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Abstract

As the scope of commercial manufacturing of biologic products has expanded recently both in terms of number
of products and scale of operation, the need for computer-aided process design has likewise become greater.  It
is no longer unusual for a protein therapeutic to be manufactured at multiple sites at scales and productivities
that greatly exceed what was current practice just a few years ago.  Thus, the need for better process design has
greatly increased yet the intrinsic complexity of biological processes complicates the application of computer-
aided approaches.  Taking a lead from recent developments in discovery research, a systems biology approach
may serve these efforts better.  Systems biology investigates the behavior and relationships of all the elements
in a particular biological system while it is functioning.  Furthermore, it seeks to predict the quantitative
behavior of an in vivo biological process under a realistic range of conditions.  The potential for using a
systems biology approach to process design will be reviewed as well as a discussion of specific applications.
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Introduction: What is Systems Biology?
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Systems Biology has recently emerged as a field of
study that promises the potential for great advances in the
overall understanding of biological systems.  Perhaps the
best description of Systems Biology comes from Leroy
Hood in a recent interview (Hood and Carney, 2003):

“Systems biology is the ability to look at all of the
elements in a biological system – by elements, I
mean genes, messenger RNA, proteins, protein
interactions and so forth – and to measure their
relationships to one another as the system
functions in response to biological or genetic
perturbations. Then one can attempt to model the
behaviour after integrating the different levels of
information, either graphically or mathematically,
so that,ultimately, you will be able to describe the
behaviour of the system given any kind of
perturbation. ... What distinguishes systems
biology from the more classical biology of the past

35 years or so, which looked at genes and proteins
one at a time, is the attempt to look at all, or at
least most, of the elements and their
interrelationships.”

Systems biology, as a new discipline, draws not only from
the recent historical developments in the fields of genomics
and proteomics which Leroy Hood had pioneered but also
parallels advances in the field of computer systems
(Kitano, 2002).  This interaction has its roots in the work
of Norbert Weiner at MIT over 50 years ago.  Weiner
(1948) worked to create a vision for cybernetics: systems-
level analysis and mathematical modeling of control and
communication in animals and machines.  Likewise,
systems biology represents a combination of classical,
hypothesis-driven science with the data-driven methods
that have evolved with faster computation speeds (Kell and
Oliver, 2003).



Roots of Systems Biology in Chemical and Biochemical
Engineering

One should also consider the rich history of cell
modeling within the discipline of Chemical and
Biochemical Engineering as another part of the rootstock
of systems biology.  As Doug Lauffenburger (2003a) said
in a recent book review in Cell:  “Lately, the words
“computation” and “cell biology” have begun to appear
noticeably together in public, after a decade or more of
discreet liaison.”  Of course, the decade of discreet liaison
in the area of cell biology was preceded by several decades
of cell modeling that began with procaryotic systems.  At
about the same time Weiner was publishing his work on
cybernetics, the foundations of structured cell models were
being established by Monod (1949, 1950) in his work on
growth rate models; followed by the work of Gaden (1959)
on fermentation process kinetics and Luedeking and Piret
(1959) on models for microbial product formation.
Indeed, the current paradigms of systems biology can also
be considered in the context of the historical lineage of
modelers (whole cells, metabolic pathways, and signaling
networks) within chemical and biochemical engineering
that followed from then until the present day:

• A. Fredrickson (1976)
• J. Bailey (Lee and Bailey, 1984),
• M. Shuler (Domach et al, 1984),
• G. Stephanopoulos (Vallino and Stephanopoulos,

1993),
• D. Lauffenburger (Asthagiri et al, 1999),
• K. Lee (Lee and Lee, 2003),
• J. Liao (Bulter et al, 2003)
• B.  Palsson (Covert et al, 2003)
• F. Srienc (Carlson and Srienc, 2004)

These works have helped establish a strong tradition
in the modeling and quantification of cell growth,
metabolism, and dynamics.  In fact, an extensive amount of
work is currently underway in trying to establish the best
cellular models (Bley and Muller, 2002; Wolkenhauer,
2002; Nielsen and Olsson, 2002; Csete and Doyle, 2002;
Levchenko, 2003; Patil et al, 2004).

Systems Biology and Drug Discovery

Great hope is being placed on the potential for systems
biology to help accelerate and improve the efficiency of
the drug discovery process (Huels et al, 2002; Davidov et
al, 2003).  Drug discovery, which has only existed as an
industrialized institutional activity for about 100 years, has
undergone a tremendous acceleration in recent years
through better understanding of metabolic control
pathways and by using high-throughput screening (HTS)
methods to identify therapeutics against specific targets
(Drews, 2000).  For example, gene expression monitoring

has led to a better understanding of the classification of
cancers (Golub et al, 1999).  By extension, certain classes
of targets (e.g., protein kinases) have emerged as prime
targets for cancer therapies (Fabbro et al, 2002).
However, success is not always guaranteed for those
following a single target, especially when treating cancer
which often develops in an individual as an accumulation
of multiple unique insults to normal cellular control motifs.
In this case, broader transcriptional profiling may yield
better results (Aburatani, 2002).  Also, understanding of
historical model systems used for target identification and
validation can be improved by the application of better
tools (Sharom et al, 2004; Carroll et al, 2003).  By
extension, these approaches will lead the way to a fuller
systems biology analysis in terms of understanding the best
therapeutic route.  As Cockett et al (2000) have pointed
out:

“Because of the high attrition rates inherent in the
development of novel medicines, >60 new targets
entering discovery and 20 drug candidates
entering clinical trials are needed every year to
produce three novel drugs annually. The goal of
applied genomics within pharmaceutical research
and development is to help sustain the overall
output by providing novel high-quality targets as
well as by reducing the percentages of preclinical
and clinical failures.”

Adding the feedback loop of pharmacogenomics to the
overall process of drug discovery and development should
improve the chances for ultimate success in the clinic.
That is, by better understanding the underlying
mechanisms that cause stratification of patient response,
not only can those patients more likely to benefit from a
given therapy be selected up front, new unmet medical
needs can also be identified more precisely.  Thus,
application of systems biology to the overall process of
drug discovery should yield a higher output of successful
therapeutics.

Co-Evolution of Drug Discovery and Biochemical
Engineering Case Study: Baker’s Yeast Production and
Tumor Biology Research

It is interesting to note the parallels that exist in the
development of chemical and biochemical engineering and
drug discovery.  The parallel evolution of these fields have
been enriched by a number of interconnections.  The most
recent example of cross-talk between them can be viewed
as systems biology, yet a number of precedents can be
identified.  These multiple interactions can be highlighted
by considering as a case study the connections between
tumor biology research and the commercial production of
baker’s yeast.



Nearly every article over the past 35 years on the
modern production of baker’s yeast refers to one
physiological touchstone: the central importance of the
Crabtree effect on glucose metabolism and the need to
control it in order to maximize production.  Yet essentially
no one refers to the fact that Crabtree (1928) was studying
the glucose metabolism of tumors when he published his
results.  In fact, it took almost 40 years for DeDeken
(1966) to establish that a parallel metabolic pathway
existed in yeast.  The connection between this “overflow”
metabolism and the establishment of efficient means for
producing baker’s yeast took another decade.  That is, as
an understanding developed between the glucose
concentration in the medium and the production of ethanol
(which reduced the yield of biomass), more efficient
feeding schemes evolved.  This approach benefited from
advances in computing technology and was further
improved by the use of a computer-controlled feeding
scheme based on a mass balance model (Wang et al,
1977).  Although more than 25 years have passed since the
publication of Wang’s work, optimization of Baker’s yeast
production is still being investigated using: (1) an
engineering scale-down system (George et al, 1999),
metabolic flux models (Forster et al, 2002; Thierie, 2004),
and basic genetics (Rincon et al, 2001).  We are making
progress but don’t appear to have established the ultimate
solution to an optimal large scale production process for
Baker’s yeast.

DeDeken’s work in the 1960s occured during a period
that also included the beginnings of more advanced genetic
studies on this organism.  It was around this time that
mapping of the Saccharomyces genome was begun
(Hawthorne and Mortimer, 1960).  Again, with advances in
technology, the complete sequence of the Saccharomyces
genome was completed in 1996 (Goffeau et al, 1996),
although characterization of the ~6000 genes as to isolated
function using traditional methods is projected for around
2010 (Johnston, 2000).  However, on a parallel path, some
investigators are developing complex mathematical models
of the yeast cell.  Metabolic network analyses are common
(Sainz, 2003; Ostergaard, 2001).  This approach can be
extended to better control the feed to fermentations
(Chang, 2000).  However, an even more exciting approach
is the modeling of signal transduction pathways combined
with expression data input (Lin et al, 2003).  Such a model
should give a much better prediction of the dynamic
response of cells under varying conditions and could be
considered part of the foundation of the systems biology of
yeast.

Going back to where we started - Crabtree’s work
certainly had an impact on tumor biology research in his
day (Dickens, 1930).  This theme continued through the
1960s (Letnansky, 1968) when DeDeken was working on
yeast and the 1970s (Sussman et al, 1980) when Wang was
working on computer control of fermentations and into the

present day (Burd et al, 2001; Rodriguez-Enriquez, 2001).
However, these studies have become increasingly
sophisticated as analytical and computational tools have
advanced.  In fact, some of the recent work has begun to
organize the information about the altered metabolism of
tumors into more sophisticated multi-factor models that
could be considered part of systems biology (Dang and
Semenza, 1999; and Gatenby and Vincent, 2003).

Thus, the path forward from Crabtree in 1929 has led
to improved understanding of both tumor and yeast
metabolism unified by the sort of integrated models that
have become part of systems biology.  This case study is
also typical in that it illuminates the many intertwined
paths between pure discovery and engineering science that
can contribute to advances in both fields.

Development of Fed-Batch Fermentations and the
Status of Process Modeling and Control

Moving on from Baker’s yeast, the use of fed-batch
fermentations has become increasingly commonplace in
the biotechnology industry.  Following the traditional
paradigm, this type of process has been used for the
production of primary metabolites, biomass, secondary
metabolites, protein expressed in E. coli or yeast and
finally protein expressed in mammalian cells.  It is
commonly used in cost-sensitive processes because it can
deliver the highest product concentration to the
purification process and thus minimize the impact of
fermentation costs.  Over time a number of fed-batch
control strategies have developed (Lee et al, 1999):

• pre-determined or feed-forward strategies
• simple, indirect feedback control
• feed according to measured nutrient uptake or

demand
• feed according to an inferred or calculated

demand (or growth rate) based on single
measurements

• feed according to a model of nutrient demand or
cell growth based on multiple measurements

• feed according to a “fuzzy” model or neural
network representation of a process model

Currently, the most attention, at least in an industrial
situation, is placed on the optimization of a simple
feedback control strategy  using a model-based strategy
(Lubbert and Jorgensen, 2001).  Tuning and optimization
of fed-batch process control remains an area of current
interest (Muthuswamy and Srinivasan, 2003; James et al,
2002; Akesson et al, 2001) and the quality of the
underlying model is always of utmost importance.



Current Unmet Needs in Biotechnology

The current landscape of commercial biotechnology
products has changed dramatically over the last 20 to 25
years.  Therapeutics have evolved from low-volume, high
value-added specialty products that were typically
produced at a single manufacturing site into high-volume
commodities produced at multiple sites for which
production cost issues have become increasingly critical.
Complicating the current status is that many of these high-
volume products, such as monoclonal antibodies (mAbs)
or related proteins, are made by mammalian cell culture.
For example, Genentech has seven commercial products
produced by mammalian cell culture (four mAbs and three
others).  Supplying the market has required hundreds of
batches at the 12,000L scale from four sites worldwide.
Another good example is Enbrel: Amgen produces this
billion-dollar product using a network of five bulk
manufacturing sites (operating three different processes)
and three drug product sites.  The multiple challenges here
are as follows:

1. Highly expanded scope of manufacturing
• mammalian cell culture has been historically

difficult to scale (or at least more difficult than
bacterial and yeast fermentations)

• as identified above, supply chain requirements for
these products often requires multiple sites for
both bulk drug substance and drug product, often
including third party sites

• dosing has increased as products have moved
from being catalytic in nature (G-CSF,
interferons) to stoichiometric or blocking (Enbrel,
Remicade)

2. Exposure to a greater number patients
• the target population for many current therapies

has shifted from acute treatment of life-
threatening diseases in a small population to
chronic treatment or disease management in a
much larger, often healthier population

• thus, more people (and typically more healthier
people) are exposed over a longer time to a given
therapeutic

3. Products more difficult to characterize
• the products made from mammalian cell culture

are typically more complex and require more
complicated characterization

• part of the complexity results from post-
translational modifications (e.g. glycosylation,
often at multiple locations on the protein) that
make full characterization even more complicated

Thus the demands for producing a comparable product
are greater than ever.  The FDA has certainly recognized
the issues around comparability (Mire-Sluis, 2003) and has
served as arbitrator for efforts in industry to develop better
methods.  Also, good process control has been successful
in yielding comparable products.  However, as more
products are submitted for approval, the pressure will
become greater to maintain consistent quality while
delivering both the quantity demanded and at the price
required.  This pressure is analogous to what drove
continued improvements in the process control of Baker’s
yeast at ever-increasing scales but is many times more
complex.

Impact of Systems Biology on Process Development

How will the Biotechnology industry resolve the
issues outlined above?  Certainly the drive for better
process control from a quality perspective will have an
impact.  This can be accomplished through better
identification of critical operating parameters (Buck et al,
2002) or more sophisticated approaches to process
monitoring (Zhang and Lennox, 2004; Lennox et al, 2001).
However, the impact of tightening the general control
strategy for a bioprocess will be limited by the degree of
“inherent” variability in the process.

Control of biological variability can only be
approached through better understanding of the underlying
mechanisms controlling product formation, post-
translational modification, and degradation.  In some cases,
it may be necessary to start with a basic re-engineering of
production cell lines.  However, for reasonably robust
processes, better understanding of the interaction of cell
behavior and process control may be all that is required.
Certainly a great need exists for better models of
mammalian cell processes from a single cell perspective.
As indicated above, we are just beginning to understand
simpler organisms such as E. coli or yeast, so mammalian
cells represent a much greater challenge.  Engineering
science may be able to borrow from basic research; many
of the models of systems biology investigations (e.g., as
survival signaling) may be directly applicable to cell
culture.  However, other areas, such as the understanding
of the intrinsic biology of protein expression (and
particularly post-translational modifications) at a systems
level, may be more specific to this field.  A recent review
by Komives and Parker (2003) suggests that using more
sophisticated models (or combinations of models) for
bioprocess can lead to improved performance.  They claim
the quality of the output from a model increases with the
complexity of that model or estimator, and that coupling
multiple models also improved performance.  The
direction they suggest is essentially that of a systems
biology approach to protein production.



Regarding the large scale performance of bioreactors,
understanding the biology at a systems level may be
necessary for better control but it is probably not
completely sufficient.  Large scale bioreactors present a
complex hydrodynamic environment that affects mixing,
hydrodynamic shear, and (air/liquid) interfacial shear.  The
need certainly exists to understand these scale-up effects
and to be able to integrate them with physical and
metabolic effects.  Again, it is only recently that greater
experience with large scale fermentations and better tools
for process and biological monitoring have led to more
detailed analysis of this issue (Enfors et al, 2001).  More
sophisticated hydrodynamic models have been combined
with a better understanding of stress-related pathways
within the cell, combined with methods for monitoring
them, to allow new insight into the scale-up process.  This
has improved the quality of scale-down simulations as well
(Bylund, 1999).  The ultimate goal would be the
integration of fluid dynamic modeling with an
understanding of the biology at a systems level.  Some
investigators have begun to approach this for microbial
systems (Vrabel, 2001) but the need to extend this for
mammalian cell culture is clear.

 Finally, the impact of systems biology can be felt in
the way scientists and engineers go about the process of
process development.  That is, the way problems are
structured in systems biology could affect the way people
think about problems and even how they organize process
development efforts.  For example, in a recent
presentation, Lauffenburger (2003b) presented the model
below for the integrated way in which systems biology
combines hypothesis-driven and data-driven inquiry.

Figure 1: The “Four Ms” of Systems Biology.
(Lauffenburger, 2003b)

This structured approach to problems could also be
considered as a part of developing a model for integrating
process research and development with manufacturing
operations.

Figure 2.  A paradigm for process research
and development.
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