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Abstract 

Optimization as an enabling technology has been one of the big success stories in process systems engineering. In this 
paper we present first a general review of optimization and its applications to a variety of problems in process systems 
engineering. Next, we provide an overview of two key areas: nonlinear programming and logic-based discrete/continuous 
optimization. In particular, recent advances are presented in the modeling and solution of nonlinear programming, 
dynamic optimization, mixed-integer and generalized disjunctive programming, global optimization and constraint 
programming. The impact of these techniques is illustrated with several example problems. 
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Introduction 

 
Our objective in this paper is to provide an 

overview of new developments in nonlinear and 
discrete/continuous optimization. The emphasis is on 
large-scale nonlinear programming and logic-based 
optimization, both of which are relevant for product and 
process design. Optimization has become a major 
enabling area in process systems engineering. It that has 
evolved from a methodology of academic interest into a 
technology that continues to make significant impact in 
industry. Before we discuss the applications of 
optimization, it is useful to present a classification of 
problem types. It should be noted that this classification 
is independent of the solution methods. Optimization 
problems can be classified in terms of continuous and of 
discrete variables.  

 
The major problems for continuous optimization 

include linear (LP) and nonlinear programming (NLP). 
An important subclass of LP is the linear 
complementarity problem (LCP), while for the NLP it 
includes quadratic programming (QP) and semidefinite 
programming (SP). For the latter, an important 
distinction is also whether the NLP problem is convex 
or nonconvex, since the latter may give rise to multiple 
local optima. Another important distinction is whether 
the problem is assumed to be differentiable or not.  

 

On the other hand, discrete problems are classified 
into mixed-integer linear programming (MILP) and 
mixed-integer nonlinear programming (MINLP). For the 
former an important particular case is when all the 
variables are integer, which gives rise to an integer 
programming (IP) problem. This problem in turn can be 
classified into many special problems (e.g. assignment, 
traveling salesman, etc.). The MINLP problem also 
gives rise to special problems, although here the main 
distinction like in the NLP problem is whether its 
relaxation is convex or non-convex.  

 
Regarding their formulation, discrete/continuous 
optimization problems when represented in algebraic 
form, correspond to mixed-integer optimization 
problems that have the following general form: 
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where f(x, y) is the objective function (e.g. cost), h(x, y) 
= 0 are the equations that describe the performance of 
the system (material balances, production rates), and 
g(x,y) ≤ 0 are inequalities that define the specifications 
or constraints for feasible plans and schedules. The 
variables x are continuous and generally correspond to 
state variables, while y are the discrete variables, which 



 
generally are restricted to take 0-1 values to define for 
instance the assignments of equipment and sequencing 
of tasks. Problem (MIP) corresponds to a mixed-integer 
nonlinear program (MINLP) when any of the functions 
involved are nonlinear. If all functions are linear it 
corresponds to a mixed-integer linear program (MILP). 
If there are no 0-1 variables, the problem (MIP) reduces 
to a nonlinear program (NLP) or linear program (LP) 
depending on whether or not the functions are linear. 

 
It should be noted that (MIP) problems, and their 

special cases, may be regarded as steady-state models. 
Hence, one important extension is the case of dynamic 
models, which in the case of discrete time models gives 
rise to multiperiod optimization problems, while for the  
case of continuous time it gives rise to optimal control 
problems that contain differential-algebraic equation 
(DAE) models. Another important extension includes 
problems under uncertainty, which give rise to 
stochastic optimization problems.  

 
Applications in Process Engineering 

Mathematical programming, and optimization in 
general, have found extensive use in process systems 
engineering. A major reason for this is that in these 
problems there are often many alternative solutions, and 
hence, it is often not easy to find the optimal solution. 
Furthermore, in many cases the economics is such that 
finding the optimum solution translates into large 
savings. Therefore, there might be a large economic 
penalty to just sticking to suboptimal solutions. In 
summary, optimization has become a major technology 
that helps companies to remain competitive.  

 
Applications in Process Design and Synthesis have 

been dominated by NLP and MINLP models due to the 
need for the explicit handling of performance equations, 
although simpler targeting models in process synthesis 
can give rise to LP and MILP problems. Operations 
problems, in contrast, tend to be dominated by linear 
models, LP and MILP, for planning, scheduling and 
supply chain problems. NLP, however, plays a crucial 
role at the level of real time optimization. Control has 
traditionally relied on LP and NLP models, although 
MILPs are being increasingly used for hybrid systems. 
Finally, note that global optimization has concentrated 
more on design than on operations problems, since 
nonconvexities in the design problems are more likely to 
yield suboptimal solutions since the corresponding 
bounds for the variables are rather loose in these 
problems. It is also worth noting that all of these 
applications have been facilitated not only by progress 
in optimization algorithms, but also by the advent of 
modeling techniques (Williams, 1985) and systems such 
as GAMS (Brooke et. al, 1998), AMPL (Fourer et al., 
1992) and AIMMS (Bisschop and Entriken, 1993). 
 

Here we concentrate on two broad areas that are very 
active research topics and will strongly influence the 
future of optimization algorithms and formulations. 
First, we discuss recent developments of efficient NLP 
methods particularly for large-scale problems and ill-
posed characteristics, such as singular Hessians, 
dependent constraints and complementarity constraints. 
We describe recent progress in the development of 
efficient algorithms that address these issues. Moreover, 
for large-scale NLPs we describe a number of relevant 
applications including the treatment of DAE and PDE 
models. Several large-scale examples are described to 
illustrate these developments. 
 
Next, we describe new developments in 
discrete/continuous logic-based optimization. We 
provide an overview of Generalized Disjunctive 
Programming (GDP) and its relation with MINLP. We 
describe several algorithms for GDP that include branch 
and bound, decomposition and mixed-integer 
reformulations. We also describe recent developments 
for cutting plane techniques, global optimization of 
nonconvex GDP problems, and constraint programming. 
Several examples are presented to illustrate the 
capabilities of these methods.  
 
The optimization strategies described in the following 
sections will not overly emphasize global optimization 
strategies, as these are already covered by Pardalos and 
Schoen (2004) in this conference. Moreover, several 
other papers in this conference discuss applications of 
optimization in process engineering. Instead, this paper 
will emphasize NLP and MINLP optimization methods, 
strategies and concepts as a core area for research in 
process systems engineering. As a result, this review 
also serves as a complement to detailed optimization 
models in specific applications areas that are presented 
in other papers in this conference. 
 
Advances in Nonlinear Programming Methods 
 

Nonlinear programming algorithms play an 
important role in numerous process and product 
applications. They are widely used in the design of 
chemical processes and the development of new 
products. This also includes related problems of state 
and parameter estimation for model building and model 
discrimination. On the operations side, nonlinear 
programming is the key component in real time 
optimization and also in the related problem of data 
reconciliation and gross error detection. Finally, there 
are a number of nonlinear control applications that rely 
on efficient nonlinear programming solvers, both for 
state estimation as well as the solution of moving 
horizon problems for model predictive control.  

 
In addition to NLP applications, NLP subproblems 

arise frequently in dealing with MINLPs and in global 



 
solution strategies. NLP solvers are therefore an 
important component of algorithms for MINLP (e.g., 
Outer Approximation, Generalized Benders 
Decomposition and nonlinear branch and bound 
algorithms) and global optimization (e.g., spatial branch 
and bound, DCF, αBB). Nevertheless, for most NLP 
applications there is a heavy reliance on ‘off-the-shelf’ 
solvers (e.g., NPSOL, MINOS, CONOPT, SNOPT) that 
are bundled within modeling environments like GAMS, 
AIMMS and AMPL. While these are well written codes, 
they have a ‘one size fits all’ approach which becomes 
inefficient and even unsuccessful for challenging large-
scale problems in process engineering. To counter these 
difficulties, we explore some new developments in 
large-scale NLP.  
 

Large scale optimization problems with continuous 
variables and nonlinear constraints pose a number of 
challenges to current nonlinear programming 
algorithms. Unlike algorithms for discrete variables, 
NLP algorithms are necessarily iterative and do not have 
finite termination properties. Progress is therefore 
measured by convergence rates in the neighborhood of 
the (local) solution. Moreover, these algorithms are 
often more difficult to construct, analyze and make 
reliable and efficient for different problem types. 
Research in the development of efficient and reliable 
nonlinear programming solvers addresses the following 
areas: 

 
Inequality constraint handling in large scale 

problems has typically faced a major combinatorial 
challenge for commercial methods. The recent 
introduction of interior point (or barrier) methods for 
NLP: KNITRO (Byrd et al., 2000), LOQO (Vanderbei 
and Shanno, 1999) and IPOPT (Waechter and Biegler, 
2003) have shown significant improvements over 
conventional active set strategies. By replacing 
inequality constraints by barrier terms in the objective 
function and solving a sequence of rapidly converging 
NLPs, these approaches effectively remove 
combinatorial barriers for active set selection in large-
scale problems.  

 
Second order information for fast convergence. 

Most commercial solvers are limited in processing 
second derivatives and typically use quasi-Newton 
updates that are based on differences in first derivative 
information. This limits application problem sizes (e.g., 
<100 degrees of freedom) and algorithmic performance 
(often with linear convergence rates). Moreover, 
performance with quasi-Newton updates can be 
adversely affected by ill-conditioned problems. The 
availability of second derivatives in modern modeling 
environments (e.g., GAMS, AIMMS and AMPL) and in 
automatic differentiation tools (e.g., ADOL-C and 
Tapenade) overcomes these barriers but introduces new 

algorithmic challenges that include dealing with 
nonpositive curvature derived from second order 
information, and constructing efficient NLP methods 
that exploit sparsity of this information (Nocedal and 
Wright, 1999).  

 
Globalization to find optimal solutions from poor 

starting points. Most commercial NLP strategies have 
limited capabilities to deal with poor initializations. This 
is a major barrier to incorporating them within design 
and operations tools. Over the past decade globalization 
strategies have been conceived that guarantee 
convergence to locally optimal solutions under mild 
conditions (Nocedal and Wright, 1999). Classified as 
line search and trust region  methods they offer a 
number of trade-offs; line search methods are faster and 
easier to implement than trust regions, but the latter are 
more powerful in handling ill-conditioning and negative 
curvature. More recently convergence metrics for both 
methods improved with the introduction of filter 
methods (Fletcher et al., 2003; Waechter and Biegler, 
2003), which rapidly eliminate undesirable search 
regions and promote global convergence.  

 
Finally, decomposition strategies need to be 

developed that deal with large, structured problems, the 
incorporation of both equation-based and procedural 
models and the integration of models that occur at 
different spatial (lumped or distributed parameter 
systems) and temporal levels (e.g., for dynamic and 
static operation). Support for this activity is required in 
the development of optimization software that exploits 
parallel computing as well as flexible configuration and 
modification of algorithms tailored to exploit features of 
these models (Grossmann and Biegler, 2003).  

 
To address and overcome some of these issues in 

nonlinear programming, we consider three case studies 
in this paper that cannot be addressed with off-the-shelf 
optimization strategies. Instead, we describe the 
development of powerful large-scale algorithms that 
exploit challenging features of the problem. In 
particular, we focus on the barrier NLP approach and 
describe its characteristics.  

 
Without loss of generality, the optimization 

problem (NLP) can be stated as: 
 

Min f(x) 
s.t. c(x) = 0          (1) 

x ≥ 0 
 

We assume the objective function f(x): Rn → R and 
the equality constraints c(x): Rn → Rm with m < n are 
sufficiently smooth.  The bounds are now replaced by a 
logarithmic barrier term, which is added to the objective 
term to give:   
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The barrier method solves a sequence of barrier 

problems (indexed by ℓ) for decreasing values of µl 
with 0lim =

∞→
l

l
µ . Under mild assumptions it can be 

shown that a sequence of x∗(µℓ ) of (approximate) local 
solutions of (2) converges to a local solution of the 
original NLP (1) (Fiacco and McCormick, 1968; 
Forsgren et al., 2002). Since the exact solution x∗(µℓ ) is 
not of interest for large values of µℓ, the corresponding 
barrier problem is solved only to a relaxed accuracy ε ℓ  

with 0lim =
∞→

l
l

ε .  To solve the barrier problem for a 

fixed value of µℓ, a primal-dual approach is used to 
generate search directions for the primal and dual 
variables. 

 For fixed values of µℓ, the barrier problem (2) 
is solved using a Newton method, with directions 
determined by solving the linear system at iteration k:  
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where λk is the vector of multiplier estimates at iteration 
k, A(xk) = ∇ c(xk), H(xk,, λk) is the Hessian of the 
Lagrange function  of (2) given by Lµ(x, λ) = f(x) + 
c(x)T λ, the diagonal matrix Σk = X-1V represents the 
barrier term and X = diag(x) and V = diag(ν), with ν the 
multiplier on the nonnegativity constraint in (1). Once 
the search direction is computed, a globalization method 
is applied to ensure convergence from poor starting 
points. Suitable methods include the filter line search 
method in IPOPT (Waechter and Biegler, 2003), the 
trust region approach in KNITRO (Byrd et al., 2000) or 
a combined approach in KNITRO-Direct (Walz et al., 
2003), which all deal with steps generated by (3).  
 
 Solution of (3) can be done with either a 
decomposition into a reduced space, a direct solve in the 
full space, or an iterative solution based on 
preconditioned Krylov methods (Biros and Ghattas, 
1990). Reduced space decompositions have been 
addressed in Cervantes et al. (1999) and are best suited 
for problems with few decision variables (i.e., degrees 
of freedom). In this case, second derivatives need not be 
calculated and curvature information in the reduced 
space of the decision variables can be approximated 
efficiently with quasi-Newton updates. Problems that 
benefit from this approach include applications in 
equipment and process design and parameter estimation. 
However, for many degrees of freedom this approach 
can become slow to converge and special attention must 
be paid to the costs of factorization.  
 

On the other hand, the full space direct solution 
of (3) requires calculation of second derivatives for H(x,, 
λ) as well as an efficient large-scale sparse matrix 
solver. Advocates of this approach include Lucia and 
coworkers (1990, 1993), Betts and Frank (1995) and 
Sargent and Ding (2000). Moreover, with the 
application of barrier methods, algorithms can be 
constructed that easily take advantage of the structure of 
Ak and Hk in the KKT matrix without the additional 
expense of changing the active set. In addition, a second 
concern is due to an incorrect inertia (distribution of 
positive, negative and zero eigenvalues) in the KKT 
matrix. This results from linearly dependent columns in 
the Ak matrix or indefiniteness in the reduced Hessian. 
When encountered, they can be corrected by the 
following simple device:  
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In both LOQO and IPOPT, δ1 and δ2 are systematically 
increased until the correct inertia (determined by the 
sparse linear solver) is found. This device is effective in 
treating degenerate features of the NLP problem. 
Nevertheless, slow convergence and also expensive 
linear factorizations of the KKT matrix may still be 
encountered.  
 
The advantage of the full space approach arises when 
applied to problems with many degrees of freedom. 
These include NLPs resulting from the discretization of 
differential equations such as optimal control problems 
(to determine an accurate profile in time), state 
estimation and inverse problems. In process 
engineering, they also include large-scale problems in 
data reconciliation, blending operations, and model 
predictive control. 
 
Data Reconciliation Example 
To explore the performance of NLP solvers on process 
problems with many degrees of freedom, Poku et al. 
(2004) considered a set of blending and data 
reconciliation problems and compared several popular 
NLP algorithms. Here it was determined that the 
capability of including second derivative information 
and factorizing in the full space can lead to significant 
performance differences. In particular, consider the data 
reconciliation problem for a steam metering problem 
first introduced by Serth and Heenan (1986) and 
modified to include both flow and temperature 
measurements and bilinear constraints in Arora and 
Biegler (2001).  The steam metering process has 28 
redundant measured streams flowing in and out of 11 
nodes. To increase the degrees of freedom, data 
snapshots were generated for one to 25 days. For this 
problem the number of variables increases from 40 to 
976 and the degrees of freedom (also known as 



 
superbasic variables) increase from 17 to 425. The 
comparison by Poku et al. (2004) is summarized in 
Figure 1. 

 
Note that the iteration count for MINOS and SNOPT, 
methods, which do not use second order information and 
rely on quasi-Newton updates, increases linearly with the 
number of degrees of freedom; these are among the 
slowest NLP solvers. On the other hand, both KNITRO 
and IPOPT are quite fast and the number of iterations 
remains small as the problem size increases. As a result, 
problems with many degrees of freedom can be solved 
much more efficiently with these advanced solvers.  Poku 
et al. (2004) also address a set of blending problems which 
are not as well behaved due to dependent constraints. Here 
the device in (4) allows the successful solution of these 
problems with IPOPT, even when the other methods 
failed.  
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Figure 1. Comparison of NLP Solvers on Data 
Reconciliation Problem 

 
Loss of Positive Curvature 
 
With the availability of exact second derivatives, care 
must also be taken with the loss of positive curvature in 
the tangential space of the active constraints. If this occurs 
at isolated points along the convergence path, this 
indefiniteness can be corrected by adjustment of δ1 in (3), 
or more rigorously through the application of a trust 
region method (Byrd et al., 2001). On the other hand, if 
positive curvature is absent at the solution, a sensible 

approach is to regularize the objective function through 
the addition of quadratic terms. This approach is efficient 
for line search algorithms in large problems but can lead to 
a smeared solution if nonunique solutions are present. 
Smeared solutions can be avoided if additional problem 
specific data is known and a tailored regularization can be 
designed. To demonstrate this approach on a large-scale 
problem we consider the detection of contaminants in a 
municipal water network.  
 
Source Detection Example 
To illustrate the importance of regularization and the 
formulation and solution of large-scale PDE problems, we 
consider the problem of detecting contaminant injections 
in municipal water networks. While this problem is not 
new, heightened awareness of such malicious attacks has 
caused renewed interest in this problem. Here we consider 
an optimization formulation for source detection that uses 
large-scale water network models. Models of municipal 
water networks are constructed by partial differential 
equations for network pipes that are a function of both 
time and pipe displacement. Mixing occurs at pipe nodes 
(junctions and mixing tanks) and any of these can function 
as an injection point. To detect potential contaminants, 
concentration sensors are distributed throughout the 
network. This leads to a large-scale dynamic optimization 
problem, where profiles of injected mass, mk(t),  need to 
be detected at node k from sensor measurements. A typical 
network model is given below: 
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where the sets P, J, S are the sets of all pipes, junctions, 
and storage tanks, 0 ≤ t ≤ tf, and x ≥ 0 is displacement 
along a pipe. Also, ui(t) is the known fluid velocity in pipe 
i, ci(x,t) is the contaminant concentration in pipe i, 

)(ˆ )( tc tki  is the contaminant concentration of node k, Γk(t) is 

the set of all pipes flowing into node k at time t, Ii(t), and 
Oi(t), are the displacements along pipe i where fluid is 
entering and leaving the pipe, respectively, and ki(t) is the 
the index of the node connected at the inlet of pipe i. Note 
that these designations are time dependent and change 
with the flow direction. 
 



 
Since hydraulic calculations are known in advance, water 
quality calculations are decoupled from the flowrates and 
can be determined by a variety of existing techniques. A 
naïve discretization of this system in time and space 
produces a large scale, nonlinear math programming 
problem that is unreasonable for current optimization 
tools. To overcome this difficulty, we use a Lagrangian 
reference frame. Here, an origin tracking algorithm is 
developed in Laird et al. (2004) that reformulates the 
partial differential pipe expressions into algebraic 
equations with variable time delays, thus removing the 
need to discretize along the length of the pipes. 
 
The resulting model becomes a set of DAEs with variable 
time delays that tracks the node concentrations, )(ˆ )( tc tki , 

over time. The optimization is formulated from these 
DAEs and by adding the objective function and 
constraints, we obtain: 
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where )(ˆ* tck are the available measurements and Θ is the 
set that defines the time series of sampled data. Note that 
this problem is regularized with a parameter ρ > 0 to 
enforce positive curvature in the Jacobian and lead to a 
unique solution. Such a regularization does not prevent 
smeared detections if too few sensors are present, but it 
does lead to an efficient and reliable solution strategy. For 
our examples, we have found that a value of ρ = 10-4 is 
sufficient. 
 
To demonstrate this approach we consider the municipal 
water network shown in Figure 2. After discretizing this 
DAE model in time, we apply the IPOPT solver. Upon 
discretization the resulting NLP is a large problem with 
many degrees of freedom, with about 210,000 variables, 
165,000 equality constraints and 45,000 inequalities. A 
typical NLP solution with IPOPT takes less than 2 CPU 
minutes on a 2.2 GHz Pentium 4 machine. 
 
In Laird et al. (2004) we present the results of over 1000 
tests with varying numbers of network sensors at injection 
points and different time dependent injection scenarios at 
points A, B, C and D in the network. These tests are made 
with data sets of up to 8 hours.  
 
The formulation is also very effective for locations A 
through C, where it determines the injection location in 
very little time with few sensors. The effectiveness of the 
sensor grid is influenced dramatically by the flow patterns 
at the injection location. The effectiveness of the 
formulation is poorer for location D, because flow 
conditions at this point do not cause significant spreading 
of the contaminant through the network, and a higher 

requirement on the number of installed sensors is 
expected. Nevertheless, once there are enough sensors to 
detect the contamination, the formulation is extremely 
effective at determining the correct injection location.  

 
Figure 2. Municipal network for source detection with 
trial injection points A-D.  
 
This detection scheme is extremely fast and demonstrates 
the performance of efficient problem formulations coupled 
to specialized large-scale NLP solvers. Future work deals 
with augmenting the NLP problem formulation with 
network identification tools, similar to those for data 
reconciliation (see, e.g., Narasimhan et al., 2000). Optimal 
sensor location and problem dependent regularizations to 
sharpen the detection results will also be investigated.  
 
Mathematical Programs with Complementarity 
Constraints (MPCCs) 
 
In addition to using integer decision variables in the 
disjunctive problem formulations discussed in the 
previous sections, many discrete decisions can be 
modeled through continuous complementarity relations, 
e.g., w(i)y(i) = 0, w, y ≥ 0. These have recently been 
considered in modeling dynamic hybrid systems (van 
der Schaft and Schumacher, 1998; Heemels et al., 2001) 
and in modeling disjunctions (Stein et al., 2004).  
Introducing complementarity constraints leads to a 
specialized nonlinear programming formulation that 
requires careful treatment in algorithmic design. It 
should also be noted that the introduction of 
complementarity conditions does introduce additional 
nonconvexity into the problem, which would not be 
observed, for instance, in the NLP subproblems of a 
mixed integer programming approach.  
 



 
Mathematical programs with complementarity 
conditions (MPCCs) can be stated as: 
 

Min f(x, w, y) 
s.t c(x, w, y) = 0   (7) 
      W y ≤ 0, w, y ≥ 0, x ≥ 0 

 
where W = diag(w). The addition of these constraints 
leads to an NLP that does not satisfy the usual constraint 
qualifications (LICQ or MFCQ) and therefore has 
solution sets with unbounded multipliers. For this 
reason, many NLP codes have difficulties with MPCC 
formulations, although  Fletcher and Leyffer (2004) and 
Fletcher et al. (2002) show that well implemented NLP 
codes can be used to solve some classes of MPCCs. 
Moreover, barrier methods such as IPOPT can be 
safeguarded and extended naturally to deal with 
MPCCs. Raghunathan and Biegler (2003) analyzed the 
structure of MPCCs and developed a tailored barrier 
method.  
 
The MPCC can be relaxed to the following form (Clark 
and Westerberg, 1990; Luo et al., 1996): 
 

Min f(x, w, y) 
s.t. c(x, w, y) = 0   (8) 
      W y+s =  t, w, y ≥ 0, x ≥ 0, s≥ 0 
 

for some positive value for t. Scholtes (2001) showed 
that minor relaxations in (8) lead to well-defined 
parametric programs in t. Now replacing the inequalities 
with barrier terms leads to: 
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where δ is a positive constant. Raghunathan and Biegler 
(2003) showed that with a suitable regularization of the 
KKT matrix, this approach leads to a barrier method 
with 0→lµ that is superlinearly convergent. The 
resulting MPCC code, called IPOPT-C, has been 
compared on hundreds of test problems, including 
challenging applications in steady state distillation 
optimization with disappearing phases, optimal control 
and optimal startup of distillation processes with phase 
transitions and data reconciliation and parameter 
estimation of fermentation processes (Raghunathan et 
al., 2003a,b, 2004a, b). The ability to formulate and 
handle complementarity constraints in a reliable manner 
leads to difficult applications that are often too large to 
be considered with integer variables. This is illustrated 

below with the optimization of a hybrid dynamic system 
of a metabolic flux network for yeast fermentation.  
 
Yeast Fermentation Example 
Mathematical modeling and optimization of wine 
fermentation presents a major challenge as yeast strains 
must adapt to highly variable environmental conditions. 
Sainz et al. (2003) proposed a general framework for 
simulating the evolution of cell metabolism in a 
changing medium, based on metabolic flux balance 
models. Here the cell metabolism is represented by a 
linear program (LP) that maximizes physiological 
objectives such as optimal growth and homeostasis, 
subject to the network of metabolic reactions. However, 
the bounds on reaction rates in the LP and objective of 
the LP vary depending on concentrations of specific 
metabolites, which lead to cell adaptation to changing 
environment. Bounds on reaction rates are obtained 
based on experiments and are piecewise smooth 
functions of extracellular metabolite concentrations. The 
dynamic evolution of extracellular metabolites is then 
defined using Differential Algebraic Equations (DAEs) 
coupled with these LP-based metabolic models. Here 
our task is to estimate time-invariant parameters such as 
biomass compositions in order to match model 
predictions to experimental measurements of glucose 
and biomass concentrations in the medium.  
 
The parameter estimation problem definition begins 
with the LP formulation based on the metabolic network 
shown in Figure 3. Assuming that environmental 
dynamics are much slower than enzymatic regulation, 
cell metabolism can be represented by a metabolic 
network in which all reactions considered are in pseudo-
steady state and can be represented through linear mass 
balances and the following feasible region:  

Ψ= {v|A(θ) v = 0, vU(C)≥ v ≥ vL(C)} 
where v is the vector of metabolic rates, θ is the vector 
of parameters, such as biomass stoichiometric 
coefficients, to be estimated and Ci is the concentration 
of external metabolites (i∈EXMET). Note that the 
bounds on the rates are given as piecewise functions of 
these concentrations.  The behavior of the metabolic 
flux network is represented by a linear program with 
feasible region Ψ and an objective to maximize biomass 
above a specified ammonium concentration and to 
minimize ATP consumption below this ammonium 
concentration. The parameter estimation problem is then 
given by: 
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where Tj is the set of time points for measurement j.  

Figure 3. Metabolic Network for Yeast Fermentation 
 
To solve this nonsmooth parameter estimation problem, 
Raghunathan et al. (2004) propose a novel formulation 
of (10) using Variational Inequalities (VIs) to represent 
the piecewise continuous bounds and multiple linear 
programs in a well-posed manner. Including the ODEs 
governing metabolite evolution in (10) along with the 
resulting VIs leads to a system of Differential 
Variational Inequalities (DVIs) governing fermentation 
dynamics. 
 
This system is discretized using the trapezoidal rule to 
form a large-scale mathematical program with 
variational inequalities, which can be reformulated to 
form an MPCC problem. Here the resulting problem 
with VI constraints is given by: 
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From ΨwF(x)   w, wF(x)w TT ∈∀≥ ~~ it is easy to see that 

w is given by the solution of Ψ wF(x)wMin T ∈,  and 
(11) is given by the bi-level problem: 
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Replacing the inner minimization problem with the 
corresponding KKT conditions leads to the following 
MPCC problem: 
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Raghunathan et al. (2004) considered a number of 
nitrogen-rich and nitrogen-lean cases for this parameter 
estimation problem, using both simulated and laboratory 
data. An interesting problem that arises is the adequacy 
of the measurements to describe these networks. In 
particular they were able to: 

• Demonstrate efficient algorithmic performance 
with sufficient measured data using simulation 

• Demonstrate the adequacy of partial 
information in predicting unmeasured profiles 

• Validate metabolic models with laboratory data 
for metabolite and biomass evolution.    

Finally, the MPCC (13) that results from this hybrid 
dynamic parameter estimation problem has up to 37,328 
variables and 29,583 constraints, including 7740 
complementarity constraints. Note that in addition to 
handling large numbers of complementarity constraints, 
which model the equivalent number of discrete 
decisions, the MPCC also has many degrees of freedom 
that need to be handled efficiently. Solved with IPOPT-
C, this MPCC model requires less that 8 CPU minutes 
on a 2.2 MHz Pentium 5 machine.  
 
Logic-Based Discrete and Continuous Optimization  
 
The mathematical programming approach to 
discrete/continuous optimization problems has been 
widely used in operations research and engineering. For 
example, the applications are in process design and 
synthesis, planning and scheduling, process control, and 
recently, in molecular design and in bioinformatics. 
Over the last decades, there has been a significant 
progress in the development of the discrete/continuous 
optimization models and their solution algorithms. For a 
recent review in the applications to the process systems 
engineering, see Grossmann et al. (1999). In this section 
of the paper we present an overview of the advances in 
mathematical programming for the modeling and 
solution of discrete/continuous optimization problems 
with special emphasis on logic-based optimization. 
 
Review of Mixed Integer Optimization 
The conventional way of modeling discrete/continuous 
optimization problems has been through the use of 0-1 
and continuous variables, and algebraic equations and 
inequalities. For the case of linear functions this model 
corresponds to a mixed-integer linear programming 
(MILP) model, which has the following general form,  
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In problem (MILP) the variables x are continuous, and y 
are discrete variables, which generally are binary 
variables. As is well known, problem (MILP) is NP-
hard. Nevertheless, an interesting theoretical result is 
that it is possible to transform it into an LP with the 
convexification procedures proposed by Lovacz and 
Schrijver (1991), Sherali and Adams (1990), and Balas 
et al (1993). These procedures consist in sequentially 
lifting the original relaxed x-y space into higher 
dimension and projecting it back to the original space so 
as to yield after a finite number of steps the integer 
convex hull. Since the transformations have exponential 
complexity, they are only of theoretical interest, 
although they can be used as a basis for deriving cutting 
planes (e.g. lift and project method by Balas et al, 1993).  
 
As for the solution of problem (MILP), it should be 
noted that this problem becomes an LP problem when 
the binary variables are relaxed as continuous variables, 
0 ≤ y ≤ 1. The most common solution algorithms for 
problem (MILP) are LP-based branch and bound 
methods, which are enumeration methods that solve LP 
subproblems at each node of the search tree. This 
technique was initially conceived by Land and Doig 
(1960), Balas (1965), and later formalized by Dakin, 
(1965). Cutting plane techniques, which were initially 
proposed by Gomory (1958), and consist of 
successively generating valid inequalities that are added 
to the relaxed LP, have received renewed interest 
through the works of Crowder et al (1983), Van Roy 
and Wolsey (1986), and especially the lift and project 
method of Balas et al (1993). A recent review of branch 
and cut methods can be found in Johnson et al. (2000). 
Finally, Benders decomposition (Benders, 1962) is 
another technique for solving MILPs in which the 
problem is successively decomposed into LP 
subproblems for fixed 0-1 and a master problem for 
updating the binary variables. 
 
Software for MILP solver includes OSL, CPLEX and 
XPRESS which use the LP-based branch and bound 
algorithm combined with cutting plane techniques. 
MILP models and solution algorithms have been 
developed and applied successfully to many industrial 
problems (e.g. see Kallrath, 2000). 
 
For the case of nonlinear functions the 
discrete/continuous optimization problem is given by 
Mixed-integer nonlinear programming (MINLP) model: 
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where f(x,y) and g(x,y) are assumed to be convex, 
differentiable and bounded over X and Y. The set X is 
generally assumed to be a compact convex set, and the 
discrete set Y is a polyhedral of integer points. Usually, 
in most applications it is assumed that f(x,y) and g(x,y) 
are linear in the binary variables y.  
 
A recent review of MINLP solution algorithms can be 
found in Grossmann (2002). Algorithms for the solution 
of problem (MINLP) include the Branch and Bound 
(BB) method, which is a direct extension of the linear 
case of MILPs (Gupta and Ravindran, 1985; Borchers 
and Mitchell, 1994; Leyffer, 2001). The Branch-and-cut 
method by Stubbs and Mehrotra (1999), which 
corresponds to a generalization of the lift and project 
cuts by Balas et al (1993), adds cutting planes to the 
NLP subproblems in the search tree. Generalized 
Benders Decomposition (GBD) (Geoffrion, 1972) is an 
extension of Benders decomposition and consists of 
solving an alternating sequence of NLP (fixed binary 
variables) and aggregated MILP master problems that 
yield lower bounds. The Outer-Approximation (OA) 
method (Duran and Grossmann, 1986; Yuan et al., 
1988; Fletcher and Leyffer, 1994) also consists of 
solving NLP subproblems and MILP master problems. 
However, OA uses accumulated function linearizations 
which act as linear supports for convex functions, and 
yield stronger lower bounds than GBD that uses 
accumulated Lagrangean functions that are parametric 
in the binary variables. The LP/NLP based branch and 
bound method by Quesada and Grossmann (1992) 
integrates LP and NLP subproblems of the OA method 
in one search tree, where the NLP subproblem is solved 
if a new integer solution is found and the linearization is 
added to the all the open nodes. Finally the Extended 
Cutting Plane (ECP) method by Westerlund and 
Pettersson (1995) is based on an extension of Kelley’s 
cutting plane (1960) method for convex NLPs. The ECP 
method also solves successively an MILP master 
problem but it does not solve NLP subproblems as it 
simply adds successive linearizations at each iteration.  
 
Generalized Disjunctive Programming 
 
Given difficulties in the modeling and scaling of mixed-
integer problems, the following major approaches based 
on logic-based techniques have emerged: Generalized 
Disjunctive Programming (GDP) (Raman and 
Grossmann, 1994), Mixed Logic Linear Programming 



 
(MLLP) (Hooker and Osorio, 1999), and Constraint 
Programming (CP) (Hentenryck, 1989) The motivations 
for these logic-based modeling has been to facilitate the 
modeling, reduce the combinatorial search effort, and 
improve the handling the nonlinearities. In this paper we 
will mostly concentrate on Generalized Disjunctive 
Programming. A general review of logic-based 
optimization can be found in Hooker (1999). 
 
Generalized Disjunctive Programming (GDP) (Raman 
and Grossmann, 1994) is an extension of disjunctive 
programming (Balas, 1979) that provides an alternate 
way of modeling (MILP) and (MINLP) problems. The 
general formulation of a (GDP) is as follows: 
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where Yjk are the Boolean variables that decide whether 
a term j in a disjunction k ∈ K is true or false, and x are 
continuous variables. The objective function involves 
the term f(x) for the continuous variables and the 
charges ck that depend on the discrete choices in each 
disjunction k ∈ K. The constraints g(x) ≤ 0 hold 
regardless of the discrete choice, and hjk(x) ≤ 0 are 
conditional constraints that hold when Yjk is true in the j-
th term of the k-th disjunction. The cost variables ck 
correspond to the fixed charges, and are equal to γjk if 
the Boolean variable Yjk is true. Ω(Y) are logical 
relations for the Boolean variables expressed as 
propositional logic. 
  
It should be noted that problem (GDP) can be 
reformulated as an MINLP problem by replacing the 
Boolean variables by binary variables yjk, 
 

KkJj ,y xx0    

a Ay                       

Kk  y                

(BM)         K kJj ,yMxh    
 xg       ts              

xfy  Z min         

kjk
U

Jj
jk

kjkjkjk

Kk Jj
jkjk

k

k

∈,∈}1,0{∈,≤≤

≤

∈,1=

∈,∈)1(≤)(
0≤)(..

)(+=

∑

∑∑

∈

∈ ∈
γ

 

 
where the disjunctions are replaced by “Big-M” 
constraints which involve a parameter Mjk and binary 
variables yjk. The propositional logic statements Ω(Y) = 
True are replaced by the linear constraints Ay ≤ a as 

described by Williams (1985) and Raman and 
Grossmann (1991). Here we assume that x is a non-
negative variable with finite upper bound xU. An 
important issue in model (BM) is how to specify a valid 
value for the Big-M parameter Mjk. If  the value is too 
small, then feasible points may be cut off. If Mjk is too 
large, then the continuous relaxation might be too loose 
yielding poor lower bounds. Therefore, finding the 
smallest valid value for  Mjk is the desired selection.  For 
linear constraints, one can use the upper and lower 
bound of the variable x to calculate the maximum value 
of each constraint, which then can be used to calculate a 
valid value of Mjk. For nonlinear constraints one can in 
principle maximize each constraint over the feasible 
region, which is a non-trivial calculation. 
 
Convex Hull Relaxation of Disjunction 
Lee and Grossmann (2000) have derived the convex 
hull relaxation of problem (GDP). The basic idea is as 
follows. Consider a disjunction k ∈ K that has convex 
constraints,   
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where hjk(x) are assumed to be convex and bounded 
over x. The convex hull relaxation of disjunction (DP), 
(see  Stubbs and Mehrotra, 1999), is given as follows:  
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where vjk are disaggregated variables that are assigned to 
each term of the disjunction k ∈ K, and λjk are the 
weight factors that determine the feasibility of the 
disjunctive term. Note that when λjk is 1, then the j’th 
term in the k’th disjunction is enforced and the other 

terms are ignored. The constraints )/( jk
jk

jkjk vh λλ  are 
convex if hjk(x) is convex as discussed on p. 160 in 
Hiriart-Urruty and Lemaréchal (1993). A formal proof 
can be found in Stubbs and Mehrotra (1999). Note that 
the convex hull (CH) reduces to the result by Balas 
(1985) if the constraints are linear. Based on the convex 
hull relaxation (CH), Lee and Grossmann (2000) 
proposed the following convex relaxation program of 
(GDP). 
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where U is a valid upper bound for x and v. For 
computational reasons, the nonlinear inequality is 

written as 0))/(( ≤+ ελλ jk
jk

jkjk vh  where ε is a small 
tolerance. This inequality remains convex if hjk(x) is a 
convex function. Note that the number of constraints 
and variables increases in (CRP) compared with 
problem (GDP). Problem (CRP) has a unique optimal 
solution and it yields a valid lower bound to the optimal 
solution of problem (GDP) (Lee and Grossmann, 2000). 
Problem (CRP) can also be regarded as a generalization 
of the relaxation proposed by Ceria and Soares (1999) 
for a special form of problem (GDP). Grossmann and 
Lee (2003) proved that problem (CRP) has the useful 
property that the lower bound is greater than or equal to 
the lower bound predicted from the relaxation of 
problem (BM).  
 
Solution Algorithms for GDP 
 
Branch and Bound 
For the linear case of problem (GDP) Beaumont (1991) 
proposed a branch and bound method which directly 
branches on the constraints of the disjunctions where no 
logic constraints are involved. Also for the linear case 
Raman and Grossmann (1994) developed a branch and 
bound method which solves GDP problem in hybrid 
form, by exploiting the tight relaxation of the 
disjunctions and the tightness of the well-behaved 
mixed-integer constraints.  There are also branch and 
bound methods for solving problem (GDP).  In 
particular, a disjunctive branch and bound method can 
be developed that directly branches on the term in a 
disjunction using the convex hull relaxation (CRP) as a 
basic subproblem (Lee and Grossmann, 2000). Problem 
(CRP) is solved at the root node of the search tree. The 
branching rule is to select the least infeasible term in a 
disjunction first. Next, we consider a dichotomy where 
we fix the value λjk = 1 for the disjunctive term that is 
closest to being satisfied, and consider on the other hand 
the convex hull of the remaining terms (λjk = 0). 
 

When all the decision variables λjk are fixed, problem 
(CRP) yields an upper bound to problem (GDP). The 
search is terminated when the lower and the upper 
bounds are the same. The algorithm has finite 
convergence since the number of the terms in the 
disjunction is finite. Also, since the nonlinear functions 
are convex, each subproblem has a unique optimal 
solution, and hence the the bounds are rigorous. 
 
Reformulation and Cutting planes 
Another approach for solving a linear GDP is to replace 
the disjunctions either by Big-M constraints or by the 
convex hull of each disjunction (Balas, 1985; Raman 
and Grossmann, 1994).  For the nonlinear case a similar 
way for solving the problem (GDP) is to reformulate it 
into the MINLP by restricting the variables λjk in 
problem (CRP) to 0-1 values. Alternatively, to avoid 
introducing a potentially large number of variables and 
constraints, the GDP might also be reformulated as the 
MINLP problem (BM) by using Big-M parameters. One 
can then apply standard MINLP solution algorithms 
(i.e., branch and bound, OA, GBD, and ECP).   
 
To strengthen the lower bounds one can derive cutting 
planes using the convex hull relaxation (CRP). To 
generate a cutting plane, the following 2-norm 
separation problem (SP), a convex NLP, is solved: 
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where xR

BM,n is the solution of problem (BM) with 
relaxed 0 ≤ yik ≤ 1. Problem (SP) yields a solution point 
x* which belongs to the convex hull of the disjunction 
and is closest to the relaxation solution xR

BM,n. The most 
violated cutting plane is then given by, 

(CP1)                             0*)()*( , ≥−− xxxx TnBM
R  

The cutting plane in (CP1) is a valid inequality for 
problem (GDP). Problem (BM) is modified by adding 
the cutting plane (CP1) as follows:  
 



 

1≤≤0,∈

≤

≤

∈,1

(CP)∈,∈,)-1(≤)(
0≤)(..

)(min

∑

∑∑

∈

∈ ∈

ik
n

T

Di
ik

kikikik

Kk Di
ikik

yRx

bx

aAy

Kky

KkDiyMxh
xgts

xfyZ

k

k

β

γ

=

+=

 

where bxT ≤β  is the cutting plane (CP1). Since we add 
a valid inequality to problem (BM), the lower bound 
obtained from problem (CP) is generally tighter than 
before adding the cutting plane.   
 
This procedure for generating the cutting plane can be 
used by solving the separation problem (SP) only at the 
root node. It can also be used to strengthen the MINLP 
problem (BM) before applying methods such as OA, 
GBD, and ECP. It is also interesting to note that cutting 
planes can be derived in the (x,y) space, especially when 
the objective function has binary variables y. 
 
Another application of the cutting plane is to determine 
if the convex hull formulation yields a good relaxation 
of a disjunction. If the value of || x* - xR

BM,n || is large, 
then it is an indication that this is the case. A small 
difference between x* and xR

BM,n would indicate that it 
might be better to simply use the Big-M relaxation. It 
should also be noted that Sawaya and Grossmann 
(2004) have recently developed the cutting plane 
method for linear GDP problems using the 1, 2 and ∞ 
norms, and relying on the theory of subgradient 
optimization.  
 
GDP Decomposition Methods 
Türkay and Grossmann (1996) have proposed logic-
based OA and GBD algorithms for problem (GDP) by 
decomposition into NLP and MILP subproblems.  For 
fixed values of the Boolean variables, Yjk = true and Yik 
= false for j ≠ i, the corresponding NLP subproblem is 
derived from (GDP) as follows: 
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For every disjunction k only the constraints 
corresponding to the Boolean variable Yjk that is true are 

enforced.  Also, fixed charges γjk are applied to these 
terms. After K subproblems (NLPD) are solved sets of 
linearizations l =1,...,K are generated for subsets of 
terms Ljk = { l  |  Yl jk = true }, then one can define the 
following disjunctive OA master problem: 
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Before solving the MILP master problem it is necessary 
to solve various subproblems (NLPD) in order to 
produce at least one linear approximation of each of the 
terms in the disjunctions.  As shown by Türkay and 
Grossmann (1996) selecting the smallest number of 
subproblems amounts to the solution of a set covering 
problem. In the context of flowsheet synthesis problems, 
another way of generating the linearizations in (MGDP) 
is by starting with an initial flowsheet and optimizing 
the remaining subsystems as in the 
modeling/decomposition strategy (Kocis and 
Grossmann, 1987).  
 
Problem (MGDP) can be solved by the methods 
described by Beaumont (1991), Raman and Grossmann 
(1994), and Hooker and Osorio (1999). For the case of 
process networks, Türkay and Grossmann (1996) have 
shown that if the convex hull representation of the 
disjunctions in (MGDP) is used, then assuming Bk = I 
and converting the logic relations ¬(Y) into the 
inequalities Ay ≤ a, leads to the MILP reformulation of 
(NLPD) which can be solved with OA. Türkay and 
Grossmann (1996) have also shown that while a logic-
based Generalized Benders method (Geoffrion, 1972) 
cannot be derived as in the case of the OA algorithm, 
one can exploit the property for MINLP problems that 
performing one Benders iteration (Türkay and 
Grossmann, 1996) on the MILP master problem of the 
OA algorithm, is equivalent to generating a Generalized 
Benders cut. Therefore, a logic-based version of the 
Generalized Benders method performs one Benders 
iteration on the MILP master problem. Also, slack 
variables can be introduced to problem (MGDP) to 
reduce the effect of nonconvexity as in the augmented-
penalty MILP master problem (Viswanathan and 
Grossmann, 1990). 
 
Hybrid GDP/MINLP 
Vecchietti and Grossmann (1999) have proposed a 
hybrid formulation of the GDP and algebraic MINLP 



 
models. It involves disjunctions and mixed-integer 
constraints as follows: 
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where x and c are continuous variables and Y and y are 
discrete variables. Problem (PH) can reduce to a GDP or 
to an MINLP, depending on the absence and presence of 
the mixed-integer constraints and disjunctions and logic 
propositions. Thus, problem (PH) provides the 
flexibility of modeling an optimization problem as a 
GDP, MINLP or a hybrid model, making it possible to 
exploit the advantage of each model.    
 
An extension of the logic-based OA algorithm for 
solving problem (PH) has been implemented in 
LOGMIP, a computer code based on GAMS (Vecchietti 
and Grossmann, 1999). This algorithm decomposes 
problem (PH) into two subproblems, the NLP and the 
MILP master problems. With fixed discrete variables, 
the NLP subproblem is solved. Then at the solution 
point of the NLP subproblem, the nonlinear constraints 
are linearized and the disjunction is relaxed by convex 
hull to build a master MILP subproblem which will 
yield a new discrete choice of (y,Y) for the next 
iteration. 
 
Global Optimization Algorithm of Nonconvex GDP 
 
In the above sections of the paper we assumed 
convexity in the nonlinear functions. However, in many 
applications nonlinearites give rise to nonconvex 
functions that may yield local solutions, not 
guaranteeing the global optimality. Global optimization 
of nonconvex programs has received increased attention 
due to their practical importance. Most of the 
deterministic global optimization algorithms are based 
on spatial branch and bound algorithm (Horst and Tuy, 
1996), which divides the feasible region of continuous 
variables and compares lower bound and upper bound 
for fathoming each subregion. The one that contains the 
optimal solution is found by eliminating subregions that 
are proved not to contain the optimal solution.  
 
For nonconvex NLP problems, Quesada and Grossmann 
(1995) proposed a spatial branch and bound algorithm 

for concave separable, linear fractional and bilinear 
programs using of linear and nonlinear underestimating 
functions (McCormick, 1976). For nonconvex MINLP, 
Ryoo and Sahinidis (1995) and later Tawarmalani and 
Sahinidis (2000) developed BARON, which branches 
on the continuous and discrete variables with bounds 
reduction method. Adjiman et al. (1997; 2000) proposed 
the SMIN-αBB and GMIN-αBB algorithms for twice-
differentiable nonconvex MINLPs. Using a valid 
convex underestimation of general functions as well as 
for special functions, Adjiman et al. (1996) developed 
the αBB method which branches on both the continuous 
and discrete variables according to specific options. The 
branch-and-contract method (Zamora and Grossmann, 
1999) has bilinear, linear fractional, and concave 
separable functions in the continuous variables and 
binary variables, uses bound contraction and applies the 
outer-approximation (OA) algorithm at each node of the 
tree. Kesavan and Barton (2000) developed a 
generalized branch-and-cut (GBC) algorithm, and 
showed that their earlier decomposition algorithm 
(Kesavan and Barton, 1999) is a specific instance of the 
GBC algorithm with a set of heuristics. Smith and 
Pantelides (1997) proposed a reformulation method 
combined with a spatial branch and bound algorithm for 
nonconvex MINLP and NLP, which is implemented in 
the gPROMS modeling system. 
 
GDP Global Optimization Algorithms 
We briefly describe two global optimization algorithms. 
The first was proposed by Lee and Grossmann (2001) 
and is for the case when the problem (GDP) involves 
bilinear, linear fractional and concave separable 
functions. First, these nonconvex functions of 
continuous variables are relaxed by replacing them with 
underestimating convex functions (McCormick, 1976; 
Quesada and Grossmann, 1995). Next, the convex hull 
of each nonlinear disjunction is constructed to build a 
convex NLP problem (CRP). At the first step, an upper 
bound is obtained by solving the nonconvex MINLP 
reformulation (BM) with the OA algorithm. This upper 
bound is then used for the bound contraction. The 
feasible region of continuous variables is contracted 
with an optimization subproblem that incorporates the 
valid underestimators and the upper bound value and 
that minimizes or maximizes each variable in turn. The 
tightened convex GDP problem is then solved in the 
first level of a two-level branch and bound algorithm, in 
which a discrete branch and bound search is performed 
on the disjunctions to predict lower bounds. In the 
second level, a spatial branch and bound method is used 
to solve nonconvex NLP problems for updating the 
upper bound. The algorithm exploits the convex hull 
relaxation for the discrete search, and the fact that the 
spatial branch and bound is restricted to fixed discrete 
variables in order to predict tight lower bounds.  
 



 
The second algorithm is by Bergamini et al. (2004) that 
does not require spatial branch and bound searches as it 
uses piecewise linear approximations. The algorithm 
considers the Logic-Based Outer Approximation (OA) 
algorithm (Turkay and Grossmann, 1996) and is based 
on constructing a master problem that is a valid 
bounding representation of the original problem, and by 
solving the NLP subproblems to global optimality. The 
functions are assumed to be sums of convex, bilinear, 
and concave terms. To rigorously maintain the bounding 
properties of the MILP master problem, linear under and 
overestimators for bilinear, and concave terms are 
constructed over a grid with the property of having zero 
gap in the finite set of points. The set of these 
approximation points are defined over subdomains 
defined by bounds of variables and solution points of 
the previous NLP subproblems. For bilinear terms, the 
convex envelope by McCormick is used. Disjunctions 
are used to formulate the convex envelope in each 
subdomain, and the convex hull of these disjunctions is 
used to provide the tightest relaxation. It should be 
noted that binary variables are needed for the discrete 
choice of the corresponding subdomains. Linear 
fractional functions are treated similarly. Piecewise 
linear subestimations replace the concave terms.  
 
The solution of the NLP subproblems to global 
optimality can be performed by fixing the topology 
variables in the MILP and by successively refining the 
grid of the piece-wise linear approximations. 
Alternatively, a general purpose  NLP algorithm for 
global optimization (e.g. BARON code by Tawarmalani 
and Sahinidis, 2000) can be used. It should be noted that 
the NLP subproblems are reduced problems, involving 
only continuous variables related to a process with fixed 
structure. This allows the tightening of the variable 
bounds, and therefore reducing the computational cost 
of solving it to global optimality.  
 
Constraint Programming and Hybrid MILP/CP 
Methods 
 
In order to overcome difficulties in modeling and 
scalability of mathematical programming (MP) models, 
a trend that has emerged is to combine MP with 
symbolic logic reasoning into the quantitative. Among 
these attempts one of the more promising approaches 
has been the development of Constraint Programming 
(CP), which has proved to be particularly effective in 
scheduling applications. CP is essentially based on the 
idea that inference methods can accelerate the search for 
a solution. 
 
Constraint Programming (CP) (van Hentenryck, 1989; 
Hooker, 2000) is a relatively new modeling and solution 
paradigm that was originally developed to solve 
feasibility problems, but it has been extended to solve 
optimization problems as well. Constraint Programming 

is very expressive as continuous, integer, as well as 
Boolean variables are permitted and moreover, variables 
can be indexed by other variables. Constraints can be 
expressed in algebraic form (e.g. h(x) ≤ 0), as 
disjunctions (e.g. [ A1x ≤ b1 ] ∨ [ A2x ≤ b2 ]), or as 
conditional logic statements (e.g. If g(x) ≤ 0 then r(x) ≤ 
0). In addition, the language can support special implicit 
functions such as the all different(x1, x2, ...xn) 
constraint for assigning different values to the integer 
variables x1, x2, ...xn. The language consists of  C++ 
procedures, although the recent trend has been to 
provide higher level languages such as OPL. Other 
commercial CP software packages include ILOG Solver 
(ILOG, 1999), CHIP (Dincbas et al., 1988), and 
ECLiPSe (Wallace et al., 1997).   
 
Optimization problems in CP are solved as Constraint 
Satisfaction Problems (CSP), where we have a set of 
variables, a set of possible values for each variable 
(domain) and a set of constraints among the variables. 
The question to be answered is as follows: Is there an 
assignment of values to variables that satisfy all 
constraints? The solution of CP models is based on 
performing constraint propagation at each node by 
reducing the domains of the variables. If an empty 
domain is found the node is pruned. Branching is 
performed whenever a domain of an integer, binary or 
boolean variable has more than one element, or when 
the bounds of the domain of a continuous variable do 
not lie within a tolerance. Whenever a solution is found, 
or a domain of a variable is reduced, new constraints are 
added. The search terminates when no further nodes 
must be examined. The effectiveness of CP depends on 
the propagation mechanism behind constraints. Thus, 
even though many constructs and constraints are 
available, not all of them have efficient propagation 
mechanisms. For some problems, such as scheduling, 
propagation mechanisms have been proven to be very 
effective. Some of the most common propagation rules 
for scheduling are the “time-table” constraint (Le Pape, 
1998), the “disjunctive-constraint” propagation 
(Baptiste and Le Pape, 1996; Smith and Cheng, 1993), 
the “edge-finding” (Nuijten, 1994; Caseau and 
Laburthe, 1994) and the “not-first, not-last” (Baptiste 
and Le Pape, 1996). 
 
Since the two approaches appear to have complementary 
strengths, in order to solve difficult problems that are 
not effectively solved by either of the two, several 
researchers have proposed models that integrate the two 
paradigms. The integration between MILP and CP can 
be achieved in two ways (Hooker, 2002; van 
Hentenryck, 2002): 
(a) By combining MILP and CP constraints into one 

hybrid model. In this case a hybrid algorithm that 
integrates constraint propagation with linear 
programming in a single search tree is also needed 



 
for the solution of the model (e.g. see Heipcke et 
al., 1999; Rodosek, et al., 1999). 

(b) By decomposing the original problem into two 
subproblems: one MILP and one CP subproblem. 
Each model is solved separately and information 
obtained while solving one subproblem is used for 
the solution of the other subproblem (Jain and 
Grossmann, 2001; Bockmayr and Pisaruk, 2003).  

 
Maravelias and Grossmann (2004) have recently 
developed a hybrid MILP/CP method for the continuous 
time STN model and in which different objectives such 
as profit maximization, cost minimization and makespan 
minimization can be handled. The proposed method 
relies on an MILP model that represents an aggregate of 
the original MILP model. This method has shown to 
produce order of magnitude reductions in CPU times 
compared to standalone MILP or CP models. 
 
Examples of logic-based optimization 
 
Synthesis of Separation System 
This problem was a joint collaboration with BP (Lee et 
al., 2003). It deals with the synthesis of a separation 
system of an ethylene plant in which a number of 
separation technologies such as dephlegmators, 
membranes, PSA, physical and chemical absorption, 
were considered in addition to the standard distillation 
columns and cold boxes. The superstructure of this 
problem is shown in Fig. 7, while the optimal solution is 
given in Fig 8. This problem was formulated as a GDP 
problem and reformulated as an MINLP by applying 
both big-M and convex hull transformations. The 
problem involved 5,800 0-1 variables, 24,500 
continuous variables and 52,700 constraints, and was 
solved with GAMS DICOPT (CONOPT2/CPLEX) in 3 
hours of CPU-time on a Pentium-III machine. 
Compared to the base-case design the optimal flowsheet 
included a dephlegmator and a physical absorber, and 
one less distillation column, achieving a $20 million 
reduction in the cost, largely from refrigeration. 
 
Retrofit Planning  Problem 
In this problem it is assumed that an existing process 
network is given where each process can possibly be 
retrofitted for improvements such as higher yield, 
increased capacity, and reduced energy consumption. 
Given limited capital investments to make process 
improvements and cost estimations over a given time 
horizon, the problem consists of identifying those 
modifications that yield the highest economic 
improvement in terms of economic potential, which is 
defined as the income from product sales minus the cost 
of raw materials, energy and process modifications. 
Sawaya and Grossmann (2004) have developed a GDP 
model for this problem, which is a modification of work 
by Jackson and Grossmann (2002).  

 

A/BCDEFGH

ABCDEFGH

STATES TASKS

AB/CDEFGH

ABCD/CDEFGH

ABCDEF/CDEFGH

ABCDEF/EFGH

ABCD/EFGH

ABCDEF/GH

ABCDEFG/H

ABCDEFG

BCDEFGH

NON-SHARP

A/BCDEFG

AB/CDEFG

ABCD/CDEFG

ABCDEF/CDEFG

ABCDEF/EFG

ABCD/EFG

ABCDEF/G

B/CDEFGH

BCD/EFGH

BCD/CDEFGH

BCDEF/CDEFGH

BCDEF/EFGH

BCDEF/GH

BCDEFG/H

ABCDEF

BCDEFG

CDEFGH

A/BCDEF

AB/CDEF

ABCD/CDEF

ABCD/EF

BCDEF/G

B/CDEFG

BCD/CDEFG

BCDEF/CDEFG

BCDEF/EFG

BCD/EFG

CDEFG/H

CD/EFGH

CDEF/EFGH

CDEF/GH

BCDEF

CDEFG

ABCD

AB

BCD

EFG

CDEF

EFGH

GH

EF

CD

A

B

C

D

F

E

G

H

CD/EFG

CDEF/EFG

CDEF/G

B/CDEF

BCD/CDEF

BCD/EF

A/BCD

AB/CD

CD/EF

EF/GH

EFG/H

B/CD

EF/G
G/H

E/F

C/D

A/B

H2

CH4
C2H4

C3H6
C2H6

C3H8
C4

C5

 
Figure 7: Superstructure of Separation of Ethylene 
Plant 
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Fig. 9: Process network for retrofit planning 
 
For a ten process instance (see Fig. 9) that involves the 
production of products (G,H,I,J,K,L,M) from raw 
materials (A,B,C,D,E), the 4-period MILP model was 
formulated with the big-M and convex hull 
reformulations.  The former involved 320 0-1 variables, 
377 continuous variables, and 1957 constraints; the 
latter involved 320 0-1 variables, 1097 continuous 
variables and 2505 constraints. The big-M model was 
solved in 1913 secs and 1,607,486 nodes, while the 
latter only required 5.8 secs and 2,155 nodes. This 
reduction was achieved because the convex hull 
formulation had a gap of only 7.6% versus the 60.3 gap 
of the big-M model. It should be noted that with 120 



2004 
 
cuts the gap in the big-M model reduced to only 7.9%, 
with which the MILP was solved in a total of 68 secs, of 
which 22 were for the cut generation. 
 
Wastewater treatment network 
This example corresponds to a synthesis problem of a 
distributed wastewater multicomponent network, which 
is taken from example 10 of Galan and Grossmann 
(1998). Given a set of process liquid streams with 
known composition, a set of technologies for the 
removal of pollutants, and a set of mixers and splitters, 
the objective is to find the interconnections of the 
technologies and their flowrates to meet the specified 
discharge composition of pollutant at minimum total 
cost. Discrete choices involve deciding what equipment 
to use for each treatment unit. Fig. 10 shows the 
superstructure of a specific example with 3 contaminant 
and 3 choices of separation technologies per 
contaminant. Lee and Grossmann (2001) formulated the 
problem as a GDP model that involves 9 Boolean 
variables, 237 continuous variables and 281 constraints. 
The two level branch and bound method by Lee and 
Grossmann (2002) required about 5 minutes of CPU-
time, while the method by Belgramini et al. (2004) 
required less than 2 minutes.  The optimal solution with 
a cost of 1,692,583 $/year is shown in Fig. 11. 
 

S1

M3

M2

S6

S5

S4M1

S3

S2 M4

Treatment Unit 1

Unit3

Unit 2

EA ∨ EB ∨ EC

EG ∨ EH ∨ EI

ED ∨ EE ∨ EF

F1

F3

F2

Equipment*Splitter

Mixer Splitter

A: 1100 ppm
B: 300 ppm
C: 400 ppm

Max
100 ppm

A: 500 ppm
B: 1000 ppm
C: 600 ppm

A: 300 ppm
B: 700 ppm

C: 1500 ppm

 
Figure 10:. Superstructure water treatment plant. 
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Figure 11: Optimal wastewater treatment plant. 
 
Scheduling of Batch Plants 
Consider the State-Task-Network shown in Fig. 12 that 
is an extension of the work by Papageorgiou and 
Pantelides (1996). The STN consists of 27 states, 19 
tasks and has 8 equipment units available for the 
processing. The objective is to find a schedule that 
produces 5 tons each for products P1, P2, P3 and P4. 
The problem was originally modeled with the 

continuous-time MILP by Maravelias and Grossmann 
(2003) involving around 400 0-1 variables, 4,000 
continuous variables and 6,000 constraints. Not even a 
feasible solution to this problem could be found with 
CPLEX 7.5 after 10 hours. In contrast, the proposed 
hybrid MILP/CP model required only 2 seconds and 5 
major iterations between the MILP and CP 
subproblems! Note that the optimal schedule shown in 
Fig 13 is guaranteed to be the global optimum solution. 
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Fig. 12. State-Task-Network example. 
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Fig. 13. Optimal schedule. 
 
Conclusions  
 
Nonlinear programming solvers are essential for 
optimization problems in product design and process 
design and operation. In addition to solving challenging 
problems in their own right, they also are essential 
algorithmic components within mixed integer 
programming and global optimization strategies. On the 
other hand, current off-the-shelf NLP solvers are often ill-
prepared for large-scale challenges posed in design 
problems. These include the treatment of problems with 
many degrees of freedom, ill-posed large-scale problems 
that arise in the discretization of PDE and DAE models 
and the incorporation of complementarity conditions that 
can model certain classes of discrete decisions. To handle 
these challenges we illustrate the use of large-scale barrier 
methods as well as applications and refinements of the 
IPOPT algorithm. The efficiency and effectiveness of this 
approach is demonstrated on three NLP case studies (in 
data reconciliation, source detection and fermentation 
optimization) that cannot be handled efficiently with 
standard off-the-shelf NLP methods.   
 
Mixed-integer optimization techniques (MILP, MINLP) 
have proved to be essential in modeling planning and 



 
scheduling problems, as well as synthesis and design 
problems. The former tend to be largely linear, while the 
latter tend to be nonlinear. Major barriers that have been 
encountered with these techniques are modeling, scaling 
and nonconvexities. It is the first two issues that have 
motivated logic-based optimization as a way of facilitating 
the modeling of discrete/continuous problems, and of 
reducing the combinatorial search space. The GDP 
formulation has shown to be effective in terms of 
providing a qualitative/quantitative framework for 
modeling, and an approach that yields tighter relaxations 
through the convex hull formulation. It was also shown 
that global optimization algorithms can be developed for 
GDP models and solved in reasonable time for modest 
sized problem. Finally, the recent emergence of Constraint 
Programming (CP) offers an alternative approach for 
handling logic in discrete scheduling problems. Here the 
development of hybrid methods for scheduling seems to 
be particularly promising for achieving order of magnitude 
reductions in the computations.    
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