1 predicted 
ranking 

Case 2 predicted 
ranking 

1 1 1 
2 4 3 
3      12 5 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

     11 
     3 
     8 
     2 
     10 
     13 
     9 
     6 
     5 
     7 

7 
4 
6 
2 
9 
13 
10 
8 
11 
12 

 
Solving the optimisation problem results in a list of 

optimal solvents, the first five of which for each case are 
presented in Table 3.  

Table 3. Five best ranked generated solvents  

Case 1 Case 2 
1,7-binitroheptane 1,2-binitroethane 
2-methyl-1,6-binitrohexane 1,3-binitropropane
2,5-bimethyl-1,7-

binitroheptane 
      1,4-binitrobutane 

1,6-binitrohexane 
2-methyl-1,7-binitroheptane 

1,5-binitropentane 
1,6-binitrohexane 

 
It can be seen that for both cases the designed 

molecules belong to the same group of chemical 
compounds (binitro alkane derivatives). The statistics are 
better for the Case 1, however the solvent ranking is 
slightly worse. Still, based on our experience with this and 
other studies the number of solvents to be used for linear 
regression does not need to be greater than 8.  

Conclusions 

An optimization framework to identify the optimal 
solvent molecule for a reaction is presented. We use a 
mathematically simple empirical equation that accounts 
well for all the interactions in the system. The algorithm 
described provides a guide for experimentation and can 

very easily be integrated with other CAMD algorithms. 
We plan to complete the methodology by implementation 
of a verification step and then proceed to the integration of 
this solvent design approach in plant-wide design strategy.   
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