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Abstract.

Process operations often involve transitions between operating modes, which are typically described by
their own dynamic models, constraints and specifications. Developing a formal theoretical framework
and efficient computational tools to deal with such operational issues pose a formidable challenge.

In the paper, we give an overview of recent key developments in this direction, involving (i) modeling
of hybrid systems, exhibiting both continuous and discrete dynamics, to rigorously represent complex
operations, and (ii) parametric programming mathematical and computational tools, to design optimal
feedback control laws for constrained linear dynamic systems, in the context of model predictive control
principles. Applications to a wide range of industrial problems will be discussed.
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Introduction

Hybrid systems can be defined as systems compris-
ing a number of continuous subsystems that are con-
nected by logical or discrete switching (Branicky et

al., 1998). Each subsystem is governed by a unique
set of differential and/or algebraic equations. Hybrid
systems have been studied by mathematicians, bi-
ologists, computer scientists and engineers amongst
others. This has resulted in a large number of publi-
cations and journal issues that are especially devoted
to hybrid systems (Automatica 35(3) 1999; IEEE
Transactions on Automatic Control 43(4) 1998).

A number of frameworks for modelling hybrid sys-
tem problems have been proposed. While a State-
Transition Network (STN) approach for modelling
is presented in Pantelides (2001), a mixed-integer
framework is described in Raman and Grossmann
(1991) and subsequent works (Biegler and Gross-
mann, 2004) and Bemporad and Morari (1999a). In
this paper we focus on piecewise affine (PWA) sys-
tems (Morari et al., 2003). PWA systems are de-
fined by partitioning the state and input space into
polyhedral regions and associating with each region
a different linear state update equation

x(t + 1) = Aix(t) + Biu(t) + f i (1)

if

[

x(t)
u(t)

]

∈ P i

where i = 1, ..., s, x ∈ <nc × {0, 1}nl , u ∈ <mc ×
{0, 1}ml , {Pi}

s
i=1 is a polyhedral partition of the set

of the state and iput space P ⊂ <n+m, n , nc +
nl,m , mc + ml. P is assumed to be closed and
bounded and xc ∈ Rnc and uc ∈ <mc denote the
continuous components of the state and input vector,
respectively; xl ∈ {0, 1}nl and ul ∈ {0, 1}ml similarly
denote the binary components.

PWA systems represent a modelling environment
for wide variety of hybrid systems: Electronic Throt-
tle (Baotic et al., 2002), Multi-Object Adaptive
Cruise Control (Möbus et al., 2003), Cement Mill
(Gallestey et al., 2003), Co-generation Power Plant
(Ferrari-Trecate et al., 2002b), Traction Control
(Borrelli et al., 2001) and Active Vibration Suppres-
sion (Niederberger et al., 2003). Modeling and con-
trol of a co-generation power plant is discussed in
detail (Ferrari-Trecate et al., 2004) in this paper.

Note that PWA models are not suitable for re-
casting analysis/synthesis problems into more com-
pact optimization problems. The Mixed Logical Dy-
namical (MLD) framework (Bemporad and Morari,
1999a) described in the next section can be used
to recast hybrid dynamical optimization problems
into mixed-integer linear (MILP) and quadratic pro-
grams (MIQP). A parametric programming algo-
rithm that avoids the on-line solution of MILP is
also described. Note that other optimization frame-
works, such as those based upon deriving necessary



conditions for optimal trajectory within the frame-
work of the Pontryagin’s maximum principle (Pic-
coli, 1999; Riedinger et al., 1999; Sussmann, 1999)
are not discussed.

Hybrid Systems Modeling

The derivation of the Mixed Logical Dynamical
(MLD) form of a hybrid system involves basically
three steps (Bemporad and Morari, 1999a). The first
one is to associate with a statement S, that can be
either true or false, a binary variable δ ∈ {0, 1} that
is 1 if and only if the statement holds true. Then,
the combination of elementary statements S1, ..., Sq

into a compound statement via the boolean opera-
tors AND (∧) , OR (∨) , NOT (∼) can be represented
as linear inequalities over the corresponding binary
variables δi, i = 1, ..., q. The inequalities stemming
from the compound statements are reported in Table
1. As an example consider P3, which says that the
statement S1 ∨S2 holds true if and only if δ1 and δ2

sum up at least to 1.
A special statement is given by the condition

aT x ≤ 0, where x ∈ X ⊆ Rn is a continuous variable
and X is a compact set. If one defines m and M

as lower and upper bounds on aT x respectively, the
inequalities in P9 assign the value δ = 1 if and only
if the value of aT x satisfies the threshold condition.
Note that in P7 and P9, ε > 0 is a small tolerance
(usually close to the machine precision) introduced
to replace the strict inequalities by non-strict ones.

The second step is to represent the product be-
tween linear functions and logic variables by intro-
ducing an auxiliary variable z = δaT x. Equivalently,
z is uniquely specified through the mixed integer lin-
ear inequalities in P10.

The third step is to include binary and auxiliary
variables in an LTI discrete-time dynamic system in
order to describe in a unified model the evolution
of the continuous and logic components of the sys-
tem. The general MLD form of a hybrid system is
(Bemporad and Morari, 1999a)

x (t + 1) = Ax (t) + B
1
u(t) + B

2
δ(t) + B

3
z (t) (2)

y(t) = Cx (t) + D
1
u(t) + D

2
δ(t) + D

3
z (t) (3)

E2δ (t)+E 3z (t)≤ E 1u (t) +E 4x (t) +E 5 (4)

where x =
[

xT
c xT

l

]T
∈ Rnc × {0, 1}nl are the

continuous and binary states, u =
[

uT
c uT

l

]T
∈

Rmc × {0, 1}ml are the inputs, y =
[

yT
c yT

l

]T
∈

Rpc ×{0, 1}pl the outputs, and δ ∈ {0, 1}rl , z ∈ Rrc

represent auxiliary binary and continuous variables
respectively. All constraints on the states, the in-
puts, the z and δ variables are summarized in the

inequalities (4). Note that, although the descrip-
tion (2)-(3)-(4) seems to be linear, nonlinearity is
hidden in the integrality constraints over the binary
variables. MLD systems are a versatile framework
to model various classes of systems. For a detailed
description of such capabilities we defer the reader
to (Bemporad and Morari, 1999a; Bemporad et al.,
2000b).

The discrete-time formulation of the MLD system
allows developing numerically tractable schemes for
solving complex problems, such as stability (Ferrari-
Trecate et al., 2002c; Mignone et al., 2000), state es-
timation and fault detection (Ferrari-Trecate et al.,
2002a), formal verification of hybrid system (Bem-
porad and Morari, 1999b), and control (Bemporad
and Morari, 1999a). In particular, MLD models
were proven successful for recasting hybrid dynamic
optimization problems into mixed-integer linear and
quadratic programs solvable via branch and bound
techniques.

The procedure for representing a hybrid system
in the MLD form (2)-(4) can be automated. For
this purpose, the compiler HYSDEL (HYbrid Sys-
tem DEscription Language), that generates the ma-
trices of the MLD model starting from a high-level
description of the dynamic and logic of the system,
was developed at ETH Zürich (Torrisi et al., 2000).

relation logic mixed integer inequalities

P1 AND (∧) S1 ∧ S2
δ1 = 1
δ2 = 1

P2 S3 ⇔ (S1 ∧ S2)
−δ1 + δ3 ≤ 0
−δ2 + δ3 ≤ 0
δ1 + δ2 − δ3 ≤ 1

P3 OR (∨) S1 ∨ S2 δ1 + δ2 ≥ 1

P4 NOT (∼) ∼ S1 δ1 = 0

P5 IMPLY (⇒) S1 ⇒ S2 δ1 − δ2 ≤ 0

P6 IFF (⇔) S1 ⇔ S2 δ1 − δ2 = 0

P7
[

a
T

x ≤ 0
]

⇒ [δ = 1] a
T

x ≥ ε + (m − ε) δ

P8 [δ = 1] ⇒
[

a
T

x ≤ 0
]

a
T

x ≤ M − Mδ

P9
[

a
T

x ≤ 0
]

⇔ [δ = 1]
a

T
x ≤ M − Mδ

a
T

x ≥ ε + (m − ε) δ

P10 Mixed product z = δ · a
T

x

z ≤ Mδ

z ≥ mδ

z ≤ a
T

x − m (1 − δ)

z ≥ a
T

x − M (1 − δ)

Table 1: Basic conversion of logic relations into
mixed integer inequalities.

Predictive Control of MLD Sys-

tems

The main idea of predictive control is to use a model
of the plant to predict the future evolution of the sys-
tem. Based on this prediction, at each time step t

the controller selects a sequence of future command
inputs through an on-line optimization procedure,
which aims at optimizing the tracking performance,
and enforces fulfillment of the constraints. Only the
first sample of the optimal sequence is actually ap-
plied to the plant at time t. At time t + 1, a new
set of measurements is taken and a new sequence is
evaluated based on the current state.

Let t be the current time, and x(t) the current



state. Consider the following optimal control prob-
lem

min
{v

T−1
0 }

J(vT−1
0 , x(t)) ,

T−1
∑

k=0

‖v(k)‖2
Q1

+

‖δ(k|t)‖2
Q2

+ ‖z(k|t)‖2
Q3

+

‖x(k|t)‖2
Q4

+ ‖y(k|t)‖2
Q5

(5)

subj. to































x(k + 1|t) = Ax(k|t) + B1v(k)+
B2δ(k|t) + B3z(k|t)
y(k|t) = Cx(k|t) + D1v(k)+
D2δ(k|t) + D3z(k|t)
E2δ(k|t) + E3z(k|t) ≤ E1v(k)+
E4x(k|t) + E5

(6)

where vT−1
0 , [v′(0), ..., v′(T − 1)]′, Q1 = Q′

1 > 0,
Q2 = Q′

2 ≥ 0, Q3 = Q′

3 ≥ 0, Q4 = Q′

4 > 0
and Q5 = Q′

5 ≥ 0. x(k|t) , x(t + k, x(t), vk−1
0 )

is the state predicted at time t + k resulting from
the input u(t + k) = v(k) to (2-4) starting from
x(0|t) = x(t). δ(k|t), z(k|t) and y(k|t) are similarly
defined. Assume for the moment that the optimal
solution {v∗

t (k)}k=0,... ,T−1 exists. According to the
receding horizon philosophy mentioned above, set

u(t) = v∗

t (0), (7)

disregard the subsequent optimal inputs
v∗

t (1), . . . , v∗

t (T − 1), and repeat the whole op-
timization procedure at time t + 1. Note that (5-6)
is an MIQP. This problem can be formulated as an
MILP if 1 norm instead of the 2 norm is considered
in the objective function. The repetitive solution of
the MIQP or MILP can be avoided by formulating
(5-6) as a multiparametric program and solving it
to obtain the control variables as set of explicit
functions of the current state of the system and the
regions in the space of the state variables where the
explicit functions remain valid (Bemporad et al.,
2000a; Sakizlis et al., 2002a). This is achieved by
recasting (5-6) in a compact form as follows:

min
πc,πd

πT
c Qcπc + φT πd

s.t. Gcπc + Gdπd ≤ S + Fx(t)
(8)

where πc and πd are continuous and discrete vari-
ables of (5-6), Qc, φ

T , Gc, Gd, S, F are constant ma-
trices and vectors of appropriate dimensions and Qc

is symmetric and positive definite. x(t) is the state
at the current time t. The objective is to obtain πc

and πd as a function of x(t) without exhaustively
enumerating the entire space of x(t). This can be
achieved by using parametric programming, as de-
scribed in the next section.

θ

θ)x(

CR-1 CR-2 CR-3

Figure 1: Parametric Optimization

Parametric Programming and

Control for Hybrid Systems

Consider the following multiparametric program:

z(θ) = min
x

f(x, θ)

s.t. gi(x, θ) ≤ 0, ∀ i = 1, ..., p
hj(x, θ) = 0, ∀ j = 1, ..., q
x ∈ X ⊆ <n

θ ∈ Θ ⊆ <m

(9)

Note that in an optimization framework f is the
performance criterion to be minimized, g ≤ 0 and
h = 0 are the constraints, x is the vector of optimiza-
tion variables and θ is the vector of parameters. In
an optimal control framework, x corresponds to the
vector of control variables, πc and πd in (8) and θ

corresponds to the vector of the current state of the
system, x(t) in (8). Parametric programming pro-
vides x(θ) = arg{min

x
f(x, θ), subject to constraints

in (9) }. Note that

x(θ) =







































x1(θ) if θ ∈ CR1

x2(θ) if θ ∈ CR2

...
xi(θ) if θ ∈ CRi

...
xN (θ) if θ ∈ CRN

such that CRi ∩ CRj = ∅, i 6= j,∀i, j = 1, ..., N and
CRi ⊆ Θ,∀i = 1, ..., N . A CRi is known as a Critical
Region. For the case when f, g and h are linear and
separable in x and θ, the CRs are polyhedra and each
CR corresponds to a uniqiue set of active constraints
(Dua et al., 2002). x(θ) when substituted into f(x, θ)
provides the optimal objective function value, z(θ),
as a function of θ. See Figure 1, where x(θ) is plotted
as a function of θ.

The procedure for obtaining xi(θ) and CRi de-
pends upon whether f , g and h are linear, quadratic,
nonlinear, convex, differentiable, or not, and also
whether x is vector of continuous or mixed -
continuous and integer- variables (Dua and Pis-
tikopoulos, 2000; Dua et al., 2002; Dua and Pis-
tikopoulos, 1999; Dua et al., 2003; Sakizlis et al.,
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Figure 2: On-line optimization via off-line paramet-
ric programming

2002b). Recently algorithms for the case when (9)
involves (i) differential and algebraic equations (Saki-
zlis et al., 2002a) and (ii) uncertain parameters (Saki-
zlis et al., 2004) have also been proposed. In the next
section an algorithm for Multiparametric Mixed Inte-
ger Linear Programs (mp-MILP) is described. This
reduces on-line hybrid system control problem to a
function evaluation problem (Figure 2).

Multiparametric Mixed-Integer Linear Pro-
gramming

Consider a multiparametric Mixed Integer Linear
Programming (mp-MILP) problem of the following
form:

z(θ) = min
x,y

cT x + dT y

s.t. Ax + Ey ≤ b + Fθ

θL
k ≤ θk ≤ θU

k , k = 1, . . . ,m

x ∈ <n

y ∈ {0, 1}l

θ ∈ Θ ⊆ <m,

(10)

where x is a vector of continuous variables, y is vector
of 0-1 binary variables, θ is a vector of parameters,
θL and θU are the vectors of lower and upper bounds
on θ, A is a (p × n) constant matrix, E is a (p × l)
constant matrix, F is a (p×m) constant matrix, b, c

and d are constant vectors of dimension p, n and l

respectively.
Note that Acevedo and Pistikopoulos (1997) pre-

sented an algorithm for solving (10) based upon B&B
principles. The algorithm described in this section is
based upon decomposing (10) into an mp-LP and
an MILP subproblem. The solution of the mp-LP,
which is obtained by fixing the vector of binary vari-
ables, provides a parametric upper bound, whereas
the solution of the MILP, which is obtained by treat-
ing θ as a free variable, provides a new integer vector.

z(θ)

z(θ)1

y = y

CR1

θ

Infeasible
Region

z(θ)3

z(θ)2

CR2 CR3 CR4

Figure 3: Parametric Solution - Multiparametric LP
Subproblem for y = ȳ

The parametric solutions corresponding to two dif-
ferent integer solutions are then compared, using a
procedure proposed by Acevedo and Pistikopoulos
(1997), in order to keep as tight upper bounds as
possible. The steps of the algorithm are described in
detail in the following sections.

Initialization

An initial feasible y is obtained by solving the
following MILP:

z = min
x,y,θ

cT x + dT y

s.t. Ax + Ey ≤ b + Fθ

θL
k ≤ θk ≤ θU

k , k = 1, . . . ,m

x ∈ <n

y ∈ {0, 1}l,

(11)

where θ is treated as a variable to find a starting
feasible solution. Let the solution of (11) be given
by y = ȳ.

Multiparametric LP Subproblem

Fix y = ȳ in (10) to obtain a multiparametric LP
problem of the following form:

ẑ(θ) = min
x

cT x + dT ȳ

s.t. Ax + Eȳ ≤ b + Fθ

θL
k ≤ θk ≤ θU

k , k = 1, . . . ,m

x ∈ <n.

(12)

The solution of (12) is given by a set of linear para-
metric profiles, ẑ(θ)i, where ẑ(θ) is convex, and cor-
responding critical regions, CRi (Gal, 1995). The
parametric solution has been graphically depicted in
Figure 3, where ẑ(θ)1, ẑ(θ)2 and ẑ(θ)3 represent solu-
tion in the regions CR1, CR2 and CR3 respectively.

The region, CR4 in Figure 3, where no solution is
found, represents an infeasible region for the current
integer solution, ȳ. Note that unlike in the case of a
single parameter where the infeasible region is sim-
ply given by intervals, for the multi-parametric case



an infeasible region can be defined by polyhedral re-
gions, which are obtained by systematically subdi-
viding the initial region of θ as described in Dua and
Pistikopoulos (2000). The final solution of the multi-
parametric LP subproblem in (12) which represents
a parametric upper bound on the final solution is
given by (i) a set of parametric profiles, ẑ(θ)i, and
the corresponding critical regions, CRi, and (ii) a set
of infeasible regions where ẑ(θ)i = ∞.

MILP Subproblem

For each critical region, CRi, obtained from the
solution of the multiparametric LP subproblem in
(12), an MILP subproblem is formulated as follows:

z = min
x,y,θ

cT x + dT y

s.t. Ax + Ey ≤ b + Fθ

cT x + dT y ≤ ẑ(θ)i

∑

j∈Jik yik
j −

∑

j∈Lik yik
j ≤ |J ik| − 1,

k = 1, . . . ,Ki

θ ∈ CRi

x ∈ <n

y ∈ {0, 1}l,

(13)

where θ is treated as a variable and θ ∈ CRi in-
dicates that θ is bounded by the set of inequal-
ities which define CRi; J ik = (j|yik

j = 1) and

Lik = (j|yik
j = 0), and |J ik| is the cardinality of J ik

and Ki is the number of integer solutions that have
already been analysed in CRi. Note that the inequal-
ity, cT x+dT y ≤ ẑ(θ)i, excludes integer solutions with
higher values than the current upper bound, ẑ(θ)i;
the inequality,

∑

j∈Jik yik
j −

∑

j∈Lik yik
j ≤ |J ik| − 1,

corresponds to integer cuts prohibiting previous in-
teger solutions from appearing again. The integer
solution, y = ȳ1, and the corresponding CRs, ob-
tained from the solution of (13), are then recycled
back to the multiparametric LP subproblem - to ob-
tain another set of parametric profiles, as graphically
depicted in Figure 4, where ẑ(θ)5 and ẑ(θ)6 represent
solution in the regions CR5 and CR6, respectively
(for simplicity in the graphical presentation the same
integer solution, y = ȳ1, is shown for all critical re-
gions). Note that, in general one may obtain different
integer solutions in different critical regions.

If there is no feasible solution to the MILP sub-
problem (13) in a CRi, that region is excluded from
further consideration and the current upper bound
in that region represents the final solution. Note
also that the integer solution obtained from the so-
lution of (13) is guaranteed to appear in the final
solution, since it represents the minimum of the ob-
jective function at the point, in θ, obtained from the
solution of (13). The final solution of the MILP sub-
problem is given by a set of integer solutions and
their corresponding CRis.

z(θ)

θ

y = y 1

CR5 CR6

z(θ)5 z(θ)6

Figure 4: Parametric Solution - Multiparametric LP
Subproblem for y = ȳ1
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Figure 5: Comparison of Two Parametric Solutions

Comparison of Parametric Solutions

The set of parametric solutions corresponding to an
integer solution, y = ȳ, which represents the current
upper bound are then compared to the parametric
solutions corresponding to another integer solution,
y = ȳ1, in the corresponding CRs in order to obtain
the lower of the two parametric solutions and update
the upper bound. This is achieved by employing the
procedure proposed by Acevedo and Pistikopoulos
(1997). The result of the comparison procedure is
graphically depicted in Figure 5, where ẑ(θ)1 repre-
sents the current upper bound in CR2, ẑ(θ)2 repre-
sents the current upper bound in CR3 and CR6, ẑ(θ)3

is the current upper bound in CR7, ẑ(θ)5 the current
upper bound in CR1 and CR4, and ẑ(θ)6 represents
the current upper bound in CR5 and CR8.

Multiparametric MILP Algorithm

Based upon the above theoretical developments, the
steps of the algorithm can be stated as follows:

Step 0 (Initialization) Define an initial region of θ,
CR, with best upper bound ẑ∗(θ) = ∞, and an
initial integer solution ȳ.

Step 1 (Multiparametric LP Problem) For each re-
gion with a new integer solution, ȳ:

(a) Solve multiparametric LP subproblem (12)
to obtain a set of parametric upper bounds
ẑ(θ) and corresponding critical regions CR.



(b) If ẑ(θ) ≤ ẑ∗(θ) for some region of θ, update
the best upper bound function, ẑ∗(θ), and
the corresponding integer solutions, y∗.

(c) If an infeasibility is found in some region
CR, go to Step 2.

Step 2 (Master Subproblem) For each region CR,
formulate and solve the MILP master problem
in (13) by (i) treating θ as a variable bounded in
the region CR, (ii) introducing an integer cut,
and (iii) introducing a parametric cut, cT x +
dT y ≤ ẑ∗(θ). Return to Step 1 with new integer
solutions and corresponding CRs.

Step 3 (Convergence) The algorithm terminates in
a region where the solution of the MILP sub-
problem is infeasible. The final solution is given
by the current upper bounds ẑ∗(θ) in the corre-
sponding CRs.

The algorithm has been implemented in prototype
software environments (PAROS, 2004; Kvasnica et
al., 2003).

In the next section modelling of a co-generation
power plant as a hybrid system is described in detail.
The problem is then recast and solved as an MILP
(Ferrari-Trecate et al., 2004).

An Application to a Co-

generation Power Plant

Consider the cogeneration combined cycle power
plant comprising four main components: a gas tur-
bine, a heat recovery steam generator, a steam tur-
bine and a steam supply for a paper mill (Figure 6).
The plant has two continuous-valued inputs (u1 and
u2), and two binary inputs (ul1 and ul2):

Steam turbine

Gas turbine

u2

u1

y2

y1

y3ulul

ul2

1

Figure 6: Block diagram of the Island power plant.

• u1 is the set point for the gas turbine load (in
percent). The permitted operation range for the
gas turbine is in the interval [u

1,min, u1,max];

• u2 is the desired steam mass flow to the pa-
per mill (in kg/s). The permitted range for the
steam flow is in the interval [u

2,min, u2,max];

• ul1 and ul2 are, respectively, the on/off com-
mands for the gas and steam turbines; the “on”
command is associated with the value one.

We assume that the inputs u1 and u2 are indepen-
dent and all possible combinations within the admis-
sible ranges are permitted. The binary input vari-
ables must fulfill the logic condition

ul2 = 1 ⇒ ul1 = 1, (14)

which defines a priority constraint between the two
turbines: The steam turbine can be switched on/off
only when the gas turbine is on, otherwise the steam
turbine must be kept off.

The output variables of the model are:

• the fuel consumption of the gas turbine, y1

[kg/s];

• the electric power generated by the steam tur-
bine, y2 [MW];

• the electric power generated by the gas turbine,
y3 [MW];

Since we aim at optimizing the plant hourly, we
choose a sampling time of one hour and we assume
that the inputs are constant within each sampling
interval. Due to the long sampling time we may also
ignore plant dynamics like temperature changes, con-
troller reaction times, etc. The input/output model
of the plant has the form

y1(k + 1) = f1(u1(k)) (15)

y2(k + 1) = f2(u1(k), u2(k)) (16)

y3(k + 1) = f3(u1(k)) (17)

y4(k + 1) = f4(u1(k), u2(k)), (18)

where the maps f1, f2, f3 and f4 can be either affine
or piecewise affine and are obtained by interpolat-
ing experimental data. The use of piecewise affine
input/output relations allows to approximate non-
linear behaviours in an accurate way.

Hybrid Features of the Plant

The main features which suggest modelling the
power plant as a hybrid system are the following:

• the presence of the binary inputs ul1 and ul2;

• the turbines have different start up modes, de-
pending on how long the turbines have been kept
off;

• electric power, steam flow and fuel consumption
are continuous valued quantities evolving with
time.



Furthermore, the following constraints have to be
taken into account:

• the operating constraints on the minimum
amount of time for which the turbines must be
kept on/off (the so-called minimum up/down
times);

• the priority constraint (14). This condition,
together with the previous one, leads to con-
straints on the sequences of logic inputs which
can be applied to the system;

• the gas turbine load u1 and the steam mass flow
u2 are bounded.

The MLD Model of the Power Plant

All the features of the power plant mentioned can be
captured by a hybrid model in the MLD form. In the
following we show, as an example, how to derive the
MLD description of the different types of start up for
the turbines. We focus on the steam turbine. The
procedure is exactly the same for the gas turbine.

Typical start up diagrams show that the longer the
time for which a turbine is kept off, the longer the
time required before producing electric power when
it is turned on. This behavior is common to all tur-
bines and is due to the need of heating the materials
of the mechanical components in a gradual way, in
order to avoid dangerous mechanical stresses. This
feature can be modelled, in an approximate way, as
a delay between the time instant when the plant is
started and the instant when the production of elec-
tric power begins.

time spent off (h) delay (h)

normal start up [0, 8] 1

hot start up ]8, 60] 2

warm start up ]60, 120] 3

cold start up ]120, +∞[ 4

Table 2: Typical types of start up procedures for
steam and gas turbines

In the model four different types of start up pro-
cedures for the steam and gas turbines (Table 2) are
considered. Thus, for instance, if a turbine has been
kept off for 70 hours, it will produce electric power
with a delay of 3 hours from the instant when the
start command is given. The shut down procedure
is simpler: When a turbine is turned off, at the next
time instant (one hour after!) it will produce zero
electric power.

In order to take into account in the MLD model
the different start up procedures, it is necessary to
introduce three clocks with reset (which are state
variables), five auxiliary logic variables δ, and three
auxiliary real variables z. The clocks are defined as
follows:

• ξon stores the consecutive time during which the
turbine produces electric power. If the turbine
is producing electric power, ξon is increased ac-
cording to the equation

ξon(k + 1) = ξon(k) + 1 (19)

otherwise it is kept equal to zero;

• ξoff stores the consecutive time during which
the turbine does not produce electric power. So,
if the turbine is off or does not produce electric
power (as in a start up phase), ξoff is increased
according to the equation

ξoff (k + 1) = ξoff (k) + 1 (20)

otherwise it is kept equal to zero;

• ξd, when it is positive, stores the delay that must
occur between the turning on command and the
actual production of electric power. If the tur-
bine is turned on, ξd starts to decrease according
to the law

ξd(k + 1) = ξd(k) − 1 (21)

and the energy generation will begin only when
the condition ξd < 0 is fulfilled. Otherwise, if
the turbine is off, ξd must store the delay corre-
sponding to the current type of start up. In
view of Table 2, when the turbine is discon-
nected (ul2 = 0), the value of ξd is given by
the following rules:

ξoff ≤ 8h ⇒ ξd = 0
8h < ξoff ≤ 60h ⇒ ξd = 1
60h < ξoff ≤ 120h ⇒ ξd = 2
ξoff > 120h ⇒ ξd = 3

(22)

For instance, if at the time instant k the turbine is
off (ul2(k) = 0) and ξoff (k) = 70, ξd will be set equal

to 2. If, at the next time instant k + 1 the turbine is
switched on (ul2(k+1) = 1), ξd will evolve according
to equation (21) and when, at the time instant k+4,
the condition ξd < 0 is fulfilled, ξoff is reset to zero

(ξoff (k+4) = 0) and ξon starts to increase according
to equation (19).

Since the energy production depends on the condi-
tion ξd < 0, we introduce the logic variable δd defined
by the threshold condition

δd = 1 ⇔ ξd < 0 (23)

which, written as

δd = 1 ⇔ ξd + 0.5 ≤ 0

can be translated into mixed integer linear inequali-
ties using the rule P9 in Table 1.



Then we introduce the logic variable δon, which
represent the condition ‘the turbine is on and pro-
duces electric power’ through the logic statement

δon = 1 ⇔ (ul2 = 1) ∧ (δd = 1) (24)

In order to find the mixed-integer linear inequali-
ties representing (24) one has two possibilities. The
first one is to re-write (24) in Conjunctive Normal
Form (CNF) (Cavalier et al., 1990) and then use the
rules of Table 1. Alternatively, one can use the al-
gorithm described in (Bemporad et al., 1999) that
allows computing the inequalities representing the
proposition (24) in an automated way starting from
the truth-table of the proposition (24).

The dynamics of the clocks ξon, ξoff can be writ-
ten as

ξon(k + 1) = [ξon(k) + 1]δon(k) (25)

ξoff (k + 1) = [ξoff (k) + 1](1 − δon(k)) (26)

The product between logic variables (as δon) and
continuous variables (as ξon and ξoff ) can be trans-
lated in the MLD form by introducing the auxiliary
real variables zon and zoff defined as

zon(k) = (ξon(k) + 1)δon(k) (27)

zoff (k) = ξoff (k)δon(k) (28)

These relations can be represented through linear
inequalities by using the rule P10 of Table 1. Finally
the dynamics of the counters ξon and ξoff in the
MLD form is given by the equations:

ξon(k + 1) = zon(k)

ξoff (k + 1) = zoff (k)

In order to represent the dynamics of the counter
ξd, three more auxiliary binary variables and one
auxiliary real variable are needed. The binary vari-
ables δh, δw, δc are necessary to distinguish the dif-
ferent types of start up and so their definition de-
pends on the value of ξoff . According to the Table
2, we have

δh = 1 ⇔ ξoff ≥ 8h (29)

δw = 1 ⇔ ξoff ≥ 60h (30)

δc = 1 ⇔ ξoff ≥ 120h (31)

Let zd be defined as

zd =

{

ξd(k) − 1 if ul2 = 1
δh(k) + δw(k) + δc(k) if ul2 = 0

(32)

Again, (32) can be translated into mixed-integer lin-
ear inequalities by using the rules P8 and P10 of
Table 1. It is now possible to write the dynamics of
the state ξd as

ξd(k + 1) = zd(k)

that is compatible with the MLD form (2) and must
be complemented with the inequalities representing
(29), (30), (31) and (32).

Remark 1 From the equations (19), (20), (21), it
follows that the clocks ξon, ξoff and ξd are un-
bounded, but it is easy to make them bounded by a
value ξon by introducing further auxiliary variables
modeling rules like ‘if ξon>ξon then ξon=ξon’.

By using the methodology outlined in this section,
it is possible to derive an MLD model capturing ev-
ery hybrid feature of the power plant. The complete
model is described in (Spedicato, 2001) and involves
12 state variables, 25 δ-variables and 9 z-variables.

The 103 inequalities stemming from the represen-
tation of the δ and z variables are collected in the
matrices Ei, i = 1, ..., 5 of (4) and are not reported
here due to the lack of space. Some significative sim-
ulations which test the correctness of the MLD model
of the power plant are also available in (Spedicato,
2001).

Cost Functional

The following cost functional is minimized:

J = Cdem + Cchange + Cfuel + Cstart up+
+ Cfixed − E + Cstart up gas + Cfixed gas

(33)

where Cdem is the penalty function for not meeting
the electric and steam demand, Cchange is the cost
for changing the operation point between two con-
secutive time instants, Cfuel takes into account the
cost for fuel consumption, Cstart up is the cost for the
start up of the steam turbine, Cfixed represents the
fixed running cost of the steam turbine, E represents
earnings from sale of steam and electricity; this term
has to take into account that the surplus production
can not be sold, Cstart up gas is the start up cost for
the gas turbine and Cfixed gas represents the running
fixed cost of the gas turbine.

Constraints and Derivation of the MILP

The optimization problem can be written as one of
minimizing (33) subject to x(t|k) = xk, and for t =
k,...,k+M−1, to equations of the form (2)-(4) where
k and M are the current time instant and the length
of the control horizon, respectively. The optimiza-
tion variables are {u(t|k)}k+M−1

t=k , {δ(t|k)}k+M−1

t=k ,

{z(t|k)}k+M−1

t=k . The repetitive solution of this
MILP can be avoided by using parametric pro-
gramming to obtain {u(t|k)}k+M−1

t=k , {δ(t|k)}k+M−1

t=k ,

{z(t|k)}k+M−1

t=k as a function of xk.

Concluding Remarks

In this paper, an overview of the recent develop-
ments in the area of hybrid systems and paramet-
ric programming was presented. It was illustrated
how optimal control problems related to hybrid sys-
tems can be formulated as mixed integer progams.



While solvers for mixed-integer programs are avail-
able, parametric programming techniques can be
used to recast hybrid systems as multiparametric
mixed-integer programs and solved to obtain control
variables as an explicit function of the state vari-
ables. This reduces the on-line hybrid control prob-
lem to simple function evaluations. The key features
of hybrid systems were illustrated by a cogeneration
power plant example.
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