
RECENT ADVANCES AND TRENDS IN GLOBAL OPTIMIZATION:

DETERMINISTIC AND STOCHASTIC METHODS

Panos M. Pardalos
Department of Industrial and Systems Engineering

Department of Biomedical Engineering
and McKnight Brain Institute,

303 Weil Hall, University of Florida,
Gainesville, FL 32611, USA,

pardalos@ufl.edu

Fabio Schoen
Dipartimento di Sistemi e Informatica
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Abstract

Global optimization has been expanding in all directions at an astonishing rate during the last few
decades. Many new theoretical, algorithmic, and computational contributions of global optimiza-
tion have been used to solve a wide spectrum of difficult problems in science and engineering. In
particular, global optimization has recently emerged as a successful and versatile tool in many as-
pects of product and process design problems. The first part of the paper covers material regarding
deterministic global optimization. We are going to focus on new algorithmic developments and
some applications. In the second part of the paper we will outline some of the most basic stochastic
techniques for global optimization and will present some elementary yet powerful approaches which
might prove very useful for applications in the fields of process design, of innovative material re-
search and of problems of biological interest; these problems share an enormous complexity which
in most cases can be attacked only through heuristic methods.
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1 Introduction

Global optimization has been expanding in all di-
rections at an astonishing rate during the last few
decades. New algorithmic and theoretical techniques
have been developed, the diffusion into other disci-
plines has proceeded at a rapid pace, and our knowl-
edge of all aspects of the field has grown even more
profound. At the same time one of the most strik-
ing trends in global optimization is the constantly
increasing interdisciplinary nature of the field.
As early as 1978, in one of the first books on global

optimization (Dixon and Szegö, 1978) a clear dis-
tinction was made between classical optimization and
global optimization:
Many important practical problems can be posed as
mathematical programming problems. This has been
internationally appreciated since 1944 and has lead
to major research activities in many countries, in
all of which the aim has been to write efficient com-
puter programs to solve subclasses of this problem.
An important subclass that has proved very difficult
to solve occurs in many practical engineering appli-
cations. Let us consider the design of a system that
has to meet certain design criterion. The system will
include features that may be varied by the designer
within certain limits. The values given to these fea-
tures will be the optimization variables of the prob-
lem. Frequently when the system performance is ex-
pressed as a mathematical function of the optimiza-
tion variables, this function, which will sometimes be
called the objective function, is not convex and pos-
sesses more than one local minimum. The problem of
writing computer algorithms that distinguish between
these local minima and locate the best local minimum
is known as the global optimization problem, and is
the subject of this volume.
Today the term global optimization is routinely

used to denote a design process with increased speed
and quality of solution. Many deterministic, stochas-
tic, and heuristic approaches have been developed in
the last decades to solve global optimization prob-
lems. In this brief overview we will only discuss some
of the general important developments in determin-
istic and stochastic global optimization techniques.
Recent developments can be found in the “Journal

of Global Optimization,” and the “Nonconvex Opti-
mization and its Applications” book series published
by Kluwer Academic Publishers (JOGO; NOIA).
In the following section we will give a short

overview of some recent advances in the theory and in
the development of numerical methods for nonconvex
problems. In section 2 we will introduce some spe-
cific classes of deterministic global optimization prob-
lems; it will be shown that several practical problems
can be formulated as deterministic global optimiza-
tion problems with some special structure which, if
suitably exploited, can lead to quite efficient algo-
rithms with provable optimality certificates. Later,
in section 3 we will describe a quite general setting
in which many large scale problems with no known
structure can be attacked by means of relatively sim-
ple heuristics which are based on a suitable coupling
of random search and local optimization.

2 Deterministic Global Opti-
mization1

2.1 DC Optimization

Many powerful techniques in global optimization are
based on the fact that many objective functions can
be expressed as the difference of two convex func-
tions (so called d.c. functions). If D(x) is an objec-
tive function in R

n, then the representation D(x) =
p(x)− q(x), where p, q are convex functions is said to
be a d.c. decomposition of D.
The space of d.c. functions is closed under many

operations frequently encountered in optimization
(i.e., sum, product, max, min, etc). Furthermore,
based on the simple fact that every locally d.c. func-
tion is d.c., a large class of functions in optimization
are d.c. For simplicity of notation, consider the d.c.
program:

min f(x)− g(x)

s.t. x ∈ D
(1)

where D is a polytope in R
n with nonempty interior,

and f and g are convex functions on R
n.

1this section was contributed by P.M. Pardalos



By introducing an additional variable t, Problem (1)
can be converted into the equivalent Global Concave
Minimization problem:

min t− g(x)

s.t. x ∈ D, f(x)− t ≤ 0
(2)

with concave objective function t − g(x) and convex
feasible set {(x, t) ∈ R

n+1 : x ∈ D, f(x) − t ≤ 0}. If
(x∗, t∗) is an optimal solution of (2), then x∗ is an
optimal solution of (1) and t∗ = f(x∗).

Therefore, any d.c. program of type (1) can be solved
by an algorithm for minimizing a concave function
over a convex set. Concave function have the nice
combinatorial property that if they have a solution,
then a solution occurs at an extreme point of the
feasible domain. This property is very useful when
the feasible domain is defined by a set of linear con-
straints. Several algorithms have been proposed over
the years for the solution of concave minimization
problems. These algorithms are based on branch and
bound techniques, cutting plane methods, integer
programming approaches, optimality conditions, and
their efficiency depends on the problem structure (see
(Horst and Pardalos, 1995; Pardalos and Romeijn,
2002; Horst et al., 2000; Pardalos and Rosen, 1987)).

2.2 Monotonic Optimization

Monotonicity with respect to some variables (partial
monotonicity) or to all variables (total monotonicity)
is a natural property exhibited by many problems
encountered in applications. The most general
problem of d.i. monotonic optimization is:

min f(x)− g(x)

s.t. fi(x)− gi(x) ≤ 0, i = 1, . . . ,m
(3)

where are all functions are increasing on Rn
+. As

with the class of DC functions, the class of monotonic
functions is closed under many operations. Numer-
ous global optimization problems can be reformulated
as monotonic optimization problems. Such prob-
lems include multiplicative programming, nonconvex

quadratic programming, polynomial programming,
and Lipschitz optimization problems.
Assume without loss of generality that g(x) = 0.

Note that, we have
{∀i fi(x)− gi(x) ≤ 0} ⇔ max

1≤i≤m
{fi(x)− gi(x)} ≤

0 ⇔
⇔ F (x)−G(x) ≤ 0, where

F (x) = max
i

{fi(x) +
∑
i�=j

gj(x)},

G(x) =
∑

i

gi(x).

The functions F (x) and G(x) are both increasing.
The original problem reduces to the problem of op-
timizing a monotonic function over a normal domain
(Tuy, 2000):

min f(x)
s.t. F (x) + t ≤ F (b),

G(x) + t ≥ F (b),
0 ≤ t ≤ F (b)− F (0),
x ∈ [0, b] ⊂ Rn

+.

(4)

A set G ⊆ Rn
+ normal if for any two points x, x′

such that x′ ≤ x, if x ∈ G, then x′ ∈ G.
The solution of the above occurs at the boundary

of the feasible domain. Monotonicity analysis was
initiated in the early 70’s (Papalambros and Wilde,
1979) for optimal design problems. A recent paper
that described some algorithmic approaches to solve
several types of monotonic optimization problems can
be found in (Tuy, 2000)

2.3 Is Continuous Optimization dif-
ferent than Discrete Optimiza-
tion?

It is clear that z ∈ {0, 1} ⇔ z − z2 = z(1− z) = 0 or
z ∈ {0, 1} ⇔ z +w = 1, z ≥ 0, w ≥ 0, zw = 0. Hence,
integer constraints are equivalent to continuous non-
convex constraints (complementarity!). Discrete op-
timization, is a special case of global continuous opti-
mization. It seems that the main difference, regard-
ing the problem computational difficulty, is between
convex and nonconvex optimization problems. It can



be shown that the linear complementarity problem
is equivalent to the linear mixed integer feasibility
problem (Horst et al., 2000). Complementarity is
a fundamental tool in continuous optimization since
it expresses optimality conditions. Generalizations
of complementarity problems lead to variational in-
equalities and problems with equilibrium constraints
(Giannessi et al., 2001).
Given matrices An×n, Bn×l and a vector b ∈ R

n

with rational entries, the mixed integer feasibility
problem is to find (x, z), such that x ∈ R

n, x ≥ 0,
z ∈ {0, 1}l that satisfy Ax+Bz = b.

The mixed integer feasibility problem can be reduced
to the solution of a linear complementarity com-
plementarity problem LCP (M, q): Find v, y such
that

v ≥ 0, y ≥ 0, vT y = 0, v = My + q,

where

y =




z
x
θ


 , v =




w
s
t




M =




−I 0 0
B A 0
−B −A 0


 , q =




e
b
−b


 ,

where θ ∈ R
n and e ∈ R

l is the vector of all 1’s.
Given the LCP (M, q) consider the following mixed

zero-one integer problem:

0 ≤ My + αq ≤ e− z,

α ≥ 0, 0 ≤ y ≤ z, (5)

z ∈ {0, 1}n
.

Let (α∗, y∗, z∗) with α∗ > 0 be a feasible point of
the above mixed integer problem (which is always
feasible). Then x∗ = y∗/α∗ solves the LCP. If α∗ = 0
is the only feasible value of α, then the LCP has
no solution. For details and further results on this
equivalence see (Pardalos, 1994; Pardalos, 1996).
During the last few decades, several approaches

have been developed that link the discrete universe

to the continuous universe through geometric, ana-
lytic, and algebraic techniques. Such techniques in-
clude global optimization formulations, semidefinite
programming, and spectral theory (Pardalos, 1996;
Pardalos and Rosen, 1987).

2.4 Hierarchical (Multilevel) Opti-
mization

The mathematical study of hierarchical structures
can be found in diverse scientific disciplines includ-
ing environment, ecology, biology, chemical engineer-
ing, classification theory, databases, network design,
transportation, game theory and economics. The
study of hierarchy occurring in biological structures
reveals interesting properties as well as limitations
due to different properties of molecules. Multi-level
(or hierarchical) programming problems have been
studied extensively in their general setting during
the last decade. In general, hierarchical optimiza-
tion problems are nonconvex and therefore is not easy
to find globally optimal solutions (Migdalas et al.,
1997).
Hierarchical optimization can be used to study

properties of these hierarchical designs. In hierar-
chical optimization, the constraint domain is implic-
itly determined by a series of optimization problems
which must be solved in a predetermined sequence.
Hierarchical (or multi-level) optimization is a general-
ization of mathematical programming. The simplest
two-level (or bilevel) programming problem describes
a hierarchical system which is composed of two levels
of decision makers and is stated as follows:

(BP) min
y∈Y

ϕ(x(y), y)

subject to ψ(x(y), y) ≤ 0
where x(y) = arg min

x∈X
f(x, y)

subject to g(x, y) ≤ 0,

where X ⊂ R
n and Y ⊂ R

m are closed sets,
ψ : X × Y → R

p and g : X × Y → R
q are multi-

functions, ϕ and f are real-valued functions. The set
S = {(x, y) : x ∈ X, y ∈ Y, ψ(x, y) ≤ 0, g(x, y) ≤ 0}
is the constraint set of BP.



Many algorithmic developments are based on the
properties of special cases of BP (and the more gen-
eral problem) and reformulations to equivalent or
approximating models, presumably more tractable.
Most of the exact methods are based on branch
and bound or cutting plane techniques and can han-
dle only moderately size problems (Migdalas et al.,
1997). Only algorithmic approaches that consider
the special structure of the problem can be success-
ful in practice. As we show next, a general opti-
mization problem can be reformulated as a multilevel
optimization problem. In particular this is very im-
portant if a model describes a hierarchical system or
design.

2.5 Multivariate Partition Approach

The basic idea of this approach is to partition all the
variables appearing in the optimization problem into
several groups, each of which consists of some vari-
ables, and regard each group as a set of active vari-
ables for solving the original optimization problem.
With this approach we can formulate optimization
problems as multi-level optimization problems.
Consider the following problem:

min
x∈D⊆Rn

f(x), (1)

where D is a robust set and f(x) is continuous.
Let {∆i, i = 1, . . . , p} be a partition of S =

{x1, . . . , xn}, p > 1.
The above problem is equivalent to the following

multilevel optimization problem:

min
yσ1∈Dσ1

{ min
yσ2∈Dσ2

. . . { min
yσp∈Dσp

f(∆1, . . . ,∆p)} . . .},
(2)

where σ = (σ1, . . . , σn) is any permutation of
{1, 2, . . . , p}. The components of the vector yσi

coin-
cide with the elements of ∆i and Dσi

is defined as a
feasible domain of yσi

.
The multivariate partition approach has been used

to develop efficient algorithms for the spherical code
problem (Huang et al., 2001) and the minimization
of Lennard- Jones potential energy function (Huang
et al., 2002).

3 Stochastic algorithms2

When the size of the problem to be solved increases it
is out of question to look for an exact algorithm with
certifiable quality, unless in very special cases. Most
problems encountered in practice do not lend them-
selves to an analysis which might lead to the develop-
ment of an exact global optimization method, capable
of stopping in a finite time with a deterministic cer-
tificate attesting the quality of the global optimum
estimate found. So it is quite natural that, when
dealing with large scale, computationally expensive,
unstructured global optimization problems, usually
we have to resort to an heuristic procedure. It is im-
portant to notice, however, that heuristic is not a syn-
onymous of easy, simple to implement, nor inefficient.
Many heuristic procedures for global optimization are
extremely sophisticated and display impressive per-
formance even over very challenging problems. Also
it is to be remarked that heuristic is neither a synony-
mous of stochastic: many heuristic search methods
for global optimization do actually contain a stochas-
tic component, but this is not a rule. What, in the
authors’ opinion, is extremely important to keep in
mind when choosing an heuristic algorithm for global
optimization, is that, being the problem so difficult in
general, there is no hope of finding a general purpose
method capable of producing satisfactory results in
most cases: algorithms have to be tuned as much as
possible on known problem characteristics if we want
to have reasonable chances of discovering a good local
optimum, if not the global one.

In this section, rather than presenting a survey
of existing algorithms, a task which can be accom-
plished by looking at the vast literature on global
optimization (see, for example, the (NOIA) volume
series), we would like to introduce the reader to some
elementary concepts which might provide a guidance
towards the choice of a stochastic global optimization
method for a specific problem class.

First of all, let us limit the analysis to a special
case in global optimization: let us assume that the

2this section was contributed by F. Schoen



problem under consideration can be formalized as

min
x∈S⊂Rn

f(x) (6)

where S is a “simple” compact set (like, e.g., a box)
and f is a “sufficiently smooth” objective function.
By the assertion that S is simple we mean that this
problem is considered to be an unconstrained one and
that we generally expect that the global optimum is
found in the interior of S. The presence of S is just
meant to enable us with relative easyness to draw a
sample (e.g., an uniform one) – in other words, we
do not consider here the complications arising when
dealing with constrained global optimization prob-
lems: the presence of the feasible set is just meant
to be an aid to the algorithm designer who would
like to limit the search to a compact region. Many
practical problems can indeed be formalized this way.
As an example, we might cite the well known prob-
lem of finding the minimum energy conformation of
a cluster of particles interacting via two-body forces:

min
∑
i<j

v (‖Xi −Xj‖) (7)

where Xi, i = 1, . . . , N are the coordinates, in R
3,

of the centers of N particles and v(·) is the pairwise
potential; two well known examples of pair poten-
tials are the Lennard-Jones potential (see, for exam-
ple (Northby, 1987))

v(r) =
1
r12

− 2
r6

(8)

and the Morse potential (see (Morse, 1929))

v(r) = (exp(ρ(1− r))− 1)2 − 1 (9)

where ρ > 0 is a parameter.
These two models, which are widely studied both

as accurate models of some microclusters, and as ap-
proximate models of more complex materials like,
e.g., fullerene (Doye et al., 2001) or even proteins,
give rise to large scale global optimization problems
which are essentially unconstrained, being the coor-
dinates of particles free to be placed in R

3; however,
as it is immediately seen, the energy to be minimized

depends only on the relative distance between pairs
of particles, so that it is invariant with respect to
rigid transformations in general and translations in
particular. Thus it might safely be assumed that
the geometric center of the cluster is in the origin of
R

3 and that no two atoms are “too far each other”:
for example, as the minimum of both (8) and of (9)
is attained at r = 1, it is quite easy to see that in
the global minimum there cannot exist two particles
which are at a distance greater than N − 1 (actually,
as it seems quite reasonable, putative global optima
for these cluster models possess a very compact struc-
ture and it is widely believed, even if no formal proof
has yet been published, that the diameter of globally
optimal clusters grows as 3

√
N).

Thus, going back to our problem statement, here
is a case in which no constraint appear in problem
formulation, but a box can be quite easily defined
containing all of the “interesting” configurations, in-
cluding the global optimum. The availability of such
a box is instrumental towards the definition of good
stochastic search methods.
For what concerns the objective function, here we

do not assume very much on its smoothness. Usually
we require that f is continuous on S, so that, thanks
to Weierstrass’ theorem, a global optimum surely ex-
ists. The more we know on f ’s structure, the bet-
ter: should we have the possibility of observing not
only the value of f at a sample point x, but also the
value of its gradient, ∇f(x), then we could exploit
this knowledge in local exploration.
Before presenting some general ideas on stochas-

tic global optimization approaches, we would like to
pause for a while and consider the role of stochastic
elements in heuristic algorithms. Let us immagine
a scenario in which the objective function is a black
box, i.e. it is a complex procedure, possibly a process
simulation, in which we provide a tentative value of
the control variables x ∈ R

n and, after some lengthy
computation, the value of f(x) is returned. We have
no access to the analytic form of f , nor we can hope
to have the possibility of computing the gradient or
other information on the function. We even do not
know if the function is continuous or not. What can
we do in similar cases? Any heuristic algorithm de-
voted to such a problem should be composed of an



equilibrated mix of two procedures:

1. an exploration procedure, whose aim is to ob-
serve, as evenly as possible, different regions in
S trying to cover this set with a sufficiently dense
or a sufficiently well chosen sample;

2. a refinement procedure, whose aim is to locally
explore the neighborhood of a promising point
in search of a better estimate of the global opti-
mum.

Very often, although by no means always, the ex-
ploration procedure contains some random sampling
mechanism. As an extreme example, this procedure
might simply be composed of a uniform random sam-
pling routine capable of generating uniform vectors
in S. In other cases this procedure might be com-
posed of a random sampling routine capable of gen-
erating a point in the intersection between S and a
sphere centered at the current point with prescribed
radius. In other cases the procedure consists in find-
ing a random direction out from the current point
and then exploring the function along such a direc-
tion. The inclusion of randomness in the sampling
mechanism has some advantages: first of all it is an
easy way to avoid neglecting important parts of S: it
is not too difficult, in the examples reported before,
to impose conditions that guarantee that, with prob-
ability one, every subset of S with positive Lebesgue
measure will eventually be visited. Of course a de-
terministic sampling plan might be used instead of
random sampling, and there exist in fact important
examples of sampling through quasi-random deter-
ministic sequences with better filling properties than
random ones (Niederreiter, 1992). However, as the
dimension increases, the feasible space becomes in
some sense too large to permit any kind of system-
atic exploration and random sampling, thanks to its
unbiasedness and to the easiness with which random
points can be drawn, is generally preferred.
For what concerns refinement, this is usually best

performed by means of local optimization, if this is at
all possible. When analytical gradients are available,
it is possible to use one of the many reliable meth-
ods for unconstrained minimization, like, e.g., conju-
gate gradients or limited memory BFGS algorithms

(Liu and Nocedal, 1989). Of course if derivatives are
not available, other local methods can be employed
like, e.g., grid or direct search strategies (Kolda et al.,
2003). Often, however, in this case an effect similar
to that of local optimization can be accomplished by
sampling in small neighborhoods of the current point.
In order to exploit the characteristics of the prob-

lem at hand, besides using gradients if available, we
can distinguish two interesting situations:

1. the objective function is multimodal, but there
are relatively few local optima with quite large
basins of attraction;

2. the objective function is characterized by a huge
number of local optima, but these can be con-
sidered as small perturbations around a function
which is similar to the one described in the pre-
vious point.

Of course these two possibilities do not exhaust the
possible situations, but they are representative of
large classes of practical problems: functions of type
1 often arise when dealing with black box functions in
which the model, although analytically not available,
may be thought of as smooth and continuous; quite
often these problems can be solved by simple vari-
ants of Multistart, i.e. by sampling a random uniform
point and starting from there a local search, repeat-
ing the procedure until some stopping condition is
met. As already pointed out, a local search can be
implemented through sampling in a small neighbor-
hood of the current point. If the objective function
is expensive to evaluate, then it is advisable to build
an approximate model of f(x) based on the observa-
tions; an interesting approach within this framework
was proposed in (Gutmann, 2001), where an interpo-
lation of the objective function is built, based upon
radial basis functions, and the next sample point is
chosen as the global minimizer of the interpolant.
For what concerns problems of the second type let

us first observe that these occur very frequently and
are believed to be very common in fields like molec-
ular clusters, protein–protein docking as well as pro-
tein folding. In these contexts the energetic land-
scape is usually composed of a few set of “funnels”
with quite stable states at their bottom; each funnel,



Figure 1: A multimodal function with many local
optima, but only two funnels.

however, is not a simple valley which an hypothetical
monotonic gradient search could smoothly traverse
towards the minimum. They are, on the contrary,
extremely oscillating landscapes which cause any lo-
cal descent method to be trapped very far from the
bottom of the funnel. Even more sophisticated algo-
rithms like simulated annealing are extremely ineffi-
cient in these cases as the time scale needed to even-
tually reach the bottom of the funnel is usually astro-
nomically large. Here, however, quite simple meth-
ods can be efficiently employed, based upon an ele-
mentary observation. If we substitute the objective
function f(x) with another one, f1(x) = f(LS(x)),
in which to each point x ∈ S a value is associated
which corresponds to the local minimum found by a
local optimization method LS(·) applied to f and ini-
tialized at x, then the new objective function would
be piecewise constant, with far less oscillations than
the original one and with the global optimum cor-
responding to the region of attraction of the global
optimum of f(x).

As a simple example in R
1 we can look at the pic-

ture in figure 1. There we represent a function which,
although characterized by many local optima, might
also be considered as a perturbation of a much sim-
pler one, possessing a so-called funnel structure – in
other words we might think of this function as a per-
turbation of a much simpler one, characterized by
few local minima with relatively large basins of at-
traction. If we assume we could replace the objective

Figure 2: The effect of local searches on multimodal
functions.

function f(x) with f1(x), then we see, looking at fig-
ure 2, that this function has the same global optimum
value as the original one and it is far less “oscillat-
ing”; more important, the funnel structure becomes
more apparent in f1 when compared to the original
objective function. Function f1(x) might be opti-
mized using techniques similar to those suggested in
case 1. Of course the analytical form of f1(x) is not
available, but often we are able to sample f1 at spe-
cific points. Algorithms may be designed which try to
exploit the simpler form of f1(x) with respect to the
original f(x). An interesting such algorithm is based
upon the use of the so called Monotonic Basin Hop-
ping algorithm as a local descent method for f1(x),
coupled with a simple Multistart algorithm. Here we
start a local search on f from a random point (ex-
ploration); then a random point is generated in a
neighborhood of the local optimum found and a local
optimization of f is started from there. If this opti-
mization leads to a better optimum, this is accepted
and the procedure restarts from this point; otherwise
the original local optimum is retained and another
point is sampled, until a stopping rule calls for stop-
ping. This way the algorithm performs a monotonic
descent path on function f1 from one local optimum
to a neighboring one until a deep valley is reached.
This approach, and many variants of it, is currently
considered as the best one, both in performance and
in the quality of the results, for the optimization of
molecular cluster conformations. The local descent
Monotonic Basin Hopping (MBH) algorithm can be



described as follows.

Procedure MBH(x,r, MaxNoImprove)
// x: starting point
// MaxNoImprove: stopping criterion
// r: radius used in local
// perturbation of the current point
NoImprove = 0;
x� = LS(x);
record = f(x�);
while (NoImprove < MaxNoImprove)

y = random uniform point in S(x�, r);
y� = LS(y);
current = f(y�);
if (current < record)

// new record found in S(x�, r);
record = current;
x� = y�;
NoImprove = 0;

else
NoImprove = NoImprove + 1;

end if
end while

return (record);
end procedure

In the above procedure, r is a real parameter rep-
resenting the radius of an hypersphere S(x�, r), cen-
tered at the current point, where sampling is per-
formed; the choice of an appropriate value for r is
quite critical, as too small a radius makes the proce-
dure too local, while a choice of a large r value makes
the algorithm too inefficient, as it reduces to sam-
pling in a very large region. An interesting research
area is that of exploring the possibility of letting r
vary in an adaptive way, but we are not aware of
any rigorous analysis of this kind of approach. The
parameter MaxNoImprove is used to stop the search
when there is sufficient evidence that no better lo-
cal optima can be found in the neighborhood (of ra-
dius r) of the current point; in other words, when
MaxNoImprove attempts have been perfomred with
no improvement, it is believed that the bottom of
the funnel has been reached and the current search
is stopped. Inside the procedure, calls are made to
LS(y), which is a local search algorithm which, start-

ing from a feasible point y, returns a local optimum
y� such that f(y�) ≤ f(y). This local procedure can
be a standard local optimization method, if the ob-
jective function is sufficiently smooth and we have the
possibility of evaluating derivatives, or it might be a
heuristic procedure, possibly based on random sam-
pling or on direct search. MBH is usually called as
a procedure in a simple global optimization method.
A simple example of the use of MBH for global opti-
mization is given by the following procedure, where
MBH is included in Multistart:

Procedure MultiMBH(r, MaxNoImprove,MaxIter)
// MaxIter: stopping criterion
record = +∞
iter = 1;
while (iter ≤ MaxIter)

iter = iter + 1;
x = random uniform point in S;
current = MBH(x, r, MaxNoImprove)
if current < record

record = current;
endif

end while
end procedure

It is quite impressive to see that a very simple al-
gorithm like MBH can be extremely efficient when
dealing with problems with a huge number of local
optima. A well known example in this framework
is the global optimization of Lennard-Jones clusters.
Here it is reported in the literature that the first
“unbiased” algorithm (i.e., an algorithm which did
not included any prior knowledge on the problem or
on the location of the optima) capable of finding all
of the putative global optima for clusters with less
than 110 particles was a variant of MultiMBH (Wales
and Doye, 1997) inspired by simulated annealing, in
which the acceptance of the current point in MBH
is allowed not only when a new record is found, but
also, with a prescribed probability, when the current
value found is not too worse than the record. This
way the algorithm performs also some ascent step in
the landscape of local optima. However, successive
experiments showed that using a monotonic proce-
dure (Leary, 2000) does not prevent the discovery of



all putative optima: these results confirm the fact
that in a funnel-like structure it is a good idea to try
to descend as quickly as possible towards the bottom
of a funnel; there is generally no much benefit in slow-
ing down the descent, by allowing ascent steps, in the
hope of having the chance of exploring a different fun-
nel: this task, often, is best performed by restarting
the procedure. This point of view led us to introduce
a new family of algorithms for Lennard-Jones (Lo-
catelli and Schoen, 2002; Locatelli and Schoen, 2003)
and for Morse clusters (Doye et al., 2003) which dis-
played an improvement of one or two orders of mag-
nitude in the number of local searches needed to ob-
tain the putative optimal configurations, in particu-
lar for those clusters which are considered as the most
difficult to optimize (like 75–78, 98, 102 particles in
Lennard-Jones clusters, or most of the configurations
with ρ = 14 in Morse clusters). The idea which led
to such an improvement was that an effort had to be
made in order to find good starting points for MBH:
the standard MBH method coupled to Multistart can
sometimes be too inefficient, in particular when the
funnel containing the global optimum is very narrow;
our procedure in some sense was meant to augment
the probability of sampling a starting point in the
“right” funnel; this was accomplished not through a
modification of the sampling procedure (something
which would have required some prior knowledge on
the global optima), but through a modification of the
local search method which, in some sense, is made
more global. We cannot go into details here, but we
refer the interested reader to the bibliography. We
can also cite that experiments using the same kind of
ideas were performed in order to find the minimum
energy coupling of two macro molecules interacting
through a complex force field (in particular, we used
the (AMBER) force field). Also in this case, where
the objective consists in finding the correct dock-
ing configuration of two large molecules, typically
proteins, we obtained quite impressive improvements
with respect to more traditional optimization algo-
rithms (Addis and Schoen, 2003a; Addis and Schoen,
2003b).
Returning to the characterization of global opti-

mization problems, as described in (Locatelli, 2003)
we observe that, if local searches of any kind are

available, then we might try to solve a global opti-
mization problem by simply sampling f ; otherwise,
we might apply a global optimization algorithm to
the function f1(x) = f(LS(x)) obtained by applying
local searches to f ; but we might continue, and ap-
ply a global optimization algorithm to the function
f2(x) = f1(LS(x)) obtained by the application of lo-
cal searches to f1, and so on. Here the presentation
is over simplified, as it should be remarked that the
function f1 is piecewise constant and traditional lo-
cal optimization would make no progress from any
starting point; what is here denoted by LS is a more
refined procedure which is capable of generating a not
ascending path along the steps of f1; this task might
be accomplished, for example, by algorithm MBH.
Unimodal optimization problems are those for which
a single descent algorithm applied to f(x) would lead
to the global optimum; “easy” global optimization
problems are those for which a simple global opti-
mization algorithm, like Multistart, equipped with a
suitable descent method (like an unconstrained local
search, or a direct search if derivatives are unavail-
able) can be successfully applied directly to f(x).
More difficult problems, like e.g. molecular conforma-
tion problems, can be attacked through simple global
optimization methods applied to f1(x) (an example
of this is Monotonic Basin Hopping); in these cases
Multistart alone is not sufficient, if applied to f(x),
but it becomes a viable algorithm if applied to f1(x).
Even more challenging problems might be candidates
for algorithms working at the f2 level, but at the mo-
ment of writing we know very few attempts of this
kind.
Another promising approach, which however is still

in its infancy, is that of trying to smooth the piecewise
constant function resulting from the application of lo-
cal optimizations to f(x), i.e. to f1(x) = f(LS(x)).
Performing a local smoothing on this function might
help in revealing which are the descent paths – it
should be recalled that we are speaking here of de-
scent paths in the function transformed by local
searches, which is piecewise constant. A procedure
based on local smoothing can be defined in a way
which is quite similar to a MBH algorithm: at each
step we collect local information on f1(x) by means
of a small sample of local searches performed from



points uniformly sampled in a sphere of radius r cen-
tered at the current iterate. Like in MBH, as soon a a
global record is observed, the procedure is restarted,
and the current point becomes the new record found.
However, differently from MBH, if a certain number
of local searches have been performed with no im-
provement in the global record, instead of stopping
the search, we try to extract information which might
lead to an improvement. Without going into much
detail, we remark here that this information can be
extracted by means of an approximate smoothing of
the observed local optima in the neighborhood of the
current one. In particular the current point is moved
to the minimum of the function

L̂B
g (x) =

∑K
i=1 LS(yi)g(‖yi − x‖)∑K

i=1 g(‖yi − x‖)
where B(x) is a ball centered at the current point x,
yi, i = 1, . . . ,K areK points sampled in such a sphere
and g is a smoothing kernel (e.g., a gaussian density
function). Numerical results obtained with classical,
high-dimensional, test functions with a huge num-
ber of local optima show that the approach is quite
promising. This method can be considered within
the framework presented in this section as a possibil-
ity for building a descent algorithm on the flat steps
of f1(x). MBH is a simpler possibility, but it might
be sometimes limited by the fact that if no record is
found in the current sphere the algorithm stops; this
new approach is aimed at trying to extract some in-
formation on the shape of f1(x) by means of smooth-
ing.
Concluding this brief analysis of stochastic meth-

ods, we would like to stress here that, apart from
the specific method used in sampling, local approxi-
mation, restart, it seems that a promising direction
for designing stochastic algorithms for difficult global
optimization with high number of local optima comes
from the following suggestions:

1. try to exploit as much as possible local optimiza-
tion: do not waste function evaluations and CPU
time in trying to approximate a local optimum

2. use sampling, possibly guided by the objective
function itself, to explore the feasible set, in the

hope of placing an observation in the funnel lead-
ing to the global optimum

3. explore funnels as quickly as possible, with a de-
scent algorithm like, e.g., MBH, trying to find
descent paths in the transformed function f1

Conclusions

In these short notes it was clearly impossible to of-
fer an exhaustive account of recent advances in a
dynamic field like global optimization is nowadays.
Hundreds of papers and tens of new books on the
subject appear each year. So, rather than present-
ing a long list of global optimization problem classes
and/or algorithms, we preferred to outline some gen-
eral trends in contemporary algorithmic research,
with a style and a focus which is obviously strongly
connected with the authors’ own personal experience
on the field. We hope at least to have given the read-
ers the feeling that global optimization is no more an
impossible task and that large scale, difficult multi-
modal problems can be, quite often, solved at opti-
mality through a carefully selected mixture of mod-
elling, implicit enumeration, local searches, sampling.
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