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Abstract 

A lack of mechanistic understanding of kinetic phenomena in chemical process systems is still the major 
bottleneck for a more widespread application of model-based techniques in process design, operations 
and control. Kinetic phenomena are becoming of increasing importance given the rapidly developing 
capabilities for the numerical treatment of more complex – typically distributed parameter – models on 
the one hand and the need for predictive models on the other. Surprisingly, little progress has been made 
in recent years towards systematic approaches to kinetic model identification despite the availability of 
powerful measurement techniques, modeling and simulation technologies on multiple scales as well as 
parameter estimation and structure identification techniques. This contribution will introduce a novel 
concept for mechanistic modeling of complex kinetic phenomena in chemical process systems. The 
approach aims at the integration of high resolution measurements, modeling on multiple scales and the 
formulation and solution of inverse problems in a unifying framework. An incremental approach based 
on gradual refinement of experimental techniques and mathematical models forms the core of the 
suggested methodology. The foundations of the approach developed in a collaborative interdisciplinary 
research center at RWTH Aachen will be discussed in detail.  
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Introduction

Kinetic phenomena drive the macroscopic behaviour 
of process systems. Most notably, the kinetics of chemical 
and chemical reactions play a decisive role in the 
manufacturing of bulk and specialty chemicals, 
pharmaceuticals or advanced materials. In single phase 
systems, macro- and micro-mixing interferes with 
chemical conversion if the time-scales of transport and 
reaction overlap. The correlation between chemical 
kinetics and transport phenomena is even more 
pronounced in multi-phase reactive systems because the 
location and extent of reaction depends on the kinetics of 
transport and reaction close to the interface. The interfacial 
area as well as the interface morphology are decisive for 
heat and mass transfer across the interface and hence for 

the selectivity and conversion of a multi-phase reaction 
system. The situation is getting even more complicated if 
complex fluids comprising of small and large molecules 
(such as proteins, oligomers and polymers) have to be 
considered. Then, reaction and transport kinetics strongly 
depend on the details of the molecular structure (and 
possibly even on the dynamics of inter- and intra-
molecular interaction). 

Kinetic phenomena not only determine the behaviour 
of the manufacturing process but also the properties and 
hence the quality of the manufactured product. In case of 
simple fluid products, quality just relates to chemical 
composition which is determined by the impurities of raw 
materials, the selectivity of the reactions and the efficiency 



 
of downstream separation processes. If however structured 
materials such as solids (e.g. particles, fibres, thin films 
etc.) or multi-phase systems (foams, gels, porous solids 
etc.) are considered, kinetic phenomena are much more 
important, because kinetics determine the morphology of 
the structured material during its formation and 
equilibrium is sometimes not even reached.  

Last but not least, kinetic phenomena are a key to 
understand the function of biological systems. For 
example, the metabolism of a single cell can be cast into a 
complex reaction network. The stoichiometry of the 
network and the kinetics of the individual reactions fix the 
metabolic pathway which is responsible for cell growth 
and for secondary metabolites production. In addition, 
signal transduction and regulation trigger switches 
between alternative metabolic pathways or even cell 
differentiation. These mechanisms again are implemented 
by means of reaction networks. Transport phenomena in 
the cell but also between cells in a cluster or even between 
organs interact with the bio-reactions and together realize 
the overall function and behaviour of a biological system.  

Issues in kinetic modelling 

Kinetic modelling on different length and time scales 
is a key technology  

• for the design, control and operation of 
manufacturing processes, 

• for the design and development of structured or 
functional chemical products, and  

• for a better understanding of the micro-scale 
phenomena in (bio-)chemical systems.  

Though process systems engineering has been largely 
focussing on the first of these areas, the most important 
drivers are expected to result from the second and third 
area in the future. They are governed by kinetics on the 
micro- and the meso-scales rather than the macro-scale. 

Kinetic modelling of process systems is still a 
challenge despite the progress we have seen in the last two 
decades. There is still no systematic means to derive and 
validate models which capture the underlying physico-
chemical mechanisms of an observed behaviour. There are 
clearly fundamental limitations. First, according to Popper 
(1959) a model as well as any other theory can never be 
strictly verified but only falsified. Therefore, kinetic 
modelling has to be orientated at a certain engineering 
objective in a pragmatic sense. Second, models are often 
confined to represent phenomena on a certain scale. For 
example, phenomena observed on the continuum scale are 
driven by the mechanisms on the molecular scale. Hence, 
continuum scale modelling is not truly mechanistic since 
an abstraction of molecular processes is inevitable. 
Typically, this abstraction has to be built partly on 
empirical elements in order to bridge the immanent gap 
between both scales. Hence, any mechanistic model of a 
continuum could be viewed as a hybrid model combining 
first principles knowledge on both scales with 

observations gathered during well-designed experiments. 
Any successful kinetic modelling requires 

• a carefully designed experiment equipped with 
(possibly a combination of) appropriate  
measurement techniques,  

• modelling and simulation on multiple scales 
including the integration between adjacent scales,  

• the formulation and solution of inverse problems 
to fit a model to the data, and  

• methods for inferring the most suitable model 
structure from a set of possible candidates.  

This list of requirements implicitly defines a coarse-
granular research agenda. Experimentation should directly 
address interacting kinetic phenomena. This is in contrast 
to current practice, where their isolation is attempted by a 
suitably designed experiment. Typically, interaction 
cannot completely be avoided. Hence, a largely 
unquantifiable level of error cannot be avoided. 
Measurement techniques have to be developed to provide 
information on the major state variables in an experiment 
– ideally at high resolution in space and time rather than 
measurements at a few points in time or at a few spatial 
locations. Consequently, large amounts of data have to be 
acquired and processed during model identification. 
Modelling has to address kinetic phenomena on multiple 
scales. Means for bridging between the inherently 
differing levels of abstraction on adjacent scales are 
needed. Inevitably, modelling will move from differential-
algebraic equation systems with relatively few parameters 
to partial differential-algebraic models with many 
parameters to properly capture the kinetic mechanisms on 
a high level of resolution. The resulting inverse problems 
are becoming much more demanding for these types of 
equations. Intelligent problem formulations and adaptive 
solution algorithms are a key to successfully solve such 
estimation problems. The generation of candidate model 
structures from molecular considerations and the 
subsequent selection of the best model structure for a 
given purpose has to be addressed. Besides further 
developments within these areas, a systematic work 
process has to be defined and supported by computational 
tools to guide the modelling team in applying and 
efficiently combining the various techniques.  

The collaborative research centre CRC 540 

The collaborative research centre CRC 540 “Model-
based Experimental Analysis in Fluid Multi-Phase 
Reactive Systems” (http://www.sfb540.rwth-aachen.de/) at 
RWTH Aachen has been addressing these issues since 
1999. The interdisciplinary research is carried out by a 
team of about 25 researchers from 11 different research 
groups at RWTH Aachen with widely differing areas of 
expertise including measurement techniques, transport 
phenomena, thermodynamics, chemical and biochemical 
reaction engineering, process systems engineering, 
scientific computing  and numerical analysis. The research 
in CRC 540 is focussing on both, the development of a 



 
systematic work process called Model-based Experimental 
Analysis (or MEXA for short) and its ingredients as well as 
a number of challenging modelling problems on the 
micro- and meso-scales in the area of fluid multi-phase 
reactive systems. The combination of method development 
and benchmarking creates a fruitful push and pull 
situation. A selection of topics which are being studied in 
the context of CRC 540 and related projects include  

• reactions in homogeneous and heterogeneous 
fluid mixtures, 

• multi-component diffusion in liquids and 
hydrogels, 

• multi-component transport and reaction in single 
liquid droplets levitated in a liquid phase, 

• enzymatic reactions in gel particles,  
• transport and reaction in falling liquid films,  
• heat and mass transfer in boiling processes.  

These problems are used to benchmark the development of 
the MEXA work process and to support method 
development by formulating requirements for the 
individual steps. The most important activities of the work 
process are shown in the block diagram of Fig. 1.  
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Figure 1. Model-based experimental analysis. 

In a first step, a first experiment is designed on the 
basis of a priori knowledge and on the intuition of the 
experimentalist; a suitable measurement system is selected 
and implemented. Next, a first mathematical model of the 
experiment and the measurement system is built. 
Numerical simulation studies with this model reveal 
whether the measurements contain a sufficient degree of 
information to retrieve the kinetic process quantities of 
interest. Improvements of the experimental set-up and the 
measurement system can derived. Due to the unavoidable 
uncertainty in the model used, sensitivity studies with 
respect to the major model assumptions should be carried 
out. Typically, the measurements do not directly reveal 
those quantities which are most useful for modelling 
purposes. Again, the mathematical model can be employed 
to design the estimation techniques for inferring the 
quantities of interest from the measurements. Often, data 

pre-processing has to be applied to the primary 
measurements before they are used in the estimation 
algorithm. Examples include the elimination of outliers or 
the calibration of spectral data to deduce concentrations 
(Martens and Naes, 1989). Pre-processing and estimation 
could, however, also be treated in an integrated manner 
(Albuquerque and Biegler, 1996; Tavitsainen et al., 2001). 
The formulation and solution of these inverse problems 
refers to combinations of state, parameter and unknown 
input estimation as well as model structure identification 
and model selection. Since these inverse problems are 
typically ill-posed in the sense of Hadamard (Engl et al., 
1996; Kirsch, 1996), a simulation-based trial and error 
approach is employed to tune the solution algorithms to 
get reliable results. Last but not least, the model can be 
used to design experiments for maximum information 
content to obtain best results during the subsequent 
parameter estimation or model discrimination steps 
(Walter and Pronzato, 1990; Atkinson and Donev, 1992).  

Typically, the first model does not reflect the real 
phenomena with sufficient detail and accuracy. Therefore, 
iterative model refinement intertwined with iterative 
improvement of the experiment and the measurement 
techniques has to be carried out to improve the predictive 
capabilities of the model based on the extended 
understanding gained.  

A work process consisting of at least design of 
experiments, data interpretation and modelling dates back 
to at least the nineteen-seventies (e. g. Kittrell, 1970). 
However, its efficiency depends on the sequencing of the 
work process steps, on the type and quality of the methods 
applied during each these steps, and, in particular, on the 
strategies for the refinement of the experiment and the 
model structure. It has been only recently, that the 
development and benchmarking of such a work process 
has been formulated as an important research objective, 
e.g. by the CRC 540 team as well as by Asprey and 
Macchietto (2000). The work processes advocated by both 
teams consider iterative improvement. However, its power 
depends on the concrete strategies employed for 
systematically improving both, the model structure and the 
experimental set-up in every refinement step during model 
identification. While experimental design is the focus of 
the work of Asprey and Macchietto (2000), the research in 
CRC 540 is complementary and emphasizes the strategy 
for model structure refinement.  

Simultaneous vs. incremental model identification 

Before presenting the incremental model 
identification strategy of CRC 540, we will briefly 
summarize the commonly practiced simultaneous 
approach.  

Simultaneous model identification 

Consider for example the modelling of a two-phase 
(gas-liquid) stirred tank reactor where well-mixed 



 
segregated phases can be safely assumed. A model of the 
reactor would require kinetic models for (i) the heat and 
mass transfer between the two phases, (ii) the heat transfer 
from the reactor to the cooling jacket and for (iii) the rates 
of the reactions in either of the phases or in the interface. 
For each kinetic phenomena several alternative model 
structures basing on different assumptions and theories 
may exist. The aggregation of such sub-models with the 
balance equations of both phases and the interface will 
inevitably lead to a multitude of candidate models. 
Experimental data are required to estimate model 
parameters, to assess model fit and to discriminate 
between the candidates using some measure of model 
validity.  

Usually, the model fit is not sufficient and some 
improvement strategy has to be employed to compensate 
for the deviations between experimental data and model 
prediction. Typically, such model improvement is applied 
rather in an ad hoc than a systematic manner. For 
example, an alternative reactor model is suggested by 
replacing the kinetic sub-model which is suspect to be the 
most responsible for the poor reactor model quality. 
Sometimes, the complexity of the sub-models (and 
consequently the degree of detail they capture) is 
increased from low to high in an arbitrary sequence and 
combination.  

In such an ad hoc iterative improvement approach the 
number of different model structures is quickly growing 
due to nested sub-models and the resulting combinatorial 
nature of the model selection problem. An appropriate 
strategy for finding the “best” model at “least” effort does 
not seem to be available. In addition, there are other 
largely unresolved issues which have been experienced by 
all practitioners: 

• What if there are no good candidate structures for 
the kinetic model to start with?  

• Which kinetic model contributes most to the lack 
of fit and should be switched subsequently? 

• Is the model structure suitable? 
• Is the information content in the experimental 

data sufficient for reliable identification? 
• How to design an experiment for more valuable 

information to improve the model structure? 
• How to deal with convergence and robustness 

problems of the nonlinear estimation algorithms? 
This short discussion shows, that a more sensible 
modelling strategy is needed to gradually refine a model in 
a goal-oriented way, which guides the selection of 
candidate kinetic model structure and supports the 
validation of such a choice on scientific grounds. 

Incremental model development and refinement 

Before we continue our discussion on model 
identification, we want to recall that the development of 
the model equations itself can be carried out in a 
systematic manner (Marquardt, 1995). In a first modelling 
step, the balance envelopes are chosen and their 

interactions are determined, the intended spatio-temporal 
resolution of the model is decided, and the extensive 
quantities are selected for which balances will be 
formulated. In case of the illustrating two-phase reactor 
example, two well-mixed liquid and gas phases, 
interacting through a common interface, are chosen as 
balance envelopes. Mass and energy are selected to be 
balanced.  

Subsequently, the balance equations are formulated 
and gradually refined as illustrated in Fig. 2. The decision 
on the structure of every balance equation on level B is 
guided by an assessment of the relevance of the physico-
chemical processes occurring in the balance envelope. The 
balance is formulated as a sum of generalized fluxes, i.e. 
the hold-up variation, the inter- and intraphase transport as 
well as the source/sink terms. Note, that no constitutive 
equations are considered yet to determine these fluxes as a 
function of the intensive thermodynamic state variables 
(subsequently called states in short, i.e. the pressure, 
temperature and concentrations). In case of the reactor 
example, hold-up variation, convective flow into and out 
of the vessel, mass and energy transfer across the gas-
liquid interface, heat transfer to the cooling jacket and 
chemical reaction in the liquid phase are considered.  

On the next decision level BF, constitutive equations 
are specified for each flux term in the balances, i.e. the 
correlations for the hold-up, the interfacial fluxes, the heat 
loss as well as for the reaction rates in the reactor example. 

Often, these correlations do not only depend on 
thermodynamic state functions (i.e. density, heat capacity 
etc.) but also on rate coefficients (i.e. reaction rate, heat 
and mass transfer coefficients etc. in the reactor example) 
which themselves depend on the states. Consequently, the 
decision for choosing the structure of the expression 
relating rate coefficients and states has to be taken on yet 
another level BFR.  

This cascaded decision process can continue as long 
as the sub-models considered do not only involve constant 
parameters but also functions of the states.  
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Figure 2. Gradual refinement strategy during 
the development of model equations.  

Such a structured approach during the compilation of 
the essential model equations for each of the balance 



 
envelopes renders the individual decisions in the 
modelling process completely transparent: the modeller is 
in full control of the model refinement process.  

It should be noted, that the sub-models chosen on any 
of the decision levels do not necessarily have to be based 
on first principles. Rather, any mathematical correlation 
can be selected to fix the dependency of a flux or a kinetic 
coefficient as a function of intensive quantities in the 
sense of black-box modelling. This way, a certain type of 
hybrid (or grey-box) model (Psichogios and Ungar, 1992) 
arises in a natural way by combining first principles 
models fixed on previous decision levels with an empirical 
model on the current decision level. 

 Incremental model identification 

The systematic specification of a process model and 
its sub-models is also a perfect starting point for devising a 
systematic work process for model identification as 
illustrated in Fig. 3.  
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Figure 3. Incremental  model refinement.  

We assume to have a measurement system in place 
which provides experimental data for the states x(z,t) at 
sufficient resolution in time t and space z. This data is 
sufficient – at least in principle – to estimate an unknown 
flux J(z,t) in the balance equation on level B as a function 
of time and space coordinates without the need for 
specifying a constitutive equation. This estimation 
problem corresponds in fact to an (approximate) inversion 
of the balance equation to solve for a flux J(z,t) as a 
function of quantities which are either measured or 
inferred from the measurements. The flux estimates are 
interpreted as inferential measurements which, together 
with the real measurements, can be used in the next 
incremental identification step on level BF to determine a 
rate coefficient k(z,t) as a function of time and space, 
provided an appropriate flux model has been selected to 
relate the flux to rate coefficients, to measured states, and 
to their derivatives. Often, the flux model can directly be 
solved for the rate coefficient function k(z,t). Finally, a 
model for the rate coefficients is identified on level BFR 

which is assumed to only depend on the measured states 
and constant parameters θ. These parameters can be 
computed from the estimated rate coefficients k(z,t) and 
the measured states x(z,t) by solving an algebraic 
regression problem.  

Let us again consider the two-phase reactor example. 
Concentration measurements (i.e. x(t)) are taken in both 
phases at a number of points in time. The liquid phase 
reaction and mass transfer fluxes (i.e. J(t)) can be 
estimated after differentiating the concentration 
measurements and solving the mass balances of both 
phases sequentially. Reaction rate and mass transfer 
coefficient data (i.e. k(t)) can be determined by directly 
solving the reaction rate model (e.g. Arrhenius’ law) and 
the mass transfer model, respectively, using the estimated 
fluxes and the driving forces, which themselves can be 
computed from the measured concentrations. Finally, the 
kinetic coefficient data is correlated with the measured 
concentrations by some model containing constant 
parameters (i.e. θ). 

A preliminary assessment of the incremental approach 

The incremental approach has the potential to 
overcome a number of the disadvantages of the 
simultaneous approach discussed above.  

Rather than postulating a potentially large number of 
nested model structures during model improvement in a 
largely ad hoc manner, a structured, fully transparent 
process is taken in the incremental model refinement 
strategy suggested. An uncontrolled combinatorial growth 
of the number of model candidates is avoided by the 
structured search process. The exponential growth of 
complexity in case of many uncertain sub-model structures 
is completely avoided. Any decision on the model 
structure relates to a single physico-chemical phenomena. 
Sub-model selection is guided by the previous estimation 
step which provides input-output data inferred from the 
measurements. Identifiability can be assessed on the level 
of the sub-model. This way, a lack of information content 
in the measurement system or an overparameterization of 
the sub-model can be discovered more easily. If there is no 
knowledge on good candidate models, a black-box model 
can be fitted first. The correlation quality obtained can act 
as a target for first-principles modelling on a finer scale 
(such as on the molecular level) to generate a suitable 
model structure.  

The decomposition inherent to incremental model 
refinement also offers computational advantages. The 
solution of many difficult output least-squares problems 
with differential-algebraic or even partial differential-
algebraic constraints with a potentially large number of 
data points resulting from high resolution measurement is 
completely avoided. Rather, an often linear inverse 
problem has to be solved first. All the following problems 
are nonlinear regression problems with algebraic 
constraints regardless of the complexity of the overall 
model. This decomposition not only facilitates 



 
initialization and convergence of the estimation 
algorithms, but it also allows for incremental testing of 
model validity at every decision level for the sub-models. 
This transparency of the model identification process is 
lost in the simultaneous approach where only aggregated 
model mismatch can be observed. The computational 
effort is reduced drastically. Largely intractable estimation 
problems (such as those involving distributed parameter 
systems with many point measurements) may become 
computationally feasible. 

Multi-step approaches to model identification have 
been applied rather intuitively by a couple of research 
groups before. Classical applications can be found in the 
reaction kinetics literature (e.g. Kittrell, 1970). In the so-
called differential method, reaction fluxes are inferred 
from the experiment in order to correlate this data with 
measured concentrations. More recently, Tholodur and 
Ramirez (1996, 1999) as well as van Lith et al. (2002) 
have applied a two-step approach for the hybrid modelling 
of fermentation processes. First reaction fluxes are 
estimated from measured data, then neural networks and 
fuzzy models are employed to correlate the fluxes with the 
measurements. Mahoney et al. (2002) estimate the crystal 
growth rate directly from the population balance equations 
using a method of characteristics approach and indicate 
the possibility to correlate it with solute concentration 
next.  

Though, the incremental refinement approach is rather 
intuitive, a systematic work process has not been reported 
and thoroughly analysed in the literature. If we consider 
incremental model identification as a promising working 
hypothesis, it is worthwhile to study the ingredients 
necessary for a successful implementation in more detail. 
In particular, we have to assess in the subsequent sections 
the capabilities of  

• techniques for high resolution measurement of 
transient velocity, concentration and temperature 
fields and their calibration, 

• algorithms for model-free flux estimation by an 
inversion of the balance equations,  

• methodologies for the generation, assessment 
and selection of the most suitable model structure 
to relate fluxes to states (and their spatial 
gradients), and finally of 

• methods for model-based experimental design. 
Obviously, not all of these areas can be reviewed in full 
detail. We rather attempt to give a rough overview to 
assess the feasibility of the suggested incremental model 
identification approach and to derive new requirements.  

High resolution measurement techniques 

Measurements of the states should be carried out at 
high resolution in time and space to facilitate the first step 
of incremental model identification, i.e. model-free flux 
estimation. The requirements on the resolution depend on 
the concrete modelling problem. They can be assessed 

analytically (e. g. Bardow and Marquardt, 2004b) or by 
simulation studies.  

Recent developments have been focussing on 
accessing data from fluid mixtures at high resolution in 
space and time. These techniques are applied in-situ and 
(if any possible) non-invasive to observe the system while 
the kinetic phenomena are occurring without disturbances 
due to the presence of an invasive probe. A selection of 
methods are summarized in the following.  

Temperature measurements can be taken at high 
resolution in time by micro-thermocouples (e.g. Buchholz 
et al., 2004). Simultaneous temperature measurements at 
many spatial locations are possible but disturb the flow 
conditions in the sample as any other invasive technique. 
Infrared thermography is an alternative non-invasive 
measurement principle to access surface temperatures (e.g. 
Groß et al., 2004) at reasonable spatio-temporal resolution. 
The spatial resolution is correlated with the sample size 
due to the fixed number of pixels of the CCD chip used 
for signal acquisition.  

Optical spectroscopy can provide concentration 
measurements with good accuracy at high resolution in 
time while simultaneous measurements at different 
locations in space are more difficult to achieve. However, 
concentration measurements are possible in fluids along a 
line (e. g. Bardow et al. 2003) or even on a plain (Krytsis 
et al., 2000) by means of Raman spectroscopy at good 
resolution. Concentration measurements can also be done 
in three spatial dimensions by means of nuclear magnetic 
resonance imaging (MRI), but the achievable accuracy and 
resolution is still limited (Maiwald et al., 2004).  

Velocities can be measured in three dimensions by 
MRI. An appropriate design of the pulse sequences allows 
a wide range of resolutions in time and space (Fukushima, 
1999, Gladden, 2003a,b). Alternatively, particle image 
velocimetry can be employed to get two- or even three-
dimensional velocity measurements (Prasad, 2000). Tracer 
particles are added to the fluid and tracked by optical 
means. Particle trajectories and velocities can be computed 
from the primary signal. These methods can provide good 
accuracy and high spatial resolution. Averaging over time 
is unavoidable to get a reasonable signal to noise ratio. 

The disperse state of multi-phase systems – in 
particular the interfacial area and its distribution – can be 
assessed by tomography methods such as MRI (Gladden, 
2003b), ultrasound or electrical impedance imaging 
(Reinecke and Mewes, 1997). The accuracy and spatio-
temporal resolution of these methods is yet limited, but 
very good visualization of the qualitative nature of the 
multi-phase flow is possible. Alternatively, probe 
detectors can be used if transient information at higher 
accuracy is required at a single spatial location. Such 
invasive techniques have been applied to particulate 
systems (Barrett, 2003) as well as to fluid dispersions 
(Cartellier and Achard, 1991) with great success. 

Simultaneous measurement of all intensive quantities 
at high spatio-temporal resolution would obviously be 
desirable. There are opportunities for future research to 



 
start with one of the established measurement principles 
and to work towards this ambitious goal. Raman 
spectroscopy as well as MRI are two principles which 
could be evolved into methods providing simultaneous 
information on more than one intensive quantity in space 
and time (e.g Goldbrunner et al., 2003; Gladden, 2003a).  

The primary signal provided by these complex 
measurement systems is not the information one is 
interested in. Therefore, calibration procedures have to be 
applied to infer the quantities of interest. A prominent 
example is the conversion of spectral data into 
concentrations. Recently, chemometrics (or soft-modeling) 
methods (Martens, Naes, 1989) have attained a lot of 
attention. They are routinely applied to address all kinds of 
calibration problems. However, due to their linear nature, 
accuracy and range of validity are often limited. So-called 
hard modelling techniques try to capture some a priori 
knowledge on the measurement principle in order to 
overcome these problems (e.g. Alsmeyer et al., 2004).  

From our experience, the accuracy achieved by 
current high resolution measurement techniques is often 
not sufficient for model discrimination. This is mainly due 
to the fact that the conversion of the raw data into useful 
measurement information is often not the core interest of 
the experimentalist. Highly accurate calibration and the 
quantification of the systematic and statistical errors 
(upper bounds or even statistical error distributions) are 
therefore often not attempted. Such information is also 
difficult to obtain, since it may require the proper 
modelling of the measurement equipment and the 
underlying processes which is a demanding and time-
consuming task calling for process systems rather than 
experimental skills.  

Calibration and the subsequent steps of model 
identification do not necessarily have to be tackled 
sequentially as indicated in Fig. 3. Rather, it is sometimes 
necessary to integrate both if calibration is not possible or 
difficult to achieve. For example, if the spectra of all the 
pure components are not available in a highly reactive 
mixture, simultaneous calibration and reaction model 
identification is a viable alternative (Amrhein et al., 1999; 
Taavitsainen et al., 2001, 2003).  

Future efforts should focus on further improving the 
resolution of the measurements in time, space and 
chemical scales and on a high precision calibration in a 
large region of the state space. There seem to be enormous 
opportunities at the interface between measurement 
technology and mathematical modelling with the objective 
of facilitating proper physical interpretation of the raw 
measurement data and quantifying measurement errors. 

Model-free estimation of generalized fluxes  

For generalized flux estimation lumped and 
distributed parameter models should be distinguished. In 
lumped parameter models, generalized fluxes J(t) only 
depend on time t and occur as an additive term in the 
balance equations. In distributed parameter models, 

generalized fluxes J(z,t) depend on time and spatial 
coordinates. They can occur either in the interior or on the 
boundary of a spatial domain and hence show up as an 
additive term in the balance equation or in a boundary 
condition. Examples include (i) the time varying reaction 
and mass transfer fluxes in the gas-liquid reactor, (ii) the 
diffusive flux in a stagnant liquid which enters the 
differential mass balance as a function of time and space, 
or (iii) the heat flux from a falling liquid film to the 
surrounding gas, which enters the boundary condition and 
depends on time and the surface coordinates on the wavy 
film.  

Flux estimation – an ill-posed inverse problem 

Regardless of the concrete application context, the 
problems for estimating unknown generalized fluxes can 
be cast into an operator theoretic setting. Let Tw∏ y be the 
operator mapping an unknown flux w∈W into the 
observed quantities y∈Y according to  

.ywT yw =→  (1) 

The sets W and Y are appropriate function spaces. The 
operator Tw∏ y is implicitly given by the model equations. 
Since measurements are always corrupted with error, the 
observed quantities y in Eq. (1) have to be replaced by the 
measurements 

,)()()(~ tntyty +=  (2) 

before we can attempt to solve the model for the unknown 
generalized fluxes w. The estimation problem boils down 
to solving the operator equation (1) with measurements y~ 

ywT yw
~=→   (3) 

for the unknowns w. This problem is in general ill-posed 
in the sense of Hadamard (Engl et al., 1996; Kirsch, 
1996), because, for all admissible data y~, a solution ŵ 
may either (i) not exist (ii), it may not be unique or (iii) it 
may be unstable in the sense that small variations in y~ 
cause large variations in the solution ŵ. 

In order to guarantee existence and uniqueness of the 
estimate  a generalized solution of the operator equation 
(3) has to be determined. This solution is given by 

ŵ

,   
~ˆˆ yTw yw→= (4) 

where T̂  is the generalized inverse of the operator T which 
is a minimum norm least-squares solution of Eq. (3) if the 
L2-norm is used (Engl et al., 1996, Kirsch, 1996). The 
quality of the solution, however, depends heavily on the 
continuity properties of  T̂ .  
In general, T̂  is unbounded such that stability cannot be 
guaranteed. Regularization methods can be used to recover 



 
stability. A regularization method is a family of operators 
Tα such that  

,ˆlim
0

yTyT yw→
→

=α
α   (5) 

where α is a regularization parameter (Engl et al., 1996, 
Kirsch, 1996). The regularization operator is obviously an 
approximation of the generalized inverse for small α. As 
any approximation, regularization introduces an extra 
error to the estimate. If the observation error is bounded 
by some error level ε such that  

,~ ε≤− yy   (6) 

the error in the regularized solution is given by 

.)ˆ()~(ˆ~ yTTyyTyTyT −+−=− ααα  (7) 

The first term is the so-called data error which is due to 
measurement errors whereas the second term accounts for 
the regularization error. In the limit of a vanishing 
regularization (i.e. α ∏ 0), the approximation error tends 
to zero but the data error tends to infinity because of the 
unboundedness of the generalized inverse. This simple 
result shows that any choice of Tα results in a trade-off 
between regularization error (usually leading to a biased 
estimate) and data error (contributing to the variance for 
zero mean errors n(t) or to both, bias and variance in the 
general case). The choice of an appropriate regularization 
level α is the key for good estimation quality.  

These inherent properties of any inversion problem in 
function space render the estimation of generalized fluxes 
a difficult undertaking. Only carefully designed inversion 
schemes will result in estimates ŵ which can be used in 
subsequent steps of incremental identification. 

Many types of regularization operators have been 
suggested in the literature. Regularization can be 
introduced by filtering (Tikhonov and Arsenin, 1977), by 
truncated singular value decomposition (Engl et al., 1996) 
or Tikhonov regularization which stems from a penalized 
least-squares minimization of the equation residual of Eq. 
(3) (Engl et al., 1996). A completely different type of 
regularization results from the projection of the unknown 
function w from the function space W into some vector 
space V (Kirsch, 1996). Such a projection is necessary in 
any case, since all numerical techniques employed to solve 
the estimation problem require some finite-dimensional 
parameterization (or discretization) of the unknown 
function w. In all practical cases, the interplay between the 
unavoidable discretization and additional regularization in 
the problem formulation has to be carefully exploited 
(Binder et al., 2002; Ascher and Haber, 2001).  

Any regularization operator has to be complemented 
by a regularization parameter choice method which 
establishes an optimal trade-off between data and 
regularization error. Most of the available strategies are 

based on residual norms. Some of them exploit a priori 
knowledge on the error level (cf. Eq. (6)) such as 
Mozorov’s discrepancy principle (Kirsch, 1996), others do 
not require such information like the L-curve criterion 
(Hansen, 1998) or generalized cross validation (Engl et al., 
1996). Often, more than one regularization parameter has 
to be introduced. For example, in case of a discretized 
solution of an inverse problem stabilized by means of 
some Tikhonov regularization during the numerical 
solution, the discretization level as well as the penalty 
parameter become regularization parameters. 
Unfortunately, little knowledge on systematic approaches 
to the choice of multiple parameters is yet available (Belge 
et al., 2002). 

Unknown input estimation in lumped parameter systems 

Since the unknown generalized flux shows up as an 
additive term in the balances of a lumped parameter 
model, the estimation problem is equivalent to an unknown 
input or disturbance estimation problem which has been 
extensively studied in systems and control theory. A quite 
general problem formulation is given by the input-affine 
nonlinear system 

,)0(,)()( 0xxwxBxAx =+=&  
, 
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with state vector x(t)∈ℜn, output vector y(t)∈ℜp and 
unknown input vector w(t)∈ℜq. A, B, C and D are matrix 
functions of appropriate dimension. This model defines 
the operator Tw∏ y in Eq. (1) mapping the unknown inputs 
w(t) to the outputs y(t) in case of zero initial conditions x0 
=0.  

Two different approaches may be distinguished for 
estimating the unknown input w(t) from available 
(erroneous) measurements y~(t). One class of methods 
postulates a simple dynamic model for w(t). Often, a 
simple integrator is chosen, because the variation of w(t) is 
assumed to be small compared to the dominant time 
constant of the process. A state estimator (i.e. a Kalman 
filter or a Luenberger observer) is then applied to 
determine the state of the extended model (e.g. Kurtz and 
Henson, 1998). The estimation result, however, depends 
on the choice of the disturbance model structure (de 
Valliere and Bonvin, 1990). Alternatively, the unknown 
input estimation problem can be interpreted as an 
inversion problem: a dynamical system ΣI is the inverse of 
another dynamical system Σ if the output of Σ acting as the 
input of ΣI produces the input of Σ. A general solution to 
the inversion problem has been given by Silverman (1971) 
for linear systems, by Hirschorn (1979) for nonlinear 
systems, and by Daoutidis and Kravaris (1991) for 
nonlinear differential-algebraic systems.  

Inversion theory clearly shows the inherent limitations 
and challenges. Invertibility requires Tw∏ y to be of full 
rank. In simple terms, inversion is only feasible if the 
number of measured outputs p is at least as large as the 



 
number of unknown inputs q. For example, if we want to 
estimate the reaction fluxes for each of the species in a 
(homogeneous) reactive mixture, type and number of 
concentration measurements have to be chosen such that 
the rank of the stoichiometric matrix of the measured 
species equals the number of independent reactions 
(Brendel et al., 2003).  

If the necessary invertibility condition is fulfilled, a 
symbolic representation of the inverse of the dynamic 
system can easily be computed. However, it involves 
differentiation of each observed output )(~ tyi . The order of 
differentiation corresponds to the relative degree βi of 
output i. Hence, ill-posedness of the inversion problem can 
be related to (potentially higher order) differentiation of 
the measurements. This itself is a special linear inversion 
problem, where the input to a chain of βi integrators is 
estimated from the measured output (Tikhonov and 
Arsenin, 1977). Hence, any nonlinear inversion problem 
(8) can be solved properly if a satisfactory solution for the 
(higher order) differentiation of a measured signal is 
available.  

In the mathematical literature, a variety of numerical 
methods have been reported for the differentiation of 
measured data: (i) the classical method of Reinsch (1967) 
uses spline smoothing of the measurements and applies 
subsequent differentiation (Wahba, 1990; Hanke and 
Scherzer, 2001); (ii) different kinds of regularization 
methods have been reported in the inverse problems 
literature (e.g. Tikhonov and Arsenin (1977), Kirsch 
(1996), Engl et al. (1996)); (iii) recursive filters are widely 
employed in signal processing (Oppenheim and Schafer, 
1999); (iv) multi-resolution methods have been reported 
recently (Abramovich and Silverman, 1998). In all cases, a 
proper choice of the (sometimes implicit) regularization 
parameter is a key for good estimation quality.  

In process systems engineering, unknown input 
estimation has not yet been widely employed for the 
model-free estimation of mass, heat or momentum fluxes 
in ideally mixed systems. Most often, attention has been on 
the determination of reaction or heat of reaction flux 
profiles from transient concentration and temperature 
measurements. Applications include reaction kinetics 
identification (e.g. Hosten, 1979), reaction calorimetry 
(e.g. de Valliere and Bonvin, 1989), or reactor monitoring 
(e.g. Schuler and Schmidt, 1992). In reaction kinetics, 
straight forward differentiation of measured concentration 
data (e.g. by finite differences) is frequently employed by 
practitioners. Special smoothing techniques have been 
reported to avoid amplification of unavoidable errors in 
the concentration measurements in the reaction fluxes (e.g. 
Hosten, 1979; Kamenski and Dimitrov, 1993; Gonzalez-
Tello et al., 1996; Yeow et al. 2003). State estimation 
techniques have been alternatively employed for this 
purpose (e.g. de Valliere and Bonvin, 1989, 1990; Schuler 
and Schmidt, 1992; Bastin and Dochain, 1990; Elicabe et 
al., 1995; Farza et al., 1998). The trade-off between bias 
and variance has not been addressed systematically. 
Rather, the choice of numerical parameters in a heuristic 

smoothing algorithm or the covariances in Kalman 
filtering has been largely based on trial and error using 
simulation studies.  

More recently, the theory of inverse problems has 
been applied to better deal with the trade-off between bias 
and variance in the estimate of a reaction flux or a heat of 
reaction. Tikhonov-Arsenin filtering (Tikhonov and 
Arsenin, 1977) and spline smoothing (Reinsch, 1967) have 
been successfully employed to estimate reaction fluxes in 
simulated (semi-)batch chemical reaction experiments 
(Mhamdi and Marquardt, 1999, Brendel et al., 2003, 
Bardow and Marquardt, 2004) and to estimate growth and 
substrate uptake rates in simulated continuous 
fermentation experiments (Mhamdi and Marquardt, 2003). 
A Tikhonov regularization approach combined with 
adaptive discretization of the unknown input has been 
used for the estimation of the heat release in a simulated 
stirred tank reactor (Binder et al., 2002). 

Boundary flux estimation in distributed parameter systems 

In case of distributed parameter systems, the problem 
of unknown flux estimation cannot be cast into a single 
general problem formulation as it has been the case for 
lumped parameter systems. Rather, specific problem 
classes have to be introduced. Some example problems 
and associated solution approaches are presented 
subsequently. 

Unknown flux estimation has been employed for a 
long time in the heat transfer community. The heat flux 
between a heat conducting body and a fluid cannot be 
measured directly. Instead, temperature measurements are 
taken inside the heat conducting body to infer the heat flux 
at the surface as a function of time t and of the spatial 
surface coordinates zΓ (Beck et al., 1985). The unknown 
flux enters the boundary condition of the heat conduction 
equation. In this case, the operator Tw∏ y maps the surface 
heat flux w(zΓ,t) for example to the temperatures 
yi(t)=T(zi,t) measured at p points in the interior of the heat 
conducting body by means of micro-thermocouples. The 
measurements are predicted from a solution of the three-
dimensional heat conduction equation 
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with Γ and Λ being the parts of the surface with unknown 
and with known boundary heat fluxes w(zΓ,t) and q(zΓ,t), 
respectively. Obviously, if the temperature field would be 
completely accessible by measurement, the three 
components of the unknown boundary heat flux vector 
w(zΓ,t) could be computed by differentiating the measured 
temperature field with respect to the three spatial 
coordinates. Hence, differentiation is again at the heart of 
this inverse problem.  

Inverse heat transfer problems are ill-posed (Alifanov 
et al., 1995). They are particularly difficult to solve 



 
because the estimated heat flux is not only a function of 
time but also of two spatial surface coordinates. If 
temperature measurements can be taken at a few spatial 
locations only, the achievable local spatial resolution of 
the surface heat flux estimate is limited. This can be easily 
understood by an analysis of an approximate heat 
conduction model which results from a method of lines 
discretization of the spatial coordinates, for example by 
means of finite elements (Lüttich et al., 2004). This 
discretization results in a high-order linear state space 
model of type (8) with w(t) representing q time-varying 
parameters in the surface heat flux discretization and with 
y(t) comprising p point measurements. Invertibility 
requires p ≥  q. Hence, the spatial resolution of the surface 
heat flux estimate, manifested in the number of parameters 
q employed during discretization, is limited by the number 
of measured temperature time series p. This number is 
determined by the number of pixels of the CCD chip in 
thermography or by the number of thermocouples 
mounted in the heat conducting body. In addition to the 
unavoidable bias introduced by regularization due to 
discretization, the amplification of measurement noise has 
to be controlled in a systematic manner.  

A large variety of methods have been developed for 
inverse heat transfer problems in the engineering (e.g. 
Beck et al., 1985) as well as in the applied mathematics 
communities (e.g. Alifanov et. al., 1995). This problem 
class may be considered as one of the major benchmark 
applications tackled by the latter to illustrate the potential 
of a novel method for the solution of an inverse problem. 
The available solution techniques are specifically designed 
to the problem characteristics (e.g. Raynaud, Bransier, 
1986), or they are employing generic methods comparable 
to those used for flux estimation in lumped parameter 
systems such as extended state estimation (e.g. Marquardt 
and Auracher, 1990), Tikhonov regularization (Alifanov, 
1994), or Tikhonov-Arsenin filtering (Blum and 
Marquardt, 1997, Lüttich et al., 2004). Most often, simple 
configurations are studied, where one point measurement 
is available to estimate a single spatially averaged time 
varying surface heat flux (see e.g. Marquardt, Auracher, 
1990, Beck et al., 1996, for experimental studies). Only 
few papers deal with multi-dimensional problems, where 
(many) temperature measurements are available for 
surface heat flux estimation (e.g. Huang, Wang, 1999). 
These multi-dimensional inversion problems are 
numerically challenging even in the linear case. We have 
experienced the limitations of numerical techniques based 
on fixed discretization techniques (Lüttich et al., 2004) 
during our investigations of boiling processes. Current 
work is therefore focusing on the development of a fully 
adaptive numerical scheme to solve inverse heat transfer 
problems with Tikhonov regularization by means of a 
combination of multigrid and conjugate gradient 
techniques (Groß et al., 2004). The interplay between 
adaptive discretization and the choice of regularization 
requires special attention (e.g. Ascher and Haber, 2001).  

Interior flux estimation in distributed parameter systems 

Unknown fluxes may not only occur on the boundary 
but also in the interior of a distributed parameter system. 
In case of heat conduction, the heat flux in a solid body 
may be considered. The balance equation reads as  
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in Cartesian coordinates z=[z1,z2,z3]T with conductive heat 
flux q=[q1,q2,q3]T and source σ. Assume first that σ=0 
and that the temperature T(z,t) could be perfectly measured 
as a function of space and time. Then, the left hand side of 
the heat equation follows from differentiation with respect 
to time t. The resulting partial differential equation can not 
uniquely be solved for the three components of the heat 
flux vector q(z,t). Hence, model free flux estimation is not 
possible from the balance equation only. If a constitutive 
equation is chosen for the heat flux, such as e.g. Fourier’s 
law, the equation reads as  

,T
t
Tc p ∇⋅∇=
∂
∂ λρ

  
(11) 

which, after differentiation of the measured T(z,t) with 
respect to time t and to the spatial coordinates z, becomes 
a partial differential equation for λ (provided ρcp is 
known). In this case, two levels of the incremental 
refinement strategy in Fig. 3, namely level B of the 
balance equation and BF of the constitutive flux equations, 
have to be merged in order to determine the heat 
conductivity λ(z,t) without specifying a model for this rate 
coefficient. The resulting estimation problem is not linear 
anymore as in case of an isolated treatment of level B. 
Instead, it is often of quasi-linear type, because the 
unknown rate coefficients parameterize the linear 
differential operator. 

An even more interesting and closely related problem 
is the determination of diffusive fluxes in complex systems. 
Examples include diffusive transport in multi-component 
liquids (even without, but in particular with accompanying 
chemical reaction), in electrolytes mixtures, or in hydrogel 
matrices. In all these cases, the transport mechanisms are 
still not well understood. Model-free estimation of 
unknown diffusive fluxes from high resolution 
concentration measurements in a solid or a stagnant fluid 
is not possible in the most general case for the reasons just 
presented for heat flux estimation. The problem can 
readily be solved, however, if an experiment is designed 
where diffusion only occurs in a single spatial direction. 
Then, only one non-zero mass flux component has to be 
determined from differentiated concentrations measured 
along a line in the direction of the diffusive flux. Such a 
strategy has been followed by Bardow et al. (2003). 
Diffusion in the axial direction of a tube is observed by 
high resolution concentration measurements using Raman 
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spectroscopy. These measurements have been first 
differentiated with respect to time by means of spline 
smoothing (Reinsch, 1967) and subsequently integrated 
over the spatial coordinate to render an estimate of the 
diffusive flux as a function of time and the axial 
coordinate of the tube without specifying a diffusion 
model. This technique also carries over to multi-
component diffusion (Bardow and Marquardt, 2004a) 
provided concentration measurements are available for 
every species. 

Another case of interior flux estimation occurs if the 
source σ  is non-vanishing and unknown. This source can 
be determined from temperature measurements if a model 
for the flux q is available. This problem has been 
extensively studied in the context of heat conduction 
(Fatullayev, 2002) as well as diffusion (Reeve and 
Spivack, 1994) problems. Obviously, parameterization is 
mandatory (Abou Khachfe and Jarny, 2001), if both, the 
transport and the source flux functions are unknown. They 
are not identifiable without hypothesizing a model 
structure due to their additive occurrence in Eq. (10). 

A sequence of two different experiments can be 
carried out alternatively to avoid such parameterization. 
For example, in case of diffusion in a homogeneous fluid, 
the mass source (typically due to reaction) can always be 
determined from an experiment in a well-mixed vessel 
before an investigation of diffusive transport is attempted. 

Open issues in model-free flux estimation 

The studies on model-free flux estimation for lumped 
parameter systems have been focusing on the 
identification of not directly measurable mass and heat 
fluxes caused by reaction. The exemplary case studies 
cited above clearly reveal the advantages of employing a 
mathematically sound regularization approach (i.e. a 
regularization operator and an associated parameter choice 
method) in order to obtain a high estimation quality. In 
particular, no assumptions have to be made regarding a 
mathematical model underlying the unknown flux to be 
estimated as a function of time. The most pressing open 
theoretical problems for lumped parameter systems 
include parameter choice methods for multiple 
regularization parameters, methods for higher order 
differentiation and the rigorous treatment of unknown 
initial conditions. Further, benchmarking by means of 
experimental studies on reactive and multi-phase systems 
is yet largely lacking.  

Model-free boundary flux estimation in distributed 
parameter systems have been focussing on heat transfer 
problems. For example, the mechanistic modelling of 
boiling heat transfer has been one of the drivers. There, 
the interactions between phase transition at a solid-fluid 
interface, heat and mass transfer and the complex fluid 
dynamics of the vapour-liquid flow close to the boiling 
surface are not yet understood. Still, local heat flux 
estimation is possible on a heater surface, since level B in 
Fig. 3 is independent of all these physical phenomena. The 

heat flux estimates are still not sufficient in resolution to 
adequately support model structure generation on level 
BF. Similar surface flux estimation problems arise with 
any other heat, mass or even momentum transfer problem 
between the phases of a multi-phase process system. In 
addition, the geometrical structure of the interface itself is 
subject to debate in case of fluid interfaces. Notable 
examples include the irregular surface wave structure of 
falling liquid films or of liquid drops under heat and mass 
transfer conditions. These problems are much more 
difficult than the inverse heat transfer problem because of 
the nonlinear and more complex nature of the balance 
equations for a multi-component transport problem in a 
fluid.  

There is little experience yet on model-free interior 
flux estimation in distributed parameter models. Most 
papers deal with source flux terms (e.g. Reeve and 
Spivack, 1994, Fatullayev, 2002) and very few papers 
consider transport flux terms (e.g. Mahoney et al., 2002). 
Usually, interior transport fluxes are estimated only after 
introducing a constitutive equation (cf. Eq. (11)) resulting 
in a quasi-linear identification problem for the estimation 
of the space and time dependent rate coefficient (e.g. 
Hanke and Scherzer, 2001; Ascher and Haber, 2001). It 
seems that our own work in diffusion modelling 
(Marquardt and Bardow, 2004a, Bardow et al., 2004) is 
the only attempt to systematically address this issue and to 
exploit the linear structure of the flux estimation problem.  

Inverse heat conduction problems, though difficult in 
themselves, are the simplest types of problems which are 
largely amenable to theoretical analysis and which are the 
most tractable for numerical experimentation. It seems to 
be the ideal problem class to reveal the inherent 
difficulties and to study solution alternatives for unknown 
flux estimation in distributed parameter systems. Most 
importantly, the “dimensionality” of the available 
measurements has to match the “dimensionality” of the 
estimated quantities to enable approximate inversion. In 
particular, the estimation of a multi-dimensional function 
(such as a surface heat flux) from a few measured time 
series (such as temperatures at some interior points) will 
typically not result in accurate estimates, even if state of 
the art techniques for the solution of inverse problems are 
employed. The always limited number of measurements 
accommodated by an experimental set-up constrains the 
achievable resolution in the estimate in principle. 
However, also the level of discretization of numerical 
solution algorithms limits the resolution in the estimate, 
because any discretization acts as a kind of regularization 
and therefore tends to smooth the estimated functions. 
Nevertheless, unknown flux estimation is possible with 
sufficient accuracy, if the problem formulation is carefully 
chosen such that the capabilities of both, the experiment 
and the inversion algorithm are pushed to their limits.  

This discussion obviously reveals the challenges for 
future research: on the one hand the resolution and 
accuracy of measurements of temperature, concentrations 
and velocities on a surface and in a volume has to be 



 
improved, on the other adaptive solution methods for 
properly regularized estimation problems have to be 
developed for three-dimensional transport problems. More 
experience on inverse transport problems in fluids has to 
be built up.  

Kinetic model selection  

As a result of unknown flux estimation on level B of 
the incremental model identification strategy, rectified 
measurements as well as estimated fluxes are available 
with high resolution (sampled in time and potentially in 
space). These data can be interpreted as a set of 
(inferential) measurements for the identification of a flux 
equation on the subsequent levels BF and BFR in Fig. 3. 
These constitutive equations relate the (inferred) fluxes to 
the (measured) states and to their (estimated) spatial 
gradients in case of distributed parameter models by 
means of a purely algebraic relation. Models for the flux 
as well as for the rate coefficient have to be selected on 
levels BF and BFR. The model selection problem consists 
of finding a single or a sub-set of models, which is 
consistent with the measured state and inferred state 
gradient and flux data, and which is best suited for a 
particular purpose (Verheijen, 2003). Model selection 
includes discrimination between different candidate 
kinetic model structures and the estimation of their 
parameters on both levels BF and BFR. These models are 
always algebraic regardless of the nature of the process 
systems model by construction of the incremental model 
identification procedure.   

On level BF, a (set of) suitable constitutive flux 
equation(s) has to be selected to relate the flux to a rate 
coefficient, the states and the state gradients. No additional 
model for the rate coefficient is specified yet. Rather, the 
rate coefficient is determined as a function of time and 
space from the available data. For example, a diffusion 
coefficient can be computed after conjecturing the validity 
of Fick’s law (Bardow and Marquardt, 2004a) or a 
reaction rate coefficient can be calculated after the 
structure of the reaction rate correlation has been fixed 
(Bardow and Marquardt, 2004b) at all sampling points (in 
space and time) for which measured or estimated 
information is available. Let us consider a first order 
reaction to be more specific: the reaction rate has been 
estimated on level B from concentration measurements. 
The rate coefficient  can be estimated from)(ˆ tk
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at ns sampling points ti without postulating Arrhenius’ law 
employing the estimated reaction flux )(ˆ tr  and the 
measured or estimated concentration c(t). Obviously, there 
is no redundancy in this step, if no identical repetitive 
experiments with concentration and reaction flux data at 
the same sampling points are available. Measurement 

errors could therefore unacceptably affect the estimated 
rate coefficient. In particular, error amplification will show 
up for small concentration levels. However, this step can 
be very useful for the generation of model candidates, 
because it reveals (at least) the qualitative nature of rate 
coefficient function.  

On level BFR, a model for the rate coefficient has to 
be selected. The model parameters (which are assumed to 
be constants) can be computed from the measured state 
and the estimated rate coefficient data. For example, if 
Arrhenius’ law is postulated in case of the identification of 
a first order reaction, the constant parameters k0 and E can 
be estimated from the estimated rate coefficient and 
measured temperature using  

,,...1,))(~/exp()(ˆ 0 sii nitTREktk =−=  (13) 

as constraints in the usual weighted least-squares problem. 
Typically, the rate coefficient models are of a nested 
nature, because they refer to quantities which themselves 
are state functions. For example, Maxwell-Stefan diffusion 
models depend on an activity coefficient model which 
itself depends on a saturation pressure model which 
depends on temperature. In principle, iterative refinement 
could be continued in a cascaded manner until only 
constant parameters show up in a correlation.  

The levels BF and BFR can also be merged. This 
could be favourable for the sake of a better estimation 
quality. However, two types of models, one for the flux 
and another for the rate coefficients would have to be 
postulated at the same time. In case of the reaction rate 
example, merging both levels would result in an 
estimation of the constants k0 and E from ns >2 
measurements.  

Regardless of a separate or a combined treatment of 
levels BF and BFR, a model selection problem has to be 
solved. Model selection requires a pre-selection of a set of 
candidate model structures, parameter fitting and the 
assessment of the predictive quality of all candidate 
models. These issues will be discussed next in more detail.  

Generation of candidate model structures 

The most difficult task crucial for the success of the 
modelling process in its entirety (Ljung, 1987) is the 
identification of candidate model structures to relate the 
fluxes to the state variables (and their spatial gradients). 
Since these structures are most often nested to account for 
the various state-dependent quantities, the generation of 
model structures has a combinatorial element. An 
experienced modeller with intuition and a profound 
understanding of the physico-chemical domain will 
suggest such nested candidate models after a careful 
inspection of the experimental results. This task of 
qualitative reasoning is typically carried out by a human 
expert in practice. Schaich et al. (2001) suggest however a 
computer-assisted method for the pre-selection of reaction 
kinetics models based on qualitative simulation. 



13 
 

Different strategies are employed to guide the pre-
selection of model structures. They may result from (i) 
some molecular theory (e.g. Maxwell-Stefan for multi-
component diffusion or reaction rate expressions for 
elementary reactions), from (ii) well-established empirical 
models (e.g. Arrhenius’ law for the temperature 
dependence of the reaction rate constant or Ergun’s 
equation for the pressure drop in a porous media), or from 
(iii) an aggregation approach (e.g. for composing a formal 
reaction kinetics expression from an understanding of the 
elementary reaction steps) to mention just some examples.  

The model structures often result from simplifying 
and abstracting the kinetic phenomena on a more detailed 
level. For example, molecular modelling and simulation 
have often been used to derive correlations for continuum 
properties of materials. A classical example is the work of 
Barrett and Prausnitz (1975) who seem to have initiated 
this line of research for equations of state. Molecular 
simulation has been employed more recently to 
successfully derive correlation structures for diffusive 
transport (Liu et al., 1998; Merzliak and Pfennig, 2003). 
This research strategy seems to be very promising for the 
future to support the generation of novel model structures.  

If a fundamental understanding of the kinetic 
phenomena of interest is lacking and if there are no 
resources available to acquire such understanding, purely 
hypothetical mathematical structures can be selected to 
correlate the experimental flux-state data. Obviously, this 
is the general problem of approximating a set of data by 
means of suitable functions. This problem has been 
tackled in different communities from various perspectives 
(e.g. Bates and Watts, 1988; Norgaard et al., 2000; Hastie 
et al., 2001). In this case, model structure selection 
typically requires two decisions, namely one on an 
appropriate class of regression models and another on the 
desired level of resolution. Examples for the first include 
the various types of neural networks or polynomial, 
hierarchical and wavelet bases. The level of resolution is 
the most critical decision to be taken. As in any inverse 
problem, a compromise has to be found to balance bias 
and variance. If many degrees of freedom are included in 
the regression model, the noise in the data is represented 
in addition to the true process response. If in contrast too 
few degrees of freedom are provided, the fine detail of the 
response cannot be resolved. This trade-off can be 
accomplished by an appropriate choice of the degrees of 
freedom in the regression model (e.g. the nodes in a neural 
net).  

The choice of the structure of the regression model 
can be supported most elegantly if the residual norm 
decreases monotonically in a predictable manner if 
degrees of freedom are added in a certain sequence. 
Wavelet bases (Dahmen, 1997) and hierarchical bases 
(Yserentant, 1992) provide an estimate of the 
improvement of the goodness of fit in case of uniform 
refinement, where the basis functions on the next scale are 
added to capture more detail. Overfitting can be largely 
avoided if an appropriate level of resolution is chosen. 

While the theoretical properties of wavelet bases are more 
favourable than those of hierarchical bases, the latter are 
preferred because of they provide straight forward 
generalization to high dimensions. Both types of functions 
have been employed in the past. For example, Bakshi and 
Stephanopoulos (2001) or Amato and Antoniadis (2001) 
discuss the use of wavelet bases, whereas Garcke et al. 
(2001) employ hierarchical bases on sparse grids to avoid 
the “curse of dimensionality”, i.e. the exponential growth 
of the number of parameters for high-dimensional models.  

Parameter estimation 

After the selection of a set of candidate model 
structures, every model has to be fitted to the data. 
Identifiability of the model parameters cannot be taken for 
granted. Roughly speaking, we have to make sure that 
model responses differ significantly for different sets of 
parameters (Walter, Pronzato, 1990). Local methods check 
the rank of some information matrix prior to model fitting 
for an initial parameter estimate, whereas structural 
methods attempt to decide on identifiability for a large 
range of parameters. Functional expansion (Walter, 
Pronzato, 1990) and semi-infinite programming (Asprey, 
2003) have been suggested. The latter approach is 
promising though improvement in global semi-infinite 
optimization is required to facilitate application even for 
the algebraic problems in incremental identification. 

If the parameters in the algebraic models are 
identifiable, some measure of the distance between the 
measured or previously estimated data and the model 
predictions has to be chosen as the objective function to be 
minimized. Pragmatically, either a weighted L1-, L2- or L∞-
norm of the sum of the differences between the model 
predictions and the (state) measurements or (flux) 
estimates over all samples, or, alternatively, some 
likelihood function or a one of its derivates is minimized 
(Bates and Watts, 1988). Since both, the measurements as 
well as the estimated fluxes or rate coefficients contain 
errors, an error-in-variables (or orthogonal distance 
regression) approach is recommended in a balanced way 
(Britt and Lücke, 1978) though the error in the flux 
estimate is often much larger than the measurement error. 
An efficient solution algorithm for such estimation 
problems is available (Boggs et al., 1992).  

In case of sub-models with a large number of 
parameters (e.g. black-box models) the formulation and 
the solution of the parameter estimation problem has to 
address the objective of balancing bias and variance in the 
estimate. The strategies employed match the ones we 
already have discussed in the context of model-free flux 
estimation. The most common regularization approaches 
include early stopping of the iterative solution algorithm 
and the introduction of some penalty term into the 
objective which corresponds to Tikhonov regularization. 
Generalized cross validation is a preferred method of 
choosing an appropriate level of regularization.  



 
Alternatively, regularization can be accomplished by 

an adaptive choice of the level of detail in the regression 
model during parameter fitting. Various techniques have 
been reported in the neural network literature. 
Constructive learning algorithms gradually build up the 
number of network nodes and links between them (e.g. 
Chen et al., 1992; Kwok and Yeung, 1997, Marsland et 
al., 2002) whereas pruning methods start with a large 
number of nodes and eliminate those which are redundant 
and hence potentially introduce overfitting (e.g. Bärmann 
and Biegler-König, 1992; Psichogios and Ungar, 1994; 
Norgaard et al., 2000). A sensitivity based approach for 
adaptive selection of hierarchical basis functions in a 
sparse grid regression model combined with an L-curve 
stopping criterion has been reported by Brendel and 
Marquardt (2003), who extend the results of Garcke and 
Griebel (2001). Adaptive methods have shown to be 
favourable to achieve the desired bias-variance trade-off. 
More work needs to be done to improve computational 
efficiency, model fit and to provide a theoretical basis for 
adaptation for both neural network architectures and 
multi-scale bases.  

Model adequacy tests and model ranking 

There are different ways of testing the adequacy of 
the candidate models and to come up with a ranking of 
their relative prediction qualities (Verheijen, 2003). The 
selection criteria are of a multi-objective nature; they 
should reflect (i) the appropriateness of the model 
structure for reflecting the mechanisms underlying the 
physico-chemical phenomena observed, (ii) the intended 
use and the potential reuse of the model, and (iii) the 
capability of the model to fit the experimental data 
available. Only the latter goodness of fit criterion is left 
after an appropriate set of candidate models has been pre-
selected and requirements on prediction quality have been 
formulated. The selection of a measure for quantifying the 
distance between the data and model predictions is crucial. 
According to the principle of parsimony, the model with 
the least complexity should be favoured. Various measures 
are available such as error variance, Akaike’s information 
criterion, shortest data descriptor, Bayesian posterior 
probabilities etc. (Ljung, 1987). Still the choice of one of 
them is almost an art since it heavily influences the 
decision on the most adequate candidate model. 

Model adequacy tests can be classified into inference, 
Bayesian and optimization approaches (Verheijen, 2003). 

In inference approaches, a sequence of tests and 
decision is carried out to rank the models based on one or 
more statistical criteria and engineering insight. Verheijen 
(2003) presents a decision tree for this purpose. Bayesian 
approaches base model selection on the posterior 
probability for the model correctly predicting the next 
experimental observation. Such techniques have been 
reported by Stewart et al. (1998) for example for multi-
response models.  

In case of optimization based approaches model 
selection and ranking are carried out simultaneously. The 
model candidates are linked into a superstructure to result 
in a mixed-integer optimization problem. It can be solved 
either by genetic (McKay et al., 1997) or by mathematical 
programming methods (Skrifvars et al., 1998) to 
simultaneously identify the most suitable model from the 
set of candidates and to estimate its parameters. Though 
computationally and conceptually different, the adaptive 
refinement method of Brendel and Marquardt (2003) is 
related, since the functions of a given orthogonal multi-
scale basis are also decided upon during the fitting 
process.  

Discussion 

Kinetic model selection problems are computationally 
much less demanding for the incremental identification 
strategy as compared to the common simultaneous 
approach. Incremental identification not only avoids the 
combinatorial character of model selection but also 
requires largely model selection for algebraic models. 
Hence, the wealth of methods available for model 
selection, identifiability analysis, model regression and 
validation are directly applicable and no generalization to 
differential equation problems is necessary.  

Numerical parameter estimation problems are often 
difficult to solve due to the ill-conditioning of the 
optimization problem. This ill-conditioning has various 
sources including non-convexity, problem size and poor 
identifiability due to inappropriate model structures and 
lacking quality measurements. Robust parameter 
estimation methods are required to address this issue. For 
example, Arora and Biegler (2004) report a new trust 
region algorithm for parameter estimation in differential-
algebraic models with favourable properties. Incremental 
identification suffers less from ill-conditioning because of 
a smaller problem size and full transparency with respect 
to the selection of suitable model structures and 
appropriate measurements.  

Model-based experimental design 

Regardless the identification strategy, the experiments 
have to be designed such that the information content in 
the data is maximized to facilitate model selection as well 
as parameter estimation. Model-based experimental design 
techniques have been developed for this purpose (Walter, 
Pronzato, 1990; Atkinson, Donev, 1992; Asprey, 2003). 
One has to distinguish between techniques for obtaining 
the best parameters in a given model structure and for 
discriminating best between alternative candidate models 
during model selection. Asprey and Macchietto (2000) 
present a work process for model identification which 
heavily relies on these concepts.  

If the experiment is designed for parameter precision 
some measure of goodness of fit is maximized with the 
experimental conditions as the degrees of freedom and the 
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process model as the constraints. Typically, the objective 
function is defined as a measure (such as the determinant 
or the trace) of an information matrix related to the 
covariances of the estimated parameters. This criterion is 
local and assumes a reasonable reference for the parameter 
values. Alternatively, global criteria such as Markov chain 
Monte Carlo methods have been advocated (cf. Haario and 
Turunen (2003) for a demonstrating example). 

An experimental design to best discriminate between 
candidate models tries to maximize some discrimination 
criterion by appropriately choosing the experimental 
conditions subject to the model constraints. Often, the 
objective function comprises a norm of the distance 
between all candidate models or employs a Bayesian 
argument (Verheijen, 2003).  

Optimal experimental design problems are 
computationally demanding due to nonlinearity and 
nonconvexity. Further, second order derivatives are 
required in any gradient based algorithm. Though an 
efficient numerical algorithm has been reported for 
differential-algebraic models (Bauer et al., 2000) and a 
commercial product is available as part of gPROMS, more 
work is necessary to improve reliability and efficiency.  

Though methods and tools are available for all kinds 
of optimal experimental design, their application to the 
incremental identification strategy is not straight forward. 
Since there is no model involved, experimental design 
does not make any sense if the flux estimation problem on 
level B in Fig. 3 is considered in isolation. Rather, the 
experiment should be designed such that the model 
selection on level BF and BFR is supported. Appropriate 
flux data has to be generated on level B to achieve a 
reliable model selection on subsequent levels. New 
problem formulations are required for this purpose. 
Further, experimental design for data-driven nonlinear 
regression models does not seem to have obtained 
sufficient attention yet. In particular in this case, the 
design should not only consider goodness of fit but also 
the capability of the model to interpolate between clusters 
of measurements and to extrapolate beyond the region 
where measurements have been taken.  

Summary and future perspectives  

We have introduced a promising methodology for the 
incremental identification of kinetic models of process 
systems. The discussion of the state of the art in the 
various areas clearly shows that such a strategy has 
become feasible largely due to the advances in high 
resolution measurement techniques and in the theory and 
the computational tools for the solution of inverse 
problems. Still, a lot of work needs to be done in the 
individual areas and in particular in the integration of the 
methods and tools to a powerful, ultimately computer-
assisted work process of model-based experimental 
analysis.  

In the next two subsections, we will point to open 
problems with the incremental approach and discuss future 
research opportunities. 

A critique of the incremental approach  

The major advantages of the incremental approach 
are (i) the full transparency of the modelling identification 
process and (ii) the computational efficiency of the 
tailored estimation algorithms. These advantages are a 
direct consequence of the exploitation of the inherent 
structure of the identification problem by decomposition.  

However, the incremental approach also reveals at 
least two rather obvious drawbacks, the potentially poor 
statistical properties of the estimates and the need for 
measurements with high resolution. Both are a direct 
consequence of decomposition in the incremental 
approach. Since less a priori knowledge is introduced in 
the early stages of identification, more measurement 
information is required. This is a desired property of 
incremental identification in order to reduce the risk of 
fitting inappropriate model structures and to support the 
discovery of more suitable structures from the 
experimental data. Since high resolution measurement 
technology is steadily maturing, this drawback will 
ultimately vanish. 

Decomposition of the identification problem and 
incremental refinement favour error propagation. Hence, 
the method unavoidably leads to biased and non-consistent 
estimates in contrast to the simultaneous approach which 
results in asymptotically unbiased and consistent 
estimates, if the model structure is correct. The lack of 
favourable statistical properties has been pointed out 
before for the differential method in reaction kinetics 
(Hosten, 1979). A thorough theoretical analysis on this 
issue has been carried out recently (Bardow and 
Marquardt, 2004b) for the simple example of identifying 
the reaction kinetics of a first order reaction. Theoretical 
analysis and computational experience shows that error 
propagation can indeed become a serious issue for fast 
reactions and large variance of the reaction flux estimates. 
Incremental identification should therefore be considered 
as a kind of bootstrap approach. Promising model 
structures and very good initial guesses for the parameters 
can be obtained in a fully transparent process at little 
engineering effort and low computational requirements. A 
final parameter estimation run with the most favourable 
model structure and the parameters available from the 
incremental procedure as initial guesses converges within 
few iterations and improves the statistical properties of the 
estimate. Further, incremental identification is 
advantageous in those cases where knowledge on 
appropriate model structures is lacking.  

Mechanistic vs. data-driven modelling  

The clarification and representation of kinetic 
mechanisms in reactive multi-phase systems has been the 
starting point of the research in CRC 540. However, if 



 
heuristic nonlinear regression models are employed on 
levels BF and BFR, the incremental approach does not 
lead to a rigorous first principles model, but rather results 
in a certain type of hybrid (or grey-box) model 
(Psichogios and Ungar, 1992) which combines first 
principles and data-driven model constituents (Agarwal, 
1997). While the development of hybrid models has 
largely been driven by the high effort of black-box 
modelling and the lack of extrapolation capabilities of 
black-box models (Psichogios and Ungar, 1992; Agarwal, 
1997; Mogk et al., 2002; Oliveira, 2004), incremental 
identification aims at an extension of the mechanistic 
understanding of a process systems and a representation of 
its behavior by a first-principles model. Both research 
directions may ultimately merge to benefit from the 
respective experiences.  

Research opportunities 

Method development is carried out in all of the above 
mentioned areas in CRC 540 driven by a set of modelling 
problems which are summarized subsequently. Obviously, 
more experience should also be built up through 
applications on a variety of other problems.  

The full methodology has been worked out already 
for reaction kinetics in homogeneous systems (Brendel et 
al., 2003), a benchmark problem of industrial relevance 
involving lumped-parameter models. Extensions to more 
complex reaction mechanisms and to multi-phase systems 
are currently being considered. As a first example, 
esterification reactions catalyzed by immobilized enzymes 
are studied (Heinemann, 2003). The exploration of the 
potential and the limitations of incremental identification 
applied to metabolic pathways seems to be attractive given 
the relevance of improving our understanding of the 
function and behaviour of biological systems.  

A benchmark problem in the area of distributed 
parameter systems is the modelling of diffusion in 
potentially reactive multi-component systems. Liquids but 
also more complex systems like hydrogels are under 
investigation. The method has been successfully applied to 
binary and ternary diffusion in liquids (Bardow et al., 
2003, 2004; Bardow and Marquardt, 2004a). Our future 
work will focus on multi-component diffusion with special 
emphasis on electrolytes and hydrogels.  

The experimental setup chosen allows a spatially one-
dimensional treatment of the diffusion problem. In case of 
pool boiling and heat and mass transfer to a potentially 
reactive falling film or droplet in a dispersion, a multi-
dimensional treatment is required. Our focus has been so 
far only on the solution of model-free flux estimation 
algorithms (Lüttich et al., 2004) and their application to 
experimental data (Groß et al., 2004). These inverse 
problems are computationally involved and will require a 
lot more attention before fully satisfactory solutions will 
be available for transport problems in falling films and 
levitated drops.  

The methodological focus of our work is the 
improvement, analysis and validation of the suggested 
work process of model-based experimental analysis.  

While the presented incremental refinement strategy 
fixes the location of the uncertainty by construction, 
Kristensen et al. (2004) report a method which facilitates 
the discovery of model deficiencies in a stochastic 
modelling framework. A stochastic process is introduced 
in selected model equations which are subject to possible 
uncertainty. After the major sources of uncertainty have 
been identified, a regression model is fitted to correlate the 
unknown terms with the states. An adaptation of this 
approach to reveal unanticipated uncertainties in the 
incremental approach could be a worthwhile research 
objective.  

Another important open issue is the clarification of 
the number and type of steps tackled sequentially. Besides 
the possible combination of either levels B and BF or BF 
and BFR in Fig. 3 discussed above, the calibration of 
primary measurements (such as spectroscopic data) could 
be merged with flux estimation to possibly improve 
estimation quality. Identifiability as well as achievable 
quality should be analyzed rigorously for the various 
alternatives. Both strategies for incremental model 
refinement and iterative optimal experimental design and 
validation (cf. Fig. 1) have to be improved.  

Last but not least, the discovery of new model 
structures by a combination of data-driven kinetic 
modelling and modelling and simulation on the molecular 
level as part of the MEXA work process constitutes a 
particularly interesting problem.  
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