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Abstract 

This work compares several strategies developed for the economical optimization of large-scale 
complex distillation columns. The performance of each strategy is illustrated considering two examples 
drawn from industry, regarding the aniline production by liquid hydrogenation of nitrobenzene. Since 
discrete decisions are involved, related to the optimal location of feed streams and the total number of 
equilibrium stages, we consider both the classical MINLP approach (Viswanathan and Grossman, 1993) 
as well as two recently continuous NLP approaches (Lang and Biegler, 2002; Neves et al., 2003).  The 
results obtained show that all strategies are capable of converging to the best optimal solution that it was 
possible to found, with proper pre-processing, and when a suitable numerical solver is selected.   
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Although more general, and perhaps more intuitive 
and easier to develop, discrete models for the optimization 
of complex distillation columns are frequently encumbered 
by numerical difficulties faced by current codes for 
solution of MINLP problems, such as DICOPT. This can 
happen during either the solution of the NLP subproblems, 
or during the MILP phase, due to high nonconvexity of the 
problem, that prevents the generation of valid lower 
bounds (Barttfeld et al., 2003). 

A strategy based on continuous optimization was 
recently proposed by Lang and Biegler (2002). The main 
idea is to use a distribution function (DDF), characterized 
by a dispersion factor σ around a central value that will be 
optimized, in order to select the appropriate location for a 
given stream. This approach often requires the use of 
different values of σ within the same problem, to avoid 
premature convergence to local optima. During the early 
solution phases, a sufficiently large value of the parameter 
σ is considered, producing a wide distribution that covers 
significantly all of the candidate trays. Thus, the stream is 
initially distributed to the most favorable region in the 
column. As the solution proceeds, smaller values of σ are 

progressively introduced, leading to narrower 
distributions, and therefore to the iterative optimal location 
of the stream. 

An alternative formulation, also based on the use of 
only continuous variables was introduced by Neves et al. 
(2003). Initially, the feed and product streams are 
distributed to each tray of the column, using continuous 
variables bi,j. These variables represent the split fraction of 
a given stream k (feed or product) among the different 
equilibrium stages j of the column, and thus satisfy the 
conservation equations 
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By imposing simple concave constraints of the form 
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with an adjustable parameter αk∈[0,1], the best location of 
each stream can also be determined. This corresponds to 
single equilibrium stages, when α→1, and to preferable 
regions, with α<1. Unlike the use of distribution functions, 
these regions do not need to be continuous.  



 

MESH equations 
Summation: 

npjyx
nc

i

nc

i
ijij ,...,1,1and 1 ===∑ ∑                        (4) 

Equilibrium: 
npjnciEQxKy jijijiji ,..,1,..,1,,,, ==−= ε                 (5) 

Properties Correlations 
 

       ( )jjij TxfHL ,,=                                                      (1) 
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Mass & energy balances 

Condenser (j=1 ; i=1,…,nco): 
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Column (j=2,…,np-1 ; i=1,…,nco): 
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Reboiler (j=np ; i=1,…,nco):                                                                                       Cost Expressions 
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                                              (12)               Fixed column costs (shell and internals) 
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Convergence Expressions  

   (applicable only in the DDF based strategy) 

Feed and product stream convergence: 
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(applicable with the split fraction based strategy) 

Feed and product stream convergence: 
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(applicable only in the MINLP based strategy) 

Feed and product stream convergence: 
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       Fixed exchanger costs (Cond./Reboiler) 
      ( )CC QTfA ,1=  and ( )RnpR QTfA ,=                                       (17) 
      ( )RCCR AAfC ,=                                                                      (18) 

       Operational heat exchanger costs 
      ( )CCU QfC =  and ( )npRHU TQfC ,=                                  (19) 
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       Total costs 
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Auxiliary Expressions 

Split fractions control: 
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Slack constraints: 
δε ≤jBMT  , δε ≤jiBMP ,

  , δε ≤jiEQ ,
 ,                          

δε ≤jBE                                                                                        (23) 

Formulation 
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DDF based:       add equations  (24) 
Fraction based:  add equations (25) 
MINLP  based:  declare variables as in (26) 

Figure 1 – Formulation for the optimization of a distillation unit, using three different strategies (DDF, split fraction and 
MINLP based). 



 

 

 
This allows the determination of optimal locations for 
complex columns with split feed or product streams, and 
the tradeoffs between multiple and single locations to be 
observed in an objective function. Similarly to the DDF 
approach, this strategy can also be sensitive to the 
presence of local optima. Thus a relaxed solution for the 
optimization problem, with αk=0, is initially obtained. This 
solution is later refined by solving the optimization 
problem with increasing values of αk. 
 
Formulation  
 

Figure 1 presents the complete formulation for the 
economical optimization of a distillation unit, using the 
three strategies in study, for a column with a total 
condenser and a partial reboiler. In these expressions, np 
and nco represent the number of plates and the number of 
components; nf, nc, nr the location of the feed, reflux and 
reboil streams; nls and nvs the location of liquid and vapor 
side-streams; Lj and Vj the liquid and vapor flows; Tj the 
temperature profile; HLj and HVj the liquid and vapor 
enthalpies; Kij the liquid-vapor equilibrium constant; xij 
and yij the liquid and vapor compositions; F0 and xi,F the 
feed flowrate and composition; RR the reflux ratio; U0 and 
W0 the liquid and vapor side-stream flows; d and h the 
diameter and height of the column; AC , AR , QC and QR the 
areas and heats regarding the condenser and reboiler; 
εEQi,j, εBMPi,j, εBMTj and εBEj the slack variables relative 
to the equilibrium, mass (partial and total)  and energy 
balance equations; bF,j, bC,j, bR,j ,bLS,j and bVS,j the fraction 
variables associated to the feed, product (top and bottom) 
and side-streams  (liquid  and  vapor); αF, αC, αR, αLS and 
αVS the adjustable parameters concerning the same streams 
previously enumerated; δ the tolerance; CSI, CCR the fixed 
column cost (shell and internals) and fixed exchanger cost 
(reboiler and condenser); CCU, CHU, CU the cold, hot and 
total utility cost; CT the total cost (objective function). 

A key aspect for the successful application of all 
strategies consists in the robust initialization, scaling and 
bounding of the problem variables and equations, in a pre-
processing phase, that uses a combination of shortcut 
methods (to determine the maximum allowed number of 
plates and the respective minimum required reflux ratio) 
and a self-initialized iterative method for a previous 
solution of the distillation models. Slack variables are 
added to the main MESH equations to allow a faster 
solution start, avoiding problems caused by infeasibilities. 
Maintaining bounds for the maximum magnitude of these 
variables corresponds to defining a region where the 
problem is solved, within a certain tolerance. For the 
purpose of initialization this admissible error reduces, in a 
very significant manner, the required computation time. 
 
Main results  

In the first example, the objective was to synthesise a 
column that could recover, in the bottom, aniline and 
nitrobenzene. The feed was contaminated with cyclo-
hexilamine for which a maximum allowed molar fraction 
in the bottom was set. This problem involved the solution 

of a model with approximately 6500 equations and 
variables, for a maximum allowed number of plates equal 
to 50. 
 
Table 1 – Results obtained for example 1; (a) based on 
split fractions, (b) MINLP based, (c) common to both 
strategies. 

 

Table 2 – Results for example 1, using the DDF strategy. 

 

 These results refer to a variable feed (candidate trays: 
40…49) using a variable reflux (candidate trays: 2…21) 
approach with fixed reboiler. For the strategy based on 
split fractions, the optimization problem was initiated with 
the reflux stream equally divided among the candidate 
trays. The MINLP strategy was initialized with the integer 
solution obtained by application of a shortcut method, 
with all streams entering in single locations. Slightly 
different solutions were obtained using the MINLP and 
split fraction strategies, due to the similar value of CT in 
the two configurations obtained (within the numerical 
tolerance imposed). 

 In the second example, the objective was to synthesise 
a column that could separate aniline plus four “heavy” 
components (cyclohexylidenoaniline, dicyclohexylamine 



 

 

fenylcyclohexylamine and nitrobenzene) from a 
contaminated feed with 5 light parasite components 
(benzene, water, cyclohexylamine, cyclohexanone and 
cyclohexanol).  The operational specification concerned 
the maximum molar fraction of cyclo-hexylamine allowed 
in the bottom. This problem involved the solution of 
models with approximately 18000 equations and variables, 
and a maximum allowed number of plates equal to 30. 
 
Table 3 – Results for example 2, using the MINLP 
strategy. 

 

Table 4 – Results for example 2, using the split fraction 
based strategy. 

 

Table 5 – Results for example 2, using the DDF strategy. 

 

For the example 2, the reported results refer to a variable 
feed (candidate trays: 2…6) and variable reboil (candidate 
trays: 10…29) approach, the most efficient approach for 
the column in study. In the pre-processing phase, the 
streams were splitted equally among the candidate trays, 
even when using the MINLP strategy, because this proved 
to be necessary for the solution of the RMINLP problem.  

In the strategy based on split fractions, 3 values of δ 
were used due to the large dimension/complexity of the 
problem. The main idea is to solve the optimization 
problem in sequential steps, where the value of tolerance 
is successively decreased until all the MESH equations are 
verified within a negligible error – this will prevent large 
numbers of infeasibilities and avoid solver failures.   

The reported CPU times for the DDF strategy, have 2 
components for each value of σ, because the high 
complexity of the problem requires a new pre-processing 
phase each time the value of the dispersion factor is 
decreased – not doing this resulted in solver failures.  

For all of the results presented, a 2.6 GHz Pentium IV 
computer and the modelling environment GAMS were 
used. MINOS, SNOPT and CONOPT III were tested as 
continuous solvers. Only CONOPT III was capable of 
converging the continuous strategies. Regarding the 
MINLP strategy, the DICOPT++ solver failed with both 
examples (using default numerical parameters). The 
solution of the MINLP problems was obtained with the 
SBB solver. 

Conclusions 

The results obtained were confirmed, using detailed 
calculations; this requires identifying for each np, the best 
location for the feed stream and the reflux ratio that allows 
the minimization of the objective function (a time-
consuming study due to the required number of discrete 
runs). In general, all strategies were capable of converging 
to the best optimal solution that it was possible to found, 
when proper pre-processing care is taken, and when a 
suitable numerical solver is selected. The computation 
times obtained are within the same order of magnitude.   
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