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Preface

The 3 volumes contain papers presented at the 33" European Symposium of
Computer Aided Process Engineering (ESCAPE-33) held in Athens, Greece from
18-21 June 2023. The ESCAPE Series started in 1992 and builds on a strong
foundation of 32 previous events of the European Federation of Chemical
Engineers (EFCE) Working Party on Computer Aided Process Engineering
(CAPE). Hosting countries to the conference have been Austria (1993, 2018),
Ireland (1994), Slovenia (1995, 2016), Greece (1996, 2011), Norway (1997),
Belgium (1998), Hungary (1999, 2014), Italy (2000, 2010, 2020), Denmark
(1992, 2001, 2015), The Netherlands (2002, 2019), Finland (2003, 2013),
Portugal (2004), Spain (2005, 2017), Germany (2016), Romania (2007), France
(1992, 2008, 2022), Poland (2009), United Kingdom (2012), and Turkey (2021).

ESCAPE-33 addresses emerging and significant challenges in Process Systems
Engineering as a driver to rebuild industry with a systemic and holistic
approach. Contributions relate to the sustainable development of chemical
processes, the development and the systematic evaluation of processing
technologies and process innovations, and research promoting circular economy
paradigms including social aspects and social engagement networks to
incentivize and involve citizens. The conference recognizes the exceptional
importance of industrial biotechnology as a driver and enabler for new
chemistries, alongside Artificial Intelligence and data engineering as a
technological challenge with an apparent impact on many systems technologies.
Overall, ESCAPE 33 covered up-to-date topics in Process Systems Engineering
and attracted a significant and diversified number of people from academia,
research institutions, and industrial organizations worldwide. The themes of the
conference included:

Modelling and optimization for multi-scale integration
Coordinators: Antonio Espufia and Fani Boukouvala

Control, scheduling, and operability at the process and enterprise-level
Coordinators: Ana Barbosa-Povoa and Chrysanthos Gounaris

Safe and sustainable products by design
Coordinators: André Bardow and Fengqi You

Green and sustainable processes for the circular economy
Coordinators: Seyed Mansouri and Bhavik Bakshi

Systems methods in industrial biotechnology and biomedical applications
Coordinators: Joern Viell and Christos Maravelias

Multi-scale energy systems engineering (organized by the EFCE energy section)
Coordinators: Francois Maréchal and Fabrizio Bezzo
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Sustainable supply chains and ecosystems
Coordinators: Franjo Cecelja and Edwin Zondervan

Education and knowledge transfer
Coordinators: Ludovic Montastruc and Igbal Mujtaba

The conference has been oversubscribed and we had to face a difficult task to
review an excess of 800 submitted abstracts. The review process included reviews
of abstracts, reviews of manuscripts, and the final selection of the revised
manuscripts. Reviews involved 185 reviewers. They were completed primarily
thanks to the generous support by members of the ESCAPE international
scientific committee who contributed with evaluations, comments, and
recommendations. The review process converged to 619 contributions from 57
countries. A total of 561 contributions by means of 6-page papers are included in
these 3 volumes.

We hope that the books will serve as valuable reference documents to the
scientific and industrial community and that they will contribute to the effective
and innovative use of process systems engineering in the design, operation, and
development of sustainable processes.

Antonis C. Kokossis
Michael C. Georgiadis
Stratos Pistikopoulos



LOCAL ORGANIZING COMMITTEE

Chair board

Antonis Kokossis (Chair) — National Technical University of Athens

Michael Georgiadis (Co-chair) — Aristotle University of Thessaloniki

Ioannis Kookos (Co-chair) — University of Patras

Konstantina Kosmidou(Treasurer) — National Technical University of Athens
Polyxeni Lazaropoulou (Secretary) — National Technical University of Athens

Members

Kostas Pyrgakis — National Technical University of Athens

Melina Psycha — National Technical University of Athens

Theodoros Damartzis — Aristotle University of Thessaloniki

Nikolaos A. Diangelakis — Technical University of Crete

Athanasios Papadopoulos — Centre for Research & Technology Hellas (CERTH)
Effie Marcoulaki — National Centre for Scientific Research ‘Demokritos’
Chrysoula Kappatou — Imperial College London


https://www.chemeng.ntua.gr/the_people/a.kokosis
https://cheng.auth.gr/en/?page_id=1627
https://www.chemeng.upatras.gr/en/personnel/faculty/46?language=en
https://ipsen.ntua.gr/team/
https://ipsen.ntua.gr/team/
https://www.researchgate.net/profile/Konstantinos-Pyrgakis
https://www.researchgate.net/profile/Melina-Psycha
https://loop.frontiersin.org/people/712777/overview
https://www.researchgate.net/profile/Nikolaos-Diangelakis
http://psdi.cperi.certh.gr/%7Espapadopoulos/
https://inrastes.demokritos.gr/personnel/marcoulaki-effie/
https://escape33-ath.gr/committees/c.kappatou17@imperial.ac.uk




Antonis Kokossis, Michael C. Georgiadis, Efstratios N. Pistikopoulos (Eds.)

PROCEEDINGS OF THE 33" European Symposium on Computer Aided Process Engineering
(ESCAPE33), June 18-21, 2023, Athens, Greece

© 2023 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/B978-0-443-15274-0.50001-9

An exploratory model-based design of experiments
technique to aid parameters identification and
reduce prediction uncertainty

Francesca Cenci,” Arun Pankaj akshan,” Solomon Gajere Bawa,” Asterios
Gavriilidis, ® Pierantonio Facco,® Federico Galvanin®

3CAPE-Lab — Computer-Aided Process Engineering Laboratory, Department of Industrial
Engineering, University of Padova, via Marzolo 9, 35131 Padova, Italy

® Department of Chemical Engineering, University College London, Torrington Place,
London WCIE 7JE, United Kingdom

Abstract

When developing mathematical models to describe reaction processes, model parameters
require to be estimated from experimental data. Experiments are traditionally designed
through techniques aiming at space exploration, like space-filling methods (e.g., Latin
Hypercube sampling or LHS), or at information maximization, like model-based design
of experiments (MBDoE). However, the former methods do not minimize parameters
uncertainty, while the latter do not ensure a minimization of model prediction uncertainty
in the entire experimental design space. In this work, we propose a novel exploratory
MBDoE (eMBDoF) approach based on G-optimality calculation (G-map eMBDOoE) to
simultaneously enhance space exploration and minimize model prediction variance. The
method is tested on a case study related to the identification of kinetic parameters of
catalytic total methane oxidation in a flow microreactor. Results show that the method is
more explorative than conventional MBDoE and more efficient than LHS and MBDoE
in reducing model prediction uncertainty and parameters uncertainty.

Keywords: model-based design of experiments; model prediction uncertainty;
parameters identification; design space exploration; total methane oxidation

1. Introduction

For a model to be representative of the system under study, its parameters must be
estimated from experimental data. However, not all experiments are equally informative
for estimating model parameters and scarce information may lead to unsatisfactory
parameters precision even with a considerable amount of data. The information of each
possible experiment can be estimated through the Fisher information matrix (FIM; Fisher,
1950), which depends on the sensitivity of the model response with respect to every model
parameter. This is used by model-based design of experiments (MBDoE; Asprey and
Macchietto, 2000), which is an optimization problem where the objective function is a
scalar measure of the FIM and the result is a set of values for the manipulated variables
that ensure a maximization of the information. Maximum information leads to the
minimization of parameters uncertainty. However, optimal experimental design
techniques are inherently exploitative and may suffer from scarce space exploration.
Moreover, there is no guarantee that the minimization of parameters uncertainty leads to
a minimization of model prediction uncertainty in the whole design space. In this work,
we propose a modification of the MBDoE optimization framework in order to enhance
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space exploration and to minimize model prediction variance in the entire domain of
model utilization. The proposed procedure is based on the G-optimality (Kiefer and
Wolfowitz, 1959), which estimates model prediction variance starting from the FIM, thus
it does not require the acquisition of additional data. Therefore, a mapping of G-optimality
values (G-maps) can be built for the whole design space and MBDoE optimization is
performed in the regions that satisfy a user-defined requirement on the G-optimality
value. This explorative MBDoE procedure based on G-map (G-map eMBDoE) is applied
to a case study on the identification of kinetic parameters of Mars-van Krevelen reaction
mechanism for total oxidation of methane. Herein,an automated flow micropacked bed
catalytic reactor platform is simulated to generate in silico data. Thanks to simulated
experimental campaignsG-map eMBDOoE is compared against a purely information-based
MBDoE and a purely exploration-based technique, namely Latin Hypercube sampling
(LHS; McKay et al., 1979).

2. Methods

The estimation of the Ny model parameters 8 is carried out through Maximum Likelihood
Estimation (MLE; Bard, 1974). The reference techniques for design of experiments are:
model-based design of experiments (MBDoE), which aims at maximizing the
experiments information, and Latin Hypercube sampling (LHS), which aims at an
explorative design. The former can be represented by the optimization problem:

P ope = arg miny(Hp) (1)
@

where @ is the design vector, i.e. the set of control variables that determine the
experimental conditions, and (Hg) is a scalar measure of the FIM Hg. Consider a
general differential and algebraic model f: f(X,x,u,t,08) =0, y=h(x), with N,
measurable responses (¥), Ny parameters (©), N,, control variables (u), N,-dimensional
vectors of state variables and their first derivatives (X and X, respectively) that change
over time (t). Then, the Ng X Ny FIM is defined as:
— s\ T P
Ho(00) = Vi + 575 (), 57 (), -with: Ho(6.0) = WpI™

Thus, the FIM depends on the prior information [Véo ]_1(related to parameters bounds;
Bard, 1974), on the N, X N,, response variance covariance matrix X,, and on the Nj, X Ny

. e .. (dY . . . .
matrix of sensitivities (d—g) calculated at the i-th sampling point (n, is the total number
L

of sampling points, given by the sum of the N, sampling points for every response). As
shown in Eq. (2), the parameters variance covariance matrix Vg can be approximated as
the FIM inverse: therefore, the higher the experiments information content, the smaller
the parameters uncertainty region. In this work, we minimize the direction of maximum
variability of the uncertainty region by maximizing the minimum FIM eigenvalue
Y(Hg) = —(Amin(Hg)) (E-optimal criterion).

After parameters identification, the reliability of model predictions can be assessed
through the G-optimality V,, i.e. a NyNg, X Ny,Ng, matrix where the ji-th diagonal
element represents the prediction variance of the j-th response at the i-th time point.
The ji-th element V, (9, (p)|],l, is calculated as:

_ 5T 5
B@.0)|, = () Wl (G, forj=1..Nii=1,..N, 3
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where (d—}g)' is the Ny X 1 vector of sensitivities. 1}, depends on the current parameter
L
estimates 0 and it is evaluated at each condition ¢ in the design space. For the same ¢,
Ny Ng, values of Vy(O, (p)|j,l, are calculated; a scalar measure J; summarizing them all

can be defined as:

Je = 5, Ev(8.9) @
We define G-map as the mapping of J; in the whole design space and we integrate it into
the MBDoE optimization seeking enhancement of space exploration and minimization of
model prediction uncertainty in the whole domain of model utilization. This is done
through the steps illustrated in Fig.1:

e the design space is discretized into a grid of equally spaced points (black dots in (a))
representing experimental conditions ¢. In the figure, two inputs are shown for sake
of simplicity, but it can be extended to any number N,;;

e cvery point is characterized in terms of information content 1 and total variance J;

e only a subset of points is retained for the optimization of Eq. (1). These are the ¢
satisfying the condition: J; = J; the/gmax (blue circles in (b)), where J; yax is the
maximum J; calculated in the grid, while J; ¢, € [0,1] is a user defined threshold
that allows to balance space exploration and information maximization;

e finally, the @ o satisfying Eq. (1) is selected among the candidates (red star in (c)).
It is used as initial guess for a subsequent constrained optimization in Python 3.9
with the Scipy optimization package.

..... ®--.-. ®: ...

000 - - o%e -

""" 00000 00000
(a) (b) (c)

Figure 1. Graphical representation of the explorative MBDoE based on G-maps.

This procedure is iterated until the budget of experiments (N,) is reached; model
calibration is performed at every iteration as soon as the new experiment is designed.

3. Results and discussion

To test the performance of the G-map eMBDOoE, a case study related to the identification
of reaction models for catalytic total oxidation of methane over a 5% Pd/Al,Os- catalyst
is considered. The mechanism is described through Mars-van Krevelen reaction kinetics
in a flow microreactor system, which proved to be the most suitable kinetic model in
Bawa et al. (2022). The control variables and their ranges are: temperature (u; ), 250-350
°C; total flow rate (u;), 20-30 Nml min'!; inlet methane concentration (u3), 0.005-0.025
mol mol'; oxygen to methane mole ratio (u4), 2-4 mol mol™!. The three responses y are:
unreacted methane, unreacted oxygen and carbon dioxide mole fractions, with

measurement errors standard deviations o, = [O'CH 4:002:0c02] =
[0.00043,0.00202,0.00051]. Consider the kinetic rate of methane:
Ten, = KkikoPeu,Po,/(k1Po, + 2k, Pcy, + (kika/k3)Po,Pey,) ®)

To aid parameters identification, Arrhenius and Van’t Hoff equations are reparametrized:
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k(T) = exp(lng(Tref) - (E./R)(/T - 1/Tref)) )

K(T) = exp(logK (Trer) — (AH/R)(L/T = 1/Tyer)) (7)

Thus, six parameters must be estimated: 8 = [(—logk; (Tref)), (E“’l) , (—logky (Trer)),

104
(%) , (—logk3 (Tref)), (%)] Parameters estimation is carried out with initial guesses
ﬁguess = [3,8, 3,10, 10, 8] and [0,15] as parameter Bounds. Experiments are executed in
silico by simulating the flow reactor model concentration responses assuming the
following  set of  parameters to  represent the  system:  Ouye =
[5.31,6.96,4.88,10.49,10.44, 7.95] and by adding random gaussian noise with zero

mean and standard deviation oy.

A G-map eMBDoE with thresholds J ¢, = 0.50 and J; 1, = 0.70 is compared against
classical MBDoE and LHS. Since LHS can change randomly the allocation of design
points in the design space, three different runs are considered. Finally, 8 LHS points are
used as preliminary experiments to obtain initial parameters estimates as well as to gain
minimum threshold information prior to applying MBDoE; they are the same in all
simulations. The results are analyzed in terms of:

e space exploration, evaluated as deviation from the MBDoE design: d; = abs(u;; —
U ref) /Ui rer, With i = 1,2,3,4; [ refers to J; = {0.50, 0.703}, while the reference ref
is MBDoE;

e mean and maximum J; in the whole space; the smaller these indices, the smaller the
model prediction uncertainty in the whole space of model utilization;

e  parameters precision tests satisfied when t,,)ye; = trer (Aprey and Naka, 1999).

As seen in Fig. 2, the higher the G-optimality threshold, the greater the deviation of the

optimal input values from the ones calculated through a standard MBDoE, especially at

the first iterations of the experimental campaign. For instance, variable u, with J; = 0.70

has d; > 0 starting from the 3™ iteration, while with J; = 0.50 ithas d; > 0 after the 8"

iteration. The results in terms of LHS are not shown since their departure from the

MBDoE design is expected due to its explorative nature.

—=— MBDoE
a— |G-thr: 0.50
S 0.4] —* JGthr:0.70

0.0 L= R - m

2 4 6 8 10
# eMBDOE experiments

Figure 2. Deviation of the Gmap eMBDoE design with J ¢ = {0.50, 0.70} from the MBDoE optimal
design. Only the deviations of variable 1 is shown for sake of conciseness. The x-axis shows the
number of eMBDoE experiments after 8 LHS preliminary experiments.

The effect of this deviation from MBDoE conditions is assessed in terms of reduction of
model prediction variance (Fig. 3 a-b) and increase of parameters precision (Fig. 3 c-h).
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Figure 3. Results of eMBDoE compared to LHS and MBDoE: (a)-(b) mean and maximum J; in the
whole design space; (c)-(h) t-values for the full set of model parameters. In (c)-(h), the black dotted
line represents the reference t-value, while the 0 in the x-axes represents the results of model
calibration with the 8 LHS preliminary experiments only.

As shown in Fig.3 a-b, a purely explorative technique such as Latin Hypercube sampling
has the worst performance in the reduction of model prediction uncertainty; this is true
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for all the three runs considered. MBDoE is able to reduce model prediction uncertainty,

but the best performance is obtained by the explorative MBDoE, particularly when a

stricter threshold (namely, J; tn, = 0.70) is used.

Finally, assuming a maximum budget of 10 experiments, parameters identification is

characterized by (Fig. 2 c-h):

e  statistically satisfactory estimation of parameters 8;, 85, s and 8, with the
preliminary dataset in all scenarios;

. 6, estimated precisely from 3 optimal experiments for MBDoE and eMBDoE, while
the estimate is more critical for LHS (estimated in one run over 3);

e  the most critical parameter, e.g. 8,, is sufficiently precise only when a Gmap
eMBDoE is used with a strict threshold of 0.70.

This suggests that the proposed explorative MBDoE does not cause a loss of information

content.

Conclusion

A novel MBDoE technique is proposed in this paper in order to favor experimental design
space exploration towards regions characterized by higher prediction uncertainty. Such
regions are detected by using G-optimality maps, while the trade-off between
information maximization and space exploration can be handled through a G-optimality
threshold. The stricter the threshold, the higher the deviation of eMBDoE design from a
conventional MBDoE. The new explorative and optimal design has benefits in terms of
reduction of prediction variance as it reduces the mean and maximum G-optimality
values in the entire design space with respect to MBDoE. Furthermore, G-map eMBDoE
is more effective on estimating the full set of model parameters, since all t-tests are
passed within 8 eMBDoE experiments. However, results show how a LHS space filling
design, which is inherently explorative, can perform poorly both in terms of prediction
variance minimization and increase of parameters precision. This suggests that the best
experimental design performance is obtained only if a balance between space
exploration and information maximization can be achieved.
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Abstract

This paper primarily investigates the effect of incorporating multiple fuel options onto
carbon constrained industrial clusters. The purpose of doing so was to maximize the profit
through the optimal allocation of multiple types of fuel. The cluster consists of a number
of different production plants and a power plant for the processing of value-added
products as well as the generation of electricity. The power plant is connected to the
electric grid and constitutes the main source of electricity for the cluster. It also has the
ability to produce more power and export it to the grid. The integration of additional
plants that could generate new products, convert, or store carbon dioxide through CCUS
technologies, and produce cleaner power through the use of renewable and/or multiple
and blended fuels is assessed. It was found that the incorporation of multiple types of fuel
within a single cluster resulted in the lowest post-capture emissions with 9469 t CO,/d
generating a high-end profit of $907.16 million/y, when compared to cases which relied
on a single fuel option only.

Keywords: GHG Emissions, Industrial Clusters, Biomass, Energy, Fuel

1. Introduction

Fossil fuels, mainly oil, coal, and gas, have been dominating the world’s energy market.
In fact, they are considered to be the most commercially attractive, (Wang and
Economides, 2009). Moreover, the versatile functions that are associated with such fossil
fuels, such as the production of value-added products to the supply of electricity and
power, has all led to a drastic increase in industrial dependence on such energy sources.
The industrial sector’s energy consumption has been forecasted to grow by 32% by the
year 2050 (Wang, 2019), which inevitably instigates major environmental concerns.
Fossil fuel utilization is associated with high CO, emissions. Recent studies have shown
that 18% of global emissions are a result from the combustion of natural gas, 40% from
the combustion of coal, and 31% from the combustion of oil and (Olivier and Peters,
2018). This has pushed many governments to start enforcing carbon taxes on industrial
clusters and set CO, emission limits in compliance with the targets imposed by the Paris
Agreement. The need to satisfy the rising energy demands, while conforming to the set
emission bounds, has pushed mitigation techniques that could be implemented in
industrial clusters. Bechara and Alnouri (2022) have previously assessed and compared
different energy scenarios in industrial clusters. In this work, the incorporation of multiple
and simultaneous fuel options within an industrial cluster is studied, and compared
against single type fuel clusters.
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2. Methodology

The generic plant in this model can have several active sinks and sources, as shown in
Figure 1. The sink options include: a fuel sink, a power sink, and a CO; sink, while the
source options include: a product source, a CO, source, and a power source. The plant
can be of two types: a production plant or a power plant with one source of fuel allocated
to it. In terms of inputs, the plant requires a fuel input either to produce a value-added
product or to generate power, a power input to satisfy its electricity requirements, and/or
a carbon input, as in the case of a carbon utilization plant. In terms of outputs, a plant can
produce products to be exported out of the industrial cluster, generate power to either
satisfy the cluster’s need or to be exported as revenue to the electricity grid, and emit
carbon dioxide, which in turn is either released into the atmosphere or captured, stored,
or utilized by the carbon capture and utilization technologies. Moreover, each production
plant contributes to the total CO» emissions of the cluster based on the number of products
it produces, the quantity of fuel, and the amount of electricity it requires to meet the set
production. The power plant, in turn, contributes based on the amount of electricity the
cluster requires and the quantity exported to the grid as an additional revenue source. The
integration of the additional plants, the option of utilizing several types of fuels as well
as renewable power within the cluster serve the following functions:

e  The reduced dependence of the cluster on one type of fossil fuel.

e  The reduction of the total CO; footprint of the cluster through the use of carbon

utilization technology with the possibility of monetizing the captured carbon.
e The production of a clean source of power to satisfy the cluster’s requirement
and reduce the fossil fuel requirement for power production.

Production Plant
Options

Treated CO, Treated Co, @ €0, Source
Treated CO, Treated CO;
T; Untreated CO, ; Untrested CO, 1 SR 1 Untrested CO,

Power Plant [(sende P |
Options l :
Fossil Fuel
+ Biomass

Treated €0, '

—
- Treated 0O,
o
— Output Trested O,
€0, sink €0, Sink — Generatn <0, sink , R

Figure 1: A generic illustration of sinks and sources within an industrial cluster
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Because of the large number of variables involved in the optimization problem, from fuel
allocation to CO; utilization, and power generation, a superstructure network approached
is used to capture all the available configurations and determine the optimal selection.
The cluster has an infrastructure suitable for the allocation and transportation of the
different types of fuels that are introduced, from natural gas, to coal, to biomass, and
blended fuel. All the product streams as well as the power exported to the grid are
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considered as revenue streams that serve the end profit of the cluster. All active power
sources are connected to the cluster’s electricity grid which is supplied by the existing
power plant. The CO; streams, treated and untreated, are connected to the CO, active
sinks of all plants and the uncaptured CO, sources are emitted into the atmosphere. Taking
all the aforesaid connections and networks into account, the optimization model was
primarily designed determine the optimal scenario that respects all constraints and results
in the maximum profit for the cluster. To achieve the aforementioned, this work presents
a superstructure optimization-based approach that aims at developing sustainable fuel and
carbon utilization strategies to meet the environmental restrictions at a maximum end-
profit. To summarise, the optimization model is able to determine:

e  The selection the production plants and the type of power plant.

e The integration of renewable energy as a replacement to the fuel-derived energy

with regard to the economic and environmental aspects.

e The optimal allocation of the fuel options to the production and power plants.

e The integration of carbon capture technologies onto the cluster.

e The capturing, treating, and monetizing the captured carbon.

Moreover, the following factors are assumed to be known:
e The existing production plants, their capacities, and their locations in the cluster.
The products that are produced in every production plant in the cluster.
The characteristics and costs of the fuels to be allocated.
The power requirements of the production plants in the cluster.
The maximum renewable percentage that can replace the fuel-derived power.
The product-to-fuel and power-to-fuel requirements.
The parameter that describes the carbon emitted per ton of product, kWh of
power produced, during the transport of solid fuels
The revenue/cost parameter of every revenue/cost stream.
e The capital and operating costs of every plant.
e The cost of the carbon integration network (transportation, capture, treatment,
compression, and pumping parameters) and the carbon capture limit.

3. Case Study

The integration of different types of fuels was assessed based on both the economic and
environmental feasibilities. The cluster investigated includes a set of existing and optional
production plants. The existing plants were Methanol A, Aluminium, Cement and the
natural gas power plant. Whereas the optional entities were Methanol B, Greenhouse,
Saline storage and Enhanced Oil Recovery. Moreover, a renewable power plant with PV
units has also been considered as an optional addition. Choosing between a natural gas,
coal, biomass, and blended fuel power plants, and carbon utilization technologies were
considered as part of the optimization problem. All process data has been obtained from
Al-Mohannadi at al. (2017). The following additional assumptions were used:

Natural gas, coal, biomass, and blended fuel are all integrated in the cluster.
Only one type of fuel-derived power plant exists.

Each production plant can have one type of fuel allocated to it.

The net carbon capture rate is set to a minimum of 20%. The optimization model
will select the optimal carbon capture percentage based on the set constraints.

The Mixed Integer Linear Program (MILP) involved a total of 634 variables, with a CPU
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time of 3 mins and 20s using What'sBest (Lindo systems, 2006) Lindo Branch-and-Bound
solver for MS-Excel 2013 via a laptop PC with Intel Core 17 Duo processor, § GB RAM
and a 64-bit operating System. It was found that with a natural gas flow of 444.25 t natural
gas/d, a coal flow of 888.35 t coal/d, a biomass flow of 585.39 t biomass/d, and a blended
fuel flow of 756.14 t blended fuel/d and a carbon capture rate constraint set to a minimum
of 20%, the cluster produced 5000 tMeOH(A), 10000 t Portland-cement, 1118.44
tAluminum, and 2600 tMeOH(B). The optimization selected the natural gas plant as the
operating power plant, which satisfied the cluster’s power requirements. The option of
exporting power to the grid was not reported in the optimal solution, instead, the option
of operating the renewable energy plant at the highest capacity to replace 5% (1010526.32
kWh/d) of the power supplied by the fossil fuel plant. The cluster’s profit turned out to
be $907.16 million/y, slightly lower than that for the natural gas case study, but higher
than the remaining case studies. However, the different fuel requirements are much lower,
reducing the dependency on one type and showing the advantage of integrating more than
one fuel into an industrial cluster. The activation of the renewable solar plant further
shows the opportunity of gradually integrating more sources of green energy, such as
green hydrogen, without being limited by capacity or by efficiency. To better understand
the cluster’s economics, with multiple fuels enabled, a cost distribution is presented in
Figure 2. With the cluster’s large product requirements, the highest costs resulted from
the production sector, requiring $1010.12 million/y, followed by the power sector,
consisting of the natural gas power plant and the solar photovoltaic plant costs with
$151.53 million/y.
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Figure 2: Optimal cost distribution attained

Analysing the carbon integration network’s cost distribution, displayed in Figure 3, it can
be seen that the highest cost is attributed to the treatment unit (Almohannadi and Alnouri,
2021), accounting for 65.28% of the total carbon integration costs. This high number is
also associated with the fact that the optimization model selected to treat 99.91% of the
carbon streams.
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Compression and pumping of treated

65.28% = Compression and pumping of untreated

Figure 3: Carbon Network Cost Distribution
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Regarding the carbon footprint, the total emissions of the cluster without capture was
found to be 17640 t CO,/d, lower than those for the natural gas, biomass, and blended
fuel cases, but slightly higher than that for the coal case study. The latter can be attributed
to the higher production capacity of this cluster in comparison to the coal cluster. After
applying carbon capture and utilization technologies and selecting the optimal source to
sink mapping (refer to Figure 4) the carbon captured amounted to 13796 t CO,/d reducing
the cluster’s emissions by 47% resulting in a final footprint of 9345 t CO,/d, and a capture
rate of 79%. Compared to the standalone and blended fuel case studies, the resulting
emissions post capture of the multiple fuel case study turned out to be the lowest showing
the great economic and environmental potentials of integrating multiple fuels into a
cluster to mitigate its carbon footprint. Furthermore, the optimization chose to operate the
solar photovoltaic plant at full capacity. Therefore, adding more capacity or integrating
more than one type of renewable energy could result in a higher replacement of the fossil-
fuel derived energy. Figure 4 summarizes the optimal source to sink mapping obtained.
A treated carbon stream was allocated from aluminum to methanol (B), treated carbon
from cement and a mixture of treated and untreated carbon from the natural gas power
plant to the enhanced oil recovery, treated carbon from methanol (B) to the greenhouse,
and treated carbon from methanol (A) and the natural gas power plant to the saline
storage.
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Figure 4: multiple fuel CO2 network superstructure

Looking at the carbon emissions distribution in the cluster (illustrated in Figure 5) it can
be seen that the production and power sector generated the highest emissions with
10780.58 t CO»/d and 6302.69 t CO,/d. Comparing the power emissions in every case
study, natural gas resulted in 0.000691 tCO2/kWh, coal in 0.00077 tCO2/kWh, biomass
in 0.000773 tCO2/kWh, blended fuel in 0.00077 tCO2/kWh, and finally multiple fuels in
0.000328 tCO2/kWh. The values were obtained by dividing the carbon emissions by the
fuel derived power. Hence, the incorporation of multiple fuels yielded the lowest
emissions per kWh, proving the advantage of adding renewable sources of energies into
the power portfolio of a cluster. The flow rates of the different types of fuel are
represented in Figure 6, showing the lower flow requirements needed in this analysis
compared to those of the standalone and blended fuels. This further proves that integrating
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different types of fuel results in a reduction in the reliance of the industry on one type.
The total attained revenue for this case was found to be $2170 million/y.
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Figure 5: carbon emissions distribution in the cluster
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Figure 6: Total fuel flows fuel into the multiple fuel industrial cluster

4. Conclusion

A mathematical model for a systematic approach that integrates multiple types of fuels
into industrial clusters was developed, by integrating the following multiple fuel options
into the cluster: natural gas, coal, biomass, and blended fuel. The results obtained
pertaining to fuel use, and its distribution amongst product and power sinks have been
discussed. Moreover, the carbon emission footprint has analysed, and potential reduction
strategies via CCUS utilization have been proposed, so as to meet the set emission target.
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Abstract

Developing mathematical models used to describe reaction kinetics is pivotal for the
design, control and optimization of chemical processes. One of the most challenging
tasks in the model development procedure is the identification of the unknown parameters
within the model. This problem can be addressed using Model-Based Design of
Experiment (MBDoE) techniques that allow experiments to be designed in such a way
that parameters can be precisely estimated with the minimum number of runs and
analytical resources. However, MBDoE techniques rely on an optimization procedure that
is affected by the uncertainty related to the identified parameters and can be
computationally expensive and prone to local optimality issues. MBDoE techniques are
also applied to online procedures for faster identification of the kinetic model in
autonomous platforms, and for this reason it is necessary to ensure a fast convergence and
avoid numerical convergence issues during the operation. In this paper, a new
optimization-free technology is proposed to tackle the above-mentioned problems.

Keywords: design of experiment, parameter estimation, Fisher Information matrix

1. Introduction

In chemical engineering, the role of kinetic models is fundamental to describe in a
quantitative way the progress of chemical reactions occurring in a reaction system. These
models, in the form of mathematical equations, play a key role in the design, control and
optimization of chemical processes. When conventional model-building procedures are
used reaction kinetics are modelled by proposing a set of candidate models based on
preliminary experimental observations and hypotheses on potential reaction mechanisms.
The key subsequent step is to determine the best model among the candidates to describe
the system under analysis. The standard sequential methodology proposed by
Franceschini and Macchietto (2000) consists of three different stages: 1) Preliminary
analysis based on the identifiability and distinguishability of the model structure; 2)
Model-based Design of Experiments to discriminate among the rival models that passed
the first stage (MBDoE-MD); 3) Model-based Design of Experiments to improve the
precision of the identified parameters for the best model selected in step 2 (MBDoE-PE).
If no model passes the identifiability test of step 1 it is necessary to propose a new set of
candidates. When a new experiment must be performed (either in steps 1 and 2) the new
experimental conditions are optimally computed according to the expected amount of
information for model discrimination (step 2) or parameter precision (step 3) the new
experiments will eventually return to the experimenter. Automated model identification
platforms were recently used to estimate the parameters of kinetic models online and
speed up the identification procedure to reduce the costs of experimentation (Waldron et
al, 2020, Pankajakshan et al, 2019). However, the parameter identification problem is
often ill-conditioned and consequently the objective function of the MBDoE problem
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may become difficult to compute (Quaglio et al. 2019). Moreover, optimization in these
platforms can be difficult to handle in online model identification procedures for the
following additional reasons: i) when the system under analysis is structurally very
complex, and consequently requires model candidates containing a large set of variables
and model parameters, numerical optimization algorithms may easily incur into infeasible
solutions; if) particularly for systems characterized by a high number of state variables
and model parameters MBDoE techniques can become computationally very expensive,
thus reducing the benefits of online identification of kinetic models. A new MBDoE
approach to increase the precision of parameter estimation is proposed in this paper where
a new optimization-free Fisher information-driven algorithm has been developed to
overcome the above-mentioned problems. The method has been tested on a benchmark
case study for the identification of the parameters of the Bakers yeast growth model
(Asprey et al. 2000). Results show that the information-driven approach is comparable
with MBDoE methods in terms of experiments required for the precise identification of
the parameters, but the information-driven approach is less computationally expensive.

2. Proposed framework and methodologies

The set of initial candidates used in the MBDoE procedures are formulated as differential
and algebraic equations in the form:

{f(x(t),x(t),u(t), 0,t)=0 .
g = g(x(®) o

In Eq. 1 x is the vector of N, states variables, X is the vector of the derivative of the state
variables, u is the vector of the input of the system under analysis, 0 is the vector of the
model parameters of N y-dimensions, t is the time variable, ¥ is the vector of the measured
output of the system. The objective of the proposed methodology is to reduce the number
of experiments needed to estimate the parameters of the model with adequate precision,
so the objective is to perform experiments that lead to estimate precisely the model
parameters, i.e. with minimum uncertainty. The proposed procedure for the optimization-
free Fisher Information Matrix (FIM)-driven MBDoE algorithm is divided in 7 sequential
steps, as reported in Figure 1:

1. Definition of experimental design bounds: in this step, all the control variables
that can be manipulated and optimized during the process are collected in the
design vector: @ = @[u(t),y°, T, W, ty,] where u(t) is the vector of the time-
varying input controls, y° is the vector of the initial conditions, T is the
experiment duration, W is the vector of the time-invariant input controls and t,
is the vector of the sampling times. In addition, the bounds on the experimental
vector are defined to create the experimental space;

2. Definition of preliminary experiments using DoE techniques: Neyp, sets of
experimental conditions to test are computed using a space-filling DoE method,
for example, Latin Hypercube Sampling (LHS).

3. Selection of the first experiment to run: since no information about the system
is available at this stage the selection of the first experiment is random.

4. Estimation of the parameter: after collecting the experimental data, in step 4 the

model parameters are estimated minimizing the loss function:
Nexp

LOSS = Z (yl%y‘)z (2)

i=1



An optimization-free Fisher information driven approach for online design of 15
experiment

where y; is the measurement of experiment i, y; is the predicted output of
experiment i obtained using the model and o is the standard deviation. The initial
guesses on model parameters are updated with the new estimation (9).

5. Statistics on model parameters and FIM evaluation: the #-test is used to evaluate
the relative precision of the estimates. At this point the FIM (Zullo 1991) is

evaluated using the following equation:
Nexp Nresp Nresp

ME9)= D > D Buay Ql Quy+ MO = [V(O, )] G
j=1 r=1 s=1

In (3) Nexps Nresp 4T€ respectively the number of experiments and the number of
responses, Q is the sensitivity matrix and M is the prior information on the
parametric system. By inverting the matrix M, it is possible to obtain the
variance-covariance matrix (V).

6. The evaluation of M is done for each experimental design point generated in step
2 to compute the expected amount of information achievable from each
experiment. Experiments are then ranked based on the computed information
content using the concept of Relative Fisher information (RFI) (Galvanin et al.
2016).

7. At this point the experimental conditions with the highest expected information
are selected (Eq. 4) and the corresponding experiment is performed.

@i1 = argmax (M(ﬁ. q))) (4)

Steps 4, 5, 6 and 7 are repeated iteratively for the fixed number of experiments set in step
2. Within this framework, it is possible to select at each iteration the most informative
experiment to run in the candidate set without performing an optimization. The
optimization-free approach is less prone to local optimization issues affecting the
standard MBDoE approaches because an ‘exploratory part’ in the selection of the
experiments is forced in step 2 as the initial selection of the experiments to perform using
the LHS as preliminary DoE. In fact, since the optimal experiment is only selected based
on the maximum evaluation of information from Eq. 4 there is no risk of incurring in local
optima. The absence of optimization can, however, also be a limitation of the
methodology, because the solution found through this procedure will always be sub-
optimal. In addition, the fact that the first experiment is selected randomly (as would be
done in practice if no preliminary knowledge of the system is available) can affect the
computational performance and efficiency in subsequent iterations.

3. Case study description

The proposed framework has been tested using an in-silico case study related to a fed-
batch reactor in which a fermentation reaction is carried out using baker’s yeast (Asprey
et al. 2000). The model used to simulate the experiments is presented in Eq. 3.

dx; 0:x,
{ W=(92x1+x2_u1_94>x1 5)
dx, 0,%1%;
dt - (02x1 + x,)05 * (e — )

This system has been chosen to test the method because the governing equations and their
parameters are very well known. The experimenter aims to compute the dynamics of yeast
concentrations x; (t) [gL™1] and the substrate concentrations x,(t) [gL™*] as a function
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of two different inputs: the dilution factor, u; [h™], and the substrate concentration in
the feed u, [gL1]. In this model the vector of model parameters that need to be identified
precisely is 0 = [0,, 0,, 05, 0,]T. Parameters and constant input variables used to perform
in-silico experiments are reported in Table 1.

Table 1: Parameter and constant input variables values used for the in-silico experiments.

Parameter 6,4 0, 03 0, x,(0) U,
Values 0.31 0.18 0.55 0.05 0.01 5
Initial guess 5 5 5 5 - -

The design vector is @ = [X4,u;], where x, and u, are kept constant. The bounds used
to define the experimental space are the same used by Asprey et al. (2000) and are
reported in Table 2.

Table 2: Bounds on the experimental conditions.

Parameter Lower Bound Upper Bound
x,(0) [gL™"] 1 10
u; [h™1] 0.05 0.2

The proposed FIM-driven method is compared with a classical MBDoE approach and
with a DOE LHS approach. In the MBDoE framework, the experimental conditions are
selected iteratively after a sequential optimization procedure as in Asprey et al (2000). In
the DOE procedure the same experiments generated for the optimization-free method in
step 2 are used but randomly selected so without operating a ranking of the experiments.

Initial Dok Ranking of the experiments
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Figure 1: Block diagram representation of the proposed methodology for the design of
experiment for parameter identification.

4. Results

In this section, three experimental design methodologies are compared: DOE (LHS), the
proposed FIM-driven approach and a standard MBDoE. The comparison of the profiles
of parameter estimates with the number of experiments is reported in Figure 2 for the full
set of model parameters. The profile of estimated values and the variance of parameters
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are reported to quantify the precision of the estimates during the model identification
procedure.
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Figure 2 Profiles of 61 (a), 62 (b), 05 (c) and 64 (d) estimated values and relative variances.

From Figure 2 it is possible to observe that by using MBDoE it is possible to obtain the
fastest reduction in parameter variance. Instead, the variance reduction obtained with the
proposed FIM-driven approach is slower than the one obtained with MBDoE and faster
than the one obtained with a conventional DOE methodology. As expected, in MBDoE
the variance is generally lower and decreases faster than the variance obtained from the
other two methods. This means that the precision of the estimations increases with every
iteration faster than the other frameworks. The proposed methodology allows
convergence to the assumed true value and negligible variance in 6 experiments. Instead,
DoE requires more experiments (9) to obtain the same results. In Figure 3 the profiles of
the ¢-values of the identified parameters are reported to evaluate and compare the relative
precision of the estimates using the three methods. In Figure 2 the blue line represents the
reference #-value, and the orange line represents the profile of the t-value of the parameter.
If the computed z-values of the parameters are higher than the reference #-value the
parameters are evaluated with good precision. From Figure 3 it is possible to notice that
with a DoE method, the z-value for parameter 65 is lower than the reference until the sixth
experiment and so the estimate is uncertain. Regarding the convergence speed of the three
different procedures, the CPU time has been evaluated for all three methods. DoE is the
fastest method (1.70 s) followed by FIM-driven (2.42 s) while MBDoE is the slowest
method (10.47 s). These algorithms have been tested using an Intel® Core™ i9-10885H
@ CPU 2.40 GHz with 16.0 GB RAM.

5. Conclusion

This study allows to define a new framework for the fast identification of parameters of
kinetic models using an optimization-free Fisher Information Matrix-driven approach.
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Preliminary results show how the proposed method can outperform standard space-filling design
managing to identify the full set of model parameters precisely with a limited number of runs and
providing results in parameter accuracy that are comparable to a standard sequential MBDoE but
less computationally intensive. Future works will include re-sampling methods in the proposed
procedure and the application to real chemical systems in automated platforms to test the robustness
of the method and the comparison in terms of computational time required in practical lab settings.
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Abstract

Although reliable experimental data are fundamental in process design and optimization,
critical assessment of experimental vapor-liquid equilibrium data is usually time-
consuming as it requires data mining and multiple thermodynamic and statistical
analyses. Given this, any initiative towards the development of computational tools that
helps to speed up the assessment of experimental vapor-liquid equilibrium data is
essential. Therefore, in this work, a Python-based approach for thermodynamic
consistency tests of vapor-liquid equilibrium data of binary mixtures is presented. While
the consistency of experimental isobaric vapor-liquid equilibrium data was checked
through the L-W and Redlich-Kister tests, the thermodynamic consistency of isothermal
vapor-liquid equilibrium data was analyzed through the area, Redlich-Kister, and L-W
tests. The objective of this work is to introduce an open-source, efficient computational
tool implemented with Python that embeds different thermodynamic consistency tests
which helps chemical engineers make rational use of experimental data in process
simulation and model parameterization.

Keywords: Thermodynamic consistency tests, vapor-liquid equilibrium, binary mixtures.

1. Introduction

A fundamental requirement for the design and optimization of chemical processes is
the use of a reliable set of experimental data of pure component and mixture properties.
Since the design and optimization of chemical processes depend on thermodynamic
models whose key adjustable parameters are determined by regression of experimental
data, the use of a thermodynamically consistent data set is not only desirable but also
imperative. To this end, it is fundamental that the chemical engineer is familiar with the
different thermodynamic consistency tests available in the literature, as well as their
pitfalls and limitations. In general, it is improbable that a particular data set succeeds in
all thermodynamic consistency tests. As noted by Wisniak et al. (2017), there is no unique
test capable of providing an absolute answer to the question “Are the experimental data
thermodynamically consistent?”. This is exactly why it is important to use a data-
informed approach, where the chemical engineer can submit all data sets to several
consistency tests, analyze the output, and then decide whether the experimental data set
must be rejected or not.

Therefore, in this work, a Python-based approach for thermodynamic consistency
tests of VLE (vapor-liquid equilibrium) data of binary mixtures is developed. For the sake
of convenience, all consistency tests embedded in the Python-based approach only
depend on tabulated physicochemical properties, which are easily found in compendia of
physical properties. Unlike some well-known computerized systems for the retrieval,
correlation, and prediction of phase equilibria data, this work presents an open-source,
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efficient computational tool that helps chemical engineers to make rational use of
experimental data in process simulation and model parameterization.

2. Theoretical background of the thermodynamic consistency tests

Overall, the Gibbs-Duhem equation plays a very important role in the development
of thermodynamic consistency tests. Since one usually neglects the effect of the pressure
p on the activity coefficient y; , for a binary mixture at constant temperature T the
Gibbs-Duhem equation becomes

x;dIny; + x,dIny, =0, (1)

whose mathematical structure implies that the activity coefficients y; are coupled, that is,

if one knows the value of y; at composition x;, then the value of y, at composition x,

is known too. In practical terms, if y; and y, are determined separately, Equation (1) may

be used to check the consistency of the data. Hence, if both y; and y, satisfy Equation

(1) over the range 0 < x; < 1, the data are said to be thermodynamically consistent.
Equation (1) may be rewritten as

dl dl
xl( nh>+x2( an)zo‘ 2

dx,; dx;

which is the main equation of the slope test. Likewise, Equation (1) may be integrated
over the range 0 < Iny; < Iny;° to give

0 Inyz° 1 0
f x;dIny; + f xX,dIny, = flny1 dx; +flny2 dx, =0, 3)
Iny§° 0 0 1

A1 Az

where y;* is the activity coefficient at infinite dilution. Equation (3) is the basis for the
area test that asserts that in a plot of Iny; versus x; the quantities |A;| and |A,| must
be equal. Of course, because the measurements of isothermal VLE data are associated to
an experimental error the quantities |A;| and |A,| are in practice not equal. Thus, it is
common to assume a more lenient criterion for the thermodynamic consistency: the
difference between |A;| and |A,| should be smaller than 2.0% of the sum |4, ]| + |4,].
Here, note that the requirement that |A,| and |A,| be equal is only a necessary condition
for the thermodynamic consistency of the experimental data. In fact, it might be the case
that some experimental data satisfy Equation (3), but not Equation (2).

Another test that may be applied to isothermal VLE data is the Redlich-Kister test.
After some algebra, the Gibbs-Duhem equation gives

Iny,dx; +Iny,dx, =0, 4

which can be integrated over the range 0 < x; < 1 to give

f In (]y/_D dx, = 0. )
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Equation (5) indicates that in a plot of ln(yl/yz) versus X, the areas above A, and below

Ag the axis x; must be equal. However, because of the experimental errors, this criterion

is relaxed to

p = 100445l _ 14
A, + Ag ' (6)

If, however, the Redlich-Kister test is applied to isobaric VLE data, then the contribution
of the excess enthalpy on the excess Gibbs energy g& is not negligible. In this case, the
criterion of thermodynamic consistency becomes

|44 — Ag| |AT ™|

150 <10, (7)

D =100 :
Aq + Ap Tmin

where AT™% is the largest difference of temperature observed and T™" is the lowest
temperature value in the data set.

A more comprehensive consistency test for VLE data is the L-W test proposed by
Wisniak (1993). The starting point of the L-W test is the equations gf = RT Y; x;Iny;

and y; = ViP /x-p*’ where R is the gas constant, p; is the vapor pressure, and y; and x;
iP;

are the mole fraction of the species i in the vapor and liquid phase, respectively. By

restricting the analysis to mixtures composed by species whose boiling points are not too

different, so that the Clausius-Clapeyron equation may be used, one obtains after some
algebra the following expression

Zixibs(T - 9" —RT Y x; ln(yi/xl-)
i xilAs] YixiAs] ' ®

Li wi

where As; and T} are the entropy of vaporization and the boiling point of the pure
constituents at the pressure p of the solution. By integrating Equation (8) over
0 < x; <1, one has:

1 1
0 0

L w

Equations (8) and (9) comprise the two equations that the L-W test relies on. While
Equation (8) may be used to check the consistency of every single point of the
experimental data set, Equation (9) may be employed to test the consistency of the full
data set. According to the L-W test, a single experimental point is thermodynamically

consistent, if the condition 0.92 < (Li/W.) < 1.08 is fulfilled. In addition, an
L

experimental data set is said to be consistent, if the difference between L and W is
smaller than 3.0% of the sum L+ W.

3. Implementation of the thermodynamic consistency tests

The thermodynamic consistency tests herein discussed were implemented in Python
by using the libraries Numpy, Pandas, Scypy, Matplotlib, and Pyplot. Once experimental
phase equilibrium data have been imported as a Python dataframe, the user must specify
the type of data and provide some pure component parameters. Next, the thermodynamic
consistency of the experimental data set is checked and the results are exported as a
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worksheet, which should be analyzed by the user. A sketch of the algorithm architecture
is shown in Figure 1.

For the sake of illustration, Figure 2 shows the results of thermodynamic consistency
tests for experimental VLE data retrieved from the Dortmund Data Bank (2022). In
addition to the numerical results exported in the worksheet (Table 1), the results of some
thermodynamic consistency tests (e.g. area test, Redlich-Kister test, and L-W test) may
also be analyzed through plots. This approach is particularly interesting to identify
possible outliers in the data set and help the user to decide if the data set should be totally
or partially rejected. In addition, note that the results of the thermodynamic consistency
tests for VLE data strongly depend on the quality of the pure component parameters, the
applicable temperature range of the Antoine equation parameters, the amount of available
experimental data, and how large the deviations from the ideality are. Regarding this last
aspect, thermodynamic consistency tests based on the Gibbs-Duhem equation tend to face
some issues when dealing with VLE data of very ideal mixtures. One of the reasons for
this behavior is the fact that the measured pressure and temperature values are usually the
same order of magnitude as the experimental error and, as a consequence, the output of
the thermodynamic consistency tests is somehow imprecise with large values for the
parameter [, as illustrated in Table 1. Thus, in such cases, the results of the
thermodynamic consistency tests might be dubious and should be carefully analyzed.

Experimental VLE
data in an Excel
worksheet

Antoine equation
parameters and pure
component phase
change data
(Thoits AuapH?)

pxy or
Txy data?

o o e e

pxy data Txy data
Slope test, areatest, L- W i =
5 % : Redlich-Kister test
ftest,and Redlich-Kister ] and L-W test
test
\
\
\

Results of the
thermodynamic
consistent tests in
an Excel worksheet

Figure 1. Structure of the proposed algorithm for thermodynamic consistency tests.
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Figure 2. (a) Graphical visualization of the Redlich-Kister test (D= 1.48) for the
isothermal VLE data of the mixture acetone-hexane at 318.15 K and (b) results of the L-
W test for each point of the isobaric VLE data of the mixture acetone-ethanol at 101.33
kPa.

Table 1. Results of thermodynamic consistency tests for isobaric and isothermal VLE
data.

Thermodynamic Consistency Tests

Redlich-

Area L-w Kister
D L w D D
Butanol-Chlorobenzene 101.33 kPa Txy - 5.9 6.1 1.8 5.2
Methanol-Water 97.22 kPa Txy - 9.3 8.7 3.0 9.8
Acetone-Ethanol 101.33 kPa Txy - 4.4 4.7 32 7.1
Benzene-Toluene 333.15K pXy 1.6 359 2.4 87.7 14.9
Benzene-Toluene 353.15K pXy 13.1 16.0 2.3 75.0 11.1
1-Hexene-Hexane 328.15K pxy 77.9 11.2 0.3 95.2 11.3
1-Hexene-Hexane 333.15K pXy 38.3 4.7 0.2 91.1 5.8
Acetone-Hexane 318.15K pXy 10.6 15.4 10.1 21.1 1.5
Chloroform-Benzene 298.20K pXy 70.4 334 1.1 93.9 15.5
Diethyl ether-Acetonitrile ~ 293.65 K pXy 0.2 46.2 37.5 10.3 0.5

4. Conclusion and future perspectives

Although checking the reliability of experimental data is a long-established problem,
the development of new thermodynamic consistency tests and computational tools for the
assessment of VLE experimental data is still the motive of intensive research in chemical
engineering thermodynamics. There are some commercial tools (Frenkel et al., (2005))
that were designed to dynamically evaluate the consistency of experimental data, but
unfortunately, open-source codes are still non-existent. Then, since the assessment of
experimental VLE data is a time-consuming and laborious task, any initiative towards the
development of computational tools that help in the critical data-evaluation process is not
only welcome but also necessary.

Therefore, in this work, an open-source algorithm written in Python was used to
check the thermodynamic consistency of VLE data of binary mixtures. To this end,
initially, experimental data are imported as a Python dataframe and then submitted to a
series of thermodynamic consistency tests, according to its type. Next, the obtained
results are exported as a worksheet that should be carefully analyzed by the user since
passing a thermodynamic consistency test does not imply that the data set is accurate. In
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fact, as observed in this work, thermodynamic consistency tests based on the Gibbs-
Duhem equation seem to be not so efficient when applied to very ideal solutions. One of
the reasons for this trend might be related to the fact that the measured pressure and
temperature values are usually the same order of magnitude as the experimental error,
which leaves room for further research in chemical thermodynamics.

Even though the open-source tool presented in this work is still under development,
it may be already used to test the thermodynamic consistency of VLE data. In the near
term, other consistency tests for vapor-liquid and solid-liquid equilibria data should be
implemented (Kojima test, Fredenslund test, McDermott-Ellis test, Kang test, and Cunico
test), as well as tests of internal and external consistency.

References

J. Wisniak, J. Ortega, L. Fernandez, 2017, A Fresh Look at the Thermodynamic
Consistency of Vapour-Liquid Equilibria Data, The Journal of Chemical
Thermodynamics, v. 105, p. 385-395.

J. Wisniak, 1993, A New Test for the Thermodynamic Consistency of Vapor-Liquid
Equilibrium, Industrial & Engineering Chemistry Research, v. 32, p. 1531-1533.
Dortmund Data Bank, 2022, www.ddbst.com

NIST Chemistry WebBook, 2022, NIST Standard Reference Database Number 69,
National Institute of Standards and Technology, https://doi.org/10.18434/T4D303

M. Frenkel, R. D. Chirico, V. Diky, X. Yan, Q. Dong, C. Muzny, 2005, ThermoData
Engine (TDE): Software Implementation of the Dynamic Data Evaluation
Concept, Journal of Chemical Information and Modeling, v. 45, p. 816-83.



http://www.ddbst.com/
https://doi.org/10.18434/T4D303

Antonis Kokossis, Michael C. Georgiadis, Efstratios N. Pistikopoulos (Eds.)

PROCEEDINGS OF THE 33" European Symposium on Computer Aided Process Engineering
(ESCAPE33), June 18-21, 2023, Athens, Greece

© 2023 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/B978-0-443-15274-0.50005-6

Modelling building’s life-cycle decarbonization in
China: A multi-level and multi-region optimization
approach

Chenxi Li," Pei Liu,” Zheng Li

“State Key Lab of Power Systems, Department of Energy and Power Engineering,
Tsinghua-BP Clean Energy Center, Tsinghua University, Beijing 100084, China
liu_pei@tsinghua.edu.cn

Abstract

The decarbonization of life-cycle emissions is a huge challenge to the building sector
because it involves multiple levels. However, previous studies rarely evaluated the
potential emission reduction contribution of various technologies in the life cycle,
especially China, whose life-cycle CO, emissions of the building sector account for over
40 percent of the total emissions. A multi-level and multi-region optimization model is
proposed to quantify the life-cycle CO, emission reduction path of China's building sector
in this paper. Considering both indirect and direct emissions, this model can find the
lowest-cost path of CO, emission reduction in China's building sector under specified
emission scenarios. Results show that extending the building life from 30 years to 50
years has a great impact on emission reduction, leading to a CO; emission reduction of
more than 50 percent if low-carbon building materials are also used. Moreover,
electrification and emission reduction of the power system also have the potential of
reducing the CO, emissions of buildings by nearly 40 percent, with an end-use
electrification rate of more than 70 percent by 2060.

Keywords: building sector, decarbonization, optimization, life-cycle, China

1. Introduction

The building sector is an important sector which connects the upstream industries and the
user terminal, leading to its high life-cycle CO, emissions. To achieve the goal of CO,
mitigation in the whole society, the life-cycle emission reduction of the building sector
which connects the upstream and downstream is very important, while the multi-level
structure of the building sector brings great challenges to the planning of the life-cycle
decarbonization.

Previous studies assessing the CO» mitigation of the building sector most focused on one
level, such as the material of buildings, the operation of buildings or the reconstruction
of a specific house. Li et al. (2017) and Ma et al. (2016) quantified the impacts of
decarbonization in China’s cement sector and steel sector by using China TIMES model
separately. In order to achieve the goal of climate change, the energy demand for heating
and cooling of German residential buildings was assessed comprehensively (Olonscheck
etal., 2011). A multi-objective optimization model was utilized to find a building retrofit
strategy to improve energy efficiency (Asadi et al., 2012). Although the above studies
described the CO, mitigation pathway of the building sector or one specific house
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detailedly, the research is still insufficient because of a lack of life-cycle analyzing. Each
level of the building sector, material, construction, operation and demolition, affects each
other, making it essential to carry out life-cycle CO, mitigation planning.

However, most life-cycle research on the building sector emphasized the accounting of
historical CO, emissions instead of the mitigation potential of different low-carbon
methods. Yang et al. (2018), Clabeaux et al. (2020), and Atmaca et al.(2022) counted the
life-cycle emissions of a specific building or a building complex in China, USA and
Turkey separately.

Overall, previous studies are rarely able to evaluate the emission reduction potential of
buildings in the life cycle. Therefore, a multi-level and a multi-region optimization model
is established to plan the life-cycle mitigation pathway of the building sector. The model
is applied to the building sector of China, whose CO» emissions surpasses 4 billion tonnes,
accounting for nearly 20 percent of the total CO, emissions all over the world.

2. Methodology

2.1. Model structure and Assumptions

The lifecycle of buildings includes material, construction, operation and demolition,
which is shown in Figure 1. In this multi-level and multi-region optimization model, three
main building materials and three main building structures are considered. Buildings are
divided into three categories according to their use, and six energy demands are regarded.
In this model, 40 technologies can be applied to the decarbonization of building sector,

which are listed in Table 1.
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Figure 1. The structure of multi-level and multi-region optimization model of buildings

2.2. Mathematical formulation

Mathematical equations of the optimization model are presented in this model, including
objective function and model constraints. Eight sets, t, mat, u, str, tech, r, op, ref stand
for time, material, type of utilization, structure, technology, region, energy demand and
insulation of buildings.

2.2.1. Objective function

The objective function of this model is to minimize the total cost of the building sector in
its lifetime from 2020 to 2060. The total cost is composed of material costs, end-use
device costs, central heating costs, insulation material costs and fuel costs, as Equations
(1)-(2) shows.
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objective = Egggzo% (1)
sumcost, = matc, + devicec, + heatc, + refc, + fuelc, (2)
Table 1. The technologies used in the model

Type of technology Name of technology

Low carbonization of
building materials

Changing of building structure
Decarbonization of
central heating

Insulation of buildings

Far-infrared ceramic coating mixture, Electric arc furnace, Hydrogen
steelmaking, New cement clinker, Solid regenerative fuel, Carbon
capture and storage, Carbon capture and usage, 600kA potcell
Brick-frame, Concrete-frame, Steeel-frame

Coal-fired boiler, Gas-fired boiler, Coal-fired cogeneration, Biomass
boiler, Geothermal, Solar heating, Heat pump

Single glazing windows, 2bl glazing windows, Low-e windows,
Stone wool insulation materials, Glass wool insulation materials,

Expanded polystyrene, Sprayed polyurethane
Coal-fired cooking stove, Gas-fired cooking stove, Electric cooker,

Cooking Biomass-fired cooking stove
Electric water heater, Solar thermal water heater, Gas-fired water
Enfi—use_ Hot water heater
clectrification Lighting Incandescent lamp, Fluorescent lamp
Space cooling ~ AC-I, AC-II, AC-III
Decentralized

space heating Coal-burning fireplace, Solar heating, Heat pump

2.2.2. Material constrains

The demand of various materials depends on the newly-built area of different structures,
which can be described by Equation (3). Although there may be demolition areas and new
areas every year, it is still necessary to ensure that the total area is not less than the
required area, listed as Equation (4). The CO; emissions caused by building materials are
calculated by emission factors and the costs of materials are computed by unit price.

matdymar = Xser,unareaeyser * MATPROgy imar (3)
Zstr(areat_l‘u,str + nareag, sir — dareat'u,s”) = AREAD,,, (4)
matco2: = Yoattech MAtPemattech * TECHCO2¢ ymat tech (5)
matc, = Zmat,tech matpemattech * MATPCymat tech (6)

2.2.3. End-use demand constrains

The end-use demand can be divided into six categories: cooking, hot water, lighting,
space cooling, space heating and electricity. Decentralized space heating and central
heating constitute space heating. The decentralized equipment at the user end is supposed
to meet the end-use demand, including cooking, hot water, lighting, space cooling and
decentralized space heating, according to Equation (7). Due to the use of thermal
insulation materials, the heating and cold demands of buildings will be reduced
accordingly, as described in Equation (8). The coefficient COEFC, .. and COEFH,. ¢ is
related to the climate of the area where the building is located, and is estimated according
to the average temperature. The heat provided by central heating should not be less than
the demand, with the operation and heat supply of central heating boilers meeting
Equation (9). The total power demand is the sum of all appliance electricity consumption,
as shown in Equation (10). The consumption of fossil energy, biomass and other
renewable energy is calculated according to the actual operation time of the equipment,
as shown in Equation (11). The CO» emissions from fossil energy and electricity are
computed by emission factors, which are described by Equation (12).
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ENDUSEDy;0p < Yoy desndevice .y qe * OHpryge * CONSUMPTION g 5 * CV (7)
endused, ;. coo1ing = ENDUSED, ;. o, — Yresrefareas rer * COEFC, of (8a)
endusedy r heating = ENDUSEDy 1. oy — XperTefareas rop * COEFHy rof (8b)
Yen centralheat, ., < CENTRALHEATD,, (9a)
nbheat; i * OHMIN, o, < heat,, ., < nbheat,, , * OHMAX, ,,p, (9b)
elecd;, = ELECDgppiignce,cr + devicefuel; gioc (10)
devicefuely s = ¥y gerndevicesryge * OHpryge * DCONg e ¢ (11)
endco2; = Y ¢ devicef,  x FCO2; (12)

2.2.4. CO; emissions constrains
The life-cycle CO, emissions of the building sector are composed of material emissions
and end-use emissions, which can be described as Equation (13). The total emissions in
the life cycle are supposed to meet the upper limit requirements of CO, emissions, as
shown in Equation (14).

sumco2, = matco2; + endco2, (13)

sumco?2, < UPPERCO2, (14)

The model is implemented in General Algebraic Modelling System (GAMS) by using the
CPLEX solver.

3. Case Study

The proposed model is implied in a case study of the building sector of China, which is
divided into 9 regions according to the climate and data availability, as shown in Figure
2. The average life of buildings in China is about 30 years. It is assumed that the life of
buildings are extended to 50 years to achieve the decarbonization goals. Several basic
assumptions are listed in Table 2.

Table 2. Basic assumptions

Year 2030 2040 2050 2060
Floor area/100 million m? (ICCSD, 2021) 806 844 861 828
Population/100 million 14.0 13.4 12.6 11.3
Emission factor of electricity /kg-kWh'! BAU 036 024 0.21 0.21
(Song et al., 2022) Decarbonization 0.34  0.13 0.06 0

Total energy demand/100 million tce (Chen et al., 2015) 7.1 8.0 8.8 8.5

3.1. Decarbonization of building materials

Selecting low-carbon materials enables the building sector to lower its life cycle CO,
emissions. According to the proposed model, average carbon emission factor of materials
given in Figure 3 can be referred to elect low-carbon materials when new buildings are
constructed in the future. In 2060, the average CO, emissions factor of steel reduces to
half of that of 2020, and that of cement reduces to one-third of that of 2020. Due to the
carbon neutralization of the power system, the average CO, emissions factor of
aluminium is close to 0.



Modelling building’s life-cycle decarbonization in China: 29
A multi-level and multi-region optimization approach

80 r
= 7.0 u Steel
s 70 t
Northeast 2 m Cement
g 6.0
Xinjiang =
Inner Mongolia =2 o
=
North China b5}
Northwest [T~
Henan g
=]
East China 7
Central China .2
£
[}
South China 8
2020 2030 2040 2050 2060
Figure 2 Geographic division of China Figure 3 Emission factor of building materials

3.2. Decarbonization of building operation

Owing to the application of thermal insulation materials, heat loss is reduced in each
region, especially after 2040, which is depicted in Figure 4. Because of the low
temperature and long heating period, the application of thermal insulation materials in the
northeast is significantly earlier than that in other regions. Despite rare heating demand
in South China, thermal insulation materials are supposed to be used after 2050, which
can reduce the demand for refrigeration, beneficial to the decarbonization.

As can be seen from Figure 5, which shows the consumption of primary energy, there is
a peak both in coal and natural gas. The maximum coal consumption occurs before 2025,
which is not much higher than that in 2020. The maximum gas consumption is supposed
to appear between 2040 and 2045, with a peak of 250bcm. The electricity demand rises
steadily until 2050. Although the electricity demand decreases after 2050 because of the
shrinking population and total energy demand, the electrification rate gradually increases
from 2020 to 2060, and exceeds 70% in 2060 according to Table 3.
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Figure 4 The reduction of heat loss Figure 5 Fuel consumption during operation
Table 3. Proportion of clean energy
Year 2020 2030 2040 2050 2060
End-use Penetration of renewable energy 4.6% 5.0% 5.3% 124%  26.7%
End-use electrification rate 40.2% 27.7%  52.4% 68.2%  72.5%

3.3. Comparision of life cycle decarbonization potential in the building sector

Table 4 illustrates the decarbonization potential of various emission reduction methods.
It is apparent from this table that extending the average lifespan of Chinese buildings
from 30 years to 50 years can significantly reduce the life-cycle emissions, due to the
demand for building materials being greatly reduced. This mitigation measure can be
achieved by government order. Combined with low-carbon building materials, the
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contribution rate of CO; reduction in non-operational processes of buildings is higher
than 50%. What’s more, although previous studies have implied the importance of
building reconstruction (Motalebi et al., 2022), only the replacement of windows and the
addition of building insulation layers contribute little to decarbonization pursuant to our
study. In addition, even if there are no measures taken by the building sector, one fifth of
the life-cycle CO; emissions of the building sector can be reduced by the power sector.
The decarbonization of electricity and the electrification of the building contribute nearly
40% to the reduction of emissions in the building sector, meaning that support for
electrification is very necessary for the Chinese government to the public to realize the
low-carbon transition of the building sector at a lower cost.

4. Conclusions

This paper proposes a multi-level and multi-region optimization model to analyze the life-
cycle decarbonization pathway of the building sector and China is taken as a case study.
It can be found that life extension plays a significant role in buildings’ life-cycle CO,
emissions reduction by lowering the demand for building materials. During the operation
stage, natural gas becomes one of the main fuels in the next 20 years and the consumption
of natural gas declines rapidly, which is consistent with the current policy of China.
Although biomass-related technologies are relatively mature, the decarbonization
transition of China's building sector cannot be entirely dependent on biomass due to lack
of biomass resources. The improvement of end-use electrification rate is essential for the
emission mitigation of buildings, which is supposed to be increased from 40% in 2020 to
70% in 2060. Therefore, to achieve life-cycle CO» reduction in the building sector in
China, attention to building life extension and electrification must be paid, meaning that
reasonable urban planning and electrification reform of buildings should be the major
work of China’s building sector in the future.
Table 4. The decarbonization potential of various emission reduction methods

CO2 reduction in Total CO:z reduction
Methods 2060 /100 million Proportion in 40 years /100 Proportion
tonnes million tonnes
Life extension 34 14.5% 268.7 41.3%
The use of low-carbon 1.7 7.2% 70.6 10.8%
materials
Decarbonization of 40 17.0% 62.9 9.7%
central heating
Insulation 0.2 0.9% 34 0.5%
Electrification of
distributed heating, 6.1 26.0% 109.4 16.8%
cooking and hot water
Decarbonization of electricity 8.1 34.4% 135.8 20.9%
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Abstract

The industrialization of catalytic processes benefits strongly from kinetic models for
optimization and control purposes. Nevertheless, mechanistic models are difficult to
construct; data-driven and hybrid models lack interpretability and the flexibility to
leverage physical knowledge. Thus, a different approach called automated knowledge
discovery has been recently popularized. Existing methods in literature suffer from
important drawbacks: necessitating assumptions about model structures, a lack of model
selection automation, and sensitivity to noise. To overcome these challenges, the present
work constructs a methodological framework for the automated generation of catalytic
kinetic models. We leverage symbolic regression for model generation, a hybrid
optimization algorithm for parameter estimation, and a robust criterion for model
selection. The framework is tested with an illustrative isomerization case study, where it
showcases the ability to retrieve the underlying kinetic model with a limited amount of
noisy data from the catalytic system.

Keywords: catalysis, kinetic model generation, automated knowledge discovery,
information criteria, machine learning.

1. Introduction

The industrialization of catalytic processes requires kinetic models, which are a
mathematical representation of the dynamical trajectories of a chemical system, typically
presented in the form of ordinary differential equations. Kinetic models can be
constructed using any of the three classical modelling paradigms: mechanistic (white-
box), data-driven (black-box) or hybrid (grey-box). Mechanistic models are constructed
by using existing fundamental laws, such as mass, energy, and momentum balances,
making them interpretable and extrapolatory (Baker, 2018). However, the construction of
these models can be time-consuming and experimentally expensive. Data-driven models
do not use any fundamental laws for their construction. Typically, these models are
constructed by solely using collected data of a system, making their construction time-
efficient but experimentally expensive. Furthermore, these models generally have poor
extrapolatory abilities and are uninterpretable, which may classify their usage for certain
industrial scenarios as unsafe. In comparison, hybrid models aim to exploit the advantages
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of mechanistic and data-driven modelling. Hybrid models are composed of two parts: a
mechanistic backbone and a data-driven block which aims to improve the backbone’s
fit. Generally, hybrid models retain the extrapolation capabilities of a mechanistic model
and the flexibility and ease of construction of a data-driven model.

Hybrid modelling offers an elegant solution to the problems posed by the other classical
modelling paradigms, but not an optimal one. A better solution would be to utilize
existing data to automatically generate and select mechanistic models by exploiting state-
of-the-art statistical and machine learning methods. In this way, the benefits of
mechanistic models are maintained, whilst some of their drawbacks are eliminated. This
modelling paradigm has been coined automated knowledge discovery and has recently
gained popularity. In current literature, many automated knowledge discovery
frameworks have been developed, such as: the ALAMO approach (Wilson, 2017), the
SINDy algorithm (Brunton, 2016), and symbolic regression using genetic
programming (Koza, 1994). These frameworks have three drawbacks that limit their
ability to retrieve underlying ground-truth models, and consequently, their real-world
applicability. Firstly, they necessitate substantial structural assumptions of the underlying
data-generating model. This is particularly true of ALAMO and SINDy, as a design
matrix needs to be constructed for their execution (Wilson, 2017; Brunton, 2016).
Secondly, they lack a motivated and rigorous model selection routine (Wilson, 2017;
Brunton, 2016; Koza, 1994). Lastly, they are sensitive to noisy data (Wilson, 2017;
Brunton, 2016; Koza, 1994). Hence, this work aims to overcome these obstacles by
constructing a generalizable and robust methodological framework that integrates a
rigorous model selection routine for the automated kinetic model discovery of catalytic
systems.

The rest of the paper will be structured as follows: in Section 2, the proposed automated
knowledge discovery framework is motivated and described in detail; in Section 3, the
illustrative case study used to showcase the capabilities of the proposed methodology is
introduced; in Section 4, the results of the study are amply discussed; in Section 5, the
key findings are presented, and the outlook of the research is explored.

2. Methodological Framework

Given the objective of automated knowledge discovery, the proposed methodological
framework constitutes three main stages: model generation, model refinement, and model
selection and discrimination.

Symbolic regression using genetic programming (SR-GP) is often considered the most
generalizable and reliable model generation method found in literature, as this method
does not require the construction of a design matrix. In other words, assumptions
regarding an underlying ground-truth model are minimal. The basic concept of SR-GP is
to specify a set of state variables and operators (e.g.: ‘+’, °/’) that may be present in the
underlying mechanistic model. With this, an initial population of models can be
constructed, and based on Darwin’s theory of evolution, the best models — based on a
specified performance metric — are evolved via genetic operations (e.g.: crossover and
mutation), and the worst models are discarded. This process is iterated until convergence
is achieved or a termination criterion is met. As such, for the model generation stage, we
propose a weak reformulation of SR-GP, where models generated represent a mapping
between input and output variables in the derivative hyperspace. In other words, this
reformulation generates functions dependent on the state variables that can map the output
via an integration step. In this way, weak SR-GP receives the dynamic trajectories of
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concentration as inputs, proposes rate models (r = f(C;,C,...) where C; is the
concentration of species i € Z¥) integrates the rate models with respect to time at each

. . . . . dac;

given time-step where concentration data is available ([ rdt = [ vif dt = &C ;(t)), and
13 13

compares the results from the integration with the original dataset.

Once promising rate models are proposed by the weak reformulation of SR-GP, model
refinement needs to take place. Specifically, the model refinement comes as a parameter
estimation problem, where the error between the model’s response and the data are
minimized by finding the best set of kinetic parameters. This optimization problem is
solved by deploying a hybrid optimization algorithm composed of an explorative phase,
carried out by an artificial bee colony (ABC) algorithm, and an exploitative phase carried
out by a limited memory Broyden Fletcher Goldfarb Shanno (LBFGS) algorithm. The
former is a stochastic optimization algorithm shown to have excellent explorative
characteristics (Cho, 2021), while the latter is a gradient-based optimization algorithm
shown to have excellent exploitative characteristics (Malouf, 2002). The objective
function used for the parameter estimation was the negative log-likelihood (NLL),
presented below:

Ciik—vi(0.x0); )2
F(8) = 34| LULEI). g | (M)

where C;j« is the simulated concentration (i.e.: in-silico data) of species i € S for dataset
j €D attime k € T, where S, D, and T represent the species set, data set and time set,
respectively; y;(6, xg) j x is the concentration of species i € S for dataset j € D at time
k € T proposed by an arbitrary model which is dependent on its parameters @ and the
initial conditions xg; 67 is the variance of the noise that we assume the concentrations of
species i € S has. Once all the promising models have been explicitly optimized, the
models are ranked based on their Akaike information criterion (AIC) values. The AIC
was selected after a thorough analysis of the performance of different criteria under
several conditions (e.g.: different amounts of additive noise, different amounts of data).
This analysis concluded that AIC has a statistically higher probability of selecting the
correct data-generating rate model than the other criteria tested.

After the ranking of the optimized models has been established based on AIC values, the
Akaike weights of each model, w;(0;, x,), (i.e.: a statistical measure that quantifies the
probability of a model structure being the correct one based on AIC values) are also
evaluated. Provided a user-defined tolerance € € R™, if |w; (0, xo) — W, (0, %0)| < €,
then the modeler cannot be confident enough of the AIC selection, extra discriminatory
experiments should be performed, and the process repeated. The discriminatory
experiment can be determined by solving the Hunter-Reiner criterion, which aims at
finding the experimental conditions that will maximize the difference between the
response of two competing models. If |w; (0, xo) — w5 (05, x5)| > €, then the modeler
can be confident of the AIC selection and should integrate the proposed rate model and
compare it with the dynamic trajectories of the concentrations. If the results are
satisfactory, the methodological framework is terminated. Otherwise, further data should
be collected by applying (model-based) design of experiments — a strategy aimed at
computing maximally informative experiments. For clarity and simplicity, the flowchart
of the proposed methodological framework is presented in Figure 1.



36 Miguel Angel de Carvalho Servia et al.

Generate kinetic
data
Use SR to generate rate
models - f(C)
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Use AIC to find best 2
model and compute w;

Figure 1: The flowchart of the proposed methodological framework featuring a weak
reformulation of SR-GP

3. Kinetic Case Study

To showcase the performance of the proposed methodology, an illustrative case study of
an isomerization reaction was chosen, where A is transformed to B reversibly over a
catalytic active site. The reaction mechanism and the King-Altman graph of the case study
are displayed in Figure 2(a).
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Figure 2: (a) Mechanism and King-Altman graph of illustrative isomerization reaction (Marin,
2019); (b) response of the chosen rate model for one of the three computational experiments

Given the presented mechanism, a rate model was derived and is shown in Equation 2. A

detailed derivation of the rate model is found in (Marin, 2019).

—ﬂ:@: kaCp—kpCp 2)
dt dt kcCa+kpCp+kg (

In Equation 2, C4 and Cp represent the concentration of reactant A and product B,

respectively. The kinetic parameters of the rate model are represented by k; where i €
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{A,B,...,E}. To generate the necessary data to test the proposed framework, three
computational experiments were carried out, each with different initial conditions. The
simulations were run with the following initial conditions (in molar units): (C,g, Cgo) €
{(2,0),(6,1),(10,2)}. For each simulation, the concentration of the reactant and product
are recorded at evenly spaced intervals between time t = 0 s and ¢ = 10 s. For the
simulations, the kinetic parameters were defined as: k, =7 M s2, kg =3 M s?2 k, = 4
s', kp =2 s and kr = 6 M s!. To ensure that the generated data is as realistic as
possible, Gaussian noise was added to the simulation results. The defined Gaussian noise
had zero mean and a standard deviation of 0.13 for the concentrations of A, and 0.21 for
the concentrations of B (the standard deviations represent 5% of the mean of the simulated
concentrations of A and B). For the parameter estimation task, it would be futile to assume
that as modellers the exact variance of the noise would be known. Thus, a conservative
assumption was made by setting 4, = 0.26 and 65 = 0.42, (i.e.: assuming a standard
deviation of 10% of the mean of the simulated concentrations of A and B).

4. Results and Discussion

As explained in Section 2, the proposed methodological framework implements a weak
reformulation of SR-GP which automatically evolves rate models by integrating and
comparing them with the concentration data available. Note that the law of conservation
of mass is satisfied by construction under this integrating scheme. Departing from the
kinetic data generated, the SR algorithm was used to generate rate models. The expression
construction rules exclusively included the arithmetic operators ‘+’°, °-’, “x” and ‘/°, since
rates including other operators are less common. The rate models generated were a
function of the species whose concentrations were measured, r(C,, Cg) in this case. The
best expression proposed by the weak SR-GP, sorted by degree of complexity (i.e.: the
number of operators and variables), are shown in Table 1.

The estimation of each kinetic parameter, k; where i € {1,2, ...,6}, was carried out as
explained previously: NLL was used as the objective function where the assumed
variances for NLL are double of the real variances used to generate the Gaussian noise,
and this is solved by using the hybrid algorithm comprised of the ABC and the LBFGS
algorithms. The NLL, AIC and Akaike weight (AW) values for each of the weak SR-GP
proposed and optimized models are also presented in Table 1 below. This shows that 74
and r; are the best and second-best models for the given data, and by setting an Akaike
weight tolerance of € = 0.05, we can be confident in the AIC’s choice that 75 is the best
model to represent the dynamical catalytic reactive system under investigation, without
requiring further discriminatory data. The response of the selected model is shown in
Figure 2(b). For the sake of brevity, only one of the experiments is presented. The final
rate model output by the proposed framework had a near identical structure to the data-
generating one, differing only by a single parameter in the numerator. However, the
hybrid optimization algorithm used for parameter estimation was able to determine that
the extra parameter was practically zero, and therefore may be non-existent in the actual
model. The discrepancy in other parameters may be attributed to the additive Gaussian
noise in the data. Table 2 details the estimated kinetic parameter values and the original
values of the true data-generating rate model.

Table 1: The NLL value, the AIC values and the Akaike weight (AW) values of all weak SR-GP
proposed rate models

Model NLL Value AIC Value AW Value
=k, 540.410 1082.821 0.000
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T, = k1Cy 53.857 109.715 0.000
_ kiCa=kyCp -0.831 4.337 0.244
3 k3Ca
_ kiCa—ksCp—ks -0.988 6.025 0.105
4 kaCa
— kiCa—koCp—ks -2.724 4.551 0.219
5 kaCa+ks
r, = KaCa=koCpks -4.275 3.450 0.380
6 7 k,CatksCp+ks
k1C5Cp—k;CaCh—k3Ca+ksCp -2.289 7.422 0.052

’r' =
7 ksC2Cp—keCa

Table 2: The estimated kinetic parameters from the chosen rate model proposed by proposed
framework and the original kinetic parameter's values

Kinetic Parameter Estimated Value True Value
ki, k4 5.557 M s2 7.000 M s
k, ks 2.335Ms? 3.000 M s
ks 0.000 M? s2 N/a
ks, ke 3.114 5! 4.000 s!
ks, kp 1.379 5! 2.000 s!
ke, ke 6.033 M s! 6.000 M s!

5. Conclusions and Outlook

In this work, we proposed an automated knowledge discovery framework for the
generation of catalytic kinetic models from data. A combination of a reformulation of SR-
GP, parameter estimation through hybrid optimization, and a rigorous model selection
and discrimination routine alleviate drawbacks of alternative automated knowledge
discovery methods in literature. The presented case study showcases the framework’s
ability to retrieve the underlying kinetic model of a catalytic system with a limited amount
of noisy data. Future work will pursue strategies to incorporate physical constraints into
the model generation, to increase its efficiency through physical guidance.
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Abstract

Quantitative models are useful tools to accelerate the development of pharmaceutical
processes. The assessment of the predictive capability of such models is fundamental to
enhance their usage in a systematic way, particularly when the focus is on flowsheet
models. In this study, we propose a systematic procedure that combines techniques that
are typically used in different modeling contexts — namely, global sensitivity analysis,
model-based design of experiments, and data reduction by means of multivariate
statistical methods, with the advantage of enhancing readability and interpretation. The
methodology is effective for the assessment of model fidelity and can support
practitioners in the development of pharmaceutical processes. A direct compression
systems model for manufacturing oral solid dosage products is used as a case study.
Results show that just a subset of model parameters require precise estimation to meet the
target critical quality attribute, and that calibrating flowsheet models on a unit-by-unit
basis may be unnecessary when the focus is on one final quality attribute.

Keywords: systems model, pharmaceutical development, model identifiability,
parameter estimation, model fidelity, pharmaceutical engineering.

1. Introduction

Quantitative models have been progressively adopted to accelerate the development of
pharmaceutical manufacturing processes that traditionally requires time and resource-
intensive experimental campaigns (Bano et al, 2022). Despite the potential benefits of
modeling in pharmaceutical process development, the systematic use of these methods is
not widespread, as stakeholders generally show a lack of confidence in the prediction
capability of quantitative models with respect to key performance indicators (KPIs) or
critical quality attributes (CQAs), which we will generically call key indicators (KIs)
(Braakman et al, 2022). It is worth adding that pharmaceutical processes involve very
complex phenomena, which may not be easily captured by first-principles models;
therefore, high in-house expertise and resources are required (Boukouvala et al, 2011;
Polak et al, 2023).

The prediction reliability of a quantitative model largely depends on the precision of
model parameter estimates. A particular case is given by flowsheet models (or systems
models, as they are often called in the pharmaceutical sector), where several unit operation
models are connected, and the Kls are the outputs of some units (often the final one). It
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is evident that, in general, the prediction fidelity of a KI depends not only on the
parameters of the specific unit operation model, but also on the parameters of all unit
operation models impacting the unit of interest. In this context, one may wonder whether
all parameters should be estimated in a statistically satisfactory way or just a subset of
them, and what parametric precision is sufficient to satisfy the prediction requirements
for the KI. In this study, we propose a model evaluation framework to support the critical
usage of quantitative models within pharmaceutical manufacturing process development.
The methodology combines traditional tools typically adopted for parameter estimation
purposes — namely global sensitivity analysis (GSA) and model-based design of
experiments (MBDoE) — with techniques based on data analytics, that allow to
graphically represent both model parameters and the KI onto a common space. A direct
compression systems model for manufacturing oral solid dosage (OSD) products is used
as a case study.

2. Methodology

In this section we describe the methodology for the assessment and quantification of
parameters impact on the prediction reliability of quantitative models.

Initial parameter
guesses

1,0(;harac!en‘zan?n | 2 Retating model . SOfAsasr:;serIr;?
parameters parameters fo Kis p
influence uncertainty

v Acceptable
Kl prediction

Unacceptable
Kl prediction

5. Parameter 4. New
estimation experiments

Figure 1: Schematic of the proposed methodology to quantify the model parameters’ impact on the
prediction reliability of quantitative models.

The workflow consists of multiple sequential steps (Fig. 1):

e Step 1. The objective is to characterize the parameter impacts on the prediction of the
selected K, so that the most influential parameters can be identified. We use Sobol’s
GSA to understand how the variability of the selected Kl can be allocated to each
model parameter.

o Step 2. The goal is quantifying the parameter impacts on the model prediction fidelity.
In order to assist the interpretation of these results, here we suggest using a partial
least-squares (PLS) regression model to relate the model parameters to the selected KI.
Details are reported in § 2.1.

o Step 3. It is necessary to assess if the precision of the model parameters is sufficient.
To this purpose, the estimated uncertainties of model parameters are projected onto the
PLS model. If some projections fall outside the KI acceptability region, new
experiments are needed to increase the parameters’ precision. No improvement is
required if all uncertainties fall inside the KI acceptability region (stop criterion).

o Step 4. If the parameters’ precision requires improvement based on the output of Step
3, new experiments should be designed to collect new data. Experiments are designed
through MBDoE techniques (Franceschini and Macchietto, 2008) to strengthen the
precision of the most influential parameters identified at Step 1.

e Step 5. Once new data are available, all model parameters are estimated using a
maximum likelihood estimator.

The procedure is iteratively repeated until satisfaction of the stop criterion.



Assessing process systems models for pharmaceutical development 41

2.1. Use of a PLS model
Let X [N x V] be the input (regressor) matrix of N observations of V variables, and Y
[N x L] the response matrix of L variables. PLS (Geladi and Kowalski, 1986) is a
multivariate regression technique that projects the regressor and response variables onto
a common latent space, according to the model structure:

X=TPT+Ex ; Y=TQ"+Ey . )
First, we generate a set of parameters combinations using Monte Carlo simulations, given
their initial uncertainties. These combinations of model parameters make the set of
regressors X, while the predicted KI is the response variable y. T [N X V] is the score
matrix, P [V x A] and Q [L x A] are arrays of loadings, A = number of latent variables
(LVs), while Ey and Ey are the residuals in the inputs and responses, respectively. We
fix operating conditions so that the Kl is equal to the target value, given the initial
parameters guesses. Then, the PLS model is used in its inverse form (Jaeckle and
MacGregor, 2000) to determine the set of input combinations that yield the desired
tolerance on the target KI. The quality target is described by inequality constraints (bound
values for the response prediction), which in turn defines the KI acceptability region. If
the dimensionality of the latent space is greater than the y-space, multiple solutions of the
model inversion problem exist, and are defined by the null space:

W= {(tnew + t)r t e ker(Q)} ) (2)
where t,.,, = (QTQ)~* Q7 y*” is the score vector for the target response variable y*.
The use of a PLS model to relate parameters combinations and Kls gives us the possibility
to monitor the evolution of parameter uncertainties along each iteration of the
methodology in Fig. 1. We obtain a clear graphical representation of both regressor and
response variables onto a common latent space that can be easily interpreted.

3. Case Study

A direct compression systems model for manufacturing OSD products is used as a case
study. The systems model comprises a tablet press unit operation and a tablet
disintegration unit.

3.1. Tablet press unit operation
First, the variation in tablet solid fraction caused by the compaction pressure, P [MPa],
exerted by the press is expressed according to Kawakita and Lidde (1971):
_asp(1+ byP) (3)
© 1+ agpbgP
where sf [-] is the attained tablet solid fraction, while a [-] and b, [MPa™] are model
parameters to be estimated. The Kushner (2012) equation is used to relate the effect of
the extent of lubrification K [dm] attained in the upstream powder blending on the tablet
tensile strength:

TS = TSo((1 — B) + Bexp(—yK)) , @
where T'S [MPa] is the tensile strength, TS, [MPa] is the tensile strength at zero porosity,
y [dm™] is the lubrication rate constant, and 8 [-] is the total fraction of tensile strength
that can be lost due to lubrication. The empirical model by Nassar et al. (2021) accounts
for the dependence of the Kushner parameters on the attained tablet solid fraction:

TSy = arexp(b,(1—sf)) (5)

B = a;(1—sf)+b, : (6)
The model parameters a, [MPa], b, [-], a, [-] and b, [-] need to be estimated.

3.2. Tablet disintegration
Both erosion and swelling (Markl et al., 2017) mechanisms are considered.

]
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Erosion is described as:

V. = (Heoqr — €0)A; (M
where V. [m?] is coating volume varying with time ¢ [s], H.,4: [M] is the thickness of the
coating layer, A, [m?] is the tablet surface area, and ¢ [m s] is the constant erosion rate.
The dynamic evolution of the penetration depth due to swelling is modelled as:

dP, p \MTe2=Pa)/Tes2 d2 e ®)

=~ wm) el
where P; [m] is the water penetration depth, F;, [MN] the tablet hardness, d; [m] the
tablet hydraulic diameter, 7, [-] the average tablet tortuosity, u [Pa s] the liquid
viscosity, p. [Pa] the capillary pressure. S, [-] and n [-] are formulation-dependent
model parameters to be estimated. Parameter n can be estimated if dynamic penetration
depth data are available, e.g., via terahertz (THz) spectroscopy. However, this is a
relatively new technology if compared to a standard end-point disintegration time test. If

p \UTt/2=Pa)/Tes2
) can be
FL/A¢
replaced with a lumped parameter A [-] which can be fitted. T,,, [m] is the time-
dependent half tablet thickness, and e [-] represents the average porosity of the swollen
product. The stress due to tablet expansion from swelling is defined according to Peppas
and Colombo (1989):

T= =TS+ Cw, + C3/w, 9)
where T [MPa] is the total stress, w; [-] is the liquid content in the tablet, and C, [MPa]
and C; [MPa] are model parameters to be estimated. From t, we can compute ¢ to be
included in Eq. (8):

_ Goexp (- 13—85) M (10)

)

we only have end-point disintegration data, the term (

T;/,
with G, [MPa] and B [-] elastic constants from literature, and A [s] the swelling rate
(Kuentz and Leuenberger, 1998). We define the disintegration time as the time for which
the tablet stops disintegrating, i.e., dP;/dt = 0. Five model parameters need to be
estimated: C;, C3, €, 1, S,.

3.3. Product quality assessment

We consider an immediate release product, with a target disintegration time of 4 min.
According to USP <701> (2011) disintegration test specifications, the time limit for the
formulation to completely disintegrate is 5 min; therefore, we set +1 min as the
admissible tolerance with respect to the target value of the disintegration time. Results
from Sobol’s GSA (Step 1) are collected in two different metrics: the first-order
sensitivity index S;, which accounts for the direct effect of each parameter on the Kl, and
the total sensitivity index S; o7, Which also accounts for interactions with the other model
parameters (Table 1). The use of both indices allows us to identify possible parameter
interactions. Uniform distributions for the model parameters were assumed, and bounds
were chosen on typical values that can be found in the literature (Peppas and Colombo,
1989; Nassar et al., 2021). The initial parameters’ uncertainties were assumed equal to
+50% of the nominal values, as reported in Table 2. The five most influential parameters,
as characterized by the greatest total sensitivity indices, are: agy, by, bsy, n and S,,. Note
that asr, b, and b,y are parameters related to the tablet press model, suggesting that
considering only the second unit may cause a loss of information compared to the
consideration of both the tablet press and the disintegration together.
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Table 1. Sobol’s sensitivity indices for the parameters of the direct compression systems model with
respect to the disintegration time. The most influential model parameters are in boldface.

Parameter Si Sitor
a, 4.767 x 10* 1.925 x 1072
a, 3.762 x 10* 5478 x 10
ag 8.425 x 1072 0.286
by 1.562 x 10 5.431 x 102
b, 1.273 x 10* 1.634 x 102
by 2.245 x 107 0.139
y 2.332 x 10* 2.695 x 104
C, 2.815 x 10* 3.992 x 10
Cs 2.209 x 10* 3.731x 10°%
é 3.603x 10* 5.042 x 10*
n 0.641 0.881
S, 1.312 x 107 0.101

0.1 ©  Calibration samples
KS boundary

* lew

Null space

*  Projected uncertainties

o~
> 0
-0.05
0.1 o
0.1 -0.05 0 0.05 0.1
Lv, Lv,
@) (b)

Figure 2. Application of the proposed methodology to the direct compression systems model for the
assessment of tablet disintegration time: (a) initial iteration, (b) final iteration where all projected
uncertainties expressed using new estimates Cls (red points) fall inside the Kl acceptability region

(black area).

The relationship between model parameters and the Kl is assessed by building a PLS
model (Step 2). We verified that two LVs are sufficient to capture enough variance of the
data. With reference to the first iteration of the proposed workflow in Fig. 1, LV1 explains
~44% the total variance, while LVV2 ~28%. Confidence limits are considered in the latent
space in the shape of an ellipse, whose semi-axis s,along the a direction is defined as
Sa = v AaT2,, (A = eigenvalue of the matrix X yy” X; TZ,, = 95% confidence limit); this
region defines the knowledge space (KS) boundary. By assessing the effect of the initial
model parameter uncertainty on the Kl (Step 3), it can be observed that the prediction
fidelity requirement for disintegration time cannot be satisfied, as many projections lie
outside of the KI acceptability region (Fig. 2a). Thus, MBDoE techniques are applied to
increase the precision of the five relevant parameters (Step 4); (in-silico) experimental
data are used to re-estimate all parameters (Step 5). Seven iterations are required to reach
the required model fidelity with respect to the Kl prediction, i.e., seven experimental runs
would need to be simultaneously performed for the two units. The results after the final
iteration are shown in Fig. 2b: all projected uncertainties of parameter estimates fall inside
the Kl acceptability region. Finally, we report the estimated values of model parameters
with their 95% confidence intervals (Cls) and t-values (Table 2). It can be observed that
parameters C,, C; and € do not require precise estimation (t-values are lower than the
reference) to meet the Kl specification, and additional experimental effort can be saved.
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Table 2. Estimated values of model parameters with their 95% Cls and t-values. T = 95% CI larger than
+50% the parameter guess value, * = precision is not statistically satisfactory.

Parameter Units Nominal Estimated 95% CI t-value

a, MPa 11.04 10.31 0.294 35.05
a, - 1.091 0.658 0.336 1.96
agf - 0.463 0.439 2.021 x 10 2.170 x 10?
by - -8.202 -9.037 6.638 x 1072 1.361 x 102
b, - 0.326 0.150 6.670 x 102 2.26
bgs MPa* 2.460 x 1072 2.984 x 102 3.863 x 10* 1.036 x 102
y dm? 1.211 x 10 1.148 x 1078 7.309 x 10° 15.71

trer = 1.690
C, MPa 1.000 x 102 1.032 x 102 2.636 x 10* T 3.942 x 103
Cs MPa 1.000 x 102 82.46 7.231 x 1021 0.114*
g ms? 1.000 x 107 8.361 x 10* 7.493 x 102 0.112*
n - 0.900 0.929 3.591 x 107 1.037 x 102
Sy - 0.524 0.488 8.451 x 107 5.77

trer = 1.646

4, Conclusions

In this study, a systematic workflow for the development and assessment of the predictive
capability of quantitative models has been proposed and assessed. The methodology
combines traditional tools with techniques based on data analytics, with the advantage of
graphically represent both model parameters and the K1 onto a common latent space. The
methodology can be applied to any model, and be used to guide practitioners in model
development and the subsequent usage for pharmaceutical process development.
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Abstract

Desalination is one of the techniques used for meeting increasing water demand around
the world. However, as the technology is energy intensive, the increasing energy price
around the globe will force the practitioners to optimise the process from the point of
minimising water production cost. The motivation of this study is to carry out simulation
and optimisation of a reverse osmosis (RO) system to estimate and minimise the
freshwater production cost. For this purpose, a detailed mathematical model of the
process is developed using a combination of an earlier model of RO developed by the
authors and a set of cost model equations collected from the open literature. The medium-
scale industrial brackish water RO desalination system of Arab Potash Company in
Jordan is selected as a case study. The model is first used in simulation mode which
provides the detailed insight of the process and feasible operation envelope. The model
is then embedded in a single objective non-linear optimisation framework to determine
the best operating parameters in order to minimise the freshwater production cost while
optimising several operating parameters and meeting the desired water quality
specification in terms of salinity. Sensitivity of energy cost on the optimum operating
conditions will also be presented in detail.

Keywords: Brackish water desalination; Reverse Osmosis system; Simulation;
Optimisation; Water production cost.

1. Introduction

One of the methods being utilised to fulfil the rising water demand of the world is
desalination (Mujtaba and Sowgath, 2022). However, such processes require huge
amount of energy, and the rising cost of energy globally compels practitioners to optimise
the process from the standpoint of reducing the freshwater production cost. Brackish
Water Reverse Osmosis (BWRO) process is commonly used as a successful desalination
method in many countries including Jordan and Saudi Arabia using groundwater with
salinity ranging between 1,000 ppm to 10,000 ppm (Afonso et al., 2004).

According to the latest study of Pearson et al. (2021), the freshwater production cost
varies between 0.39$ to 0.66$ per cubic meter of freshwater for water productivities
ranging between 10,000 to 70,000 m?/d. However, there is still a scope of reducing the
freshwater production cost further while enhancing the BWRO performance. Model
based techniques can be applied to BWRO processes to identify such opportunity. Several
researchers were successful in identifying optimal design and operating conditions of RO
processes via simulation and optimisation leading to reduced freshwater production cost
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of water. For instance, Arroyo and Shirazi (2012) evaluated the total freshwater
production cost of six brackish water RO desalination facilities in Texas with productivity
ranging between 5455.3 to 125017.47 m*/day and the cost ranging between 0.24 to 0.528$
per cubic meter of freshwater. Ghaffour et al. (2013) carried out a techno-economic
evaluation of the freshwater production cost considering the main influential parameters
of different water desalination facilities resulting in0.5 $/m* of freshwater. Using
simulation and optimisation, an economic study was achieved by Atab et al. (2016) to
assess the specific energy consumption and freshwater production cost of brackish water
RO desalination system which utilised a pressure exchanger as an energy recovery device.
A specific model of RO process was used to carry out. The study resulted in 24000 m?/day
of productivity at 0.11 $/m?® and freshwater salinity of 400 ppm from feed water salinity
15,000 ppm with specific energy consumption of 2.8 to 0.8 kWh/m?>.

Recently, Pearson et al. (2021) attempted to obtain real cost information of seven BWRO
plants in Florida, built between 2004 to 2013, for the period between 2017 and 2019.
Considering the calculations of capital cost and operating cost of the plants with capacity
ranging between 1364 to 56818 m3/day and brackish water salinity ranging between 2,000
to 6,000 ppm, the freshwater production cost varied between 0.23 to 0.63 $/m> of
freshwater. Using solar energy for different RO-PV designs, most recently Shalaby et al.
(2022) reported the freshwater cost between 0.74-1.58 $/m>.

The cost of desalination varies significantly depending on the location and is influenced
by several factors, such as the feed water source, feed water quality, plant size, process
type and design including energy recovery, intake type, pre- and post-treatment processes,
concentrate disposal method, regulatory issues, land costs, and water conveyance to and
from the plant. Because of these variations in water quality and quantity from site to site,
and occasionally even within the same site, it is expected that the cost of RO brackish
water desalination will be the same for all cases and condition. However, each case should
be optimised to obtain the minimum freshwater production cost. To the best of our
knowledge, there has not been any study to predict the freshwater production cost of a
medium scale industrial BWRO system. This study estimates the freshwater production
cost of the RO plant via simulation and optimisation using model-based technique. To
carry out this task, an earlier RO model developed by the same authors and a set of cost
model equations gathered from the open literature are combined to create a thorough
mathematical model of the RO process comprising the estimation of freshwater
production cost and associated specific energy consumption. The model is initially
utilised in simulation mode, which offers an understanding of the actual freshwater
production cost and a workable operational envelope. In order to reduce the cost of
producing water while optimising a number of operating parameters and achieving the
appropriate salinity specification, the model is then incorporated into a single objective
non-linear optimisation framework.

2. Description of BWRO desalination system

Fig. 1 depicts the design of a brackish water RO for the APC plant with a 1200 m?/day
capacity. Permeate and retentate reprocessing designs are used in two passes. Two stages
of pressure vessels are arranged in the first pass in 4:2 order. Three pressure vessel stages
are present in the second pass and arranged in 2:1:1 order. The permeate from the first
pass is transferred to the second pass for further purification. The brine line from the first
pass is drained. A high-quality water of 2 ppm is produced from the second pass. The
retentate of the second pass is returned and mixed with the raw feed water to maintain a
high productivity.
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Fig. 1. A schematic representation of BWRO system of APC
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3. Modelling of BWRO desalination system

A steady-state model was created by Al-Obaidi et al. (2018) for the APC medium-scale
brackish water RO desalination plant. The model was constructed based on a number of
assumptions. The most important ones are: 1) steady state operation, 2) fixed membrane
features and channel geometries, 3) the film theory expresses the concentration
polarisation phenomenon, 4) 1 atm in the permeate channel, 5) fixed temperature, and 6)
The spacer properties are used to quantify the pressure drop in the feed channel. Before
being utilised to examine the plant performance under various operating situations, the
model was verified using APC plant data. In this work, this model has been improved by
including a sub-model to calculate the cost of producing freshwater using data from
several research (Filippini et al., 2018; Al-Obaidi et al., 2019; Malek et al., 1996). Table
1 presents a set of important equations of the RO model and the sub economic model used
in this study. For further details of the model developed, parameters and variables and
associated effects on the performance indicators can all be found in Al-Obaidi et al.
(2018).

4. Simulation of BWRO desalination system

Simulation of the process is carried out to estimate the most important performance
indicators including the freshwater production cost and specific energy consumption.
Table 2 depicts the simulation results for the set of original inlet conditions of 988.93
ppm (salinity), 9.22 atm (pressure of 1% pass), 9.832 atm (pressure of 2™ pass), 2034.33
m?/day (feed flowrate) and 25 °C (temperature).

Furthermore, the estimation of electrical cost of pumping the brackishwater into the 1%
and 2™ passes of RO system is important to be addressed. The power price ($/day) is
calculated using the following correlation:

Power price per day ( ay ) SEC ( )xproductlmty ( )xFactor(m)
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Factor is the specific price of each kWh in Jordan which is 0.123$/kWhr (Jordan electricty
prices). Table 2 shows the energy price per day.

Table 1. RO model

Equation Description Unit
Q= Aw (Pf - APd;—"”'E - P, —my, — n,,) A Water flux (m%/s)
Qs= By (G — C,) Solute flux (kg/m? s)

9.8692x1076 A*pp, Qp? L
APyropp = M:wa;’e)z Pressure drop per element (atm, -)
% = exp (Q"/%) Membrane surface concentration (-)
05
k = 0.664 kg RepS Sc033 (%) (zljﬂ) Mass transfer coefficient (m/s, -)
n/ \ Lf
T
C, = Lelw Permeate concentration (kg/m?®)
Jw+Bs ek
Rej = Cfc‘cv Rec = Z_ﬁ Solute rejection and water recovery )
I f
(Pr(ptane) ¥191325) Qs piant) ) ] )
SEC = Qp(Total) Epump Specific energy consumption (kWh/m?)
36x105
TAC =TCC + AOC Total annual cost ($/yr)
TCC = [(Cpip + Cpump + Cme) SD CC] Total capital cost ($/y1)
AOC = 0Cpy + O0Csc + OCcn + OCme + 0Ciap + Total annual operating cost ($/yr)
OCmaint + Ode
Cwip = 996 (86400 Qf(piane)*® Water intake and pre-treatment cost $)
C =
Pump Capital cost of high-pressure pump (9)

[52 (3600 Q(piant) (Preprant) 0.101325))*%¢]

Membrane module and pressure vessel

Cme = Ns Npy (Ce Nete + Cpy) capital cost )
0Cpy, =

365x24 ((3600 (P f(ptant) 0-101325) ) Qf(plant) )) EL Pumping operating cost ($/yr)

3.6 Epump Emotor <
0Csc = 3600x24x365 Cr Qppians) Lr Annual operating spares cost ($/yr)
0Cpq = 3600x24x365 Cpq Qppiant) Ly Effluents disposal cost ($/yr)
0C.p, = 3600x24x365 C¢t Qrpiane) Ly Annual chemical treatment cost ($/yr)
0Cpe =0.2Cpe Annual membrane replacement cost (8/yr)
OCiap = Ciqp 3600x24x365 Qppiant) Annual labour cost ($/yr)
TCC
FWCgp = M Freshwater production cost ($/m?)
3600x 24 365 Qp(plant)

CCRF = [(:Eljl):ll] Capital cost recovery factor (yr)
0Cnain = 0.02 PUC 3600x24x365 Qp(piant) Annual maintenance costs ($/yr)

Table 2. Simulation results

S = 2 = 2 o3
Q
> z < g 8 o 8 S L 8 S
B~ g = > s .8 — =] 3 O o >
SN =~ 5 ) = EE s =& 3 2o ]
8E & S E = S ~ o && A=A s L EIRRY: Eolies]
5 00T 25 131 O e o £ = SN <Y 2 E 8.5
=5 134 5] =g = = < = ISIR%] = 5 = ~
Z5E ERRS] > = s 22 S 1) 2 2SA >
o) 5 o o 5 a - = O L3 a0 >
= 3 = = 0 o= ] 2 = 3 5 S
o = o O s o =
& 4 3 2] o = e &
1%} = 53
1164.51 2.0 99.79 57.24 0.834 64005.66 | 75753.3 0.192 119.45




Simulation and optimisation of a medium scale industrial reverse osmosis 49
desalination system

5. Optimisation of BWRO desalination system

This section intends to optimise the operation of BWRO system of APC to guarantee the
lowest freshwater production cost (objective function) via determining the optimal
operating condition of feed pressure of the 1% and 2" passes and feed flowrate. The other
operating conditions of groundwater salinity and temperature will be taken as fixed values
of 988.93 ppm and 25 °C, respectively. Furthermore, the optimisation framework has
considered several inequality constraints including the upper and lower feed flowrate for
each membrane. Also, the specific energy consumption has been constrained at its
simulation value. The non-linear single-objective optimisation framework can be
described as:
Given: Feed water pressure and flowrate, RO module specifications.
Optimise: The optimisation variables of feed pressure, and flow rate.
Minimise: the freshwater production cost (FWPC) of RO system.
Subject to: Equality and inequality constraints and limits of optimisation variables.
Thus, the optimisation problem can be mathematically represented as:
Min FWwpPC
Qf(plant)t Pp(plant)
Subject to: Equality constraints: RO process model and fixed specific energy
consumption (simulation value) (SEC = 0.834 kWh/m®)
Inequality constraints:
a) lower and upper limits of feed flow rate of RO system

(696.96 m¥/day) Qraianty” < Qfpiant) < Qrpiany’ (3707.52 m¥/day)
a) lower and upper limits of feed pressure of the 1%t and 2" passes of RO system
(5 atm) Pf(lst pass)L < Pf(lst pass) < Pf(lst pass)U (12 atm)
(5 atm) Pf(an pass)L < Pf(an pass) < Pf(an pass)u (12 atm)
c¢) lower and upper limits of feed flow rate of each membrane module
(87.12 m*/day) Qf(membrane)L < Qf(membrane) < Qf(membrane)u (463.44 m’/day)
Table 3 shows the optimisation results of several perforamcne indicators including the
freshwater production cost and the optimal feed pressure and flowrate. Note that the
freshwater production cost could be reduced by 6.7% by increasing the pressure of the 1%
and 2" passes from 9.22 and 9.832 atm to 9.93 and 10.59 atm, respectively. Also, it can
be noticed that the feed flowrate has been decreased from 2034.33 to 1900.8 m*/day to
assure increasing the rate of permeation through the membranes due to increased
residence time of the water inside the module. The productivity increases by 8% while
maintaining a high-quality freshwater of 2.1 ppm (as desired). However, the electrcial
cost is inevatibly increased (by 8%) due to increasing the productivity in cubic meter per
day.

Table 3. Optimisation results

Optimised inlet conditions Optimised results
Parameter | Value | Unit Parameter | Vvalue |  Unit
Feed pressure of 1* pass 9.93 atm Water recovery 66.33 %
Feed pressure of 2™ pass 10.59 atm Salt rejection 99.78 %
Feed flow rate 1900.8 m?’/day | Salinity of product water 2.1 ppm
Specific energy consumption 0.834 kWh/m?
Water productivity 1260.81  m’/day
Freshwater production cost 0.179 $/m?
Electricity cost 129.33 $/day

Reduction of freshwater production cost (in comparison to simulation) = 6.7%
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6. Conclusions

This paper attempted to reduce the overall freshwater production cost of a medium scale
brackish water RO desalination system of Arab Potash Company (Jordan) via process
modelling, simulation and optimisation. The simulation of the studied RO system
obtained the values of performance indicators while the optimisation has obtained the
minimum freshwater production cost with optimal feed pressure of the 1% and 2" passes
and inlet feed flowrate for the same specific energy consumption (as in the real plant and
simulation). The freshwater production cost is reduced by 6.7% in comparison to the
original simulation value while achieving a high-quality of product freshwater. Note, the
actual electrical cost increases by more than 8% due to increase in the water productivity
of RO system (compared to actual plant productivity). In the context of model refinement,
relaxing the model assumptions would certainly provide more accurate predictions of the
performance metrics. Furthermore, it should be noted that the developed model did not
thoroughly incorporate the influence of fouling on the performance metrics. The
enhancement of the established model is expected to introduce actual estimation of the
freshwater production cost, which should be addressed in future study.
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Abstract

The modeling and optimization of multi-scale process systems is based on several
interconnected process sub-systems. Due to the complexity of each individual sub-model,
the resulting integrated process framework optimization formulations are
computationally challenging to solve. While the richness of the multi-scale model
employed is desired to maintain in order to obtain a solution with some degree of
accuracy, simpler surrogate models are typically more attractive as a means to tame the
underlying complexity, albeit often leading to an increase of the problem size. Here, the
food-energy-water nexus (FEWN) is selected as a representative multi-scale process
system, with focus on the reverse osmosis (RO) water supply sub-system. Based on a RO
desalination model, two models are developed and compared in terms of accuracy, model
complexity and size as well as computational efficiency, (i) a mixed-integer non-linear
programming (MINLP) surrogate model, and (ii) a mixed-integer linear programming
(MILP) surrogate model of reduced complexity but larger size. The results indicate that
improved computational times can be obtained for a valid (lower bound) solution based
on the MILP modeling strategy within the same level of accuracy, further underlying the
importance of the selection of an appropriate surrogate model.

Keywords: optimization, surrogate modeling, food-energy-water nexus, reverse osmosis.

1. Introduction

The optimization of multi-scale process systems, which are composed of several
interconnected sub-systems, remains challenging. Encountered challenges besides the
multi-scale nature, encompass the complexity, as well as the size of the resulting
optimization models. One approach to resolve these challenges is the usage of surrogate
models to approximate sub-systems of the overall process systems (Kakodkar et al. 2022,
Guillén-Gosalbez et al. 2019). This work evaluates in detail how changes in the employed
surrogate model can have significant impact on the solution generation of the integrated
process system. One of these interconnected multi-scale systems is the food-energy-water
nexus (FEWN), which postulates that sustainable solutions regarding food, energy and
water systems can only be obtained when all resources are considered holistically.
Recently, more and more interest has been placed on the FEWN due to depleting natural
resources and increasing global demands (Di Martino et al. 2019, Garcia and You 2016).
FEWN models result in complex optimization programs, where surrogate models can
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mitigate computational difficulties by reducing the complexity of the system. However,
such systems usually increase in number of constraints and number of variables, which
in turn can result in an intractable optimization model as well, especially if the surrogate
is solved over a given time horizon multiple times integrated in an overarching process
system (Allen et al. 2022). Thus, the scope of this work is to analyze and compare a
mixed-integer linear programming (MILP) and a mixed-integer non-linear programming
(MINLP) surrogate model which are representative of a sub-system in an interconnected
multi-scale process model. As an example for such an interconnected system the FEWN
is selected, with focus on a reverse osmosis (RO) desalination plant as the water supply
system. The comparison is based on the accuracy of the obtained minimized solutions,
the computational efficiency in the form of the necessary computational time to obtain
solutions and the difference in the size and complexity of the optimization models. Next,
the system under investigation is described. Then, the detailed modeling equations are
discussed, before analyzing and discussing the results.

2. System Under Investigation

To analyze and compare the impact of MILP and MINLP surrogate models for the
integration in a multi-scale process system the performance of RO desalination plant
models is compared. As visualized in Figure 1, the goal is to integrate the RO model in a
multi-scale FEWN model which in turn specifies restrictions regarding the design and
operation of the RO plant. The goal is to solve this integrated model at an hourly time
scale for a one-year time horizon, resulting in 8760 time points. Solutions specify the
sustainable and interconnected water, energy and food supply system design and
operation (Cook et al. 2022, Di Martino et al. 2022a). Thus, it is important to evaluate the
model approximations in terms of accuracy and computational efficiency for the solution
generation. All obtained surrogate models are based on one-and-a-half years of
operational RO plant data, as presented in Di Martino et al. 2022b.

Qr Capture RO Plant Behavior

Qrsum Model Surrogate

Design and
Operation
(pssnmnnnn
H

Cpsum

Food-Energy-Water
Nexus Optimization

Energy Supply @ Food Supply
> Renewable > Greenhouse
Energies Farming

Figure 1: Schematic overview of the placement of the sub-system (RO) in the multi-scale process
system (FEWN).

3. Modeling

The RO desalination plant is modeled and optimized according to Eq. 1 to 9 (Di Martino
et al. 2022b).

min SEC* =
S.t.

1 v4 1 2 14 N2 \2
i Zi=t P+ oo (Z,‘=1 Prsj =521 Pr,z,j) — 2 Xj=1Pgrp,j (D
WRgys = WR™S & WR; = WRI®® Vi € {1,2,3} Q)
Qr = Qf* 3)
Cp,t—l = Cp,t < C{)’ES (4)
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YjPij

WR; = WRM™* . S vi €{1,2,3} (3)
P =fi(Prij) Vi ={12},vj = {1,2,3,4} (6)
Praj=Pr1;Vj€{1,234} @)
APgrp; = fo(Prs;) Vi = {1,2} ®)

Cpe = f3(Qr, WRy, WR,,WR3,Cpy 1) Q)

The presented objective function (Eq. 1) minimizes the linearized specific energy
consumption of the system (SEC™) based on the feed (Ps; ;) and retentate pressures of
each stage i and parallel flow j (P, ;). 1, and 7, denote the efficiency of the utilized
pumps and energy recovery device, respectively. Eq. 2 to 9 summarize all necessary linear
constraints of the system to specify the operation and design of the RO plant. The overall
water recovery (W Rsys = Qp/0Qf), the feed flow (Qf) and the permeate concentration at
the given and previous time point (Cp;, Cp¢—q1) are restricted to satisfy given water
demand scenarios (Eq. 2 to 4). It is important to note that W R, is implicitly restricted
by restricting the water recovery of each stage. The water recovery of each stage
(WR; Vi € {1,2,3}) is estimated based on the observed maximum water recovery
(WR™™ vi € {1,2,3}) and pressures, according to Eq. 5. Eq. 6 and 7 summarize the
pressure modeling of the system, with the linear regression (f; (Pf‘i, j)) used for
calculating the retentate pressure of stages one and two for all parallel flows based on the
respective feed pressure and the utilization of the retentate of stage one as the feed of
stage 2. The pressure difference across the energy recovery device (APggp ; Vj = {1,2})
as well as the overall permeate concentration (C, ) are calculated based on the MILP
reformulation of a feedforward artificial neural network (ANN) with rectified linear units
(ReLU) as activation functions, as stated in Eq. 8 and 9 (f; (Pf‘3‘ j) vj ={1,2},

f3(Qr, WRy, WRy, WR3, Cpp-1)).

3.1. MINLP Surrogate Model

SEC™ is derived by applying process specific, non-generic assumptions as described in
Di Martino et al. 2022b. Therefore, obtained solutions actually specify lower bounds of
the true solution. Accordingly, the non-linearized formula to calculate the exact specific
energy consumption (SEC) of the system is utilized in this study, as shown in Eq. 10.
Furthermore, to obtain the energy consumption of the system (EC), SEC has to be
multiplied by W R, and @, resulting in a trilinear term (Eq. 11). In addition, W R, can
be derived based on WR; Vi € {1,2,3} with the nonlinear equation presented in Eq. 12.
Thus, the MINLP surrogate model is given by minimizing Eq. 10 subject to the
constraints summarized from Eq. 2 t0 9, 11 and 12. With this modified model formulation
no non-generic process specific assumptions are required.

(1-WR1)-(1-WR) [1 w2 14
T[EZj=1Pf,3,j —22j=1 Pr,z,j] -

(1-WR,)-(1-WR,)-(1-WR3)-
1 2 3) 12 Z]Z'=1APERD,j)

2
EC = SEC - WRgys - Qf (11)
WRgys = WRy + (1 — WR,) - WR, + (1 = WRy) - (1 — WR,) - WRs (12)

=_1 (Lys .
SEC = o (- ZieaPray +

(10)
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3.2. MILP Surrogate Model

Next, a linearized version of the nonlinear model is obtained by training ANNs with
ReLUs as activation functions and reformulating them as MILPs for the calculation of
SEC and EC, ultimately resulting in piecewise linear surrogate models. Here the results
of the MILP approximations are specified as SEC (see Eq. 13 to 17) and EC (see Eq. 18
to 22). The obtained weights and biases together with the R? value of both surrogate

models are summarized in Table 1. The auxiliary positive variables
(xksee) sUse) y(kee) (KEQ) pinary variables (2 k55, zKE)), together with lower and

upper bounds (LBSES) [ pUES)  yplsEd) ypkE) are introduced for the MILP
reformulation.

WS [WRy WRy WRs Q)" + b0 = x (s — %50 vieo o € {1,2) (13)
xlper®) — 750 . UBGEES) < 0, Vksge € {1,2) (14)

seper? = (1 - zg529) - LBGE® < 0, Wk € {1,2) (15)

x5O, sgrere) 2 0,208 € (0,1}, Ve € (1,2} (16)

SEC = T, I’Vs(EkégC) 'xs(:"scEC) + bsgc an

WSS - [SEC WRqys Q] + bicid) = x®) — spee®), ke € (1,2,3) (18)
xee) _ g Kee) ypked) < 0, vk, € {1,2,3} (19)

seer? = (1 - zger®) - LB < 0,k € {1,2,3} (20)

xee) skeo) 5 0,60 € (0,1}, Vg € (1,2,3) 1)

EC = Yy, W - xS + bye, (22)

Table 1: Weights (W(k) w ), biases (b,(l’;), bpaz) and R? of the surrogate models for the

na,1’ "'na2
approximation of the specific energy consumption (SEC) and energy consumption of the

system (EC).
k k k 2
na  kna Wn(a)l Wn(a,Z br(La)l bna,2 R
1 [1.1556 —0.5436 0.4116 0.4630] 0.4638 1.0465
SEC 2 [0.2843 0.1137 0.1071 1.3843] 0.5371  —0.3829 0.9950 0.99
1 [0.7492 — 0.3236 0.4624] 0.8180 0.4966
EC 2 [—1.0350 2.5363 1.3228] 0.2926  —0.3701 —0.9443 0.99
3 [-0.1111 —0.1307 — 0.7936] —0.2929 —1.1133

Lastly, Eq. 12 is linearized with a first-order Taylor expansion around the nominal
operating point of the RO plant, as shown in Eq. 23 (WRyy,s = 0.6039,WR; =
0.3113,WR, = 0.2935,WR; = 0.1860). For the relevant operating range of 0.4 <
WRys < 0.85, the approximation results in R? = 0.98. Overall, the MILP surrogate

model is composed of minimizing SEC subject to Eq. 2 to 9 and Eq. 13 to 23.

WRsys = WRyys + (1 —WR, —WR3 + WR, - WR3) - (WR, —WR;)
+(1—-WR, —WR;+WR,-WR3) - (WR, — WR,) (23)
The described nonlinearities are overcome by introducing piecewise linear
approximations resulting in a less complex optimization model. However, the resulting
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system increases in size, with an increased number of constraints (60 vs. 80) and variables
(continuous 47 vs. 57; binaries 9 vs. 14). The optimization models have been solved in
GAMS with the CPLEX solver for the MILP surrogate model and the BARON solver for
the MINLP surrogate model. All surrogate models have been derived in MATLAB.

4. Results and Discussion

To analyze the trade-offs between system complexity and system size of the presented
MILP and MINLP surrogates, the monthly energy consumption of the year 2017 is
minimized based on the obtained operational RO data. The results of the optimization are
visualized in Figure 2. The results of both models are of the same order of magnitude,
where for the same set of restrictions in terms of W R, and Qf the MINLP surrogate
results in higher energy consumptions than the MILP surrogate, as expected.

300 T o Wiin Energy Result MIIF [Di Martinoetal 20226] .oy Range of SECs for Brackish Water :

= Min Energy Result MILP RO Desalination plants according
Min Enerzy Result MINLP to Eke et al. (2020)
esult MINLP (MILP Result Constraints)

=—+—=SEC Min Enerzy Result MINLP

Manthly Energy Consumption [MWh]
"
g

Specific Energy Cansumption - SEC (kWh/m?)

50 4 ...

0 . . .
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Figure 2: Comparison of the monthly energy consumption of the RO plant based on the
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Figure 3: Left: Pareto front of the energy consumption of the RO system dependent on the system’s

water recovery and feed flow; bars — results of MILP, points connected with line — results
of MINLP. Right: Comparison of the necessary computational time to solve the MILP
and MINLP; boxplot: {min — Ist quartile — median — 3rd quartile — max}, x — mean,
outliers — 1.5 times the interquartile range larger than the third quartile.

Next, the energy consumption of the RO plant is systematically minimized for different
sets of WRy,s and Qf resulting in the Pareto front shown in Figure 3. Again, for all
observed results, the MILP denotes the lower bound of the solution. The difference
between the MINLP and MILP solution decreases with increasing water recovery. This
trend is observed for all feed flows under investigation. In addition, the computational
efficiency of obtained solutions was recorded, as shown in Figure 3. In all observed cases,
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the computational time for the MILP solution generation is less than the MINLP one,
even in extreme cases. On average, the difference between the observed computational
times is 2.28s. Thus, utilizing the MILP indeed results in significant reduction of
computational time (for an hourly time scale over one year, 5.55 hours) while the obtained
lower bounds are good approximations of the true optimum for high water recoveries.

5. Conclusion

This work analyzed and compared a MILP and MINLP surrogate model for the
integration in a multi-scale process system. For illustration, the surrogate modeling of a
RO process for the integration in a FEWN system has been studied due to its importance
for sustainable solution generation. The derived MILP surrogate provides lower bounds
to the true optimum which are of the same level of accuracy as the MINLP surrogate
solutions, while resulting in significant increase of computational efficiency, viz. the
reduction of computational time. This trade-off between increasing the size of the
optimization model to linearize it, is particularly important to consider in applications for
interconnected multi-scale process systems.
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Abstract

In this study, a multi-fidelity surrogate modeling method based on physics-informed
neural network (PINN) was proposed, which integrates high-fidelity simulation data and
low-fidelity governing equations described by differential equations. By leveraging
governing equations in the training of deep neural networks, the reliance on large amount
of data has been relaxed. In the meantime, imposing physical laws ensures that the
achieved surrogate models have clear physical meanings, which also improves the
extrapolation performance of the models. Herein, the proposed multi-fidelity PINN
surrogate modeling method was implemented to the simulation of the startup phase of a
continuous stirred-tank reactor (CSTR) for illustrating its feasibility and advantages.
From the computer experiment results, it is observed that the proposed method
successfully reduced the sample size needed in model training and significantly improved
the model extrapolation performance, facilitating its potential industrial applications.
Keywords: physics-informed neural network, multi-fidelity, surrogate modeling, deep
learning.

1. Introduction

Numerical simulations, which use mathematical formulae to simulate complex
physical systems, are becoming increasingly important in engineering tasks and decision-
making processes (Moin and Mahesh, 1998), but the computational burden is a major
practical problem limiting their applications. Surrogate models are a good solution to this
problem. Nevertheless, data collection from high-fidelity simulations for training
surrogate models is still computational expensive. Multi-fidelity surrogate modeling is an
alternative approach, which utilizes both high-fidelity and low-fidelity data for model
training (Fernandez-Godino et al., 2019). A remaining problem is that, without a
guidance of physical laws, the performance of surrogate models usually degrades
significantly in the extrapolation applications.

In this study, we combined the strengths of data-driven and physics-based models to
reduce the requirement on the amount of data for surrogate model training and improve
the model extrapolation performance. In detail, we used the low-fidelity governing law
described by a differential equation to constrain the training of the neural network model
and obtain a multi-fidelity surrogate model based on physics-informed neuron network
(PINN) (Raissi et al., 2019). With the aid of the physical law, the multi-fidelity PINN
(MFPINN) surrogate model better approximates the simulated process especially in the
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situation of small data or extrapolation. These advantages facilitate the potential
applications of MFPINN to industries.

2. Numerical Simulation

In this study, a non-isothermal continuous stirred-tanked reactor (CSTR) was
simulated using ANSYS Fluent to demonstrate the feasibility of proposed method. Figure
1 show a full-scale three-dimensional (3D) model of the system and Table 1 lists the
system parameters and design space of input variables (Chuang et al., 2018). Here, Cai is
the inlet concentrations of species A, Ti is the inlet temperature, V is the volume of the
reactor, Fj is the inlet and outlet mass flow rate, S is the stirring speed of impeller, and
1=V/F; is the time constant of the CSTR. The physical characteristics, such as material
density p, specific heat Cp, thermal conductivity k, and dynamic viscosity 1, are assumed
to be constants with respect to temperature and compositions. This system consists of a
first-order reaction, A—B, where the activation energy is Ea and the pre-exponential
Arrhenius constant is ka. HRa is the molar heats of the reaction. This 3D simulation
provides information on product concentration and temperature as outputs, and we have
selected the outlet concentration Cy as the predicted variable in presenting our results in
this study due to its significance in determining product quality.

The mesh shape is tetrahedral with a minimum orthogonal quality of 0.238 and
maximum skewness of 0.762 for accurate simulation results. It has 1867511 elements and
342112 nodes. The time consumption of each simulation run is about five to six hours.
Consequently, this high-fidelity model is not suited for the engineering applications
requiring multiple runs of simulations, such as optimization and sensitivity analysis. To
deal with this problem, an MFPINN is proposed in this work, which can be implemented
to build a surrogate model with a relatively small amount of simulation data.

Reactant Feed

Fradust
Ca

Figure 1 Schematic diagram of 3D model of CSTR process

Table 1. System parameters and their values used in the simulation

Parameters Values Units Descriptions
ka 1.4x10% 1/sec Physical constant
HRA -2.12x107 J/kgmol Physical constant
Ea 3.64x107 J/kgmol Physical constant
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1180 Kg/m3 Physical constant
Cp 3.2x10° J/kg/K Physical constant
K 0.61 W/m/K Physical constant
n 0.0008 Kg/m/s Physical constant
\Y 18.764 dm? Physical constant
S 120 rpm Physical constant
R 8.314 J/mol/K Physical constant
Cai 2-3 M Design variable
F; 0.0167-1.67 L/s Design variable
T; 300-370 K Design variable
Ca mol/dm? System output

3. Multi-Fidelity Surrogate Model base on PINN

In the course of surrogate modeling of high-fidelity simulations that are
computationally expensive, the cost of simulation data acquisition for surrogate model
training is prohibitive. Therefore, we are inevitably confronted with the challenge of small
data. Most conventional machine learning techniques, including most deep neural
networks, are not robust in such a situation, whose performance cannot be guaranteed.
The state-of-the-art PINN technique proposed by Raissi et al. (2019), which aims to solve
supervised learning problems while respecting physical laws described by differential
equations, can be adopted to address this issue. Inspired with PINN, a multi-fidelity
surrogate model named MFPINN is developed by integrating both high-fidelity
simulation data and low-fidelity physical law.

The low-fidelity physical law used in the MFPINN captures the essential physics of
the process by assuming that the CSTR is perfectly mixed and isothermal at 300K. The
following ordinary differential equation (ODE) can be obtained according to the
conservation law to the mass.

dCy,
TW: CAi_CA+rAT (1)
With a first-order reaction, -1, =k C4 and T = % , where £k is defined by the Arrhenius
equation.
—Ea
k = k,eRT ()

Consequently, eq. (1) is expressed as:

dc¢, 147k Cyi
dt + T A T 3
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MEFPINN can be understood as a feedforward neural network (FFNN) trained with
high-fidelity data generated with the numerical simulations described in Section 2 and the
low-fidelity ODE described in eq.(3), whose loss function is composed of both two terms,
i.e. a prediction loss and an ODE loss as depicted in eq.(4) ~ (6).

Loss = Prediction loss + ODE loss 4
1 Ntraining
prediction loss = ——— Z (Ca(T;, Fi, Cpin tr) — Ca)? (5)
training e
1 Ncollocati0n+Ntraining dz‘\ T F C
i Iy i t;
ODE loss = Z ( A( iy SAL L)

Ncollocation + Ntraining =0 dt (6)

1+7tk = Cai,

T A T )

where T, F;, Cy; are three process parameters, which represent inlet temperature, inlet
volume flow rate, and inlet concentration, respectively, ¢ is the time
value, C,(T;, F;, Ca;, t;) is the prediction of the system output, i.e. the outlet concentration
C,, provided by the neural network, Nyaining denotes the number of training data points,
and Neotiocarion denotes the number of collocation points which are chosen by Latin
hypercube sampling (LHS) (Stein, 1987) within the design space of C4;, F;, and T; as listed
in Table 1. The utilization of collocation points reduces the requirement on the amount of
training data points. The automatic differentiation techniques (Baydin et al., 2018) was
adopted for calculating the differentials. The training process of the MFPINN model is
illustrated in Figure 2, where 8" denotes the model parameters including all weights and
biases.

Neural Network

o »

(o)
N :

N ODE loss

Prediction loss

Minimize

AN i e S

...... N f/"‘?;\ [dc,(ri Fi,caLe) 141k Gy |-
[ \E‘ a ) o s
( O’) -

Automatic differentiation

............................

Figure 2. Training process of MFPINN

4. Case Study

For the training and testing of both the proposed MFPINN model and the
conventional FFNN model used for comparison, LHS was adopted to generate eight
different operating conditions within the design space of Cy;, F, T; as listed in Table 1.
The process was simulated under each operating condition for 150 seconds and the
sampling time interval was set as 0.1 seconds for data generation. The hyperparameters
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of the MFPINN model are given in Table 2. As shown in Table 2, the number of hidden
layers and neurons per hidden layer of both the MFPINN and FFNN models are 8 and
100, respectively. Moreover, the number of collocation points collected for MFPINN is
100,000.

Table 2. Hyperparameter setup of both MFPINN and FFNN models

Number of hidden layers 8
Number of neurons per hidden layer 100
Number of collocation points 100,000

4.1 Modeling with Small Data

In the first scenario, we used the simulation data collected from the 100™ to 400™
time intervals under each operating condition as the test set for both models. The training
and validation sets with different sizes were randomly selected from the rest of the data.
The ratio between the sizes of the training and validation sets was 4:1. The model test
results show that, when the size of training set is relatively large, e.g. over 300, the
performance of the two surrogate models are comparable. However, when the size of
training set is reduced to 200, the MFPINN model is significantly better than the FFNN
model, especially when applied to operating conditions 5~7. Tables 3 and 4 show the
values of the coefficient of determination (R?) and mean squared error (MSE) of both
models.

Table 3. Test results of MFPINN and FFNN when the size of training set is 300

R?of MFPINN R? of FFNN MSE of MFPINN MSE of FFNN
Condition 1 0.9964 0.9996 0.0002 1.87%10°%
Condition 2 0.9987 0.9952 8.97*10°5 0.0003
Condition 3 0.9996 0.9996 2.57%10°% 2.57*10°%
Condition 4 0.9962 0.9990 6.49*10°° 1.79%10°%
Condition 5 0.9777 0.9817 6.68%10 5.46*10°
Condition 6 0.9994 0.9651 3.89%10° 0.0023
Condition 7 0.9955 0.9997 0.0003 1.90%10°
Condition 8 0.9998 0.9972 7.40%10°¢ 0.0001

Table 4. Test results of MFPINN and FFNN when the size of training set is 200

R?of MFPINN R? of FFNN MSE of MFPINN MSE of FFNN

Condition 1 0.9898 0.9534 0.0005 0.0021
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Condition 2 0.9983 0.9999 0.0001 8.09%10-°
Condition 3 0.9999 0.9905 7.10%10°¢ 0.0006
Condition 4 0.9981 0.9993 3.22*%10° 1.13%10°5
Condition 5 0.9183 0.4434 0.0002 0.0017
Condition 6 0.9862 -0.9912 0.0009 0.1316
Condition 7 0.9982 0.3650 0.0001 0.0073
Condition 8 0.9865 0.9568 0.0006 0.0020

4.2 Extrapolation
In order to evaluate the extrapolation capability of the proposed model, the second

scenario was designed, where all data collected under operating conditions 2 and 6 were
only used for test, while the data of other operating conditions were divided to the training
and validation sets under a ratio of 4:1 The test results are shown in Table 5, while Figure
3 compares the ground truth and the prediction values of different models. Obviously, the
proposed MFPINN model outperforms its competitor. Because the MFPINN model is
guided by the physical law during the model training process, it provides a predicted
profile of CA much closer to the high-fidelity simulation data, i.e. the ground truth. Its
R2 values for operating condition 2 and 6 reach 0.967 and 0.977, respectively, although
this is an extrapolation application. In contrast, although the training data is sufficient in
this scenario, the FFNN model only achieves R2 values of 0.769 and 0.887 for operating
condition 2 and 6, respectively. It is easy to understand that the extrapolation performance

cannot be guaranteed unless the physics is taken into consideration.

Table 5 Regression analysis of MFPINN and FFNN models

R? of MFPINN R?of FFNN MSE of MFPINN MSE of FFNN
Condition 2 0.9673 0.7694 7.10%10°3 5.03*%10%2
Condition 6 0.9765 0.8873 4.80%10° 2.28*10%

Operating condition 2

Operating condition &

e | -y e
n = in =

Outlet concnetration of species A
o -

High-Fidelity(Ground Truth)
=== Low-Fidelity(ODE)
=== Prediction of PINN
-=-= Prediction of FFNN

Outlet concnetration of species A

High-Fidelity(Ground Truth)
Low-Fidelity(ODE)
Prediction of PINN
Prediction of FFNN

100 120 140

&0 B0 100 120 140

Time(s)
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60 80
Time(s)
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Figure 3. Predicted Cy of different models
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5. Conclusions

In this study, we integrate the high-fidelity simulation data and the low-fidelity
physical law to build an MFPINN model for surrogate modeling. The experimental results
show that, thanks to the guidance of the physical law, the proposed MFPINN outperforms
the conventional FFNN when the training data is insufficient. Furthermore, the physical
law comes in handy in the extrapolation. As a result, the MFPINN model predicts the
outlet concentration of the CSTR system more accurately than the FFNN model. The
application to the CSTR system illustrates the feasibility and potentials of the proposed
MFPINN model.
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Abstract

This work presents a computer fluid dynamics (CFD)-model-based approach to
continuous freezing process design for human induced pluripotent stem (hiPS) cells. A
process model was developed that combined a hybrid single-cell freezing model covering
the cell level with a CFD model covering the cryovial and freezer levels. Given an inlet
coolant temperature, an inlet coolant velocity, and a residence time, the developed hybrid
model can calculate the cell survival rate as a quality indicator. We applied the developed
process model to three operating conditions of continuous freezing processes for hiPS
cells. As a result, the survival rate in one of the operating conditions could achieve more
than 0.90. Thus, it was demonstrated that designing the continuous freezing process could
be performed with appropriate value selection of the decision parameters.

Keywords: Regenerative medicine, Cryopreservation, Cell therapy, Hybrid model,
Optimization.

1. Introduction

Human induced pluripotent stem (hiPS) cells (Takahashi et al., 2007) are regarded as one
of the most promising sources for regenerative medical products because of various
advantages over the conventional sources, e.g., human embryonic stem cells (Narsinh et
al.,, 2011). Along with recent successful clinical studies, e.g., Parkinson’s disease
(Morizane, 2019) and retinitis pigmentosa (Tagawa et al., 2021), the implementation of
medical treatments using hiPS cells is in progress.

In hiPS cell manufacturing, freezing processes are one of the most critical steps because
the process is needed to the transportation and preservation of the cells. Generally, two
methods can be adopted for the freezing process of hiPS cells: slow freezing and
vitrification. Slow freezing has been applied to many cell types, where cryovials filled
with cell suspension are cooled in a freezer at a predetermined cool rate. In vitrification,
the vials are immediately cooled using liquid nitrogen. At a commercial scale,
vitrification is rarely adopted because of vitrification is rarely adopted in the cell therapy
industry because of a scale limitation and process complexity (Vajta and Nagy, 20006).
Therefore, in this work, we focus on the slow freezing option.

In general, the slow freezing of hiPS cells has been performed by a direct contact freezer
that can accommodate only a limited number of cryovials. On the other hand, with the
expected future commercialization, there is a need to design continuous slow freezing
processes for hiPS cells that can handle many cryovials. Most recently, a computer fluid
dynamics (CFD) model-based approach to scale-up batch slow freezing processes for
hiPS cells using forced convection-based freezers was published by the authors’ research
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group (Scholz et al., 2022). However, a process design of continuous slow cell freezing
was yet to be performed.

This work presents a CFD-model-based approach to continuous freezing process design
for hiPS cells. A process model was developed that combined a hybrid single-cell freezing
model covering the cell level with a CFD model covering the cryovial and freezer levels.
The cell level model was based on our previous publications (Hayashi et al., 2021, 2020),
and the cryovial and freezer level models were newly constructed. Given an inlet coolant
temperate, an inlet coolant velocity, and a residence time, the developed hybrid model
can calculate the cell survival rate as a quality indicator. We applied the developed model
to three operating conditions of continuous freezing processes for hiPS cells.

2. Continuous freezing processes for hiPS cells

The continuous freezing process assumed in this work is represented in Figure 1. The
freezer adopted convection-based cooling and consisted of four stations according to the
three-temperature zones proposed by Hayashi et al. (2021), i.e., dehydration (Station 1),
nucleation (Stations 2 and 3), and further cooling (Station 4). The decision parameters in
each station were defined as the inlet coolant temperate, TS* [K], the inlet coolant velocity,
us' [m s7'], and the residence time, t{* [s] (i = 1, 2, 3, 4).

3. Process model

Figure 2 shows an overview of the developed process model consisting of the freezer,
cryovial, and cell levels. The inputs were defined as the decision parameters, i.e., TS, us",
and t*, and the output was defined as the cell survival rate, 7y, [-]. The freezer and
cryovial level models constituted of the CFD model, and the cell model was based on
Hayashi et al. (2021, 2020). The process model was defined, based on the following
assumptions:

® The number of rows in the freezer is one.

® The values of the decision parameters are strictly controlled.

o The flow is laminar (Rep,, = 2.0x10%).
3.1. Freezer and cryovial level models
3.1.1. Flow calculation

For the fluid flow calculation, the continuity equation and the Navier-Stokes equation
were adopted as follows:

Station 1 Station 2 Station 3 Station 4
(Dehydration) (Nucleation) (Nucleation)  (Further cooling)
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Figure 1. Continuous freezing processes for hiPS cells.
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Figure 2. Overview of the developed process model.

V=0 (1)

o
Pror “+ pe(vp - V)vg = V- [=pl + (Vg + (Vo) 7)) ()
where p; [kg m™] is the density, us [Pa s] is the dynamic viscosity, v¢ [m s7!] is the
velocity, p [Pa] is the pressure, and t [s] is the time.

3.1.2. Heat transfer

The energy balance of the fluid in the freezer was represented using the following
equation:

T dps (

0 9T + (vg- V)p) (3)

aT
PsCp f [E + (vg- V)T] = —Vqcona —
where ¢p ¢ [J kg™! K] is the specific heat capacity of the fluid, T [K] is the temperature,
Qeond [J 7' m™] is the conductive heat flux. The energy balance of the solid was also
modeled as follows:

=—(Vv- qcond) “4)

PsCps E -

3.2. Cell level model
3.2.1. Mass transfer
The following equation was adopted to model the mass transport of water across the cell

membrane:

chell
dt

where V [m’] is the volume, L, [m s™' Pa’'] is the water permeability, A [m’] is the
surface area, AIl [Pa] is the pressure difference. The normalized maximum cell volume

change, AVI3% [], was calculated as follows:

= LpAcenAll (5)

flrlll _ mlllt

AT7max _ ce ce

AVCI;II?X ma { Vlmt } (6)
cell

where the superscripts initial and final represent the initial and final state of freezing,

respectively.
3.2.2. Crystallization

The radius at time t of an intracellular crystal that nucleated at time, 7 [s], was estimated
as follows:



68 Y. Hayashi et al.

0 (0<Nige <1)

t
S , 7
Tlceyl f )IZCeDdt (Nice > 1) ( )
Ti

where 7;.e [m] is the radius of an ice crystal, Njc [-] is the number of intracellular ice
crystals, ¥ice [—] is the nondimensional ice crystal growth parameter, and D [m? s~'] is the
average water diffusion coefficient. The number of intracellular ice crystals, Nj.., was
calculated using the following equations:

Nice = int[Nice] ®
dn;
d;ce = Jice (9)

where Nj.. [] is the ensemble average of the number of intracellular ice crystals and J;c,
[s™!]is the ice nucleation rate. The total volume of intracellular ice crystals, Vi., [m®], was
modeled as follows:

4
Vice = Z §T[ri?:e,i (10)

The normalized maximum ice crystal volume, V3% [—], was calculated using the
following equation:

fin

VI3 = max [Vlf%] (11)
cell

3.2.3. Cell survival rate

The cell survival rate was estimated as follows (Hayashi et al., 2021):

— max max .
Toury = W1 T W AVER™ + w3V B2 + w AV G - Ea® (12)

where w; [-], w, [-], w3 [-], and w, [-] are the fitting coefficients, for which the same
values published in Hayashi et al. (2021) were used in the calculation.

4. Results and discussion

Three operating conditions of continuous freezing processes for hiPS cells were applied
as defined in Table 1. The conditions were selected based on the results presented in
Hayashi et al. (2021). Figure 3 shows (a) the temperature profiles of the vial center and
(b) the cell survival rates for the three operating conditions. The cell survival rate in
Condition 1 was highest, followed by Condition 2 and Condition 3. This result can be
explained using the three-temperature zones proposed by Hayashi et al. (2021). Above
233 K, fast cooling would be preferred because cell dehydration mainly occurred in the
temperature range. In contrast, the cooling rate between 233 K and 213 K should be slow
because intracellular ice nucleation mainly happened in the temperature range. In
addition, below 213 K, any cooling rates could be applied because the cooling rate would
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Table 1. Detailed values of the inlet coolant temperature, TS, the inlet coolant
velocity, u$', and the residence time, t{*, applied in this work

Condition 1 Condition 2 Condition 3
Station ust ust ust
L L RS AP C I (SR P O G (S
1 233 0.100 625 213 0.100 625 233 0.100 315
2 223 0.100 625 203 0.100 625 223 0.100 315
3 213 0.100 625 198 0.100 625 213 0.100 315
4 178 0.100 625 178 0.100 625 178 0.100 315

not affect the cell survival rate. In the range of above 233 K, Condition 2 would be the
best for the cell survival rate because the cooling rate was the fastest. On the other hand,
in the range of between 233 K and 213 K, Condition 1 would be the most desirable for
the cell survival rate because the cooling rate was the slowest. According to Mazur et al.
(1972), cell damage due to intracellular ice nucleation was more critical than due to cell
dehydration. Therefore, the highest survival rate (more than 0.90) was observed in
Condition 1. Thus, it was demonstrated that designing continuous freezing processes for
hiPS cells could be performed with appropriate value selection of the decision parameters.

The flow and heat transfer calculations were performed using COMSOL Multiphysics®
version 6.1, and the calculations of mass transfer, crystallization, and cell survival rate
were conducted by Python 3.9. The total CPU time that the results shown in Figure 3
were obtained was about 60 hours, using Intel® Xeon® Gold 6230 CPU @ 2.10 GHz
with 512 GB RAM memory.

5. Conclusions and outlook

This work presented a CFD-model-based approach to continuous freezing process design
for hiPS cells. A process model was developed that combined a hybrid single-cell freezing
model covering the cell level with a CFD model covering the cryovial and freezer levels.
The developed process model enabled calculating the cell survival rate of hiPS cells,
given an inlet coolant temperature, an inlet coolant velocity, and a residence time. We
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Figure 3. (a) Temperature profile of the vial center and (b) cell survival rate for the
three operating conditions.
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applied the developed process model to three operating conditions of continuous freezing
processes for hiPS cells. As a result, the cell survival rate in one of the three operating
conditions could achieve more than 0.90. Thus, it was demonstrated that designing the
continuous freezing process could be performed with appropriate value selection of the
decision parameters. In the field of computer-aided process engineering, cell therapy
related studies are becoming relevant, e.g., Triantafyllou et al. (2022) and Hirono et al.
(2022). Further model-based studies in this area are encouraged.
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Abstract

Area-selective atomic layer deposition (ASALD) is an advancement of conventional thin-
layer deposition processes that utilizes an additional chemoselective inhibition reaction
to improve nanopatterning. However, ASALD is a challenging procedure that is difficult
to characterize in the surface and fluid phases. A three-dimensional (3D) multiscale model
that employs an atomistic-mesoscopic density functional theory (DFT) and kinetic Monte
Carlo (kMC) simulation and macroscopic computational fluid dynamics (CFD) modeling
are performed for a spatial rotary reactor configuration for the ASALD of a Si0»/Al,03
substrate in silico. Due to the complexity of the multiscale simulation, various reactor
configurations are devised to minimize the computational requirements of the dynamic
mesh of the reactor while reproducing results that are analogous to experimental data.

Keywords: Area-selective atomic layer deposition; multiscale modeling; computational
fluid dynamics; kinetic Monte Carlo simulation; density functional theory.

1. Introduction

Area-selective atomic layer deposition is an attractive thin-layer deposition process that
does not require subsequent processing steps (e.g., etching and lithography) to achieve
effective nanopatterning and self-limiting deposition on growth areas of the substrate. In
particular, semiconducting materials require thin-layer deposition processes to promote
the self-aligned stacking of transistors, which is essential for producing high-performance
wafers. In accordance with the predictions of Moore’s Law, the stacking of the transistors
is needed to improve the computational performance and efficiency of electronics; how-
ever, the lack of self-alignment introduces a fabrication challenge for wafers. Although
conventional thin-layer deposition reactors are widely used, these reactors require exten-
sive purging steps to maintain the self-limiting nature of the process. Spatial reactor con-
figurations, including the rotary type, introduce reagent in physically isolated regions to
prevent intermixing while maintaining the self-limiting tendency of the reactions (Poodt
et al., 2012). The stringent dimensions of these transistors require much experimentation
through a tedious procedure of optimizing the reactor design such that reagent intermixing
is minimized and substrate exposure to the reagents is uniformly distributed. However,
multiscale modeling has emerged as a cost-effective and timely solution for relating mul-
tiphase deposition processes for various time and length scales while reproducing exper-
imental results with high fidelity. This work will employ an atomistic-mesoscopic density
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functional theory (DFT) and kinetic Monte Carlo model in conjunction with a three-di-
mensional (3D) macroscopic computational fluid dynamics (CFD) to simultaneously sim-
ulate surface-scale reaction kinetics comprising steric hindrance and repulsion effects and
macroscopic fluid transport phenomena for a silicon wafer (Si0»/Al,O3) substrate in ac-
cordance to the ABC-type reaction kinetics proposed by Merkx et al. (2020) and Mameli
et al. (2017) composed of (A) inhibition, (B) adsorption, and (C) oxidation steps. Addi-
tionally, the relation of various constraints in the design of the rotary reactor (e.g., gap
distance, geometries of reaction zones, and orientations of inlets) to the surface uniformity
and deposition growth rate are studied for process optimization. Such constraints provide
significant insight for application to current fabrication procedures.

2. Multiscale Simulation

2.1. Atomistic-mesoscopic modeling

Area-selective atomic layer deposition (ASALD) processes integrate a variety of syner-
gistic, chemoselective, and self-limiting reactions that deposit monolayers of substrate
material. Mameli et al. (2017) proposed an ABC-type mechanism composed of three steps
(Steps A, B, and C). First, an inhibition preprocessing step (Step A) to deactivate subse-
quent reactions in the non-growth area using a small molecule inhibitor, acetylacetone
(Hacac). Next, a precursor, bis(diethylamino)silane (BDEAS), adsorbs onto the growth
area to produce a modified surface layer (Step B) composed of hydrogen-terminated lig-
ands. Finally, an oxidation step (Step C) using ozone (O3) oxidizes the hydrogen terminals
to produce hydroxyl-ligands, thereby concluding a single monolayer of the deposition
cycle. To ensure the self-limiting behavior of these reactions, each step is followed by a
purging action by employing an inert gas such as nitrogen, N».

The abundance of reaction mechanisms and the lack of reference and experimental data
would make the characterization of the kinetics difficult to quantify in the atomistic and
mesoscopic phases. Thus, ab initio quantum mechanics that uses first principles density
functional theory (DFT) is performed through the open-source software, Quantum ES-
PRESSO (QE) to compute the thermophysical and kinetics parameters of species and
reactions, respectively. QE performs molecular structure and electronic optimization
through pseudopotential data and nudged elastic band (NEB) methods to compute the
minimal energy path to compute the activation energy of the reaction, to be substituted
into the Arrhenius Equation. Additionally, a typical elementary reaction mechanism for
rate-determining reaction steps is proposed for each step (A, B, and C) in the ASALD
process to integrate transition state theory (TST) for non-adsorption reactions and colli-
sion theory (CT) for adsorption reactions.

With the kinetics mechanisms and reaction parameters defined, reaction parameters are
defined into the kinetic Monte Carlo (kMC) algorithm that adopts a stochastic procedure
to exemplify the behavior of realistic reactions. The kMC method, performed through the
Python programming language, adopts a sequential procedure that sums probable reaction
rates at a surface site to preferentially weight reactions of greater magnitude while devis-
ing a random number to arbitrarily select a reaction for the active site. Such procedure
enables the computation of species generation and consumption terms from surface pres-
sure and temperature data (from the CFD simulation), which will be integrated into the
CFD simulation. Subsequently, the kMC method simulates the progression of the reaction
path by calculating process time through a secondary random number described by Yun
et al. (2022a). Additionally, steric hindrance effects are simulated by randomly selecting
the angle of rotation for adsorption reactions encountered in Step A, and portraying the
deflection of adsorption sites that are hindered by bulky molecules (Roh et al., 2022).
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2.2. Macroscopic modeling

Computational fluid dynamics (CFD) is performed to simulate the transport phenomena
in the fluid regime through the commercial multiphysics software, ANSYS Fluent. Prior
to conducting the CFD simulation, a three-dimensional (3D) rotary reactor model, illus-
trated in Fig. 4 is constructed through ANSYS DesignModeler, which is then meshed
through ANSYS Workbench’s meshing software using tetrahedral cells, until an ideal
mesh quality (per ANSYS standards) and minimal number of cells is obtained. An ideal
mesh is composed of a minimal number of cells to lessen the dependence of robust com-
putational power while maintaining accurate computations that are reflective of experi-
mental results recorded in academia and ensuring convergence is obtainable. Addition-
ally, the movement of the wafers between reaction zones are achieved through a dynamic
mesh method that performs remeshing and diffusion-based smoothing methods to retain
mesh quality and preserve solution convergence. In Fig. 4, the reactor design separates
each wafer into 10 sections to define source generation and consumption flux terms (eval-
vated by the kMC simulation) on the wafer surface through user-defined functions
(UDFs) in a “C++ like” script. The CFD simulation is performed using a fixed time step
0f 0.001 s, employing a pressure-based solver method, and adopting a first-order implicit
numerical solver method that is defined through a journal file and executed through a
Scheme script. Lastly, various thermophysical parameters are defined by integrating re-
sults from the atomistic ab initio first principles quantum mechanics simulations and
through the ANSYS Fluent database of gaseous molecules.

In addition to the optimization of the reactor mesh, the chamber design of the rotary re-
actor and the operating conditions have a significant role in the quality and conformance
of the substrate (De la Huerta et al., 2018). The reactor design must ensure that effective
reagent separation is made to prevent species intermixing, which disrupts the perceived
self-limiting behavior of the ASALD process. Reagent intermixing is prevented by spec-
ifying an optimal gap distance, the distance between the substrate surface and the ceiling
of the reactor that separates the reaction zones, introducing output streams at precise lo-
cations to remove byproducts generated, and defining a large purge flow rate. Following
the procedures to minimize reagent intermixing, the delivery of gases to the surface of
the wafer and the exposure time are of paramount importance to ensure that a total surface
deposition is achieved. Constraints including the reagent (Hacac, BDEAS, O3) flow rates
and rotation speed have a profound impact on the deposition rate onto the substrate sur-
face (Pan et al., 2017). Although large reagent flow rates and low rotation speeds ensure
complete deposition is obtained, such quantities are also nonideal from an economics and
production perspective. Lastly, the uniformity of the deposition is a qualitative parameter
that discusses the effectiveness of the nanopatterning performance. This modification
provides better control of the film uniformity to ensure that all regions in the wafer have
the same exposure time. The aforementioned quantities provide a meaningful study for
optimizing the reactor design and process operation for practical applications.

2.3. Multiscale modeling

The multiscale simulation allows the calculation of various time and length scale in vari-
ous domains including the atomistic, mesoscopic, and macroscopic regimes (Raimondeau
and Vlachos, 2002) as described in Fig. 1. Such multiscale modeling allows the relating
of various phases that cannot be discerned through ex silico methods. The multiscale sim-
ulation is performed autonomously through a Linux cluster system through the UCLA
Hoffman?2 Cluster and allows the interconnection of various programming languages and
application software. This work will utilize 36-core compute nodes consisting of 192 GB
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of dynamic random-access memory (DRAM) that are standard for ANSYS Fluent to con-
duct the multiscale simulation by adopting both a parallel computation strategy in the
macroscopic simulation and serial method for the microscopic simulation taking an aver-
age of 1 to 3 days, which depends on the rotation speed of the reactor. Such coding logic
allows ANSYS Fluent to evaluate surface pressure (P) and temperature (7)) data on the
wafer surface to be read by the kMC coding script to evaluate the source generation and
consumption terms, Sy and Snj, for the heat and mass of species i balances, which will
then be defined through the UDF by ANSYS Fluent as summarized in the process dia-
gram in Fig. 2. The simulation will conclude until the termination condition (full cover-
age) is obtained or if the wafer exits the reaction zone completely.
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3. Results

3.1. Atomistic-mesoscopic simulation results

The atomistic-mesoscopic simulation is conducted for a pressure range of 10 to 500 Pa in
10 Pa intervals and a temperature range of 423 to 573 K in 10 K intervals for a total of
800 data points. The collection of a diverse data set is employed to determine the effects
of the operating conditions on the total process time to obtain full coverage on the wafer
surface for Steps A, B, and C on a 100 x 100 lattice. Graphical results for the process
times as a function of the temperature and pressure are provided in Fig. 3. Results from
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Figure 3: Kinetic Monte Carlo process times for (a) Hacac inhibition, (b) BDEAS ad-
sorption, and (c) O3 oxidation at various pressure and temperature conditions.

emperst™

Step A in Fig. 3(a) demonstrates that the Hacac pulse time of 3.0 s or more above was
observed for pressures below the 100 Pa, which was analogous to reported findings by
Mameli et al. (2017) who reported a saturation dosage time of 5.0 s for such operating
conditions. Additionally, the BDEAS adsorption in Step B displayed in Fig. 3(b) has a
BDEAS dosage time of 2.3 s for a pressure of 400 Pa to reach full coverage, which is
comparable to the reported findings of 2.0 s of BDEAS saturation times by Merkx et al.
(2020). The aforementioned results indicate that the combined atomistic and mesoscopic
simulations are reflective of experimental results; thus, the kKMC simulation will have a
minimal contribution to deviation of results in the multiscale simulation.
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3.2. Multiscale computational fluid dynamics simulation results

The reactor mesh is fully optimized using less than 1.3 million tetrahedral cells and a gap
distance of 5 mm by adopting a reactor geometry with reaction barrier zones conforming
to the radial direction of the reactor as illustrated in Fig. 4. In addition to the radial
separation of the vacuum ports, the wafers were also separated into 10 regions in the
radial direction for the UDF specifications of the source terms. Results from the
multiscale CFD simulation in Fig. 5 reveal that the dividers provide substantial reagent
exposure in the radial direction when rotating with an angular velocity of 0.40 rad/s. The
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Figure 4: Top view of the rotary reactor de- Figure 5: Multiscale CFD simulation re-
sign. Inlet and outlet streams are in blue sults illustrated in N> mole fraction wafer
and red, respectively. surface contours.

contours of mole fraction of N, also illustrate that reagent intermixing is effectively min-
imized, thereby maintaining the self-limiting nature of the ASALD process. However, it
is notable that intermixing is visible in reaction zone corners; thus, further study is needed
to minimize the effects of the purge and reagents intermixing within the reaction zone by
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Figure 6: Contours of N, mole fraction illustrating intermixing for a conventional ro-
tary reactor design (a) and the mitigation of intermixing by the asymmetric design (b).

adjusting the orientation of the inlets, modifying the diameters of the outlets, and adjust-
ing the reaction zone geometry. The optimization of the reactor configuration is illustrated
in Fig. 6 to demonstrate the effects of adjusting the inlet location to an asymmetric model
in Fig. 6b, which moderates the effects of purge transfer into the reaction zones for the
conventional reactor configuration in Fig. 6a. Also, the process operation parameters can
be considered for further study such as balancing the reagent flow rates with a proper
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composition of reagent. The collection of a diverse data set is still needed to further char-
acterize various constraints (e.g., exposure uniformity and deposition growth rate).

4. Conclusion

A novel multiscale simulation of an area-selective ASALD process was performed to
study the relation between various operating conditions and reactor geometry on the uni-
formity and deposition rate of a thin film on a SiO,/Al,O; substrate in various phases.
First, an atomistic-mesoscopic model was developed in conjunction with ab initio first
principles quantum mechanics simulation to calculate kinetic parameters of rate-deter-
mining elementary reactions and thermophysical parameters of species and with a kinetic
Monte Carlo (kMC) algorithm to simulate the stochastic nature of surface reactions on
the wafer. The resulting mesoscopic simulation was performed with computational fluid
dynamics (CFD) to study the transport phenomena of the gases. It was determined that
the atomistic-mesoscopic model, when compared to experimental results found in litera-
ture, demonstrated accurate process time results in exact operating conditions. The mul-
tiscale CFD simulation illustrated that the reactor design successfully minimized the ef-
fects of reagent intermixing while improving exposure uniformity to enhance nanopat-
terning. Although further study is needed to characterize the relation of various reactor
design and operation constraints to fully understand their effects on the deposition growth
rate and film uniformity, initial results reveal that the reactor design and operation condi-
tions determined by the model lead to improved deposition performance.
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Abstract

In this work, a 1-D diffusion model is developed to describe the drying process of a
ceramic slab with respect to shrinkage. The proposed mathematical framework consists
of a set of partial differential and algebraic equations along with moving boundary
conditions, making it suitable for predicting the drying behavior and the physical
phenomena that accompany the drying process of a green ceramic slab, such as shrinkage
and porosity increase. Initially, the developed model is validated against experimental
data from the open literature. Then, the drying behavior of a clay material, produced at a
local factory, is investigated. This requires the characterization of the material with
respect to its desorption kinetics. The parameter values of a semi-empirical desorption
isotherm equation are estimated based on drying tests conducted in the lab. Finally, the
drying kinetics of the porous material is studied and the shrinkage effect is discussed.

Keywords: Ceramic drying, shrinkage, porosity, moving boundary problem

1. Introduction

The drying process constitutes an essential step in the ceramic sector, which aims at
removing the water from the green ceramic material before firing takes place. This is a
critical production step because if the material is inserted wet into the extreme
environment conditions of the firing chamber, then the probability of moisture
evaporation inside the pores of the material would be high. As a consequence, this could
lead to the development of intense stresses inside the porous body that can potentially
lead to cracks and fracture. Cracks could also occur during the drying process itself,
because of the non-uniform moisture distribution along the body and hence, non-uniform
shrinkage (Kowalski and Pawtowski, 2010).

The understanding of the shrinkage mechanism during the drying procedure of a ceramic
green body plays a key role for the product quality assurance and the fabrication of new
drying strategies. Mancuhan et al. (2016) studied the shrinkage behavior of ceramic green
bricks through Bigot curves. They proposed that during the initial stages of drying, the
volume variation of the material is equal to the volume of the removed water. However,
as drying proceeds, a critical moisture content is reached. This indicates that most clay
particles of the solid matrix are already in direct contact and cannot move any further. At
that point, shrinkage is almost complete and drying proceeds without any volume
variations taking place.

It is a common practice in the open literature, to calculate the drying-induced shrinkage
using mechanical interaction models which use strain — stress relationships (Hammouda
and Mihoubi, 2014). Other approaches use more simplistic methods to account for the
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volume variation of a porous material during drying. Barbosa de Lima et al. (2016) used
polynomial expressions to correlate the moisture content of a clay material to its
volumetric strain. However, this method of approaching the shrinkage calculation does
not provide any physical insight for the drying process.

In this work, the drying-induced shrinkage calculation is approached by using a shrinkage
velocity, which reflects the velocity at which a specific nodal point of the clay matrix
recedes to the interior of the bulk body. The proposed modeling framework leads to high
quality predictive results with low computational complexity and facilitates the numerical
calculation of key physical quantities, such as the solid concentration and the body
porosity, which are closely associated to qualitative characteristics of the green material.

2. Mathematical model

In this section, a mathematical model is developed to capture the drying behavior of a
shrinking ceramic roof tile. Since the material aspect ratio is very small, its geometry is
simplified to that of a semi-infinite tile. Consequently, the model considers that heat and
mass transfer phenomena occur only on the thickness dimension of the tile.

The evolution of the water mass concentration, C,, and temperature, T, with time along
the green material is given by equations. (1) and (2), respectively. Both equations also
consider the shrinkage effect via a local shrinkage velocity term, vgy,,., which determines
the velocity at which a nodal point of the clay matrix moves towards the bulk body.

ac, a ac
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Where D,y is the effective diffusivity of the moisture and k,ffis the effective thermal
conductivity of the material. Both properties are constant for the present study.
Preheated air flows over the wet tile and drying is achieved through forced convection.
This model assumes that moisture diffuses from the bulk body towards the air-solid
interface, where it instantaneously evaporates and desorbs to the blowing air. As such the
mass balance boundary equation is given by equation (3).

6Cw MWW Psat (TZ=L) Psat (Tair)
_Deff 0z =My R ( T.., RHeq - Tair_RH
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3)
g
Where, h,,, is the convective mass transfer coefficient, MW, is the water molecular
weight and R, is the global gas constant. Also Py, is the saturation pressure of water and
RH is the relative humidity of the air, which is defined as B, /P, s4¢-

It is assumed that at the air - solid interface, the moisture content is at chemical
equilibrium with the air humidity. This is given by a desorption isotherm correlation.

RHeq = f(Xlz=, Tlz=1) 4)

Where X is the moisture mass fraction (dry base) of the material and is defined as X =
Cy/Cs.

As the preheated air flows over the colder wet tile surface, heat is transferred through
convection. Additionally, the latent heat of vaporization, 4H,,4,, is abducted from the
drying surface of the material to achieve the water evaporation.
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ac,,
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z=L Z lz=1
The bottom surface of the green body is not in direct contact with the air.
aCy,
—_— =0 6
0z |,-¢ (6)
aT ~ 0 ™
aZ z=0 -

The only mechanism that affects the solid concentration is the shrinkage-induced
convection. Hence, the temporal evolution of the solid concentration Cj, is given by (8).
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The local porosity, &, is calculated from the phase volume balance.
C C
l=g+—m+— )
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Where, pintrinsic and p,, are the intrinsic solid density and water density respectivelly.
Since all heat and mass transfer phenomena are considered exclusively on the thickness
direction, the tile thickness, L, evolution should be descibed by equation (10).

dL
dt
The shrinkage velocity is a local term, which shows the velocity at which a nodal point

recedes to the interior of the body. More specifically, the shrinkage velocity is the velocity
at which a volume of water diffuses towards the air — solid interface.

z ac,
vs,w:f [ off ]d . z€0,L] (11
P

Where « is a proportionality factor. Its physical meaning is that when a equals to 1, the
volume variation of the porous body is respective to the volume variation of the removed
water (ideal shrinkage case). When @ = 0, no volume variation takes place as water
leaves the body (no shrinkage case).

As explained earlier, during the initial stages of drying, the shrinkage is ideal (e.g. & =
1). However, when the moisture content, X, reaches a critical value, X,,., almost all
shrinkage phenomena are complete because most of the clay particles are already in direct
contact with each other (Mancuhan et al., 2016). At that point, shrinkage stops (e.g. @ =
0) and the porosity of the material starts to increase since air penetrates into the body to
substitute the volume of the removed water.

_ {1, X=X,
=10, x<Xx,

= vshrlz:L (10)

z€[0,L] (12)
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3. Solution Strategy

The integration of the above system of equations on the (z, t) plane is not trivial because
the boundary conditions are located on a moving boundary. The position of the z = L
node must be determined as an integral part of the solution at any time. That for, a simple
Lagrangean transformation is used, by introducing the spatial variable y = z/L to
immobilize the moving boundary. The y spatial variable lies between 0 and 1, and enables
the normal discretization of the thickness dimension. The newly transformed model is
implemented into gPROMS™ modeling environment. The partial differential equations
are approximated using 2" order Central Finite Differences and the differential —
algebraic solver DASOLYV is used for the integration.

4. Model Validation

For the validation of the model, a suitable set of experimental data from the open literature
was used. The experimental measurements that are presented in the work of Heydari et
al. (2018) facilitate the corroboration of the model predicted shrinkage behavior of the
green ceramic body. In Fig. 1, the model predicted moisture content and volumetric strain
is plotted against the experimental measurements.
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Fig. 1: Comparison of experimental data (Heydari et al., 2018) and model predictions
for (a) moisture content and (b) volumetric strain.

The results indicate that a sufficiently good agreement is achieved. The deviations of the
model predictions from the experimental points are ought to the fact that the studied
material of Heydari et al. (2018) has much larger aspect ratio than the semi-infinite plate
that is of interest in the present work. It is expected that the use of a higher order model
could result to a better match between the model predictions and the experimental data.

5. Parameter Estimation

The material of interest in this work is a clay tile that is produced in a large-scale
production plant in Greece. The simulation of the drying process of the material requires
the establishment of its desorption kinetics. That for, equation (4) has to be substituted by
an equation that correlates the relative humidity to the moisture content of the material
and its temperature. For this reason, the GAB model is selected.

CkmgRH,,
Xea = (1" kRH,5)(1 — kRH,q + CKRH,y)
eq eq eq

(13)
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Where C, k, m, are temperature dependent parameters and are described by Arrhenious
AH¢ AHy, _4Hm,

type equations :C = C'e R9T k =k'e ®dT and my = my'e RoT .

The parameters C', k', mg and AH¢, AH, AH,, are estimated based on drying tests that
were conducted in the lab and the their values are illustrated in Table 1.

Table 1: GAB model parameters

GAB parameters
c" k" mg AH AH, AH,.»
0.195 0.0254 0.175 —1.62x 107 —5.05x10° 2.42x10°

6. Results and Discussion

Simulation results of the drying process for the studied material are summarized here, to
gain insight on how the shrinkage phenomemon affects the dynamics of various quantities
of the process. The model inputs required for the simulation are summarized as follows.
The blowing air temperature, Ty, is 100°C and the air relative humidity, RH, is 3%. The
initial water concentration and initial solid concentration are 316 kg/m3® and
1754 kg/m3 respectively. The initial tile thickness is 1.87 cm and the critical moisture
content, which determines when shrinkage stops, is X, = 0.1 kg,,/kgqs. As for the
heat and mass transfer coefficients, their values are chosen arbitrarily as 28 W /m?2K and
0.028 m/s, respectively.

Fig. 2 illustrates the water concentration and body temperature time profiles. It is
observed that the water concentration inside the body decreases with time as its
temperature rises. Finally, a steady state is reached and the drying procedure is complete.
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Fig. 2: (a) Mean water concentration and temperature vs time and (b) Mean solid
concentration and body porosity vs time

The solid concentration and porosity temporal evolutions are illustrated in Fig. 2(b). At
the beginning of the process, the body porosity remains unchanged and the solid
concentration rises abruptly. This is justified by the fact that during these times shrinkage
is ideal and @ = 1. When the critical moisture content, X, is achieved, a transition to the
no-shrinkage state occurs and shrinkage stops. Consequently, the solid concentration
stops to variate and air starts to replace the removed water volume, which leads to the
porosity increase.

In Fig. 3, the shrinkage parameter on the moving boundary and the tile thickness are
plotted against time. It is observed that the body shrinks for some time despite that the
shrinkage parameter |,—; obtains the zero value. This is because even if X < X, at the
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boundary, z = L, shrinkage continues to take place to the interior of the body, as long as
X > X
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Fig. 3: a parameter on the boundary z = L and slab thickness vs time

7. Conclussions

A 1-dimensional model is developed to predict the drying behavior of a green ceramic
tile with respect to shrinkage. The proposed model facilitates the calculation of key
physical quantities that have not been studied extensively in the literature. Such quantities
are the local solid concentration and porosity. The prediction of the transient evolution of
these quantities is crucial because they are severely associated to most qualitative
characteristics of the green product.
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Abstract

Integrating physical knowledge and machine learning is a cost-efficient solution to
modelling complex biochemical processes when the underlying mechanisms are not fully
understood. However, hybrid model structure identification is still time-consuming for
new processes, requiring iteration over different hypotheses to explain the observed
process dynamics while minimizing over-parameterization. Unfortunately, conventional
approaches to automatic model structure identification do not always converge for highly
nonlinear models and cannot estimate time-varying model parameters. To address this
and accelerate the design of new biochemical processes, a Reinforcement Learning (RL)
based framework recently reformulated synchronous hybrid model structure-parameter
identification into a process optimal control problem. To further investigate other possible
solutions, in this study, a novel Physics Informed Neural Network (PINN) based
framework was proposed for the first time to infer time-varying kinetic parameters. This
framework first combines possible kinetic structures from phenomenological knowledge,
then simultaneously identifies the most likely hybrid model structure and time-varying
parameter trajectories. To demonstrate the performance of the PINN based framework,
several in-silico case studies were conducted using a known ground truth bioprocess. We
thoroughly examined the advantages and limitations of the framework, elucidating its
potential for high-fidelity hybrid model construction in biochemical engineering research.

Keywords: automatic model structure identification, time-varying parameter estimation,
physics-informed neural network, hybrid modelling, machine learning.

1. Introduction

Mathematical modelling is pivotal to understanding and designing biochemical processes.
A thoroughly validated dynamic model can predict biomass growth and product synthesis
under different operating conditions, reducing the number of experiments required to
characterize and optimize novel biochemical processes. Kinetic and data-driven models
have been proposed to describe biological processes. However, identifying a suitable
kinetic model structure is time-consuming, and they are often overparameterized (i.e.,
multiple structures and many parameters) in an effort to capture the complex dynamics,
leading to high parameter and propagated state uncertainties. On the other hand, data-
driven models risk overfitting without enough experimental data — which is time-
consuming to generate — and poor generalization to new operating conditions.
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Integrating physical knowledge and machine learning is a cost-efficient solution to
modelling complex biochemical processes when the underlying mechanisms are not fully
understood. Hybrid models either use a data-driven model to correct the discrepancy
between a kinetic model and the observed process dynamics or update selected time-
varying kinetic model parameters. A properly validated hybrid model can effectively
resolve the issue of incomplete physical knowledge and low-quality-quantity data (Zhang
et al., 2020) while improving prediction accuracy and confidence compared with pure
kinetic models (Vega-Ramon et al., 2021). However, hybrid models inherit the risk of
over-parameterizing the kinetics and overfitting the data-driven model, which can lead to
high uncertainty and poor generalization. Consequently, it is essential to identify the
kinetic model structure that best represents the underlying mechanisms to reduce the
burden on the data-driven model to compensate and risk overfitting. This is no trivial task
since the current bioprocess kinetics depend on the present culture conditions and
microenvironmental history due to stochastic effects on the controlling mechanisms or
metabolic stores and systematic intracellular metabolic regulation mechanisms. As a
result, the kinetic model parameters and structure will evolve with time and history.

Despite this challenge, there are few attempts outside case-specific studies to resolve
automatic model structure identification for complex combinatorial, history-dependent or
time-varying kinetics. Conventional approaches such as mixed integer nonlinear
programming (MINLP) do not always converge for highly nonlinear models and cannot
estimate time-varying model parameters. To address this, we recently proposed a novel
Reinforcement Learning (RL) based framework to reformulate synchronous hybrid
model structure-parameter identification into a process optimal control problem (Wu et
al., 2022). The RL-based framework proved promising for recovering the correct kinetic
model structure or time-varying kinetic parameters, but the combined case with more
combinatorial options and time-varying kinetic parameters remains unexplored. In recent
years, Physics-Informed Neural Networks (PINNs) (Raissi et al., 2019) have emerged as
a novel approach to discovering underlying governing equations; however, they have not
been applied before to infer time-varying physical parameters. Therefore, in this work we
aim to propose a novel PINN-based framework for hybrid bioprocess model construction.
Several in-silico case studies will thoroughly examine the advantages and limitations of
this technique for synchronous hybrid model structure-parameter identification.

2. Problem Statement

The PINN-based framework first combines several possible kinetic structures from
phenomenological knowledge, then simultaneously identifies the most likely hybrid
model structure and time-varying parameter trajectories. To demonstrate the performance
of this framework, several in-silico case studies were conducted using a known ground
truth model, shown in Equation 1, that we developed in our previous work (Rogers et al.,
2022). This high-fidelity hybrid model can predict the temperature-dependent biomass
growth, glucose consumption and y-linolenic acid (GLA) accumulation rates during
fermentation of the fungus Cunninghamella echinulata. In Equation 1, X, F, S and P are
the total biomass, fat-free biomass, glucose and GLA concentration, respectively, while
T is temperature. The half-saturation K and maintenance kg coefficients, the total ky and
fat-free kr biomass decay rates and specific GLA decay rate kp are all constants, while
the total Yy and fat-free Y biomass growth rates, the glucose-to-biomass yield coefficient
Ys and growth-dependent GLA yield coefficient Y, are all time-varying parameters. In
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our previous work, we estimated the constants and built the Gaussian Process (GP) model
mapping the states and temperature to the time-varying parameters (Rogers et al., 2022).

i—f=YX(X,F,S,P,T)-ﬁ.X_kX.X (1a)
i—i=YF(X,F,S,P,T)-ﬁ.X_kF.X (1b)
§=YS(X,F,S,P,T)-ﬁ.X_kS.X.S 50.1 (lc)
i—i=YP(X,F,S,P,T)-ﬁ.X_kP.X (1d)

Now the ground-truth model was used to generate six in-silico batches from low (S, =
60 g L™1) and high (S, = 100 g L) initial glucose concentrations under three different
temperatures (T = 14°C, T = 28°C, T = 37°C). The four GP models updated the four
time-varying parameters every 24 hours while the constants were fixed. Each batch was
‘fermented’ for 408 hours, and the four state variables ‘measured’ every 24 hours.

3. Methodology

3.1. Physics-Informed Neural Network Structure

The PINN aims to learn the solution to the system of ordinary differential equations
(ODEs) presented in Equation 1 by reformulating the parameter estimation and numerical
integration problem into a single nonlinear optimization problem. The ANN aims to learn
the concentration profile and kinetic parameters that satisfy the measured states and the
system of ODEs of the form: dx/dt = N (x, ¢, 8), where x = [X, F, S, P]", while ¢ and
0 are vectors of time-varying and time-constant parameters, respectively. The unknown
solution to the concentration profile u, (4, t, x,) and kinetic parameters u (4, t, x,) was
represented by a single ANN as a function of batch time t € [0, 408 hours] and the initial
state X, = [Xo, Fo, So, Po]”, where 4 denotes the tunable weights and biases.

A= mlin L) = mlin[wOLo(/l) + waLy(A) + w L ()] (2a)
1 (2b)
Lo(A) = 3 ) [% x|
No &4
1S (2¢)
L) = 37 |&a — i
Na &4
Ne 2 (2d)
1 axt G
L.(2) =—Z C_N(z, 9L, 0
c Nc < at ( c ¢d )

The PINN was trained by minimizing the composite loss function in Equation 2, where
wy, wgq and w, balance the interplay between the different loss terms during training. Here

N, i N D . . o .
{xb}i_ol, {tk, x&}i_dl and {t;, x‘C}?’:‘1 are the time-state value pairs for the initial conditions,
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measured data points and collocation points, respectively. Each batch is divided into N
intervals of At = 24 hours, where t; € {0, At, 2At, 3At ... NAt}, while each interval is
subdivided into At/&t = 5 collocation points, such that t. € {0, §t, 26t, 36t ...ndt} is
on the same timescale. The terms X; = u, (4, ty, x,) and x,; denote the predicted and
measured states, respectively, at the known data points, while X, = u,(4, t., x,) denotes
the predicted state at the collocation points for which the states were not measured. Once
X is evaluated, the gradients with respect to time dX./dt were computed by reverse
automatic differentiation. The time-constant 8 = uy(4,0,0) and time-varying bq =
uy(4,tg,xo) kinetic parameters were both predicted by the ANN, implicitly coupling
them to the same network parameters for more stable training. However, unlike the
continuous state variables, 8 is a fixed constant, while ¢ is a piecewise constant. To
represent this behaviour, @ was evaluated at a fixed input while ¢, was evaluated at each
data sampling point t; and the result used over t; < t. < t; + At when computing
N (QC, Pa, @). The network was built from a single hidden layer of 40 neurons with a
hyperbolic tangent activation function in the hidden layer and a linear output layer. This
combination mirrors the typical bioprocesses sigmoid-like growth and parameter profiles.

3.2. Physics-Informed Neural Network Training and Simulation

The PINN was fitted simultaneously to all six in-silico batches. The PINN was trained in
two stages: first (i) the network was trained for 6000 epochs with {wy, = 5,ws = 1, 0, =
0} and a learning rate of 5 X 1072 until £;(4) converged, then (ii) the network was
trained for 10000 epochs with {w, = 5,wy = 1,w, = 5 X 103} and a learning rate of
5x 10~* until £,(A) converged. Fitting the state profile before the kinetic parameters
approximates the initial gradients 0X./dt and was found empirically to be more robust
to becoming trapped within low-quality local optima than single-stage training.

Once the PINN was constructed, the multistep-ahead state trajectory was re-simulated
using Equation 3 from x, = [X,, F,, Sy, Py]” using the predicted time-constant parameters
0 = uy(47,0,0) and the predicted time-varying parameters o, = uy (47, tg, x0)
updated once every 24 hours.

td+1 L 3)
Xy =Xy + f N(x', Py, 0%)dt
ta

4. Results and Discussion
Once the PINN was fitted to the six in-silico batches, the fitted state X = w, (1", ty4, xXo)
trajectory, the time-constant parameters 8* = u,(4%,0,0) and the time-varying kinetic
parameter ¢}, = uy (4%, tg, Xo) trajectory was retrieved. In addition, the fitted PINN was
used to re-simulate the multistep-ahead state trajectory Xy for the six in-silico batches
from their different initial states and operating temperatures, as described in Section 3.2.
Figure 1 compares the fitted (i.e., X;) and the re-simulated (i.e., X)) state trajectories for
one of the six in-silico batches, showing that the PINN could fit and re-simulate the state
trajectory with very high accuracy, with a mean absolute percentage error (MAPE) of 1%
and 5%, respectively. Since X is satisfied (MAPE of 1%) by strong regularization (i.e.,

wy > wy) the mismatch between the fitted and re-simulated trajectories is due to the
PINN not being strictly required to satisfy the system of ODEs during PINN training.
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Figure 1: Fitted and re-simulated state trajectory for one of the six in-silico training
batches for total biomass (a), fat-free biomass (b), glucose (c) and GLA (d) concentration.
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Figure 2: Ground truth and estimated time-varying parameters for one of the six in-silico
batches for the specific growth rate Yy (a) and Yz (b), Ys (¢) and Y, (d) yield coefficients.

Table 1 compares the PINN estimated and ground-truth constants, demonstrating that the
PINN can accurately recover (MAPE of 8%) the correct constants when there is no
measurement uncertainty. The residual between the ground truth and estimated values
can likely be attributed to the practical identifiability of the parameters given only six in-
silico batches. Figure 2 compares the PINN estimated and ground-truth time-varying
parameter trajectories, demonstrating that the PINN can recover Yz, Ys and Y, well
(MAPE of 15%), particularly considering the time-varying parameters (i.e., Yy, Yz, Y5 and
Yp) become non-identifiable as S — 0 at the end of the batch, as their influence becomes
negligible compared to the specific decay constants (i.e., ky, kg, ks and kp). However,
the PINN could not recover well Yy (MAPE of 150%). Given the excellent fit in Figure 1,
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there could be two reasons for this: either (i) the PINN cannot converge to the globally
optimum ground-truth parameters, and the model is insensitive to the exact parameter
values, or (ii) K is partially non-identifiable, and extra regularization is required.

Table 1: Comparison of ground-truth and estimated time-constant parameters.

Parameter K ky kr ks kp
Ground-Truth 48.64 1.70E-03 | 1.35E-03 | 3.10E-03 | 3.23E-05
Estimated 49.60 1.50E-03 | 1.32E-03 | 2.57E-03 | 2.96E-05
Absolute Error (%) 2.0 11.8 2.2 17.1 8.4

5. Conclusion

The PINN-based approach has potential for kinetic parameter estimation and for
providing a way to understand real bioprocess underlying system dynamics. At present,
embedded hybrid model construction follows a two-step procedure: (i) simultaneous
time-constant and time-varying parameter estimation, then (ii) data-driven model
construction to correlate the time-varying parameters with the state and operating
conditions for predictive simulation. This novel PINN-based framework has the potential
to accelerate hybrid model construction by directly building the predictive data-driven
model. However, there remains the challenge of identifying a high-quality solution to the
PINN network parameters. Therefore, future work will explore more advanced
techniques, such as adaptive time-sampling, self-attenuation, time-marching and causal
training (Wang et al., 2022). In addition, the PINN-based framework is currently only
employed to estimate the kinetic parameters for a pre-defined kinetic model structure.
Therefore, future work will also explore synchronous parameter-structure identification
and compare the performance of the PINN-based framework against an extended RL-
based framework (Wu et al., 2022) when multiple possible structures are possible.
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Abstract

As far as food security is concerned, the world is challenged by growing resource scarcity,
changing diets, environmental challenges, volatile prices, and supply chain disruptions.
Various technological, political, economic, and social factors drive food system dynamics
that fluctuate in terms of their impact on food security. Many studies have attempted to
alleviate risks governing food systems as means to achieve food security by suggesting
numerous modelling approaches and decision-making tools. The purpose of this paper is
to design a composite indicator analysing the risk status of a set of trade partners
supplying Qatar with a predetermined food basket. The latter involves perishable fruits
and vegetables. To design risk indicators, a set of individual factors reflecting the impact
of climate change, inclusive of seasonality and sudden risks, are considered. The
evaluation of these risks is performed based on their impact on Qatar’s demand
satisfaction. Whereas the assessment is conducted using the Analytical Hierarchy Process
(AHP). The second stage of this work formulates a multi-objective optimization model in
MATLAB that determines the optimal network of suppliers to satisfy the local need of
Qatar, considering their climate risk profiles and their production capacities. The purpose
of the optimization framework is to identify the contribution percentage of each trading
partner to the total demand for the predetermined food basket while minimizing economic
costs and risk composite factors. Results of the study assert that diversifying trade
partners is the most resilient option to satisfy local demands yet with a high economic
cost.

Keywords: food imports, climate change, risks, AHP, multi-objective optimisation.

1. Introduction

One of the most pressing issues in today's world is climate change, which has significantly
impacted the earth's ecosystems. Although the world has always experienced some degree
of climate change in the last 100 years, the rate of this variation has multiplied in recent
decades. Since the nineteenth century, anthropogenic activities have caused an increase
in average temperature of 0.9 °C, primarily as a result of greenhouse gas (GHG) releases
into the atmosphere. This rise is anticipated to reach 1.5 °C by 2050 due to continuous
deforestation and the contamination of air, soil, and water bodies (Roe et al., 2019).

Long-term variations in temperature and precipitation patterns contribute to changing the
comparative advantage of food production around the world and may even slow the
expansion of agricultural productivity in areas with high rates of hunger. As a result,
global agriculture and food systems may be altered, causing an inter-annual volatility in
food supplies. If the current climate change patterns continue to evolve, crop losses may
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rise in the very near future at an unprecedented rate; significantly reducing production,
driving up food costs, and making it difficult to meet the rising demands of a growing
population. Therefore, future food security must be strengthened by considering the inter-
annual and inter-decadal effects of climate change.

Considering food systems are susceptible to climate change and natural disasters. The
effect of these factors either can be sudden or can be slow, resulting in a positive or
negative change (Gomez-Zavagliaa, 2020), noting that it mainly affects the production
stages, which have been found to only contribute to around 20% of the value chain
(Cucagna & Goldsmith, 2018). Whereas the complexity of the global agricultural markets
has increased due to more focus on food standards that are related to food safety, food
quality, and technological advances, which creates changes in the industry along the value
chain. These considerations make the task of creating a robust and resilient food supply
system even more challenging.

Therefore, it is imperative to adopt a holistic value chain to enhance resilience rather than
considering the production stage alone (Ringsberg, 2014). Consequently, there is a need
to increase the efforts related to identifying and classifying risks related to food systems
considering data from different parts of the value chain.

Hence, the main aim of this study is to develop a clearer understanding of the food system,
influencing factors, and respective risk management tools, with a focus on climate change
as an external and unpredictable risk to food systems.

In this study, food system’s associated risks are evaluated considering their impact on the
demand satisfaction for the State of Qatar. While the Analytical Hierarchy Process (AHP)
tool is utilised to evaluate the relative weight of these risk factors based on quantitative
and qualitative measures.

A multi-objective optimization model is then developed and solved using MATLAB’s
Genetic Algorithm. The goal of the optimization framework is to select optimal suppliers
and define their contribution percentage towards the food basket of Qatar, while ensuring
the local demand is satisfied within the suppliers’ capacities, with reduced costs and
minimal associated risks. The model in hand may provide insights on possible
enhancement to global food systems considering economic, social, and environmental
aspects.

2. Methodology

2.1. The Analytical Hierarchy Process to design a climate risk indicator

The Analytical Hierarchy Process (AHP) was used to develop a composite risk index
which involves five different climate change risk related indicators counting, surface
temperature change, water stress, arable land, sea level rise and natural disasters
management in addition to agriculture policy adoption. Four countries were selected
which are USA, India, China, and Iran. The AHP is used to quantify the level of risk of
each trade partner through determining its priority rank and following the decision tree
described in figure 1. Priorities were selected based on the situation of the country in each
of the indicators and was based on historical data and grey literature (Dahlman, (n.d);
EEA(2021) Level of Water Stress (2023); The Economist Group (2018)).
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Figure 1. The hierarchical decision tree

2.2. Optimization model

The purpose of this part of the methodology is to design a multi-objective optimisation
model that determines the optimal network of suppliers that can satisfy the local need of
Qatar, considering their climate risk profiles and their production capacities. The purpose
of the optimization framework is to identify the per cent contribution of each trading
partner to the total demand for the predetermined food basket while minimizing economic
costs, and risk composite indicators. The following table 1 presents the mathematical
formulation of the suggested optimisation model. Considering the variable used, xi
presents the decision variable of the model which is the percent contribution of each
country to the food basket. Q is the yearly local demand for food in kg. As for c;, it
represents the food basket average overall unit cost in $/kg. r; is the overall risk indicator
generated from the AHP model. As for the cap;, it represents the allowable exportable
quantities in kg that can be supplied by each trade partner.

Table 1. The mathematical formulation of the optimisation model

Equation Connotation

Objective 5 Identifies the optimal set of trade
function 1 min Z Qc;x; partners that supply Qatar’s food basket
=1 while minimising the overall cost.

Objective 5 Identifies the optimal set of trade
Function 2 min Z TiX; partners that supply Qatar’s food basket
=1 while minimising the overall composite

risk indicators.
Constraint 1 §=1 x; = 100% Logical constraint implies that the sum

of all contributions per cent of water
technologies must be 100%.
Constraint 2 Qx; < cap; The imported quantity from each trading
partner should not exceed their
individual exportable capacity.
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3. Results and discussion

After conducting the AHP, 4 composite risks factors were generated for each country
describing its overall risk performance (table 4). Those risks factors were derived from
the composite indicators involving the set of climate risks sub-indicators as highlighted
in table 3.

Composite risk factors were later used in the optimisation framework as parameters to
select the optimal mix of exporting countries that can supply the market with food
products.

Table 3. Results of the AHP priority score for each exporting country

China USA India Iran
Disaster Risk 0.0611 0.0614 0.0656 *0.0738
Management
Surface Temperature 0.14065 0.1484 0.1322 0.1264
Change
Arable land 0.1612 0.1738 0.3004 0.2546
Water Stress 0.1388 0.1921 0.2432 0.2726
Sea level rise 0.4522 0.3755 0.2116 0.2255
Agricultural Policy 0.0459 0.0482 0.0467 0.0466
Adoption

Table 4. Composite risk factors for each exporting country ((Namany et al., 2019)

China USA India Iran
Unit cost 1.22 7.08 1.45 0.81
($/kg)
Composite
Risk Factor 0.2222 0.2155 0.2114 0.2088

Results of the optimisation model are summarised in Figure 2 and 3. The optimal solution
suggests a slightly diversified network of exporting countries with a large dominance of
Iran with around 90%, while the remaining 10% is distributed between China and India.
As for USA, it’s contribution is below the 1%. This can be explained by the large unit
costs of products originating from the USA and the relatively low risk factors and costs
of the other trade partners. Taking the graphical average from the Pareto front, the average
optimal solution, generates an average total cost of $672M.



Decision Making Approaches to Improve Resilience in Food Supply Chains 93
and Enhance Food Security Against Climate Change Risks

Exporters Mix
5.4065% 0.5482%
4.2808%
89.6735%

= China = USA =India = Iran

Figure 2. The average optimal trade partners’ network

Pareto front

1.00
0.98
0.96
0.94

& 0.92 .

= 0.90 o

S 088 o ®
0.86 °
0.84
0.82

0.80
0.2090 0.2092 0.2094 0.2096 0.2098 0.2100 0.2102

Risk Factor

Figure 3. The Pareto front.

4. Conclusion

In this paper a multi-objective optimization model was developed to identify the ideal
network of suppliers that can meet Qatar's local demand while taking into account their
production capacities and risk profiles related to the climate. The optimization
framework's goal was to calculate each trade partner's percentage contribution to the
overall demand for the predefined food basket while minimizing composite risk factors
and economic costs four different countries. According to study findings, diversifying
trade partners is the most durable way to meet local wants, however it can come at a high
financial cost.
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Abstract

In this work, the lot-sizing and production scheduling problem of a real-life beverage
industry is addressed. In particular, a Big bucket-Small bucket Mixed-Integer Linear
Programming (MILP) framework is proposed for the optimal scheduling of a Greek soft-
drink production facility. The production process consists of two main stages, a batch
syrup preparation stage and a continuous bottling stage. The synchronization between the
syrup tanks and filling lines is of key importance for the feasibility and efficiency of the
production schedules. The main goal is the generation of an optimal weekly production
schedule which satisfies a given demand. A rigorous scheduling formulation for the lot-
sizing and production scheduling of an industrial facility including both batch and
continuous processes is presented. The derived optimal schedules lead to an increased
plant productivity while reducing the utilization and cost of labor resources.

Keywords: production scheduling, optimization, beverage industries, MILP

1. Introduction

Nowadays, process industries operate in a challenging economic environment with low
profit margins, where the demands they have to meet significantly increase and
competition is rapidly intensifying. The ever-increasing number and diversity of products,
as well as the complexity of production processes, especially in the food and beverage
industry, render production scheduling an essential procedure for acquiring efficient
production plans and ensuring the plant’s viability and profitability. The main challenge
regarding these industries is the integrated modelling of all the production stages (Toledo
et al., 2015). In the beverage industry, a few scheduling techniques have been proposed
in the literature, with even fewer addressing complex real-life industrial applications
(Georgiadis et al., 2021). Baldo et al. (2014) proposed an MILP model, combined with
MIP-based heuristics for the production lot-sizing and scheduling problem of a brewery
industry with long lead times and unfixed bottleneck. Mediouni et al. (2022) studied the
lot-sizing and scheduling problem in a dairy soft-drink production process, considering
the limited shelf life of intermediate products and utilizing a relax-and-fix heuristic.
Ferreira et al. (2009) presented an MILP model that integrates production lot-sizing and
scheduling decisions of beverage plants with sequence-dependent setup costs and times
and applied it to a real life instance generating improved results. The efficient lot-sizing
and scheduling problem of a real-life soft-drink production facility is examined in this
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work, including the integrated modelling of all production stages. The proposed
mathematical framework tackles the existing production restrictions and provides optimal
results regarding the productivity and the production costs of the plant.

2. Problem Statement

The plant includes both batch and continuous processes. More than 60 final products are
produced over a 5-day time horizon. A daily 8-hour shift is used, while overnight and
weekend shifts can take place if needed. It is noted that more than one product can be
produced from the same syrup. A brief layout of the production process is shown in Figure
1.

Empty
Processed water cans/bottles
Primary syru Final syr Final syrup - Final products
— i — Filling e+ Warehouse
preparation
co,

Figure 1. Production process layout

According to the production recipe, initially, a primary flavored syrup is prepared. There
are two tanks available for the preparation of syrups. At the same time, water is treated
and deaerated so as to be suitable for mixing with the primary syrup. Inline mixing takes
place between the primary syrup, the treated water and CO, and the final mixture reaches
the filling lines. In the meanwhile, empty cans/bottles are also transferred to the
appropriate packing lines, where they are rinsed. There is a total of three packing lines in
the facility, one for cans, one for PET bottles and one for glass bottles, but according to
the company’s policy only two of them can operate per day. Then, the cans/bottles are
filled with the final mixture and before they finally form a multipack, labels and other
messages are printed on them. Additionally, a brief quality check happens at this point.
Finally, the final products are transferred to the warehouse, where they are stored until
they are later distributed according to customer demand. It can be considered that the
production process consists of two main stages, a batch syrup preparation stage and a
continuous packing stage. The production of soft-drinks requires the synchronization
between these two stages, in order to secure feasible schedules and to minimize overtime
costs. Furthermore, time consuming changeovers take place in both stages depending on
factors such as flavor, packing size and label. Taking into account all of these limitations
while satisfying a given demand is quite challenging in real life industrial environments.
Therefore, the production scheduling of a facility presenting the aforementioned
characteristics is examined in this work.

3. Mathematical framework

This model constitutes an extension of the mathematical frameworks previously
developed by Ferreira et al. (2009) and Mediouni et al. (2022). It is a Big bucket-Small
bucket Mixed-Integer Linear Programming (MILP) framework extended in such a way
that up to three products can be produced in the same Small Bucket (micro-period) from
a single syrup and additionally the option of overtime production is considered. The
planning horizon is divided in T macro-periods with the duration of a day and each macro-
period is further divided into S micro-periods with flexible lengths. In each micro-period
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only one syrup can be prepared in each tank. A brief description of the mathematical
model follows below.

1%t stage constraints

1
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le LUy
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Constraint set (1) imposes that in each micro-period s, each tank u can prepare at most
one syrup /, using the binary allocation variable Y1, ;. Constraints (2) and (3) express
that if a syrup / is prepared in tank u in micro-period s, then it must be transferred to a
single packing line m and this packing line cannot receive another syrup from another
tank. The binary variable Yum,, ,, ; ; indicates that the tank u prepares syrup / in micro-
period s for the line m. Constraints (4) define the changeover of syrups in a tank using the
immediate precedence binary variable Z1,, ;. ; ;. With constraints (5) it is ensured that the
amount of final products produced from the same syrup in a micro-period s (where 7;; is
the required amount of syrup / to produce one unit of product j and x,, ; ; represents the
produced units of product j on packing line m in micro-period s), is bounded by the
minimum quantity of filling q,,, and the maximum capacity Ku, of the tank. Constraints
(6) demonstrate that the inventory of product j in macro-period ¢, In;,, equals the
inventory of the previous macro-period plus the produced amount in the current macro-
period, minus the customer demand d;, . Constraint set (7) guarantees that the total
production time in macro-period ¢, > . stge I Sm,s » does not exceed the daily production

time horizon w,, . including any possible overtime shifts Ov, . Constraints (8) and (9)
establish that the functioning time of line  in micro-period s, Ts,, s, must be equal to or
greater than the packing time (with a,, ; being the required production time of one unit
of product j on line m), plus the changeover time between products from the same syrup
bb; ;, plus the line’s waiting time. The line’s waiting time in a micro-period is either equal
to the time needed for the tank’s changeover by ; and preparation of syrup tr or to the
line’s changeover bb; ; regarding the previous micro-period, depending on which one
lasts longer. Constraints (10) and (11) monitor the changeover between products in the
same micro-period Zij,,; ;s while constraints (12) define the changeover between
products in consecutive micro-periods Zjn,;is. The binary variable Yj, ;s specifies
whether product j is being packed in line m in micro-period s and the binary variable 1, s
is activated if line m functions at micro-period s. The objective of the model, described
by constraint (13), is the minimization of the total production time.

4. Results & Discussion

An industrial case study concerning the production plant of Green Cola Hellas is
demonstrated. The MILP model was implemented in GAMS and solved using CPLEX
12.0. Optimality was reached in acceptable computational times by the company in all
cases, as shown in Table 1. Figures 2 and 3 illustrate the generated schedules for two
given weekly demands. According to the company’s policy two of the three available
packing lines operate per week. Figure 4 depicts the plant’s weekly schedule if all three
packing lines were to operate in a week. Moreover, Figure 5 shows the percentage of
functioning time each machine devotes to different kinds of operations in this case. It is
noted that in the following Gantt charts only the syrup preparation and changeover time
are illustrated with colors for the tanks, whereas the time dedicated to feeding the packing
lines is not. The different syrup flavors prepared are annotated as RX while the final
products are annotated as PX.
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Table 1. Solution report for the satisfaction of three weekly product demands
CPU GAP Overtime Weekly functioning time (hrs)
o Tank Tank Can  PET  Glass
(s) (%) . ) :
1 2 line line line
Demand 1 28 0 40.3 38.1 30.6 - 23.8
Demand 2 900 0.4 36.1 470 259 213 -
Demand 3 900 0.3 46.4  38.0 317 12.8 23.8
Tank 1 I | I I I I Tank 1 I “
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Figure 2. Weekly schedule for Demand 1
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Figure 4. Weekly operation of all three lines
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Figure 3. Weekly schedule for Demand 2
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Figure 5. Functioning time allocation

for each machine (Demand 3)

In all cases, overtime is required to satisfy the given demand. In Figures 2 and 4, it is
observed that multiple products are produced from a single syrup, a flexibility given by
the extended mathematical model presented in this work. Furthermore, the correct
synchronization of the various units is achieved. The syrup tanks are identified as the
production’s bottleneck since they are utilized during the whole production horizon,
either preparing syrups or feeding the packing lines. Syrup preparation requires only a
little time, nevertheless a tank cannot start preparing a new syrup unless it is empty. In
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fact, significantly more time is dedicated to line feeding compared to the time dedicated
to syrup preparation, as shown in Figure 5. The operation of all three available packing
lines in a week gives flexibility to the production while larger product demands can be
satisfied. However, this leads to an increased inventory.

5. Conclusions

The lot-sizing and production scheduling problem of a real-life beverage industry is
presented in this work. The production facility under consideration can be identified as
multiproduct and multistage, with each stage including both batch and continuous
processes, making the problem particularly complex. Furthermore, the synchronization
between these stages is important for the feasibility and efficiency of the production
schedules, an issue often met in food and beverage industries. For the optimal scheduling
of the facility, an MILP framework is proposed. To the best of our knowledge this study
is the first to allow multiple products to be produced in the same Small Bucket from a
single syrup, thus significantly improving the facility’s productivity. This work’s novelty
is further extended by the inclusion of overtime production if necessary, for the timely
satisfaction of the given weekly demand. Optimal production schedules are generated in
short computational times leading to an increased plant productivity and reduced cost of
labor resources. Moreover, the syrup tanks are identified as the production’s bottleneck.
Future work focuses on the short-term storage of the intermediate syrups in the
preparation tanks while taking into account their shelf life and also on the introduction of
buffer tanks between the preparation stage and the packing lines so that the syrup tanks
can function at their full capacity.
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Abstract

Modeling and analyzing the solid waste incineration process is a salient study for future
advanced waste disposal technology and optimizing process efficiency. However, the
development of a mechanistic model that describes the process deal with several
challenges and has yet to be extensively explored. Thus, this paper aims to develop a
mechanistic model for clinical and municipal solid waste incineration in Aspen Plus. The
waste was modeled using customized non-conventional (NC) solid properties, and a
general coal enthalpy model with heat correlations to calculate the heating value. The
model results accurately depict the waste heating values found in the literature. Further
analysis reveals the ability of the model to describe the effect of waste feed quality on
incinerator performance.

Keywords: Clinical and municipal waste, incineration, Aspen Plus.

1. Introduction

The generation of municipal solid waste (MSW) has been increasing globally owing,
primarily due to an increase in global population, urbanization, and economic growth, as
well as changes in production and consumption behavior (Lohri et al., 2017). On the other
hand, the amount of clinical waste (CW) has increased over the past two years due to a
high number of COVID-19 infections. Studies found that the weight of CW has increased
by 27% due to higher cases of COVID-19 being recorded. In 2013 about 50 metric tons
of CW was generated; however, for now, it is estimated that about 90 metric tons of CW
are generated each day, and about 25 metric tons of it is due to COVID-19 (Agamuthu &
Barasarathi, 2021). Various solid waste management treatments exist, including
conventional sanitary landfill treatment, biological treatment, and thermal treatment.
Predominantly, landfill is the primary method of waste disposal in most countries around
the world. However, such a common method is ineffective in managing the increasing
volume of solid waste apart from its drawback towards land, air, ground, and surface
water pollution. Hence, this combustible waste may be incinerated or combusted as an
alternative to landfill.

The advantages of waste incineration over landfilling are the reduction in waste volume,
waste stabilization, waste-to-energy (WtE) conversion, and sanitization of waste,
especially clinical waste. Besides, it also runs stably for a long period. In the incinerator,
waste is burned at 850 to 1000°C, where CO2, SO2, NO, NO2, HCI, HF, CO, dioxins,
and furans are released during incineration. The government law has mandated that waste
incineration facilities use gas purification technologies to reduce volume and hazardous
characteristics and capture or destroy potentially harmful substances that may be released
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during incineration. As a result, atmospheric gas emission limits are typically set to
minimize health and environmental impacts. According to Williams (2005), the
combustion properties and emissions produced by the combustion system will be
influenced by the waste's composition and characteristics. The solid waste's fuel
properties and the proximate and ultimate analyses play an important role in how the
waste will burn in the incinerator and the emissions that are likely to result. The
composition and heating value were the most important parameters governing thermal
processing (Zhou et al., 2014). Heating values measure the chemical energy bound in a
feedstock where this energy is released during combustion (Erol et al., 2010) and
categorized into two, namely higher heating value (HHV) and lower heating value (LHV).
The former involves the heat of condensation of water vapor produced in the heat of
combustion, while the latter is related to the HHV via the heat of vaporization of water.
In some instances, the HHV and LHV are associated with the heat of vaporization of both
HCI and water if the waste contains chlorine and produces HCI as one of the products.

There are two methods for experimentally determining the heating values: a full-scale
boiler as a calorimeter and a laboratory bomb calorimeter. Heating values can also be
determined by calculation using empirical models, and several models have been
developed by researchers (Ogwueleka, 2010). To this day, the most popular method for
predicting heating value is linear regression. Using regression analysis to develop an
empirical model to predict the heat value is thought to be easier and more cost-effective
(Khuriati et al., 2017). A model that describes the oxidation, pyrolysis, and incineration
process is useful to provide insights into the incineration performance and operations.
However, the development of such a model deal with several challenges and has yet to
be extensively explored. Therefore, the focus of this study was to develop a working
model by employing Aspen Plus simulation software. The establishment of such a model
is useful to describe the solid waste incineration process, determine the factors impacting
its performance, and predict incineration performance under various operating conditions.

2. Methodology

2.1. Calculation of heating value

The solid waste was modeled in Aspen Plus as a non-conventional (NC) solid. The NC
component models for enthalpy and density properties calculations were empirical
correlations that require solid material characterization information derived from
constituent ultimate and proximate analyses. The estimates were based on the general
coal enthalpy model, including several correlations to compute the heat of combustion,
heat of formation, and heat capacity. In this work, the heat of combustion in dry, mineral-
matter-free basis, A h{™, was calculated using the Boie correlation according to the
following equation,

dm _ dm dm dm am dm 2
Ach{™ = (ay Wl + apwiT + aswdt + aywd T + as;wit)10? + ag; (D

Where w is the weight fraction and the constant terms, a,; to as; were obtained from the
Institute of Gas (IGT) study. Products were in the form of ash, liquid water, and gaseous
CO2, SO2, and NO2. The heat of formation, Afhfl was based on the standard heat of
combustion-based correlation. The numerical coefficients were combinations of
stoichiometric coefficients and heat of formation for CO2, H20, HCI, and NO2 at
298.15K represented by,
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Arh = Achf — (1418 x 10°wf ; +3.278 x 105w, + 9.264 x 10*wd; — 2.418 x
10*wy ; — 1426 x 10*wg ;)10? Q)

Whereas the heat capacity calculations were based on Kirov Correlations (Kirov, 1965),
which treats the heat capacity as a weighted sum of the heat capacities of the constituents,
which include moisture, fixed carbon, volatile matter, and ash.

2.2. Aspen Plus flowsheet for CW incineration

Modeling and simulation for solid waste incineration were performed in Aspen Plus
V12.1. The solid waste was fed constantly, and the combustion chamber's process was
adiabatic. Gaseous equilibrium is achieved between the primary and secondary chambers.
Heat transfer occurs within the chamber via the mixing of hot gases as well as radiation.
The flowsheet comprised two reactor blocks, RYIELD and RSTOIC. The former was
used to convert non-conventional components into conventional components and the heat
of formation required, while the latter was used to simulate the combustion process. In
addition, two calculator blocks were added to convert the ultimate analysis element into
a wet basis component for the RYIELD reactor block, while the second calculator block
was used to calculate the heating value. The IDEAL base method was used as the property
method. The thermophysical properties (enthalpy, density, and specific heat) of solid
waste were calculated using the built-in coal property models HCOALGEN and
DCOALIGT based on their proximate and ultimate analysis. For calculating heating
values, all unit operations use 25°C and 1 bar as the reference state. Excess air with 78%
nitrogen and 21% oxygen was used as the oxidizing agent.

2.3. Case study

Table 1 shows the proximate and ultimate analysis and its heating values of several
municipal and clinical samples found in the literature. Each sample's proximate and
ultimate values were inserted into the model to calculate the heating values. The
calculated results were then compared. For all cases, the waste fed rate was assumed to
be 500 kg/h. To ensure excess air between a stoichiometric ratio of 1.5 to 2.0, the
combustion air fed rate used was 7000 kg/h.

Table 1: Proximate and ultimate analysis of municipal and clinical waste samples

CW (Erdogan & Yilmazoglu, 2021) MSW (Gebreslassie et al., 2020)
Sample 1  Sample2 Sample3 Sample4 Sample5 Sample 6

Proximate
Moisture (%) 0.32 0.29 7.04 0.24 5.76 2.99
Ash (%) 0 2.3 1.89 0.12 6.23 13.73
Volatiles (%) 99.13 78.52 82.37 94.44 77.81 75.23
Carbon (%) 0.55 18.89 8.7 5.2 10.2 8.05
Ultimate
C (%) 81.81 65.92 48.98 63.91 39.32 36.51
H (%) 12.17 10.03 7.2 5.331 7.2 5.31
O (%) 5.76 23.09 43.52 30.714 53.48 58.18
N (%) 0.15 0.74 0.22 0 0 0
S (%) 0.11 0.22 0.08 0.045 0 0
HV (kJ/kg) 426502 291208 155702 23193b 16217° 12174°
aLHV,®HHV

2.4. Statistical analysis
To determine the accuracy of the proposed model, mean absolute percentage error
(MAPE) was used to denote the closeness of the calculated heating value to the actual
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value. MAPE is mainly used to determine model accuracy and is calculated using the
following equation,

1on  |Ei—Pil

MAPE = (> izlE—i) x 100% 3)

where n is the sample number, E; is the actual value, and P; is the calculated value. Based
on Lewis (1982), a MAPE value of less than 10% gives a highly accurate prediction.

2.5. Model analysis

Analysis of the model was performed to illustrate the effect of process parameters on the
incineration performance of CW and MSW. Two parameters were studied for each type:
moisture and VM content. Moisture content, in CW, for example, could consist of up to
38% (Li & Jeng, 1993), and for some biomedical compositions, VM values were from
30% (Olanrewaju, 2019). These two values were varied, and the corresponding
normalized proximate and ultimate analyses were then used in the model to determine the
heating value and combustion temperature. Furthermore, some waste, i.e., CW, must be
incinerated to around 1000 C due to regulatory requirements. Therefore, additional heat
duty was calculated to determine the combustion heat duty required to achieve the desired
decomposition temperature. Typically, the extra heat duty was supplied by auxiliary fuel
i.e., diesel and natural gas.

3. Result & Discussion
3.1. Model validation

In Table 2, the model calculated Sample 1 to have the highest heating values, whereas
Sample 6 had the lowest. Moreover, each sample's descending pattern of calculated
heating values was consistent with the experimental heating values. In general, carbon
elements have a direct impact on heating value and the results were coherent with the
carbon composition in Table 1. Table 2 also shows the percentage difference between the
calculated value and the experimental data. The percent MAPE range for all samples were
between 3-12%. On average, the percentage error was 7%. This implies that the
simulation model estimated the heating value of the CW and MSW samples with an
excellent range of accuracy.

Table 2: Heating values comparison and simulated combustion temperature results.

Category  Sample# Experiment, Simulation, Simulated MAPE, |%|

kl/kg kJ/kg comb. temp, C
Clinical 1 42650° 39042 1075 8
waste 2 291202 29868 857 3
3 155702 17471 543 12
Municipal 4 23193 24824 719 7
solid waste 5 16217° 16533 444 2
6 12174 13693 398 12
Average MAPE, % 7

aLHV, ® HHV
3.2. Model analysis

The results for variation in moisture and VM content of CW and MSW feed to heating
value, and combustion temperature is shown in Figure 1. Figure 1a shows that when the
moisture content is increased, the heating value decreases. These findings are intuitive
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and agree with Liang et al. (2008). Higher moisture content typically leads to lower
calorific value as various moisture content levels in mass burning affect combustion
performance. Furthermore, the higher moisture content also reduces reaction temperature
and results in poor ignition (Johari et al., 2012). This, in return, lowers the combustion
temperature, as shown by the decreasing combustion temperature. On the other hand, the
increase in VM had an inverse effect on heating values. As shown in Figure 1b, the
heating values increase upon increasing VM content. High VM content contributes to
easy fuel ignition, where a lower minimum ignition temperature is needed. The impact,
however was less significant compared to moisture content. Nevertheless, the result ties
well with theoretical data wherein VM significantly impacts thermal decomposition.

Specifically for CW, an additional heat duty is required to increase the temperature to
around 1000 C for complete disintegration. Figure 2 shows the additional heat duty
required with variation in moisture content. This is typically achieved through burning of
fuel i.e., diesel and natural gas. Obviously, a larger temperature difference needs more
heat or fuel. Therefore, proper handling, segregation, sorting, waste volume, and size and
feed time of the waste are detrimental to reducing the interference with reaction product
combustion, increasing combustion quality, and consequently decreasing the fuel cost.

100%

a00 102.00% 50] 33] 838 850
s

80%
80%
70%

101.50% 800

101.00% 750
8

o 700
60 £ 100.50%

E 650

0%

Combustion temp, €

% 100.00%

600
30%

Combustion temp, C

99.50%

550
20%

% HY decrementfrom BC

=
% HV incre

- 99.00% 500

0% o 98.50% 450

Maisture content increment fran base case (KC| VM contentfron base case (BC)

L% HY decrement B HV decrement  — WSV comb. temp. [C] -#-CW comb, temp, [ CI%HVincrement  @B%HVincrement  ~+-MSW comb. temp. [C]  -#-CW comb. temp. [C]

(a) (b)
Figure 1: Effect on LHV and combustion temperature of CW and MSW for variation in
(a) moisture and (b) VM content.
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Figure 2: Additional heat required and temperature difference to achieve the CW
decomposition temperature of 1000 C.

4. Conclusion

The objective of this study to develop a mechanistic model of the CW and MSW
incineration process was achieved. Using customized NC solid properties, flowsheet, and
a general coal enthalpy model with heat correlations in Aspen Plus, the model
demonstrates excellent agreement with experimental data with a mean absolute
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percentage error of 7%. Model analysis of waste feed content agrees well with results
found in the literature. The model shows that lower moisture and higher VM content
contribute to higher heating values. However, the effect of moisture content is much more
significant than VM content. The model was also extended to predict combustion
temperature and the additional heat required to achieve decomposition temperature. The
model reveals that waste feed quality is detrimental to the incinerator’s performance. In
future work, we will expand the model to other applications, such as optimization, air
pollution control, and waste-to-energy systems.

5. Acknowledgements

The authors wish to acknowledge assistance and support from Universiti Malaysia
Pahang through grant number PDU213003-1.

References

A. Johari, H. Hashim, R. Mat, H. Alias, M.H. Hassim, M. Rozainee, 2012, Generalization,
formulation and heat contents of simulated MSW with high moisture content, Journal of
Engineering Science and Technology, 7(6), pp. 701-710

A.A. Erdogan, M.Z. Yilmazoglu, 2021, Plasma gasification of the medical waste, International
Journal of Hydrogen Energy, 46(57), pp. 29108-25

C.D. Lewis, 1982, Industrial and business forecasting methods: A practical guide to exponential
smoothing and curve fitting’, London; Boston: Butterworth Scientific

C.R. Lohri, S. Diener, 1. Zabaleta, A. Mertenat, C. Zurbriigg, 2017, Treatment technologies for
urban solid biowaste to create value products: a review with focus on low-and middle-income
settings, Reviews in Environmental Science and Biotechnology, 16(1), pp.81-130

C.S.Li, F.T. Jeng, 1993. Physical and chemical composition of hospital waste. Infection Control &
Hospital Epidemiology, 14(3), pp.145-150.

H. Zhou, A.H. Meng, Y.Q. Long, Q.H. Li, Y.G. Zhang, 2014, An Overview of Characteristics of
Municipal Solid Waste Fuel in China. Physical, Chemical Composition and Heating Value.
Renewable And Sustainable Energy Reviews, 36, pp. 107-122

M.G. Gebreslassie, H.B. Gebreyesus, M.T. Gebretsadik, S.T. Bahta, S.E. Birkie, 2020,
Characterization of Municipal Solid waste’s Potential for Power Generation at Mekelle City as
a Waste Minimisation strategy, Int. Journal of Sustainable Engineering, 13(1), pp. 68-75

N.Y. Kirov, 1965, Specific Heats and Total Heat Contents of Coals and Related Materials are
Elevated Temperatures, BCURA Monthly Bulletin, pp. 29-33

0. Olanrewaju, 2019. Quantification and characterization of medical waste in public health care
facilities within Akure Metropolis, Ondo State, Nigeria. EPH-International Journal of
Agriculture and Environmental Research, 55, pp.15-30.

P. Agamuthu, J. Barasarathi, 2021, Clinical waste management under COVID-19 scenario in
Malaysia’, Waste Management & Research, 39(1_suppl), pp. 18-26

P.T. Williams, 2005, Waste treatment and disposal, John Wiley & Sons

R.S. Liang, Jun Fei, Shaohua Wu, Xiang Liu, Kui Dai, Na Yao, 2008, Experimental study on effects
of moisture content on combustion characteristics of simulated municipal solid wastes in a fixed
bed. , 99(15), pp. 7238-7246

T.Ch. Ogwueleka, F.N. Ogwueleka, 2010, Modelling Energy Content Of Municipal Solid Waste
Using Artificial Neural Network, Iran. J. Environ. Health. Sci. Eng., 7(3), pp. 259-266



Antonis Kokossis, Michael C. Georgiadis, Efstratios N. Pistikopoulos (Eds.)

PROCEEDINGS OF THE 33" European Symposium on Computer Aided Process Engineering
(ESCAPE33), June 18-21, 2023, Athens, Greece

© 2023 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/B978-0-443-15274-0.50018-4

On the minimization of cycle time in periodic
production scheduling

Alexandros Koulouris,* Georgios P. Georgiadis,”

“International Hellenic University, P.O. Box 141, Sindos 57400, Greece
bIntelligen Europe, S. Kazantzidi 47, Thermi 57001, Greece

Abstract

Periodic scheduling (commonly implemented in batch processing) is characterized by
the process cycle time. Minimizing the cycle time maximizes throughput. This paper
proposes two approaches for the calculation of the minimum cycle time for batch
processes with resource sharing among tasks: an algorithmic and an MILP-based. The
first approach implements an exact, exhaustive algorithm which also allows the
calculation of all feasible cycle time ranges. The second approach is optimization-based,
yields only the minimum cycle time but is more flexible than the algorithmic in the type
of problems it can handle. Both approaches are demonstrated with illustrative examples.

Keywords: periodic scheduling, cycle time minimization, MILP.

1. Introduction

Cyclic, and more specifically, periodic scheduling is preferred by many batch industries
because of the simplified shop floor control, the easily implementable schedules and
easier shift decisions for the staff. Furthermore, studies show that cyclic schedules tend
to be more robust compared to non-cyclic ones. Despite those facts, cyclic scheduling
has not attracted much attention from the PSE research community.

Periodic scheduling is characterized by the process cycle time, i.e. the constant time
interval between the start (or end) of two consecutive batches. The cycle time is directly
related to throughput; minimizing the cycle time is essential in the operation of a plant
and in capacity studies. Many researchers proposed exact algorithmic polynomial
solvable methods for cyclic scheduling problems, where tasks do not share resources
(Hanen, 1994). However, the methods available in the literature cannot optimize cases
with sharable resources. Few researchers developed novel mathematical optimization
approaches for cyclic scheduling (Pinto and Grossmann, 1994; Wu and Maravelias,
2019). In most of these formulations, each task can only be processed in exactly one
unit throughout the cyclic schedule. Moreover, they do not address the cycle time
minimization problem.

The objective of this paper is to present solutions to the minimization of cycle time in
the presence of tasks sharing multiple resources. Two approaches are presented: an
algorithmic and an MILP-based. In the algorithmic case, the non-overlapping constraint
between tasks on the same resource yields bounds on the feasible cycle time between
any pair of tasks under the assumption that all available resources are used periodically
by all tasks. The developed MILP model is based on the general precedence framework
(Kopanos et al., 2011) and takes into account the cyclic nature of batch scheduling
through the introduction of a new set of constraints. In comparison to the solutions
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found in literature, the model relaxes the requirement of using a single resource for each
task throughout the schedule allowing for a better utilization of the available resources.
The proposed model is relatively general and can be easily extended to consider any
specific operational constraint, thus providing a basis for tackling realistic large-scale
problems. Two case studies are presented, demonstrating the applicability of the
proposed solutions in real-life industrial scenarios and highlighting their differences.
The case studies have been modeled and scheduled within the scheduling software
SchedulePro (by Intelligen, Inc., Scotch Plains, NJ, USA, www.intelligen.com) where
the algorithms have also been implemented. The MILP models have been solved using
the HiGHS open-source solver (Huangfu and Hall, 2018).

2. Periodic Scheduling Set-up

Let T = {1,2,..n} be a set of n tasks corresponding to a batch that is to be executed
indefinitely often. Let p;>0 be the duration of task i. The batches must be executed
periodically with a fixed cycle time, a. Let t(i, k) denote the start of the execution of
task 7 in batch k£ and # denote the start of task i for the (randomly selected) reference
batch 0. Then,

t(i, k) = t; + ak (D

Within each iteration, the tasks are to be executed at a specific order with fixed time
intervals between their starts. Let D; ; Vi,j € T be the fixed time distance between the
start of task ;j and the start of task i within the same batch. Then,

Dij = t(],k) — t(l,k) :DU = t] —t;
2

Di; = —D

i D;=0

L’
It is assumed that all tasks within 7 are ordered in ascending start times. Each task uses
a pool of available resources to be used for its execution. Different tasks may use the
same resources, therefore, the resource pools may overlap (partially or fully) between
tasks. Feasible cycle times are those that do not create overlaps of tasks (in the same or
different batches) on the same resource. Under this setting, a unique schedule can be
generated with the assignment of the cycle time, a, and the allocation of resources for
each task in every batch.

3. Algorithmic Approach

To obtain the minimum and feasible cycle time ranges in an algorithmic way, it is
assumed that each task uses exclusively its own resource pool, or, if tasks are to share
resources, the resource pools are identical. It is further assumed that if common
resources are available, they are used in a rotation mode. As a result, all tasks will
eventually "meet" on each resource but it is not known a priori to what batch these tasks
will belong. Under these assumptions, a periodic schedule is completely determined by
setting the value of the cycle time and the resource used for every task at the first batch.
To find the minimum cycle time, it is possible to split the task set into subsets composed
of either a single task (using its own resources) or of a group of tasks sharing a common
resource pool. If a task uses exclusively one or multiple resources, then its feasible cycle
time range is simply [p;/m;, 0) where m; is the number of resources available for task
i. The analysis below will deal with tasks sharing a pool of multiple resources.

Due to the periodicity and the cyclic rotation between all resources, each task i is
executed on the same resource every m batches (where m is the number of common
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resources). The indices of repetitions of the same task i on the same resource can
therefore be represented by mk; + s;, where k;,s; € Zands; (0<s; <m) is an
integer representing the index of the batch (with respect to reference batch 0) for the
first occurrence of task i in a specific resource. Note that s; is not the same for all
resources. The non-overlap constraints between two tasks Z, j on a given resource can be
written as:

t(i,mk; +s;) + p; < t(j,mk; +s;) or, t(,mk;+s;)+p; < t(i,mk; +s;)

t; + amk; + as; + p; < t; + amk; + as; or, t;+amk; + as; +p; < t; + amk; + as;
3)
t]—tl Zpl—a’(mKu+SU) or, t]_tl S—p,—a(mKu+SU)
Dl] Zpl—a’(mKu+SU) or, Dl] S—pj—a’(mKU+Sl])

where  K;; =k; —k;, and S;j =s; —s;, K;j,S;j € Z,—m <S;; <m. Note that
because of the cyclical rotation over all resources, and despite the fact that s; and s; are
resource-dependent, their difference §;; is not.

For a feasible schedule to exist, for every pair of tasks i, j executed on the same resource
with given value of §;;, there must exist an integer value of K;; so that D;; belongs to
one of the allowed intervals, namely [ p; — a(mK;; + S;;), —p; — a(m(K;; — 1) + S;;)]- In
other words, the non-overlapping constraints can be re-written as:

or, if the two inequalities are separated,

Di]' Zpl —a(mKij+Sij) (5)
Dy < —p; —a(m(Ky — 1) +5;) = Dj = p; —a(m(l-K;) - Sy)

These two constraints are, in fact, symmetrical provided that in the second inequality we
use: Kj; =1—K;;jand Sj; = —S;;. The feasible values of the cycle time, a, should
therefore satisfy the following constraints:

D;j = p; —a(mK;; +S;j) Vij€T
Kij +I(]L = 1

3 (6)
i

Depending on the sign of the term p; — D;;, Eq. (6) provides upper or lower bounds on a
for different values of Kj;,S;;. After a few algebraic steps (outlined in Koulouris and
Georgiadis, 2022), these bounds can be calculated as follows:

@ pi +pj
m
lfpl - Dl] > Othen,
4+ D:: p;—D::
a= max{p]—”,pl—”} for S;; #0
m—S” SU

lfpl - Dl] =0 then, (7)
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As seen in Eq. (7), the values of K;; are either fixed or bounded on both sides and that
means that the search of feasible ranges is also bounded. Using different values of
K;j, S;j within their admissible ranges, bounds on cycle time are calculated. The union
of all these feasible ranges provides the values of the cycle time that, for a given pair of
tasks, guarantee repetitive execution of these tasks with no overlaps. This calculation
process must be repeated for all task pairs; the intersection of all pair-wise feasible
ranges will result in the feasible cycle time ranges for all tasks sharing common
resources. The lower bound of these ranges is the minimum process cycle time.

4. MILP Approach

While computationally efficient, the previously described exact method is based on a
heuristic of utilizing the resources in a cyclical manner that could affect the output
resulting to very good but potentially suboptimal solutions. Therefore, an MILP-based
approach, that can ensure the optimality of the generated solutions and can tackle
problems with non-identical resource pools, is also developed. The model is based on
the known general precedence framework, which has been extended to address periodic
scheduling optimization problems. Given a specific number of batches B of tasks 7 to
be processed in the available resources R, the optimization model generates a complete
optimal schedule with minimum cycle time. A set of binary allocation variables (¥s,)
and binary sequencing variables (X;5:’»’) are employed. The first are enabled when a
batch b of task i is processed by resource », while the latter when a batch b of task i is
processed prior to batch b’ of task i’ using the same resource. The proposed model
consists of constraints (8)-(15) and the objective function (16), which are described
below.

Z Yipr =1 Vi€T,bE€IN, ®)
TEIR;
Lip+ Z Yipr -p0) = Cip VieT,beB ©)
TEIR;
Ll_b=tl+(b—1)a VlET,bEB (10)
Lipr = Cip =M (1= Xipyrp) —M-(2=Yypr—Yyp,) Vi,i' €T, i <i',b,b’ (1)

€ B,T € (IRi,T n IRiI,T)
Li,b 2 Ci’,bl -M 'Xi,b,i’,b’ -M - (2 - YI:,b,T - Yl",b’,T) VL',L" € T,l < i’, b,b’ € B,T (12)
€ (IRi,‘r n IRi/,‘r)

Lip=Cip—M-(2—=Yyp, —Yip,) Vi€T,b,b' €INy,b<b',r €IR;, (13)
Yibr =Yipsnpr Vi€ERb<|B|—NB,r €IR;; (14)
Lipsng = Ciy Vi€T,b<|B|—NB (15)

Min a (16)
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Constraint set (8) ensures that each batch b of a task i will be processed by exactly one
resource r. Notice that in order to reduce the model’s size, we only consider the batches
in the set IN, This set denotes the batches for which we optimize the allocation
decisions. Let us assume that we want to create an optimal schedule for a set of batches
B={b0, b1,..., b10} and decide that IN,={b0, b1}, then the allocation of the tasks in the
available resources is repeated every two batches. For example, if task i/ is allocated to
resource 2 and r3 in batches b0 and b1, then the allocation for the upcoming batches
will be b2—r2, b3—r3 etc. The size of set IN, is a user-defined parameter depending on
the needs and wants of the production engineer using the model. A larger size means
potentially lower cycle times but requires more CPU time. Next, constraint set (9)
guarantees the proper connection between the starting and completion times of every
batch of each task. In particular, the completion time C;, must equal the starting time
L;; plus the required processing time p;. Constraints (10) are essential since they define
the problem as a cyclic scheduling problem. More specifically, we define that the
starting time of a batch b of task i must be equal to the start time of the first batch ¢,
plus the cycle time times the batch number minus 1. For example, let us assume a task
with starting time 5 hours, if the optimal cycle time is calculated to be 2 hours, then the
starting time of the first batch will be 5 hours, of the second 7 hours, the third 9 hours
and so on. Constraints (11) and (12) are the precedence constraints that are necessary in
order to respect the disjunctive constraints (any resource can only process one task at a
time). Constraints (11) and (12) are complementary. If a batch b of a task 7 is processed
prior to a batch b’ of task i’ (Xis:'»=1) and both of them are processed on the same
resource (Y;p,=Yi:p,=I), then the batch b’ of task i” must start after the completion of
batch b of task i. M is a large number (big-M parameter), which is necessary in order to
relax the constraints, in case the previously mentioned conditions are not valid.
Constraint set (13) states that a batch b’ of task i must start after the completion of a
batch h<b’ of the same task in case both are processed by the same resource. Again, to
reduce the model’s size we only consider this constraint for the subset /N,. The next two
constraints ensure that the generated schedule will be a cyclic one. NB is the number of
batches in the subset /N,. Constraints (14) guarantee that a batch b+NB of a task i will
be processed in the same resource with batch b, since the schedule must be cyclic.
Similarly, for the same couple of batches, batch 5+NB must start after the completion of
batch b. Goal is the minimization of the cycle time a.

5. Examples

To demonstrate the use of the above approaches, two examples are presented here. The
first example refers to a process producing a small molecule API. It consists of 11 tasks:
4 tasks sharing 3 reactors, 5 tasks sharing 2 tanks and two tasks using exclusive
equipment (1 filter and 3 dryers, respectively). Details about the start time and duration
of these tasks can be extracted from Intelligen, Inc. (2022) where this process is
presented as a SchedulePro case study. As an extension to this example, it was assumed
that 2 transfer panels are used as auxiliary equipment for all material transfers (11 in
total). Their duration and start times in hours are {4,1,1,1,1.5,1,1,1,1,8,2}
and {0,11,15,16,17,19.5,20.5, 24, 25,43, 51}, respectively. Both the algorithmic and
the MILP approaches yield instantaneously the same minimum cycle time of 17.67
hours. The bottleneck resources are the transfer panels. A Gantt chart showing the
bottleneck equipment in a sequence of 15 batches scheduled at the minimum cycle time
is shown in Figure 1. The algorithmic approach yields also all feasible cycle time ranges
which are: {[17.67,18.5],[19.5, 20],[27,27.75], 29.25,[31.5,32.5],[33.5, =) }.
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Figure 1. Gantt chart of 15 batches for the small molecule API case study.

Knowledge of the feasible ranges is useful if the plant wants to operate at specific cycle
time which is not necessarily the minimum.

The second case is an example process where the algorithmic approach yields a
suboptimal solution as a result of the resource rotation assumption. The process has 3
tasks with durations and start times {6,2,11}and {0, 2,5} hours, respectively. It is
assumed that 3 equipment resources (Eql-3) are available. In this case, the algorithmic
approach yields a minimum cycle time of 8 hours while the optimal value calculated by
the MILP approach (IN»=3) is 7 hours. As shown in Figure 2, unlike the algorithmic
approach, the optimal policy assigns an exclusive resource (Eql) to the first task.
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Figure 2. Gantt chart of 15 batches for the example process.

6. Conclusions

Two approaches are presented in this paper for the calculation of the minimum cycle
time in periodic batch process scheduling with resource sharing. The algorithmic
approach is an exact, exhaustive method that yields the minimum cycle time and all
feasible cycle time ranges for an infinite scheduling horizon under the assumption that
all common resources are used in rotation. The MILP approach is more general since it
makes no a priori assumption on resource assignments and generates optimal solutions
for predefined scheduling horizons in short computational times.
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Abstract

Assessing a heat exchanger network (HEN) based on total annual costs (TAC) alone
is no longer appropriate. Climate-damaging emissions must also be considered. Thus, we
use CO, emissions and TAC as objectives in the fully linearized heat exchanger network
synthesis (HENS). Due to uncertainties concerning emissions and equipment costs, a
refurbishment of the HEN may become necessary even before its life cycle has been
reached. Since a significant share of the system costs is related to the piping, it is
economical to change only the heat exchanger (HEX) areas. To assess the potential for
the refurbishment of a given HEN in the future, we constrain the Pareto optimal HEN
configurations and recompute sub-Pareto fronts. Our results show that there are obviously
superior configurations regarding distance and coverage of the sub-Pareto front
concerning the initial Pareto front. The hypervolume indicator (HVI) and the coverage
were used as quantitative indicators to evaluate different configurations. However, these
characteristic parameters do not correlate with empirically determined high-quality
configurations. This contribution has laid an essential foundation towards developing
versatile and optimal HEN.

Keywords: MILP, multi-objective optimization, non-dominated solutions, locked HEN
configuration

1. Introduction

To save energy and costs, industrial energy systems can connect hot and cold process
streams using a HEN. The optimal interconnection of the HEN can be calculated using
HENS. If we look at various literature on HENS, the aim is almost entirely to achieve a
cost minimum. The single-objective approach cannot consider environmental impacts. To
produce a holistic set of choices for decision-makers, multi-objective optimization
(MOO) with CO, emissions and costs is the way to go.

Many optimal HEN can provide a comprehensive basis for decision-making. However,
determining which HEN to choose is a significant challenge for decision-makers. The
selected HEN should meet the current conditions and be reasonable in case of unforeseen
developments. For example, political or economic changes such as increased CO;
certificate costs or energy costs can adversely influence the selected HEN's performance.
Since such changes can never be fully considered, it is more effective to present decision-
makers with fewer but more robust solutions.

According to Peters et al. (2003), the piping costs in fluid processing plants can be up
to 80 % of equipment costs. This corresponds to about 25 % of the total investment costs.
The costs associated with adjusting the operating point of the HEN can be reduced
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significantly when keeping the piping configuration as it is. With an unchanged HEN, the
operating point, respectively the load on the utilities can be influenced by varying the
HEX areas.

In this paper, we use HENS to propose a method to assess the versatility of Pareto-
optimal configurations and to identify the ones that can be refurbished economically in
the future if necessary. To determine the versatility of a configuration, we compute sub-
Pareto fronts from the Pareto optimal configurations. Investigation of the Pareto front has
shown that only a few unique configurations of HEN exist as non-dominated solutions.
Sub-Pareto fronts can be generated using those unique configurations, which differ only
in the utility load and HEX areas. The results show that the sub-Pareto fronts cover large
areas of the initial Pareto front while containing a variety of only weakly dominated
solutions.

2. Methods

The HENS formulation used in this paper is based on the stage-wise superstructure
formulation according to Yee and Grossmann (1990). With this formulation, heat
exchange can occur in counterflow between streams in k stages with stream splits. The
hot and cold utilities are located at the ends of the streams, respectively.

2.1. Objectives

The first of the two objectives describes the TAC and was adopted from Yee and
Grossmann (1990). The second objective represents the CO, emissions due to the
operation and manufacturing of the HEN, according to Pintari¢ et al. (2019). This method
evaluates CO, emissions based on hot utility consumption and economic activity level
according to the economic input-output life cycle assessment (EIO-LCA). In contrast to
Pintari¢ et al. (2019), we also consider emissions from the circulation pumps power
consumption.

2.2. Linearization

To apply highly efficient mixed integer linear programming (MILP) solvers, all non-
linear terms (reduced stream HEX area, reduced utility HEX area and logarithmic mean
temperature difference (LMTD)) are linearized. The non-linear reduced stream HEX area
is tightened to the feasible solution space according to Beck and Hofmann (2018) and
approximated with super positioned planes. The convex approximation allows the
efficient transfer to MILP without using binary variables. Analogously, the reduced utility
HEX area is tightened. In contrast to Beck and Hofmann (2018), the non-linear relation
is approximated with several straight lines. The function of LMTD is approximated using
plane triangles on a regular grid. The transformation to MILP is done using a highly
efficient logarithmic coding of the binary variables introduced by Vielma and Nemhauser
(2011). With this method, T Simplices require only [log,(T)], instead of T binary
variables.

2.3. Optimization Approach
The developed method can be divided into the following main steps:
1. Calculate Pareto optimal solutions
2. Constrain incidence matrix in Pareto optimal HEN configuration
3. Calculate Pareto optimal solutions of subproblems
The Pareto front is calculated using the adaptive weighted sum method from Kim and
de Weck (2005). Compared to the weighted sum method, the Pareto front can also be
solved in non-convex regions and with well-distributed solutions. In the remainder of this
paper, we will refer to this Pareto front as an initial Pareto front.
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In the second step, the unique configurations of the initial Pareto front are identified.
From the resulting set of unique configurations, new subproblems are created. The
incidence matrix representing the HEN configuration is blocked with constraints.
Therefore, the degree of freedom and thus, the complexity can be reduced significantly,
leading to short computation time.

In the final step, a new Pareto front is calculated for each subproblem with the adaptive
weighted sum method. Note that the Pareto optimal solutions of the subproblems are not
optimal regarding the initial problem. The sub-Pareto fronts always contain at least one
non-dominated Pareto optimal solution concerning the initial problem.

3. Use Case

The method presented in the previous section was applied to a representative use case
with four hot and five cold process streams, according to Linnhoff and Flower (1978).
The stream data, HEX, and utility costs are summarized in Table 1. The CO, emissions
factor for hot utilities wyy and investment costs w;y, were taken from Pintari¢ et al.
(2019). The emission factor for the cold utilities is calculated assuming that 10 % of the
cooling load must be supplied as electrical energy. With 8000 h full load hours and an

average electricity mix, wcy results in 0.0016t/kwy. The minimum allowed approach
temperature was set to ATy, = 20°C and heat transfer is possible in two stages.

Table 1: Case-study: stream and cost data according to Linnhoff and Flower (1978).

Stream Tin/°C Tout /°C F /kW/K H /kW/m?K
HI 327 40 100 0.50
H2 220 160 160 0.40
H3 220 60 60 0.14
H4 160 45 400 0.30
Cl 100 300 100 0.35
C2 35 164 70 0.70
C3 85 138 350 0.50
C4 60 170 60 0.14
C5 140 300 200 0.60
HU 330 250 - 0.50
CU 15 30 - 0.50

HEX data: ¢; = 2000 ¥/, ¢, = 70 $/m25y’ B =1 0y =399-10Y

Utlhty data: Cqyy = 60 $/kwy, Ccu = 6 $/kWy
CO; emissions: wyy = 1.436t/kwy, Wey = 0'0016t/kWy

3.1. Optimization Framework

The optimization problem has been modeled using Yal/mip R20210331 Lofberg (2004)
in MATLAB R2022a. The optimization problem was solved with the state-of-the-art
solver Gurobi 9.5.2 on a 128-core system (AMD EPYC 7702P) with 128 GB RAM.

3.2. Linearization Settings

The reduced stream HEX areas were approximated with as many planes as necessary
to obtain a root mean square error (RMSE) of less than 1.0 %. In most cases, this was
achieved with four planes. The LMTD was approximated with 32 plane triangles resulting
in an RMSE of 1.0 %. The reduced HEX areas of the utilities were approximated with
two straight lines resulting in an RMSE below 2.0 %.
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3.3. Pareto Front Settings

The problem was normalized between the nadir and utopia point to calculate the Pareto
front. The solutions were estimated to have a minimum relative distance of 2.5 %. Below
that, solutions are considered overlapping and excluded. Within the adapted weighted
sum method, iteration was performed until a maximum relative point distance of 5.0 %
was met. If larger distances occur in the Pareto front, no solution exists.

The normalization of the problem with locked HEN configurations is done based on
the respective nadir and utopia points. Each subproblem was thus normalized with respect
to its nadir and utopia point, different from the initial solution.

4. Results

Figure 1 shows the calculated Pareto fronts of the use case with 27 different solutions.
Out of 2% possible HEN configurations, only 13 are identified as a solution to the
problem. Identical configurations are shown in the same color.
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Figure 1: Left: initial Pareto front with 27 non-dominant solutions and 13 different HEN

configurations. Right: initial Pareto front with 27 non-dominant, sub-Pareto fronts with 125

dominated solutions and 13 different HEN configurations.

The resulting 13 sub-Pareto fronts with locked HEN configuration are shown in Figure
1 (right). Obviously, some solutions are closer to the initial Pareto front and cover a
broader range than others. The hypervolume indicator (HVI) according to Guerreiro et al.
(2021) was calculated for each Pareto front to evaluate the quality of the different
configurations. The reference point is always the nadir point of the initial Pareto front.
The ratio of the HVI between a sub-Pareto front and the initial Pareto front can be
interpreted as a dimensionless area ratio. The closer the HVI ratio is to 100 %, the closer
the sub-Pareto front is to the initial Pareto front. The results are summarized in Table 2.
Since the single-criterion evaluation of the different configurations considers versatility
only to a limited extent, the coverage is also evaluated and listed in Table 2. The coverage
quantifies the overlap of the sub-Pareto front concerning the initial Pareto front.

Since there is no direct correlation between coverage and HVI ratio, it is up to the
decision-maker to find a trade-off between these two indicators.

Table 2: Characteristic values of subproblems with locked HEN configuration.

config. #of HVI ratio coverage coverage
solutions annual CO, emissions TAC
/- /- /% ! % ! %
a 7 32.42 9.90 23.95
b 9 5223 22.49 34.91

c 8 52.64 21.12 31.14
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d 2 33.46 3.67 8.16
e 7 52.51 23.90 21.39
f 8 85.60 16.92 40.99
g 12 88.57 37.13 32.21
h 9 85.56 15.94 41.01
i 9 84.74 16.20 43.33
] 11 54.16 23.39 45.11
k 9 55.93 18.67 34.49
1 15 55.93 45.67 48.00
m 19 48.46 47.44 75.22

Configurations f-i (light green to orange in Figure 1) have a high HVI ratio of over
80 % but cover only small areas of the Pareto front. The peripheral areas are not covered
at all. Configuration g offers the best trade-off between HVI ratio and coverage. However,
configurations 1 and m (red and dark red in Figure 1) cover at least the peripheral area
with low CO, emissions well. Due to the higher HVI ratio, configuration 1 is preferable.
The second configuration (blue in Figure 1) covers a substantial area in the low TAC
region. Based on this empirical analysis, the obviously relevant solutions can be reduced
to the three configurations b, g and 1. The stream plots of the three configurations can be
found in the Appendix. As can be seen in Figure 2, these solutions cover almost the entire
Pareto front. Remarkably, all solutions have large areas with only weakly dominated
solutions.
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Figure 2: Pareto front with three non-dominant solutions and 33 weakly-dominated solutions
of configuration b (blue), g (light green) and 1 (red).

5. Conclusion

In this paper, we used MOO to incorporate TAC and CO; emissions into the design
optimization process of a HEN. Our results show that some sub-Pareto fronts cover the
initial Pareto front to a large extent. Although each sub-Pareto front contains at least one
Pareto optimal solution, some HEN configurations are obviously superior to others. We
argue that a desirable configuration is one whose solutions are as close as possible to the
initial Pareto front and at the same time provide high coverage and therefore versatility.
In this paper, we attempted to quantify the trade-off between versatility and optimality of
a given configuration. HVI and coverage were considered, but results were not
satisfactory. The analysis of Pareto-optimal configurations, which we proposed in this
paper, can be a useful tool to identify the most versatile HEN. More research on
quantitative measures for the optimality of these configurations is still required.
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Figure 4: Stream plot for configuration g: 10 stream HEX, 4 hot and 3 cold utilities.
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Figure 5: Stream plot for configuration 1: 10 stream HEX, 3 hot and 4 cold utilities.
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Abstract

New aspects of an interval-arithmetic (IA) based automatic initialization scheme for root-
finding algorithms to efficiently solve nonlinear algebraic equation systems (NLEs) are
presented. Using the model of a partial condenser, it is demonstrated how additional
constraints may eliminate non-physical solutions by the help of interval arithmetic for
initialization. Finally, the number of stages of a multicomponent distillation column is
varied to investigate the required time of the approach to obtain initial values and
solutions by root-finding as a function of the system size. The overall method finds a
physically feasible solution for the distillation column with 20 stages without any initial
values required.

Keywords: NLE, initialization, interval arithmetic, numerical iteration

1. Motivation

Chemical processes can become quite complex so that corresponding mathematical
models are frequently hard to solve. Newton-based methods guarantee convergence in
Lipschitz continuous areas, but fail, in case functions or derivatives are not defined at
individual iteration points. In our study, we present further developments of an already
introduced hybrid approach (Bublitz et al., 2021) that can automatically initialize
nonlinear algebraic systems for root-finding algorithms using IA-based iteration methods.
Its aim is to ease the challenging task of finding a converging initial point. The approach
is designed to solve square problems of the form

f=0. )

2. Notation

Throughout this work, multidimensional quantities are printed in bold. An interval X is a
convex set of real numerical values delimited by the lower bound x and the upper bound
X. Intervals of multiple variables span a convex variable space, which we term a box x.
The midpoint m(x), width w(x) and magnitude |Z| of an interval are defined as

m@® =57 w@=5-x |6 =maxlx) 7 @
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1) Contraction

) [3)splitting |

Solved box returned

Figure 1. Three steps of the hybrid approach: 1) Contractions; 2)Root-finding; 3) Splitting

3. Hybrid Approach

The hybrid approach applied, consists of three steps, which are shown in Figure 1. As
input, the user must provide initial intervals for all iteration variables. They span the initial
box, which is reduced in the first step via IA-based contraction methods to one or more
boxes (see section 3.1). A box x is termed solved when all its intervals x satisfy the
condition

Apps + Dger - |Z| = W(Z) : (3)

The absolute and relative tolerances, Agjs and Ag,;, must be specified. Unsolved boxes
are reduced until they are consistent, i.e., their intervals no longer change from reduction
step k — 1 to k and both conditions,

Agps + Dpey - max{|x®V; [x @[} = w(]x® —x*=]), )

Agps + Dge; - max{|7("‘1)|; |§(k)|} >w (|E(k) _ 7(k—1)|) (5)

hold for all of them. In the second step, a consistent, unresolved box is passed on to a
Newton-based solver that starts from the center of the box to potentially find a root in its
interior. A solution x* to Eq. (1) in a set tolerance Apro; is found when

If (x)Il2 < Apror (6)

holds, and is immediately returned to the user. If only one numerical solution is of interest,
the procedure can be configured so that it terminates after a successful numerical iteration.
Otherwise, the consistent box is split in step 3 (see section 3.3), and then further processed
in contraction.

3.1. Contraction

Contraction methods can reduce an initial variable space x based on the given constraints
from Eq. (1). This can be generalized by the introduction of the contracting operator
I'(f(x), %) (Granvilliers, 2020):
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I(f(x),x) <% . (7)

While removing inconsistent variable domains, contraction methods never lose any
solution within the initial box. A general contraction step is defined as

() =59 1 (f0,29) . (®)

Eq. (8) either breaks a box into one or more sub-boxes, verifies that the box cannot contain
any solution, or proves that the box has a unique solution (Moore et al., 2009). For
contraction, we use a combination of our own method Bnormal, presented in Bublitz et
al. (2021), as well as the method HC4revise from Benhamou & Puget (1998). Both
contracting operators have different requirements and capabilities. Details of which can
be found in the respective publications. The latter method is particularly fast in reducing
wide intervals. Our method on the other hand can find tighter enclosures for variable
domains in equations with many instances of the same variable. For example, the equation

0=x3—x*+x+y 9)

can be used to reduce the initial interval [—10; 10] of x to [—1.37; 1.57] by HC4revise
in 17 ms' through the given variable interval [0; 10] of y. Bnormal needs 29 ms but the
reduced interval of x is [—0.55; 0]. Besides, Bnormal can filter infeasible regions within
variable intervals to pave the way for the upcoming root-finding step. However, to use
the advantages of both methods, a combination of them is also tested, in which HC4revise
is applied first due to its speed. It continues until a box becomes consistent and forwards
the box subsequently to Bnormal. When Bnormal could further contract the box, it returns
it to HC4revise, and the alternation continues until the box does not change anymore
according to Eq. (4) and (5). This alternation is denoted as a box reduction step. One box
reduction step usually encompasses many contraction steps to reach consistency.

3.2. Root-finding
The root-finding problem is reformulated to a minimization problem of the sum of the
quadratic function residuals of Eq. (1)

05 (10)
mxln AFTOL ‘ Z f(X)Z

and can be solved by any nonlinear optimization solver, e.g., ipopt (Wachter & Biegler,
2006). The reduced variable bounds from the contraction are directly considered here. To
avoid an early termination of ipopt at a point with a low curvature of the objective, Eq.
(10) is scaled by the hyperparameter Apro;. In addition, a Newton method is started on
the root-finding problem at the local minimum in case it does not fulfill Eq. (6), to find
the root of Eq (1) with the required tolerance.

3.3. Splitting

The applied splitting scheme bisects the variable interval, which has changed the least
since the last split. If no split has occurred yet, it refers to the initial box. If there are
several variable intervals that were reduced equally little, the interval is taken that causes
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Table 1. Initial bounding of 36 iteration variables of the partial condenser.

Iteration Variables Symbol Initial Interval  Unit
Mole fractions Xi; Vi [0; 1] -
Outlet flow rates FL FY [0; 75] kmol/h
Compressibility factors VASVAS [0; 10?]

Cohesion pressure at; av [0; 10] Pa
First derivative (EoS) 8i1; Oga [0; 10%] -
Second derivative (EoS, Liquid) &%, [—10% 0] -
Second derivative (EoS, Vapor) &Y, [0; 10°] -

Other iteration variables [-10% 10°]  various

the greatest box reduction in a subsequent contraction. Ideally, one of the bisected boxes
can be identified as empty and is directly discarded.

4. Computer Experiments

We apply the hybrid approach on two NLEs: a partial condenser and a distillation column.
The hybrid procedure stops as soon as ipopt finds a solution. The tolerances of the box
reduction A,p, and Ag,; are set to 10712 and 1071°. These values ensure that no solution
near an infeasibility is filtered accidentally. This could otherwise be the case due to low
mole fractions in the order of 107° . For root-finding, Aprq;, is set to 1078 to ensure that
all state variables are sufficiently converged. A maximum of 10 box reduction steps and
50,000 iteration steps during root-finding are applied. Each test run is repeated three
times and the averaged CPU time is presented in the results’. The success of the box
reduction at reduction step k is measured by parameter &:

Nyar —(k)
g(k) — anox Z w (&v ) ) 1 ] 1
b=1 \ &=y (21(70)) Nyar | Mbox (11)

After reduction step k, the contraction methods might have split the initial variable space
into ny,, reduced boxes. A value of ¢ = 1 corresponds to no reduction of the initial box,
while a value of € = 0 equals tight enclosures of all real valued solution(s), which fulfill
the required tolerances, i.¢., all solutions have been found.

4.1. Partial Condenser

In this unit, a gas mixture of Toluene, Biphenyl, Benzene, Methane and Hydrogen is
partially condensed to separate the low-boiling components Methane and Hydrogen at a
given pressure and temperature of 35 bar and 298.15 K. The inlet flow rate is 75 kmol/h.
Thermodynamic equilibrium between the ideally mixed liquid and vapor phases prevails
in the unit. The chemical equilibrium according to the @-¢ approach as well as the
enthalpies rates are calculated using the cubic equation of state of Soave-Redlich-Kwong
(SRK) (Soave, 1972). The full model consists of 36 equations and can be found in
MOSAICmodeling®. Table 1 summarizes its coarse initialization.

For each phase, a dimensionless equation of state is implemented (Rao, 1997) to
determine the compressibility factor Z

0=23-72+(A-B—-B?-Z—A-B . (12)
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Figure 2. Number of real valued roots of Figure 3. CPU time and convergence results after
a cubic equation y = f(Z) depending on one box reduction step for different number of
its distance to the origin. trays of the distillation column'.

According to Figure 2, such a cubic equation has one up to three real roots for Z.
Physically interesting, however, are only the smallest root for the liquid phase and the
largest one for the vapor phase. A potential third solution in between can be filtered by
requiring the first order derivative of Eq. (12) with respect to Z to be greater than or equal
to zero

841=3-22—-2-Z+(A—-B—-B?, 6;,>0 . (13)

The compressibility factors of the liquid and the vapor phases differ in their second order
derivatives. To obtain the compressibility factor of the liquid phase Z- the condition

8, =6-2L-2, 6, <0 (14)
must be fulfilled, while for Z¥ the condition
8V, =6-2V—-2, 6;2=0 (15)

holds. To avoid interval dependency during contraction, Eq. (12) und Eq. (13) are
reformulated to become

0=23-2722+(A4—-(B—-05)2+025-Z—A-B , (16)
1\¢ 1
5d1:(\/§-z—ﬁ) —§+(A—(B—0.5)2+0.25) . (17)

This ensures that, e.g., E can be further tightened. Let us assume A = [0;5], B =
[—1; 1], and Z = [0; 1]: Evaluating the righthand side of Eq. (13) by IA can only reduce
E to [—4; 9], while its reformulation according to Eq. (17) achieves [—2.3; 6.25]. Eq.

(14) to (17) have been implemented to limit the variable space to the desired solution
without having to make any case differentiation.

Table 2 shows the results of the tested contraction schemes. While Bnormal finds a
physical solution after one box reduction step, HC4revise has not solved the system
numerically even after 10 reduction steps. The combination of both finds a solution. It is
slower than Bnormal but has a better box reduction performance in terms of €.
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Table 2. Results after one box reduction step applied on the partial condenser’.

Method Solved CPU (s) €()
Bnormal yes 4.63 0.60
HC4revise no 2.13 0.59
HC4revise + Bnormal  yes 4.82 0.57

4.2. Distillation Column

A mixed liquid stream of the same components as in the previous example is thermally
separated in a distillation column. The unit removes the byproduct Biphenyl from the
hydrodealkylation process. Its model was originally implemented by Rajes (2020) and
includes equilibrium trays, a total condenser and a total reboiler. The number of trays is
varied from 5, 10, 15 to 20 which corresponds to 241, 416, 591, and 766 state variables.
The processing time in dependence of the problem size is of interest in this investigation.
The vapor liquid equilibrium and the enthalpies are also calculated via SRK. The
initialized NLEs can be found in MOSAICmodeling'. According to Figure 3 the
combination of Bnormal and HC4revise outperforms the single methods in most cases
regarding its run time. Unlike the other two methods, it always finds a solution for all
NLEs after one box reduction step.

5. Conclusion

Without a laborious search for suitable initial values, just one box reduction step of our
IA-based initialization approach suffices to reduce the initial variable space to such an
extent that the applied root-finder determines feasible solutions for both test examples.
Nevertheless, it should be noted that overly wide variable intervals, e.g., of [-10%; 10°],
may slow down the method due to extreme box splitting. Hence, process knowledge
remains indispensable to narrow the operating range. The more precise this estimation is,
the faster also the hybrid approach becomes.
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Abstract

The production scheduling of batch operated electroplating plants gives rise to hoist
scheduling problems. A literature review and real-world case studies reveal that a broad
spectrum of electroplating scheduling problems can be modeled as mixed integer
programs. Since problems of real-world size cannot be solved by state-of-the-art standard
solvers in reasonable times, problem-specific simplification heuristics can be manually
applied. An automation vendor strives for an automated solution for a wide spectrum of
hoist scheduling problems to reduce the engineering effort. Therefore, the selection and
parameterization of models and heuristics need to be automated. This paper argues for an
approach which combines mixed integer programming with hyper-heuristics to close this
research gap.

Keywords: Hoist Scheduling, Electroplating Plants, Mixed Integer Programming, Hyper-
Heuristics

1. Electroplating scheduling

In batch-operated electroplating plants, piece or bulk material is coated with thin layers
of metal using electrolysis. Such a plant, schematically shown in Figure 1, consists of
several tanks arranged in one or more coupled rows, which are filled with liquids for
coating as well as for pre- and post-treatment of the products.

recipe 1 recipe 2

hoist 1

Figure 1 Schematic representation of a batch operated electroplating plant (left) and different
recipes with their production sequence (right)



126 S. Reimschiissel et al.

Items to be coated are mounted on racks or filled into barrels (in general carriers) and
dipped into specific tanks in a sequence given by recipes. The processing times may vary
for some stages within a given range (see Figure 1). The carriers are automatically picked
up, transported and lowered by hoists, moving above the tanks on a rail. Multiple hoists
operate on one rail, so they cannot pass each other and must not collide. The plant
operation constitutes Hoist Scheduling Problems (HSPs), which can be thought of as
Flexible Job Shop Problems (FJSP) with additional consideration of hoists. The
dominating degrees of freedom are the movements of the hoists, which also determine
the occupancy of the tanks. The carriers usually move back and forth and must be returned
to the start of the line, as shown in Figure 1. The most common scheduling objectives are
the minimization of the makespan or cycle time. In the HSPs of the electroplating
processes at hand, no-wait conditions as well as time intervals for process durations must
be satisfied, so that the hoists arrive at the tanks in time. The reachability combined with
the collision avoidance of the hoists increase the complexity of the HSPs compared to
FJSPs and simplification strategies become necessary to solve real-world problems.
Multiple aspects like the combination of products, their geometrical shape, base and
coating material, layer-thickness or the required space for the plant determines the plant
structure and the recipes of the products. Virtually each electroplating plant is designed
individually for a specific application according to these requirements. Consequently, a
broad spectrum of scheduling problems exists, which differ from application to
application and require different simplification strategies.

2. State of research and technology

2.1. MIP-based methods

For the HSP, different Mixed Integer Programming (MIP) models for different plant and
process structures exist. The HSP belongs to the class of NP-hard problems (Lei et al.,
1989) and, depending on the size of the problem instance, cannot be solved in reasonable
time with a standard solver like CPLEX (ibm.com/de-de/analytics/cplex-optimizer).
Therefore, often simplification strategies are applied to compute a feasible schedule for
one or a few days. A first distinction of simplification strategies is made between cyclic
and acyclic scheduling. Cyclic scheduling is suitable for plants processing few product
types in large quantities. Each cyclic schedule covers one or a few products and is
executed several times in succession (Feng et al., 2018). There also exist MIP-models to
switch from one cyclic schedule to another in an optimal way (Steneberg, 2013). Acyclic
scheduling is suitable for plants processing many product types in small quantities. To
compute an acyclic schedule in reasonable times, a rolling horizon approach can be
applied, where the entire scheduling horizon is decomposed into smaller time segments
(Ramin et al., 2022). If cyclic or acyclic scheduling with rolling horizons does not reduce
the solution time sufficiently additional simplification heuristics become necessary.

The simplification heuristics can be classified as follows: (1) decomposition, (2) fixing
variables, (3) adding constraints, (4) aggregation, (5) relaxation of constraints and
(6) algorithm tuning. Cyclic scheduling (decomposition by products) and rolling horizon
(decomposition by time) can be assigned to class (1). Furthermore, there are different
zone partitioning approaches, in which the electroplating line is decomposed into zones
which are assigned to the hoists (Li et al., 2015). A further decomposition can be done by
the choice of the cycle degree (decomposition by batches). A higher degree leads to an
equal or shorter cycle time but to a longer scheduling horizon and thus to a longer solution
time (Feng et al., 2018). Simplification heuristics from class (2) are the assignment of
certain transport operations to hoists (Frohlich et al., 2009) or the fixed assignment of
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stages to identical tanks (Reimschiissel et al., 2022). Simplification strategies from class
(3) include fixed processing times (Che et al., 2010), restriction of the transport direction
(Chtourou et al., 2013), and prevention of a cycle transition during a transport operation
(Leung et al., 2004). The aggregation of picking up, transporting, and lowering a carrier
is a simplification from class (4) (Mao et al., 2018). Different approaches exist for
relaxing constraints (5) and dealing with infeasible schedules caused by this
simplification. For instance, Yan et al. (2018) check whether the solution violates relaxed
constraints and reinserts them into the model. Algorithm tuning (6) can be done by tighter
model formulations (Leung et al., 2004) or passing a warmstart solution (Ramin et al.,
2022) or lower/upper bounds on variables to the solver (Che et al., 2007).

2.2. Metaheuristics, constructive heuristics and hyper-heuristics

In addition to MIP, some metaheuristics are applied to solve the HSP, such as
evolutionary algorithms (Amraoui et al., 2013), variable neighborhood search (Laajili et
al.,2021) or tabu search (Wang et al., 2019). There are also various constructive heuristics
like variations of the earliest starting time heuristic (Amraoui et al., 2016) or the adaptive
time window heuristic (Paul et al., 2007). Hyper-heuristics are used to automate the
selection and parameterization of metaheuristics or constructive heuristics. For a given
problem instance, a hyper-heuristic (often a metaheuristic itself or a neural network)
selects a suitable metaheuristic/constructive heuristic from a pool of low-level heuristics
and determines an appropriate parameterization (Burke et al., 2019).

2.3. Commercial solutions

Generic production planning systems are usually not applicable for the electroplating
scheduling since they neglect the hoists. Scheduling without hoists and adding them to an
existing schedule later is usually infeasible due to collisions of hoists or hoists not
reaching transport operations in time. Specific software solutions for scheduling batch-
operated electroplating plants exist, such as GALVATEK (galvatek.cu), DiTEC (ditec-
gmbh.com) or ICOM Automation (icom-automation.de), but their market penetration is
limited due to complex manual adjustments required for the specific problem instances.

3. Automation vendor’s perspective

In practice the scheduling is typically done individually for each plant through the manual
application of different types of heuristics by experienced experts. Sometimes the
scheduling procedure is split between the automation vendor and the plant operator.
However, this manual heuristic procedure suffers from long response times, a lack of
experienced experts and a considerable loss of optimization potential — in particular for
plants processing many product types in small quantities.

To overcome the mentioned drawbacks of the manual heuristic procedure, automated
MIP-based scheduling services are proposed. In order to exploit economy of scale effects,
they should be offered by automation vendors. However, a key requirement for an
automated scheduling procedure for a broad spectrum of problem instances is an efficient
and widely automated engineering process. The engineering process is meant to adapt the
generic scheduling procedure to individual problems.

4. Research gap

This chapter outlines the gap between an automation vendor's requirements for an
automated solution to schedule individual electroplating plants as described in chapter 3
and existing approaches.
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4.1. MIP-based solution

Mathematical programming methods offer a high modeling flexibility and standard
solvers that are independent of the model. The applicability of MIP methods to real-world
electroplating scheduling problems depends on two prerequisites: The models need to
represent the real-world problems sufficiently well and the computational limits of the
standard solvers need to be overcome.

4.1.1. Case studies

Three real-world use cases were examined: (a) a medium-scale manually operated plant,
(b) a small- and (c) a large-scale automatically operated plant. Their key properties can
be adequately reflected by MIP models. To solve them by CPLEX, (a) was simplified by
an aggregation approach and (b) and (c) by a product-decomposition approach. For (b),
the optimized schedule was computed within 2 min CPU-time and with a 14,9 % shorter
cycle time than the manually created schedule. Further it was shown that varying problem
instances require different models and simplification heuristics. The model for (a) cannot
be used for (b) and (c) because the hoists are not covered and depending on the problem
size, certain combinations of simplifications are no longer sufficient to compute a
schedule in reasonable time. For (¢) for example, a schedule could be computed within
48 hours only for small recipes. The selection of a suitable model and suitable heuristics
for a given problem instance is based on an educated guess.

4.1.2. Literature analysis

A complementary literature analysis revealed, that according to the classification scheme
by Manier (2003), nearly the full spectrum of HSPs can be modelled as MIPs. However,
an analysis of the papers also showed that different problems require different models and
heuristics, as well as different parameterizations of the heuristics. A typical approach in
the literature for selecting models and heuristics and parameterizing heuristics for MIP is
also an educated guess.

4.2. Automated model and heuristic selection

The models existing in literature collectively represent almost the entire spectrum of the
HSPs. Considered individually, the models as well as the heuristics are suitable for a small
subset of problem instances and are usually applied to individual selected or benchmark
instances. However, an automation vendor needs a solution that can be applied to a
spectrum of real-world problem instances automatically. Which model and heuristics
should be applied for a given problem instance to compute a solution in a short solution
time with high quality is still not considered in the state of research and not yet automated.
Manually selecting the models and the simplification heuristics for each instance takes
much time and requires a lot of knowledge. From an automation vendor’s perspective an
automated engineering process i.e. an automated selection, parameterization and solution
of models and heuristics for specific instances is crucial.

5. Approach

Studies on real-world instances show that MIP can be used in practice for hoist scheduling
in electroplating plants if simplification heuristics are applied. As described in section
4.2, an automated selection and parameterization is needed. According to literature the
application of hyper-heuristics is limited to metaheuristics and constructive heuristics.
Methods to select and parameterize simplification heuristics used to solve MIP models
are not known to the authors. The authors propose to combine the principles of hyper-
heuristics with MIP as follows. The real-world problem instances as well as the models
are classified according to the scheme of Manier. Based on the classification, a
preselection of models suitable for the problem is possible. The suitable models are
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parameterized for the problem instance and a pool of suitable heuristics is chosen. The
preselection of the models already decides which low-level heuristics are to be added to
the pool, since only a subset of heuristics is applicable to each model. In the research
phase, a parameterized model with a suitable heuristic and its parameterizations is to be
determined with an evolutionary algorithm. A possible criterion to evaluate the fitness of
individuals could be the objective value after a given solution time. This process is
performed for multiple problem instances, resulting in pairs of scheduling problems with
model-heuristic combinations. These will be used to train a neural network to avoid
selecting a model and heuristic each time again with the evolutionary algorithm during
the application phase.

instance 221-2 problem instance classified
hoists with the notation of Manier
tanks
stages

mapping between
‘ | task and models

hoists pae WS hoists hoists MIP-models classified with
tanks tanks tanks tanks tanks q 3
stages stages stages stages stages | the notation of Manier

MIP 1 MIP 2 MIP 3 Mip4 -+ MIPM
| model parameterization
parameterized parameterized parameterized parameterized
model 1 model 3 model 4 MIP-models
| g | { | | mapping between models and heuristics
D H1 H2 H3 H4 HS5 H6 -+ HN heuristic simplifications
g ; Z Z g z Z parameterization of heuristics
c c C C c c c
@ Research phase: Input = Evolutionary Algorithm =
=" Application phase:  Input = Neural Network =

Figure 2 Procedure to select and parameterize a model and a heuristic for a scheduling problem

6. Outlook

Young research areas like hyper-heuristics deal with automated algorithm selection and
parameterization but have not yet been applied to simplification heuristics for solving
MIP models. The approach presented in this paper combines hyper-heuristics with MIP
to compute good schedules in reasonable time for new, unknown problem instances. The
study of this approach shall provide a deeper insight into the problem as well as
knowledge about the relationships between the scheduling problem and suitable models-
heuristic combinations. It is expected that the research will reveal the potentials of an
intelligent, automated model and heuristic selection, regarding solution time and
scheduling quality, compared to the educated guesses applied in literature and at the
automation vendor. Furthermore, information on suitable structures for hyper-heuristics
for selecting MIP models and heuristics as well as their essential differences compared to
classical hyper-heuristics shall be obtained. The results can not only be transferred to
further applications in the field of HSPs such as robotic cells or cluster tools, but also to
optimization problems for which many models and heuristics exist which are differently
suited for different problem instances. The expected overall goal is to bring the theoretical
results in the form of MIP models and simplification heuristics into practice through the
approach presented here.
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Abstract

Tropospheric ozone pollution is one of the most harmful secondary air pollutants that
could has brought challenges to air pollution prevention. Therefore, early prediction and
warning of high-level tropospheric ozone concentration plays an important role in the
management of ambient air pollution. Deep learning methods have been widely applied
for their powerful data fitting ability, but nonstationary characteristic is exhibited in ozone
concentration data owing to the instability of the atmosphere, which pose a challenge to
the prediction of data with high-level ozone concentration. Considering the effectiveness
of difference in handling nonstationary sequence, a nonstationary modeling method
called single difference-embedded long short-term neural network (SDELSTM) is
applied to realize the prediction of high-level tropospheric ozone concentration. Case
study on an ozone dataset between 2013 and 2017 in Los Angeles is used to verify the
effectiveness of the SDELSTM.

Keywords: SDELSTM, high-level tropospheric ozone concentration, nonstationary
characteristics

1. Introduction

Tropospheric ozone pollution is a secondary pollutant produced by nitrogen oxides (NOy)
and volatile organic compounds (VOCs) under solar radiation (Jenkin and Clemitshaw,
2000). The long-term exposure to tropospheric ozone contributes to the risk of respiratory
and circulatory mortality, and is potentially associated with cardiovascular disease risk
and premature death (Jerrett et al., 2009, Turner et al., 2016). The real time prediction of
tropospheric ozone pollution can realize the early alarm and prevention of ozone pollution
and reduce the risk of human health. Generally, data-driven methods are widely used to
achieve this task. Among them, LSTM is widely used in ozone prediction since the it
could model long-term time dependence (Cabaneros et al., 2019). However, the air
quality data show short-term nonstationary characteristics due to the unstable atmospheric
composition and the complexity in the formation mechanism of pollutants. Under this
circumstance, traditional data-driven models show poor performance in the field of ozone
prediction. Zakaria et al. (Zakaria et al., 2021) introduced stationary and nonstationary
model to forecast high ground-level concentrations and found that nonstationary models
showed better performance in ozone prediction. Therefore, the consideration of
nonstationary characteristics of data can enhance the performance of ozone prediction
model. Difference is widely used in statistics to deal with nonstationary time series, which
could eliminate the impact of random fluctuations in data, so as to improve the
performance of the model. It is reported that several difference methods have been
combined with deep learning methods for time series prediction. Zhou et al. (Zhou et al.,
2022) proposed difference-LSTM (DLSTM) in which the difference of input variables
was seen as a dynamic input, and the method was verified by the prediction of key
variables in complex industrial process. Wang et al. (Wang et al., 2019)proposed the
memory in memory (MIM) networks. Then the MIM module was utilized to replace the
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forgotten gate and retain more nonstationary characteristics. In this study, a model called
SDELSTM is introduced to perform ozone prediction from the perspective of
nonstationary characteristics of data. In this model, an additional network layer including
a differential module is embedded into LSTM neural network to capture the nonstationary
characteristics of data under the premise of avoiding the loss of original data
information(Ji et al., 2023). The effectiveness of the SDELSTM model is validated by
performing ozone prediction using the historical tropospheric data from Los Angeles.

2. Description of the model

The structure of SDELSTM

The structure of LSTM

Figure 1 The structure of LSTM and SDELSTM

2.1. long short-term memory neural network

The LSTM neural network is a special recurrent neural network which contains many
neurons in the hidden layer. The structure of LSTM is shown in Figure 1. The initial input
h;_; and x; represent the state of the previous hidden layer and input of current time
respectively. C; and C;_; record the cell state which is the key value to LSTM. h,
represents the output of the current layer. The neurons in hidden layer contains three gates
including a forget gate, an input gate and an output gate which could control the
transmission of information. The unique structure helps LSTM learn the long-term
characteristics of the data. The forget gate control which part of information should be
retained. Then the input gate determines the information to be added to cell state and the
output gate control the output of the cell state. However, the short-term nonstationary
characteristics cannot be obtained by a single forget gate and some measures have been
adopted to make LSTM become nonstationary model.

2.2. The structure of single difference-embedded long short-term neural network

To address this problem, the SDELSTM model is improved from LSTM where an
additional layer including a differential module is embedded into the hidden layer. The
dashed box indicates the replacement of the forget gate by the differential module. The
input of difference module is states of hidden layers of the current and previous moment
(h¢ and h;_,) which is regarded as difference information. N;_; represents cell state of
the previous difference layer. The output of difference layer is a new cell state D, which
contains difference information. The next layer combines D, and C;_; whose purpose is
selective retain difference characteristics and long-term characteristics of the original
sequence. T; represents cell state which records both short-term and long-term
information. Eventually, in order to avoid the loss of original information, h; and H,_,
which represents the state of SDELSTM are utilized as the input of LSTM neural network
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and H, represents the output of SDELSTM. Then, the short-term nonstationary
characteristics can be obtained by the unique forget gate module. In summary, the
proposed SDELSTM model could learn short-term nonstationary characteristics and
long-term dependence at the same time by a difference module, and therefore the
performance of ozone concentration prediction can be improved.

2.3. Implementation procedure of SDELSTM

The implementation procedure of SDELSTM is shown in Figure 2 which contains three
parts: data processing, stationary analysis and modelling. The procedures can be
summarized as follows,

Step 1: The missing values are filled by K-Nearest Neighbor (KNN).

Step 2: The datasets are divided into training data and test data in a ratio of 4:1 and 20
percent of training data are grouped into validation data.

Step 3: The stationarity of time series is tested by the ADF test.

Step 4: The SDELSTM model is set up by training data and the hyperparameters of the
model are determined by validation data.

Step 5: The performance of the model is verified by test data.

Data processing
Train Data | ——— | Setup SDELSTM model |
[ Filling with missing values] G
)
i Stationary Hyperparameters ]
[ Partition of datasets ] :> —— [ optimization
- A

Zero mean normalization ] ..
[ Test data |:> [ Prediction results

Figure 2. The training process of SDELSTM model

3. Results and discussions
3.1. Data preparation
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Figure 3 Daily Maximum ozone distribution thermal map of Los Angeles in 2017
Due to the special geographical location of Los Angeles and the year-round high
temperature and little rain characteristics, ozone pollution is serious. In 2017, more than
100 million people in the United States were exposed to tropospheric ozone pollution,
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especially in Los Angeles (Zhang et al., 2019). Figure 3 shows that the thermal map of
daily maximum ozone of Los Angeles in 2017. The national ambient air quality standards
from EPA for ozone concentration is 0.070 parts per million (ppm). In addition, according
to world health organization (WHO) air quality guidelines, the standard for ozone
concentration is 0.05ppm which suggests more people are exposed to tropospheric ozone
pollution. It is found that the darker the color, the more ozone pollution there is and most
ozone pollution is concentrated during the warmer months. Besides the dataset mentioned
above, the Los Angeles air quality datasets between 2013 and 2017 are obtained from the
air quality system of environment protection agency (EPA) which were collected from
the monitoring site at N main St in Los Angeles. Datasets from 2013 to 2016 are used as
training sets and the data of 2017 is selected as the test set. Considering that there are
missing values in the data, KNN is utilized to fill missing data. After data preprocessing,
twelve air monitoring variables are selected, including SO», NO,, PM, 5, PMio, RH_DP,
TEMP, COy, CO;, NOy, NOy, NOy, and NO;.

3.2. Case study

3.2.1. Stationary analysis

Since the complexity of atmospheric environment, the air quality monitoring data
obtained from monitoring stations would fluctuate randomly within a certain range, which
is easy to be ignored from a long-term perspective, and the nonstationary characteristics
generated by random fluctuations will affect the performance of ozone prediction model.
The Augmented Dickey-Fuller (ADF) test was widely used to test the stationary of the
time series and conducted for monthly tropospheric ozone concentration to demonstrate
the non-stationary characteristics of the data. It is shown in Table 1 that 8 months ozone
concentration data are nonstationary at 1% confidence. Therefore, the nonstationary
characteristics of the data cannot be ignored while traditional LSTM models do not take
these characteristics into account. To address this issue, the SDELSTM model is
introduced to learn the nonstationary characteristics within the air quality data, which
could enhance the performance of ozone prediction.

Table 1 Los Angeles monthly data ADF statistics in 2017

Months Test statistics 1% 5% 10%
January -2.97 -3.71 -2.98 -2.63
February -2.44 -3.66 -2.96 -2.62
March -4.79 -3.67 -2.96 -2.62
April -4.97 -3.78 -3.01 -2.64
May -3.34 -3.66 -2.96 -2.62
June -2.53 -3.66 -2.96 -2.62
July -4.07 -3.75 -2.99 -2.63
August -4.92 -3.67 -2.96 -2.62
September -3.27 -3.66 -2.96 -2.62
October -3.43 -3.66 -2.96 -2.62
November -1.75 -3.71 -2.98 -2.63
December -2.99 -3.66 -2.96 -2.62

3.2.2. Performance of SDELSTM on ozone concentration

With the current air quality data fed in, the model is able to predict ozone concentration
for the next hour. It is shown in Figure 4 that the prediction results of the model for
different months. The model makes accurate predictions of the concentration data where
there is a health risk while the model performed poorly in the prediction of low
concentration data. It is found that ozone data show successive near-zero values at regular
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intervals after the analysis of actual hourly ozone data. Then we speculate that it is caused
by artificial manipulation which leads to the deviation in the predicted result graph.
However, only high concentrations of ozone (>0.05ppm) pose a huge threaten to human
health. Therefore, when evaluating the predictive performance of the model, the
prediction results of low concentration values will not greatly affect the predictive
performance of the model.
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Figure 4 Comparison of true and predicted values for different months
In order to evaluate the prediction effect of the model more scientifically and objectively,
it is necessary to use quantitative indicators to further evaluate the model, coefficient (R?),
root mean square error (RMSE) are widely used to evaluate the performance of prediction
models. The indicators are defined as follows,

N
1
RMSE = NZ(}/]' —}7]')2 €Y)
i=1

Z (yj y]
Z -5’

where N is the number of test samples. y; and J; indicate the actual and predicted values
at time j. y; indicates the mean of the predicted values over all times. The specific

calculation results are presented in the next section along with the comparison of other
models.

(2)

3.2.3. Model comparison
In order to demonstrated the performance of the SDELSTM model in ozone prediction,
the related models including artificial neural network (ANN), LSTM, gate recurrent unit
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(GRU) are utilized to compare the results with the SDELSTM model. The specific model
comparison results are shown in Table 3. It is shown in Table 2 that the SDELSTM model
performs better than other models in all indicators. The R? of the model is 13.4% higher
than that of the traditional LSTM and RMSE is 34.6% lower than other models. The
SDELSTM model shows more accuracy on the tropospheric ozone concentration because
nonstationary characteristics of the ozone data cannot be considered by traditional
predictive models.
Table 2 Comparison of different models

RMSE R?
ANN 0.0120 0.6119
GRU 0.0110 0.6869
LSTM 0.0104 0.7265
SDELSTM 0.0068 0.8237

4. Conclusions

In this work, a model called SDELSTM is introduced to perform ozone prediction from
the perspective of nonstationary characteristics of data. An additional network layer
including a differential module is embedded into LSTM neural network to capture the
nonstationary characteristics of data under the premise of avoiding the loss of original
data information. Based on literature research, the ADF stability test was conducted on
the ozone data of Los Angeles in 2017, which confirmed the nonstationary characteristics
of the ozone data. Then the effectiveness of SDELSTM model is validated by performing
ozone prediction using the historical tropospheric data from Los Angeles. The results
demonstrates that the SDELSTM model shows better performance in hourly troposphere
ozone prediction than other related models, indicating its application prospect in
preventing ozone pollution.
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Abstract

Gas-solid multiphase systems are ubiquitous in several applications such as
pharmaceutical, mining, and petrochemical industry (Geldart, 1986). The vigorous
interaction between gas and solid particles involves complex dynamics in the
determination of mass and heat transfer. Most simulations and experiments use
fluidized beds with simple geometries, but industrial multiphase reactors generally have
complex configurations (Zhao et al., 2020). The aim of this work is to study the gas—
solid flow characteristics of a Z-shaped gas-solid fluidized bed by means of an in-house
solver DEM-LES solver. The fluid phase is computed through solving the volume-
averaged four-way coupling Navier—Stokes equations in which the Smagorinsky sub-
grid scale tensor model is used. Results show that particles and fluid phases are not
uniformly distributed, and a core-annulus structure is observed. These findings provide
valuable insight into the development and optimization of particle purification
appliances in multiphase reactors.

Keywords: Fluidized bed, Computational fluid dynamics, DEM-LES, Biomass
particles, Particle sorting.

1. Introduction

Finding sustainable, clean, and low-carbon alternatives to traditional fossil fuels is
becoming crucial given the world's rising energy needs and the severity of global
warming. The many inherent benefits of biomass for bioenergy, such as its global
availability, renewability, and carbon neutrality, make it one of the most attractive
possibilities. Torrefaction, pyrolysis, gasification, and catalytic conversion are among
the thermochemical conversion processes that may turn raw biomass feedstocks into
high-quality energy products. Because it can transform biomass into three different
products-biogas, bio-oil, and biochar, pyrolysis has drawn the most attention among
these processes. The fluidized-bed pyrolyzer is one of the most popular reactors for
biomass pyrolysis because of its excellent particle mixing capability, high heat transfer
efficiency, and operational flexibility. The fluidized-bed reactor, however, typically
presents a complicated system in which the hydrodynamics of dense gas-solid flow,
heat/mass transfer, chemical reactions, and turbulence are intimately inter-coupled,
making it challenging to fully comprehend the mechanics of biomass pyrolysis.

In order to develop and scale-up fluidized systems, it is necessary to understand the
flow characteristics between particles and gas but doing so through experiments is
challenging. The usage of numerical simulation as an alternate tool for engineering
analysis has increased with the advancement of numerical methods and processing
power.
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Particle-resolved direct numerical simulation (PR-DNS), two-fluid model (TFM), and
CFD-DEM are the three categories into which numerical methods of particle
fluidization can be categorized. PR-DNS is only useful for flow systems with no more
than 1000 particles due to its high computing requirements. The TFM technique treats
fluid and solid as two distinct continuous phases. The CFD-DEM model uses Newton's
second law to monitor particles, which is why a good match was obtained between
simulations and experiments.

Numerous studies have concentrated on how operating parameters affect the particle
flow characteristics. Ejim et al., (2017) investigated how the inner geometry of
mesoscale tubes with baffles affected the axial dispersion and suspension of materials.
Hu et al. (2019) assessed how collisional characteristics affected the hydrodynamics and
heat transport in a spouted bed. In a full-loop circulating fluidized bed at varied surface
gas velocities, Xu et al. (2018) computationally and empirically examined the particle
movements, proving that solid behaviors (such as residence duration, dispersion, and
mixing) are connected to the fluidization regions. Particle size and gas velocity effects
on tar yield in rapid pyrolysis reactors were discussed by Xue et al. (2012). Wang et al.
(2018) also thoroughly investigated the particle behaviors, including the particle force
and velocity. The effectiveness of chemical reactions is impacted by the fact that
biomass is made up of heterogeneous particles of various densities, sizes, and forms.
Consequently, a number of separation and purification techniques were suggested.

Konrath et al. (2014) investigated the circumstances of fine particle separation in
centrifugal classification. The influence of particle organization and spigot widths on
the enhancement of separation of the hydrocyclone was numerically modeled by Vega-
Garcia et al. (2020). Further discussion was made regarding the impact of dipleg shape
on the functionality of gas-solid cyclones.

Lv et al. (2018) investigated the motion and separation behavior of coal in a fluidized
bed for gas-solid separation.

Since most previous research places emphasis on the effects of operating conditions but
gives the reactor structure relatively little attention, the current work aims to investigate
the influence of the reactor structure on biomass fluidized-bed pyrolysis behavior. The
separation of two-component suspension has typically been shown to be improved by
the fluidized bed structure's inclination (Masliyah et al., 1989). In the present study,
multiple inclination cross-sections that make up a Z--shaped channel, which has
considerable potential for the fluidization and separation of mixed biomass particles, is
investigated.

2. Mathematical modeling

The single-spout fluidized bed is simulated in the current study using a coupled
Computational Fluid Dynamics and Discrete Element Method (CFD-DEM). The
Newtonian laws of motion control the dynamics of the particles suspended in the bed.
To describe the fluid phase, the locally volume-filtered Navier-Stokes equations are
solved. The whole momentum exchange between the solid and fluid phases is then
included in these sets of equations (two-way coupling).

{at(gf er) +0i(6r07,) = 0, (1a)
— — — — | —SGS — inter
at(Qfouf’L) + aj(Qfouf_lufJ) = —6139 + aj(TU + Tij ) + ngfg’L + Tl' ) (1b)
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Where 6y, ¢, p, and uy are the fluid-phase volume fraction, density, dynamic pressure,
and velocity, respectively. In Eq.(1b), g stands for the acceleration due to gravity and
F™teT for the inter-phase exchange term that arises from filtering the divergence of the
stress tensor. The volume-filtered stress tensor, 7, is expressed as T;; = u [aim+
otr; — 20716, + R
function. The SGS stress tensor T-jSGS = Q7Us Us j — OUs, Uy, is modeled within the
Boussinesq’s framework evaluated using the classical Smagorinsky (Smagorinsky,
1963) model.

A Lagrangian particle-tracking approach is used for the solid phase. The displacement

of an individual solid particle indicated by the subscript p is calculated using Newton-
Euler equations for rigid body motion as follows:

wij » Where p is the dynamic viscosity and &;;is the Kronecker

dupvi = finter 4 gcol 4 ) ith dxpri _ ] 2
mp - fp,i p,i mpgu wi - up,l ) ( a)
dt dt
dwy,;
pi d
g =M, + M (2b)

where the particle mass is defined by m, = ngpdz?; /6 and wu, is the centroid particle

velocity. The force f° accounts for the particle-particle and particle-wall repulsion

modeled using a soft-sphere model (Cundall & Strack, 1979). The force ]‘;,i"ter exerted
on a single particle p by the surrounding fluid is related to the inter-phase exchange

term in Eq.(1b) by Finter = Zﬁfzpl &(|x — x,|) finter, where WV, is the total number of
particles, ¢ is the filtering kernel used to volume filter the Navier-Stokes equations, x,,

is the position of the p** particle, and fz,i”ter is approximated by fszl-‘ter ~ V,0;T;; +

fp"iimg ~ =V,0;p° + fp‘?ir %, where V,is the volume of the p™™ particle given by
ndg /6 and 9;p® is the local pressure gradient interpolated at the center of the particle.
The drag force is computed using the drag force coefficient of Tenneti et al. (2011).
Particle-particle and particle-wall collisions are modeled using the adaptive collision
time model ACTM proposed by Kempe & Frohlich (2012), which is a variation of the
classical soft-sphere model. In this work, a fourth-order central scheme is used for the
spatial integration, and a third-order accurate semi-implicit Crank-Nicolson scheme is
employed for time integration. The reader is referred to (el Hamra et al., 2022) for
further information on the current CFD-DEM solver as well as to review the numerical
validation.

3. Single-spout and Z-shaped fluidized bed system

Case | Case 2 Case 3

In our study, three spouted-fluidized beds with a single
orifice with the same cross-section are considered as
schematically depicted in Fig. 1. The difference between the
second and third configuration is the angle between the two
sections, which is equal to 155° in the Case 2, while it is
equal to 132° In all base case simulations carried out for this 1§, o o i
work, the spouted-fluidized bed height (BH) and depth are ' T
400 mm and 14 mm, respectively. There are two portions pigyre 1: Different geometric
models of Z-shaped particle
fluidized system.

BH
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across the bed's width (shown as W, = 0.007 mm and W, = 0.007 mm in Fig. 1).

The computational domain is divided into 82x12x370 quad grids. In the spouted region,
12 grids are considered. Gas flows upwards through W,, which induces three distinct
regions: a dilute central core, where the solid phase is entrained in the concurrent jetting
gas flow, a fountain region in the uppermost part, and a dense annular region with a
counter-current flow between both phases. Simulation settings of the validation cases
are summarized in Tablel.

Fluid phase
Fluid density of[kg/m3] | 1.165
Fluid viscosity u[Pa - s] | 2.0 x 107
Superficial mass flow rate at the injection [kg/s] | 2.0 x 1073
Solid phase
Number of particles | 93808
Bed mass my4[kg] | 0.122
Particle diameter dp[mm] | 1.0
Particle density o,[kg/m3] | 2500
Inter-particle & Particle-wall restitution coefficient | 0.97
Inter-particle & Particle-wall friction coefficient | 0.1

Table 1:Simulation settings of the validation case for the three spouted bubbling fluidized
configurations.

A typical illustration of particle velocity distribution
for the three cases at t=25 s can be seen in Fig. 2, Q (. o |
where the mesoscopic bubble formed in the mixture ; ¥l
with different sizes is observed. During this process,
the particles are impulsed into the bubbles and
scattered to the freeboard and fall back to bed due to
the gravitational force. As the angle between the two
sections in the Z-shaped fluidized bed, the bed height
is higher. A higher bed expansion rate and an intense
particle motion is therefore caused by applying the
change of lateral wall's shape compared to the flat

Velocity

Figure 2: Instantaneous

wall case. distribution characteristic of
The time-averaged fluid volume fraction and gas particles colored by particle
velocity at the midplane of the fluidized bed is velocity in the three cases.

portrayed in Fig. 3 for three configurations.

A large velocity gradient is observed around the irregular wall. The Z-shaped fluidized
bed breaks the flow symmetry, thus allowing the mixed particles to achieve effective
screening in each section. Furthermore, in the corners, heaps of unfluidized particles
accumulate in much larger quantities in the case of flat walls. while less unfluidized
zones are obtained when the angle between the two sections of the Z-shaped fluidized
bed gets smaller. Note that due to these corners actually act as dead zones and create
more resistance to bubble movement.

Because gas and solids transfer mass at slower rates in dead zones than they do in a
fully fluidized bed, mixing rates may be lowered as a result. Dead zones in corners
thereby reduce the cross section available for bubble passage, which in turn reduces
bubble size and/or speed.
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The mixing rate in case 1 bed is lower than in case 3 bed because dead zone particles
move into the active zone of the bed extremely slowly. In other words, Z-shaped
fluidized beds remove dead zones and enhance the movement, homogeneous mixing,
and subsequent fluidization of the solids.
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Figure 3: Time-averaged (a) fluid volume fraction and (b) gas velocity at the midplane for the
three studied cases.
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Solid flow rate is a key parameter for the - ﬂ“eﬁ dwe s
operation and optimization of fluidized beds. To Veg  -<- Case3
quantify this parameter, the x_2-direction of the \
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bed, and mainly the interval x_2€[0,0.35] m, is
subdivided into seven equal sections, and the
mean number of particles within each section is
computed for t€[5,25]s as can be seen in Fig. 4.
The section #1 is the lowest one (at the injection)
and the section #7 is the highest one. It is
confirmed that the Z-shaped beds tend to provide
sufficient space compared to flat walls for the
separation and purification of particles as they
occupy more space in the x,-direction.

Mean number of Particles

Figure 4: Mean number of particles in
different sections for three studied
cases.

Due to collisions and energy loss, many particles congregate near the corners of flat
walls. However, in cases 2 and 3, where zigzag patterns are present, larger floccules
form, break, and then slide down the wall.

4. Conclusion

This work presented a preliminary attempt to use single-spout and Z-shaped fluidized
beds as fluidized bed gasifiers of mixed biomass particles. A numerical study based on a
large-eddy Simulation (LES) solver coupled with Discrete Element Method (DEM) was
employed to study the effect of zigzagging the lateral walls with two angles. The Z-
shaped fluidized bed was found to modify the uniformity of the flow domain and to
allow an enhanced particle's mixing. These results offer an important direction for
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designing clean particle products and can be expanded to include research into
environmental chemical and process engineering.
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Abstract

In this work the design and simultaneous optimization of an intensified process for jet
fuel production by the ATJ process was developed. The intensified process consists of a
catalytic reactive distillation column. The process integrates the oligomerization,
hydrogenation and purification stages in a single unit. The design and simultaneous
optimization process were performed using the differential evolution with tabu list
(DETL) algorithm. Total annual cost and condition number were considered as objective
functions to evaluate cost issues and control properties, respectively. The optimized
process was contrasted against the original intensified process. The results indicate that
the optimized process reduces energy consumption by 30% and total annual cost by up to
80%, due to reductions in energy consumption and equipment size. Regarding the control
properties, it is observed that the optimized process has a condition number of §2.52
against 915,000 of the original process. This means that the optimized process withstands
disturbances better, which facilitates control and ensures the quality of the bioturbosine
in a more reliable way.

Keywords: Biojet-fuel, reactive distillation, process intensification.

1. Introduction

he world is currently facing increasing energy demands. This growth in energy is
associated with an increase in the production of goods and services, increase in the quality
of life, among others. Unfortunately, most of the energy produced by humans derives
from the burning of fossil fuels such as coal, natural gas, gasoline, etc., which generates
severe environmental problems by the emission of greenhouse gases such as CO2. Carbon
dioxide is the main greenhouse gas, recent studies reveal that by 2018 its concentration
in the atmosphere had gone from 280 to 408ppm, taking the year 1900 as a reference.
This increase means a 0.8°C increase in the earth's global temperature and it is expected
that by the year 2100 the temperature increase will reach 5°C(Bains et al., 2017).

In order to reduce their emissions, various industries such as the aviation sector have
started to develop technologies to reduce their CO2 emissions. The aircraft industry is
responsible for 2.6% of CO2 emissions and it is expected that by mid-century this industry
will emit 20.2% of CO2 emissions. An interesting alternative to reduce polluting
emissions is to replace jet fuel (also called biojet-fuel), which comes from fossil sources,
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with biojet-fuel, which is a renewable fuel derived from biomass residues, vegetable oils,
etc. Several processes and biomasses have been proposed to produce biojet-fuel, however,
a little explored alternative is the ATJ (Alcohol to Jet fuel) process, which consists of
converting lignocellulosic residues into sugars, which are transformed into hydrocarbons
(Wang and Tao, 2016). As with other alternatives to produce biojet-fuel or even other
biofuels, economic viability remains the main challenge for this type of technology. In
the case of the ATJ process, a critical and energy-intensive stage is the oligomerization
and hydrogenation stage, since it is at this stage that hydrocarbons are produced and
separated. In this sense, process intensification coupled with rigorous optimization
techniques can help to reduce energy consumption and process operating costs, in order
to increase the profitability and adoption of these processes. In this work, an intensified
process based on catalytic reactive distillation is proposed to replace the current
oligomerization and hydrogenation steps in the ATJ process. This column is
simultaneously designed and optimized using the differential evolution stochastic
optimization method with tabu list (DETL). The minimization of the total annual cost is
proposed as the economic objective function. On the other hand, because the catalytic
column is notably more complex and in order to ensure a viable operation of this
equipment, the minimization of the condition number is proposed as the second objective
function in order to evaluate the control properties.

2. Methodology

First, the intensified catalytic reactive distillation process is generated from the
conventional process. As shown in Figure 1, the conventional process consists of 2
reactive zones, the first one is the oligomerization stage, where ethylene is fed to a fixed
bed reactor, then the reactor products which are light compounds (C2- C5) and oligomers
(C6-C17) are fed to a distillation column, where the light compounds are recirculated,
while the heavy oligomers are sent to the hydrogenation zone. In this second reaction
zone, the oligomers are transformed to alkanes by hydrogenation reactions, which are
carried out in a second fixed-bed reactor. Finally, the products of the hydrogenation
reactor are separated into three main fractions, light, jet-fuel and diesel(Wang and Tao,
2016).

The catalytic column integrates these separation and reaction stages in a single equipment,
the oligomerization zone is located at the top of the column, it is in this zone where the
proper distribution of hydrocarbons is obtained. The compounds that descend from this
zone are transformed into olefins (alkanes), which at the same time as they are produced
are separated into the 3 main fractions. The mathematical modeling of this intensified
process was performed in Aspen Plus software, considering an ethylene input flow of
2100kg/hr. The kinetic models were taken from (Goortani et al., 2015). NRTL-RK
(Interan, 2021) was selected as thermodynamic model. It is important to mention that the
original design of the intensified column was obtained through a sensitivity analysis of
some important design parameters, such as hold ups, number of hold ups, feed stages, etc.

The preliminary design of the catalytic column will be used as the starting point for the
optimization algorithm. As mentioned earlier, the total annual cost (TAC) and the
condition number were the objective functions to be minimized. The total annual cost
consists of the sum of the annualized capital costs, plus the operating costs. As shown
below:



Intensification of ATJ Process Using Catalytic Distillation, Optimization 147
Considering Control and Economic Issues

TAC = Capital cost
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Figure 1. Intensification of ATJ process using catalytic distillation

The capital cost is associated to the construction cost of process equipment, such as
condensers, reboilers, distillation columns, trays, process vessels and compressors;
whereas the operating cost corresponds to the cost of use of electricity, cooling water,
steam and solvents. The Guthrie method is used to calculate the total annual cost. The
parameters and equations required to estimate the cost of equipment and utilities were
taken from Turton et al., 2018. Carbon steel is the construction material considered, and
a payback period of ten years is used, which corresponds to an average payback time of
a chemical plant according to (Turton et al., 2018). Trays type Sieve with 0.61m spacing
were considered for distillation columns. The utilities costs are calculated considering
8,500 hours of operation per year.Cooling water (0.355USD/GJ), electricity (16.8
USD/kwh) and Fired heat (20.92 USD/GJ) were the utilities considered (Turton et al.,
2018).

The condition number is a common index used to determine in a qualitative way the
controllability of a specific process. It has proven be a powerful tool as it analyzes the
control properties of a process in order to detect potential operational problems.
Mathematically, the condition number is calculated through a singular value
decomposition of the gain matrix according to equation 2:

K=w-S-v"' 2

Where K is the relative gains matrix, W and V are unitary matrices and S is the singular
value matrix. From the matrix S we take the maximum singular value (¢*) and the
minimum singular value, to calculate the condition number as shown below:

*

V=— 3
Oy
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The condition number represents the sensitivity of a system to assimilate a disturbance
without process destabilization. indicate that the processes could be susceptible to
destabilization by small perturbations. Furthermore, low condition numbers represent a
robust process that is resistant to perturbations

Based on the above, the optimization problem can be stated mathematically as equation
4.

min Z=[TAC,y]

v, >TE (4)
Subject to

W, 2,
The objective functions are constrained to meet the minimum boiling point specifications
(TE)) for each of the products which are 220°C for jet fuel and 300°C for diesel. On the
other hand, the optimization problem is also subject to meet minimum production
quantities (#;) which were 1000kg/hr for jet fuel and 100kg for diesel. As decision
variables, the number of stages, feed stages, number of reactive stages, hold up values,
reflux ratio and thermal load were taken.

Differential evolution with tabu list (DETL), the mathematical method used to solve the
optimization problem. DETL is a direct population-based search method, specially
designed for non-continuous and highly non-linear functions. This method consists of the
4 stages: generation of the initial population, mutation, crossover and selection. Its main
feature is its ability to avoid or revisit areas with bad values of objective functions, by
tracking previous searches using the tabu list, improving its computational efficiency
(Srinivas and Rangaiah, 2007). The parameters used for the algorithm are: population
size: 120, number of generations: 1250, Tabu list size 60, crossover factor: 0.8, mutation
factor: 0.3 and tabu radius of 0.01. The algorithm parameters were taken from (Contreras-
Zarazua et al., 2017). Finally, the implementation of the optimization strategy involves a
hybrid platform, where, the optimization algorithm is programmed in Excel and the
mathematical model of the process and equation solving is in Aspen Plus.

3. Results

This section presents the results obtained during the design and simultaneous
optimization stage of the catalytic column. In order to determine the solution with the best
balance between both objective functions, the utopia point methodology was used to
determine the solution, which requires the Pareto front analysis. The Pareto front of the
solution is shown in Figure 2.

As can be seen in Figure 2, the range of condition numbers for the different solutions is
quite wide, ranging from 11.34 to 2,500 000, indicating that the design of the column
design parameters has a strong impact on the process accounting. Note the presence of a
red dot in the Pareto, this dot corresponds to the solution with the best trade-off between
the two objectives. Table 1 shows the comparison of the original intensified process
versus the process obtained by the optimization technique.
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Figure2. Pareto front for catalytic distillation

Table 1. Design parameters for the original process and intensified process

Process variable

Original process

Optimized process

Number of stages 80 29
Ethylene feed stage 15 21
Hydrogen feed stage 59 26
Rf:actlve .stages 229 12-16
(oligomerization)
Reactive stages
: 30-59 17-25
(Hydrogenation)
Reflux ratio 100 51.55
Reboiler duty (kW) 170 117.642
Hydrogen mass
22 20.641
flowrate (kg/hr) 7
Diameter(m) 4 1.39
Condition number 915, 000 82.58
Total annual cost 1.028.914 215.553

(USD/yr)

As can be seen in Table 1, the intensified process shows remarkable improvements over
its original counterpart. It can be seen that the optimized process presents energy savings
0f 30% while the cost savings are almost 80%. As for the control properties, the optimized
process has a condition number of 82.58 against 915,000 of the original process. This
means that the optimized process is less sensitive to changes and disturbances. This is due
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to the reactive stages and column diameters. The oligomerization and hydrogenation
reactions are very sensitive to temperature changes, so having many reactive stages for
these areas means that it is easier for the process to have a temperature perturbation, which
dramatically affects hydrocarbon conversion. In contrast, the optimized process has
determined that it is not necessary to have many reactive stages for these zones, and the
optimization process has identified the optimal location of the column temperature
reactive zones, thus avoiding the process to be sensitive to disturbances.

4. Conclusions

In this work, the design and simultaneous optimization of a reactive distillation column
for jet fuel production by the ATJ process was developed. The objective functions, total
annual cost and condition number were used to evaluate the cost and control properties.
The results indicate that the optimization algorithm is able to generate a design that has
30% energy savings and 80% cost savings over the original process. Also, the optimized
process has a condition number of 82.58 which is a notably lower value than the original
process. The results indicate that the design of a process using robust optimization
techniques generates a significantly cheaper and more efficient process. Future work
proposes the optimization of the conventional process and a rigorous control analysis in
order to have a broader picture of the improvements of the optimized process.
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Abstract

To facilitate arduous physical model building tasks, we aim to develop automated
physical model builder, AutoPMoB, which automatically builds physical models from
multiple documents. This study focuses on a method for building desired models from
equations, a fundamental technology for realizing AutoPMoB. We defined two
requirements desired models must fulfill and proposed a gradual method. The gradual
method obtains combinations of input equations satisfying one requirement and then
modifies the combinations to fulfill the other. For comparison, we used an exhaustive
method, which obtains all possible combinations of the equations and checks whether
each combination fulfills the requirements. We compared the models built by the two
methods and their computational time in four cases. In all cases, both methods built
models including all correct models. The gradual method and exhaustive method took
1.0x10"* s and 30 s, respectively, to build models from 23 equations.

Keywords: Physical model building, Modeling algorithm, Process systems engineering.

1. Introduction

In the process industry, a digital twin, which is a model that mimics the behavior of a real
process like a twin, is expected to yield significant benefits. Digital twins should be based
on physical models derived from scientific principles rather than statistical models
derived only from data since data collection through experiments under various
conditions, especially abnormal ones, in the manufacturing process is difficult from cost
and safety perspectives. However, the physical model building requires a deep
understanding of the process and trial-and-error improvements in the model’s accuracy.
To facilitate the arduous task, we aim to develop automated physical model builder,
AutoPMoB, which automatically builds physical models from multiple documents [Kato
and Kano (2022)]. AutoPMoB 1) retrieves documents related to the target process from
literature databases, 2) unifies the documents’ formats, 3) extracts information vital for
model building from the documents, 4) unifies the expression of the extracted
information, and 5) combines the information to build physical models and presents the
models with their rankings. Users of AutoPMoB decide which model to use based on the
rankings.

This study focuses on how to build models by combining equations extracted from
documents to perform task 5. We assume that users give input variables (1VVs) and output
variables (OVs) of the models. For example, when a user builds a model to predict a
variable, the variable is an OV, and the other measurable variables are IVs.

The present study proposes a gradual method and uses an exhaustive method as a baseline.
We compare the models built by the two methods and the required computational time.
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2. Methods

The number of degrees of freedom (DoF) Npr of a model calculating the OVs from the
IVs must be equal to the number of the IVs Nyy. We propose a gradual method for
building such desired models from a set of N, equations S, = {ey,..., ey,}. Each
desired model is an equation group (EG) that meets the following requirements: 1) the
EG includes the IVs and OVs, and 2) Ny of the EG is equal to Nyy. Here, the given set
of IVs and that of OVs are denoted by Siy = {vy,..., vy} and Soy = {v1, ., Vo 1
respectively. Since there has not existed any method for comparison, we use an exhaustive
method, which obtains all combinations of N, equations and checks whether each
combination fulfills the requirements, as a baseline.

2.1. Exhaustive method
The exhaustive method is shown in Algorithm 1. The method obtains all possible
combinations of N, equations (Il. 3-6) and checks whether each combination fulfills the

requirements above (Il. 7-13). The total number of the combinations is
Ne

Z NeCn = 2Ne — 1. €))
n=1
This method checks whether each of the 2Ve — 1 EGs satisfies the requirements and

outputs EGs that meet the requirements. The time complexity of this exhaustive method
is 0(2Ne).

Algorithm 1: Exhaustive method for building model

Input: set of equations S, = {ey, ..., ey }
set of input variables Syy = {vy,..., vy}
set of output variables Soy = {v1, ..., Uy }
Output: set of equation groups Sgq

l: Sgg < 0

2: Sgg < O

3: forn, =1to N, do

4: Sk < M. combinations of S,

5: add Sgg to Sgg

6: end for

7: for G' in Sg; do

8: Sy,¢" < set of variables in G’

9: Npg ¢ < the number of degrees of freedom of G’
10: if (Siy U Soy) € Sy, ¢7 and Npg ;1 is equal to Nyy then
11: add G' to Sgg
12: end if
13:  end for
14:  return Sgg
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2.2. Gradual Method

Algorithm 2 shows the pseudocode of the gradual method. The method first obtains sets
of variables contained in each formula (Il. 2—4), sets of equations containing each of the
IVs and OVs (ll. 5-8), and sets of EGs that include both 1Vs and OVs (l. 9). Then, the
method checks each of the obtained EGs, G'. If the number of DoF of G, N ., is equal
to Nyy, G' is judged desired (. 10-13). If not, to change N ./, the method searches the
remaining equations for the equations containing the variables that appear in G’ (Il. 14—
17). If such equations exist, one or more of the equations are combined with G, and the
combined EGs whose number of DoF is equal to Ny are decided desired (Il. 18-24).
Finally, the method outputs all the desired EGs.

Algorithm 2: Gradual method for building model

Input: set of equations S, = {ey, ..., ey,}
set of input variables Syy = {vy,..., vy}
set of output variables Soy = {v1, ..., Uy }
Output: set of equation groups Sgg

l: Sgg < @
2: forn=1to N, do
3: Sy,e, < set of variables in e,
4: end for
5 Niov = Ny + Noy
6: forn = 1to Njgy do
7: Sepyr < set of equations including vy in Se, where v’ € (Sy U Sov)
8: end for
9: Sgg < {{ed, - enoy) | en € Sepyr foreveryn € {1, ..., Nioy}}
10:  for G’ in Sgg do
11: Npg' < the number of degrees of freedom of G’
12: if Ny o is equal to Nyy then
13: add G’ to Sgg
14: else
15: Sve' < Ueeg'Sve
16: Sva' < Sva' \ (Siv Y Sov)
17: St « {{ef, ."’e"évG’|} | ey € Se,, for every i, € S, o
18: For G" in Sg; do
19: G=G"UG'
20: Npgg < the number of degrees of freedom of G
21: if Npg ¢ is equal to Njy then
22: add G to Sgg
23: end if
24: end for
25: end if
26: end for
27: return Sgg
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The time complexity of the gradual method is

Niov ISgG| 15,67 (60l
OWelion) + 0| [ [15eugl |+ D 0 [ 1em@i+isianr ], @
n=1 i=1 n=1

where G; denotes the ith element of Sg; and S(G;) indicates that S depends on G;. The
first, second, and third terms indicate the time complexities at lines 1-8, 9, and 10-26,
respectively. The gradual method obtains combinations focusing on 1Vs and OVs and
judges whether each combination satisfies the requirements; hence, the time complexity
is smaller than the exhaustive method.

3. Experiments

3.1. Datasets

We generated datasets consisting of S, Syy, and Soy shown in Table 1 based on the
textbook about process control [Seborg et al. (2010)] and defined correct models, which
can calculate the values of the OVs by substituting values into IVs. Then, we used these
Se, Stv, and Sgy as the input of the model building methods and checked whether the
correct models could be obtained.

3.2. Results and Discussion

The model building results of the exhausted method and the gradual method are
summarized in Table 2. In Case 1, the two methods obtained the same correct models. In
Case 2, where equations with only variables not included in 1Vs and OVs exist, the
gradual method built the same models as in Case 1, while the exhaustive method built
2,097,152 models, most of which were incorrect. Since adding unnecessary equations
does not change the number of DoF, the exhaustive method outputs much more models
than the gradual method. In Case 3, similar to Case 1, the same models were obtained by
the two methods. In Case 4, similar to Case 2, the models obtained by the two methods
comprised all the correct models, and the number of models built by the gradual method
is less than that by the exhaustive method.

All the built models in Table 2 meet the predefined requirements, but some models, such
as those built by only the exhaustive method in Case 2 and the second model in Case 3,
are impractical because the values of the OVs cannot be obtained. This is because the two
methods judged only the necessary conditions. To remove such impractical models and
obtain only practical ones, we need to judge whether the values of OVs can be obtained.
If all the equations in one model are linear, the additional check can be done using the
coefficient matrix. However, built models usually include nonlinear equations, as shown
in Case 3. We must develop a method for selecting practical models.

Equations (1) and (2) indicate that the gradual method can build models within a shorter
time than the exhaustive method, even when the number of equations is large. In Case 2,
which took the longest computational time among the four cases, the computational time
of the exhaustive method was 30 s, and that of the gradual method was 1.0x10* s. We
used MacBook Pro with an Apple M1 Max processor, 10 Cores, 64GB RAM, and macOS
13.0.1.
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Table 1 Equation set, input variable (1V) set, and output variable (OV) set used in experiments.

Case Equation set S, 1V set Sy OV set Soy
1 y=x; +Xx, X1 y
x, = 0.1
x, =1
2 y=x1+x Xq y
x, = 0.1
x, =1
a;=i(i=1,..,20)
3 dc, v dc
Vd—tA = 1yCao — VoCa + TaV C:o d—tA
-1, =kCl (n = 0,1,2) T
k = koexp(a/T) %4
kO = 01 CA
a =10
4 dc dc
Vd_tAz 6Cao — VoCa + TaV C]jfo d—:
-1, =kCl(n =0,1,2) T
k = ko exp(a/T) 14 dT
ko, = 0.1 Ca dt
a =10 T,
Q=UA(T.—T) U
dT A
Vpa—wC(Ti—T)+HrVrA+Q o
w
C
T;
H,
4. Conclusion

We proposed a gradual method to build desired models from equations extracted from
documents. We used an exhaustive method for comparison and compared the model
building results of the two methods in four cases where the equations, IVs, and OVs were
generated based on the textbook about process control [Seborg et al. (2010)]. Both
methods built models including all correct models in all cases. In terms of the
computational time, the gradual method took 1.0x10* s while the exhaustive method took
30 s when the number of equations was 23. However, the models built by the two methods
sometimes had unnecessary ones. We will develop a method for filtering the obtained
models to only correct models in our future work.
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Table 2 Model building results of exhaustive method and gradual method.

Case Method #built models  Examples of built models
1 Exhaustive 2 Y=X1+X2 (Y=X11TX
xz = 1 x2 = 0.1
Gradual 2
2 Exhaustive 2,097,152 Y =X+ X
X, =1
a, =1
a2 = 2
Gradual 2
3 Exhaustive 10 dc
_A = U()CAO_U()CA + rAV
dt
—T‘A = k
k = kyexp(a/T)
kO = 0.1
a =10
Gradual 10
dC,
VE = U()CAO_U()CA + rAV
—T‘A = k
< —T‘A = kCA
—TpA = kCg
k = koexp(a/T)
4 Exhaustive 22 dc
X ustiv —A == UOCAO—UOCA + T‘AV
dt
Ty = k
k = kqexp(a/T)
ko - 0.1
a =10
Gradual 13 Q = UA(T. - T)
dT
VPE =wC(T;—T)+HVry,+Q
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Abstract

The hydroisomerisation of long-chain alkanes on bifunctional zeolite catalysts is a
promising synthetic route for the sustainable production of diesel fuel derived from
vegetable oils. Significant efforts have been made in literature to propose potential
reaction mechanisms and materials with improved catalytic activity, but the development
of a kinetic model remains a challenge due to the complexity of the reaction network. In
this study a microkinetic model was initially constructed to simulate both observable and
non-observable states in the reaction mechanism. Upon fitting the model against packed
bed reactor experimental data, two rigorous model simplification strategies were
proposed and adopted to guide reaction network reduction. In the physics-based approach
the ratios of the fitted microkinetic rate constants are evaluated against a threshold to
identify irreversible reactions, whereas in the mathematics-based approach an additional
penalty term is introduced during microkinetic parameter estimation to penalise the
number of active chemical pathways. The reaction network reduction results were similar
under both strategies and provided valuable insight on the irreversibility of isomerisation,
cracking and desorption reactions, as also supported by observations in literature. Finally,
simplified kinetic models that are only capable of simulating observable states based on
the steady-state assumption were also constructed using the two reduced reaction
networks. Through comparison, it is concluded that both simplified kinetic models can
yield satisfactory fitting result of the process; however, their model structures and
parameter values are highly sensitive to the mechanism reduction strategy adopted. This
strongly indicates the impact of different reaction network reduction strategies on kinetic
model construction, and that directly building a steady-state kinetic model may not the
best approach to investigate intrinsic reaction mechanisms. The kinetic modelling and
reaction network reduction frameworks proposed in this work, therefore, provide a new
avenue to infer mechanistic knowledge from kinetic data in a more efficient manner than
traditional steady-state approaches.

Keywords: Hydroisomerisation, kinetic model, reaction network reduction, catalytic
reaction, intrinsic mechanisms.

1. Introduction

1.1. Background and motivation
The hydroisomerisation of n-alkanes found in waxy feedstock is considered a promising
sustainable route for diesel synthesis. Recent research in this area has mainly focused on
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novel catalyst development in an attempt to minimize the yield toward cracking by-
products and improve isomerization selectivites. This sets the motivation behind
microkinetic modelling approaches, which can help elucidate potential reaction
mechanisms, streamline the design of catalysts with improved performance, and provide
guidelines for model-based design of experiments and process optimisation
(Motagamwala & Dumesic, 2021). In this work, a microkinetic modelling and reaction
network simplification framework was proposed to analyse experimental data of n-
hexadecane hydrosiomerisation and cracking over a Pd/ZSM-12 catalyst.

2. Methodology

2.1. Kinetic model construction

2.1.1. Base-case reaction mechanism

To construct a microkinetic model comprising equations for the rate of change of
reactants, products and intermediate species, the reaction network presented in Fig. 1 was
proposed by considering the plausible elementary steps occurring at the catalyst surface.

ki k- ks
+ +
nCis + = # + n-Cle # * Mo-Cis # Mo-Cis + =
ki 5 ks
ks k3 ks
Ks

ks ks
+ 5 + LN
* Mul-C16 * Cracked S Cracked + =

N
ksJ ks

ks k7
Mul-Cis + =

Figure 1: Proposed reaction mechanism. n-Cis, Mo-Cis and Mul- Cis refer to unbranched,
monobranched and multibranched hexadecane isomers, Cracked refers to cracking by-products.
Their respective carbenium ion intermediates are denoted by the subscript ¥, while * represents an
active site. ki and ki~ are the forward and reverse reaction rates of elementary step i, respectively.

In the classical mechanism of n-alkane hydroisomerisation described by Weitkamp
(2012), the unbranched alkane reactant is first adsorbed at the metallic sites of the
bifunctional catalyst, where it is dehydrogenated into its corresponding n-alkene. The -
alkene intermediate is then readily protonated at the acid catalytic sites, forming a primary
alkylcarbenium ion intermediate. This intermediate then undergoes successive skeletal
rearrangement reactions into more stable monobranched, dibranched and tribranched
isomers. The carbenium isomers desorb from the acid sites as their corresponding
branched alkenes, which are then hydrogenated at the metallic sites to yield branched
isomers of the starting n-alkane. The branched isomers may also crack due to S-scission
reactions, resulting in shorter-chain alkenes and carbenium ions which can also
participate in further cracking reactions.

In this study, the packed-bed reactor (PBR) experimental data lumped dibranched and
tribranched isomer products into a single multibranched species. Similarly, the by-
products of the cracking side-reactions were lumped into a single species for convenience.
The mechanism proposed in this study was therefore modified accordingly such that it
was in line with the measured states, as seen in Fig. 1. Furthermore, the fractional site
coverage of surface species is not observable during practical applications, and so
including all the reaction intermediates and active site balances in the kinetic analysis
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would lead to non-identifiable model structures. Coonradt and Garwood (1964) suggested
that if there are sufficiently high concentrations of metallic sites for
hydrogenation/dehydrogenation, the alkene intermediates assume their equilibrium
concentrations. This, in turn, means that the acid site-catalysed isomerisation and
cracking reactions become selectivity- and rate-determining for the overall reaction
(Vandegehuchte et al., 2014). Thus, the metal-catalysed surface reactions were neglected
in the present study, and it was assumed that the gas-phase species directly adsorb to (or
desorb from) their corresponding alkylcarbenium ion intermediates at the acidic sites. For
this reason, the alkene intermediates and the metallic active site balance were not
considered during kinetic model construction.

2.1.2. Microkinetic model construction

The microkinetic model developed in this work consists of balance equations for both the
gas-phase species as well as the non-observable intermediate states in the proposed
reaction network (Fig. 1). These are presented in Eq. 1(a) — Eq 1(i), where x; refers to the
mass fraction of gas-phase species i, T is the weight-based spacetime (h), 6; is the
fractional coverage of the alkylcarbenium intermediate 7, the subscripts “r”, “mo”, “mul”,
and “ctr” refer to unbranched, monobranched, multibranched, and cracked species,
respectively. Forward and backward reaction constants (g. mol™! h!) of the j elementary

step are denoted by k; and k;, respectively. cg,. is the total active site concentration of
the catalyst (mol g:'), pp is the catalyst bulk density (g m™) and ¢, is the initial
concentration of the reactant (mol m). In addition, the model assumes 1:1 overall
reaction stoichiometry (this is exact for the isomerisation reactions but clearly an
approximation for the cracking reactions) and isothermal reactor operation, such that the
total pressure of the reacting mixture can be assumed constant.

dd)::r = co, " (“hy X0y +ky - 6;) Eq. 1(a)
Lo 20 ey 20y 4 K7 By — (7 +K5) 0] Eq. 16)
% = co, " (k3" Omo — k3 * Xo * Oy) Eq. 1(c)
T = S g Oy + Ky O+ Ky O 5 O = (kg ey e ) - O] Eq. 1(d)
% = cop * (ke " Orrur = kg~ Xpgur * Oy) Eq. 1(e)
% = ;—;’ [k * Xpur * O + kea * Orgo + k5 B — (ki + ks + Ke) * Opga] Eq. 1(f)
d;(;r =cg, " (ky " Ocr — k7 * X 6y) Eq. 1(2)
= 2—5 (k7 = xcr - Oy + ks * Oy + kg " Ono — (ks + k7 + kg) - Ocr] Eq. 1(h)
Oy =1 =6 = Ouo = Oraau = Oy Eq. 1(i)

2.1.3. Kinetic parameter estimation
The kinetic models were fitted against the PBR data; the parameter estimation problem
was formulated as a weighted least squares objective function (Eq. 4(a)), subject to
nonlinear process constraints and parameter bound constraints (Eq. 4(b)):
. T
min Z(x]"E - x]"M) A(xl"E - x]-'M) Eq 4(a)
J
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dx ae
st. —_— = f(x, 6, k), —_—= g(x, 6, k), k", <k< kub Eq 4(b)
dt dt
where x;p and x;y are the experimental and model estimates of the state variables,

respectively. f(x, 8, k) and g(x, 0, k) refer to the kinetic model differential equations for
the gas-phase and surface species, respectively. k;, and k,; are the lower and upper
bounds of the optimization variables k. The weighting matrix A is used to normalise the
residuals. The differential process constraints were fully discretised into algebraic profiles
by applying orthogonal collocation on finite elements. The arising nonlinear
programming problem was then solved via interior-point optimization (IPOPT)
algorithms. Both the numerical discretization and IPOPT procedures were implemented
via the Pyomo modelling environment in Python programming language.

2.2. Reaction network simplification

2.2.1. Physics-based network reduction

The physics-based reduction approach aims to identify kinetically negligible reactions by
comparison of the forward and backward reaction rates of each elementary step. Similar
rate-based procedures have been applied in literature to automatically discriminate
elementary steps in complex reaction mechanisms (Goldsmith & West, 2017). In this

study, the estimated equilibrium constants were compared against an upper and lower
threshold:

. If L > 10, then the backward reaction is negligible (k; ~ 0)

l

. If L < 0.1, then the forward reaction is neglibible (k; ~ 0)

These thresholds have been chosen on the basis that most of the estimated rate constants
in the proposed mechanism were 1 order of magnitude apart (10>- 10%), and that both
observable and non-observable states in the kinetic model were expressed in normalised
units (mass fractions and fractional surface coverages, respectively). Upon identifying
negligible steps, the microkinetic model was reconstructed in accordance with the
physics-reduced mechanism and subsequently fitted against experimental data.

2.2.2. Mathematics-based network reduction
In the mathematics-based network reduction strategy, an additional penalty term is
included in the parameter estimation objective function to penalise the number of non-
zero reaction rate constants:

ke
mmZ(xlE x]M) A(xjp — le)+wZ(k +1+k ey, Eq. 5

For non—neghglble microkinetic parameters, we have k; > 1 and the corresponding

k;
" =~ 1, whereas for negligible reactions we obtain k»_+1 =~ 0. This, in turn,
l L

allows for the 1dentiﬁcation of kinetically redundant reactions without the introduction of
binary variables and mixed-integer programming. The penalty weight w must be
manually tuned so the sparsity of the model does not compromise its fitting accuracy.

3. Results

3.1. Microkinetic model results

The microkinetic model for the proposed mechanism exhibited good fitting performance,
with an overall mean percentage error of 6.94%; the simulated process trajectories for the
Pd/ZSM-12 catalyst with 0.5 Pd wt% composition are presented in Fig. 2 below. The
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estimated microkinetic constants not only allow for the simulation of the process, but also
provide mechanistic insight on the underlying reaction network. For example, comparison
of the estimated rate constants k; = 8.02 X 105,k = 5.99 x 10° and k, = 1.45 x 10°
g. mol! h'! indicate that the monobranched and cracking intermediates are more readily
desorbed to the gas-phase than their multibranched counterpart. This trend can be justified
with reference to the higher diffusional energy barriers of multibranched paraffins in
zeolite catalysts (Oenema et al., 2020), recalling that the desorption step involves the
diffusion of an alkene intermediate from the acid sites to the metallic sites. Similarly, the
estimated multibranched cracking rate constant (kg = 3.44 X 10° g mol' h''") is much
larger than its desorption rate constant (kg = 5.99 x 10° g. mol™! h''), thus providing a
mechanistic justification for the high yield towards cracking by-products and the
comparatively low yield towards the multibranched hexadecane isomers. Previous
microkinetic studies of n-alkane hydroconversion have reached similar conclusions
regarding the cracking affinity of multibranched alkanes and its effect on the product
distribution (Vandegehuchte et al., 2014).

1.0 0.20
n-Ci6 mul-C1g 0.18
0.8 mo-Ci6 —— Cracked
g
5 0.6
=
=]
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o
=
0.2
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Figure 2: (a) Microkinetic model fitting results for gas-phase species profiles. Dots indicate
experimental data while solid lines are model predictions; (b) Simulated coverages of surface
species.

3.2. Reaction network simplification results

Physics- and mathematics-based network reduction analysis were conducted upon fitting
the microkinetic model for the proposed mechanism; in either case five elementary steps
were deemed to be irreversible, as seen in the simplified reaction networks presented in
Fig. 3(a) and 3(b). The microkinetic model was also reconstructed in accordance with the
simplified mechanisms, yielding fitting results (6.22% and 6.98% overall MAPE) of
similar accuracy as the original model (6.15%) despite having 5 less parameters. This
indicates that the neglected reactions were indeed kinetically insignificant.
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Figure 3: (a) Physics-reduced reaction network, (b) mathematics-reduced network. Red arrows
indicate elementary steps that have been identified as irreversible.
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Both simplification approaches identified the isomerization reactions (steps 2 and 4 in
Fig. 3(a) and Fig. 3(b)) as irreversible. The irreversibility of these skeletal rearrangements
has been previously analysed in literature and may be attributed to operating conditions
and reactant conversions far away from thermodynamic equilibrium, such that the rates
of the reverse isomerization reaction are negligible (Steijns & Froment, 1981). The main
dissimilarity between the two reduced networks concerns the reversibility of the two
cracking reactions in the mechanism (steps 5 and 8). The relative stabilities of the
alkylcarbenium intermediates suggest that the cracking products would re-alkylate more
readily into the multibranched species (i.e. kg > kg). This is indeed what is observed in
the mathematics-reduced network (kg = 0), but not in the physics-reduced network
(kg = 0). This suggests that the reduced microkinetic mechanisms identified by different
model reduction strategies should be further evaluated before finally applying them.

4. Conclusion

In this work, a microkinetic modelling approach was adopted to simulate observable gas-
phase species and non-observable intermediate states in the proposed n-hexadecane
hydroisomerisation network. Upon parameter estimation, the model provided accurate
fitting of the packed bed reactor data and mechanistic insight was gained through
evaluation of the estimated microkinetic constants. Mathematics and physics-based
network reduction strategies were then applied to identify kinetically insignificant
reactions in the mechanism. The microkinetic model was modified in accordance with
the network reduction results, also yielding satisfactory fitting of the experimental data.
This study suggests that the two proposed reaction network reduction strategies have great
potentials to be applied to generic processes for reaction mechanism investigation.

References

Coonradt, H. L., & Garwood, W. E. (1964). Mechanism of Hydrocracking. Reactions of Paraffins
and Olefins. Industrial & Engineering Chemistry Process Design and Development, 3(1),
38-45. https://doi.org/10.1021/i260009a010

Goldsmith, C. F., & West, R. H. (2017). Automatic Generation of Microkinetic Mechanisms for
Heterogeneous Catalysis. The Journal of Physical Chemistry C, 121(18), 9970-9981.
https://doi.org/10.1021/acs.jpcc. 7602133

Motagamwala, A. H., & Dumesic, J. A. (2021). Microkinetic Modeling: A Tool for Rational
Catalyst Design. Chemical Reviews, 121(2), 1049-1076.
https://doi.org/10.1021/acs.chemrev.0c00394

Oenema, J., Harmel, J., Vélez, R. P., Meijerink, M. J., Eijsvogel, W., Poursaeidesfahani, A.,
Vlugt, T. J. H., Zecevié, J., & de Jong, K. P. (2020). Influence of Nanoscale Intimacy and
Zeolite Micropore Size on the Performance of Bifunctional Catalysts for n -Heptane
Hydroisomerization. ACS Catalysis, 10(23), 14245-14257.
https://doi.org/10.1021/acscatal.0c03138

Steijns, M., & Froment, G. F. (1981). Hydroisomerization and hydrocracking. 3. Kinetic analysis
of rate data for n-decane and n-dodecane. Industrial & Engineering Chemistry Product
Research and Development, 20(4), 660—668. https://doi.org/10.1021/1300004a014

Vandegehuchte, B. D., Thybaut, J. W., & Marin, G. B. (2014). Unraveling Diffusion and Other
Shape Selectivity Effects in ZSM5 Using n -Hexane Hydroconversion Single-Event
Microkinetics. Industrial & Engineering Chemistry Research, 53(40), 15333-15347.
https://doi.org/10.1021/ie500164q

Weitkamp, J. (2012). Catalytic Hydrocracking—Mechanisms and Versatility of the Process.
ChemCatChem, 4(3), 292-306. https://doi.org/10.1002/cctc.201100315



Antonis Kokossis, Michael C. Georgiadis, Efstratios N. Pistikopoulos (Eds.)

PROCEEDINGS OF THE 33" European Symposium on Computer Aided Process Engineering
(ESCAPE33), June 18-21, 2023, Athens, Greece

© 2023 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/B978-0-443-15274-0.50027-5

Troubleshooting high-pressure issues in an
industrial biorefinery process by feature-oriented
modeling

Elia Arnese-Feffin?, Pierantonio Facco?, Daniele Turati®,
Fabrizio Bezzo?, Massimiliano Barolo®*

“CAPE-Lab — Computer-Aided Process Engineering Laboratory, Department of
Industrial Engineering, University of Padova, via Marzolo 9, 35131 Padova, Italy
bPNovamont S.p.A., via G. Fauser 8, 28100 Novara, Italy

*Corresponding author: max.barolo@unipd.it

Abstract

Biorefinery plants manufacture chemicals by conversion of sustainable raw materials.
Membrane separation processes are commonly used to separate cells from fermentation
broths, and account for most of the operating costs of a biorefinery process. Membrane
fouling can disrupt normal operation, increasing cleaning costs and process downtime
(hence, overall manufacturing costs). Whereas investigating the causes of fouling through
mechanistic models can be challenging in an industrial environment, information in pro-
cess data historians can be leveraged through data-driven modeling. In this study, princi-
pal component analysis and feature-oriented modeling are combined to identify potential
causes of fouling in a semi-continuous membrane separation process of an industrial bi-
orefinery. This approach can effectively address batch duration variability issues, while
exploiting process knowledge to enhance information on effects of fouling. Membrane
age and operating temperature were found to be the major variables related to fouling.

Keywords: biorefinery; membrane separation processes; process understanding; feature-
oriented models; data analytics

1. Introduction

Biorefineries are facilities that integrate biomass conversion processes and equipment to
sustainably produce fuels, power, and chemicals from biomass (Martin et al., 2013). Pro-
cess operations typically include: media preparation, production of microorganisms, and
large-scale fermentation in the upstream section; broth sterilization, cell separation, and
product recovery and purification in the downstream section (Béhner ef al., 2021).
Operating costs of downstream in biorefineries usually range between 40% and 60% of
the total processing cost. Energy is the main cost, as typical downstream operations are
evaporation, distillation, and, recently, membrane separation processes (Béhner et al.,
2021). Membranes are becoming common in biorefineries to separate cells and/or large
molecules from the fermentation broth (Ables ez al., 2013), for examples by ultrafiltration
and nanofiltration operated (semi-)continuously. Such membrane separation processes
can determine the major operating cost of a biorefinery (Satam et al., 2019).
Pressure-driven membranes separation processes (i.e., membrane filtration) are the most
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widely used, especially to remove cells from the fermentation broth. However, this oper-
ation can greatly suffer from membrane fouling, as highlighted in many studies. Ables et
al. (2013) highlighted a permeate flux decrease in constant pressure filtration, while
Klimkiewicz et al. (2016) recorded remarkable pressure build-up in constant flow-rate
separation. The latter case is particularly relevant as, besides obvious disruption of oper-
ation and increase in cleaning costs, it also implies an increase in energy expenditure.
Mathematical modelling is a valuable tool to analyze this problem. Membrane fouling
mechanisms are well known for some membrane separation processes, and models are
available (Meindersma ef al., 1997) to help diagnosing the root-causes of fouling and
support decision making to mitigate its effect. However, reliable fouling models often
feature remarkable complexity and require high quality data for parameter estimation
(Bolton et al., 2016). Although modern biorefineries are heavily sensorized and provide
a wealth of data recorded online, data usually regard the history of process operation, and
might not be adequate for estimation of parameters of fouling models.

Data historians contain valuable information on process operation and can be leveraged
to enhance performance (Cuellar et al., 2020). To this end, data-driven models such as
principal component analysis (PCA; Wold et al., 1987), proved valuable when applied to
membrane separation processes, as shown by Klimkiewicz et al. (2016) and Naessens et
al. (2017). Applying such methods to membrane separation processes requires some extra
care, mostly because of the semi-continuous nature of the process. This implies frequent
process downtimes for membrane cleaning and strong variability in the duration of oper-
ating periods (runs), in the process variables within runs, and in the profiles of process
variables between runs. Variable batch duration entails a lack-of-synchronization issue
when process datasets are explored by data analytics.

Feature-oriented modeling (Yoon ef al., 2001; Rendall, 2019) offers an elegant way to
address the lack-of-synchronization issue, while also emphasizing the phenomena one
wants to model by properly defining features (Rendall et al., 2017). In this study,
knowledge-driven feature-oriented PCA (Wold et al., 2009) is used to investigate the ob-
servable effects of fouling, i.e., high-pressure issues, in the membrane separation section
of an industrial biorefinery process. The analysis of features summarizing time-profiles
of process variables can highlight potential causes of fouling, thus paving the way for
targeted experimental investigations.

2. Materials and methods

2.1. The membrane separation process

The focus of this study is membrane filtration of a fermentation broth, aimed at separating
cells and large molecules from the stream containing the product. The operation is per-
formed as a part of the downstream processing of an industrial biorefinery process where
a biopolymer is manufactured. Sensible details on process and data are not disclosed for
confidentiality.

The sterilized fermentation broth is accumulated in two parallel tanks, and, during oper-
ation, is fed to the first membrane module of the sequence at a constant flow-rate. Part of
the retentate of each module gets discharged to the retentate manifold, while the remain-
der is fed to the following module. The first modules perform a standard filtration, while
last ones operate in diafiltration: part of the permeate of each module is sent to the per-
meate manifold, and the remainder is fed back to the preceding module; water is fed to
the very last one. A simplified scheme of the process and sensors is shown in Figure 1.
The process runs in semi-continuous mode. The membrane modules are initially filled
with water, which is displaced by the fermentation broth during the startup phase. In the
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steady-state phase, the pressure on the feed/retentate side of the membranes is manipu-
lated to keep flow-rates constant. When the feed tanks are almost empty, the flushing
phase begins, and the modules are filled again with water before cleaning-in-place takes
place. However, premature interruption of the process occurs frequently due to excessive
pressure build-up following membrane fouling. Investigating the potential causes of this
issue is the objective of this study.

Production data over a seven-month timespan are available for this investigation. Namely,
online measurements from all sensors are available; offline measurements from the up-
stream process are available as well, to characterize the broth being processed.

Permeate

madules

Retentate

(o

Figure 1. Simplified diagram of the membrane separation process under analysis. Analyz-
ers on feed tanks measure pH, while the one on feed manifold measures conductivity.

2.2. Principal component analysis

PCA (Wold et al., 1987) is a multivariate statistical method that allows extracting a se-
quence of orthogonal variables, called principal components (PCs), from a data matrix
X € RY x RY collecting N observations of V variables. Assuming that X is mean-cen-
tered (and possibly scaled to unit variance), the PCA model is provided as a matrix de-
composition in the form X = T - PT + E, where T € RY x R4 is the score matrix, P €
RY x R4 is the loading matrix, A is the number of PCs of the model (to be set prior to
model calibration), and E € RV x RV is the residual matrix. The scores are projections of
observations in X onto the PC space and describe the relation among observations. The
loadings describe the correlation among variables in X, and the relation between the orig-
inal space and the PC space. The columns of P are set as to maximize the variance of data
explained by the PCs (while respecting orthogonality constraints) and can be obtained by
truncated singular value decomposition of the sample covariance matrix of data.

2.3. Feature-oriented modelling of membrane separation processes

PCA requires operating onto two-dimensional data arrays. However, the available data
on the membrane separation process under investigation are a sequence {Xq,...,Xg},
where X, € R"» x RY is a matrix collecting N;, observations of the V process variables
during the b-th run of the process, with b = 1, 2, .-+, B, and B is the total number of runs
(i.e., batches). To apply PCA to this process, one would need to concatenate all X;, ma-
trices as a single matrix. However, if the aim is to investigate on runs that suffered from
high-pressure issues, this approach may be inadequate due to observations representing
single time instants rather than entire runs. In this study, we tackle the problem by means
of feature-oriented modeling (Yoon et al., 2001; Rendall ef al., 2019). The rationale is to
summarize profiles of variables into numerical indexes called features. This approach
offers an elegant solution to the lack-of-synchronization issue, while also allowing to em-
phasize the phenomena one is interested in by properly defining features. To this end,
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knowledge-driven features (Wold ef al., 2009; Rendall ef al., 2017) can be derived from
time profiles, such as integrals, averages, slopes, minima, and maxima of measured vari-
ables in a run (note that all these operations are independent of Np). Furthermore, the
available process knowledge can be used to improve such “standard” features. An exam-
ple is splitting time-profiles into phases to better characterize the process (e.g., startup,
steady operation, and washing). Process knowledge can also be used to design special
features.

Feature synthesis can be interpreted as an operator F: R¥> x RV — RF | X, = h,, where
h, € RF is a vector containing F features. As one vector of features is obtained from each
run, a matrix H € RE x RF is obtained, whose rows characterize single runs. Such a ma-
trix can be analyzed by PCA for process understanding and troubleshooting purposes.

3. Results

After preliminary screening, data for B = 176 runs were selected for analysis. Concern-
ing data from process sensors, only the steady-state phase was used, as the startup and
flushing phases usually feature excessive/unstructured variability and significant nonlin-
earities. Sensor measurements were first augmented with additional variables (e.g., pres-
sure profile slope) to detect occurrence of fouling. Some engineering variables were
added as performance indexes, for instance average energy consumption and volume con-
version ratio (VCR, ratio of retentate flow-rate and feed flow-rate). A total of V = 61
online variables was obtained. These variables, together with data from upstream process
(characteristics of the broth being processed), were used to compute F = 179 features for
PCA analysis. Some of the most important features are collected in Table 1. Note that
some features were also computed on sub-phases of the steady-state phase, whenever that
seemed meaningful.

Table 1. Examples of features extracted from profiles of online variables. Features marked
with a star are encoded as binary variables.

Average flow-rates in manifolds Average VCR

Average feed conductivity Energy consumed

Slope of feed conductivity Processed volume

Max/min of pressures Run duration

Average slope of pressures Feed tanks average temperature
Max/min of pressure slopes Feed tanks average pH

Average trans-membrane pressure Concentration of cells in the feed
Average flow-rates of module permeates Concentration of organic acids in the feed
Average temperatures of modules Concentration of ions in the feed
Durations of pump steps Concentration of product in the feed
Average pump power over steps Contamination of upstream fermenter*

Pressure features computed over pump steps  Chemicals used in cleaning*

A preliminary PCA model including all variables featured limited interpretability. There-
fore, a stepwise approach was adopted. Features were first grouped in subsets according
to their “origin”, such as upstream, cleaning, single modules. The most important subset
is the one of global features characterizing the membrane filtration, which are basically
the ones regarding manifolds: flow-rates, pressures, and performance indexes. A first
PCA model is developed on global features alone. Pressure-related features were identi-
fied as the main drivers of variability (first PC), as expected; the second source of varia-
bility (second PC) regards average flow-rates and some of the performance indexes,
among which VCR. The explained variances of the other PCs were far lower than the
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ones of the first two, and loadings appeared to model random variability. Therefore, the
features modelled by the first two PCs were selected as the reference set of features; cell
concentration in the feed was added to this set, as it was expected to be an important factor
for fouling. A PCA model developed on these selected features proved to properly iden-
tify runs that suffered from high pressure issues, which are separated from the bulk of the
runs in the score plot reported in Figure 2 (triangles).
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Figure 2. (a) Loadings and (b) scores of the PCA model developed on the set of global
features. Runs suffering from high pressure clearly group along PCI.

More features were then added to the data matrix for PCA modelling, in a group-by-group
fashion, to assess the occurrence of correlation with the pressure-related features. When
such a correlation was found and was physically meaningful, newly added features cor-
relating with pressure were regarded as potential causes of fouling.

The most important factor for high pressure issues was found to be membrane age. This
is highlighted by features regarding permeates of single modules, which are proxies for
membrane age (i.e., permeate flux decreases run after run). The second most important
factor was found to be temperature: more precisely, runs featuring a high temperature of
flows entering membrane modules suffered from high-pressures more frequently than
runs with low inlet temperature. Such conclusions were verified by targeted analysis of
raw data (see Figure 3) and make engineering sense. Therefore, they were deemed as
potential causes of fouling, and are currently being verified by designed experiments.
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Figure 3. (a) Average permeate flow-rate and (b) temperature of a selected module. Pres-
sure issues are more frequent for old membranes (flow-rate is a proxy for membrane age)
and when modules operate at high temperature.
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4. Conclusions

Interpretable data-driven models are valuable tools to investigate issues in membrane sep-
aration processes, such as membrane fouling, relying solely on data collected during pro-
cess operation. This study proved how principal component analysis can identify potential
causes of fouling by analysis of data concerning the observable effect of this complex
phenomenon, namely, pressure increase in membrane filtration. A feature-oriented ap-
proach was adopted: instead of using process data directly, numerical values characteriz-
ing each operating period were obtained so as to summarize time profiles into time-inde-
pendent numerical features. This allowed addressing issues (e.g, lack of synchronization
and uneven batch duration) that can complicate the use of other approaches. Process
knowledge was exploited to design features that enhanced the phenomenon under inves-
tigation, thus maximizing the dataset information content and enhancing interpretability
with respect to other methods. Incorporation of process knowledge into the data analysis
workflow proved essential to identify potential causes of fouling, which are currently
being verified by targeted experimental studies.
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Abstract

The design of the vinyl acetate purification process requires modelling the vapor-liquid-
liquid equilibrium (VLLE) of the mixture vinyl acetate/acetic acid/water. In this work,
the equilibrium of the system is represented through the gamma-phi formulation using
the Hayden O'Connell (HOC) model for the vapor phase and the universal quasi-chemical
(UNIQUAC) model for the liquid phases. The parameters for the model are estimated
through optimization tools, using the BARON global optimization algorithm. The
objective function to be minimized was the least-squares function. The results show a
good correlation for the LLE and VLE of vinyl acetate with water with errors less than
2%. In the case of the VLE equilibrium of water with acetic acid the error is close to 5%
with a larger deviation at acid mole fractions above 0.4. The parameters determined allow
a proper modeling of the VLLE for the analyzed mixture.

Keywords: Binary interaction parameters, vapor-liquid-liquid equilibrium, deterministic
optimization

1. Introduction

Vinyl acetate is one of the most widely produced chemicals in the world. It is used in the
production of polyvinyl acetate and polyvinyl alcohol. At present, the main route for vinyl
acetate synthesis is via the acetoxylation reaction of ethylene in the presence of oxygen
and palladium catalysts. During the vinyl acetate synthesis process, the mixture vinyl
acetate/acetic acid/water is generated; this mixture is commonly separated by distillation.
Over the last few years, several authors have conducted research related to the
improvement of the vinyl acetate process focusing on both the design and control areas,
with particular emphasis on the purification of the mixture. Nevertheless, the mixture
presents two liquid phases, which may difficult the separation. On the last years, authors
such as Li et al. (2022) and Xie et al. (2020) point to the use of intensified separation
operations such as extractive distillation or azeotropic distillation to achieve the
purification task.
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The vinyl acetate purification by intensified processes involves modelling the VLLE of
the mixture. However, this implies that the binary interaction parameters of the
equilibrium models must properly predict both vapor-liquid equilibrium (VLE) and
liquid-liquid equilibrium (LLE). Unfortunately, the currently available binary interaction
parameters accurately describing the VLE show inaccurate predictions for the LLE, and
vice versa. The data fitting of these models for the representation of vapor-liquid-liquid
equilibrium is a complex task with a high probability for the solution to get stuck in a
local optimum. Some authors propose global optimization strategies based on
minimization of squares to solve this problem (e.g., Wyczesany, 2014). Therefore, in the
present work, a least-squares optimization was performed using the BARON global
optimization algorithm to obtain the binary interaction parameters that properly represent
VLE and LLE for the mixture vinyl acetate/acetic acid/water.

2. Methodology

For mixtures with carboxylic acids, as is the case due to the presence of acetic acid, the
HOC model describes the behavior quite well since the carboxylic acid interacts with
itself or with other compounds in vapor phase due to dimerization. In addition to this
model, the NRTL or UNIQUAC models proposed by Hsieh et al. (2008) are often used
for this type of mixtures due to the presence of non-ideal solutions. Thus, in this work,
the UNIQUAC-HOC combination has been used.

The Gamma-Phi approach is used to model the vapor-liquid equilibrium, as represented
in equation 1.

¢/ yiP = x;y;${ P} (1
Where the left-hand terms are the vapor phase fugacity of the component, the mole
fraction of the component in vapor phase, and the pressure. On the right-hand side the
terms appearing are the liquid phase mole fraction, the activity coefficient, the saturation
fugacity, and the saturation pressure, all for the respective component i.

For the calculations of the vapor phase, the relationship between the apparent fugacity
coefficients and the real fugacity coefficients is used, as well as the true mole fraction of
the vapor phase, based on the chemical theory that also complements and uses the
equation of state HOC, equation 2.

Vo — o p#
iy = zid; (2)
Equation 2 corrects for the deviation generated due to dimer formation. In this case it is
used because acetic acid has a predominance in dimer formation.

The Gamma-Gamma representation has been used for the liquid-liquid equilibrium, this
is shown in equation 3, where the upper indices refer to each of the liquid phases.

Xy =%y 3)
The binary interaction parameters of the UNIQUAC model are represented with an
independent and a temperature-dependent parameter (equation 4).

byj
T;j = exp (ai]- + 7’) 4
For the correction of the binary interaction parameters, the experimental data reported by
Shanghai College Chemical Engineering (1976) and Zhang et al. (2011) has been used

for the liquid-vapor equilibrium modeling. Complementarily, the data reported by Gao et
al. (2017) has been employed for the liquid-liquid equilibrium correlation.

The least squares ratio for the experimental and the estimated data is established as the
objective function, equation 5.
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The objective function refers to the number of experimental points reported (i), the
number of components () and the number of phases (k), organic and aqueous.

The model was run through the GAMS interface using the Global BARON optimization
algorithm created by Sahinidis (1996) through the NEOS server, Hosted by the Wisconsin
Institute for Discovery at the University of Wisconsin in Madison.

3. Results and Discussion

Based on the experimental data reported by Shanghai College Chemical Engineering
(1976), Zhang et al. (2011) and Gao et al. (2017), and the adjustment of the interaction
parameters, the following results have been obtained.

3.1. LLE Vinyl Acetate/Acetic Acid/Water

As shown in Figure 1, favorable results have been obtained with respect to the liquid-
liquid equilibrium of the mixture. The curve fit with the model is very close to the data
reported by Gao et al. (2017), as observed from the deviation data shown in Table 1.
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Fig 1. LLE for the ternary system vinyl acetate/ acetic acid / water: (red) experimental
data at 298.15 K, (blue) estimated values.

Table 1. Deviation of the liquid-liquid equilibrium of the Vinyl Acetate (1) / Acetic
Acid (2)/ Water (3) mixture at 298 K y 1 atm.

Ax;

AT (1)’ ) (3) " )" )"
529E-01 -3.16E-04  -2.26E-04  5.42E-04  -6.85E-04 1.58E-03 -8.95E-04
-2.34E-01  2.23E-04  -6.12E-04  3.89E-04 3.83E-04  -1.35E-03 9.72E-04
1.69E-01  -5.22E-05 -9.17E-04  9.69E-04  -2.87E-03  4.46E-05 2.83E-03
-1.27E-01  1.20E-04 5.66E-04  -6.86E-04 1.92E-03 -2.63E-03 7.04E-04
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-4.17E-01  4.82E-04 1.08E-03 -1.56E-03
-1.52E-01  2.26E-04 3.35E-04 -5.61E-04
1.01E-01  -2.27E-04  -2.84E-03 3.06E-03
-1.94E-02  -4.08E-07 2.89E-04 -2.88E-04
9.04E-02  -3.10E-04 1.16E-03 -8.49E-04
9.03E-02  -2.33E-04  -1.30E-03 1.53E-03
-3.15E-02  3.84E-04 -4.17E-03 3.78E-03

8.62E-03
3.77E-03
-6.30E-03
4.33E-04
-2.88E-03
-5.96E-03
2.69E-03

J. A. Paredes-Ortiz et al.

-6.67E-03
-2.87E-03
6.76E-03
1.32E-03
3.86E-03
7.06E-03
2.39E-03

-1.95E-03
-9.05E-04
-4.61E-04
-1.75E-03
-9.80E-04
-1.10E-03
-5.08E-03

3.2. VLE Vinyl Acetate/Acetic Acid

A good correlation has been obtained between the model and the experimental data for
the mixture of vinyl acetate with acetic acid (Figure 2), obtaining an adequate prediction,

as shown in Table 2 in terms of the deviations.

Temperature (K)

0.2 0.3

0.4 0.5

0.6

Vinyl Acetate

Fig 2. VLE of vinyl acetate/ acetic acid at 1 atm; (red) experimental data, (blue)
estimated values.

Table 2. Deviation of the vapor-liquid equilibrium of the Vinyl Acetate (1) / Acetic
Acid (2) at 1 atm.

AT

AX(l)

AX(Z)

Ay

Ay(z)

-5.78E-02
-6.60E-01
-1.13E-01
4.80E-01
4.96E-01
4.26E-01
3.85E-01

0.00E+00
-2.02E-05
2.69E-05
1.78E-04
4.17E-04
5.37E-04
6.37E-04

0.00E+00
2.02E-05
-2.69E-05
-1.78E-04
-4.17E-04
-5.37E-04
-6.37E-04

0.00E+00
-1.03E-03
-1.99E-02
-2.80E-02
-1.97E-02
-1.15E-02
-6.53E-03

0.00E+00
1.03E-03
1.99E-02
2.80E-02
1.97E-02
1.15E-02
6.53E-03
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3.33E-01 2.61E-04 -2.61E-04 -2.67E-03 2.67E-03
4.51E-01 2.05E-04 -2.05E-04 -2.67E-03 2.67E-03
5.79E-01 1.75E-04 -1.75E-04 -2.98E-03 2.98E-03
391E-01 1.23E-04 -1.23E-04 -2.38E-03 2.38E-03
3.52E-01 5.14E-05 -5.14E-05 -9.35E-04 9.35E-04
7.39E-02 0.00E+00 0.00E+00 0.00E+00 0.00E+00

3.3. VLE Acetic Acid/Water

The fit between the model and the experimental data in Figure 3 is good. However, the
results presented in Figures 1 and 2 present a better fit to the data. The higher the acetic
acid composition, the larger the deviation. The error with respect to the experimental
points is detailed in Table 3. Finally, the computed parameters are presented in Table 4.
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Fig 3. VLE of acetic acid/water at 1 atm; (red) experimental data, (blue) estimated
values.
Table 3. Deviation of the vapor-liquid equilibrium of the Acetic Acid (1) / Water (2) at
1 atm.
AT Ax(1y Ax(z) Ay Ay

-5.00E-02 6.85E-05 -6.85E-05 -4.29E-03 4.29E-03
5.43E-03 3.32E-05 -3.32E-05 -1.92E-03 1.92E-03
5.93E-02 4.98E-05 -4.98E-05 -3.09E-03 3.09E-03
4.25B-02 1.37E-04 -1.37E-04 -8.86E-03 8.86E-03
9.35E-02 9.54E-05 -9.54E-05 -6.27E-03 6.27E-03
1.13E-01 -4.11E-05 4.11E-05 2.07E-03 -2.07E-03
1.54E-01 -1.38E-04 1.38E-04 7.22E-03 -7.22E-03
1.43E-01 -1.54E-04 1.54E-04 7.80E-03 -7.80E-03
1.39E-01 -1.14E-04 1.14E-04 5.15E-03 -5.15E-03
1.75E-01 -1.04E-04 1.04E-04 3.26E-03 -3.26E-03
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1.04E-01 1.53E-05 -1.53E-05 -3.13E-03 3.13E-03
2.20E-01 -3.31E-05 3.31E-05 -2.83E-03 2.83E-03
1.91E-01 -4.26E-06 4.26E-06 -9.44E-03 9.44E-03
5.49E-02 1.18E-04 -1.18E-04 -2.30E-02 2.30E-02
-2.79E-01 2.01E-04 -2.01E-04 -3.13E-02 3.13E-02
-5.33E-01 1.71E-04 -1.71E-04 -2.53E-02 2.53E-02
-7.34E-01 2.12E-04 -2.12E-04 -3.11E-02 3.11E-02
-749E-01 1.12E-04 -1.12E-04 -1.78E-02 1.78E-02

Table 4. UNIQUAC binary interaction parameters of the Vinyl Acetate (1) / Acetic
Acid (2)/ Water (3) mixture.

Ay By Ay By
() (@) 4.118 936.916  -0.554  416.761
(1) (3)]-10.000 2469.161 7.513 -2500.000
(2) (3)] 5724 -2500.000 -3.855 1675.908

4. Conclusions

The results of the methodology employed show that the UNIQUAC equation, combined
with the HOC equation of state, can properly describe the LLE and VLE of the ternary
mixture vinyl acetate/acetic acid/water with adequate accuracy if the parameters are
simultaneously fitted for both equilibria. The VLE of acetic acid with water has a higher
deviation, up to 3.13x107 for the vapor composition of acetic acid. Nevertheless, the
parameters obtained allow to adequately represent the ELLV of the evaluated mixture.
This data will be useful for the simulation and analysis of intensified processes for the
separation of the mixture vinyl acetate/acetic acid/water in the vinyl acetate production
process.
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Abstract

The LES-SGS simulations of a three-dimensional multiphase flow in an industrial
preneutralizer reactor is performed, and the Multiple Reference Frame (MRF) approach
is used. The effectiveness of the three SGS turbulent closures (Smagorinsky—Lilly model,
Wall Adapting Local Eddy Viscosity (WALE) model, and the Algebraic Wall Modeled
LES (WMLES) model) to predict the flow hydrodynamics and to capture the eddies near
to high turbulent zones (in liquid injection point and in the turbine rotation zone) is
assessed. The results show that the SGS model has a significant impact not only on the
instantaneous flow field, but also on the time-average velocity magnitude, therefore the
hydrodynamics of unsteady behaviour in turbulent chemical reactors is found to be
significantly influenced by the choice of the SGS closure model.

Keywords: CFD, LES- SGS, turbulence model, hydrodynamics, multiphase flow

1. Introduction

In the phosphate industry, Di—-Ammonium Phosphate (DAP) is considered to be a very
efficient chemical fertilizers that is used to provide the required nutrients to the plants and
soil. The DAP manufacturing processes begin with a preneutralizer reactor that consists
of the production of homogeneous slurry produced by mixing the Ammonia gas and
Phosphoric acid (ACP), under specific conditions. The preneutralizer reactor is a non-
standard stirred tank reactor, equipped with a pitched blades turbine agitator that (i)
promotes mass and heat transfer, (ii) reduces foaming, and (iii) improves ammonia
dispersion in the liquid phase. This unit operation represents the masterpiece that
conducts the physicochemical phenomenon called "preneutralization" chemical reaction
(Elmisaoui et al., 2020).

The reaction between ammonia and ACP in the reactor leads to MAP or DAP depending
on the ratio of N (Nitrogen) and P (Phosphorus) ratio N/P. Other species are formed but
in small quantities in such a way that they do not significantly affect the total nitrogen or
P,0:s in the final product (Campbell et al., 2006). When the ratio N/P is greater than unity,
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the produced MAP in the first reaction is converted to DAP in the second one (Campbell
et al., 2006). The overall reactions are listed as follows

{NH3 + H;P0, — NH,H,PO, + Heat (1a)
NH; + NH,H,P0, — (NH,),HPO, + Heat (1b)

These reactions occur immediately after Ammonia gas NH; and ACP(H;P0,) are mixed.
Produced slurry feeds the granulator, to be sprayed onto the granular fertilizer bed
existing in the granulator, and granule growth occurs. Granules leaving the granulator are
first dried and then screened to separate out the product size.

For the CFD modeling studies of multiphase flows in stirred reactors, different turbulence
models have been developed to predict the hydrodynamics of the flow, each one of them
demonstrating its effectiveness and robustness in each particular application (Derksen,
2001). The age-old CFD modeling method based on the Reynolds Averaged Navier-
Stokes (RANS) approach is still considered the most employed turbulence modeling
approach due to its acceptable accuracy and affordable computational cost for predicting
the hydrodynamics involving complex geometries, but with the development of the HPC
capabilities, the employment of the hybrid Detached Eddy Simulation (DES) model,
which blends the RANS approach with LES founds its applications. The DES
methodology shows its increasing potential and accuracy in flow prediction more than
the RANS models. Especially for its informative ability to predict the flow regimes in the
moving zone characterizing the impeller rotation. This work aims at evaluating the
performance of three main Large-Eddy Simulation (LES) subgrid-scale (SGS) turbulence
models in a stirred reactor.

2. Physical model of the preneutralizer

In this study, numerical simulations have been carried out using the workbench of the
CFD commercial software ANSYS Fluent 2021-R2. The physical model tailored in this
work is based on the actual size of a preneutralization chemical reactor (PN) with a
working volume of 47 m® to ensure throughput of around 120 m*/hr. The ACP is injected
from the top, and eight uniform Ammonia inlet nozzles are arranged in the bottom, which
are 3m away from it. The rotational agitator is equipped with a Pitch Blade Turbine
(PBT), consisting of four impellers slanted with an angle of 45° from the horizontal plane.
Detailed characteristics of the CAD file (cf. Fig. 1) are based on the original preneutralizer
geometry and are previously described in Elmisaoui et al. (2022).
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Figure 1: Mesh grid of the simulation domain, with zoom in shaft axis and gas spargers

3. Mathematical modeling and numerical schemes

LES comes in between the Direct Numerical Simulation (DNS) and the Reynolds
Averaged Navier-Stokes (RANS) approaches in terms of turbulent scale resolution. Large
eddies are directly resolved in LES, whereas small eddies are modeled. The time-
dependent Navier-Stokes equations are filtered. The space-filtered equations for the
conservation of mass and momentum of an incompressible Newtonian fluid can be

written as:
aXi -
og _0n 0P

tUu—= +v
ot ! 6Xi 6Xi

kTi]' = ﬁll_l] - ﬁll_l]

(2a)

(2b)
(20)

where 7;; is the sub-grid scale stress tensor, which reflects the effect of the unresolved
scales on the resolved scales. Subgrid-scale stresses resulting from the filtering operation
are unknown, and require modeling. The subgrid-scale turbulence models employ the
Boussinesq hypothesis as in the RANS models, computing subgrid-scale turbulent

stresses from:

1 _
Tij = 3 Tr0ij — 2HeSij

Three SGS turbulence models are considered in this work:

e  Smagorinsky-Lilly model
pe = pLE|S|

e  Wall Adapting Local Eddy Viscosity (WALE) model

3)

“)
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(stist)™”
5/2

pe = pLE

)5/4 (5)

(§ij§ij) +(Sldjsidj

e Algebraic Wall-Modeled LES Model
pe=pm [(edyan)? (CA)?]- S - {1 —exp(=(y*/25)})  (6)

where d,; is the wall distance, S is the strain rate, k = 0.41, and C;, = 0.2 are
constants.

To consider chemical species transport, the previous system of equations is coupled to
the species transport equation, as described in Elmisaoui et al. (2022).

3.1 Numerical simulation conditions

As previously stated in many CFD simulations of stirred reactors, a variety approaches
may be used to cope with the movement of the impeller blades. The Multiple Reference
Frame (MRF) approach was employed in this investigation Elmisaoui et al. (2022), and
the SIMPLE algorithm was employed for pressure-velocity coupling.

3.1 Computational domain

The computational domain grid is composed of two parts: an inner spinning cylindrical
volume holding the turbine and an outer, stationary volume containing the remainder of
the tank. In both portions, structured grids of non-uniformly distributed hexahedral cells
are utilized. To provide a more precise description of the impeller, the grid employed in
the impeller region is refined. In the tank, there are a total of 970997 grid nodes.

It is worth noting that a grid-dependency study is carried out using ANSYS Mesher to
evaluate mesh suitability for the present configuration. A three-dimensional mesh grid of
the computational domain is discretized into unstructured cells with specific refined zones
(cf. Fig. 1). Three mesh featuring grids are generated and defined as coarse, medium, and
fine meshes, respectively. Refinements are carried out in the shaft region, near to the
nozzles, at the inlets, and at the outlet of the domain, allowing for a minimum and
maximum mesh size of 25 mm and 15 mm for the medium mesh grid. The last refinement
level is retained based on a mesh grid sensitivity, as the grid allows for an accurate
numerical solution at acceptable time costs.

4. Results and analysis

To evaluate the flow hydrodynamics in a three-dimensional multiphase turbulent flow,
the identification of coherent structures is crucial, which allows a better understanding of
the real space dynamics of turbulent flows. One of the most commonly used methods for
categorizing three-dimensional flow structures is the Q-criterion proposed by Hunt et al.
(1988). It is defined in terms of the instantaneous velocity gradient tensor as:
Q =1/2((V-w)? —Vu:Vu") = 1/2((V- )+l @ I -1 S I13) 7

Here, S is the strain rate tensor and () is the rotation rate tensor. The turbulence associated
with the flow through the inlet and across the stirred reactor is visualized at two different
instants t = 100 s and t = 190 s in Figs. 2 and 3. As can be noted for the three SGS-
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models and as the flow is introduced from the nozzles into the tank, it is clear to have
higher velocities near the inlet pipes. In addition, there is a velocity difference between
the nozzle stream and the rotating flow in the tank, which creates local shear zones. As a
consequence, inlet nozzles become the inherent turbulence generators. The intensity of
the generated turbulence is less pronounced in the classical Smagorinsky model, while it
seems to be more pronounced in the WALE and WMLES models.

Figure 2: Turbulence structures for (left to right) Smagorinsky—Lilly model, WALE model, and
WMLES model, respectively at t= 100 s

Furthermore, for the latter models, the instantaneous flow seems to be characterized by
nearly concentric streamlines in a circular fluid motion, which is due to tangential inflow.
The resulting vortex column around the central outlet structure is wrapped by the external
turbulent filaments, leading to intensive momentum transport.

Figure 3: Turbulence structures for (left to right) Smagorinsky—Lilly model, WALE model and
WMLES model, respectively at t =190 s

Figure 5 presents the profiles of instantaneous magnitude velocities in two locations of
the domain (denoted by P1 and P2 in Fig. 4).
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Figure 4: Axial projection plan in the middle of the domain

As a considerable throughput of liquid is injected near to position P2, a high velocity peak
is observed in a short time. Then, as the mixing gets enhanced, the velocity decreases
gradually until t = 150 s and a considerable flow amount of Ammonia gas achieves the
top of the domain. This explains the emergence of new turbulent eddies in the P2 location.

LES models were able to capture the generated eddies coming from the liquid injection
and from the mixing zone. WALE model gives higher values of the velocity magnitude
than WMLES and Smagorinsky-Lilly models.
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Figure 5: (a) & (b) Temporal evolution of velocity magnitude profiles in probes P1 and P2,
respectively

However, based on the P2 probe position near to the shaft wall, the WALE is more
appreciated to be used for near to the wall turbulence eddies prediction. As shown in Fig.
5b, the predicted velocity magnitude profiles fastly increase in the rotation zone (P2
probe). Strong eddies are developed by mixing, and interesting redistribution of the
reactants in ensured by the circulation loop, which amplifies the magnitude of velocity.
The occurrence of the gas flow from the nozzles with a considerable injection velocity
considerably enhances the eddies and amplifies the circulation loops. The Smagorinsky-
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Lilly model seems to capture the flow hydrodynamics with a good precision compared to
WMLES and WALE models.

5. Conclusion

In this paper, the large eddy simulation method based on an Eulerian—Eulerian CFD
model is used to simulate hydrodynamics of the gas-liquid reacting flow in the
preneutralizer stirred reactor. The liquid and gas phase flow fields in the stirred tank
simulated by the LES approach are more asymmetric in the case of WMLES and WALE
models. Overall, each of the three models has its own specific ability for the flow
prediction. However, the choice of an LES Turbulence model should be done carefully,
for a good physical flow prediction.
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Abstract

Perovskite solar cells (PSCs) are the most exciting third-generation PV technology, which
has shown an unprecedented increase in power conversion efficiencies from < 4% to >
25% in just over a decade. However, most of the research results indicating efficiencies
of more than 20% are based on spin coating techniques with small cells with an active
area < 20mm?. With efficiency already been on par with established silicon solar cells,
there is a need to upscale the technology to production scale and parallelly work on other
facets of the technology like stability and toxicity. Among such techniques for mass
production of PSCs is well-established inkjet printing, which has been explored to
achieve PSC printing and can be used with various substrates and solvents. However,
there is not much effort in modelling the inkjet printing process and understanding the
impacts of different decision variables related to the process. Here, this article presents a
mechanistic model to achieve perovskite printing (or entire stack of layers) using this
technique and analyzing the influence of solvent selection and process parameters on film
characteristic.

Keywords: Perovskite solar cells, inkjet printing. fabrication techniques, modelling.

1. Introduction

Inkjet printing is an attractive technology not only for research level but also for scaling
the perovskite solar cells fabrication because of low cost, high production throughput and
high material efficiency. Further, the non-contact nature of printing helps in depositing
solutions on variety of materials. The technique has been discussed in literature with focus
on droplet formation mechanism, travel to substrate and droplet interaction with substrate
(Derby, 2010; Kang et al., 2020; Soltman and Subramanian, 2008). However, most of the
studies in simulation regime were based on computational fluid dynamics which is time-
consuming and resource intensive (Tofan et al., 2021; van der Bos et al., 2014) with less
focus on process dynamics of the process. With the ever- increasing applications of inkjet
printing in printable energy technologies like organic solar cells, polymer solar cells, fuel
cells, energy storage devices, etc., it is important to understand the effect of different
variables involved in the process on the final film quality.

Perovskite solar cells have shown unparalleled improvement in their efficiency over the
last decade and have reached the levels of the established Si cells. Solution-based
deposition methods have shown better results compared to their vacuum-based
counterparts not only in efficiency but also provides cost effective, easily controllable,
and scalable solutions. Among these solution-based deposition methods, inkjet printing
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has gained significant interest in the community where drop-by-drop printing leads to
complete formation of film with control over droplet spacing and morphology via solvent
engineering (Yang et al., 2022). The power conversion efficiency (PCE) of inkjet-printed
devices has risen from 11.6% (Wei et al., 2014) to 21.6% (Abzieher et al., 2019) since its
first application. Moreover, many researchers have also shown the complete fabrication
of PSCs except the transparent conducting oxide layer using inkjet printing technique
which shows the potential of complete fabrication of perovskite solar cells based on inkjet
printing (Gao et al., 2021). However, the dynamics of inkjet printing is more complex as
compared to other solution-based techniques like spin-coating (0-D) or slot-die coating
(1-D) processes. Therefore, it is crucial to understand the influence of different
parameters on the inkjet printing process to obtain homogeneous liquid films and to
control the morphology of the final dry film (Huckaba et al. 2019, Mathies et al., 2016).

2. Model Description
The entire process of inkjet printing can be divided into four stages:

2.1. Droplet generation

Inkjet printing technique can be used only with certain solvents or solutions depending
on the solution properties and is governed by coating window which can be represented
in terms on non-dimensional numbers Eq. 1-3 (Derby, 2010).

0.1 <0Oh(=1/Z) <1; Oh-Ohnesorge number............ Eq. 1
We > 4: We-Weber number............... Eq. 2
Well2Rel/* < 50; Re-Reynolds number............. Eq.3

2.2. Droplet travel to substrate

Once the drop is generated and leaves the nozzle, the set of differential equations
describing the system in second stage include Eq. 4-7 where Cp is based on Kunii and
Levenspiel(1991), velocity, v is based on Sloth(2007) and Kk, is mass transfer coefficient.
dv _ (. pa\  _ Cppavimrg | F
dat (1 pd) g 2mg + mgq

am M P . .
% = <—km4nr§ W) (Vv.surface — Yv.amp );ye-mole fraction in vapor.Eq. 5
avg

ar 1 am . . .
= solvent. re-droplet radius, t-time, p-density ............EQ. 6
dt AT Psolvent dt

2 AMsolvent
daT, hc[4‘m”d (Tamb_Td)]*'AHvi ..
2d - T-temperature, hc-heat transfer coefficient.....Eq. 7
at MsoluteCp,soluteMsolventCp,solvent

The thermophoretic force component, F; is a dominant force especially close to the
surface when the temperature of substrate is very high (Filipovic et al., 2013).

2.3. Droplet impingement and positioning

Based on Stringer and Derby (2010), once the droplet reaches the surface, the equilibrium
diameter of the droplet (Deqd) can be expressed in terms of diameter of droplet at
impingement and the equilibrium contact angle (Beqv). For stable line formation without
any defects like waviness or bulging, criteria for maximum and minimum droplet spacing
is used. Further, width of the bead is deduced based on Stringer and Derby (2010).
Afterwards, the line formed is assumed to be a flat rectangle with height depending on
the width and total volume of the bead from initial state of flat cylinder for single droplet.

: Cob-Drag coefficient, mq :drop mass............... Eq. 4

2.4. Film formation
The system of differential equations for tracking the solution parameters during line/film
stages can be expressed as given in Eq. 8-10 where AHy is enthalpy of vaporization.
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dmsolvent _ MsolventPamb .
—sovent = -k (Aeff)iavg (yvjsurface - Yv,amb)- Aeit -mass transfer area...Eq. 8

RT
dH 1 d .
bead _ Msolvent. 1 i-bead height, A.p-heat transfer area from substrate.Eq. 9
dt Ag ! Psolvent dt

(Tsubs—Thead)(Ksol)

H 2
bead/ ; k-thermal cond.. Eq. 10
dat MsoluteCp,solutetMsolventCp,solvent

The total time of the deposition process, tq, can be calculated based on Eq. 11-12.
__celly_gim celly_qim APitarget—y. _ — T .

tap = son APinazive Widthpn i Cellx-dim, celly-gim -x-and y-dimension of cell....... Eq. 11
_ 25.4fpop

" 1000 dpitarget—x'
During film formation stage, line width (Wiine) during multiple repetition (Nrep-y) is based
on the lateral spacing (based on 1/dpitarget-y), €quilibrium diameter of droplet and initial
line width (Winiiine) (EQ. 13). When merging of line happens, the width (Wrem-bead) and

length (Lrem-bead) OF the new bead is expressed based on Eq. 14-15.

h¢|A T dm A !
aT clAe amb=T + solvent ,_ eff
bead [ ff( b bead)] AHv ¢ }

Vpn vph- printhead velocity, foop-drop ejection frequency ....... Eq. 12

- _ Wini-tine Wini-tine _ 0.0254 Deq,d

M/lme - 2 + max( 2 ] (Nrep—y 1) * dpitg_rget_y + 2 ) .............. Eq. 13

Lyem—pead = Ng * Degq — (Ng — 1) = —2025% . Ng-number of drops deposited....Eq. 14

’ dpitarget—x

Wrem—bead = 0',0254 — Wiine; dpinative- Nozzles per inch............EQ. 15
dpinative

3. Results

3.1. Validation

In this section, model is validated based on existing experimental data before extending
it to elucidate film formation dynamics. Figure 1 a) shows the droplet velocity as a
function of distance from nozzle which lies in the range of data collected by Kang et al.
(2020). Further, Figure 1 b) and c) shows the evolution of droplet volume based on present
model and comparison with experimental results obtained by Lim et al. (2009) which
shows very good agreement in all range of initial droplet volume and substrate
temperature with water (W) and ethylene glycol (EG) as solvents. Since, the analytical
expression for equilibrium droplet diameter and first bead/line width were directly used,
they are not validated here. With these validation results, the model can be used for further
understanding of the process dynamics involved in the inkjet printing process including
line formation and film formation and the impact of different decision variables.

. « drop volume = 200pL 35 + Exp-w-30-40 30 Exp-W-10-30
281 o «- drop volume = 150pL +  Exp-w-30-70 Exp-W-10-50
2w . drop volume = 100pL 20 Exp-W-30-90 a5 +  ExpW-10-90
26 '« Exp. drop velocity Exp-EG-30-120 : Numerical (PW)
- % oo =P ExpEG-30-160 | J Numerical (PW)
£ 241 7 = Numerical (Pw) | — 2.0 Numerical (PW)
o ode! 2 2 o
S.s .q.,“ E20 Numerical (PW) | E
E B Numerical (PW) | g 15
2 ° als Numerical (PW) | & R
220 2 i e
510 Numerical (PW) | 5 1.0
B
18 - !‘. ¢ . -
s 5 . 0.5
16 s . B
. 0 ¢ 0.0 *
2 4 6 8 0 20 40 60 80 100 0 10 20 30 40 50
distance from nozzle outlet (mm) time (ms) time (ms)
a) b) c)

Figure 1: Validation results for a) droplet velocity, and b) and c) droplet volume during
evaporation on substrate (PW-present work)
3.2. Screening decision variables space

In the first part, the screening of parameter space based on coating window available for
the process can be investigated. The result shows that out of 84000 cases only 12600 fall
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within the coating window. Further, with constraints on the size of droplets with respect
to nozzle and boiling point of solvents only 6480 cases remain feasible. Finally, with
constraints on minimum spacing and maximum spacing between droplets only 4568 cases
remain feasible for the inkjet printing process. Out of the 24 solvents commonly used in
perovskite layer deposition, only 6 solvents have required properties with the given
parameters selected for the analysis which include hexanol (1-HEX-01, 23), 2-2-
ethoxyethoxy-ethanol (2-2-E-01, 21), 2-butoxyethanol (2-BUT-01, 17), alpha terpineol
(ALPHA-01, 9), n-butanol (4) and ethylene glycol (ETHYL-02, 22).

Screening based on Oh number Screening based on We number

< B
B
| ° *
Oh<0.1 } o s 4> We
1.50 5 ] N T~
| 2 | . .
125 . 3 51 .
S 5 .
3100 z | . S >
< g Oh>1 % 41 o 3 .
307 oete a8 | . °l e
S0.50 -~ N 2 * 8 .
) LN See D %o ¢ o 53] b2 .
b
0.2% Sose | “eseurs, o < e | <o . A
. }
0_000 " °® 'Oo.“. > g 2 . ° . o >~
< Al o0 0.1=0h=1 o ~ 4 = We
» (P o 300 Py 300
) 310 L-HEX-01™ . ® 7310
5 % 7320 © 22-E-01 320 @
10 T~ . /;433 R 2-BUT-01™~_ "‘;4830@‘6
o o p
SO/,,e 15 ~_ 350 &2 o/ALPHéAUOT}\NO‘E.// 350 Qe‘”
20 3600 Veng 3804
<@ s ETHYL-02" <
a) Screening based on DPI and dropet volume b)
. 4 ]
L . o
| o °. S
1200° . Al o S bulging
A e, 5% e
o . e, ° ° ".... . *
31009 . e, * "% .
s . ., . .
Q. . .
Ss0d * 21 Se See0® o0 s
v | . of g
) 6od . oL e : K] o scallopingfindividual drops
5 ° . AL . o
[l | . .
240 T
q o) *
3 .
T » . . o X
1-HEX-0T™~_ > . 20 o
z-zg-g%’_} ~ 40 e\v\' None
WALPHA-Oi‘ P 50‘ oY
Ve,,, BUTANOL™ 80 &
ts " ETHYL-02 0
&
c)

Figure 2: Screening results based on a) Oh-number b) We number and c) line defects
Ethanol (2) and IPA (3) are on the edges of the applicability window. Further DMSO
(14), DMF (13), gamma-butyrolactone (15), o/m-Dichlorobenzene (24, 10) and NMP
(19) are also lying close to the edges of the application window at low temperature. Other
solvents used include water (1), chlorobenzene (5), methanol (6), 2-methoxyethanol (7),
propanol (8), acetone (11), toluene (12), Methyl-phenyl-ether (16), tetrahydronaphthalene
(18) and acetonitrile (20). Ambient conditions are 25°C and 40% RH.
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a) 2-2-Ethoxyethoxy-ethanol b)
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c c
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Figure 3: Influence of solvent properties a) within and b) outside coating window
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3.3. Effect of solvent (Tsus=55°C, DP1=847, LPI =635, Geqp = 1°, V4 =10pL, foop =5000)
Figure 3 shows the influence of different solvents on the wet film characteristics. IPA
shows maximum change (>20%) in mass fraction over printing time (<100 ms). However,
the solvents lying within the coating window don’t show more than 5% change in the
mass fraction over time with maximum change shown by Butanol. Therefore, mixing
solvents with different properties can be used to influence the final film characteristics.

3.4. Effect of substrate temperature (Tsups)

Figure 4 shows the effect of substrate temperature on film properties with Dimethyl-

sulfoxide (DMSO) as solvent (for all remaining cases). The effect of temperature becomes

more dominant at high temperature resulting in >10% difference in film height with

progressive increase in mass fraction of solute. Here, the maximum temperature cannot

be more than boiling point of solvent to avoid pin-hloleﬁformation in the deposited film.
-
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Figure 4: Influence of substrate temperature on a) mass fraction and b) film height

3.5. Effect of Target DPI (dpitarget-x) (LP1 =51)

Figure 5 shows the effect of DPI (dots per inch, relates to spacing in direction of printing)
for DMSO at substrate temperature of 55° C. Depending on the frequency the total time
for printing changes with dpi. With increase in DPI, the total time increases, however, the
change in mass fraction is very less. Further, with increase in DPI, film height increase
as more droplets are deposited on the same area of substrate. With increase in dpi, the
morphology of wet film changes from individual lines (from different nozzles) to merged
film as closer droplets leads to broader lines which become greater than nozzle spacing.
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Figure 5: Influence of target DPI on a) mass fraction b) film height and c) film width
3.6. Effect of Target LPI (DPI =254)
In this subsection, influence of droplet spacing in lateral direction (lines per inch, Ipi or
dpitargety) is shown. With LPI increase, total time of process increases resulting in more
solution deposited on the same area thus leading to thicker wet films. Further, change in
mass fraction decreases and time for film formation increase with increase in LPI(Fig. 6).

4. Conclusions

Here a mechanistic model for inkjet printing is presented which can be used to understand
the impact of different decision variables involved in the process of inkjet printing.
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Figure 6: Influence of target LPI on a) mass fraction b) film height and c¢) film width

Screening solvents based on existing literature should be done with more lenient
conditions. Most of the solvents show similar behavior during the printing process except
a few which have high vapor pressure. Substrate temperature can have significant impact
of final mass fraction of film. DPI and LPI have direct influence on the film thickness,
processing time and film morphology with less impact on change in mass fraction.
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Abstract

Spatial dimension planning of an energy system is critical at an urban scale due to the
strong spatial heterogeneity of load levels and categories at different spots of a city and
the high complexity of pipeline networks extension and connection topology. External
requirements of low-carbon transition of a city may make its urban energy systems
planning further complicated. In this paper we propose a novel urban energy systems
spatial planning modeling and optimization approach considering energy systems form
and topology. Coupling with integrated energy systems modeling and multiple energy
pipeline networks topology modeling, the processes of energy generation, conversion,
storage, and transmission are depicted synthetically. A case area is employed to illustrate
feasibility of proposed method and the impacts of both low-carbon transition and user
side participation in energy production on urban energy systems optimal layout. Results
show that main energy supply technology shifts and corresponding networks topology
changes significantly under the requirement of decarbonization and energy supply mode
revolution. Decarbonization and participation of user side in power generation reduce the
average network capacity by 19% and 26% respectively, indicating a more interconnected
energy network with low capacity to balance energy between areas is a preferred form for
a low-carbon city.

Keywords: urban energy systems; systems modeling and optimization; network
topology; low carbon transition.

1. Introduction

An urban energy system consists of a variety of energy generating units and
interconnected pipeline networks of multiple energy categories, including electricity, heat,
or cold, thus has great potential to integrate multiple types of energy. However, the high
complexity of such a system also brings great challenges to its planning. Moreover, urban
areas are the main places of various kinds of social activities, in which might lead to
massive carbon emissions and various environmental problems. It is expected more than
70% of the population will live in cities in 2050 (C40 Cites, 2017), and a considerable
part of emissions may come from energy production and utilization. Therefore, it is of
great importance to carry out low-carbon oriented urban energy systems planning,
especially under the new trend of decarbonization and renewable energy utilization
(Stoeglehner et al, 2016).
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Currently, a series of urban energy related researches exist. One mainstream of concern
is urban emissions measurement and analysis based on emissions inventory (Kennedy et
al, 2010) and index decomposition method such as LMDI (Gu et al, 2019), IPAT and
improved STRIPAT (Wang et al, 2017), to quantify the impact of various social and
economic indicators on carbon emissions. Another group of scholars apply commercial
software, for example LEAP (Huang et al, 2019), MARKAL (Isi et al, 2021) and Energy
PLAN (Thellufsen et al, 2020), to implement simulation and designing for a low-carbon
energy system. However, most of these studies are similar to decarbonization researches
at a national scale (Sun et al, 2019), which generally apply lumped parameter method and
regard objective into a whole, mainly discuss the impacts of relevant indicators change
on carbon emissions. Spatial dimension, the most unique and vital aspect at a city scale,
is neglected and heterogeneities and correlations within a city are thus not considered
enough. Conversely, existing studies on urban space mainly focus on land use planning
(Penazzi et al, 2019) and various location problems (Bélanger et al, 2019), where
concerns of low-carbon oriented revolution of urban energy systems are absent.

As a result, the purpose of this study is to investigate the impacts of decarbonization as
well as energy supply revolution represented by user side participation in energy supply
on the optimal urban energy systems form and layout, aiming at facilitating spatial
planning of low-carbon oriented urban energy systems.

2. Methodology

2.1. Overview of model structure

The aim of this study is to explore the impacts of decarbonization and low-carbon
revolution on urban energy systems form and layout. Therefore, an urban energy systems
spatial planning model is proposed, as illustrated in Figure 1.

Input
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Output

Geographic Information

* Load Structure

Network Flow Model

Technology

*  Options
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Energy Process

*  Generation
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Superstructure ¢ Storage Carbon emission
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Figure 1 Model framework

Geographic information is derived from OpenStreetMap (OSM, 2022), a widely-used
open-source map platform, and edited by Java OpenStreetMap (JOSM, 2022). Load data
are used for depicting various energy demand and techno-economics parameters are
applied for energy facilities modeling.

The core of the proposed model consists of two sub-models, namely the Network Flow
Model and the Energy Hub Model. The purpose of the Network Flow Model is to
characterize energy transmission in the energy network and energy balance at each node.
The Energy Hub Model aims to establish a mathematical model for real energy facilities
installed at energy hub nodes based on superstructure modeling method.
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The planning goals are (a) which energy hub nodes should be selected, (b) which
technologies and how much capacity to install in hubs, and (c) how to lay the energy pipe
networks properly to satisfied all load nodes demand with minimum cost. By solving this
problem, optimal installation decision, energy networks arrangement, detailed cost and
carbon emissions can be obtained.

2.2. Mathematical formulation

2.2.1. Objective function

The optimization objective is to minimize the overall energy systems costs, including
investment costs of technologies cost;.., and networks cost,. , operation and
maintenance costs cost,,, and fuel costs costs,.;. The proportion coefficient of cost oy,
refers to literature (Xu et al., 2020).

COStiotar = COStiecn + COStper + COStoy + COStrye 8
, r(1+r)T

COStyech = Ztech,node CAPEXiech " iCnoge (14771 2

_ , r(1+m)7 3

COStper = thn,roadid DlSTANCEroadid “(Co + Cltdn) *LCeNtan,road;q (1471 3)

COStrye; = quel,nodehub FPfuel - eimpnadehub,s,dh,f 4)

coSt,, = coefficient - coStipcn 5)

2.2.2. Network flow modeling
Expression (6) and (7) describe the upper limit of flow and energy balance of the energy
flow in network.

_icntdn,roadm < flOWroadid,s,dh,e,tdn < icntdn,roadid (6)
LOAD 4., if node € load nodes
Y flowyy, . — 2 floweye, ., =10 if node € road nodes 7

—outputnode,,,sdane Lf node € hubnodes

2.2.3. Energy hub modeling

Nine types of electricity generation technologies are considered, including Super-critical
Pulverized Coal (SPC), Ultra-Supercritical Pulverized Coal (UPC), Combined-cycle Gas
Turbine (CCGT), Biomass power plant (BE) and options of the above technologies with
CCS. Solar Photovoltaic (PV) is selected as the option of renewable technologies.
Besides, six types of heat and cool generation/conversion technologies, namely Biomass
Power Plant Combined Heat and Power (BE CHP), Combined-cycle Gas Turbine
Combined Heat and Power (CCGT_CHP), Gas Boiler (GB) and Air-source Heat Pump
(ASHP), Air-conditioner (AC), Absorption chiller (ABS_CHILLER), and three kinds of
energy storage technologies including Battery (BATTERY), Sensible Thermal Energy
Storage (STES) and Ice Storage (ICES) are involved. Key expressions of energy
generation, conversion and storage processes are presented in (8) to (11).

ﬂmpnodehub,sydh,e = Zgnt elgnt,nodehub,gnt,s,dh,e (8)

e eignt,nodehub,gnt,s,dh,e X effgnt,ee = eogmnodehub,gnt,s,dh,e )

€0sttnodepy,p sttsdhe

eStnodepupsttsdhtle = €Sthodenypstt,sahe X (1 —LOSSsrr) — T Foren F €lsttnodenpstts,dhe (10)
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2.2.4. Carbon emissions constrain

Emissions constrain is shown in (12), namely net emissions should be limited by quota.

Specially, when quota is set as zero, it means carbon neutralization scenario.
Z(eimpnudehubysydh’f — €lecsnodepypgnts,anf - 0-9) * CEls - DAY, < QUOTA (12)

Eventually, the model proposed above is built in General Algebraic Modelling System
(GAMS, 2022) platform and solved via applying built-in CPLEX solver.

3. Case study

3.1. Area information and scenarios setting

A case area commonly used in several literatures (Chen et al., 2018; Xu et al., 2020) is
applied in this study. As shown in Figure 2, case area is consisted of 205 nodes, including
20 load nodes colored in orange triangle, representing points where energy demands exist,
and 8 candidate energy hub nodes in red square meaning where energy facilities can be
constructed, and 345 roads consist of existing roads in solid line and candidate in dotted
line. All energy pipes are limited to build along roads. Basic load data and road distance
are derived from literature (Xu et al., 2020). In this study the load data are further split
into hourly scale via load profiles from a widely-used energy system planning software
HOMER (NREL, 2022) to reflect the characteristics and changes of different categories
of loads including residents, industry, and commerce, as shown in Figure 3.
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= 1500
X 1000
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\ < 0.1
e ()_08 s — ’Q-JA\
E3 TS|
E S 0481216200 4 81216200 4 8121620
< '\ inter mid-season summer
— Roads ———c¢lec  ———cool e
® Candidate energy hub nodes & Load nodes ® Road nodes
Figure 2 Networks of case area Figure 3 Load level and hourly-profile

To investigate the impacts of decarbonization on urban energy systems planning, three
scenarios are set according to emissions constraint and energy supply mode, as shown
in Table 1. NC is a reference scenario with no emissions constrain and follows the
current mainstream idea of centralized energy supply, which means energy supply
equipment except AC can only be installed in the energy hub. DC-1 is a low-carbon
scenario with the requirement of carbon neutralization but stays in traditional
centralized energy supply mode, to illustrate the impacts of carbon neutralization. DC-2
further indicates that distributed PVs are approved to be constructed at user side, namely
load nodes and users play the role of both energy consumers and producers, which is an
expected form of energy systems revolution in the process of decarbonization.



Modeling and Optimization of Low-carbon Oriented Urban Energy Systems 193
Spatial Planning Considering Energy Networks Topology

Table 1 Scenario setting and explanations

Scenario Explanation
NC No carbon emissions constrain; Centralized energy supply
DC-1 Decarbonization with carbon neutralization; Centralized energy supply
DC-2 Decarbonization with carbon neutralization; User side distributed PV available

3.2. Impacts of decarbonization on urban energy systems planning

3.2.1. Major energy technologies shifting

The choices of energy hubs in three scenarios are consistent, almost all candidate hub
nodes are selected except node 205. However, the technology installing decisions are
different as shown in figure 4 and figure 5. In DC-1, the capacity of PVs grows while
UPC and ASHP descends markedly, and more types of technologies such as BE CHP
and ABS CHILLER are used. The installed technologies at user side in these two
scenarios are limited in AC only since scenarios setting. In DC-2 scenario, however, it
can be found a considerable number of PVs are installed at the user side, and both batteries
and thermal storage equipment are installed.
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Figure 4 Installed capacity of energy hub Figure 5 Installed capacity of user side

3.2.2. Energy networks topology

Figure 6 displays the electricity network and heat network topology between scenarios.
Red, yellow, and blue nodes represent hub nodes, load nodes and road nodes respectively.
Linkages between nodes mean where energy networks are constructed. It should be
noticed that these topology diagrams only indicate the topological relationships, namely
the connections between nodes, instead of real spatial direction and distance. Nodes
unselected are not shown in diagrams.

(6a) NC (6b) DC-1 (6¢) DC-2
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(6d) NC (6e) DC-1 (6f) DC-2
Figure 6 Electricity network (6a-6¢) and heat network (6d-6f) topology

In detail, electricity network in NC scenario consists of two independent subnets. By
comparison, the network exists as a whole and is more complex with six rings in DC-1.
This is because abundant PVs are constructed under the constrains of carbon
neutralization, which implies the mismatch between load and energy supply will be more
severe due to the inherent volatility of renewable energy. Therefore, a more
interconnected supply network is needed to balance the energy between nodes. And in
DC-2 scenario, with the participation of user side distributed PVs, the number of latent
energy supply nodes and the requirement for load-supply matching increase, explaining
further complications on the network topology. Table 2 summarizes specific results of
networks. It can be found that the results of total capacity in NC and DC-1 are almost the
same, while the number of pipe lines increase 23%. Comparing DC-1 and DC-2, the
number of lines is almost identical while total capacity decreases by 24%. A similar trend
can be observed in heat network. However, the structure of heat network is more concise
and its average capacity is approximately twice that of the electricity network.

Table 2 Energy networks capacity

. EN Number Average HN Number Average
Unit: MW . . : . . ;

capacity of lines capacity capacity of lines capacity

NC 128.3139 90 1.42571 235.1022 75 3.134695

DC-1 128.4098 111 1.156845 235.6052 89 2.64725

DC-2 97.06535 113 0.858985 188.0379 95 1.979346

4. Conclusions

Under the targets of decarbonization and energy systems revolution, the decision making
and spatial layout of urban energy systems will change significantly. Results indicate that
a dispatching and balancing oriented network with more complex topology and lower
average line capacity is needed for the requirements of decarbonization and user side
participation in energy supply, instead of a transmission-oriented net that carries energy
from centralized plants to load nodes.
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Abstract

In a highly competitive retail market, many microbreweries have attempted to maximise
profits and decrease energy consumption through retrofitting their operations with
renewable energy. This paper develops an optimisation model to minimise investment
and operation costs of a microbrewery meeting the dynamic energy demands, via an
integrated photovoltaic (PV) system with energy storage and different boiler choices to
lower carbon emissions. A microbrewery in UK has been used for the case study to
demonstrate the approach on real data, with challenges in implementation and real-world
constraints and considerations discussed. A set of rigorous multi-objective optimisation
and sensitivity analyses are performed to analyse the resulting system. For the particular
brewery, a modern electric boiler combined with photovoltaic system is an economic and
sustainable choice, due to the cooling and other electric requirements in the brewery,
leading to a 33 percent reduction in operational costs with a payback time of 2.6 years.
Keywords: microbrewery operation, optimisation model, PV system, sustainable.

1. Introduction

Beer is a popular alcoholic drink throughout the world. Global beer consumption reached
approximately 177.50 million kiloliters in 2020, equivalent to 537.9 billion 33 cl bottles
(Kirin Holdings, 2022). The UK is ranked 8" with 60.2 liters beer consumption per-
capita. In the past two decades, environmental concerns and increasing energy cost have
impacted companies and beer consumers. The new challenges for the brewing industry
related to energy efficiency, water consumption, emission management and waste
generation, have attracted great attention from breweries. Beer production is an energy
intensive process, and the energy demand is approximately 262 MJ/hL (59% thermal,
41% electrical) (Fadare et al., 2010). Compared with large breweries, microbreweries
consume up to 1.5-2.0 times more for thermal and electric energy (Kubule et al., 2016).
In 2020, the number of active microbreweries in the UK was 1,852, with a steady
increasing trend (Statista, 2022). Approximately 8% of the production cost is used in
thermal processes like boiling, cooling, and fermentation (Kubule et al., 2016). Local
microbreweries are trying to find a way to reduce energy consumption. Breweries have
considered sustainability and lowering carbon footprints in their processes, seeking the
strategies to minimise emissions and impact on the environment. Shifting load to a lower
tariffs period is potential saving in other industries, but not suitable for microbrewery
because the load demand is non-deferrable. Renewable energy sources and energy storage
system can offer a solution for reducing the operation costs. Muster-Slawitsch et al.(2011)
have analysed the use of different renewable sources, and identified solar energy as the
best option to support the brewery industry.
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The studies of solar sources for the brewery are focused on large size of breweries
(Eiholzer et al., 2017). Pino et al.(2019) used two case studies in Spain to model the
integration of a hybrid PV system into thermal and electricity generation system. The
simulation results showed that solar sources have potential benefits in microbreweries
with payback period of 10.7 years. Another energy-related case study is based on a
microbrewery in South Africa(Kusakana, 2020). A grid-connected tracking PV system
and a battery were integrated into the microbrewery, and the payback period is 13.8 years
based on simulation results. Very few published studies focused on the onsite small-scale
PV panels electricity generation, and they have not looked at the application in the UK.

Given the popularity of microbreweries and needs to reduce energy costs, this paper
develops an optimisation model to minimise investment and operation costs of a
microbrewery meeting the dynamic energy demands, via an integrated PV system with
energy storage and different boiler choices to lower carbon emissions. A microbrewery
in UK has been used for the case study to demonstrate the approach on real data, with
challenges in implementation and real-world constraints and considerations discussed.
The thermal and electricity load profile of the brewing process has been collected in
summertime and, based on the collected data, the dynamic energy demand profiles for
brewing days has been characterised. After an initial analysis, the number of PV panels,
installation and type of the battery, and type of boiler are used as decision variables in
model. A set of rigorous multi-objective optimisation and sensitivity analyses are
performed to analyse the resulting system. The proposed optimisation model and hybrid
system can be used in industrial, residential, or other demand sectors to reduce their
operational energy costs through a detailed multi-objective analysis and sensitivity study.

2. Case study description

The case study for the model is a microbrewery called Langham Brewery located at
50°59'N,0°41'W, which regularly produces six types of craft beers. Langham is a typical,
small-scale British microbrewery. Electricity is provided from Scottish Power for the
cooling process, and thermal processes use a steam boiler fueled by Furnace Flame. The
brewery has a capacity of producing one batch of 1,650 L of beer four times per week.
Therefore, the yearly demand is assumed at an average of 208 brewing days. Additionally,
the cold storage and the fermentation chamber run as the baseload throughout the year.
The load demand has been recorded in a summer day in July 2022. The first brewing day
is the most energy intensive one, with the different processes shown in Figure 1 where
the brewery’s load demand is the highest. During the night, from 18h30 to 6h30 next day,
the baseload is assumed at 4.4 kW including boiler (turned on, but not producing steam
and on standby), cold storage and fermentation chamber. Starting at 6h30 to 7h15, the
2.9kW boiler and 0.65 kW pump begin to work and prepare for the mashing process. The
temperature of hot water in the hot liquor tank (HLT) is 77°C and 700 L of hot water is
discharged into an insulated mash tank (mixer). Malted barley and specialty grains are
conveyed into the mash tank. The mashing stage starts from 7h15 to 8h30, boiler and
pump are kept on during this stage reheating water in HLT for the next process. After
mashing, the temperature of mixture is 66.3°C.

At 8h30, the sparging process begins. In this process, 1,950 L hot water from the HLT is
added to the mash tank over a period of about 100 min. Simultaneously, using a 0.65 kW
pump, the dissolved sugars in the water (wort) extracted from the grain husks is slowly
drained from the bottom and pumped into a boiler where the hops are added to the mixture
(wort). The mixture is heated for an hour. At the end of the sparging process, the
temperature of the mixture is 90°C. From 11h00 to 12h00, the mixture is heated from
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90°C to 100°C, preparing for boiling. The boiling process starts from 12h00 to 13h00.
After 15 min rest, the mixture is cooled by cold water (5°C) via heat exchanger to reach
20°C, desirable for the required fermentation. The whole preparation process ends at
18h30 after pumping the mixture into fermentation tanks and finishing the cleaning
process. The beer wort is moved to the fermentation which constitutes the 4.4 kW base
load together with the cold storage.

Based on our data collection, the daily operation cost including electricity and fuel costs
on a brewing day is approx. £158. This value excludes maintenance costs. The daily CO»
emission is 0.35 tonnes per brewing day(ScottishPower, 2022).

3. Methodology

After analysing Figure 1, it can be noticed that most of the peak power demand is
occurring during the day, matching the solar irradiance profile. The implementation of a
PV system can be of great advantage in maximising the electrical energy that can be
generated from the panels while minimising the cost and amount of energy acquired from
the grid. A battery storage system can be added to the supply system to store some energy
during excess generation times and can also be used in the event the PV system cannot
supply the demand. This will also increase the availability of energy supply as well as
provide an opportunity of applying demand response strategies through optimal power
dispatch. This section will describe the proposed system’s operation modeling; the
selected size and the basis of the economic analysis to be performed.

3.1. Optimal energy management model of the grid-connected PV system
The overall objective of this model is to minimize the total cost in the whole lifetime:
. id
f = min (COperation + Clnvestment) = (25:1,2,3,4 ngn - IS) * (1)

Lifetime + Y ynit ACynit

where ACy,;is the capital cost of the equipment including PV panels, battery, and

boilers; ngndis the seasonal cost of buying electricity from the grid; Isis the seasonal

income from selling electricity to the grid. There are two choices of the boiler, one is a

gas boiler, and the other is an electric boiler. The satisfaction of electricity demand

Pl9%4is described as below:
S pigat = pr 4 ppY 4 ppaT @
c

where P9"%is the power got from the grid to satisfy the loads. If it is positive, electricity
is bought from grid to satisfy the load; if it is negative, electricity is sold back to main
distribution. P/"is the amount of power generated by the PV that is used to satisfy the
demand, and P£47is the amount of power used by the batteries. If it is positive, the battery
is discharging; if it is negative, the battery charges. Note that indices t € T, ¢ € C refer
to the timestep and boiler type. Similarly, the heat demand is satisfied by the heat
generated (note that heat storage or heating networks are not included in the model).

The total power generated by the PVs, is described below:

PtPV < N Panel PPV (3)
where NPamel i the number of panels installed (an integer variable) and needs to be
decided, Ppy is the power generated each panel.
The model also ensures that electricity is not bought from or sold to the grid at the same
time by the addition of the big-M constraints, which are similar to the constraints on the
battery’s charging or discharging status. The type of the boiler installed is limited by a
binary variable K, constrained as follows:
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D Ke=1 “)

For proper operation, each power source must not be operated above its rated or maximum
limit according to the manufacturer’s specifications. The state variable also has
boundaries where the minimum depends on the type of battery used.

4. Optimisation results

All the constraints in the optimisation model are linear with integer variables. The
optimisation problem are solved using cbc (Forrest & Lougee-Heimer, 2005) solver from
Julia JuMP (Dunning et al., 2017) optimisation toolbox. Simulations are performed to
assess the effectiveness of the developed grid-connected system optimal operation model
to minimise the daily energy cost of power purchased from the grid. The simulations
reported in the sections below explain the system’s behavior for a brewing day in four
seasons with different boundaries on investment, which means disposable investment is
gradually decreasing. The maximum number of PV panels is 1000. The upper boundary
of investment is £500,000.

4.1. Different payback periods

We did not consider the maintenance costs for equipment, and there is no limit on the
investment cost. In Figure 2, the relationships among daily operation cost, capacity of
PV panels and payback period is shown. Under sufficient investment, the model
chooses to install an electric boiler under all the payback periods. If the payback period
is lower than 5 years, the brewery should only install an electric boiler, with no battery
or PV panels. When the payback period is more than 5 years, with the installation of PV
panels, operation costs decrease. To invest in an electric boiler, the operation cost will
drop from approximately £158 per day to £102.6 per day, with an investment assumed
to be £27,255, yielding a payback period of 2.6 years. This will also yield a CO»
emissions reduction from the boiler system of 62 % and an overall business emissions
reduction of 21 %.

Brewing day demand profile

| TV

Power(kW)

Dally operation cost{g/day)
Capacity of PV(kW)

o1 2 3 4 5 & 7T R 8 ID 111713 15 16 17 18 18 20 21 2
Time(h} Years of payback period

Figure 1 Brewing day electricity demand Figure 2 The relationships among daily operation
profile. cost, payback period, and capacity of PV panels.

The installation of PV panels has a great Impact on the daily operation cost of brewing
days, especially in spring and summer, because the solar irradiance value is relatively
high in these two seasons. The daily costs will decrease with longer payback periods
especially 8-13 years if we have enough investment budget to install more PV panels.
When the payback period is higher than 17 years, the operation costs are negative.
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4.2. Different gas price and investment cost

To analyse whether gas boilers are ever considered, the payback period was set to 10
years gas prices from 4 to 40 p/kWh were simulated. When the price of natural gas is
lower than 18 p/kWh, the model chooses to install a gas boiler not an electric one.
Compared with the gas boiler, the CO, emissions can be reduced more than 50% through
electrification. If the Smart Export Guarantee can increase the export price 20% (from Sp
to 6p), carbon emissions can be reduced by 28%, though the overall cost is only reduced
by 2%.

We also analyse the simulation results under different investment cost constraints, and
the results are shown in Figure 3. Even under different investment conditions, the model
always chooses an electric boiler due to high gas prices. Daily operation cost drops as
number of solar panels increases, and a significant positive linear correlation between
operation cost and installation of PV panels are shown in Figure 3 When the value of
investment is lower than £42,000, the optimisation model chooses not to install a battery,
the turning point is presented by a vertical dotted line with 18 kW PV capacity. On the
right side of the line, the model chooses to install batteries. As the investment cost
decreases, the operation cost gradually increases, with the increase in CO, emissions
displayed by the orange line.
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Figure 3 The relationships among daily operation cost, CO2 emissions, and capacity of PV panels.

5. Conclusion

To be more competitive and sustainable, microbreweries need to reduce their energy cost
without concession on the quality of final product. The aim of this work is to analyse the
techno-economic benefits of using renewable sources by maximising profits and
decreasing energy consumption through retrofitting their operations for a microbrewery.
This paper develops an optimisation model to meet the dynamic energy demand based on
data collection from a real microbrewery in UK, by minimising investment and operating
costs and integrating PV systems (with energy storage and different boiler options to
reduce carbon emissions). Along with the energy demand profiles, the solar resources,
system components, and energy costs have been used as inputs to develop the model.
Under the operational conditions and constraints, the model analyses the economic,
technical, and sustainable performance of the system, together with company- and region-
specific constraints related to budgets and incentives. The simulation results showed that
the model can effectively optimise the capacity of PV system, installation of the battery,
and type of boiler.
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Compared to the scenario in which the grid is the only option for energy supply, the
proposed system can significantly reduce energy costs. A potential energy cost saving of
33.3%, is possible when the optimal energy management model is applied to the proposed
system, under the applicable operating condition. The length of the equipment life cycle
has a great impact on the optimal investment strategy of the brewery, with a 7-year
payback period important should the microbrewery wish to move towards
electricification. Due to the installation of PV panels, there is a positive correlation
between daily operation costs and carbon emissions. The carbon emissions of electric
boilers are significantly lower than those of gas boilers, and the brewery prefers to install
an electric boiler, unless the price of natural gas is lower than 18p/kWh. More PV panels
installed brings lower daily operation cost and lower carbon emissions, but higher
investment costs, and therefore the brewery needs to find a balance according to their
own needs.

The satisfactory results obtained in this study demonstrate the potential techno-economic
benefits of solar PV integration in the small-scale microbreweries. The proposed
optimisation model and hybrid system can be used in industrial, residential, or other
demand sectors to reduce their operational energy costs through a detailed multi-objective
analysis and sensitivity study.
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Abstract

The flexibility of gasification, which incorporates both characteristics of the kind of
biomass and options for producing heat or fuel, is what stimulates interest in biomass
gasification research and application possibilities. One of the challenges with gasification
is the accurate prediction of gasification products from the wide array of feedstocks and
operational conditions, making the design and optimisation challenging. There are several
studies on equilibrium models that have been published, but most of the models examined
the impact of moisture and heating value. Examining the other parameter effects within
the same model can enhance the accuracy of a gasification model. This work aims to
create stoichiometric equilibrium models that enable the analysis of parameter effects on
a specific feedstock's gasification products for use in optimisation and system modelling.
A mathematical model for fixed bed gasifiers that use downdraft gasification for wood as
a feedstock is presented. When the algebraic model equations are solved, the conversion
behaviour of wood biomass throughout a gasification process is predicted in terms of the
composition of the end products. The model has been verified with published
experimental data from the literature demonstrating good agreement. The created model
may be regarded as a helpful tool to simulate the impact of numerous different biomass
feedstocks and operating conditions on gas characteristics and the simple algebraic
formulation allows for the application of the model for optimisation purposes.

Keywords: Biomass gasification, modelling, equilibrium models

1. Introduction

Global warming is regarded as one of the top global challenges for contemporary
civilisation, notwithstanding COVID-19 crisis global challenges. More waste is produced
because of growing urbanisation and economic growth. The primary problem is reducing
environmental pollution and worldwide warming brought on by the extensive use of fossil
fuels including coal, petroleum, and natural gas. These fossil fuels serve as the main
source of energy generation in many nations, which results in continuous greenhouse gas
emissions. Because of its widespread availability and practical processing, biomass is
predicted to grow significantly among the many renewable energy sources in the near
future (Yamany et al. 2016). There is ongoing research on methods for enhancing the
production of energy from biomass, and several organisations are working on its
development (Janajreh et al., 2021). One of the most adaptable industrial processes is
biomass gasification, which converts biomass fuels into consumable gaseous fuels that
may be used for heating, power production, and hydrogen fuel cells in a range of
residential and commercial applications (Sidek et al., 2020). Due to its versatility,
gasification - a thermochemical reaction that transforms solid organic resources into
gaseous fuels at temperatures ranging from 700 to 900 °C is highly popular (Okolie et al.,



204 A. Kushwah et al.

2021). It yields valuable products like CO, trace amounts of CHs, H,, and undesirable
gases like Ny, CO,, and other hydrocarbons. Because experimental conditions can affect
the behaviour of reactions like water gas, steam reforming reactions, Boudouard and
water gas shift reactions, and these all have an effect on syngas formation, stability, and
thermal efficiency, restricting its future uses, it is crucial to use caution when simulating
experimental conditions (Baruah & Baruah, 2014b).

Multiple studies have revealed that modelling and theoretical predictions based on
equilibrium modelling have a great deal of similarities (Kushwah et al, 2022; Chaurasia,
2018). For instance, Pradhan et al. (2019) used varied equilibrium reaction rates to test
five different biomass gasification models. When compared to other models, they
discovered that the model that contained basic methanation and the water gas shift
reaction generated syngas with the most accurate composition. The correlation output
predictions resembled those of the equilibrium model, with the exception of CHs. On the
other hand, reliable correlations will require the integration of more empirical
observations and the effect of other parameters.

Experiments generally consume significantly more time, money, and effort than
modeling. Modeling has been shown to be a relatively quick and cost-effective option in
situations when doing so is not always practicable or economically sensible (Galvanin et
al., 2009). Thermodynamic equilibrium models forecast the highest possible yield of
desired products without requiring any understanding of the conversion processes. Like
this, downdraft gasifiers are widely employed in various energy platforms due to their
straightforward construction, inexpensive maintenance requirements, and ability to
produce gas with a low tar content for use in small-scale electrical generation. This paper
proposes a thermodynamic stochiometric equilibrium model for a downdraft gasifier is
used for the gasification of wood at 800 °C with moisture content from 0-40 % in order
to predict the composition of the fuel gas produced and its associated heating values. The
gasifier system is modelled using an optimisation modelling package which includes
mass conservation equations, energy conservation equations and the equilibrium
equations. The developed model, based on thermodynamic calculations, has been
validated with experimental published data of other authors and provides opportunity to
evaluate downdraft gasification processes in a fixed bed reactor, as well as effects of
variations in biomass properties and operating conditions.

2. Methodology

Variables:
Temperature
Equivalence ratio

Mass conservation equations of different
Input: Model Parameters elements Solve the pyomo model
Start [—®| (atomic composition , moisture [—¥| I . ™ P!
Equilibrium constants equations (1popt Solver)
content)
Energy balance

I

Optimise the Hz production

Figure 2.1: Structure of the simulation equilibrium model

In figure 2.1, the structure of the equilibrium model has been presented. In this, a
mathematical model based on a single feedstock is created and developed in the algebraic
modelling language, Pyomo (Hart et al. 2017) in order to determine the molar values of
products. It includes the mass balance of carbon, hydrogen, oxygen, nitrogen in the woody
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biomass, relative mass of the moisture and the molar water content. In next step, the
composition of the producer gas is estimated, minimising the Gibbs free energy for
calculation of the equilibrium constants. A Pyomo model has been implemented that
relates equations between inlet biomass and equilibrium constants with temperature to
solve the model. The equivalency ratio and temperature are used as optimization variables
when the model is optimised using the IPOPT nonlinear programming solver to get the
maximum hydrogen production rate.

2.1 Biomass composition
To develop the model, the chemical formula of feedstock is defined as CHxOyN,. The
following is an equation for the global gasification reaction:

CHxOy +wH20+m (O2 +3.76N2) => n1 H2+ n2 CO + n3 CO2 + n4 H20 + ns CHa+ 3.76 N2 1)

Where x and y are the numbers of atoms of hydrogen and oxygen per atom of carbon in
the feedstock, w is the amount of moisture per kmol of feedstock and m is the amount of
oxygen per kmol of feedstock. On the right-hand side n; are the numbers of moles of the
species i that are unknown.

2.2 Chemical Equilibrium

Thermodynamic equilibrium is explained by minimisation of Gibbs free energy or by
using an equilibrium constant. The two main equations (methane formation and water gas
shift reaction) are considered in this case shown below:

Boudouard reaction: C + C0, — 2CO )
Water- gas reaction: C + H,0 — H, + CO 3)
Methane Formation: C +2H> — CHy “)
Water gas shift reaction: CO + H,O — CO,+ H» ®)]

Equation (5) is obtained by subtracting equation (2) from (3). In this model,
thermodynamic equilibrium was assumed for all chemical reactions takes place in
gasification zone. All the gases were assumed to be ideal and all reaction form at 1 atm.
Therefore, the equilibrium constants which are functions of temperature for the water-gas
shift reaction and methane formation reactions are:

K1 = (;CHIZ“)) (Equilibrium constant for methane reaction) (6)
2
_ (nC0y)(nHy) ey - . .
= aCO)nH,0) (equilibrium constant for water gas shift reaction) @)

The value of K1 and K2 are calculated from Gibbs free energy
K = exp(-AG°1/RT) ®)
Where R is the universal constant, 8.314 KJ/ (kmol. K)

-AG®r represents the Gibbs function of formation at given temperature which can be
expressed by empirical equation (Green, 1984):

d(AG/RT) _  AH
dT  RT2 ©)
Where AH is the heat of formation of biomass in KJ/kmol
Therefore: ank _ _ A—HZ (10)
dr RT
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Where, equation 9 shows the effect of temperature on the equilibrium constant; AH
represents the enthalpy difference between any given state and at reference state. It can
be calculated by

T
AH= [, Cp(T)dt (11)
Where Cp(T) is specific heat at constant pressure in kJ/kmol K and is a function of
temperature.

Cp(T)=a+bT +cT?+dT? where are a, b, c, d are specific gas coefficients (12)

Equations (8)-(12) is used to find the equilibrium constant for any reaction temperature
T. Zainal et al. (2001), suggested the relationship for finding the equilibrium constant
values for reaction temperature and calculating the lower heating value (LHV) of product
gas that are:

7082.848

1075
2

K1 ="222— 6567 «In(T) + 3.733 x 107 — 0.36066 * 107 + 0.3505 » —— +

32.54 (13)
K2 =222 4 1.86  In(T) + 2.7 + 107* — 222 + 18.007 (14)
LHV = n; LHV(H,) + n, LHV(CO)+ nsLHV(CH,) MJ/Nm? (15)

However, the reference model is limited to moisture content and heating value but using
an optimisation-based algebraic formulation can be used to study other parameter effects
like equivalence ratio and gasification agent against temperature. For the desired product,
this can also find the optimum parameters for gasification reaction. For different ranges
of temperature, the values of equilibrium constant, numbers of moles and heating value
have been calculated in a model, which is discussed in the next section.

3. Results and Discussion

The model developed in this study was used to optimise the production of hydrogen by
varying temperature and equivalence ratio at 20% moisture content. Also, it was tested
by comparing the calculation results of model with data from another researcher. To study
the effect of moisture content of the wood biowaste, the amount of air was fixed at 0.3 of
the stoichiometric requirement. Figure 3.1 shows the effect of moisture content in woody
biomass on the product gas when the gasifier is operating at 800°C. It can be observed
from the figure that the composition of methane produced is almost constant at a low
percentage. The percentage of H» in the produced gas increases continuously with the
moisture content from 0% to 40 %. A similar trend is also observed for the CO, however,
the influence of the addition of more moisture will result in decrease in its concentration
that might occur due to char, tar and soot formation, and water-gas shift reaction. Also,
the concentration of CO reduces as moisture content increases. The results obtained from
the model are in close agreement with experimental data from Zainal et al. (2001) which
performed for wood biomass under similar operating conditions. Figure 3.2 shows the
calorific value for wood biomass against moisture content. It is seen that the calorific
values decrease with increases in moisture content. This is due to the greater reduction in
carbon monoxide content compared to the increase in hydrogen content as moisture
content increases.

Figure 3.3 explains the variation of calorific value against gasification temperature for
the raw material wood with an initial moisture content of 20%. It can be observed that the
predicted calorific values reduce with increase in temperature. Figure 3.4 shows the
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comparison between model and experimental results for wood at 18.5 % moisture content
and gasification temperature of 800°C. It can be observed from graph that the predicted
value percentage of hydrogen and carbon monoxide content is predicted as 16.87% &
22.92% against an experimental value of 12.23% & 21.00%. The hydrogen percentage
predicted is more than the experimental value, while the carbon monoxide percentage
predicted is lower than the experimental result. Also, higher equivalence ratio (ER) result
in higher operating temperatures, which in turn increases the degree of oxidation of
available carbon.
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Figure 3.1: Effect of moisture content in Figure 3.2: Effect of calorific value
wood biomass on product gas at 800°C against moisture content at 800°C

The model is optimised using nonlinear programming solver IPOPT to find the maximum
hydrogen production rate with the equivalence ratio and temperature as optimisation
variables. Higher ER results in more CO, production because of oxidation of carbon;
hence, the optimum ER, calculated by model is 0.1957 at 853.23°C and 20 % moisture,
which yields 21.214% H». So, by combining the two above-mentioned gasification
variables, temperature, and equivalence ratio, it is possible to optimise the operating
conditions to magnify the H, production.
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Figure 3.3: Calorific value against Figure 3.4: Comparison between model and

experimental results at 800°C

4. Conclusion:

Stoichiometric thermodynamic equilibrium models for the biomass gasification process
were developed in this work, with the entire conversion of carbon considered to estimate
syngas composition.
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For a wide range of temperatures, the equilibrium constants of the water gas shift process
and the methanation reaction have been computed. The models are formulated in an
algebraic modelling language for optimisation of the gasification process. This model can
predict the composition of syngas from biomass sources and can also predict biomass
gasification performance under a variety of operating parameters, such as temperature,
moisture content and equivalence ratio. The optimum ER, calculated by model is 0.1957
at 853.23°C and 20 % moisture, which yields 21.214% H,. The study leads to
the conclusions that the amount of hydrogen in the product gas nearly rises linearly with
the amount of moisture for biomass. However, carbon monoxide content in the product
gas decreases with moisture content almost in a linear variation. The proportion of
methane in the product gas is relatively low and increases linearly with moisture content.
The calorific value of the producer gas decreases as the moisture content increase. In
short, with a known ultimate analysis of any biomass and its calorific value, the model
can predict the composition and the calorific value of the producer gas under different
operating conditions.
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Abstract

Aquaculture is a growing industry that provides high-quality protein, however, the growth
of aquaculture production has a range of environmental concerns. Recirculating
aquaculture systems (RAS) are a popular solution to accomplish intensifying fish
production, and integrating renewable technologies is an attractive option that may
provide low-carbon energy and promote sustainability. This paper presents an
optimisation model for the control and operation of a grid-connected distributed energy
system (DES) integrated with an RAS. A linear optimal power flow (OPF) combined with
model predictive control (MPC) strategy is developed which simulates the thermal and
electricity balances present throughout the renewable energy integrated electricity
network and RAS, to make real-time optimal operation scheduling plans on different time
horizons. The optimal results show that the MPC strategy improves the control
performance of system operation and improves the process economics. With renewable
energy sources (RES), operational costs can be reduced by up to 27%. Compared with a
conventional scheduling plan, the rolling horizon approach can provide 3% energy cost
saving, while maintaining fish well-being and system safety.

Keywords: recirculating aquaculture system, distributed energy systems, renewable
energy, optimal power flow, model predictive control.

1. Introduction

Aquaculture is a main source of protein and income in many countries globally (FAO,
2020). Sustainable aquaculture is directly related to targets of the Sustainable
Development Goals. In this context, the implementation of RAS are gaining more
attention globally (Chen et al., 2021). RAS has the potential to provide a sustainable fish-
rearing system since it is easily expandable, potentially environmentally friendly, and
improves production by utilizing a small space. RAS is competitive since it is able to
recycle 90-99% water for reuse. However, RAS has received little attention in terms of
understanding the synergies between energy consumption and fish production. The
application of RAS is difficult to commercialise. The reasons are that the high initial
investments are hard to recover (Schneider et al., 2006) and the high energy consumption
for operation (Ayer & Tyedmers, 2009). RAS integrating renewable technologies is an
attractive option providing low-carbon energy and promoting sustainability.

The use of solar energy in RAS decreases the energy cost on fossil fuel, especially for
fish farms with higher water temperatures. The PV system combined with a wind turbine
(WT) can enhance the reliability of the system and smooth the power generation curve
caused by the intermediate characteristics of RESs (Ruggles & Caldeira, 2022). Jamroen
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(2022) developed design models to determine the appropriate size of PV and battery
storage for fish farms. These models have common disadvantages. The first is that
uncertainty of renewable energy is not considered, and another is the timescale
considered. In real-time, the scheduling of the power system could be in minutes, and in
these studies the scale of days is used, wherein it is possible that the system may not
respond to changes quickly. Silvente et al. (2015) presented a linear operational model
considering the prediction uncertainties from RESs, which is solved by an MPC rolling
horizon strategy to correct the deviations from the initial conditions. MPC rolling horizon
strategy is suitable for dealing with system control problems that are easy to model and
have high stability. MPC includes four parts, a prediction model, rolling optimisation,
feedback mechanism and reference trajectory. The feedback mechanism corrects the
prediction model, and the error is compared with the reference trajectory. The final
control decision applied to the system is calculated by the rolling optimisation.

This paper proposes a linear MPC approach for sustainable hybrid energy systems for
RAS. The model simulates the thermal and electricity balances present throughout the
renewable energy integrated electricity network and RAS, to make real-time optimal
operation scheduling plans on different time horizons. First, a multi-time scale optimal
scheduling problem is divided based on three scales: day-ahead long-term scale
scheduling in 1 h, intra-day predictive control in 15 min and real-time adjustment in 5
min. Then, we establish an optimisation model based on the best economic operation of
the system and the minimum penalty cost of start-up and shutdown. The inputs include
the relevant climate parameters for renewable energy generation, the energy storage
schedules, operation of facilities including climate and oxygen control equipment, as well
as the fish biomass production quantity.

2. Model formulation

The components of the system are divided into load demand of RAS and power resources
including generator, WT, PV and national grid as backup power in on-grid operation
mode. The main load demand of the system is the thermal process to keep water
temperature as required in RAS, and other demands such as lights, water pumps, water
treatment system and aeration are treated as constant load demand in this model. The

overall objective of this model is to minimise the daily operation cost:
OPERATION = COST¢p, + COSTyrig (1)

COSTgrid = Z (Ptgrid, buy ceid _ Ptgrid,sold " Ctan‘ff) £ At )
t
COSTyen = Z((Ptge” * Fy + Yoen # Fp)  CT¥e 4+ S0 - ub) x At 3)
t

The cost of buying electricity from the grid is COST,,4, with C# and C**"/7 the tariffs
of electricity grid. P& and PY"***'* are the power of buying or selling electricity
to the grid respectively, At is the time interval. The cost of generator’s operation is
COSTyen, PY°" is the output power of generator, Yy, is the capacity of the generator, Fy

is generator fuel curve slope, F, is generator fuel curve intercept coefficient, C/¢! is the
price of generator fuel, S, is the cost of start-up generator, and u® is the start-up variable
of generator.

Z PI™ 4+ W, + Poss + BT + PV, — PfIP — Pgb = pload @)

t
Wy, Pogser PO, PV,, PHP, PEP, P9 are the output power of WT, battery, main
distribution, PV, heat pump, electric boiler, and load demand of RAS respectively. The
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output power of wind turbine and PV should be lower than the predicted output value
according to the weather. Unit commitment:

xtt—xt+ut =0

xt—xt14+vt >0 ®)
where x,u, v are binary variables. x is the unit commitment of generators (1 if the
generator is committed at time t, and 0 otherwise). u® is the start-up variable of generator
(1 if generator starts at time t, and 0 otherwise). vt is the start-up variable of generator (1
if the generator starts at time t and O otherwise).
The model also ensures that electricity is not bought from or sold to the grid at the same
time through big-M constraints, which are similar to the constraints on the battery’s
charging or discharging status. For proper operation, each power source must not be
operated above its rated or maximum limit according to the manufacturer’s specifications.
The state variable also has boundaries where the minimum depends on the type of battery
used.
The water heat balance is used to calculate the energy flows of the water volume each
hour. In other words, the water heating or cooling demand to maintain its temperature.
The formulated simplified heat balance is:

Qconv(t) + Qexchange(t) = Qdemand (t) (6)

The convective heat transfer, Q,,,,, represents the heat exchange on the surface of the
tank between water and air, which is determined by (Holman, 2009):

Qconv = hconv,w : Asmﬁlce : (Tair(t) - Tw(tL - 1)) (7)
where heonpw (KW /(m?°C) is the convective heat transfer coefficient decided by indoor
air velocity, T,, is the water temperature, Ty, is the air temperature, and Agypce (M?) is
the surface area of the tanks. The water exchange that occurs in the system implies a heat
gain or loss of Qexchange. The rate of water exchange in the system is assumed to be
constant, with the same amount of water entering and leaving the system. The heat gain
through water exchange can be calculated by:

Qexchange(t) = mexhange “Cpw * (Tw,in - Tw(t - 1)) (8)
where Mexpangeis the mass flow of the water exchange, ¢, is the specific heat of the
water and T, ;, is the temperature of water entering the system.

The heating system will be active until a certain water temperature has been reached.
When the temperature set point has been reached the heating system will be turned off,
the water temperature will then drop to a lower limit where the heating system is activated
again.

The core idea of MPC is rolling optimization and feedback correction, which solve the
optimization problems with uncertainties, and can also conveniently include a variety of
constraints. The rolling optimization process of MPC is shown in Figure 1. If the system
operates at time t, based on the prediction information of the system disturbance variables
in a future period, obtain the optimal outputs in the prediction domain with the objective
of minimizing the operating cost. However, the optimization result is used only in one
control domain, and the optimization process is repeated at time t + 1. The proposed
scheduling is divided into three timescales: day-ahead, intraday, and real-time. The main
decisions of the day-ahead dispatching are the unit start-up and shutdown plan in the next
24 hours, the charging and discharging state of energy storage, and the power purchase
and sale to the main distribution network. The time interval in this model is 1 h. The
intraday scheduling mainly corrects the output of the controllable units, the charging and
discharging power of the energy storage and the purchasing and selling power of the main
distribution grid in the intraday dispatching according to the latest renewable energy
power output and thermal load forecast data. The time interval of this model is 15min and
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the dispatching period is 2h. The time interval of real-time dispatching is Smin, and the
dispatching period is 15min. It is mainly based on the real-time forecast data of wind
power, PV output and thermal load to finetune the intraday scheduling plan. In the
intraday and real-time dispatching time, the unit start-up and shutdown plan, energy
storage charging and discharging status and power purchase and sale status of the main
distribution grid in the day-ahead scheduling results are kept unchanged. The level-by-
level coordination of the three-time scales can better deal with uncertainties and make
scheduling results more consistent.

Current time t

? Prediction domain |
LContm]I i
|d0main |
. !
t t+1 t+p
Next | Prediction domain |
oment IC(mtro]I 1
domain |
. A X
t+1 2 pr

Figure 1 The rolling optimization process of MPC.
When optimising intraday and real-time scheduling, there is often a large error between
the renewable energy output obtained by the short-term forecasting method and the daily
forecast data, so the daily scheduling plan needs to be properly modified to ensure the
effectiveness of the scheduling strategy. The objective function of intraday optimal
scheduling model is:
Nr
minOperation;pirq = minz [Ciree + i, + Cipte | )

t=1
where Ny is intraday scheduling period, Ny = 2h; CZ{™ is the generator operation cost at

time t; C g“stgat is the storage operation cost, C]{}}f{a is the operation cost of intraday
purchasing or selling electricity from main distribution network.

During the intraday scheduling, the status of the generator is consistent with that of the
day before, so the intraday scheduling cost of the controllable generator unit only includes
the operation cost. The charging and discharging power of energy storage should follow
the day-ahead scheduling results as much as possible. Therefore, intraday scheduling cost
of energy storage is expressed as:

. 1 ;
Crsse = {KESS,i [—7) - PES,utm”dls + Mg, ch PES'“tm"Ch]
E, dis (1 0)
+ 282 |Ssoc, — socghed |} At

where 2142 is the weight coefficient of energy storage adjustment during the intraday
plan. Equation (10) has absolute value and auxiliary variables S§'; are introduced and
linearized:

Cisse = {KESS,i [L P 4 g Py ltlm'Ch] + Aggfsﬁ,’t}ﬁt
NEdis ' (11)
s.t. S > 50C, — SoCihed
S > —[S0C, — SOCe]
Similarly, the cost of intraday power purchase and sale of the main distribution network
is the same as that of energy storage and also follows the day-ahead scheduling results as
much as possible. During intraday scheduling, to track the day-ahead charging and

discharging power of storage energy, the following constraint should be satisfied:
socpira = socghedd  t=1,2,--,24 (12)
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where Etre | Eghead are the state of charge at the end of each hour for intraday and day-
ahead scheduling respectively. Real-time optimal scheduling is similar to the intraday
model, tracking the intraday dispatching plan as much as possible.

The process is summarized in Algorithm 1.

Algorithm 1 Model predictive control

1. Predict values for day ahead including renewable energy output, load
demand. Input other parameters.

2. Solve the day-ahead model, with objective function (1), constraints are (2)-
(8). Decide the binary variables of generator and battery.

3. Predict values for short-term scheduling, keep binary decision variables from
day-ahead model, use rolling optimization, and objective function (9), solve
intra-day model. Get the scheduling plan for intra-day.

4. Predict values for real-time, keep binary decision variables from day-ahead
model, use rolling optimization, solve real-time model. Based on intra-day
plan, adjust the output of each unit.

3. Case study

The test case considers a fictional RAS located in Lochinver, Scotland, where fish
farming is a vital industry, as they are the largest producer of farmed salmon in the
European Union. The system uses a heat pump (HP) and electric boiler to keep the water
temperature in the feed tanks of RAS ranging 16°C to 17°C. The capacities of PVs,
batteries, generator, and WT installed are decided by the solution of a design optimisation
model, shown in Table 1. The results presented in Table 1 are used as inputs in this model,
and a typical autumn day has been chosen specifically to test the model as renewable
energy power generation is highest in this season.
Table 1 Model results summary.

PVs (kW) | Battery(kW) Wind Turbines(kW) Generator(kW)
13 7.7 19 35
30 - —WT
e PV
Power from distribution
25 === Thermal demand
Power from distribution without RES
=T 1
e T
§ 15 4
£

W ]::D T
] —HL _LJ— |

2 4 6 f’i 10 12 14 16 18 20 22 2’4
Time (h)
Figure 2 The scheduling plan of each unit in the system for day-ahead.
First, the day-ahead scheduling plan is shown in Figure 2. Due to the influence of
geographical environment and weather, the output of the WT is far greater than that of
PV. When the output of renewable energy is insufficient, the demand is met by purchasing
power from the main distribution instead of starting up the generator, and the SOC of the
battery is basically unchanged. If the parameters are changed, the electricity price is
increased and the fuel price is reduced, the generator power generation will make up for
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the shortage of renewable energy, and the SOC of the battery will also change. The
thermal demand is maintained at a relatively stable value, because of the high specific
heat capacity. Compared with the original system without RESs, the daily operation cost
can be reduced by about 27%, from £144.5 to £105.

Considering the disturbance of renewable energy output, rolling optimisation of MPC is
introduced into the model. In intraday and real-time dispatching, to keep the energy
balance of the network, the system prefers to purchase/sell the electricity from the main
network rather than batteries, which is due to the lower electricity price compared with
the use price of energy storage. Faced with renewable energy disturbance, the scheduling
change of the MPC rolling algorithms is more stable and has less variation, which
enhances the system's ability to cope with uncertainties. By using the rolling-horizon
MPC model, the daily running expenses can be reduced by 3%.

4. Conclusion

RAS as a popular fish production system requires high energy demand due to thermal
processes, water circulation, and aeration. This paper presents an optimisation model for
the control and operation of a grid-connected distributed energy system integrated with
an RAS, that is developed to optimise the performance of the system in economic,
sustainable, and technical aspects in real time. An MPC strategy for a sustainable hybrid
energy system for the RAS is proposed in this work. To analyse the performance of the
model, the optimal results of the proposed system were compared with the traditional
system in economic and environmental aspects. The optimal results show that the MPC
strategy improves the control performance of system operation and improves the
economy of system operation. Compared with a conventional RAS, the integration of
renewable energy can save up to 27% operation cost in a typical day. With the MPC
rolling-horizon algorithm, the system's ability to cope with uncertainties has been
improved.
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Abstract

This work presents a method based on Mixed Integer Linear Programming (MILP) to
consider wholesale energy markets in the operational optimization of industrial energy
systems. A two-stage optimization framework is presented to consider price differences
between the day-ahead and the intraday spot markets to optimize the electricity
procurement in both markets. A representative use case of an industrial process is used to
optimize the energy supply from the power generators and storage units and minimize
energy costs as well as to benefit from participating in the wholesale market. The results
show potential to save energy costs and make additional profits on the intraday market.

Keywords: Flexibility, Optimization, MILP, Intraday Market

1. Introduction

A rising share of renewables and an increasing number of volatile power generators and
consumers are causing imbalances and congestions in the power grid. With
decarbonization and the demise of conventional power plants, our energy system needs
new flexibility measures and market participants. In most countries, the industrial sector
is one of the largest electricity consumers and can therefore play a significant role in
supplying flexibility to balance the power grid and provide security of supply. Previous
work (Schenzel, et al., 2022) presented a method to identify existing flexibilities based
on a MILP approach (Halmschlager et al., 2020), which is integrated into this work to
consider the participation in wholesale markets, specifically focusing on the day-ahead
and intraday markets.

2. Leveraging Energy Markets

Conventional optimization methods focus on high efficiency and low operational costs,
but neglect opportunities by not considering energy markets. Most industrial customers
procure their energy through energy suppliers, with fixed or floating electricity tariffs that
reduce both the actual effort needed to operate on the wholesale market and the exposure
to price volatilities (Schnorr 2019). At the same time, there are opportunities for industrial
customers to make profits by marketing their flexibility - either by directly acting on the
wholesale market or partnering with aggregators to have access to the wholesale markets.
The advancement in energy storage technologies and the staggering increase in price
spreads of wholesale markets support the case for industrial plant operators to act as a
Flexibility Service Provider (FSP).



216 M. Fischer et al.

2.1. Flexibility

Villar, Bessa, and Matos (2018) define flexibility as the possibility of modifying
generation and/or consumption patterns in reaction to an external signal (price or
activation signals). Generally, industrial energy systems have three ways of providing
flexibility. Firstly, they can adjust their production schedule. This is highly dependent on
the processes involved and often needs more lead time and computational effort.
Secondly, energy carriers can be substituted, meaning that in order to meet a certain
electricity demand, it can either be consumed from the power grid or produced by
generators such as gas turbines. Thirdly, energy storages can be used to shift energy
demands in the process. While conventional power plants usually store electric energy by
converting it to other forms of energy and backwards, with significant losses each
conversion, industries can directly utilize the converted energy - like heat - to cover the
demand of their production processes. Also, thermal heat storages are cheap in
comparison to batteries and can be used to make industrial processes more efficient by
reducing waste heat. Once identified, the electric industrial flexibility can be offered as
bids on the intraday market at an electricity exchange like the European Power Exchange
(EPEX) or as an ancillary service at the balancing markets of the Transmission System
Operator (TSO).

2.2. Balancing Markets

These markets are used for the operating reserve to restore the frequency of the
electricity grid in case of imbalances of the system. There are three different products
available, Frequency Containment Reserve (FCR), automatic Frequency Restoration
Reserve (aFRR), or manual Frequency Restoration Reserve (mFRR). Each product has
their own requirements, pricing, and activation times. The renumeration model for
aFRR and mFRR consists of two parts: one part is for keeping the capacity available
(capacity price), and one is for the actual activation (energy price). Depending on the
product, the activation must follow very shortly after the activation signal. Since these
activations are very hard to predict they can interfere with production planning and
safety.

2.3. Intraday Markets

To compensate for changes in energy production, often caused by insufficient weather
forecasts on the day-ahead, energy companies can buy or sell energy to level their
position. This can be done during the day and up to several minutes prior to delivery.
With the growing number of volatile renewables, these markets have gained much
importance in the last decade with more energy being traded at these markets each year.
FSPs can provide their flexibility to the market, to increase liquidity, reduce the amount
of balancing energy and to make additional profits.

3. Modelling Approach

Mathematical optimization represents a powerful method to maximize profits for power
plant operators, often referred to as Unit Commitment (UC) problem. UC problems - a
subclass of optimization problems - have been widely used in the energy market for
many years. Industrial energy systems often face similar problems, when deciding when
and how to utilize their power, heat, or steam generators to cover their demand in the
most efficient way, especially since decentralized energy systems tend to get more
diverse. In contrast to conventional UC problems of power plant operators, industrial
plant operators are also constrained by their own operational targets, e.g., minimum
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production output, minimum up-times for batch processing, working hours, etc. For our
purposes a fixed set of demand time series is sufficient, meaning that there is a
predetermined production plan, the demand for different energy carriers such as steam
on different pressure levels, gas and electricity can be derived. Scheduling is often
impractical, since it means a bigger intervention in the operation and is therefore not
considered. With the increase of digitization and the development of energy control
systems, a focus on optimizing the energy management system is more applicable and
reduces interference to operation to a minimum. In the following we present a method
to include the intraday market in the optimization problem.

3.1. Optimization Method

The problem is formulated as a UC problem on the basis of MILP formulations, which
are implemented in Matlab® and solved with a state-of-the-art solver (e.g. GUROBI). The
model uses a combination of linear, continuous, semi-continuous and binary decision
variables. They represent all operation trajectories of the energy supply system of the
industrial plant, such as the power generated by the gas turbine, the charging and
discharging of storages etc. Constraints are used to define the optimization problem, to
depict operational constraints such as the satisfaction of energy demands, operational
limits, power outputs or ramp-up/down constraints. The objective is to minimize
operational costs, by optimizing the trajectories of the individual generating units of the
industrial plant. This is done by utilizing the storages to meet the demands in the most
efficient way and considering price curves of power spot markets for a cost-efficient
operation plan. To better represent the market mechanisms of spot markets, the method
is split in two optimization runs or “stages”.

3.2. Two-stage Optimization

Figure 1 shows the two-stage optimization method to consider price signals between the
day-ahead and intraday spot markets. Based on historical data, we developed a regression
model to predict day-ahead market prices, based on weather forecasts and the previous
day’s market coupling results. In Stage 1 (D-1), the predictions for the day-ahead prices
are used to calculate an optimal operation plan using MILP. Based on the results, we
derive the electricity demand procured directly via placing price inelastic bids on the day-
ahead market. The industrial plant acts as a price taker, meaning that the orders are
executed independent the market price and all bids are accepted. In Stage 2 (D-0), the
results from the day-ahead auction and the actual weighted average intraday market prices
are used as input to solve a second optimization problem. We assume that price signals
from the continuous intraday market are available at a single point in time and the
weighted average result from each quarter hour can be used. Considering these price
signals the plant operator can buy or sell additional electricity at a 15-minute resolution
to make additional savings and reduce energy costs.
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Figure 1: The two-stage optimization framework for day-ahead (DA) and intraday (ID)
optimization.

4. Use Case

To demonstrate the proposed two-stage method, a simplified industrial energy system is
modeled. The model consists of two demand curves, representing the power demand
and steam demand, which result from a production plan. The power demand and the
steam demand are fluctuating during the day but are set to a mean value of 1 MW. Both
demands can be covered to a certain degree by a combined heat and power generator
(CHP) with a maximal output of 0.5 MW and 1 MWem. A gas boiler can produce
additional steam to cover the full steam demand. Additionally, a thermal and an
electrical energy storage increase the efficiency and provide flexibility to the system.

4.1. Data

We used historical price data from the European Power Exchange (EPEX) spot market
and the European Network of Transmission System Operators for Electricity (ENTSOE).
We used hourly day-ahead market coupling results and weighted average results from the
continuous intraday market for the Austrian bidding zone. Data from the year 2021 was
used to train the linear regression model while data from the first half of 2022 was used
to validate the regression model and to predict the daily day-ahead prices for the
optimization framework.

4.2. Optimization Results

Figure 2 shows the optimization results of stage 2 for a single day in February 2022.
The upper part of the plot shows the optimal trajectories to meet the electric power and
steam demand of the production processes in the most cost-efficient way. Since the
CHP has a limited electric power output, the industrial plant is dependent on power
supplied by the public grid. The battery is charged and discharged to shift power
demands to times of lower energy prices. Part B of Figure 2 shows the bids that were
placed on the day-ahead and intraday markets to procure the power supply according to
the optimal trajectories.
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Figure 3 shows the potential energy cost savings for each day in correlation with the
daily variance of the price spreads between the day-ahead and the intraday market. The
savings are calculated by the difference of the cost function between stage 1 and stage 2.
The mean value of the relative cost savings is 1.96 %. Generally, a higher price spread
between these markets has shown a higher potential of saving energy costs.
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Figure 2: Optimization results for a single day. Part A shows the optimal operation trajectories of
the energy supply system. Part B shows the corresponding bids on the day-ahead (DA) and
intraday (ID) market.
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4.3. Discussions

The intraday bids in Figure 2 B are the corresponding reaction to price differences
between the day-ahead and intraday markets. These can be interpreted as price signals
from the current market situation and as reactions to deviations of the predicted day-
ahead price curves that are used for optimization in stage 1.

By using the average result of the intraday market, we assume perfect foresight of the
intraday market prices in the second stage. These prices are hard to predict though and
are not traded at a single point in time, but continuously during the day. Thus, it may be
possible to additionally exploit the volatility in this market by using the flexibilities of
industrial energy systems.

5. Conclusion

The proposed two-stage optimization method enables a deeper integration of industrial
energy systems in the short-term energy market. Hereby, industrial energy systems can
react to fluctuations in the system in the form of price signals in the intraday market.
Using real price data from the first half of 2022, our method also shows significant
potential for reducing energy costs. Assuming direct access to wholesale market, the
intraday market offers a supplementary opportunity for marketing flexibility, as the
entry barriers are lower than in other markets such as balancing or redispatch markets.
Further research will show the possible exploitation of volatility in the intraday market.
In the prospect of reduced entry barriers for balancing markets and new opportunities
for industrial energy systems to act as FSPs, mathematical optimization methods based
on MILP may play an important role when participating in flexibility markets.
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Abstract

A central problem in chemical engineering (and several related areas) is evaluating the
correct sequence of unit operations, their design aspects, and the continuous optimization
of their operations to efficiently convert input materials to final products. The numerous
decisions to be made at each problem-solving stage renders this problem combinatorically
complex. In this work, we propose a hybrid, artificial intelligence-based multi-level
framework to perform fast, efficient, and reliable flowsheet design and optimization. We
build upon the previously proposed SFILES-based text representation of flowsheets to
incorporate additional contextual details in the extended SFILES framework using
hypergraph representations. We discuss our eSFILES framework using the well-known
hyrdodealkylation (HDA) process.

Keywords: process design; flowsheet prediction; artificial intelligence; computer-aided
flowsheet synthesis

1. Introduction

Process flowsheet synthesis and design is a challenging task that involves identifying the
correct set of unit operations and their optimal sequence that enables the conversion of
input materials to desired output products, while considering energy consumption,
environmental impact, safety, operability, and many more. The goal of synthesis is to
identify the tasks, the operations that will perform these tasks, and their sequence to
determine the flowsheet. The goal of design is to add operational and equipment details
to the flowsheet so that the process can be verified, optimized, built, and operated. The
size of the synthesis problem varies with the number of tasks and the number of
alternative operations for each task. The complexity of the design problem is related to
matching the tasks and their associated operations with design parameters so that the
designed process matches the desired process specifications. The design parameters are
further optimized to obtain a sustainable process design.

Model-based methods are usually used for the synthesis and design stages. Although, in
principle, the synthesis, design and optimization steps could be performed
simultaneously, the current practice is to solve them separately due to the size and
complexity of the resulting mathematical problem. The challenge here is how does one
incorporate issues, such as, economics, environmental impacts, operability, safety, and
sustainability in the early stages of process synthesis and/or design (Tula et al., 2017).
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Computer-aided approaches using Al-inspired methods combined with fundamental
concepts offer several advantages over purely data-driven methods, which may lead to
infeasible flowsheets, or purely model-based methods, which may run into difficulties in
the numerical solution step due to the complexity of the models used.

To facilitate the development of such hybrid Al-based approaches combining process
knowledge with computational algorithms, an appropriate flowsheet representation is
needed that is concise, complete, and accurate. The SFILES representations developed by
(D’ Anterroches, 2005), (Bommareddy et al., 2011), and (Tula et al., 2015) was the first
step in this direction, and has been shown to have various applications, such as, flowsheet
autocompletion (Vogel et al., 2022), piping and instrumentation diagram generation
(Hirtreiter et al., 2022), and flowsheet pattern mining (Zhang et al., 2019). The SFILES
strings represent correctly and consistently a wide range of process flowsheets, involving
typical operations found in chemical and biochemical processes. Note that, like the
SMILES strings for a molecule, a parser is needed to convert SFILES strings to the actual
process flowsheet diagrams. As originally developed, a process flowsheet is first
represented by a set of process groups, which are similar to the functional groups that
represent a molecule. The process group representation is then converted to a SFILES
representation. Unlike the molecular representation with SMILES, several additional
details need to be considered. For example, information about the number of chemicals
and their effect on the system behavior; the direction of flow-paths for reactants, products,
inerts, solvents, etc. need to be tracked; and, start and end of the process need to be clearly
marked. These additional issues give opportunities for a symbolic Al-based intelligent
system (Venkatasubramanian & Mann, 2022) need to be incorporated to the current
process synthesis-design methods such that the application of SFILES to represent
process flowsheets as well as its use in computer-aided process synthesis and design can
be extended.

The objective of this paper is to present a hybrid multi-level Al framework for fast,
efficient, and reliable flowsheet synthesis and design taking into account concepts and
theory on chemical process development, together with the knowledge and data for
hundreds of process flowsheets that are known already. We present an extended SFILES
representation (eSFILES) based on SFILES of process flowsheets ((D’Anterroches,
2005); (Bommareddy et al., 2011); (Tula et al., 2015)) and the annotated hypergraph
representation, developed originally to study networks in organic chemistry (Mann &
Venkatasubramanian, 2023). We highlight selected developments where we illustrate the
hierarchical eSFILES representation framework for any chemical process flowsheet, also
suitable for process synthesis, design, and innovation (Tula et al., 2015). Namely, we
propose a three-level, extended SFILES framework where the lowest level contains
flowsheet connectivity information which could be used to generate text-based flowsheet
representations like SFILES but with additional information; the middle level contains
additional details on process groups and streams providing information necessary
information for process synthesis (superstructure-based optimization or process group
based enumeration and test); and the top level contains process operational data in terms
of design parameters for process simulation and innovation through optimization and
intensification. At the core of our approach lies a hypergraph representation of flowsheet
(Mann & Venkatasubramanian, 2023) that represents process groups as hyperedges and
streams as nodes with annotations indicating contextual information.
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Representation

2. Current state of flowsheet representation: SFILES

A text-based representation for chemical flowsheets reported by (Tula et al., 2015) is
called simplified flowsheet input line entry scheme (or SFILES) analogous to the
SMILES representation for molecules. Such a representation offers a concise way of
representing flowsheets and could also facilitate not only storage of flowsheets, but also,
enumeration, analysis, and deployment for interactive text-based algorithms process
synthesis, design, and simulation of a given flowsheet. (Tula et al., 2015) developed
separate rule-based algorithms for process synthesis and design, whose solutions were
not added to SFILES strings. The underlying idea behind SFILES is to identify analogous
process components similar to a SMILES string as follows —
e  represent processes as process groups akin to functional groups in molecules.
e represent process flow streams akin to chemical bonds in molecules.
e represent various connections, recycle streams, and branching of streams akin to
branching in molecules.
e unlike SMILES, SFILES need special unidirectional input nodes and output
nodes that indicate the start and end of a process flowsheet, through special
characters ‘i’ and ‘o’, respectively.
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Figure 1: (a) HDA process flowsheet, (b) the various process groups, (c) the
corresponding SFILES string, (d) HDA process represented by process groups. In the
above subplots, the abbreviations refer to — mixture of hydrogen, methane (HM); mixture
of benzene, hydrogen, toluene, biphenyl, methane (BHTPM); mixture of benzene,
toluene, biphenyl (BTP); benzene (B); biphenyl (P); toluene (T); purge gas (purge). The
hypergraph was generated using Wolfram Mathematica and algorithmic implementation
would be done in Python.

We use the well-known hydrodealkylation (HDA) process to illustrate the basic concepts
and the new developments. First the process flowsheet is represented by a set of process
groups retrieved from the database (the process group representation is shown in Fig 1b)
and the parser is used to generate the SFILES string (shown in Fig 1c). The reader is
referred to (Tula et al., 2015) for detailed examples on SFILES generation.

3. Extended SFILES (eSFILES)

Hypergraph: The hypergraph representation of the HDA process is shown in Figure 1(d).
While this new SFILES representation offer numerous benefits, there is scope for further
improvement and incorporation of additional details that would aid in intelligent process
flowsheet synthesis and design. The new information that, when incorporated, would
generate additional, more complete information in the flowsheet representation such as:
e information on incoming/outgoing streams for each process group explicitly,
especially when multiple streams enter or leave a process group.
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e the minimum data needed to completely define a material and/or energy stream.
¢ information on driving force for the process groups indicating the ease/difficulty
of conversion/separation.
e ability to systematically generate superstructure of flowsheet and enumerate
valid alternatives aiding in the design problem.
Towards this end, we propose the extended SFILES (or eSFILES) representation that
provides a framework for incorporation of this information in a hierarchical manner and
further details on this are presented in the subsequent sections.

Hierarchical framework: A hierarchy is needed to efficiently organize process
knowledge needed for different applications and to guide users to select, retrieve, and/or
collect the data needed for a specific application. Namely, the eSFILES hierarchy has
three levels of information -- first at the lower level, information needed to only represent
the flowsheet (connectivity); next, at the middle-upper level, introduce additional details
such as driving force and mixture composition that helps to establish the material and
energy flows; and finally, the top level that contains information on composition and
material/energy balance that would be need to solve a flowsheet among other
applications. The eSFILES hierarchy is shown in Figure 2.

flowsheet design, 2212}
enumeration, prediction 'T Level 3: Design Metainformation about nodes,
Y parameters, constraints  interfacing with additional algorithms
)
driving force, material i Level 2: Process groups,  fiowsheet hypergraph with additional annotations,
composition, flowrates -+ streams-specific node and hyperedge altributes
information
| =@y Level 1: flowsheet fiowsheet hypergraph,
connectivity A e information only text-based flowsheet representation

Figure 2: eSFILES framework with three levels of hierarchy

Implementation of hierarchical framework: The concept of hypergraphs is introduced
to incorporate multi-level hierarchy of information with eSFILES. A hypergraph is a
generalization of a graph where each edge is not limited to connecting only two vertices
but could connect any number of vertices. Mathematically, a hypergraph consists of a set
of hyperedges and vertices where each hyperedge consists of a non-empty subset of
vertices. In addition, each vertex has a hyperedge-specific annotation indicating a
predefined contextual information. The flexibility of hyperedges to connect more than
one node and ability to have hyperedge-specific node annotations offers several
advantages for flowsheet representation. Further details on the annotated hypergraph
framework and its various applications in reaction engineering are presented in (Mann &
Venkatasubramanian, 2023).

For instance, for the HDA process, the equivalent flowsheet hypergraph representation is
shown in Figure 1(d) where each process group is represented as a colored hyperedge,
process streams are represented as vertices, and the vertices have hyperedge-specific
‘in’/‘out’ annotations indicating the incoming/outgoing nature of the process streams for
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a corresponding process groups. Moreover, recycle streams are indicated with an
additional annotation ‘rec’ wherever applicable for the process streams. Figure 1(b)
shows each process group as a hyperedge which essentially is a set of named vertices
where the names (or annotations) indicate the streams' nature.

The three levels of information in the eSFILES framework is shown for the ‘toluene
recovery' process group in Figure 3. In Figure 3(a), only the hyperedge representing the
process group along with participating streams as vertices and role-specifying annotations
are shown. In Figure 3(b), additional information for the entire process group (or
hyperedge) such as driving force and stream (or vertex)-specific information such as mass
fraction and composition is shown. Finally, information on design aspects and necessary
information required for additional analyses such as mixture analysis, reaction analysis,
and pure component properties are presented in Figure 3(c). Though the three levels in
eSFILES are only shown for a process group brevity, the same could be done for an entire
process using the same approach.

bottom bottom property 1 bottom
property 2

reflux nass fraction reflux reflux
T

process constraints . reaction analysis
design specifications mixture analysis

property 3

B R B . B
top top top

reflux reflux reflux
(a) (b) (c)
Figure 3: (a) Distillation column hyperedge with additional annotations. The
corresponding  text-based  representation  for  this  process  groups s
BTP(in)>dI>B(out,top,reflux)TP(out,bottom,reflux), (b) the driving force, material
compositions, reflux rate, and conversion indicated as hyperedge attributes (for process
groups) and hyperedge-specific node attributes (for streams) (c) the design parameters,
properties, and constraints are represented as additional meta information.

Application of the eSFILES in sustainable process design: (Tula et al., 2017) proposed
a 3-stages sustainable process design method consisting of 12 hierarchical steps. Stage-1
consists of steps 1-4 where the process synthesis problem is solved. Stage-2 consists of
steps 5-9 where the base case process design problem is solved. Stage-3 consists of steps
10-12 where the base case design is further improved to find innovative and more
sustainable alternatives. The original multi-stage method of (Tula et al., 2017) now
retrieves the necessary data from the stored hypergraph. Also, different alternatives for
stage-3 can easily be generated through different alternatives of the hypergraph, allowing
the user to generate and analyze multiple alternatives as well as store the information for
future use without having to repeat any of the previously solved steps.

4. Conclusions

The concept of hypergraph has been used to extend the original SFILES concept to
multiple levels to store as well as retrieve information related to process synthesis, design,
and innovation. In this way, an existing interactive multi-stage method has been made
more intelligent and efficient through the adoption of an available Al method for



226 V. Mann et al.

sustainable process design. Therefore, the eSFILES-based framework for process
synthesis and design incorporates a combination of artificial intelligence-based methods
and well-known chemical engineering knowledge incorporated through an intelligent
system facilitating fast, correct, and consistent decision-making related to process
synthesis and design.

Current and future work involves the development of an extended manuscript providing
more details of the eSFILES, its adoption in the multi-stage sustainable process design
method, and its application in several case studies. In particular, we plan to provide
rigorous examples to demonstrate the usability of eSFILES for new process flowsheets
and also use them to address real challenges such as provide flowsheet alternatives,
perform process intensification, and flowsheet property prediction based on the text-
based flowsheet representation using a natural language framework similar to molecular
property prediction (Mann et al., 2022) and chemical product design (Mann et al., 2023).
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Abstract

Wastewater treatment units consist of biological treatment with activated sludge and are
subject to many disturbances such as influent flowrate, pollutant load and weather
conditions bringing about many challenges for the modeling of such plants. Data-driven
models may respond to these challenges at the cost of issues such as overfitting or poor
fitting due to the lack of high-quality data. To benefit from the available physics-based
knowledge and to eliminate the drawbacks of suboptimal and poor training, physics
informed neural networks might be quite promising. In this work, artificial, recurrent and
physics-informed neural network models are utilized for the wastewater plant in Tiipras
Izmit Refinery. For recurrent models with selected features based on correlation
technique, test mean squared error is up to 82% smaller compared to the standard artificial
neural network models. Physics-informed trained neural network models with selected
features improved the test performance by decreasing mean squared error up to 87% with
acceptable decreases in training performance which addresses its strength compared to
fully data-driven models.

Keywords: wastewater treatment; physics-informed neural networks; recurrent neural
networks; process optimization; wastewater control

1. Introduction

Wastewater treatment is the removal of contaminants from the wastewater before being
discharged into the sea to minimize the damage to the environment. Pre-treatment of
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wastewater is a physical treatment that involves grid sieves, sand traps, equalization
basins, and corrugated plate interceptor. Coagulants, flocculants, sodium carbonate, and
hydrogen peroxide addition to the wastewater corresponds to the chemical treatment
where disinfection, sanitization and purification is achieved. Then, the stream is further
treated by dissolved air flotation (DAF) which reduces the amount of total suspended
solids and oil and grease. Biological treatment involves the removal of biodegradable
organic matter by making use of the bacteria which is called the activated sludge process
occurring in aeration tanks. Here, bacteria use oxygen to break down the biodegradable
organic matter. Activated sludge process is followed by a sedimentation tank also called
clarifier. Suspended particles settle out of wastewater as it flows slowly through the tank
therefore further purification is achieved. Part of the exiting flow from the clarifier with
high mixed liquor suspended solids (MLSS) content is recycled to the aeration tanks
(Benyabhia et al., 2006.)

Raising concerns around the world about environment have started to shift the regulations
for several process systems areas towards tighter windows. Wastewater treatment is
among these areas where optimal operation will become inevitable. Since wastewater
treatment is a complex, non-linear system including physical, chemical, and biological
processes as expressed above and subject to many disturbances, mechanistic modeling of
a wastewater treatment unit is challenging (Guo et al., 2015). Alternatively, data-driven
models, in particular artificial neural networks (ANN), are widely used at the cost of
outcomes of black-box models such as overfitting, underfitting and lack of high-quality
data. Similarly, recurrent neural networks (RNN) are able to handle time-dependent
responses. They are suited better than the ANNs for dynamic systems. On the other hand,
RNNSs are also subject to issues such as vanishing gradient problem. Long Short-Term
Memory (LSTM) and Gated Recurrent Unit (GRU) introduce more complex recurrent
units with gates to retain long-term dependencies by controlling which information is
passed through. The presence of dynamic data in wastewater treatment units makes it
appropriate to construct RNN, LSTM and GRU models (Quaghebeur et al., 2022).

In this work, ANN, simple RNN, LSTM, GRU and physics informed ANN models are
constructed to predict dissolved oxygen concentration (mg/L) at the aeration tanks, sludge
volume index (mL/g) and waste activated sludge (m3/day) in Tiipras izmit Refinery.
Prediction performance is further increased by removing some of the features based on a
correlation technique. Section 2 involves the methodology. In Section 3, results are
shown, and Section 4 concludes the results.

2. Methodology
2.1. Artificial and Recurrent Neural Networks

A feed forward, fully connected ANN can be expressed as follows:

¥ = fiw f2(wu + by) + by) (1
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where f; and f> are activation functions, w; and w; are weights, b; and b; are bias terms at
output and hidden layers, respectively. Moreover, u and ¥y represents input and output
terms, respectively. RNNs extend the feed forward ANNs to handle the sequential data
by repeatedly transferring information to the cell states throughout the time series. The
prediction at the current time step depends on the input at the current time step and the
memory of the cell state. LSTM and GRU architectures can track longer dependencies
better than the traditional RNNs due to their complex gated mechanisms controlling the
flow of information.

2.2. Physics-Informed Neural Networks

The training of the neural networks can be expressed as an optimization problem where
the objective function is the loss function given in Eq. 2. Typically, the purpose of training
the neural networks is to find the appropriate values of weights and biases that minimize
the loss function which can be achieved using the backward propagation algorithm. In
order to improve the performance via physics-informed knowledge, neural networks can
be trained using a bi-objective loss function which includes user-defined physics term. A
bi-objective loss function can be proposed as follows:

N
1 .
L=3) 00— 9% + WP @
i
where W, is the scalar weight and P is the physics term.

3. Results

3.1. Comparison of Neural Networks for Prediction of Dissolved Oxygen Concentration
at Aeration Tanks

Total suspended solids (TSS), chemical oxygen demand (COD), pH, oil and grease,
ammonium (NHs-N), phenol, sulfide, TSS at return activated sludge which are measured
after dissolved air flotation (DAF) are taken as inputs, and dissolved oxygen
concentration in two parallel aeration tanks (Aeration tank A and B) is taken as output.
The data is normalized between -1 and 1. The first 90% of the data is used as training data
and the remaining is used as test data. An ANN, a simple RNN, an LSTM, and a GRU
networks are developed using 3 hidden layers with 50 neurons with the rectified linear
unit (ReLU) activation function. The mean squared error loss function with the Adam
optimization algorithm in Python is used to train the models. Results based on mean
squared error (MSE) and mean absolute percentage error (MAPE) given in Table 1 show
that RNNs predicted the test data better than the feed-forward artificial neural network.
Among the RNNs, LSTM can be selected as the network delivering the best prediction
over test data since simple RNN and GRU converges to more oscillatory predictions as
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shown in Figure 1, and it may be more useful to predict the direction. In addition, a
correlation technique based on F-value for regression tasks in Sklearn library is used to
select features for dissolved oxygen prediction in the aeration tanks based on the LSTM
model. (Pedregosa et al., 2011). By this technique, COD, pH, NHs-N, phenol, sulfide, and
TSS at return activated sludge are chosen as inputs and TSS at DAF exit and oil are
removed from features since the correlation between these features is low. The results are
shown in Table 1 and Figure 1.

Table 1. Performance of the Data-driven Neural Network Models for Prediction of
Dissolved Oxygen Concentration at Aeration Tanks.

ANN [ Simple | GRU | LSTM LSTM after
RNN feature selection
Train MSE | 0.0194 | 0.0024 | 0.0028 | 0.0146 0.0089
Test MSE | 0.1266 | 0.0374 | 0.0416 | 0.0327 0.0229
Train MAPE | 1.7978 | 0.3580 | 0.3616 | 1.4553 1.224
Test MAPE | 0.7006 | 0.3502 | 0.4316 | 0.4150 0.3293
Model Training Test
| w*" \ «\l ‘ .1,' - |
£ om 1 F " o ,»J
S s 1t JI |I‘ ‘\ ‘ 3 \\' \
ANN —0.50 | l | | o2

0 100 200 00 400 500 510
Days Days

Figure 1.a. Figure 1.b.
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3.2. The effect of Physics-Informed Loss Function

Feed-forward artificial neural networks trained with physics-informed (PI+) and physics-
uninformed (PI-) loss functions are developed and the results are compared to observe
the effect of bi-objective training.

3.2.1. Sludge Volume Index (SVI) Prediction

Dissolved oxygen concentration, pH, temperature, TSS, results of imhoff cone
experiments where settleable suspended solid is measured (mL/L), waste activated
sludge, and food to microorganism ratio (F/M) in the aeration tank A are taken as inputs,
and sludge volume index (SVI) in aeration tank A is taken as output. First 60% of the
data is selected as training. A single hidden layer with 5 neurons with the ReL U activation
function is used. Physics-term related to the SVI is constructed by a rule-of-thumb used
in the operation in the refinery. In addition, based on the results of the feature selection,
a physics-informed ANN is developed taking dissolved oxygen concentration, pH, TSS,
and settleable suspended solids in the aeration tank A as inputs since the correlation is
only observed between these parameters and SVI. Results are shown in Table 2.

Table 2. Performance of the ANN Models for SVI Prediction.

PL PLt PI+ with feature
selection
Train MSE 0.0053 0.0067 0.0072
Test MSE 0.0650 0.0181 0.0088
Train MAPE 0.1187 0.1661 0.0969
Test MAPE 0.1520 0.1144 0.0623

Even though the bi-objective physics-informed model delivers slightly higher training
errors, the test performance of the model is improved when the physics term is introduced
to the loss function. Moreover, the performance of the physics-informed trained ANN is
further increased with selected features. Overall, the MSE is reduced 86.5%.
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3.2.2. Prediction of Waste Activated Sludge

Oily water sewer feed, DAF exit properties (pH, TSS, COD, oil and grease, NH4-N,
phenol, sulfide), carbon-nitrogen ratio (C/N), COD load, aeration tanks’ conditions (pH,
dissolved oxygen concentration, temperature, TSS, F/M, settleable suspended solids,
SVI), and TSS at return activated sludge are taken as inputs and waste activated sludge
from both in aeration tank A and B are taken as outputs. First 80% of the data is selected
as training data. There are 4 hidden layers with 50 neurons with the hyperbolic tangent
(tanh) activation function. For the physics-term, as in the case for SVI, a rule of thumb
related to the waste activated sludge is used. Furthermore, DAF exit properties are
excluded from the inputs as a result of feature selection for physics-informed ANN model
since they do not have a significant impact to predict the outputs. Training and test
performances of the ANN models are evaluated and reported in Table 3. MSE values
reduced 40.2% and 47.7% for tank A and B, respectively.

Table 3. Performance of the ANN Models for Prediction of Waste Activated Sludge.

Waste Activated Sludge from | Waste Activated Sludge from

tank A tank B
PI+ with PI+ with
PI- PI+ selected PI- PI+ selected
features features

Train MSE | 0.0005 | 0.0020 0.0004 0.0025 | 0.0022 0.0036

Test MSE 0.0169 | 0.0132 0.0101 0.0044 | 0.0029 0.0023

Train MAPE | 0.0400 | 0.0882 0.0209 0.0338 | 0.0361 0.0171

Test MAPE | 0.0307 | 0.0444 0.0308 0.0399 | 0.0259 0.0234

4. Conclusion

In this work, ANN, simple RNN, LSTM and GRU models are constructed to predict
dissolved oxygen concentration at the aeration tanks in Tiipras izmit Refinery wastewater
treatment unit. RNN-based models improved the prediction capability due to the dynamic
nature of the data. LSTM is chosen as the model to be constructed since it predicts the
direction better than the other models. Then, the prediction capability is further increased
by selecting features based on correlation technique. As a result, the test MSE of LSTM
with selected features is approximately 82 % better compared to standard ANN with a
closer trend to the actual values. Accordingly, physics-informed knowledge is integrated
into the training instances of the neural networks to improve test performance and reduce
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the possibility of suboptimal training for the prediction of SVI and waste activated sludge.
Test MSE of physics-informed feature selected ANN models for the prediction of SVI,
waste activated sludge in aeration tanks A and B are 86.5%, 40.2% and 47.7% smaller,
respectively compared to the standard ANN. Finally, this study shows that RNNs may
result in more accurate models especially when the process nature is dynamic. In addition,
physics-informed knowledge can also be included to the standard ANN models to
increase the prediction accuracy.

References

Benyahia, F., Abdulkarim, M., & Embaby, A. (n.d.). Refinery wastewater treatment: a
true technological challenge.

Guo, H., Jeong, K., Lim, J., Jo, J., Kim, Y. M., Park, J. pyo, Kim, J. H., & Cho, K. H.
(2015). Prediction of effluent concentration in a wastewater treatment plant using
machine learning models. Journal of Environmental Sciences (China), 32, 90—
101. https://doi.org/10.1016/j.jes.2015.01.007

Pedregosa, F., Varoquaux, Ga"el, Gramfort, A., Michel, V., Thirion, B., Grisel, O., ...
others. (2011). Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12(Oct), 2825-2830.

Quaghebeur, W., Torfs, E., de Baets, B., & Nopens, 1. (2022). Hybrid differential
equations: Integrating mechanistic and data-driven techniques for modelling of
water systems. Water Research, 213.
https://doi.org/10.1016/j.watres.2022.118166



Antonis Kokossis, Michael C. Georgiadis, Efstratios N. Pistikopoulos (Eds.)

PROCEEDINGS OF THE 33" European Symposium on Computer Aided Process Engineering
(ESCAPE33), June 18-21, 2023, Athens, Greece

© 2023 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/B978-0-443-15274-0.50038-X

Approaches to Reduce Optimization Time for
Stochastic Optimization of Complex Chemical
Processes

Fanyi Duanmu, Dian Ning Chia, Eva Sorensen’

Department of Chemical Engineering, University College London (UCL),
Torrington Place, London WCIE 7JE, United Kingdom
*e.sorensen@ucl.ac.uk

Abstract

Optimization is a crucial step to obtain an energy efficient and economically viable design
in the chemical industry. The optimization of a chemical process is, however, often
challenging due to the inherent complexity of chemical process designs. In this work,
different combinations of speed up approaches — parallel computing (ParC), timeout
function (TO), escape repeated simulations (ERS), dynamic bound (DB), and machine
learning assisted optimization (ML) — are considered and their performances are
compared. ParC is always activated as it has previously been found very effective to
reduce optimization time. The results show that including DB as part of the speed up
approach can ensure successful optimization for complex chemical processes. The TO
and ML approaches can help reduce the optimization time significantly, but the ERS
approach has no clear effect on the optimization performance. The approach with all
speed up approaches activated together yields the best design in the shortest time.

Keywords: Stochastic optimization, genetic algorithm, parallel computing, machine
learning, distillation

1. Introduction

Optimization is an important step in designing a chemical process, as an optimal design
should not only have low capital and operating costs (CAPEX and OPEX) but also be
energy efficient and sustainable. However, due to the complex nature of chemical process
designs, their optimization is challenging, partly because of the difficulty in converging
into a truly optimal design, but also due to the long optimization time. Different stochastic
optimization methods (e.g., Genetic Algorithm (GA) and Particle Swarm Optimization
(PSO)) and their corresponding settings (e.g., for GA, various types of parent selection,
crossover, and mutation methods) are available that suit different designs and can help to
improve convergence. However, the long optimization time is difficult to address as it is
often caused by the high chance of failure of the initialization and re-initialization of the
design (i.e., infeasible designs), which makes the solution time long. The optimization
time can be significantly reduced if these infeasible designs could be avoided with the use
of, for instance, dynamic bounds (Chia et al., 2021), removed by machine learning
assisted optimization (Ibrahim et al., 2017), or timed-out using a timeout function.
Moreover, escaping (i.e., skipping) repeated simulations is also a direct and efficient way
to reduce optimization time. Finally, parallel computing (e.g., master-slave structure) is
also widely used to speed up optimization.



236 F. Duanmu et al.

2. Methodology

It has been reported that stochastic optimization, e.g., Genetic Algorithm (GA), is more
robust but also more time-demanding compared with gradient-based deterministic
optimization (Chia et al., 2021; Cavazzuti, 2013), and the stochastic optimization time of
a chemical process may take up to a few hours. Therefore, in order to tackle long
optimization times, different speed up approaches will be introduced in this work.

2.1. Parallel Computing (ParC)

The parallel computing approach (ParC) is one of the most successful and commonly
applied methods. There are a few structures available to perform ParC, such as the master-
slave model, island model, and cellular model, which are classified by different ways of
communication within the model. Details of each type of parallel model can be found in
Gong et al. (2015). In this work, the master-slave model is used. For this model, in each
iteration, the individuals (e.g., chromosomes in GA) are assigned to available slaves (i.e.,
cores/processors) for evaluating the fitness and constraints. Once the results are obtained,
the slaves return the results to the master to handle constraints and to generate the
individuals for the next iteration (e,g., parent selection, crossover, and mutation in GA).
Another important concept of ParC is the ways of assigning the tasks by either static or
dynamic assignment (Mathew et al., 2014). In the case of static assignment, the tasks in
a parallel job are assigned to a core/processor beforehand, while in the case of dynamic
assignment, a task is assigned to whichever core/processor that is "free" at the moment.
For the optimization of chemical processes, the dynamic assignment is preferred as the
simulation time of each individual may vary considerably.

2.2. Timeout Function (TO)

From the authors’ experience, some infeasible simulations (i.e., designs that fail to
converge) may take a very long time before they fail to converge due to the multiple re-
initialization performed to "confirm" that there is no numerical solution to that simulation.
This is illustrated in Figure 1, which is one of the optimization results taken from the case
study (10,000 simulations with 4,737 feasible simulations). Almost all the feasible
simulations converged within 9 seconds but there is a proportion of infeasible simulations
which take more than 9 s and may take up to about 38 s before they can be confirmed as
"infeasible". A timeout function can therefore be used to rule out the simulations that take
an unreasonably long time but have a high chance of being infeasible.

2.3. Escape Repeated Simulation (ERS)

Perhaps one of the most direct ways to reduce the optimization time is to escape any
repeated simulations (i.e., skip the simulations that have the exact same input values).
Repeated simulations can be present due to, for example, the elitism strategy adopted in
GA. ERS can be achieved by saving and comparing the inputs to the simulation. In this
work, a "short-term memory" strategy is adapted, where the inputs of the current iteration
is saved and retained to the next iteration where the saved inputs and the "new" inputs
generated are compared to identify any repeated simulations. The "old" inputs from the
previous iteration are then discarded and replaced with the "new" inputs generated in this
iteration. This strategy can reduce the need for memory allocation and avoid the slow
down effect that will otherwise occur if a "long-term memory" strategy is used (i.e.,
saving and retaining all inputs that have occurred in all iterations so far).

2.4. Dynamic Bound (DB)

Dynamic bound (DB) is a function that changes (internally in the code) the upper and/or
lower bound of a variable depending on the value of another variable. The benefit of DB
may not be immediate in optimizing a purely mathematical problem, but the benefit is
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Figure 1. Distribution of infeasible and feasible simulations depicted as:
(a) density plot for the whole range of simulations times and
(b) histogram as a function of simulation time from 8 s onwards.

tremendous when it comes to optimizing a chemical process. For example, it is obvious
that the feed stage (Nf) of a distillation column should not be larger than the total number
of stages (N;). However, if the bounds of N, have a significant overlap with the bounds
of N¢ (e.g., N;: 10-40 and Ny: 5-35) due to lack of information about the process, there
will be a very high chance that a design generated from the stochastic optimization has a
higher value of Ny than Ny, which clearly leads to an infeasible simulation. The chance
becomes even more significant if more feed locations and/or more distillation columns
are involved in the optimization task. Therefore, if the rule (e.g., Ny should not be larger
than N,) is violated after generating new individuals (e.g., crossover in GA), then the DB
function can be used to re-assign the feed location as a random integer within its lower
bound and the total number of stages in the current design, thus reducing infeasibility.

2.5. Machine Learning Assisted Optimization (ML)

Due to the nature of the simulations of chemical processes, there are at least two sets of
labels of a simulation, which are feasible/infeasible and on-/off-spec. The
feasible/infeasible label describes if a simulation converges successfully or not, while the
on-/off-spec label describes if a simulation stays within the constraint(s) or violates the
constraint(s). Machine Learning (ML; e.g., Support Vector Machine (SVM)) is well
suited for classification, which can be used to predict the status of a design before
evaluating it. From the authors’ experience, using ML to predict the on-/off-spec is more
challenging as the training data requires a good balance between the number of on-spec
and off-spec simulations, and for a complex chemical process, the proportion of on-spec
simulation may be relatively low and even worse in the early iterations. Therefore, in this
work, ML is applied to predict only the feasible/infeasible labels. ML will only collect
the inputs and results of the simulations until the iteration reaches a user-defined iteration.
After that, ML will use the information collected to train the model. Then, for the
subsequent iterations, no training is required and only prediction with the trained model
is carried out. For designs that are predicted to be infeasible, no evaluations will be carried
out, thus the time required to process the "infeasible" designs can be saved.
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Figure 2. Performances of various combinations of speed up approaches on (a,b) reducing
the number of infeasible simulations and (c,d) increasing the number of on-spec designs.

3. Case Studies

The case studies in this work were performed on a dual Intel Xeon Gold 6226R CPU with
16 Cores 2.90GHz (total 64 logic processors) for a highly integrated and complex hybrid
dividing wall column (H-DWC) design to separate a mixture of ethyl acetate and ethanol,
and the H-DWC details can be found in Chia et al. (2022). The simulation of a H-DWC
involves two distillation columns (prefractionator and main column in the Petlyuk
structure) and a membrane network, and the optimization variables are the design and
operating variables of the distillation columns and membrane network. To compare the
performance of different approaches, six optimization tasks are carried out: optimization
with parallel computing (ParC); ParC with timeout function (ParC-TO); ParC with
escaped repeated simulation (ParC-ERS); ParC with dynamic bound (ParC-DB); ParC
with machine learning (ParC-ML); and all approaches activated together (ALL). ParC
was always activated with 40 processors with the dynamic task assignment structure, as
it had been found in previous work that ParC is very efficient in reducing optimization
time (Chia et al., 2021). For TO, the timeout value was set as 10 s, decided through
statistics shown in Figure 1. For ERS, the "short-term memory" strategy was adopted. For
DB, a few rules related to column stages were defined, such as the feed locations should
not be larger than its total number of stages (stage number is counted starting from the
condenser), and the number of stages on both sides of the wall in the dividing wall column
should be the same (although can of course be different). For ML, a support vector
machine (SVM) library developed by Chang and Lin (2011) was used with a seventh-
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degree polynomial, C =5, and € = 0.1. The settings for SVM were decided through trial-
and-error (not shown). The first 20 iterations were used for training the SVM. In this
work, the H-DWC model was developed in gPROMS Process (Process Systems
Enterprise, 2021). The Genetic Algorithm (GA) was used as external optimization (black-
box optimization) and was coded in C# by the authors. GA was constructed with 100
iterations (generations) and 100 individuals (chromosomes), tournament with four players
for the parent selection, flat crossover, and discrete random mutation.

Each optimization task was repeated five times and the results are plotted in Figure 2,
where the solid lines are the average values. The bands bounded by the minimum and
maximum values are plotted together. Figures 2a and 2b show the number of infeasible
simulations and the number of accumulated infeasible simulations in each iteration,
respectively. It can be seen that ParC-ML has the most infeasible simulations, and this is
because the training of SVM is biased due to the fact that most of the simulations in the
first 20 iterations are infeasible. ParC, ParC-ERS, and ParC-TO show similar trends,
especially ParC and ParC-ERS. The finding is valid as for ERS, this function does not
affect the operation of the GA, and for TO, a slightly larger deviation from ParC is also
expected because there is still a chance that feasible simulations may be timed out and be
considered as infeasible simulations, which may slightly reduce the performance of GA
(considering the number of feasible and on-spec simulations). Considering ParC-DB and
ALL, these have similar trends and the lowest number of infeasible simulations in each
iteration. Compared with ParC, the total number of infeasible simulations (shown in Table
1) of ParC-DB and ALL drops from 4313 to 2596 (40 % reduction) and 3053 (29 %
reduction), respectively, which indicates that DB is the key function to reduce the number
of infeasible simulations. Considering the number of on-spec simulations shown in
Figures 2c and 2d, it is not surprising that ParC-DB and ALL have higher number of on-
spec simulations as many unreasonable (thus off-spec) designs are avoided by DB, so a
higher chance of on-spec designs would be expected. Moreover, the use of DB balances
the number of feasible and infeasible simulations in the first 20 iterations, thus the bias
of ML in ALL is reduced compared to in ParC-ML.

To reflect the speed of the optimizations, three indicators are tabulated in Table 1, which
are the convergence percentage (the number of successfully converged optimizations, i.e.,
the final optimal on-spec design divided by the total number of optimizations performed);
quality of the fitness (e.g., the total annualized cost in the case studies); and optimization
time. Starting with the convergence percentage, Table 1 shows that only ParC-DB and
ALL could achieve 100 % convergence, which indicates that to obtain the same number
of valid optimizations (i.e., converged optimizations), other approaches require more
repeated optimizations leading to a longer total optimization time. Both ParC-DB and
ALL yield designs with the lowest TACs (2.54 M $ y ), indicating better optimization
efficiency. Note that all optimizations stop after 100 iterations, which is the stopping
criterion. Moving to the most direct indicator, optimization time, starting with ParC, the
averaged optimization time is 1886 s. The time for each individual is recorded and the
summation of all individual times is considered as the total time taken without parallel.
The optimization time without parallel computing is 30,963 s, which indicates the
optimization with parallel computing only is about 15 times faster. The table shows that
ERS does not save CPU time as the elitism percentage is low (10 %), and repeated designs
rarely appeared due to the applied Flat crossover method. Moreover, ParC-DB has minor
improvement due to the lower infeasible rate. For the other three approaches, ParC-TO,
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Table 1. Key performance indicators of the different speed up approaches. The values
reported are the mean values obtained from five optimizations unless stated otherwise.

ParC ParC-ERS ParC-TO ParC-DB ParC-ML ALL

No. infeasible solutions 4314 4134 4902 2596 6086 3053
No. on-spec solutions 704 1090 321 3075 259 3225
Optimization time (s) 1885 1939 1397 1756 1452 1033
Convg. percentage (%) 60 80 60 100 40 100

TAC* (M $y~1) 2.65 2.63 2.80 2.54 2.67 2.54

* Considering only converged optimizations

ParC-ML, and ALL, they all show good time savings with about 26 %, 23 %, and
45 % reduction, respectively.

4. Conclusion

In conclusion, this work has compared five different approaches to speed up stochastic
optimization. By considering the overall performance, the dynamic bound function is
clearly the most effective function to ensure a successful optimization for a complex
chemical process. Using a timeout function or machine learning has no clear improvement
on the quality of the optimization results, but these functions show remarkable reduction
in the optimization time. The escaping repeated simulation function shows no clear effect
on the optimization speed. By applying all approaches together, the optimization achieves
the best design, the same as for parallel computing with dynamic bound, but with the least
time. In future work, a more comprehensive comparison will be performed with other
stochastic optimization methods such as Particle Swarm Optimization and Simulated
Annealing.

References

M. Cavazzuti, 2013. Optimization Methods. Vol. 53. Springer Berlin Heidelberg, Berlin,
Heidelberg.

C.-C. Chang, C.-J. Lin, 2011. LIBSVM: A Library for Support Vector Machines. ACM
Transactions on Intelligent Systems and Technology 2 (3), 1-27.

D. N. Chia, F. Duanmu, E. Sorensen, 2021. Optimal Design of Distillation Columns Using a
Combined Optimisation Approach. In: M. Turkay, R. Gani (Eds.), 31st European Symposium
on Computer Aided Process Engineering. Elsevier B.V., pp. 153—158.

D. N. Chia, F. Duanmu, E. Sorensen, 2022. Optimal Design of Hybrid Dividing Wall Columns
for Azeotropic Separations. In: The 12th International Conference Distillation & Absorption,
Toulouse, September 2022.

Y. J. Gong, W. N. Chen, Z. H. Zhan, J. Zhang, Y. Li, Q. Zhang, J. J. Li, 2015. Distributed
evolutionary algorithms and their models: A survey of the state-of-the-art. Applied Soft
Computing Journal 34 (2013), 286-300.

D. Ibrahim, M. Jobson, J. Li, G. Guillén-Gosalbez, 2017. Surrogate Models combined with a
Support Vector Machine for the Optimized Design of a Crude Oil Distillation Unit using
Genetic Algorithms. In: Computer Aided Chemical Engineering. Vol. 40. pp. 481-486.

T. Mathew, K. C. Sekaran, J. Jose, 2014. Study and analysis of various task scheduling algorithms
in the cloud computing environment. In: 2014 International Conference on Advances in
Computing, Communications and Informatics (ICACCI). IEEE, pp. 658—664.

Process Systems Enterprise, 2021. gPROMS Process version 2.2.



Antonis Kokossis, Michael C. Georgiadis, Efstratios N. Pistikopoulos (Eds.)

PROCEEDINGS OF THE 33" European Symposium on Computer Aided Process Engineering
(ESCAPE33), June 18-21, 2023, Athens, Greece

© 2023 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/B978-0-443-15274-0.50039-1

Design of a CO; capture plant: A sustainable
approach using deep eutectic solvents

Adrian Martinez-Lomovskoi,® Ana-Gabriela Romero-Garcia,*® Eduardo
Sanchez-Ramirez,” Juan-Gabriel Segovia-Hernandez, * Cataldo De Blasio °

“Departamento de Ingenieria Quimica, Universidad de Guanajuato, Noria Alta s/n,
Guanajuato, Gto., 36050, México.

bAbo Akademi University, Faculty of Science and Engineering, Laboratory of Energy
Technology, Rantakatu 2, Vaasa, 65100, Finland.

Abstract

In this work, a new design for post-combustion capture (PCC) of CO, is
introduced, using green deep eutectic solvent Choline chloride/Urea (1:2). A multi-
objective optimization using meta-heuristic algorithm differential evolution and tabu list
(MODE-TL) considering environmental and economic objectives is preformed to obtain
a sustainable process design. The proposed process was analyzed for treating flue gases
from combustion of the most common fuels used in power plants. The process performs
with a lower cost and environmental impact when treating flue gases from the combustion
of coal. Through a simulation in Aspen Plus, it is shown that using ChCl/Urea (1:2) it’s
possible to obtain a process capable of recovering more than 95% of the CO, contained
in the combustion gases with a purity of 95% molar. A sustainable capture processes
according to the objectives of green chemical engineering and circular economy is
developed.

Keywords: CO; capture, MEA, deep eutectic solvent

1. Introduction

The United Nation’s 2030 Agenda for Sustainable Development has called for
the taking urgent action to combat climate change and its impacts, mainly through Goals
7,9, 12 and 13. Citing examples of the efforts companies can make to contribute by
decarbonizing their operations and supply chains. Seeking to reduce the carbon footprint
of their products, services and processes, and setting ambitious emissions reductions
targets in line with climate science. As well as scaling up investment in the development
of innovative low-carbon products and services. Post-combustion carbon capture (PCC)
process is one of the most promising technologies due to its ability to treat high CO;
concentration streams from emission points from fossil fuels or biomass in industrial
facilities. Moreover it can be adapted as a complementary process in existing thermal
power plants. Monoethanolamine (MEA) is conventionally used as solvent because of its
high reactivity with CO, and relatively low cost. This technology has severe
disadvantages including a high rate of corrosion of process equipment and degradation of
amines due to the presence of SO,, NO, and O in the combustion gases (Luis, 2015). In
addition, MEA is considered toxic, so its implementation entails a high environmental
impact.

In recent years, research has focus in a new category of green solvents called Deep
Eutectic Solvents (DES) with selective absorption capacity towards CO,. DESs have the
characteristics of low cost, low to no toxicity, and good biodegradation. In recent years
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the properties of several DES have been reported in literature. Among them, the eutectic
combination of choline chloride and urea in a 1:2 (ChCl/Urea (1:2)) molar proportion has
shown the highest absorption rate for CO, (Garcia et al., 2015). This property, along with
its low vapor pressure and high thermal stability, has made it a candidate for replacing
MEA in CO; removal processes.

DESs industrial applications have been developed in recent years. Ma et al.
modeled, simulated and evaluated the upgrading of biogas by removing CO, with aqueous
ChCl/Urea (1:2), demonstrating that this solvent was suitable for this process. Using
choline chloride/urea (1:2) as the absorbing agent, Luo et al. (2021) designed and
simulated an industrial-scale PCC process, to treat flue gases from coal combustion.
Evaluation of life cycle environmental sustainability showed that the CO- capture with
DES has significantly lower values compared to MEA. highlighting the advantage of
lower environmental impact. However, the application of DES in an optimization
framework considering sustainable targets, is not yet developed. In other words, no study
has been conducted to analyze the impact of post-combustion absorption process design
variables and their effect on the sustainability of the process, using ChCl/Urea (1:2) as
solvent. Furthermore, the capacity of the DES to treat flue gasses with different CO,
concentrations needs to be studied, as traditional power plants require a wide operational
range in terms of the fuel used for energy generation, and the associated CO;
concentration.

In this work, a novel PCC process using green solvent ChCl/Urea (1:2) is
designed and optimized for the first time under a sustainability scheme, using Aspen Plus.
The impact of the design variables on environmental and economic metrics is analyzed.
Furthermore, the plant’s capacity for treating flue gases with different CO, concentrations
is studied through four case studies, considering the use of Natural Gas (NG), Associated
Gas (AG), Biogas (BG) and Coal.

2. Study Case

The study case presented in this work evaluates the scenario of a power plant
coupled to a carbon capture plant using DES as solvent (Fig. 1). The power plant consists
in a traditional steam-generating boiler applied in a combined-cycle configuration. A fuel
feed flow of 1000 kmol/h is considered, for natural gas, biogas, and associated gas. For
coal, a flue gas flow of the same order of magnitude as those obtained for the combustion
of the gasses is considered. The combustion process simulation is based in the simplified
model proposed by Luyben (2013). The Peng-Robinson (PR) thermodynamic model was
used to calculate physical properties, and an Aspen RGibbs chemical-equilibrium reactor
model is used for the combustor. The PCC process consists of an absorber/desorber
system with two intermediate flash tanks. The RADFRAC module is used for the absorber
and desorber columns, considering an equilibrium-based physical absorption. ChCl/Urea
was modeled in Aspen Plus using a group contribution method, and critical and
temperature dependent properties, as well as Henry constants for the gaseous components
in the solvent were taken from experimental data. The NRTL thermodynamic model was
used to calculate the activity coefficient in the liquid phase, for ChCl/Urea + water. PR
thermodynamic model was used to calculate fugacity coefficient for the gaseous
components, with parameters taken from Aspen databank.

The multi-objective optimization of the process modeled in Aspen Plus
represents a non-linear and multivariable problem, where the objective function used as
optimization criterion is generally non-convex with several local optimums. Stochastic
global optimization methods, such as Genetic Algorithms, have been proven to be robust
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and can handle both MESH equations and phase equilibrium calculations with complete
models. A multi-objective meta-heuristic optimization algorithm differential evolution
and tabu-list (MODE-TL) is used to obtain an optimal design of the PCC process. This
algorithm allows the comparison of multiple solutions in terms of the objective functions,
described after the economic and environmental metrics considered. For the economic
indices, total annual costs (TAC) were calculated with the module costing technique
outlined by Turton et al. (2003). Return on Investment (ROI) was calculated according to
Jiménez-Gutiérrez. Eco-Indicator 99, as a measure of environmental impact, was
calculated according to the methodology developed by Goedkoop et al. (2001). Total
Solvent Recovery Energy (TSRE) and Green House Gas Emissions (GHGE)
environmental indices were also considered, according to the definitions proposed by
Jiménez-Gonzlaez et al. (2012). A general mathematical expression for the objective
function and its respective decision variables involved in the optimization procedure are
shown in Equation (1).

min[TAC,—ROI,EI99, TSRE, GHGE] =
f(Fairv XH,0, FDES' TDES' Nabs' NPSl' NPSZ' Pabs' PFlv lyFlt PFZ: l'IJFZ' RR,D, Ndes' Nfeedv Pdes) (1)

SLY e 2 Xip, and wr = u;¢

Where the solutions are restricted to satisfy the recovery of 95% of the CO, produced
during the combustion and also to achieve a purity of 95% mol of CO,. Where
y; rrepresents the CO; recovered in the desorber column and x; f represents the 95% of
the CO; produced during the combustion. As well, w; » represents the purity achieved at
the desorber column and u; ; represents the purity expected of at least 95% mol of CO5.
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Figure 1. Process diagram of the combustion and PCC proposed scheme.
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The decision variables and operation range considered for the optimization are described
in Table 1. The optimization method was implemented using a hybrid platform that
interconnects the Aspen Plus simulation with Excel through Visual Basic. The variable
design vectors generated by the algorithm are fed to the process model, where the rigorous
simulation is implemented. The outputs of the process model (flows, thermal loads, etc.)
are fed back to Excel, where MODE-TL evaluates the objective functions and proposes
new values of input vectors, according to the evolutionary nature of the algorithm, the
process begins to iterate. The parameters used for the MODE-TL method were: 120
individuals, 800 maximum number of generations, taboo list of 50% of individuals, taboo
radius of 1x10*, and 0.9 and 0.3 crossover probability and mutation factor, based on
previously reported works in literature for optimization of multicomponent separation
schemes using the RADFRAC module.

Table 1. Decision variables and search intervals

Variable Name Variable Type Symbol Range or Value
Feed air molar flow rate, kmol h”! Continuous Fgir 10025 — 35000
H,0:ChCl/Urea molar proportion Continuous XH,0 1.6-55
DES molar flow rate, kmol h™! Continuous Fpgs 5000 — 120000
Absorber stages Discrete Ngps 20-100
1** packing section ending stage Discrete Npsy 2-(Ngps — 1)
2™ packing section starting stage Discrete Npso, (Nagps + 1) - Ngps
Temperature of solvent feed, °C Continuous Tpes 40 - 60
Absorber top pressure, bar Continuous Paps 1.1-14.0
Flash 1 pressure, bar Continuous Py 1.1-6.0
Flash 1 vapor fraction Continuous LI 0-1
Flash 2 pressure, bar Continuous Py 1.01 -6.0
Flash 2 vapor fraction Continuous Ve, 0-1
Desorber reflux ratio Continuous RR 0.1-2.5
Distillate rate, kmol h'! Continuous D 1378 — 1500
Desorber stages Discrete Nyes 4-30
Desorber feed stage Discrete Nieea 2 - Nges
Desorber top pressure, bar Continuous Pes 1.1-14.0
3. Results

This section provides the multi-objective optimization results for the PCC process. For
all designs, CO; recovery constraint is set at 95%, and 95% mol purity for the CO, at the
distillate of the DC.

3.1. Pareto fronts
Two dimensional pareto diagrams obtained for the coal case study are presented in Fig.
2. The form of the pareto fronts for EI99 and TAC exhibits a trend of competing objective
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functions. This behavior indicates that the selection of a design with the lowest EI99
causes the TAC to increase, hence the solutions that offer the best trade-offs between the
two objectives are those located in the curve zone of the Pareto chart. The pareto front for
TSRE and TAC indicates that a design selection with the lowest TSRE causes TAC to
diminish, therefore, designs that minimize both objectives are found in the lower left
corner. The solvent recovery energy has a direct impact in TAC, given that the high use
of vapor in the PCC process represents 70-80% of all annual costs. The pareto front for
EI99 and GHGE exhibits a competing objective function trend, similar to EI99 vs TAC,
where the best trade-off between objectives can be found in the curve area of the chart.

In terms of the impact of some design variables on the indices considered, a trend
between Water:ChCl/Urea proportion and TAC was found. A higher water to ChCl/Urea
proportion diminishes CO» absorption capacity, increasing the need for solvent flow. This
causes process equipment topology to increase, as well as increasing TSRE requirements.
As a consequence, GHGE also increases, and from the pareto chart trends in Fig. 2 E199
decreases. Higher ChCl/Urea concentration will increase environmental impact and
pumping costs considerably due to a higher viscosity of a poorly diluted ChCl/Urea. As
well, the reflux ratio is directly related to the energy requirements. A higher reflux ratio
causes energy requirements for the capture to increase.
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Figure 2. Pareto fronts for EI199 vs TAC, E199 vs GHG, TSRE vs TAC and TSRE vs GHGE.

3.2. Optimal design performance indices

The optimal point (O.P.) was selected from the pareto fronts, considering a
compromise between minimizing the objective functions. In the pareto front for EI99 and
TAC, the highest and lowest ROI values found for the optimal designs were highlighted,
along with the ROI value for the O.P. To showcase that a good performance in terms of
this objective was also taken into consideration when searching for the optimal design.

The optimization results reveal that the Coal process provides the lowest energy
usage per unit of CO, captured, with a TSRE and GHGE which is 12.3%, 27.7% and
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31.7% lower than AG, NG and BG respectively. The energy savings are also reflected in
the value of TAC for Coal (8.2%, 15.5% and 16.2% lower per tonne of CO, captured,
compared with AG, NG and BG respectively). In terms of environmental impact, the Coal
process presents a value that is 20.1%, 15.7% and 30.2% lower per tonne of CO, captured,
as compared with AG, NG and BG respectively. The coal PCC process exhibits the best
performance considering all environmental and economic indices simultaneously,
although the highest ROI is obtained when AG is used as fuel.

The proposed scheme (Fig. 1) for solvent regeneration using two flash drums and a
desorber column, allows the separation of CO, from the enriched solvent to occur at
pressures between 1 and 5 bar, avoiding a costly vacuum pressure operation.

4. Conclusions

The simulation of the PCC process shows that the CO, capture of different flue
gases is possible by use of green solvent ChCl/Urea (1:2).
Multi-objective optimization considered simultaneously economic and environmental
objectives and resulted in optimal solutions according to sustainable design for the PCC
process. Through the MODETL optimization method, design and operating conditions
were found as to avoid vacuum pressure operation at the solvent regeneration steps while
using a considerably lower absorption pressure (13.9 bar) compared to the PCC process
proposed by Luo et al (45 bar).
The optimization results reveal that the Coal process provides the lowest energy use
compared, a lower TAC and diminished environmental impact per tonne of CO2
captured, compared with other PCC processes. The highest ROI was obtained when using
AG as fuel.
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Abstract

This paper focuses on a novel multistage retrofitting problem from conventional fossil-
based refinery into biomass-based refinery with the aim of sustainable development of
fuels. Given a typical refinery and potential biomass- based technologies, the problem has
an objective to integrate the latter into the former by making use of existing units in the
new process(es). A mixed-integer linear programming model that considers a ten-year
long retrofit planning is formulated. Furthermore, the deterministic problem is extended
to a multi-stage stochastic programming problem under both endogenous yield
uncertainty and exogenous demand uncertainty and solved via a Lagrangean
decomposition algorithm. The results provide flexible design alternatives by determining
the units that should be added or modified for the selected biomass-based technologies.
Regarding uncertainty, different schemes with strategic and operations decisions are
determined. The results show advantages in considering retrofitting problem with detailed
operation constraints for each year.

Keywords: Refinery; Biomass; Retrofit; Uncertainty; Lagrangean decomposition.

1. Introduction

Significant growth in renewable energy, such as solar and biomass, has taken place over
the last 30 years. As the core part of energy supply, the petroleum refinery industry is
increasingly gaining importance for producing more sustainable energy instead of fossil
fuels. Among these novel energy forms, biomass-based energy is a promising alternative
for the refinery industry since the biomass can be used to produce hydrocarbons that are
drop-in replacements for the ones obtained from crude oils. This provides opportunities
to repurpose existing crude oil refineries into biomass refineries. Such a plan has been
under consideration in both industry and academia for a long time and has recently seen
renewed interest (see for example Exxon Mobil (Sanicola, 2021), and in academia
(Ericson et al., 2019)). The evaluation of such design is often executed with Life Cycle
Assessment (LCA) (Garcia-Nunez et al., 2016) under predefined flowsheet and
preselected biomass-based technologies. However, such framework usually ignores the
flexibility to adopt flowsheets according to expected development in market and industry.
This paper proposes a mixed linear programming (MILP) modeling framework to solve
the long-term retrofit problem, while considering detailed production constraints in each
year. Uncertainty is also addressed by extending the proposed model with stochastic
programming.
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2. Problem Statement

2.1. Crude-based Refinery Demonstration

The flowsheet of a prototypical crude-based refinery is shown in Fig. 1. The ranges of
hydrocarbons are labelled to represent the corresponding components, typically
considered in each stream/processed by each equipment. For example, the crude oil, is
first distillated in crude distillation unit (CDU) into liquified petroleum gas (LPG,
composed of hydrocarbons C; to Cs), naphtha (NAP composed of hydrocarbons Cs to
Cio), etc. These streams are then further hydrotreated, cracked and reformed in secondary
processing units, such as continuous reformer unit (CRU), fluid catalytic cracking (FCC)
and others. The final products, LPG, gasoline (GASO), jet fuel (JET), diesel (DIESEL)
and fuel oil (OIL) are obtained by blending intermediates to satisfy quality specifications.

Legend
PG Coc ()
Refinery unit
Refinery product
Connected stream
—— NAP Cs-Cyg
g I e le
Abbreviation
| KERO Cio-Cie DU . .
CDU : Crude Distillation Unit
VDU : Vacuum Distillation Unit

Crude Oil

NHT : Naphtha Hydrotreating Unit
DHT : Diesel Hydrotreating Unit
GOHT : Gasoline Hydrotreating Unit
RDHT : Residue Hydrotreating Unit
1S : Isomerization Unit

CRU : Continuous Reforming Unit
FCC : Fluid Catalytic Cracking Unit
HC : Hydrocracking Unit

DC : Delayed Coking Unit

LPG : Liquified Petroleum Gesoline
GASO : Gasoline

JET : Jet Fuel (Aviation Fuel)
DIESEL : Diesel

OIL : Fuel Oil

NAP : Naphtha Stream

KERO : Kerosene Stream

DI : Diesel Stream

LGO : Light Gas Ol

RESID : Residue Oil

Fig. 1 Flowsheet of a given crude-based refinery. (Presented in Appendix)
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Fig. 2 Detailed process steps for potential biotechnologies. (Presented in Appendix)

2.2. Biomass-based Refinery Demonstration

To produce sustainable energy based on biomass, six biomass-based technologies are
considered, namely, Hydroprocessed esters and fatty acids (HEFA), Virent’s BioForming
(VB), alcohol to jet (ATJ), direct sugar to hydrocarbon (DSHC), fast pyrolysis (FP), and
gasification and Fischer-Tropsch (GFT) (Tanzil et al., 2021a, 2021b). Details of each
technology path can be seen in Fig. 2 with illustration for every step and stream.
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For example, the VB technology, which addresses the pine or stover as the feedstocks,
first transforms the materials into cellulose. The cellulose is converted into sugar via
hydrolysis. Then the sugar is hydrotreated into hydrocarbons and followed by aqueous
phase reforming, condensation and hydrotreating. Finally, the biomass-based
hydrocarbons are distilled to produce aviation fuel, gasoline and diesel. In the VB
technology, the hydrotreating steps can be executed in a newly built unit or in an already
existing refinery hydrotreating unit. We compare components of the streams entering
each unit to find possible matches. In addition, the distillation step can also be done in the
CDU instead of in new-installed units.

3. Mathematical Formulation

3.1. Deterministic Model

The goal is to minimize the total cost over ten years by subtracting sales income from the
summation of material operation reconnection and new unit installation costs. For each
year, the operation constraints on selection of materials and production are also
considered. The problem is formulated as a MILP as follows and details for the
mathematical formulation can be seen in Appendix.

minz=a"x+bTy
Ax+ By <d MILP
x =0,y € {01}™

3.2. Multistage Stochastic Programming Model

The problem is extended to a multistage stochastic programming (MSSP) under
endogenous yield uncertainty and exogenous demand uncertainty (Apap and Grossmann,
2017). The scenario tree is formulated as Fig. 3, where each stage is formulated as an
inner two-stage stochastic programing problem with endogenous ¢ uncertainty and
exogenous 6 uncertainty (Lara et al., 2019). The decisions are divided into strategic
decisions and operational decisions. The strategic decisions, including the selection of
biomass-based technology, capacity expansion and unit substitution, are assumed only
related to endogenous uncertainty. The operational decisions, such as type of crude oil,
amount of feedstock and sale strategy for products in each year, are assumed related to
demand uncertainty and are independent in each year.

Strategic decisions
Stage 1 - S{’/Q\if’ e T e e
L i] E] [j E:] ;] Operational decisions
_ e\ /BF e\ ok e\ /6F ef\ _/6r
z: j t 5 Strategic decisions
suge2 4 &) & G @) g d £
- [j E] E:] Operational decisions
_ o8N, Joh e\ Jek 6F\ /BF e\ 6k
Strategic decisions
Stage3 o

/N / \ / \ /
m t] i] D D E] m D Operational decisions

Fig. 3 Scenario tree illustration. (Presented in Appendix)

The mathematical formulation of the MSSP is given as follows. The set i € I denotes the
outer scenarios corresponding to endogenous yield uncertainty and set j € | denotes the
inner scenarios related to exogenous demand uncertainty appearing in each year. The
problem is solved by reducing scenario pairs first, and then using a Lagrangean
decomposition algorithm by dividing it into subproblems based on outer scenario pairs.
Details on the modeling and algorithm can be found in Gupta and Grossmann (2014,
2011).



250 Lifeng Zhang et al.

minz = Z p; (Z CeiVei + Z PjdeijXei)
el ter e
s.t. Z ari¥ei < by VteT, i€l
T<t
eciVei t frijXeij < 9tij
Vei=Yei! VEE {1.},i,i" el MSSP

Ziiit S FeiVezi - Ye1,) VEET\{T1}0,i" €1

Zoy o
[Yr,i tz'“yt,i,] V[-Z; ] VteT\(T1}i,i' €1

vei €{0,1} VteT, i€l
xt,i,jER VtET,iE[,jE]

4. Results and Discussion

4.1. Computational Performance

Both the deterministic problem and the MSSP problem are solved in Gurobi 9.5.2 via
GAMS 41.1.0 on Windows 11 with Intel(R) Core(TM) i7-9700 CPU @ 3.00GHz and
16GB memory. The model statistics and computational results are shown in Tables. 1 -2
and Fig. 4.

—24000

~24100 4

24200 4
@~ Lowerbound | g
== Upper bound
Gap
24300

~24400 = +

Objective /MS$
Gap /%

~24500

Iteration

Fig. 4 Computational performance of Lagrangean decomposition algorithm. (Presented in Appendix)

Table.1 Model statistics.

Problem # of continuous variable # of binary variable # of constraints
Deterministic model 14,197 7,146 13,954
MSSP 11,576,705 459,264 15,808,450

Table.2 Optimization results.

Problem Solver CPU time /s Gap /% Objective /M$
Deterministic model CPLE).( 138.5 0.01 -1020.85
Gurobi 16.6 0.01 -1020.85
CPLEX 7200.0 / /
MSSP Gurobi 7200.0 / /
Lagrangean 45113 0.1 -24402.6
decomposition

The deterministic model is solved to optimality quite fast. For the MSSP model, 64 outer
scenarios are included related to the combinations of endogenous yield uncertainty and
in each year, 27 scenarios related to exogenous demand uncertainty are considered,
leading to 270 inner scenarios in total. The scale of the MSSP increases exponentially as
shown in Table. 1 and commercial solvers fail to give a feasible solution within 2 h of
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CPU time; the Lagrangean decomposition algorithm, solves the problem to an optimality
gap of 0.1% in ~ 75 min.

4.2. Results of Deterministic Model

From the deterministic model, HEFA, VB, FP, GFT are selected to produce the desired
bioproducts. The retrofitted flowsheets in year 1, year 2, year 5 and year 9 are displayed
in Fig. 5. For a better illustration, high qualitied figures are presented in Appendix.

a) Year |

wsheet of the biorefinery over several years.

As can be seen VB is built in the first year to process corn stover. For each step in VB, a
new operation unit is built. While in the hydrocracking step, the biomass-based
hydrocarbon stream can be directly fed into the FCC and HC units for deep cracking.
Although a distillation unit is built for VB, the CDU is still used to obtain bioproducts
with the same time until year 7. The NHT and CRU units are removed from the refinery
in the first year, and NHT is used in VB technology as the hydrotreating step as well as
DHT unit in year 2. Later, the GOHT is also used to process the biomass-based
hydrocarbons from VB as the final hydrotreating step in addition to oil-based stream.
GFT is implemented in year 5 with all the units installed. In year 9, the HEFA technology
is also installed and the products are obtained via the CDU. Note that the continuous

reforming unit (CRU) is removed and never used during the time horizon.
Table.3 Statistics of result from MSSP
Scenarios selecting
bio-technology

Scenarios selecting

Bio-technology bio-technology

Bio-technology

HEFA 28 DSHC 0
VB 64 FP 64
ATJ 0 GFT 36

4.3. Results of MSSP

With the MSSP model, the biomass-based technology selection statistics are presented in
Table. 3. For a total of 64 scenarios, VB and FP are all selected as the main process to
produce biomass-based hydrocarbons, while ATJ and DSHC are not. Comparing to VB
and FP, the higher expense and lower yield of ATJ and DSHC prevent their applications.
To compensate for the production demands, GFT and HEFA are the backup biomass-
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based technologies to install in later years. The GFT is preferred since it is selected in 36
scenarios while HEFA is selected in 28 scenarios.
To evaluate the effect of MSSP, the value of stochastic solution (VSS) is also calculated
by solving the problem stage by stage iteratively (Zhang et al., 2018). The definition of
VSS and VSS are presented as follows.
VSS = ZDP _ ZMSSP (1)

m — (ZDP _ ZMSSP)/ ZDP (2)
zPP is the optimal solution from solving problem for each stage iteratively. z55F is the
solution from MSSP model. The VSS equals to 522 M$ and the VSS is 2.15% which
reveal the benefit of implementing stochastic programming.

5. Conclusion

This paper addressed the retrofit problem from a conventional refinery to a biorefinery
by incorporating new biomass-based technologies into an existing oil-based refinery. The
problem is extended into a MSSP model under both endogenous and exogenous
uncertainties. Each stage is divided into strategic and operational steps. The Lagrangean
decomposition algorithm is used to solve such problem. The results show that the FP and
VB technologies are preferred, and a cost saving of 522 M$ can be obtained with
stochastic programming with the evaluation of VSS.

Appendix
The Appendix can be seen at https://cloud.tsinghua.edu.cn/f/9d6288101611467d9601/
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Abstract

In this work, a systematic methodology is proposed to help develop model-based design
of experiments to build robust and reliable mathematical model of a batch crystallization
process. The cooling crystallization of paracetamol in water and propanol is used as the
case study. The mathematical model consists in the mass balance and a set of population
balance equations, involving primary and secondary nucleation, growth, agglomeration,
breakage and dissolution kinetics. Firstly, a structural identifiability approach is used to
investigate whether the model parameters can be determined uniquely with an idealized
input-output behavior of the process. The approach is also critical to determine the
minimum set of required observable outputs and help discriminate model candidates. A
novel Model-Based Design of Experiments (MBDoE) is then proposed based on the
combination of the D-optimality criterion and the estimability analysis. The objective is
to reduce the uncertainties in the model parameters by enhancing the data information
content and help maximize the estimability potential of all model parameters while
reducing correlation amongst them. Moreover, a new operating strategy based on
temperature cycling is used in a sequential design of experiment to maximize data
information content from one single experiment while reducing the experimental burden
and inherent wastes.

Keywords: Structural Identifiability, Estimability, Sensitivity Analysis, Model-Based
Design of Experiment (MBDoE), Temperature Cycling, Batch Crystallization.

1. Introduction

Crystallization is an important separation and purification technique that is widely applied
in the pharmaceutical industry. The successful development of crystallization
technologies is a painstaking and costly process. The availability of a reliable
mathematical models is critical at all development stages to help explore more effectively
the design space and deliver robust and cost-effective designs, operation, and control
procedures (Benyahia et al., 2021; Liu and Benyahia, 2022). Most importantly,
mathematical models can help achieve built-in quality insurance (e.g., Quality-by-Design
and Quality-by-Control). However, the prediction capabilities and inherent uncertainties
of the models strongly depend on the experimental data obtained at early development
stages, their information content, and the parameter estimation procedure.

To obtain the parameter values, parameter estimation is performed, where the difference
between the experimental data and the prediction is minimized. However, an excellent
matching between the collected data and the prediction does not necessarily indicate that
all the model parameter estimates are accurate and precise. For example, it can be found
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that wide ranges of parameter values may still result in similar model predictions (Balsa-
Canto et al., 2010). Another common issue is the high uncertainty in the model parameter
estimates. Such issues originate from the lack of structural identifiability or estimability
(practical identifiability) of the model, and they may lead to the high uncertainty in model
predictions which consequently affect the final deigns and product quality.

To address these issues, extensive studies focusing on estimability have been carried out.
In 2003, Yao et al. proposed the use of a sequential orthogonalization algorithm to rank
the parameters according to their estimability potential and least correlation. The method
became very popular over the last two decades and found many successful applications
in various research areas (Benyahia et al. 2011 and 2013). Different estimability methods
were also used to capture more effectively the minimum subset of the most estimable
parameters using more effective cut-off procedures (Fysikopoulos et al., 2019). Another
method based on the mean-squared-error (MSE) and transformed parameters was used
by Kim and Lee (2019) to help identify the cut-off value more effectively. Nonetheless,
structural identifiability, as a necessary condition of estimability, was usually neglected
in previous studies. Hence, Balsa-Canto et al., 2010 performed structural identifiability
analysis prior to the estimability analysis to confirm that all model parameters have
unique estimates theoretically. Recently, model-based design of experiment (MBDoE) is
gaining more attention and it has been implemented in optimal experimental design to
obtain high-quality parameter estimates. For instance, Maheshwari et al., 2013 applied to
a double feedback gene switching model a multi-objective optimal experimental design
that maximized the D-optimality criterion and minimized the correlation between the
parameters simultaneously.

In this work, a novel approach that combines the estimability and MBDoE is proposed as
a systematic approach to build more predictive models and design more effective and
information rich experiments. The aim of this study is to demonstrate the benefits of
combining D-optimal design with the estimability to reduce the uncertainty in
crystallization models. This work systematically performs structural identifiability
analysis, estimability analysis and D-optimal design in a seeded batch cooling
crystallization process of paracetamol (PCM), which includes primary and secondary
nucleation, growth, agglomeration, breakage and dissolution. Several new experimental
strategies are proposed in the MBDoE which includes temperature cycling with holds.

2. Methodology
2.1 Process Model

A seeded batch cooling crystallization of paracetamol (PCM) is conducted in a 4:1

water/propanol solvent system, and the model is based on the quadrature method of

moments (QMOM). Due to the temperature cycling, two mathematical models are used

(hybrid model) as described below to capture the dissolution of crystals. When the

concentration of PCM is higher than the concentration at saturation, primary nucleation,

secondary nucleation, growth, agglomeration and breakage are considered, while

dissolution is suppressed. The population balance of the kth moment is given by

d j N 1,1 Ng <N

= 0% (kpyS™ + ke SP2)?) + kg SO RS WLET + DK 8.5 B0 WiW (L +

ko Ng N _k N, N

LS =K T XS Wi WLE(LE + L) + 2175K, 3,0 WLl ™ — K, 30 Wil

Q)
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where N, = 2 is the order of quadrature approximation, W and L are the weights and
abscissa obtained from quadrature approximation, and S is the absolute supersaturation:

S=C-C 2)
C” is the concentration at saturation captured by a polynomial function of temperature T":
C* =po+piT +p,T? 3)

where pg, p; and p, are the known polynomial coefficients.

Let d, p and k,, be the mean crystal size, the density and the shape factor of PCM crystals.
The evolution of the PCM concentration and mean crystal size along with time are
mathematically expressed as

ac N,
- = —3pkykyS9 X1 WL 4)

dd _ 1dpo _ padio ®)
dt  po dt  pg dt

The cooling/heating rate Z—: = R is the decision variables in the optimal experimental
design problem. The evolution of concentration at saturation is given by

dc* dr

= = (0 +2p2T) o (6)

In summary, the vectors of state x(t), observables y(t), control variables u(t) and
unknown model parameters 0 are given by

x(6) = [o (), 1 (£, 12(1), 15 (1), € (1), (1), C* (1), T(6)]" (7
y(@) = [C(®),d(t), uo(D)]" ®)

u(t) =2 = R(0) ©)

0= [kbl'bpkbz'bz:jz:kg: 9, Ko, Ky, v, ks, ds]” (10)

When the PCM concentration is lower than its concentration at saturation, dissolution is
activated; primary/secondary nucleation and growth are suppressed, while agglomeration
and breakage still occur. The population balance of the kth moment becomes:

d N, _ 1 N N k

B = g5 (=S)® N WILE™ + 2K, 3,0 800 Wi (L + ) -

1 N, N _k N N

SKa 32 N W WL + 1) + 23K, B0 WAL — K B0 Wil (11)

In this scenario, the evolution of the PCM concentration becomes

dc N

% = —3pkykas(—5)% Tt WiL? (12)
while the evolution of mean crystal size and concentration at saturation can still be

expressed using equations (5) and (6).
2.2 Formulation of the MBDoE Optimization Problem

Before performing MBDoE, a structural identifiability analysis was conducted, and it
showed that the model is at least structurally locally identifiable. Afterwards, four
operating strategies were proposed to achieve the intended systematic MBDoE namely:
linear cooling, piecewise linear cooling with continuity, temperature cycling, and
temperature cycling with holds (Figure 1 (A)). For the sake of brevity, only the
formulation of the optimization problem using temperature cycling with holds is
presented here.
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Figure 1. (A) Proposed operating strategies using different temperature trajectories. (B)
Experimental set up.

The mathematical formulation of the multiobjective MBDOE is given by
. . - _1 . . . . .
Obj1: RglthI’ltSdet(FIM ); Obj2: RTt?g(ts min ||Z;]|

s.t. x(t) = f(t,x(t; 9); 0), x(t,) = x0(0)

Cl: —05<R; <0 (i=135)

C2:0<R <1 (i=246)

C3:0 < Aty G=1,..,12) (11)
C4: Z}ilAtRJ =300

C5:21 <42+ X8 RiAtp, 4 < 42

C6:0 < tg,

C7: tS,lO < 300
C8: by —tyr1 <0 (1<k<9)

where R denotes the cooling/heating rate, Atp represents the durations of different
cooling/heating stages, and t; refers to the sampling times.

The first criterion is the minimization of the D-optimality criterion, which aims at the
minimization of the joint confidence regions of the model parameters; the second criterion
maximizes the estimability score of the least estimable parameter (Max Min), so that its
effect on the observables is enhanced, which may ensure higher quality parameter
estimates.

3. Results & Discussion

Figure 2 shows a sample of results obtained with the multi-objective optimal experimental
design. The Pareto Front in Figure 2 (A) shows the best MBDoE compromises. The star
represents one selected Pareto solution that can be experimentally implemented. Figure 2
(B) shows the temperature trajectory of the selected Pareto optimal solution. The
estimability analysis revealed that k;,, was the least estimable parameter, while y was
found to be the most estimable.
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Figure 2. (A) Pareto Front of the optimal experimental design using temperature cycling
and holds. (B) Optimal temperature operating trajectory. (C) 95% Joint confidence
regions (JCR) of ky, and k,;, before & after optimal experimental design. (D) 95% Joint
confidence regions (JCR) OF K, and y before & after optimal experimental design. (E)
Prediction bounds of mean crystal size before & after optimal experimental design. (F)
Prediction bounds of total crystal count before & after optimal experimental design.

A basic single temperature cycle experiment was used as a reference case to show the
benefits of the proposed MBDoE. Figure 2 (C) clearly shows that the joint confidence
interval of k, and kj, are significantly decreased and so is their correlation. The results
shown in Figure 2 (D) demonstrate a decrease of the uncertainty in the most estimable
model parameter y. The decrease in parameter uncertainties resulted in more reliable
predictions, as shown in Figure 2 (E) and (F), where the nominal predictions refer to the
predictions using the nominal parameter estimates before and after applying the optimal
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experimental design. Several additional operating strategies were also investigated in this
study as outlined in Figure 1 (A) (the results are not shown here for the sake of brevity).
However, temperature cycling with holds resulted in the best parameter quality and the
lowest uncertainties in model prediction. Thus, this operating strategy has the potential to
be implemented in the development of MBDoE for similar crystallization systems.

4. Conclusions

A series of novel MBDoE strategies based on different operating trajectories were
proposed and implemented to a batch crystallization process. Both D-optimal design of
experiments and the estimability approaches were implemented to generate information-
rich experiments and help reduce parameter uncertainties while increasing the
estimability potential of the parameters. The combination of both strategies (multi-
objective MBDoE) offered more optimal operating options and demonstrated the
parameter estimates with reduced prediction uncertainties. The introduction of
temperature cycling with holds was shown to be the best operating strategy in this study,
which indicates that it has the potential to be a reliable alternative for the development
and implementation of systematic MBDOoE in crystallization.

Acknowledgements: This work was funded by the EPSRC (EP/V062077/1) Digital
Medicines Manufacturing Research Centre.
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Abstract

In this work, a novel mixed-integer linear programming formulation is proposed based
on the unit-specific event-based representation to address the short-term scheduling of
multipurpose batch plants in network environment. Concepts of material transfers
between processing units or storage tankers are introduced to conditionally sequence and
align the related production and consumption tasks. In this case, material flows between
the processing units can be explicitly tracked, resulting in decreases on appropriate
number of event points and improvements on computational efficiency. Additionally, the
processing units are allowed to temporarily store a batch after production over multiple
event points. Computational studies shows that the developed continuous-time based
formulation leads us to fewer numbers of event points in many cases and better objective
results with a maximum improvement of 67%. More interestingly, all considered
examples reach the optimality without any task spanning over multiple event points.

Keywords: Unit-specific event-based formulation, multipurpose batch process, material
transfer, short-term scheduling

1. Introduction

Process scheduling is a key managerial tool for manufacturing, which seeks to allocate
limited resources, determine task assignments and sequences to achieve production
targets over time [Rakovitis et al. (2019)]. Multipurpose batch plants [Li et al. (2022)]
widely exist in chemical industry for production of low-volume and high-value products.
Unit-specific event-based formulation is an efficient continuous-time based approach to
address the short-term scheduling of multipurpose batch plants. Numbers of event points
have significant effects on the model size and computational performance. Attempts have
been made to eliminate some unnecessary event points by relaxing some unconditional
sequencing constraints enforced for the consumption and its related production tasks with
the same state. Specifically, Seid and Majozi (2012) as well as Vooradi and Shaik (2013)
relaxed the unconditional sequencing and alignments between the related production and
consumption tasks if there is sufficient state inventory for consumption and storage space
for production, respectively. However, the model of Seid and Majozi (2012) leads to real-
time storage violation. Vooradi and Shaik (2013) introduced enormous variables,
resulting in heavy computational burdens. More importantly, almost all existing models
did not allow a batch of materials to be temporarily stored in processing units over
multiple event points, leading to inefficient utilization of processing units.

In this work, a novel mixed-integer linear programming (MILP) model is proposed to
address above mentioned limitations of the existing unit-specific event-based MILP
formulations. Specifically, concepts on material transfer are introduced for the related
production and consumption tasks at two adjacent event points. Material flows of states
are monitored among units rather than specific tasks to decrease numbers of variables.
And temporary holding of batches on units after production are modelled to yield better
objective results for problems subject to finite intermediate storage (FIS).
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2. Problem statement and material transfer

Multipurpose batch plants are formulated based on the state-task network [Kondili et al.
(1993)]. Tasks i € I are processed on units j € J. Units j performing task i are included
in the set J;. States s € S are consumed (ps;; < 0) or produced (ps; > 0) by the
consumption (i € I$) or production (i € I}) tasks with the proportion pg; . The
formulation is proposed to minimize makespan to fulfill demands (D;) of products (s €
SP) or maximize profit (z) over a given horizon (H). Material transfer between facilities
is explicitly tracked to conditionally sequence the related production and consumption
tasks of the same state. Four scenarios of material transfer (MT) are illustrated in Figure
1. In the first scenario (MT1), materials after production are transferred into its dedicated
storage. In MT2, the batch of materials after production are first temporarily held on its
processing unit and then flow into the storage. In MT3 and M T4, material after production
at n are consumed by tasks at (n + 1). MT3 illustrates the indirect material transfer in
which materials available at n would be first transferred to the storage and then to the
downstream unit at (n + 1) as there are sufficient storage space. In MT4, materials are
directly transferred to the downstream units due to the storage limitation, which is termed
as the direct material transfer. Two sets of binary variables are introduced to formulate

the indirect (z1};1,,) and direct (zD;;,,) material transfer between units j € J and j’ € J§
performing the production and consumption tasks, respectively, of a state s. Specifically,
zljj, =1, if a state produced on j at (n—1) is indirectly transferred to j* at n.
zDjjr, =1, if a state produced on j at (n — 1) is directly transferred to j atn.

Temperarily held batch

N1 N2
Unit1 [ |2
T
i . MT4 N4
Unit2 : : wiree) I
IMT IMT2 MT3
: H Indirect)|
| (Indirec NS
Unit3 :
1 H
. H MT3
N1 N2 N3
Storage

Time
Figure 1. Four scenarios of material transfer between units and storage tankers
3. Mathematical model
The binary variable w ;,,,, is one if task i is processed on j from event point n to n’ (n <
n' < n+ An). An is the number of event points over which a task can span. Binary
variables ys;;, equal to one if one or partial batch of a task i is temporarily held on j at
n. Allocation constraints demand at most one task to be processed or held on j at a time.
Sets I; and I” include tasks that can be processed on j and held on units, respectively.

Wijnin! + Z Ysijn =1 vj,n €Y)
i€l n—Ansn'snnsn''sn’+4n ie(1;n1P)
Batch sizes b j,,’ are bounded by maximum (B;7**) and minimum (B;}™) unit capacity.

BI™ - Wijnnt < bijnnt < B Wi Vji€ln<n' <n+An (2)
Amounts of the batch of task i held on unit j at n are denoted by bs;;,,. Variables ST,
express amounts of s stored at n, including units and its dedicated storage. Material
balance of one state at n are formulated as Eqs. 3-4, where Eq. 3 is valid for the first event
point. Variables STO; and bs0;; express the initial inventory level of state s and initial
amount for a batch of task i held in j, respectively. Amounts of states s stored at n should
be always no less than its amounts temporarily held on the processing units (see Eq.5).
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ST =STO+ Y D pbsOy+ > Y Y pybgw Vsn=1 ()
7 ie(1;nIf) J ie(;nI§) nsn’<n+An

STsn = STs(n—1y + Z Z Z Psi - bijn' -1

j ie(;;nIf) n—1-Ansn'sn—1

£ b b Vs> 1 &)

Jj ie(;nI¢) nsn'<n+An
Z Z Psi * bsijn < ST Vs € SIS, n (5)
J ie;nid)
Start and finish time of a unit j at event point n are denoted by T}, and T, ]n, respectively.
The unit j finishes the event point n after processing task i that is performed on j at n.
T 2 T + Z Z (@ij - Wijnn' + Bij - bijun’) vj,n (6)
i€lj nsn’sn+An

Sequencing constraints require that on a unit j, an event point (n + 1) must start after the
finish of it previous event point n (see Eq.7). Continuous variables T, are the time for
state s produced on unit j at n being available. Available time of the same state at the
next event point (n + 1) should be larger than the available time at n, as Eq.8.
Tinen) 2 T ' vjin<N 7
Ts}n < Ts](n+1) Vs € Sm',j € ]E,Tl <N-1 (8)
As formulated by Eqgs. 9-10, the time when a state s is available at n should be after the
finish of its production task on unit j and before the start of the next event point (n + 1).

Tsjnszfn—M- 1- Z Z Wiin'n vseSmjeEn< N 9

ie(ljml;) n—Ansn’sn

Tojn < Titneny + M- |1 = ( Wijn'n + ysijn> vseS™jell,n<N  (10)
ie(1;nIf) \n—Ansn'sn

Indirect material transfer of a state takes place only with sufficient storage space for s. If
it occurs from a unit j at n to j” at (n + 1), the unit j* at (n + 1) must start not earlier than
the finish of j at n. Set CJ; includes units j* consuming a state produced in unit j.

T < Titneny + M- [1 = 2l Vjj €Cl,j#jn<N  (11)
Continuous variables bTi;j; 1, express amounts of a state through indirect material
transfer from j to j’. For any consumption task, its consumed amounts of s cannot exceed
the total amounts stored in the storage and transferred from the production tasks.

2 <_psi’ . Z bl j'nn' ) < STs(n 1) + 22 Z Z bTiiji’j’n

N nsn’sn+An J" (o) ve(igny)

Vs € Sm,n >1 12)
pei - Z Bt 1)>Z Z Tiyjujm Vs €S jie(LnIE)n>1 (13)

n-1-Ansn’sn-1 i E I rﬂl
TPt Z byrjrng 2 Z Z leiji’j’n Vs eS™,ji' € (IJ" n ISC),n >1(19
nsn’sn+an jie(1;nI?)

Amounts of s through indirect material transfer at n should not exceed the production
amount finishing at (n — 1) and also the consumption amounts starting at n (see Egs. 13-

14). Without indirect material transfer, the corresponding variables on transfer amounts
are zero, where B =  max _ [pg; - B7**] and B'** = max [—pg - BT
> J 3 P SL 9] J .y I St i
S,lE(ljﬂls) S,i E(ljlﬂls)
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Z bTijirjrm < mm[BjmaX, B}’Pax] “zljm vj,j €C),j#j,n>1 (15)
ielji'el;
Constraint (16) enforces that a unit j' consuming a state at (n + 2) or higher event points
should always start after the state is available on unit j at n to avoid storage violation.

T S Tsl(n+2) +M-|1- Z Z Wi’j’(n+2)n’
E(l,"”lsc) n+2sn’sn+2+An

vseS™j#jjeJrjEIS,n<N -1 (16)
When there is no sufficient storage space to store the production amount of a state s, this
state must be transferred to the downstream unit directly or temporarily held on its
processing unit, as indicated by Eq.17. Consequently, the unit j° should finish the
processing at n before the end of unit j at n to avoid overlapping on j’, if direct material
transfer of one state takes place from j at n to j’ at (n + 1), as constrained by Eq.18.

Z Z [psi : Z bijn’(n—l)] + STs(n—l)
j ie(ll-mf) n-1-Ansn’'sn-1
< ST+ Z Z Psi * bsijn
jie(1;nIf)
+ Z Z Z Z deiji'j’n Vs € SFIS, n>1 (17)
7" i) e nig)

Ty S Tf+ M- [1— 2D} vjijec),j#j,n<N (18)
Slmllar to the indirect material transfer, amounts of a state s transferred at (n + 1)
through direct material transfer should be bounded by the amount available (i.e. produced
or temporarily held) at n and the consumption amount by tasks at (n + 1). And the
amounts of state transferred should be zero without direct material transfer.

bijn’(n—l) + bsij(n—l)] = Z Z del]l j'n T Psi* bsijn
i lﬁlc)
vsesfSjie(nIf)n>1 (19)
—psit - Z byt jing = 2 Z bTd;jyrjm Vs €SP, i"e (IynI§),n>1 (20)
nsn/sn+An j ie(fn1y)
> z BTdyji 1 < min[ B, BR¥] - 2D, 1, vij e Ofj#/m>1  (21)

i€l i el

pSl [
n-1-Ansn'sn-1

Equation 22 ensures sufficient storage space for state s produced on j at n when s € §7%5
is subject to FIS, by enforcing j’ to finish at (n — 1) before the available time of s at n.

Tsjn = Tj'(n—l) -M-|1- Wit g
ile(ljlmg) nsn’sn+An
) vseSFS jxjjelljelf, 1<n<N 22)
STy, < ST + Z max_(pg; - B{;‘“)] vs € SIS, n (23)
b lie(1;n1f)
bsijn < BJ™ - ysijn vj,ie(,nI"),n (24)

Amount of state s € S'S stored on units and storage at n should satisfy Eq. 23. Amount
of the batch temporarily held on j should be no larger than the unit capacity. Tightening
constraints (refer Eqgs. 34, 35 and 37 of Li et al. 2022) are formulated to handle binary
variables on allocation and material transfer. Indirect material transfer tasks place if there
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is the direct material transfer between two units (Eq. 25). Bounds are added on variables
as Eqgs. 26-30. Both ys;;,, and bs;;,, are zero if states produced by i are subject to UIS.

zljjm = 2D}y vj,j' € C)f,j#j n>1 (25)
TS < HT, < H vj,n (26,27)
Wijnn' = 0,bijpns = 0 vijn (@ <n)u(i¢l) (28,29)
bTd;jyrjry = bTisjprj1 = 2ljry = 2Djjry = ySijn = bsijn = 0 Vi, i',j,j'\n =1,bs0;; = 0 (30)
YSijn = 0,bsijn =0 vigl?j,n  (31,32)

The objective is to maximize profit (see Eq. 33) or minimize makespan (see Eq. 34-35).
Equation (36) is the tightening constraint for minimization of makespan.

Z=Z Ps'z Z Z Z (psi'bijn'n) (33)

ses? j ie(nI?) n n-Ansn’sn

Tf < MS vjn=N (34)

jn =

STO, + Z Z ZZ (psi * bijunr) = D Vs € SP (35)
nsn'sn+An

J oie(nf) n
ZZ Z (@ij - Wijnn' + Bij * bijnn') < MS vj (36)
i€l; n nsn’'sn+An
Development of the mathematical formulation is completed, which contains of equations
(1-33) to maximize profit and (1-32) and (34-36) to minimize makespan.

Table 1. Computational results for examples 1-6 with FIS. (Exsl, 3 and 4 are addressed to
minimize makespan. Exs2, 5 and 6 are addressed to maximize profit)

Ex Model Events RMILP  MILP CPU (s) Binary Continuous Constraints
V&S 3 5.00 11.5 0.02 12 32 68
L&F 3 5.00 11.5 0.02 6 29 43
SLK2 4 5.00 11.5 0.02 12 83 99
M 3 8.00 8 0.02 12 37 76
V&S 10 1795.48  989.03 2096 569 805 2670
M 11 2208.35  1201.39¢ 3600 511 1801 3091
V&S 14 24.24 27.88¢ 3600 226 371 1031
M 14 24.24 27.88 1969 213 450 1243
V&S 212 47.38 47.68f 3600 1,080 1567 4955
M 21 47.38 47.68 82.0 648 2449 3791
V&S 6° 400.00 400.00 0.16 132 197 596
M 6 400.00 400.00 0.05 79 185 536
V&S 10° 400.00 400.00 1.77 316 421 1300
M 10 400.00 400.00 0.16 139 317 956

a:An = 2,b: An = 3, ¢: An = 7. Relative gap, d: 5.74%, e: 0.08%, f: 0.64%.

4. Computational studies

Comparisons between the proposed model (M) and three existing continuous-time based
models [V&S: Vooradi and Shaik (2013), L&F: Li and Floudas (2010), SLK2: Susarla et
al. (2010)] are conducted. Considered examples 1 and 2 with FIS are the motivating
example 2 and example 12 from Li et al. (2022). Examples 3-6 are examples la, 2b, 8
and 9 in their work. Models are solved using CPLEX 12.6.3/GAMS 24.6.1 on a desktop
computer with AMD Ryzen 9 3900X 3.8 GHz, 48 GB RAM running Windows 10.
Computational results of the examples 1-6 are listed in Table 1. Better objective results
are obtained by M in examples 1 and 2 as the processing units can hold materials to share
the storage burden under FIS. Computational time is reduced over 45% (1969 s vs. 3600
s) and 98% (82 s vs. 3600 s) by using M relative to model V&S for examples 3 and 4.
That is attributed to the decreased number of binary variables. Concerning appropriate
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numbers of event points to reach optimality for examples 4-6, it proves that model M does
not require any task to span over multiple event points (i.e. An > 0). Four instances
(instances 9, 11, 14, and 15 in Vooradi and Shaik 2012) of the Kallrath example, are
addressed using the developed model, as presented in Table 2. Results prove that the
proposed model always generate lower makespan using less computational time. For
instance, the model M obtains a 2.5% (39 h vs. 40 h) lower makespan using 45% (21890
s vs. 40000s) less computational time, compared with V&S.

Table 2. Computational results of the Kallrath examples with FIS to minimize makespan

In  Model Events RMILP MILP CPU(s) Binary Continuous Constraints

1 V&S 10 16 32 10761 888 1386 5113
M 10 16 32 5377 591 1267 4229
2 V&S 11 28 40° 40000 984 1530 5664
M 11 28 39 21890 654 1401 4690
3 V&S 9 21.6 36 447 792 1242 4562
M 9 21.6 36 348 528 1133 3768
4 V&S 15 40 56° 40000 1368 2106 7868
M 15 40 54¢ 40000 906 1937 6534

Relative gap, *: 7.5%, °: 14.29%, : 3.70%.

5. Conclusion

In this work, a novel unit-specific event-based MILP formulation is proposed to address
the short-term scheduling of the multipurpose batch plants. Material transfer of states are
explicated to conditionally sequence the related tasks on units. And batches of tasks after
production are permitted to be held in the processing units. Computational results
demonstrate that the proposed model leads us to better objective results and decreases the
computational time up to 98%. More interestingly, the proposed model does not require
any task to span over multiple event points to yield the global optima.
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Abstract

The cement sector needs to reduce its CO» emissions. An oxyfuel CO, capture technology
allows to considerably reduce the emission. However, heat recovery and energy
efficiency measures are essential to make the technology economically feasible. An
approach to design heat exchanger networks applied to a 1% generation oxyfuel cement
plant is described in this article. The approach consists of two steps: preliminary targeting
and heat exchanger network design. For the studied cement plant, the steam Rankine cycle
was identified to be superior to organic Rankine cycles. In the ideal case about 10.5 MW
of power can be recovered. However, in a cost-efficient simple heat exchanger network
recovery of only about 8.7 MW is economically reasonable.

Keywords: Heat integration, Heat exchanger network design, Oxyfuel cement plants.

1. Introduction

The cement sector is responsible for about 7% global anthropogenic CO, emissions (IEA,
2018). Two-third of the CO» emission originate from calcination of limestone while one-
third come from the combustion of fuel. It is, therefore, impossible to reach CO2 emission
targets with fuel switching alone. CO, capture and storage is essential to become carbon
neutral. An oxyfuel-based capture process is a promising candidate for capturing CO,
from a cement plant (Voldsund et al., 2019). In the oxyfuel process the combustion is
performed with oxygen mixed with recycled CO,. The CO, enriched flue gas allows a
relatively cost-efficient purification and separation. Nevertheless, CO, purification
consumes additional power and process heat must be transferred to air streams to dry the
raw material energy-efficiently. The temperature levels in an oxyfuel plant are higher than
in conventional plants because of the increased oxygen concentration in the combustion,
and flue gas has to be cooled before it is recirculated. Waste heat recovery and heat
integration are important for an economic implementation of oxyfuel technology in
cement plants.

An existing cement plants was investigated for retrofit of the 1% generation oxyfuel
process. The process simulations are performed with VDZs in-house cement process
model. Afterwards, the heat integration is performed using a two-step methodology.
This article focusses on a systematic approach to heat integration and applies it to an
oxyfuel cement plant. In the following, a brief description of the model setup is given
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followed by the introduction of the two-step methodology for heat integration and its
application the oxyfuel cement plant is described.

2. Methodology

2.1. Modelling approach

The retrofit of the 1% generation oxyfuel process to cement plant was performed with
several models. The clinker burning process was accessed by a kiln process model. The
model described the process from the kiln meal feed to the outlet of the clinker from the
cooler. It is made up by individual linked models of preheater, calciner, bypass, kiln and
cooler, where material and energy balances are calculated (Koring, 2013). The process
model outputs are performance data, thermal energy demand, clinker quality and
available excess heat. Input data about the process design and some plant specific data to
make the process model representative was provided by the cement producer and
equipment supplier.

A second model, the heat integration model, access the waste heat recovery and the heat
integration of the CO, Processing Unit (CPU). Data was iteratively exchanged between
the two models.

2.2. Heat integration

Stream data from the process engineering model by VDZ was used to create the heat
integration model in Aspen HYSYS. In addition, a CPU model was created in Aspen
HYSYS. These models were used to access the energy streams of the 1% generation
oxyfuel cement plant. In the following the two-step methodology consisting of a
preliminary targeting step and a Heat Exchanger Network (HEN) design step, is
presented.

2.2.1. Preliminary targeting of the heat exchanger network design

The goal of the preliminary targeting is to identify the most promising heat to power
cycles for the HEN design. A pinch analysis is performed which identifies the bottle neck
of the plant regarding heat integration and allows to estimate an upper bound on the power
production of the heat to power cycles. This step is also used to dimension the heat to
power cycles. The stream data from this analysis is used in the HEN design phase.

2.2.2. Heat Exchanger Network design
In the second step after the preliminary targeting the HEN is designed which allows cost-
efficient design of the heat recovery in the cement plant. The best HEN involves
optimizing the trade-off between capital costs determined by the number of heat
exchanger units and their areas and the operating costs determined by the amount of hot
and cold utilities required by the process. The software tool termed SeqHENS (Sequential
Framework for HEN Synthesis) developed at the Norwegian University of Science and
Technology and SINTEF Energy was used to design the optimal HEN (Anantharaman,
2011). An overview of the four-step methodology in the toolbox is given next:
1) Given stream data on the relevant hot and cold streams given by the preliminary
targeting the minimum amount of hot and cold utility required is determined.
The Linear Programming (LP) transhipment model is used to solve the
optimization (Papoulias et al., 1983).
2) The absolute minimum number of heat exchanger units is determined where the
heuristic is used that the optimal number is close to the minimum number of
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units. This problem is solved with the Mixed-Integer Linear programming
formulation (Papoulias et al., 1983).

3) Given the numbers of units and using engineering judgement the correct matches
between hot and cold streams is determined. This “Steam Match Generator”
problem is formulated using the vertical MILP transportation model
(Anantharaman, 2011). The result is a Heat Load Distribution which gives the
amount of heat exchanged between hot and cold stream.

4) Finally, the optimal topology of the HEN is determined. This problem is solved
with a nonconvex Nonlinear Program (Floudas et al., 1986). The objective is to
minimize the total cost of the HEN, where engineering judgment is used to get
a simple HEN.

ﬂﬂ (T}
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Adjust HRAT

Figure 1. Overview of SeqHENS framework.

3. Case Study

The 1* generation oxyfuel cement plant consists of a preheater, pre-calciner, rotary kiln
and cooler (Figure 2). The preheater exhaust is recirculated to the cooler, where a part of
the recirculated stream is extracted and sent to the CPU. The Air Separation Unit (ASU)
provides purified oxygen. An air stream is heated and used to dry the raw material.

The studied cement plant has an average annual clinker production of about 5600 t/d. The
kiln line is a common dry process, and the raw material moisture is about 2-3%. The
estimated drying demand for the raw material is about 300 kJ/kgciinker- This heat must be
supplied by the excess heat of the process before additional excess heat can be used in a
heat to power cycle.

The hot streams in the oxyfuel cement plant are the preheater exhaust stream at a
temperature of about 450°C, cooler exhaust stream at a temperature of about 180°C, and
the bypass stream, which is pinched with parts of the recycling stream, after which the
combined stream has a temperature of 400°C. Additional heat streams are available from
the CPU at a temperature of about 120°C. The cold streams are the heat required for
drying the raw material, heat required in the CPU and heat for the heat to power cycle.

It is necessary that the recirculated stream is cooled down to about 50°C to remove
chlorine, sulfure and water. Moreover, bag filters are used to remove dust. In addition,
the air stream existing the raw mill should have required heat left for evaporate water.
Therefore, a minimum temperature of 120°C was chosen for this stream.

3.1. Preliminary targeting of I*' generation oxyfuel cement plant case study

The preliminary targeting phase was used to 1) find an optimal flue gas recirculation rate,
2) evaluate if heat from the Bypass should be used and 3) compare different heat to power
cycles. The first and second step required iterations between the heat integration and
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Figure 2. st generation oxyfuel cement plant. The numbers indicate hot and cold streams.
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updating the process engineering model. It was concluded that no heat should be extracted
from the Bypass since it increased the overall fuel use.

Organic Ranking cycles using Benzene or Butane and a steam Ranking cycle with
different pressure levels were compared. The best performing Ranking cycle was the
steam Rankine cycle at a pressure level of 15 bar, which was used for the HEN design
(Table 1).

Table 1. Performance of different Rankine cycles.

Rankine cycle

Power production

Recirculation rate

Steam Rankine cycle (15 bar)

10.5 MW

0.49

ORC — Benzene

10.0 MW

0.49

ORC — Butane

8.4 MW

0.49

3.2. Heat exchanger network design of I*' generation oxyfuel cement plant case study

The preliminary targeting phase concluded that in the ideal case 10.4 MW power can be
produced. However, this performance can only be reached with a complicated and
expensive HEN. In the HEN design phase using SeqHENS stream splits and small heat
exchangers which are not cost efficient were avoided. This resulted in a HEN which
allows the required heat recovery and a power production in the steam Rankine cycle of
about 8.7 MW (Figure 3). This is a 15% reduction compared to the ideal case.

In this study a retrofit is investigated, and the CPU will be located several hundred meters
away from the kiln line. In the HEN obtained long pipelines are required between the
CPU and the kiln line for only a small heat recovery. It was therefore decided to also
investigate a case with the CPU excluded from the HEN design to create a simpler
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network. The design of the simpler network (Figure 4) increases the overall heat
exchanger area but reduces complexity and piping, which is not included in the objective
function of SeqHENS. The same amount of power as before (8.7 MW) can be produced.
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Figure 3. Heat exchanger network including heat integration of CPU.

In both HENs the Air Heater 1.2 is responsible for the majority of costs since it has a
large duty, and it is a gas-gas heat exchanger with low heat transfer and large heat
exchanger area.

4. Conclusion

This article shows how to apply heat integration and heat exchanger network design to a
1% generation oxyfuel cement plant. Heat integration is essential for economically
implementation of the oxyfuel technologies to existing cement plants. required heat
exchanger is a gas-gas heat exchanger which also is the largest cost driver. This heat
exchanger is essential since air must be heated for drying the raw material. The direct use
of the preheater exhaust as in conventional cement plants is impossible since it would
emit CO». It is possible for this cement plant to recover about 8.7 MW of power which
decreases the energy consumption of the plant. In future, a more detailed economic
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assessment of the steam Rankine cycle and required heat exchangers must be performed
to evaluate the profitability.
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Figure 4. Heat exchanger network without heat integration of CPU.
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Abstract

Food insecurity is one of the major issues that have loomed as a result of rapid population
growth. In recent studies addressing modern-day resource issues, the energy, water and
food (EWF) nexus approach was introduced as a holistic method to aid decision-makers
in pre-empting unintended, and possibly damaging consequences resulting from an
imbalance made in any part of the nexus system. Existing studies have focused on
centralised approaches to study the interlinkages amongst EWF systems by focusing
mostly on two elements of the EWF nexus. However, the current and future transitions
should address the entire EWF system, holistically and sustainably. Besides, the existing
indicator frameworks do not expressly capture the key interactions between the EWF
resources to address the main challenges and risk factors associated with the EWF
systems. Consequently, the aim of this study is to tackle this knowledge gap by integrating
the analytical hierarchy process (AHP) tool along with EWF risk-associated optimisation
as means to assess the changes in EWF resource availability, and therefore identify the
tradeoffs of the large-scale implementation of decentralised energy and water
technologies. The proposed framework utilises a nexus approach to optimise the energy
and water technological portfolios in an efficient way; thus, supporting the decision-
making for resource management in high-risk environments, such as the State of Qatar.
The methodology consists of designing a composite risk indicator using the AHP method
to determine the weight of different risk criteria for energy and water technologies. The
obtained values are then used as an input for multi-objective optimisation that aims at
minimising the tradeoffs between two objectives (i.e. risk and GWP). Results of the AHP
indicate that wind energy is 11.8% risker than solar energy, where the key issue is that
the availability of these energy sources is far from constant but seasonal. In addition,
treated wastewater was the most environmentally friendly, having the lowest impact on
the ecosystem and resources, however, treated wastewater must be properly treated as it
has the highest risk level (12.5%) and can lead to health issues. Finally, the multi-
objective optimization model generates relatively 70 optimal solutions due to the mutual
conflict between the two objectives.

Keywords: EWF nexus; food security; multi-objective optimisation; AHP.

1. Introduction

Energy, water and food systems, which are inherently interdependent, are essential for
human health and survival, economic progress and resilience. These interrelated
relationships were initially introduced at the Rio+20 Summit in 2012 as the “EWF” nexus.
Developing a comprehensive decision-making framework necessitates the
implementation of an effective EWF Nexus system that is adequate in tackling the
multifaced issues within EWF systems to achieve resilient resource management. A
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common approach to deal with risks and uncertainties is building a framework based on
composite indicators (Becker, 2017). In the EWF nexus, the establishment of composite
indicators is a common method for a quantitative assessment. Despite the availability of
numerous indicators within the EWF nexus, developing a resilience indicator using the
AHP technique is extremely beneficial; specifically, since they are a valuable tool that
deals with interdisciplinary boundaries (Albrecht, 2018). In this context, Haji et al.,
(2020) used the AHP to design a risk assessment indicator for greenhouse planning in
arid regions. While Zhang et al., (2021) developed an integrated approach to assess the
composite risk of WEF nexus systems using a generalized copula-based chance-
constrained programming model and generate risk-based plans. The proposed approach
has been applied to an agricultural WEF nexus system in northern China, where the
shortage of water, energy and land affected agricultural outputs. A recent study by Singh
etal., (2022) established an assessment framework to rank individual countries whilst still
allowing decision-makers with the possibility to allocate resources sufficiently and
incorporate other appropriate indicators in countries that struggle in regard to food
security, wherein the set of food security indicators was assessed based on the future
climate change scenario. In this study, an assessment tool based on the EWF Nexus
approach will be developed to support addressing dynamic decision-making, especially
in hazardous non-resilience environments, in order to reduce the effect of overall risk,
thus improving the national adaptability of EWF systems. This will be achieved through
implementing an integrated approach based on the AHP method coupled with a multi-
objective optimization model. A composite risk indicator was established using the AHP
method to determine the weight of different risk criteria for energy and water
technologies. The considered technologies consist of solar, wind and bioenergy for
energy generation, while groundwater, treated wastewater and desalinated water as water
supplies. The obtained values are then used as an input for multi-objective optimisation
that aims at quantifying each EWF nexus system in terms of risk and environmental
impact. The multi-objective linear program is formulated to minimise the tradeoffs
between two objectives (i.e. risk and GWP).

2. Dynamic decision-making framework for EWF Nexus

2.1. Development of Composite Risk Indicators using Analytic Hierarchy Process (AHP)
The AHP method was used to design a composite risk indicator that will determine the
weight of four risk criteria (cost, availability, readiness and applicability) for each energy
and water technology that affect the overall goal, as illustrated in Figure 1. The
technologies considered consist of solar, wind and bioenergy for energy generation, while
groundwater, desalinated water and treated wastewater as water supplies. The assessment
process begins with two-level pairwise comparisons between criteria and alternatives by
identifying which of the two is riskier and by how much. In which the preference is
expressed on a semantic scale of 1 to 9. The information which is related to the importance
of each factor in comparison to one and another is obtained from previous literature. For
the 2" level, there are 21 pairwise comparisons between seven alternatives considering
each risk factor. However, for the 1! level, there are 6 pairwise comparisons between four
risk factors. Then, the normalized relative weight of each factor and alternative is
obtained. Finally, the normalized principal eigenvector of risk factor and alternative was
determined by averaging across each row, as demonstrated in Table 1.
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Identify the risk level of technology that minimise overall risk of EWF system

'
Availabilty of source Readiness Level o
(e.g. solaror Wind) (e.g. 1_9) Apphcablhty
Solar Wind Bio Energy Natural Groundwater Desalinated Treated
Energy Energy Gas < water wastewater

Figure 1: Hierarchy structure for determining the risk level of the energy and water
technologies.

Table 1: Eigenvalues of four criteria and seven alternatives generated from the AHP
method.

Eigen Vector Solar Wind Biomass Natural Groundwa Desalinated Treated
Risk Criteria of Criteria Energy Energy Energy Gas ter water wastewater
(=1 (i=2) (i=3) (i=4) (i=5) (i=6) (=7)
Cost 0.1067 0.1059 0.1237 0.0567 0.1269 0.1272 0.2133 0.2463
Availability 0.3576 0.1111 0.2390 0.1531 0.1261 0.1485 0.1111 0.1111
Readiness 0.3038 0.1250 0.2500 0.1250 0.1250 0.1250 0.1250 0.1250
Applicability 0.2320 0.1884 0.3259 0.1802 0.0540 0.0798 0.0798 0.0919

2.2. Multi-Objective Optimisation Model Development

The multi-objective optimisation model aims at minimising the risk and global warming
potential (GWP) of different energy and water technologies required for food production.
A summary of the mathematical model formulation is presented in Table 2. Two
constraints were introduced to ensure that the sum of all contribution percentages of
energy or water technologies must be 100%. The third constraint is to restrict groundwater
to participate in the water mix when exceeding the annual renewable rate since
groundwater consider as the scarcest water resource in the country studied. Moreover, the
optimisation model assumed that the EWF nexus adopted does not involve the food sector
explicitly in the technology selection, however, its contribution is translated through the
water and energy required to produce food. The risk level of each technology generated
from the AHP method will be used to run the minimisation of the risk objective function.
However, as of GWP, the required data have been adapted from a study by Namany et
al., (2019) which will be used to run the minimisation of the second objective function.
A Solver was used to run and solve the optimization problem.

Table 2: Mathematical formulation for the optimisation model.
Objective Function:

4 7 Identifies the optimal energy and water technologies

e eve wow technology mix that minimises the total risk and global

Min Risk = Z Rixi + z Rixi warming potential of the EWF system delivering 40%
i=1 i=5 of Qatar’s demand for food.

Identifies the optimal energy technologies mix that

4
Min Global Warming Potential = Z GWPx] minimises GWP

i=1

Subject to:
T
The sum of all contribution percentages of energy
e
Z x; < 100% technologies must be 100%.

i=1
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7

ngv <100%

i=5

The sum of all contribution percentages of water
technologies must be 100%.

Restricts the participation of groundwater in the water
9x¢ < Apax mix, being the scarcest water resource in the country
studied.

It implies that all decision variables must be strictly

R{,RY,GWP;,GWPY,x{,x >0 L
positive.

Decision variables:
x}: the percentage of contribution of each water source.
x{: the percentage of contribution of each energy source

Parameters:

R{: the risk level of using energy technology (i) where i=1,2,3 and 4

RY: the risk level of using water technology (i) where i=5,6 and 7

GW P§: the global warming potential of energy source. where i=1,2,3 and 4

GWPY: the global warming potential of the water source. where i=5,6 and 7

g: the amount of groundwater utilised for food production with a 40% self-sufficiency level.
A ax: the annual renewable rate of groundwater in Qatar is assumed to be 58 million m3 per
year.

3. Result and Discussion

The result from the AHP method (shown in Table 3) indicates that wind energy (25.0%)
is the most risker technology to be used for energy supply, where the key challenge is that
the availability of this energy source is far from constant but seasonal. On the other hand,
treated wastewater (12.5%) is slightly risker than groundwater (12.3%) mainly due to the
fact that it should be properly treated to avoid any health issues. The risk values obtained
from the AHP method and Namany et al., (2019) study which represent the GWP of each
technology are summarised in Table 3 and were used as an input to run the multi-objective
optimisation model that aims at minimising the tradeoffs between the two objectives (i.e.,
risk and GWP). The optimisation model has been conducted to determine the optimal
energy and water supply share using different technologies within the existing EWF
system. The result from the solver was practicing a tradeoff between the two mutually
conflicting objectives and generated relatively 70 optimal solutions, as demonstrated in
Figures 2 and 3. Thus, the decision maker can pick any of the optimal solutions based on
additional criteria, such as which solution achieved the lowest risk/GWP. For instance,
Table 4 illustrates that out of 70 solutions, Solution 1 achieved the lowest risk and solution
69 achieved the lowest GWP. However, by averaging all 70 solutions, then Solution 34
can achieve the balanced minimisation between risk and GWP.

Table 3: Risk and environmental data used for the optimisation model.

Technologies Solar Wind Biomass Natural Groundwater desalinated Treated
Gas water wastewater

Risk % 13.3% 25.0% 14.1% 10.9% 12.3% 11.9% 12.5%
GVCV(';}:% of 98,328 1,588 ; 994,305,184 43,575,206 390,796,923 114,201,322

Table 4: The risk and GWP value of the three optimal solutions.

Solution # Solar Wind Biomass Natural Groundw Desalinated Treated Risk GwWp
Energy Energy Energy Gas ater water wastewater
1 33.3% 33.3% 33.3% 0.0% 4.74% 5.32% 89.84% 0.299 125,500,268

69 0.0% 0.00% 0.00% 99.99% 25.90% 26.08% 47.92% 0.232 1,162,161,48
6
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Figure 2: The 70 optimal solutions for energy and water supply share representing (a)
energy technologies and (b) water technologies.
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Figure 3: The tradeoff between risk and GWP for the 70 optimal solutions.

Moreover, due to the existence of mutually conflicting objectives, the problem solutions
will not be a unique optimal but a set of non-dominated solutions referred to as the Pareto
front due to the Pareto dominance concept (Pareto et al., 1896). Moreover, the solution
will be Pareto-optimal if there is no other feasible solution that enhances one objective
without weakening one another. In this study, the two objectives (risk % and GWP) of
the non-dominated solutions set are demonstrated as Pareto Front in Figure 4 using excel.
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Figure 4: Schema of the Pareto front, for the minimization of two contradictory objectives
risk and GWP.
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4. Conclusion

This study introduced an EWF Nexus assessment framework to define the technological
share needed in optimally supplying energy and water that will minimise the risk and
GWP of the overall EWF system using the AHP method and solver. The AHP method
has considered financial and operational aspects (e.g., cost, availability, readiness and
applicability) of energy and water technologies. The model aimed at providing optimal
energy and water supply share from various technologies that minimised overall EWF
system risk and GWP. The multi-objective optimization model generates relatively 70
optimal solutions due to the mutual confliction between the two objectives. However, the
results from the AHP indicate that wind energy is 11.8% more risker than solar energy,
as the availability of these energy sources is seasonal. Furthermore, the treated wastewater
was the most environmentally friendly, having the lowest impact on the ecosystem and
resources, however, treated wastewater must be properly treated as it has the highest risk
level (12.5%) and can lead to health issues. The assessment tool can support decision
makers in understandings possible optimal ways of deploying various technologies to
supply energy and water resources while minimizing overall risk and GWP of the EWF
system.
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Abstract

The purpose of this work is to use Machine Learning algorithms to implement soft sensors
to predict the material quality (MFR — Melt Flow Rate) at polymer production plants. The
goal is to identify off-spec material in real-time without needing specialist online analyzer
equipment. The Machine Learning algorithms use historical time series data of production
plant measurements. These historical data comprise a wide variety of associated features,
potentially driving the evolution of the material over time. The features are the time series
values of specific physical parameters, such as temperature, pressure, etc., measured on
or before the polymerization reactors. We investigated a variety of mathematical
formulations for predicting MFR and Machine Learning Algorithms accordingly. We
present the dataset, as well as machine learning models results along with performance
metrics and future steps.

Keywords: machine learning, multivariate time series, autoregressive model, feature
selection, polymer production.

1. Introduction

The aim of this work is to predict the material quality (ASTM-MFR) at polymer
production plants, based on historical time series data. These historical data comprise a
variety of associated features, potentially driving the evolution of the material over time.
Accordingly, the given dataset is comprised of approximately three thousand signals
measured in different timestamps among them, as well as with the target variable (MFR).
The research started with an investigation of the statistical properties of the studied
variables, followed by feature selection, and predictive modelling with Machine Learning
Algorithms. In any predictive modelling computation, the predicted values always differ
from the given ones in the raw dataset (Bakas, 2019). Hence, and despite the extended
effort made to create a robust model, the predictions deviate from the actual values of
MEFR, especially in certain timestamps, due to the high amount of statistical noise existing
within the variables. The input variables, exhibit distributions with no known patterns or
even chaotic ones, and we present their computational handling, and numerical results.
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We had to deal with specific challenges, such as the sparseness of MFR results
(low frequency, measured every 4 hours on average), while the corresponding features
utilized as an input in the Machine Learning Models are measured more frequently, e.g.
per minute or even per second. Furthermore, we had to smooth the signals’ outliers and
deal with their dynamic nature, as the correlations of the features with the target variable,
though strong, vary significantly with time and disorientate the predictive modelling.
Furthermore, we present how we approached the cleaning of the data along with heuristic
features’ selection algorithms (Bakas, et al., 2022), so as to obtain a structured dataset to
feed the Machine Learning Models. The amount of noise in the dataset was significant;
hence we utilized a variety of autoregressive models and time lags (Bakas, 2019), in order
to attain the best possible prediction accuracy. We found a combination of XGBoost
(Chen & Guestrin, 2016; Xu & Chen, 2014), with the gradients of the features VFk at a
time stamp k, to exhibit adequate accuracy. Furthermore, we investigate various ML
models as new data are being obtained constantly. Particularly, we use Polynomial
Regression (PR) (AlHamaydeh, et al., 2022), Random Forests (Breiman, 2001; Sadeghi,
2013), and Artificial Neural Networks (Bakas, et al., 2019).

To address the issue of noise and time-shift observations in the raw dataset, a
hybrid approach was developed. This will use a simple model of the process equipment,
which will precondition the data values by applying correct time offsets and filtering
before sending it to the Machine Learning algorithms. This procedure removes the burden
of processing noise and applying time offsets from the Machine Learning algorithms. As
further development the model could identify different operating conditions, e.g., which
catalyst is being used in the reactors, and/or change of raw material feeds to produce
High/Low MFR product. This allows Machine Learning models to be trained for each
condition with the expectation that each model will be more accurate within its defined
range than a single combined model.

2. Specific Challenges

2.1. Sparseness of MFR results

We aim to predict MFR values which are measured every 4 hours on average (low
frequency), while the corresponding features utilized as an input in the Machine Learning
Models, are measured more frequently, e.g. per minute or even per second. We
investigated a variety of models, initially we keep constant the previously known MFR
value for the unknown regions, and ultimately, using only ¢ timestamps with known
values for all predictors and target.

2.2. Signal Outliers

The given dataset comprises a rich variety of potential features for the prediction of MFR.
Twenty-one features exhibit high Pearson’s Correlation with MFR (>0.9). However,
these correlations change with time strongly, along with the corresponding outliers in the
features. Signal outliers disorientate the predictions made by any of the utilized models.
To confront this, we used robust-to-noise machine learning models and also tailor-made
algorithms for feature selection, to obtain a final set of features which predicts MFR with
the best possible accuracy.

3. Computational Approach

Exploratory Data Analysis was performed for the fundamental statistical properties, as
well as inter-item correlation and clustering among the time-series. Predictive modelling
has started using various time-lags and linear models to identify prediction accuracy with
the given data. The predictive modelling of the database was implemented by utilizing
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four ML methods, and in particular: a. linear, b. higher-order regression, c. random
forests, and d. gradient boosting. Machine learning methods exhibit diverse performance
on the studied dataset, with respect to the error metrics each time utilized. The utilized
error metrics were the Root Mean Squared Error, the Mean Absolute, the Mean Absolute
Percentage Error, the Maximum Absolute Percentage Error, the slope of the Predicted vs
Actual values, as well as the Pearson Correlation Coefficient. The studied data set
contains a rich variety of input variables. However, many of them comprise extreme
outliers. In order to identify an optimal subset of features, we use optimization algorithms
(Bakas, et al., 2022; Plevris, et al., 2021).

3.1. Mathematical Formulation
Let Q be the sought Quality of MFR, which is intended to be predicted. We use symbol
k as the index for the timestamps of Q. k, may iterate € {1,2, ..., m} values of all time
stamps where the features are being measured, or iterate € {1,2, ..., n} known values of
Q, with n < m. Hence at each time stamp k we have a particular value Qy, while the
entire vector of the target variable is

Q= Qk &)
Accordingly, we define Fy ;, with j € {1,2,...,p}, for p features in total, the value of an
input variable (feature) at time k, such that the vector of features at a time stamp k is

Fye := {F1, Fr2 ""Fk,p}i 2
and hence the entire matrix of features is
F: = Fk,j (3)

Let M': RP - R be an continuous function of the features F, returning the Quality values
Q. We approximate M'with Machine Learning Algorithms, such that

Qx = M(F) + €, (4)
and

€, ~ U(0,0), 5
the regression errors, which should ideally follow a distribution U exhibiting a Gaussian
shape with zero mean.
This is the baseline approach. We may enhance this model, by utilizing the moving
average of each feature j, select a subset o of the p features, add the time-lagged features
as new features, and also add the differences of Fy ; along with the time passed until a
difference occurs, as per the following formulation.
We define the differences of Q, at time k as

AQk:= Qi — Qk-1, (6)
and the corresponding differences ofFy ;,
ka: = {AFk,llAFk,Z' ""AFk,p}' (7)

Let £: R?**1 - R be an continuous function of the features Fj,, such that

AQy = L(Fy, VEy, Aty) + €. ®)
We now identify £ with Machine Learning, taking into consideration the distribution of
the errors €, as above-mentioned.
Afterwards, we may predictQ,, by using

Qr = Qk-1 + AQy. ©)
For the real-time, prediction stage, we iterate for each minute (or appropriate real-time
interval), and sequentially add to the previous Qy_4, the computed AQy, as predicted, with
Aty =1,and k € {1,2,...,m}.
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3.2. Latest data and Model

We retrain the models, after the data engineering as was automated by the HYPPOS
program, enriched by new data, by using all raw features at MFR measurements
timestamps as an input for the ML models, and target variable MFR. Particularly, this
version is for ALL MFR values and both Catalysts. For Nonlinear Regression (NLR),
XGBoost (XGB), and Random Forests (RF), we use exhaustive grid search with cross
validation. The search parameters for tuning are presented in Table 1. For example, for
XGBoost model, we run 36 combinations of Hyper-Parameters, times 100 intermediate
rounds = 3600 different XGBoost models in total, and we select the best one.
Furthermore, for each model, we run it 5 times in order to do cross-validation with a
random permutation of the Train set. Hence the actual models are 18000.

Table 1. Hyperparameter Tunning Search Space.

Nonlinear Regression

number of NLR folds 100
Percentage of NLR Cross Validation Samples per fold 0.8
Maximum Number of NLR Rounds 10
Maximum Number of NLR Features o
Polynomial Degree 2
XGBoost
number of XGB folds 5
Percentage of XGB Cross Validation Samples per fold 0.8
Minimum Number of XGB Rounds 10
Maximum Number of XGB Rounds 1000
Eta 0.05.0.2.0.5
Percentage of Combinations to Check 1
Number of Best Models to keep 10
Depth 1.7.15
Number of Intermediate Rounds 100
colsample bytree 0.5.1
Subsample 0.5.1
Random Forests
number of RF folds 5
Percentage of RF Cross Validation Samples per fold 0.8
Percentage of RF Combinations to Check 1
Number of Best Models to keep 10
n trees 10. 100, 1000
n subfeatures 0.25.0.5.0.75
partial sampling 0.25.0.5.0.75
max depth 1.10. 100
min samples leaf 1. 10. 100
4. Results

The best performing model for the new data after data engineering, was a combination of
parameters of the Random Forests (Table 2). In Figure 1, we present the error analysis in
the Test Set for Random Forests model. We may see that the errors are low on average,
with some specific regions of high outliers (Figure 1).
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Figure 1: Prediction Errors in the Test Set, using the Random Forests model.

In order to explain statistically the drives of outliers in Figure 1, we performed an error

analysis by following the next steps: (a) we
distributed from the minimum value of MFR.

split the Train Set into 1000 bins, equally
, up to its maximum value, (b) we counted

the number of MFR values found per each particular bin, (¢) for each bin, we computed

the Mean Absolute Error (MAE), among the
in the Test Set, (d) we plotted the results in a
& 99% Quantiles of the MAE.

®  MAE-Test Set
95% Quantile of MAE
=0.15787
99% Quantile of MAE
=0.91838

Mean Absolute Error in current bin in Test Set

50 100 150
Number of MRF values per bin in Train Set. bins=1000

Figure 2: Number of MFR values per bin
in the Train Set vs MAE in the Test Set.

Table 2: Performance Metrics for all Models

given MFR values, and the predicted ones,
scatter plot (Figure 2), along with the 95%

Interestingly, we observe an inverse
association among the number of MFR
values per bin in the Train Set, and the
corresponding MAE in the Test Set.
Hence, we empirically deduce that the
density of MFR values per MFR range
corresponds to low errors and vice versa.
Hence, e.g. for high values of MFR (>25)
the high errors occur as a result of low
number of MFR values in the training
dataset. We foresee in the future steps of
this work to gather more data and train
new models, to resolve the data adequacy
issue.

Used

Model Dataset Pearson M.A.P.E. M.A.E. RM.S.E
Linear Train 0.988 0.165 0.791 1.176
Linear Test 0.946 0.310 1.246 2.120
Polynomial Train 0.992 0.127 0.650 0.998
Polynomial Test 0.967 0.234 0.907 1.598
XGBoost Train 1.000 0.000 0.001 0.002
XGBoost Test 0.983 0.075 0.585 1.462
ANNBN Train 0.999 0.054 0.260 0.350
ANNBN Test 0.418 0.277 1.838 12.939
Random Forests Train 1.000 0.005 0.032 0.080
Random Forests Test 0.970 0.071 0.548 1.555
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5. Conclusions

In this work, we developed machine learning models for the MFR time series prediction
on real industrial conditions. The input for the models is a wide variety of industrial
measurements, as obtained in the timestamps MFR was measured. We investigated
various mathematical formulations, along with machine learning models. We found that
hyperparameter tuning with exhaustive search, and tree-base models (XGBoost and
Random Forests) yielded the best possible performance. The average errors are low for
entirely out-of-sample data points. However, as outliers also exist in specific MFR
timestamps, we foresee retraining the models with new data that will be obtained
gradually in real-time industrial conditions. Despite the vast noise in data, irregular
timestamps of MFR measurements and limited dataset, we developed a model exhibiting
adequate accuracy on average.
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Abstract

The HYPPOS software has been developed to encapsulate experience gained over 15
years of building bespoke solutions for the polymer industry. HYPPOS not only is
configurable and easily maintainable, but it also uniquely provides the ability to combine
data analytics and Artificial Intelligence to support decision making.

We developed a mathematical material tracking system that discretizes continuous
manufacturing processes into identifiable slices of material (“Quanta”) and track them as
they move through the manufacturing stages. To achieve this, HYPPOS is integrated with
production and business management ICT systems. HYPPOS transforms data collected
into information and applies different inferencing and Machine Learning algorithms,
which calculate critical quality parameters, then tracking them in real-time. As the Quanta
move past sensors, they collect KPI’s and quality parameters making the history of the
material visible.

Keywords: petrochemicals, sustainability, real-time monitoring, waste reduction,
decision support

1. Introduction

Today polymer production and forming processes account for more than 80% of the
carbon footprint of plastic manufacturing (Hydrocarbon Processing, 2018). That presents
detrimental environmental challenges that need immediate attention and intervention. The
International Energy Agency ‘s (IEA) “Future of Petrochemicals” report (IEA, 2018)
recommends building a more sustainable and efficient petrochemicals industry. Early
identification of potential process issues and their correct handling is critical to reducing
material waste and energy consumption. This can be achieved through specialized
software technology that enables automatic and real-time analysis. However, current
software platforms do not offer the required specialization, flexibility, and information
without extensive customization.

Identifying the gap in the currently available solutions, we developed HYPPOS -
Hyperion Predictive Production Online Software. HYPPOS as presented at the 11
International Conference on Chemistry and Chemical Engineering (ICCCE, 2020) and
at the 9" International Conference on Chemical and Process Engineering Materials
(ICCPE, 2020) is an all in-one Artificial Intelligence driven decision support tool that
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addresses specific challenges of the polymers industry including quality traceability, real-
time analysis, rapid and accurate reporting, process visualization and quality consistency.
HYPPOS is positioned in Industry 4.0 Tactical Management Level, it collects data from
systems at the Transactional Management Level, feeds and receives data from systems at
the Strategical Management Level (e.g. Enterprise Resource Planning Systems such as
SAP) and co-exists and interacts with other systems at the Tactical Management Level
(e.g., Laboratory Information Management Systems).

Plant
Historian

Figure 1: HYPPOS Positioning as per ISA 95 Industry Standard.

Polymer manufacturing requires quality monitoring at the different production stages
from the polymerization reactors through to extrusion and batch assembly in blender
silos. For this purpose, specialized On-Line Polymer Analysis equipment (OLPA) is
available. Nevertheless, the majority of polymer plants are not equipped with such on-
line analyzers primarily due to their high cost. Instead, process engineers and plant
operators usually rely on off-line laboratory measurements of quality critical parameters.
This does not allow real-time monitoring and early corrective actions, and as a result it
leads to off-spec polymer product. Therefore, the aim of this work is to embed Machine
Learning (ML) algorithms into HYPPOS software to create Soft Sensors to predict quality
in real-time at early production stages eliminating the need for on-line physical sensors.

The Melt Flow Rate (MFR) is one of the most frequently used parameters in polymer
manufacturing to control the material quality, and it is a measure of the viscosity of the
polymer. Therefore, the MFR value range constitutes the most fundamental quality
specification of the final polymer product since it determines the product grade.

2. Method

HYPPOS combines material flow models with AI/ML to create a digital twin of the
production equipment and process. Its monitoring and inferential capabilities allow the
online tracking of product quality as it moves through the production process and can
forecast the final quality of polymer being produced enabling early corrective real-time
actions. It uses a proprietary new method that allows the discretization of continuous
processes and formulations of material into small ‘Quanta’ (depicted as Qi in Figure 2),
which act as a discreet container of trackable information enabling the traceability of
material and its properties throughout the entire production process. The integrated
tracking system is based on a unique, in-house developed process flow model which
moves the Quanta through the equipment on a FIFO basis. Using an analogy, the ‘Quanta’
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are located on a conveyor belt that helps them move through the process equipment
advancing at the same speed as the production stream.

Q15 1 —‘
I Q14 Q09 Qo4
Q13 | Qo8 Qo3
o 124 g2
Q11 Qo6 Qo1
Q10 OLPA Qo5 Qo0
| \
Quanta Test Batch 1D
Material Sample Result atf:
details taken Stored Assigned
Q12 Q11 Q10 Qo9 Q08 \_Qo7 / Q06 Q05 Q04 Q03 Q02
Quanta Tracking Conveyer :>

Figure 2: Analogy for Quanta Tracking System.

The model covers the main production stream from process feeds through to final product.
The model is block based, with Equipment Blocks, Movements and Modifier blocks
which merge/separate streams. The Movements transfer are driven by plant
measurements, and transfer Quanta between Equipment using this information. The exact
transfer rate calculation depends on the availability of plant measurements. Where
instrumentation is missing, special proprietary algorithms calculate the movement rates
based on measurements in surrounding equipment. The Equipment Block maintains
details of the material holdup within the process equipment. Additionally analytical
processes have been development to process the information collected by the model and
produce detailed reports for the final product.

When real time OLPA instrumentation is available, the Quanta can collect and carry this
information and can be used to display the product quality properties as it advances
through the production process.

Efforts to predict the polymer quality through Soft Sensors that use ML models based on
plant measurements have been reported before (Shi, et al., 2006; Jumari & Mohd-Yusof,
2016; Liu, et al., 2018; Abeykoon, 2018; Yan, et al., 2023;). The innovation of this work
lies in embedding the ML models in the HYPPOS Quanta algorithm that is implemented
at industrial scale and it allows the real-time tracking of material together with its quality
characteristics as it moves through the production equipment.

We have identified the following challenges when implementing ML algorithms to a
continuous process such as polymer production. The process measurements used as input
in the ML model are recorded continuously in real-time, whereas the target variable
(MFR) is measured on average every 4 hours. Since MFR measurements come off-line
from the lab, they become available with a delay of around 2 hours. Therefore, they need
to be time shifted to various points in the process.

Furthermore, the plants are using relatively infrequent Lab test results for the quality
parameter measurements, and this makes it difficult to obtain useful quantities of data to
train the ML system to predict these parameters.
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While initial tests using information from the plant were promising, they were not
working well in all situations, especially during process transients. To simplify the ML
algorithms task, we developed a pre-conditioning algorithm which is based on a simple
model description of the process stages. The model defines the measurement signals, and
the time duration of each stage. This allows the pre-conditioner to correctly time shift the
measurements and apply noise reduction techniques to the values.

3. Case Study Results and Discussion

The objective was to predict the MFR on the polymerization reactor of an industrial scale
polypropylene plant. To train the ML system, 5 months of raw process data from the plant
including Lab measurements were used. Features selection algorithm was implemented,
and 47 process variables were found to correlate the best with MFR measurements
including among others the hydrogen feed rate to the polymerization reactors, doner
concentration, teal concentration, the catalyst type, the reactor pressure and reactor
temperature, and input material flow rates.

The raw data was run through a specially developed tool that converted the raw data into
a training data set. The training data set contained the target variable values (MFR lab
measurements) and all the pre-conditioned values that affected the production at that
instant.

Using the trained ML algorithms, predictions were made using pre-conditioned process
test data. This resulted in a marked improvement in prediction accuracy and better
handling of process transients.

Figure 3 below shows XGBoost prediction of MFR parameter without using pre-
conditioned data. It clearly shows that the predictions anticipate changes in MFR,
therefore the Orange prediction line generally changes before the Blue measured line.

Figure 3: MFR Predictions without Preconditioning.

Figure 4 shows XGBoost prediction of MFR parameter with pre-conditioning. This shows
great improvement in time shift and overall accuracy.
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Figure 4: MFR Predictions with Preconditioning.

It is evident from the above graphs that there is a significant improvement in terms of
tracking changes in operating conditions as now the Orange line is not time displaced
from the Blue as in previous graph. There is also an improvement in prediction accuracy
which is shown by the performance metrics calculated for each case as shown in the Table
below.

Table 1. Performance Metrics for Methodologies Used.

Pearson Correlation Mean Absolute Percentage
Error
No Preconditioning 0.92846 0.09523
With Preconditioning 0.98381 0.06697
Improvement 5.96% -29.67%

The pre-conditioning technology has now been developed into a module within the
HYPPOS software. This uses the process data values collected by HYPPOS in real-time,
and at specified intervals it produces a table of pre-conditioned values. This table is passed
to the ML prediction algorithm, which predicts the MFR, and the result is returned and
passed to HYPPOS for use as part of the product quality management functionality.

It should be noted that these results were achieved with a relatively small quantity of
training data, and that the installed system is expected to improve further on accuracy as
it retrains itself based on continuous data collection.

4. Conclusions

Based on this, HYPPOS is expected to have a significant positive impact on production
efficiency, profitability, and competitiveness while also reducing waste, with a
consequential contribution in lowering the carbon footprint.

The implementation of ML pre-conditioning has been a significant step forward in
improving accuracy of the quality parameters. And it demonstrates that it can produce
useful results with relatively little training data, allowing rapid deployment on new plants.
This technology gives HYPPOS users a real-time view of the quality of the product being
produced, enabling rapid intervention and reduction in waste and off-spec production.



290 Symeon Kassianides et al.

Acknowledgement

This work received financial support by the Horizon 2020 — 2nd Opportunity program of the
European Commission, and the Research and Innovation Foundation of Cyprus programs for
research, technological development, and innovation “RESTART 2016-2020” (RIF PROPOSAL
NUMBER: OPPORTUNITY/0916/SME-I1/0005).

References

https://www.hydrocarbonprocessing.com/news/2018/10/petrochemicals-set-to-be-the-largest-
driver-of-world-oil-demand
https://www.iea.org/news/petrochemicals-set-to-be-the-largest-driver-of-world-oil-demand-latest-
iea-analysis-finds

S. Louloudi, 2020, Software for Real-time Tracking, Analysis & Visualization of Polymer Data in
Production Plants, Presentation at the 9th International Conference on Chemical and Process
Engineering Materials (ICCPE 2020), 20-22 May,
http://www.iccpe.org/I[CIEM&ICCPE%20Conference%20Program-2020.pdf

S. Louloudi, 2020, Software for Real-time Tracking, Analysis & Visualization of Polymer Data in
Production Plants, Presentation at the 11th International Conference on Chemistry and Chemical
Engineering (ICCCE 2020), 08-10 July 2020.

Y. M. C. Abeykoon, 2018, Design and Applications of Soft Sensors in Polymer Processing: A
Review, Sensors Journal, IEEE, [10.1109/JSEN.2018.2885609],
https://doi.org/10.1109/jsen.2018.2885609

W. Yan, T. Dong, Y. Zhou, Z. Luo, 2023, Computational modeling toward full chain of
polypropylene production: From molecular to industrial scale, Chemical Engineering Science,
Volume 269.

N. Jumari, K. Mohd-Yusof, 2016, Comparison of Product Quality Estimation of Propylene
Polymerization in Loop Reactors Using Artificial Neural Network Models, Jurnal Teknologi.

J. Shi, X. Liu, Y. Sun, 2006, Melt index prediction by neural networks based on independent
component analysis and multi-scale analysis, ScienceDirect, Volume 70, pp. 280-287.

S. Liu, X. Gao,W. Qi, S. Zhang, 2018, Soft sensor modelling of propylene conversion based on a
Takagi-Sugeno fuzzy neural network optimized with independent component analysis and

mutual information, Transactions of the Institute of Measurement and Control.



https://doi.org/10.1109/jsen.2018.2885609

Antonis Kokossis, Michael C. Georgiadis, Efstratios N. Pistikopoulos (Eds.)

PROCEEDINGS OF THE 33" European Symposium on Computer Aided Process Engineering
(ESCAPE33), June 18-21, 2023, Athens, Greece

© 2023 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/B978-0-443-15274-0.50047-0

Markov Chain Monte Carlo simulation-based
optimization for a production scale milk drying
process

Adrian Ferrari?, Soledad Gutiérrez®, Giirkan Sin®

“Chemical & Process Systems Engineering Group — Chemical Engineering Institute -
Engineering School — Universidad de la Republica, Julio Herrera y Reissig 565, PC
11300, Montevideo, Uruguay

bProcess and Systems Engineering Centre - Department of Chemical and Biochemical
Engineering, Technical University of Denmark, Soltofts Plads, Building 229, DK-2800
Kgs. Lyngby, Denmark

aferrari@fing.edu.uy

Abstract

Spray drying is widely used for dehydration of dairy products and among, the most
energy-intensive unit operation in this field. An optimization problem for a production
scale milk drying system was implemented and solved, considering plant capacity
(maximization) and energy consumption (minimization) as the objective. Decision
variables were inputs to the spray unit namely the inlet dry bulb air temperature,
concentrate moisture, and dry solids flow rate. Product stickiness conditions and
moisture content were the main constraints, which were modeled using mass and energy
balances. A non-deterministic derivative free based optimization technique, namely
Markov Chain Monte Carlo (MCMC) algorithm was chosen to solve the problem. The
results showed that throughput maximization is achieved at the expense of a relative
energy consumption penalization in the spray and revealed that the structure of the
problem seems to be convex. This study shows a promising non-conventional use of
MCMC algorithms in optimization studies.

Keywords: Milk drying process, process optimization, derivative free optimization,
MCMC.

1. Introduction

The most widely used technique for dehydration of dairy products is spray drying after
evaporation. These processes preserve food properties and allow storage of powders at
an ambient temperature (Schuck et al., 2008). A drying plant normally presents three
stages: 1) spray chamber; 2) internal fluid bed at the conical base of the spray chamber;
and 3) external fluid bed to fine tune the outfeed product stream, as it is shown in Figure
1 (Schuck et al., 2005). As spray drying is the most energy-intensive unit operation in
the dairy industry, process optimization becomes of critical importance to increase
efficiency and reduce production costs (Petersen et al., 2015). As a continuation of
previous works in a production scale system about modelling, uncertainty,
identifiability, and sensitivity analysis from the point of view of identifying influential
inputs/parameters and quantifying confidence intervals in model simulations (Ferrari et
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al., 2015; Ferrari et al., 2016; Ferrari et al., 2017), an optimization problem for the entire
milk drying process is here implemented and solved.

Concentrate

Inlet air

Outlet ain

4
+>@

Chamber

Cyclone

Internal

Fluid bed air

Powder

Figure 1. Physical system of three stage dryer scheme.

Maximization of plant capacity and minimization of energy consumption are considered
in the objective function. Decision variables are all inputs at chamber inlet streams:

- Ta,: Chamber inlet dry bulb air temperature [K], which is feasible to be manipulated
at the feed to the spray unit.

- Mp,: Concentrate moisture [Kgwater-Kgtotal'], Which is feasible to be manipulated by
the output from the evaporation plant upstream of the drying processes.

- S: Dry solids flow rate [kgary solias-h™'], which is feasible to manipulate via the feed to
the evaporation plant.

Product stickiness conditions at internal fluid bed and moisture content in final powder
are assumed as the main constraints in the problem. A global sensitivity analysis of the
optimization results is also performed respect to normal and not controlled variations in
the chamber inlet air humidity (Ha 1; range: 0.003 — 0.020 kgwater-Kgary air”'), finding the
corresponding result for a different Ha ; value at a time. A non-deterministic/derivative
free based technique (Markov Chain Monte Carlo algorithm) is chosen to solve the
problem to overcome issues when using a deterministic gradient-based method. The
MCMC use is also interesting for trying to visualize non-convexity patterns in the
model finding the posterior density functions of decision variables, representing a non-
conventional use of MCMC. Details and results about the deterministic approach are not
covered in this paper because of length restrictions. The work is structured as follows:
first the conceptual optimization problem is described, then the optimization technique
is introduced, afterwards the obtained results are analyzed and discussed.

2. Materials and methods

2.1. Optimization problem
To consider plant capacity maximization and energy consumption minimization, the
objective function (OF) is structured as follows:

OF = a.Ty1 — B-Pout — V- Wariea M
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Being:
M
Pour = S. [1+ﬁ] 2
M M
Wariea = S- [i - i] 3)

l—Mp’1 1—MP,4

Where Poy is the total flow rate at system output [kg.h']; Waried, the total water dried in
the system [Kgwaer-h™']; Mpga, the final powder moisture [KgwaterKgwowr']; and o/Bfy,
dimensionless coefficients to have balanced terms in the objective function. It will be
assumed a = 20, f =y =1, all constant during the complete study. The main inequality
constraints to be considered are related to the product stickiness [using glass transition
temperature as indicator (Silalai and Roos, 2010)] at the internal fluid bed, and also with
the residual moisture content in final powder, in accordance to Eq. (4) and (5).

Tps < Ty “)
MP,4- < MP,max (5)

Where Tp3/Tg3, are the product one and its glass transition temperature at the internal
fluid bed [°C]; and Mp max, is the maximum allowed powder moisture at the end of the
system [Kgwater-Kgtotar . It is assumed in this work a value of 0.030 kgwater.kgtota”! for this
parameter (commercial constraint for whole milk powder). The decision variables for
the optimization are Ta 1, Mp,1, and S, with the following bounds to screen an important
range of operating conditions in the system.

453K < T,; < 503K (6)
0.47 kgwater- kgtt)tal_1 < MP,l <053 kgwater- kgt:otal_1 (7)
5,000 kgdry solids* ht<s< 6,600 kgd‘ry solids- Rt (8)

The optimization problem will minimize energy consumption and maximize throughput
in the system, changing Ta,, Mp, and S as decision variables, subject to mass and
energy balances with also powder stickiness and residual moisture constraints. The
detailed process and product stickiness models are described in Ferrari et al. (2015),
Ferrari et al. (2016), and Ferrari et al. (2017). The complete structure of the optimization
problem is summarized as follows:

min OF
Ta1:Mp,1;S

s.t:

Tps < Ty3
MP,4 S MP,max
TA,l; MP,].; SER

2.2. Numerical methods

As a non-deterministic/derivative free technique, a Markov Chain based algorithm was
used for solving the optimization problem and for detecting non-convex behaviours.
This represents a non-conventional use of Markov Chain based algorithms, but it is
interesting to analyze its capabilities and obtain first insights for finding posterior
density functions of decision variables and trying to visualize non-convexity patterns.
The Metropolis random walk algorithm (Gelman et al., 2004; Weinzierl, 2000) was also
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used as the method to accept/reject new samples from transition distributions. The
algorithm proceeds as follows:

Step 1: randomly select a feasible initial vector of decision variables, 0°. A uniform
distribution is assumed for all of them.

Step 2: create a new trial vector, 0" = 0% + A0, where A0 is randomly sampled from a
jumping distribution q(AB). This is assumed as multivariate normal centered at
current iteration and calculated as follows:

2,4

AG = u.m (9)
Where u is a unit normal random number drawn for each decision variable; and
1(0), the length of 6 vector.

Step 3: calculate the adapted Metropolis ratio (r):

OFAugmented(gk)
— “Augmentedl” J 1
OFAugmented(ek_l) ( 0)
{OF if 6 € Feasible Region} 1
OFyax Otherwise an
OFMG.)C = Q. TA,l (12)

OFAugmented =

To compute the constraints of the optimization problem, an augmented objective
function with a hard penalization term was defined in accordance to Eq. (11).

Step 4: accept the new vector by the following rule.
x _ (6" if arandomprobability <r
0" = — i (13)
%=1 Otherwise

To report the optimal values for decision variables, the following criterion is applied: if
chains show that a bound constraint is active, such bound value is assumed as the
optimal; otherwise, the mean for all chains data is reported as the optimal value. All
mathematical models and numerical methods were implemented in Matlab R2015a
using an Intel(R) Core(TM) 17-3770 CPU@3.4 GHz with 8 GB RAM memory.

3. Results and discussion

The results are obtained using between 10 and 20 Markov Chains with 5,000 samples
per chain. Optimal Ta ; and S values reach their upper bounds for all Ha ; range (default
values in the plant are 468 K and 5,760 kgary solias-h™ respectively), so throughput
maximization is achieved at the expense of a relative energy consumption penalization
in the spray. Respect to Mp results (between 0.525 — 0.529 kguwater.kgtota* covering the
Ha,1 range), the values are slightly higher than the default one (0.52 kgwater.Kgotar™') S0
this is aligned with water dried maximization in the system. Numerical issues were
found during the deterministic approach, but the results here obtained confirmed main
tendencies for decision variables. Figure 2 shows an example of the evolution for 20
chains, in which the convergence is achieved and requiring in most of the cases less
than 5,000 samples. At the end of the chains upper bound is reached for Ta,; and S. The
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computational burden was around 9 hours per optimization run and more representative
results obtained from this example are presented in Table 1. Despite the acceptance ratio
being low (0.021), most likely because of the constrained nature of the optimization
problem, convergence was achieved for all decision variables (R-scale values close to
1), and the Monte Carlo estimation error presented low values for all cases (Gelman et

al., 2004) as shown in Table 1.
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Figure 2. Simulation results for an example of 20 chains. [Ta ] =

Table 1. Summary of performance for the example shown in Figure 2

Tau Mp, S
R-scale 1.0331 1.0348 1.0240
Monte Carlo error 0.0007 % of mean 0.0006 % of mean 0.0004 % of mean

Figure 3 shows the densities obtained for decision variables in accordance with the

example shown in Figure 2.
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Figure 3. Density functions for decision variables. [Ta,1]

As can be interpreted, the nature of the problem seems to be convex since only one peak
appeared in density functions. Hence, local optimum would also be global. In general
MCMC explore the decision space using a random walk algorithm, which makes it
robust against the initial conditions of decision variables. On the other hand, a prior
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distribution is required for them and the slow convergence can be improved using
different methods such as differential evolution, parallel computing, etc. (Vrugt, 2016).

4. Conclusions

An optimization problem for a production scale milk spray and fluid bed drying was
implemented and solved in Matlab. Results from a non-deterministic based technique
(Markov Chain based random walk algorithm) revealed that dry bulb air temperature
and dry solids flow rate could be controlled close to their upper bounds. These insights
are aligned with the current situation in the production scale plant which this work is
based on. It can also be observed that optimal concentrate moisture values are higher
than the default one for the base problem, being this aligned with the maximization of
total water dried in the system. The results involve an improvement in plant throughput
but with a penalization in relative energy consumption in the spray dryer compared with
the base operational point. The non-deterministic based results revealed that the
structure of the problem seems to be convex. Despite it needs further theoretical
analysis, the application case study shows promising results as a novel technique for
non-deterministic/derivative free global optimization. This is especially suited for
industrial applications, where the process models are not amenable for calculation of
derivatives (Magnusson et al., 2020). Trying other non-deterministic tools such as
Genetic Algorithms, Particle Swarm, etc., and doing a more comprehensive study on the
multi-objective optimization problem, can be explored as future works. The developed
model is expected to be a promising tool for decision-making at industrial scale.
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Abstract

In this work, a memory layer sequence-to-sequence digital twin (ML-StSDT) of a
high-density polyethylene (HDPE) reactor simulated by ASPEN Dynamics™ was
constructed using simulated grade transition and steady-state operating data. A
reinforcement learning control (RLC) algorithm was developed by training with the ML-
StSDT. The RLC was able to control both grade transition and steady-state operation of
the simulated plant. The RLC performs better or equally well when compared with the
direct application of ML-StSDT in nonlinear model predictive control (NLMPC) but
substantially reduces the computation load. Our results demonstrate the feasibility of deep
learning models serving as a digital twin for RLC training in nonlinear process control
applications.

Keywords: Reinforcement learning; Sequence-to-Sequence with Memory Layer; Model
Predictive Control, Grade transition.

1. Introduction

Model predictive control (MPC) has been used in the process industry to maximize
the productivity of the process and reduce energy consumption. As the scope of the
process being controlled increases, the following issues become more challenging. First,
the number of state variables to be identified and decision variables to be optimized
increases. Dynamic prediction horizons also become more and more complex and
nonlinear. Hence a nonlinear model is required. Computation load becomes a challenging
issue and control policies within the sampling period were increasingly difficult and
suboptimal decisions may be made (Mayne et al. 2014) and The computation difficulty
still limits control policy optimization over a less satisfactory horizon. The similarity
between reinforcement learning (RL) and MPC has long been recognized, studied, and
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reviewed by Gorges (2017). RL can drastically reduce online computing time. According
to Nian et al. (2020), while RL methods such as deep deterministic policy gradient
(DDPQG) are suitable for online control, application of RL, application of RL to industrial
control is mostly limited to a simulation environment. The Monte Carlo method is suitable
for generating an infinite set of operations with a clear system terminal state, and the
average return can be obtained after each trajectory calculation and does not require
estimating values through previously estimated values to avoid the value function falling
into local optima (Yoo et. al., 2021).

2. Memory Layer Sequence-to-Sequence Model

In our previous work, Jiang et al. (2022), we developed a sequence-to-sequence with
memory layer (ML-StS) model (Figure 1) for a high-density polyethylene slurry reactor
simulator (Figure 2) using ASPEN Dynamics™, based on the kinetic model by Khare et
al. (2002). The sensors. manipulation and controlled variables (SV, MV, and CV) are
shown in Table 1. The operator employed catalyst flow and hydrogen flow as MV to
control the hydrogen-to-ethylene ratio (HER) and pressure. The ML-StS model was able
to predict dynamic behavior with high accuracy as well as consistent directionality of
MV/CV pairs u shown in Table 2.
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Figure 1. Structure of an StS model with the memory layer
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Figure 2. The schematic of the HDPE process.
Table 1: List of variables Table 2: Directionality of gain
Type Tag HER Pressure

MV  The flow rate of ethylene The flow rate of ¢+ _

MV  The flow rate of hydrogen The flow rate of

MV  The flow rate of 1-butene hydrogen

MV  The flow rate of catalyst
MV  The flow rate of cocatalyst
MV The flow rate of hexane
MV  Temperature of reactor
()% Pressure of reactor

CV  HER of purge gas

3. Nonlinear Model Predictive Control

The ML-StS model was then used in navigation as the predictive model used by
nonlinear model predictive control (NLMPC) as shown in Figure 3. The differential
evolution algorithm (DEA) was used to plan control actions in the future horizon and
according to the future trajectory objective and operating constraints. While the NLMPC
scheme is successful for both grade transition and steady-state operation, the computation
load is too heavy to prevent frequent updating of manipulative variables.
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Figure 3. The schematic of the MPC calculation process.

4. Reinforcement Learning Control

Instead of direct application in NLMPC, the ML-StS model can also serve as a digital
twin (DT) environment for training a reinforcement learning control (RLC). In this study,
the “state” in RL was defined as the input to ML-StS encoder and future CV target
setpoints trajectory. The “actor” was defined as the control action of the immediate future.
The Monte Carlo Deep DeterministicPolicy Gradient (MC-DDPG) was used to train the
state actor relation using the ML-StSDT as the “environment” (Figure 4). Eq. 1~8 are
utilized to calculate the reward of action. Eq. 1 is the main target of the hydrogen-ethylene
ratio. Eq. 2,3 make sure the current pressure (Pre.) is between the desired upper and lower
limits (UL, LL). Eq. 4~7 limits the MV, catalyst flow (Cat.), and hydrogen flow (hyd.),
within the allowable operating range. Eq. 8 allows RL models to achieve setpoint with
minimal MV changes. After training using the ML-StSDT, RLC is then tested by the
physical simulator.

Ry = —|(HERgetpoint state = Yuere)| * 10° (1)
R, = _|(Pre'UL_ 7Pre.,t)| *107, if y, > Pre.y, 2)
Ry = —|(Pre..;— ¥pre,)| * 107, if Ypre, < Pre, 3)
R, = —|(Hyd.y,— uhyd.,t)| * 108, if upyq, > Hyd.y; @)
Rs = —|(Hyd.;; - uhyd.,t)| * 108, if upyq, < Hyd.y, )
Rs = —|(Cat.yy—ucqr,e)| * 10%, if Ucqe, > Cat.y, (6)
R, = —|(Cat. — ucqr,e)| * 108, if ucq, < Cat.y, 7

Rg = —|Au,| « 101 (®)
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Figure 4. The schematic of the RL interacting with the HDPE process.
5. Results

Figure 5 and Figure 6 compared the results of two cases of grade transition directed
by controlled LC and NLMPC. As shown in Figure 5 (a) the HER IAE of NLMPC is
34% lower in NLMPC but RLC produces a much smaller overshoot. In Figure 6 (a) the
HER IAE of RLC and NLMPC are similar. However, NLNMC results in the oscillation
of NLMPC being much more severe while RLC provides a smoother transition. Figure
5(b, d) and Figure 6 (b, d) showed that the action of NLMPC is much more aggressive
while RLC provides a much smoother action due to higher frequency updating of control
action. The changes in cumulative total and individual rewards of the RLC and NLMPC
as shown in Figure 7. RLC also shows a much smoother trajectory. RLC computation
time for each decision-making (18 milliseconds) is only about 1/1000 compared with the
cost time of calculation of MPC (18 seconds). The 99.9% time reduction of RLC
demonstrates the superior potential for the real complex process.

HER_IAE_RL: 86.64, HER_IAE_MPC: 57.07
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Figure 5.The result of MPC and RL of (a) the H2/C2H4 ratio (b) the flow rate of the
catalyst (c) the pressure of the reactor (d) the flow rate of hydrogen.
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Figure 6. The result of MPC and RL of (a) the H2/C2H4 ratio (b) the flow rate of the
catalyst (c) the pressure of the reactor (d) the flow rate of hydrogen.

6. Conclusion

In this work, we demonstrated that a memory layer sequence-to-sequence digital
twin (ML-StSDT) of a high-density polyethylene (HDPE) reactor can serve as a model
for NLMPC as well as a surrogate environment for training an RLC. The RLC performs
better or equally well when compared with direct application in NLMPC but the online
computation load is much reduced.

(a) Total Reward RL: -870488.76, R1_RL: -866405.86, R2&3 RL: 0.00
Total Reward MPC: -574744.17, RL MPC: -570732.49, R2&3 MPC: 0.00

R4~R7 RL: 0.00, R8 RL: -4082.90
R4~R7 MPC: 0.00, R8§ MPC: -4011.68
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Figure 7. The result of total reward and R1~R8 reward of two different directions of
grade transitions of MPC and RL.
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Abstract

The supply chain for ethylene production is becoming unstable, especially after Covid-
19. This situation poses new challenges for ethylene plants to handle frequently changing
feed supply conditions with more responsive scheduling strategies. This paper proposes
arolling horizon approach combined with moving average supply forecasting to assistin
dynamic decision-making for ethylene production scheduling. When applied to an
industrial case study, the proposed model shows superior calculation speed as well as the
capability to find fairly good scheduling solutions under uncertain supply conditions.

Keywords: rolling horizon, scheduling, ethylene, inventory management

1. Introduction

Ethyleneis one of the most important chemicals in the world and ethylene plants form
one of the most profitable industrial chains (Li et al., 2022b). Owing to Covid-19, the
global supply chain is experiencing ongoing turmoil, which increases the feedstock
supply uncertainty in the ethylene industry. This brings pressing needs for ethylene plants
toadoptadynamic schedulingstrategy to respond to unstable upstream supply conditions
to guarantee optimal economic profits over time.

In recentyears, ethylene production scheduling has been studied intensively. Ethylene
cracking furnace systems process multiple feeds in multiple furnaces to produce ethylene
and other olefin products. As the product yields vary with the furnace and the cracking
duration as a result of coking inside the coil, the scheduling strategy, which determines
the feedstock allocation between furnaces and the batch lengths in each furnace, has vital
influences on the economic profits of the ethylene plants. And and Grossmann (And and
Grossmann, 1998) first proposed a mixed-integer nonlinear programming (MINLP)
model for the ethylene scheduling problem. After that, many modifications, for example,
the non-simultaneous constraints (Liu et al., 2010) and integration with operation
optimization (Li et al., 2022a) have been made to improve the model.

However, the dynamic response to the changing feedstock supply conditions has been
overlooked in these previous scheduling studies. Facing this challenge, this paper
developed a novel dynamic scheduling framework including (1) a Rolling horizon
approach for the self-update of decision variables (2) Feed supply forecasting by moving
average estimation (3) Mathematical formulation of the scheduling model with daily
inventory constraints. This framework enables the model to receive new supply
information from the environment and make quick responses by updating the scheduling
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variables. To demonstrate the efficacy of the developed new dynamic scheduling
framework, a reference industrial case study taken from the literature is presented.

2. Problem statement

Fig. 1showsthe mass flowinatypical ethylene crackingfurnacesystem (Lietal.,2022a).
Feedi (1,2, ...,NF) is cracked in furnace j (1,2, ..., NF) and finally produces product|
(1,2, ..., NP) after quenching and separating.

Feed 1 Feedi Feed NF

Storage tanks 1 i « NF

_—
o

“ AN

Cracking furnaces 1 j - ENE

N |/

Downstream processing units

e

Products 1 l .~ NP

Figure 1. Mass flow of the ethylene cracking furnace system

However, because the feedstock supply conditions change frequently and decision-
makers can’t foreseethe perfectinformation about the future feedstock supply conditions,
updates of the following scheduling decision variables: (1) the inlet feed type in each
furnace; (2) whether to perform decoking in a furnace given the visible future supply
conditions, the inventory conditions, and the furnace conditions on the current day n are
thus needed.

3. Methods

3.1. Rolling horizon approach

The rolling horizon approach is demonstrated in Fig. 2. The core ideais to optimize over
a fixed horizon based on visible parameters and re-optimize the model repeatedly once
the time step moves forward and new parameters are received. On the current day, the
model will receive visible feed supply parameters from the market and optimize the
schedule for the next Hi days (lookahead horizon, LH). Before the optimization, the
variablesfor the first Hz days (fixed horizon, FH) will be fixed at variable solution levels
from the previous schedule. In real cases, the time horizon of visible feed supply will be
shorter than LH (referred to as imperfect information), which requires the model to
estimate the future supply parameters based on the current information and generate the
schedule. After the optimization, the schedule onthe current day will be executed and the
rest schedules in FH will be passed to the next optimization.

LH
FH o Executed decision on the current day

[ ¥ I Lookahead Horizon (LH)
i
i
i '

i
P

0123 n

Figure 2. lllustration of rolling horizon approach

Horizon



A Rolling Horizon Approach for Ethylene Production Scheduling 307
with Daily Inventory Constraints

3.2. Supply forecasting by moving average estimation

Due to the existence of randomness, it’s impossible to accurately foresee the long-term
feed supply conditions needed for the scheduling optimization beforehand. We assume
the feed supply conditions for the next H2 dayswill be known (perfect information). One
possible solution to this is to estimate the future supply based on the current visible
information. Here, we proposed the movingaverage estimation to achieve this. As shown
in Eq. (1), on the current day, the supply parameters will be observed as the true value for
the first Hz days. While for days between Hz and Ha, the supply amountwill be estimated
as the average supply amount of the first H. days, as shown in Eq. (2).

supply; , =supply®;,, Vil<k<H, (1)
supply; , —H—Zsupply"bs , Vi,H,<k<H, (2)
2 k=1

3.3. Rolling horizon scheduling optimization model

3.3.1. Objective function

The objective of the rolling horizon scheduling model is to maximize the net profits over
the next Hidays. As shown in Eq. (3), the net profits are the product revenue minus the
raw material costs, operationcosts, andthe decokingcosts. Binaryvariable y; ; , indicates
whether feed i is processed in furnace j on day k. Binary variable x; , denotes whether to
perform decoking for furnace j on day k. D ; is the flow rate of feed i infurnacej. P, (the
price of product I), Cr; (raw material cost of feed i), Cv; ; (operation cost for processing
feed i in furnace j), Cs; (decoking costs for furnace j) are price-related parameters.

Max J= ZZZZPyd”k,y,Jk —(Cr,+Cv,,)Y; ;D —Cs;X; 3)

3.3.2. Fixed horizon constraints

invent; denotesthe inventory level of feed i on day k. The integer variable day; ; . is
an indicator for the current batch lengths so far on day k. For each of the rolling horizon
schedulingmodels, the decisionvariables in the fixed horizon will be fixed at the variable
levels from the last scheduling model, as shown in Eq. (4). This guarantees decision
consistency between adjacent days.

invent, ., day; ., ¥i jx: X«

4
day::';ed , yIF;X:d’ :q;ed Vi, J 1<k < H (4)

=invent*,

3.3.3. Feedstock allocation and decoking constraints

When allocating the feeds in different furnaces, only one type of feed is allowed to be
cracked in a furnace at one time. If the furnace undergoes decoking, no feed will be
allowed, as shown in Eq. (5). Besides, simultaneous decoking is restricted (Eq. (6)).
Additionally, furnaces are not supposed to execute decoking on two consecutive days (Eg.
(7)).Eq.(8) assuresthatifafurnacewill notchange the inlet feed typewithoutperforming
a decoking operation.

D Yk S1=X,, Vi k (5)
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;Xj,k Sl, vk (6)
Xjpa T X <L V], k (7)
(1_ Xj,kfl - Xj,k)(yi,j,k - yi,j,k—l) =0, Vi, J:k (8)

3.3.4. Batch length and yields constraints

If decoking happens on day k, the indicator day; ;, will be 0. Otherwise, it will be
day; k-1 plus 1 day (Eqg. (9)). Owingto the limits of coking thickness, the batch lengths
are not allowed to exceed the upper limit tup; ;, as shown in Eq. (10). Besides, to avoid
overly short batches, decoking is not allowed before the current batch length reaches the
lower limit tlo; ; (Eq.(11)). The productyields yd, ;  , are determinedby the exponential
yielding model in Eq. (12). a;;,, b; j,;, ¢, are yield-related parameters.

day, ;. = Y« (day; ;,, +1),Vi, j,k (9)
day, ;, <tup; ;, Vi, j,k (10)

day; ;X (day; ; ., —tlo; ;) >0,Vi, j,k (11)
YA, =G+ L ok (12)

3.35. Daily inventory constraints

The inventory level for each type of feed is determined by the inventory level of the
previous day invent;,_,, the arrival supply on the current day supply;, and the
processed amount on the current day ¥.;y; ;,D;;, as shown in Eq. (13). Note that
invent;,_, should be non-negative.

invent;, =invent,, , +supply,, — Z YijkDij Vi, K (13)
i

g

4. Case study

4.1. Feedstock supply conditions Parameters

To evaluate the efficacy of the proposed model, a case study taken from the literature (Liu
et al., 2010) with modification of feed supply conditions is used in this work. As shown
in Fig. 3, the supply mode varies every 30 days. The other parameters remain the same as
in the original literature.
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Time horizon (day)

Figure 3. Feed supply conditions in 270 days.
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4.2. Scheduling results

To demonstrate how our proposed rolling horizon model can respond to feed supply
changes, Fig. 4 shows the supply parameters from day 114 to day 119. The solid line in
each subplot represents the estimated parameters usingmovingaverage estimation, while
the dotted line represents the future true supply parameters which are invisible on the
current day.

(a)m, e EPRRALY (b) o supply iday115} (c) B supply (day116)
r | re e
so0{ : 60o: 6001
= 500 ' ! =500 =500
2 ! | g a
2 anof ¥ | 2400 g s00)
° 1
23004 I | <300 £ 300{
g . ‘ §
@ 200 1 | @ 200 7 200
[} |
100 1 I 100 1001
L e nj - - - - - - -
115 120 125 130 135 140 115 120 125 130 135 140 145 115 120 125 Jm 135 140 145
Time harizon (day) Time horizon [day] Time hos n {day)
117) ly (dayl18) ly (day 119)
(Ao sopy s O IO - ;__wu-z-.l _______
o - 1
8001 6001t so0f 57 ) i i
Z.00] = = ] 1
=5 < s00 £ 500 ' '
3 a ' ]
g 400 E 400/ E a00] H !
! '
£3004 = =
3 & 300/ E300| 1 !
) 5 '
@200 @ n 1 1
200 200 ' '
100 1 1
| L 1 . 1
130 ]25 liﬂ ll‘l 140 125 00 120 'JJ‘-: 1%[) ]i‘- 'JdU 145 Lo 