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Abstract 

In this contribution, the structural and operational optimization of reactive distillation columns by 
means of mixed-integer non-linear programming (MINLP) techniques is discussed using the synthesis 
of MTBE as a test case. The discrete character of the structural alternatives and the nonlinear relation- 
ships for reaction kinetics, activities, thermodynamic equilibria and economic costs lead to non- 
convex non-linear problems which usually are hard to solve. The lack of robustness and the unsuffi- 
cient performance of numerical MINLP solution methods is one of the major obstacles for their appli- 
cation in practice. Here, three steps are presented to improve the robustness and the efficiency of the 
numerical optimization: 1. The model is implemented in a numerically favorable manner, 2. the algo- 
rithmic behavior is improved by means of non-standard solver options and numerical bounds, and 
3. an heuristic rule-based initialization scheme is applied. 
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Introduction 

Reactive distillation is a process which integrates the 
functionalities of reaction and separation within one ap- 
paratus. The integrated reaction separation technique has 
the potential to decrease the dimensions of the equip- 
ment, to increase the degree of heat integration and to 
overcome chemical and thermodynamical boundaries, 
such as chemical equilibria or distillation boundaries. 

The task to design a reactive distillation column can 
be formulated as an optimization problem with discrete 
and continuous degrees of freedom which are fixed sub- 
ject to linear and nonlinear constraints such that an eco- 
nomic cost function is minimized. MINLP-techniques 
provide mathematically well-founded methods to model 
and to solve such problems, but typically they suffer from 
a lack of robustness and efficiency, which may lead to 

excessively long computing times and unforeseeable 
numerical behavior in face of small model changes. In the 
relevant literature (Ciric and Gu, 1994, Frey and Sti- 
chlmair, 2000, Jackson and Grossmann, 2001, Stichlmair 
and Frey, 2001, Poth et al., 2003) usually only one model 
instance is considered and data on the numerical per- 
formance for variations of the problem formulation is not 
presented. 

In this contribution, the heterogeneously catalyzed 
and kinetically controlled synthesis of methyl-tertiary- 
buthyl-ether from isobutene and methanol (MTBE ~ IB 
+ MeOH) in the presence of butane at a pressure of 8 bar 
is considered. The four component mixture exhibits three 
binary minimum azeotropes (see Table 1, based on 
BeBling, 1998). The aim is to produce MTBE with a 
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purity of 99% from two feed streams (6.375 mol/s 
MeOH, 8.625 mol/s IB/butane with 65.2% IB, similar to 
the assumptions in Stichlmair and Frey, 2001) at minimal 
cost. In the remainder of the paper, the model formulation 
is sketched and a three-step solution methodology is pre- 
sented which solves the MINLP problems at hand effi- 
ciently and robustly. 

Table 1. Boiling points at 8 bar 

Components Temperature [K] 
MeOH/IB 332.7 

IB 334.5 
MeOH/Butane 340.1 

Butane 342.5 
MeOH/MTBE 393.0 

MeOH 401.2 
MTBE 409.4 

Model Formulation 

The model formulation of the tray column follows 
the common superstructure approach (see, e.g., Jackson 
and Grossmann, 2001): The superstructure comprises up 
to 100 trays which may be active or inactive. Active trays 
have separating functionality and may have reactive func- 
tionality, whereby inactive trays have neither. The first 
and the last tray represent the reboiler and the condenser, 
respectively, which are always active and non-reactive. 

The key variables of the model are: activation of a 
tray (binary), holdup of a tray (_>0), column diameter 
(_>0), column height (_>0), vapor and liquid flow rates 
(_>0), feed streams onto the stages (_>0), bottom and top 
distillate streams (_>0), molar concentrations and activities 
(_>0), temperatures [K] (_>0), production rates (_>0), and 
heating and cooling load of condenser and reboiler (_>0). 

Key constraints are: the tray models given by the 
MESH-equations (material balance, equilibrium condi- 
tion, summation condition and enthalpy balance), the 
activity-based reaction kinetics with positive and negative 
exponents, an extended Arrhenius approach for the ki- 
netic constants, Wilson's approach for the activity- 
coefficients, the Antoine equation for the vapor pressures, 
geometric constraints on the vapor velocity and the tray 
height, the vapor phase Murphree efficiency to reflect the 
non-ideality of the separating functionality, a purity con- 
dition for the bottom distillate stream (MTBE), and em- 
pirical correlations for annualized investment costs for 
the shell, the internals, the reboiler, the condenser and the 
catalyst, for operating costs for cooling, heating and feed 
streams, and for the revenues from the bottom and top 
distillate streams. For further details see Sand et al. 
(2004). 

Specific attention must be paid to the activation con- 
cept of a tray k within the superstructure: The separating 
functionality is controlled by "switching" the Murphree 

efficiency Ek by means of the binary activation variable 
q)k: 

Elc = 0.7(pl c Vk (1) 

Additionally, the feed streams to the stages and the 
holdups are constrained by means of big-M inequalities. 
Advantages of this approach are that binary variables 
appear only in a very small subset of the constraints, the 
binaries enter linearly into the equations, and integer- 
relaxed values of q)k are meaningful in terms of the origi- 
nal design problem. 

Solution Approach 

The MINLP-model is solved by a decomposition- 
based approach: The integer programming (IP) master- 
problem is tackled by the branch and bound (B&B) algo- 
rithm implemented in SBB (2003), and the NLP-sub- 
problems are solved by the generalized reduced gradient 
algorithm implemented in CONOPT (Drud, 2003). (See 
Sand et al., 2004, for a comparison of the B&B algorithm 
with enumeration and interval reduction approaches wrt. 
their theoretical and empirical complexity.) The problem 
at hand is of minor combinatorial complexity, its numeri- 
cal difficulty is mainly given by the high, problem- 
inherent non-linearity of the constraints. The superstruc- 
ture comprises only 98 different feasible structures, but 
even with fixed binary degrees of freedom, it is hard to 
find feasible solutions when using standard algorithmic 
options and trivial initial values. 

The numerical robustness is improved in the follow- 
ing three steps: 1. The model is implemented in a nu- 
merically favorable manner. 2. The algorithmic behavior 
is improved by means of non-standard solver options and 
numerical bounds. 3. An heuristic rule-based initializa- 
tion scheme is applied. Each step is evaluated by solving 
up to 91 MINLP-instances, corresponding to superstruc- 
tures with 10-100 trays. The robustness is measured by 
the ratio of optimal (vs. infeasible) solutions and the 
spread of locally optimal objective values; the efficiency 
is measured by the CPU-time on a Windows 1,5 GHz PC. 

Model Implementation 

The model was implemented in GAMS (Brooke et 
al., 2003) while the rules of thumb from Drud (2003) for 
numerically favorable formulations were applied care- 
fully: The model was reformulated equivalently by 
1. bounding variables to avoid function evaluation errors, 
2. implementing only necessary bounds to avoid degener- 
acy, and 3. introducing auxiliary variables to reduce the 
complexity and the non-linearity of the constraints. 

Examples are: 1. Temperatures were bounded to the 
spectrum of boiling points from Table 1 to ensure feasi- 
bility of the logarithmic temperature differences in the 
condenser. 2. Molar concentrations were implemented as 



non-negative variables, but activities were not bounded 
(i.e. the implementation allows for negative values) since 
their non-negativity is implied by Wilson's approach. 
3. The Arrhenius approach of the form e -~/~RT) was refor- 
mulated by means of an auxiliary variable aux to e aux, 
aux. T - -E/R. 

For a superstructure with 100 trays this implementa- 
tion comprises 11,215 continuous variables, 98 binary 
variables and 11,711 constraints (the size of the model is 
almost proportional to the number of trays). This model 
was solved with trivial initial values of 1 for all variables 
(if 1 is out of bounds for a certain variable the initial 
value was mapped onto the corresponding bound) and 
with standard options for CONOPT and SBB. It turned 
out that 0% of the cases yielded feasible solutions. 

Algorithmic Improvements 

The insufficient algorithmic behavior was improved 
in an iterative manner by 1. setting non-standard 
CONOPT options and 2. adding numerical bounds based 
on numerical observations. Since the introduction of 
binary variables changes the model structure only mar- 
ginally, the numerical studies could be done with fixed 
binary variables, i.e. for NLPs, and the results were then 
used to solve the corresponding MINLPs. 

Examples are: 1. Applying Newton's method to find 
feasible solutions is not appropriate (hundreds of phase 0 
iterations without progress, see Drud, 2003), so it is by- 
passed by introducing slack variables for infeasible con- 
straints (lsslack = 1). 2. In infeasible constraints, the heat 
load of the reboiler is 0, so a lower bound of 1 kW (which 
is not active in an optimal solution) is introduced. 

This leads to setting non-standard options for the few 
sibility tolerance (rtnwma = 106), the maximal number of 
stalled iterations (lfstal = 105), the optimization of the 
step size in Newton iterations (lmmxsf = 1) and for the 
scaling of the variables and the constraints in each itera- 
tion step (lfscal = 1), in addition to bounds on the heating 
and the cooling load, the reflux flow rate, the chemical 
equilibrium constant, the kinetic constants and various 
auxiliary variables. 

Figure 1 shows the results of 91 MINLP solutions 
with trivial initial values (see above): The ratio of (feasi- 
ble) locally optimal solutions increases from 0% to 97% 
with CPU-times of about 1-50 minutes. The majority of 
the optimal objective values lies on a smooth curve which 
indicates qualitatively similar solutions, but 34% of the 
runs end up in local optima which are significantly infe- 
rior. 

Heuristic Rule-Based Initialization Scheme 

To improve the robustness further, an advanced ini- 
tialization scheme based on heuristic rules is applied. 
According to the heuristic rules, some variables of the 
MINLP model are fixed and the objective function is 
changed. The solution of the resulting NLP-model is then 

used to initialize the superstructure model described 
above. 
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Figure  1. Solut ions with trivial ini t ial izat ion 

Heuris t ic  Rules  

The following heuristic rules (based on experiences 
and thermodynamic insights) are applied to the process at 
hand (see BeBling, 1998, Doherty and Malone, 2001): 

1. A typical column height is 30 m. 2. If a chemical 
reaction is necessary, the column must comprise reactive 
functionality. 3. If the reaction is equilibrium limited and 
there is only one reaction product and the product should 
be highly purified then a non-reactive functionality is 
needed between the reactive functionality and the product 
port. 4. Expensive separation tasks should be performed 
within the column. 5. Inhibit the reaction when the com- 
position exceeds the chemical equilibrium composition. 
6. If the reactants have very different boiling tempera- 
tures then they should be fed separately. The high-boiler 
feed should be above the low-boiler feed. 6. If the reac- 
tants are not needed for the separating functionality then 
they should be fed onto reactive trays. 

A d v a n c e d  Ini t ial izat ion 

According to these rules, the following heuristic 
bounds, which reduce structural but not operational de- 
grees of freedom, were added to the superstructure model 
(see Figure 3, left): 

1.38 trays are active, the remainder is inactive. 
2. Trays 1-12 and 38 (condenser) are non-reactive, the 
remainder is reactive. 3. Possible feed trays for IB/butane 
are trays 13-25 and for MeOH trays 26-37. 

Furthermore, the economic objective in the initaliza- 
tion stage is replaced by maximizing the IB-conversion, 
while the cost correlations remain part of the model. 

As before, the algorithmic behavior of the initializa- 
tion model is improved by bounds (in particular for the 
column diameter, the holdup and the IB-conversion) and 
the trivial initialization scheme is applied. The initializa- 



tion model comprises the same constraints as the super- 
structure model thus a feasible solution of the initializa- 
tion model implies a feasible initialization of the full 
superstructure model. 

Figure 2 shows the results of 63 MINLP runs (super- 
structures with 38-100 trays) with advanced initial values. 
97% of the instances are initialized feasibly, and the ratio 
of locally optimal solutions increases from 97% to 100%. 
The robustness of the solutions increases significantly: 
The ratio of inferior solutions decreases from 34% to 
0%. The consistency of the CPU-times increases as well, 
and the maximal CPU-time (including the initialization 
problem) decreases from 50 to 20 minutes. In the optimal 
solution 51 trays are active, the column diameter is 
0.39 m and the reflux ratio is 4.6. Figure 3 (right) shows 
the distribution of the functionalities and of the feed 
trays. 
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Conclusions 

A three-step methodology to solve MINLP models of 
reactive distillation columns robustly and efficiently was 
presented. The probability of finding feasible solutions 
can be increased significantly by means of non-standard 
solver options and algorithmic bounds, and the robustness 
and the efficiency of the computations can further be 
increased significantly by means of an heuristic rule- 
based initialization scheme. This systematic approach can 
be applied to similar problems, studies for other reactive 
distillation problems are under way. 
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