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Preface 

This volume of the Computer-Aided Chemical Engineering series puts together 

a selection of the contributions presented at the 32th European Symposium on 

Computer Aided Process Engineering (ESCAPE), held in Toulouse, France, from 

June 12th to 15th, 2022. 

This 32th event of the ESCAPE series is a continuation of the conferences under 

the auspices of the CAPE Working Party of the European Federation of Chemical 

Engineering (EFCE), and the Société Française de Génie des Procédés (SFGP).  

The ESCAPE series serves as a forum to bring together scientists, researchers, 

managers, engineers, and students from academia and industry, who are 

interested in CAPE and Process Systems Engineering (PSE). The scientific aim 

of the symposium is to present and review the latest developments in CAPE 

and/or PSE. The conference has been organized since 1992, starting with two 

meetings in 1992 in Denmark and France, and since then having one event 

annually. Hosting countries to the conference have been Austria (1993, 2018), 

Ireland (1994), Slovenia (1995, 2016), Greece (1996, 2011), Norway (1997), 

Belgium (1998), Hungary (1999, 2014), Italy (2000, 2010, 2020), Denmark 

(1992, 2001, 2015), The Netherlands (2002, 2019), Finland (2003, 2013), 

Portugal (2004), Spain (2005, 2017), Germany (2006), Romania (2007), France 

(1992, 2008), Poland (2009), United Kingdom (2012) and Turkey (2021).  

The main focus for ESCAPE-32 is on the methodical approaches in process 

systems engineering with emphasis on uncertainty towards sustainability. The 

themes of ESCAPE-29 have been selected after a comprehensive discussion with 

the CAPE Working Party members and the scientific community. The particular 

topics within these overarching themes have been formulated to allow researchers 

from CAPE-related sciences to present their results and exchange valuable 

knowledge and experience. The themes include: 

Modelling and Simulation  

Coordinators : Iqbal Mujtaba, Jena-Pierre Belaud and Ludovic Montastruc 

Product/Process Synthesis and Design  

Coordinators: Grégoire Léonard and Laurent Cassayre 

Large Scale Design and Planning/Scheduling  

Coordinators: Antonio Espuna and Catherine Azzaro-Pantel 

On Line Model Based Applications and Control  

Coordinators: Miroslav Fikar and Nataliya Shcherbakova 

 



Concepts, Methods and Tools  

Coordinators: André Bardow and Pascal Floquet 

Digitalization and Artificial Intelligence  

Coordinators:  Norbert Aspirion, Rachid Ouaret and Stéphane Negny 

CAPE Applications Addressing Societal Challenges  

Coordinators: Ana Barbosa-Povoa, Raphaële Thery-Hetreux and Marianne Boix 

Education in CAPE and Knowledge Transfer  

Coordinators: Eric Schaer and Vincent Gerbaud 

ESCAPE-32 attracted 467 contributions from four continents (Europe, Americas, 

Africa, Asia). The papers have been reviewed and 281 selected for publication 

by the International Scientific Committee together with the help of Theme 

Coordinators. The selection process involved review of abstracts, review of 

manuscripts and final selection of the revised manuscript. We are deeply thankful 

for timely and careful reviews by these Scientists, as well as their invaluable help.  

As editors of this special volume, we hope that the contributions in this edition of 

Computer Aided Process Engineering are excellent illustrations of the current 

state of the art in their respective field, that it will contribute to the progress in 

computer aided process and product engineering.  

March 2022 

Ludovic Montastruc      Stéphane Negny 
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Abstract 
Biogas is widely considered as one of the most promising renewable energy resources 
and the most environmental-friendly energy source. Biogas produced through anaerobic 
digestion contains many impurities and a high percentage of CO2. Thus, upgrade and 
purification of the raw biogas by capturing CO2 before its application are necessary. In 
this work a catalytic methanation process of biogas was proposed and numerically 
analyzed. It appears that sustained periodic oscillations occur in a wide range of operating 
parameters. A detailed nonlinear analysis is performed, and the information produced can 
be useful for effective plant design and adequate plant control and operation. 
 
Keywords: Biomethane, Power-to-Methane, fixed bed reactor, periodic oscillations, non-
linear dynamics. 

1. Introduction 
Due to the continuous increase in energy demand and to mitigate environmental problems 
related to greenhouse gas emissions, the research towards non-fossil and renewable 
energy sources is continuously increasing (Kapoor et al. 2019). In this respect, production 
of biomass-derived biofuels has emerged as one of the most promising non-conventional 
energy resources (Tursi 2019, Mancusi et al. 2021). Among biofuels, biogas from the 
anaerobic digestion of organic wastes stands out as an attractive way of reducing 
landfilling while producing energy. However, the CH4 content in biogas usually reaches 
about 70% at most, so that it needs to be purified (removal of trace components) and 
upgraded (removal of CO2) before utilization. The most used carbon dioxide separation 
technologies are based on absorption, adsorption, cryogenic distillation, and membrane 
separation, all of them being highly energy consuming (Zhang et al. 2020). In this work, 
the upgrading process by direct methanation of biogas is analyzed. Particularly, we 
envision using surplus electrical energy from renewable sources to produce, via 
electrolysis, the required hydrogen to be fed, along with the biogas, into the methanation 
reactor (Bareschino et al. 2020). Methanation enables the conversion of H2 and CO2 into 
methane ranking among the power-to-gas technologies that represent the best solution for 
the energy storage. Several studies show that methanation has a very high CO2 conversion 
degree, close to the removal efficiencies of traditional upgrading techniques (e.g. 
Mhadmhan et al. 2022). In the present work, the proposed methanation process involves 
simultaneous biogas upgrading and methane enrichment of the leaving gas. The process 
is carried out in an adiabatic fixed bed reactor with a nickel-based catalyst, and a recycle 
loop is used for diluting the inlet reactants concentration, to limit the maximum adiabatic 
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temperature increase (Bareschino et al. 2021). The effects on the feed temperature and 
recycling ratio (R) are considered. Periodic oscillations are predicted over a wide range 
of the investigated parameters. The main cause of the sustained periodic oscillations can 
be found in the feedback from the mass recycle coupled with the typical phenomena of 
fixed bed reactors, i.e. the inverse response (Luyben, 2007). Although the maximum 
temperature reached during the oscillations is limited by the thermodynamic equilibrium, 
the system temperature oscillates remarkably, with a period of about 10 minutes and in a 
range of ±150°C. This behavior must be avoided to prevent catalyst damage. Non-linear 
analysis is performed to characterize the stability range of periodic regimes and to identify 
domains of coexistence of multiple stable regimes. This information can be useful for 
effective plant design and adequate plant control and operation (Mancusi et al., 2007).  

2. Mathematical Model 
The biogas upgrading process is carried out in a single adiabatic fixed bed reactor with a 
nickel-based catalyst. Figure 1 reports a schematic layout of the methanation process 
under study.  

 
Figure 1 Adiabatic fixed bed methanation with recycle.  

The biogas fed to the reactor is produced by anaerobic digestion of food waste. Purified 
from all impurities (H2S), it contains CH4 and CO2 at 65% and 35% respectively (Tursi, 
2019). This stream is enriched with H2 produced by renewable sources according to a 
stoichiometric CO2:H2 ratio of 1:4 (R3 in Tab. 1). The complete CO2/CO methanation 
reaction mechanisms for syngas methanation over Ni-based catalyst proposed by Xu and 
Froment (Xu and Froment 1989) is considered. For readers’ convenience, Table 1 
summarizes the adopted reactions and associated enthalpy variations. 
 
Table 1 – Reactions scheme and associated standard enthalpies of reactions. 

Reaction DH298 (kJ.kmol-1)  
CO + 3H! ⇌ CH" +H!O  -206 R1 

CO! +H! ⇌ CO+H!O  41 R2 

CO! + 4H! ⇌ CH" + 2H!O -165 R3 

 
To limit temperature increase due to the strong exothermicity of the methanation 
reactions, the water content in the feed is increased by adopting gas recirculation (Rönsch 
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et al. 2016). While the presence of water in the feed stream due to recycle shifts the 
chemical balance towards the products, it is essential to keep the temperature below 
600° C and reduce carbon formation (Rönsch et al. 2016). Moreover, since the process is 
exothermic and reactions R1 and R3 take place with increasing volumes, the process 
benefits from high pressures and low temperatures. 
The fixed bed reactor is modeled by a 1D pseudo-homogeneous and adiabatic model 
(Bareschino et al. 2021). The material balances for each gas component (i=CH4, CO, CO2, 
H2, H2O) and the energy balance are reported in Table 2 with the initial and boundary 
conditions:  
Table 2 – Governing equations. 

Mass Balance 
𝜀!
𝜕𝑐"
𝜕𝑡 = −𝑢#!

𝜕𝑐"
𝜕𝑧 − *1 − 𝜀!,𝜌$𝑟" 

Heat Balance 

)𝜀𝑔𝜌𝑔𝑐𝑝𝑔 + *1− 𝜀𝑔+𝑐𝑝𝑐,
𝜕𝑇
𝜕𝑡 = −𝑢𝑠𝑔𝜌𝑔𝑐𝑝𝑔

𝜕𝑇
𝜕𝑧 − 𝜌𝑐-𝛥𝐻𝑅𝑗

#

$%&

𝑅𝑗 

Initial conditions 𝑐'(𝑧, 0) = 0, 𝑇(𝑧, 0) = 𝑇( 

Boundary conditions 𝑐'(0, 𝑡) = 𝑐','*, 𝑇(𝑧, 0) = 𝑇'* 

 
where z is the axial position along each reactor belonging in [0, L], and ri the rate of 
consumption or formation of i-species (i=CH4, CO, CO2, H2, H2O) determined by 
summing up the reaction rates of those species in all the reactions Rj (see Table 1) 
according to the stoichiometric coefficients (𝜈) as follows: 

𝑟" = ∑ 𝜈",,𝑅,-
,./  (1) 

The gas superficial velocity (usg) is calculated as follows: 

𝑢#!(𝑧, 𝑡) =
01!"
01

𝑢#!,"2 (2) 

where PM is the molecular weight and the subscript in represents inlet conditions. 
Operating conditions, reactor volumes, and catalyst properties used in the simulations are 
reported in Table 3.  
 
Table 3 – Parameters values used in the simulations. 

Parameter Value Parameter Value 

P, bar 15.0 yCO2,in 0.145 

Tin, °C 280 yH2,in 0.585 

L, m 1.5 cpc, J.kg-1.K-1 1100 

dr, m 0.225 rc kg.m-3 2350 

yCH4,in 0.27 eg 0.4 

 
The method of lines is applied to solve the partial differential equations (PDEs) in two 
steps: the spatial derivatives are approximated by finite differences over a uniform grid 
of 200 discretization nodes, and the resulting system of 1200 ODEs is integrated in the 
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initial value variable (Bareschino et al. 2021). The size of the ODE set is large, but model 
order reduction techniques are available for future studies (Bizon and Continillo, 2021). 

3. Results 
The non-linear features of the fixed bed reactor give rise to phenomena such as the inverse 
response (a temporary behavior contrary to that expected). Figure 2 reports the reactor 
output according to the legend, for a step decrease (10°C) of the inlet temperature. It is 
apparent that the first effect observed at the reactor exit is a temperature increase. Since 
higher temperatures decrease the equilibrium conversion, the temperature increase is 
followed by an increase in the reactant concentrations. Thus, although the inlet heat 
exchanger cancels out temperature variations, recycle still provides a feedback. 
 

 
Figure 2 Reactor response to a step decrease of inlet temperature. Subscript ss refers to unperturbed 
steady-state. Recycle ratio R=1.6 whereas the other parameters are those reported in Tab. 3. 

The combination of this feedback due to mass recycle and the inverse response can result 
in sustained oscillatory behavior (Luyben, 2007). Numerical simulations using non-linear 
dynamical model reproduce periodic oscillations in the reactor. Figure 2 reports a 
simulation showing time series of the outlet gas temperature and composition.  
 
 

 
Figure 3 (a) Temperature at reactor exit vs time, (b) CH4 and H2 molar fraction at reactor exit vs 
time for R=1.6, whereas the other parameters values are those reported in Tab. 3. 

Although the maximum temperature is limited by thermodynamic equilibrium, the 
system, as it can be seen, oscillates with a period of about 10 minutes and in the range of 
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±150°C. The amplitude of temperature oscillations is wide, and this could cause thermal 
stress of the catalyst. We now use a linear analysis to study more carefully the cause of 
the instability induced by the recycle operation. Close to an operating point, the dynamics 
of a system are well described by its linearized model. The model of the reactor was 
linearized numerically at this operating point, yielding a standard linear state space model 
with 1200 state variables in the form:  
34
35
= 𝐽𝑥  (3)  

where J is the Jacobian matrix calculated at the steady state solutions. Computing steady 
state solution implies solving the nonlinear system of equations as reactor parameters 
vary (Mancusi et al., 2015). Once the steady state solution was calculated, the eigenvalues 
are computed by employing the eig function in MATLAB.  
The largest eigenvalues of J for several values of R were calculated and depicted in Fig. 4. 
The reactor with no recycle (R=0) has a stable stationary response, i.e., all the eigenvalues 
have a negative real part. As R increases, the real part of the eigenvalues increases until 
R=1.5, where a couple of eigenvalues cross the imaginary axis. In these conditions the 
stable static regime solution becomes unstable, and periodic oscillations occur due to a 
Hopf bifurcation (Kuznetsov 1998). 
 

 
Figure 4 Imaginary and real part of the largest eigenvalues for several values of R.  

 
The effect of the inlet temperature and recycle ratio is addressed by a bifurcation diagram 
(Fig. 5) where the locus of all Hopf bifurcation points is reported in the plane R-Tin. In 
this plot, the lines partition the parameter space into regions characterized by qualitatively 
similar phase portraits, that is the region characterized by stable steady state and region 
in which stable periodic oscillations exist (Kuznetsov 1998). 

4. Conclusions 
The paper reports a dynamical study of an adiabatic fixed bed reactor for the catalytic 
methanation of biogas. The complete dynamical characterization of a model is very useful 
to study the existence of periodic regimes and its influence on plant design, control, and 
operation. For the problem at hand, complex periodic regimes are due to the interaction 
of feedback induced by the mass recycle and by the inverse response typical of fixed bed 
reactors. The emergence of periodic oscillations is due to a Hopf bifurcation. The effect 
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of both the inlet temperature and the recycle ratio was investigated. The knowledge of the 
global dynamics can be helpful in designing an effective control strategy.  
 

 
Figure 5 The bifurcation diagram in the R-Tin plane. 
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Abstract 
The main objective of this work is to model, simulate and assess the drying behavior of a 
single ceramic tile which is exposed to the convective flux of air of known humidity, 
velocity and temperature. The proposed mathematical model is inspired by a moving 
boundary model which was originally presented by Adrover et al. (2019). More 
specifically, 1-D mass and heat transfer is assumed along the thickness of the tile. The 
mechanism of mass transfer inside the material is a combination of diffusion and capillary 
motion, whereas at the surface moisture is removed through forced convection by the 
blowing air. Based on this assumption, shrinkage takes place only on one dimension. The 
model is used to accurately capture the drying behavior of a parallelepiped roof tile for 
two distinct case studies. Namely, the ideal-shrinkage case and the no-shrinkage case. 
The proposed modeling approach leads to high quality results with low computational 
costs. Furthermore, the developed modeling framework can provide the basis for 
modeling drying for a wide variety of operating conditions and various material 
properties.  
 
Keywords: Process Modeling, Ceramic Drying, Moving-Boundary Problem 

1. Introduction 
Drying constitutes an essential step in the ceramic industry consuming large amounts of 
energy. During this process most of the water that was added in a previous molding step 
is removed. This step is characterized by significant complexity since heat and mass 
transfer are coupled processes and take place simultaneously. According to Geankoplis 
(1993), at first, the wet green body is heated by the blowing air and thus the evaporation 
initiates. Afterwards, the body’s temperature reaches an equilibrium value which implies 
that the drying rate is constant. At some point, the moisture content at the surface becomes 
insufficient to maintain the constant rate drying and the drying rate starts decreasing. 
Accounting to the nature of the process, drying may also be accompanied by dimensional 
variations which occur due to the moisture removal. Specifically, the total volume 
variation of the material, in an ideal shrinkage case, should be equal to the removed 
water’s volume. In reality thought, this phenomenon is often antagonized by an increase 
in the body’s porosity which is caused by the replacement of the evaporated water by an 
equal volume of air.  Thus, products with differing shrinkage than the ones expected are 
usually rejected as they often do not meet the required quality standards or there is a high 
probability of breakage in the subsequent firing step. Furthermore, it is possible that 
breakage phenomena occur during the drying process itself, especially when the drying 
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rates are not properly controlled. Consequently, drying is a product quality defining 
process which makes the knowledge of the evolution of moisture content and linear 
shrinkage imperative. 
Due to the complex nature of the process, drying has been studied extensively through 
the years. Scherer (1990) presented a comprehensive review in which he explains the 
mechanisms as well as the various phenomena that take place during drying of porous 
material. Jarque et al. (2016) combined experimental results and modeling techniques and 
showed that drying of ceramic roof tiles is a non-isothermal process and that the 
assumption of an instantaneous increase of the body’s surface temperature to the drying 
air’s temperature does not stand well. More recently, a numerical model was developed 
to describe the drying kinetics of ceramic green bodies by using moisture dependent 
thermophysical properties (Lauro et al., 2021). In this work a non-isothermal model is 
proposed to predict the water distribution and shrinkage of a ceramic tile over time.  

2. Mathematical description of the model 
Air of uniform velocity is assumed to flow over a rectangular ceramic roof tile. The 
temperature, 𝑇𝑇𝑔𝑔, and relative humidity, 𝑅𝑅𝑅𝑅, of the blowing air are fixed. The mass and 
heat transfer inside the tile are assumed to be one dimensional and are described by the 
corresponding diffusion equations, which in this case, also consider the local shrinkage 
of the material via a local shrinkage velocity variable, 𝑣𝑣𝑠𝑠 (Adrover et al., 2019). The mass 
conservation equation is written in terms of the water mass concentration, 𝐶𝐶𝑤𝑤, and the 
energy equation is given in terms of the tile temperature 𝑇𝑇.  

 𝜕𝜕𝐶𝐶𝑤𝑤
𝜕𝜕𝜕𝜕

=
𝜕𝜕
𝜕𝜕𝜕𝜕
�𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒

𝜕𝜕𝐶𝐶𝑤𝑤
𝜕𝜕𝜕𝜕

− 𝑣𝑣𝑠𝑠𝐶𝐶𝑤𝑤� (1) 

 
𝜌𝜌𝐶𝐶𝑝𝑝

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑘𝑘
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

− 𝑣𝑣𝑠𝑠𝜌𝜌𝐶𝐶𝑝𝑝𝑇𝑇� (2) 

Where 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒  is the effective diffusion coefficient of the moisture in the porous body and 
𝑘𝑘 is the thermal conductivity of the wet tile. Both properties have constant values for the 
present study. 
The local shrinkage velocity, 𝑣𝑣𝑠𝑠, accounts for the rate at which a specific point of the 
green body moves and is surmised to be proportional to the diffusive flux of water inside 
the body. 

 
𝑣𝑣𝑠𝑠 = 𝑎𝑎

𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒
𝜌𝜌𝐻𝐻2𝑂𝑂

𝜕𝜕𝐶𝐶𝑤𝑤
𝜕𝜕𝜕𝜕

 (3) 

Where 𝑎𝑎 is the shrinkage factor, which is a parameter that lies between 0 to1. These two 
marginal values correspond to the no-shrinkage and the ideal-shrinkage scenario 
respectively. However, since shrinkage is considered, the sample thickness, 𝐿𝐿, is not fixed 
and should be measured at any time according to equation (4).  

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑣𝑣𝑠𝑠|𝑧𝑧=𝐿𝐿(𝑡𝑡) (4) 

In addition, bearing in mind that volume variations occur during drying and that the 
shrinkage velocity is a pointwise variable, the local concentration of the solid phase, 𝐶𝐶𝑠𝑠 
should be described by: 
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 𝜕𝜕𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝜕𝜕𝜕𝜕

= −
𝜕𝜕[𝑣𝑣𝑠𝑠𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠]

𝜕𝜕𝜕𝜕
 (5) 

Given that, the local porosity of the green body, 𝜀𝜀, can be derived from the equation (6). 

 1 = 𝜀𝜀 +
𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
+

𝐶𝐶𝑤𝑤
𝜌𝜌𝐻𝐻2𝑂𝑂

 (6) 

Where 𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  is the particle density of the solid and does not include the volume of the 
pores.  
The density and the thermal conductivity of the wet porous body are moisture dependent 
properties and are calculated through equations (7) and (8) respectively. 

 𝜌𝜌 = 𝐶𝐶𝑤𝑤 + 𝐶𝐶𝑠𝑠 + 𝜀𝜀𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎  (7) 

 
𝐶𝐶𝑝𝑝 =

𝐶𝐶𝑝𝑝,𝐻𝐻2𝑂𝑂𝐶𝐶𝑤𝑤 + 𝐶𝐶𝑝𝑝,𝑠𝑠𝐶𝐶𝑠𝑠 + 𝐶𝐶𝑝𝑝,𝑎𝑎𝑎𝑎𝑎𝑎𝜀𝜀𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎
𝜌𝜌

 (8) 

Furthermore, it is assumed that the water evaporation takes place only on the surface of 
the tile. Hence, the boundary conditions for the mass conservation equation (1) is: 

 
−𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒

𝜕𝜕𝐶𝐶𝑤𝑤
𝜕𝜕𝜕𝜕

�
𝑧𝑧=𝐿𝐿(𝑡𝑡)

= ℎ𝑚𝑚𝜌𝜌𝑑𝑑𝑑𝑑�𝐻𝐻𝑔𝑔
𝑒𝑒𝑒𝑒 − 𝐻𝐻𝑔𝑔� (9) 

Where ℎ𝑚𝑚 is the mass transfer coefficient, 𝜌𝜌𝑑𝑑𝑑𝑑 is the dry air density and H𝑔𝑔 is the humidity 
ratio of air which is given by the equation (10).  

 
𝑅𝑅𝑅𝑅 =

𝐻𝐻𝑔𝑔
𝐻𝐻𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠

 (10) 

The term Hg
sat is the saturation humidity ratio and it is calculated by equation (11). 

 
𝐻𝐻𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠 = 0.622

𝑃𝑃𝐻𝐻2𝑂𝑂
𝑠𝑠𝑠𝑠𝑠𝑠

𝑃𝑃 − 𝑃𝑃𝐻𝐻2𝑂𝑂
𝑠𝑠𝑠𝑠𝑠𝑠  (11) 

Where 𝑃𝑃 is the pressure of the air and 𝑃𝑃𝐻𝐻2𝑂𝑂
𝑠𝑠𝑠𝑠𝑠𝑠  is the saturation pressure of water. 

The boundary condition of the energy balance equation (2) is given by: 

 
−𝑘𝑘
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= ℎ𝑇𝑇�𝑇𝑇|𝑧𝑧=𝐿𝐿(𝑡𝑡) − 𝑇𝑇𝑔𝑔� − 𝜆𝜆𝑣𝑣𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒
𝜕𝜕𝐶𝐶𝑤𝑤
𝜕𝜕𝜕𝜕

�
𝑧𝑧=𝐿𝐿(𝑡𝑡)

 (122) 

Where ℎ𝑇𝑇 is the heat transfer coefficient and 𝜆𝜆𝑣𝑣 is the latent heat of vaporization of water. 
Finally, the specific moisture, 𝑊𝑊, at the tile - air interface correlates with the equilibrium 
relative humidity through the Henderson desorption isotherm (Murugesan et al., 2001): 

 𝑅𝑅𝑅𝑅 = 1 − 𝑒𝑒𝑒𝑒𝑒𝑒(−17𝑊𝑊0.6) (13) 

The water concentration can be converted to specific moisture through the following 
transformation:  

 𝑊𝑊 = 𝐶𝐶𝑤𝑤 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠⁄  (14) 
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3. Results and Discussion 
The above system consists of ordinary differential equations coupled with partial 
differential equations with moving boundaries. The numerical solution of the model in 
this form is not trivial. This makes the need of a new, fixed in time spatial variable which 
exempts the partial differential equations of the moving boundaries and allows the model 
to predict the position of the boundary as part of the solution. The boundary 
immobilization technique requires the dimensionalization of the model by utilizing the 
new fixed-in-time spatial variable 𝑦𝑦 = 𝑧𝑧 𝐿𝐿(𝑡𝑡)⁄  , which lies between 0 and 1.  
The transformed model is implemented in the gPROMS™ modeling environment. The 
following data were used as inputs: 
Table 1: Model Data 

Model Inputs 

𝒌𝒌 1.23 𝑊𝑊 (𝑚𝑚𝑚𝑚)⁄  𝝀𝝀𝒗𝒗 2500 𝑘𝑘𝑘𝑘 𝑘𝑘𝑘𝑘⁄  𝑻𝑻𝒈𝒈 273.15 + 60 𝐾𝐾 

𝑫𝑫𝒆𝒆𝒆𝒆𝒆𝒆 6 ∙ 10−8 𝑚𝑚2 𝑠𝑠⁄  𝝆𝝆𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 2826 𝑘𝑘𝑘𝑘 𝑚𝑚3⁄  𝑻𝑻𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 273.15 + 25 𝐾𝐾 

𝑹𝑹𝑹𝑹 0.50 𝝆𝝆𝑯𝑯𝟐𝟐𝑶𝑶 1000 𝑘𝑘𝑘𝑘 𝑚𝑚3⁄  𝑪𝑪𝒘𝒘|𝒕𝒕=𝟎𝟎 414 𝑘𝑘𝑘𝑘𝐻𝐻2𝑂𝑂 𝑚𝑚3⁄  

𝒉𝒉𝒎𝒎 0.01 𝑚𝑚 𝑠𝑠⁄  𝝆𝝆𝒂𝒂𝒂𝒂𝒂𝒂 1.063 𝑘𝑘𝑘𝑘 𝑚𝑚3⁄  𝑪𝑪𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔|𝒕𝒕=𝟎𝟎 2070 𝑘𝑘𝑘𝑘 𝑚𝑚3⁄  

𝒉𝒉𝑻𝑻 60 𝑊𝑊 (𝑚𝑚2𝐾𝐾)⁄  𝑷𝑷 101325 𝑃𝑃𝑃𝑃 𝑳𝑳|𝒕𝒕=𝟎𝟎 0.0187 𝑚𝑚 

 
In this work two marginal shrinkage scenarios were examined and compared. In the ideal 
shrinkage case, where the 𝑎𝑎 parameter is equal to unity, the tile’s volume variation from 
its initial state corresponds to the total volume of the liquid water that has been removed 
until that time. In other words, no change in the porosity takes place. On the other hand, 
in the no-shrinkage case, where the a  parameter is equal to 0, the moisture migrates 
towards the body’s surface where it evaporates leaving empty pores inside the green body.  
 

  
 

Figure 1: (a) Simulated surface moisture concentration vs time for the two cases (b) Simulated tile 
surface temperature vs time for the two cases (c) Surface solid concentration vs time for the two 

cases 
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Figures 1 and 3 illustrate the comparison between these two case scenarios and how the 
body shrinkage affects the drying kinetics of the body. 
Figure 2 shows the tile shrinkage with respect to time, for the ideal-shrinkage case. It can 
be observed that the shrinkage stops when drying exits its constant rate period, as stated 
in the literature (Scherer, 1990; Lauro et al., 2021). As far as the no-shrinkage case is 
concerned, the tile thickness is fixed to its initial value since no volume variations occur. 
 

 
Figure 2: Tile thickness vs time for the ideal-shrinkage case and the no-shrinkage case 

 
Figure 3: Surface volume fractions of the moisture, solid and the pores for (a) the ideal-shrinkage 

case and (b) for the no-shrinkage case 

 

As it was stated earlier, when 𝑎𝑎 = 1, the green body’s volume is decreased by the volume 
of the evaporated water. In that case, an increase in the local solid concentration is 
expected along the tile. For the ideal-shrinkage scenario, since no pores are created as 
drying proceeds, the solid concentration approaches the solid’s intrinsic density 
asymptotically. On the other hand, when 𝑎𝑎 = 0, pores with an equal volume as the 
removed water’s are created along the tile. Hence, the solid concentration is not affected. 
This phenomenon can be displayed in Figures 1c and 3. 
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Figure 3 presents the graphical illustration of the terms of the right-hand side of equation 
(6). For the ideal-shrinkage scenario (see Figure 3a), the local solid volume fraction 
increases with respect to time while the moisture volume fraction decreases. No pores are 
created. When it comes to the no-shrinkage scenario (see Figure 3b), the solid volume 
fraction remains fixed to its initial value through the process as no volume variations take 
place on the body. At any time, the volume of the removed moisture is replaced by an 
equal volume of air. Thus, the product’s porosity increases as drying proceeds. 

4. Conclusions  
In this work, a 1-D modeling framework is proposed to simulate the drying behavior of a 
shrinking roof tile. Two marginal shrinkage scenarios were examined. These two 
scenarios were distinguished by the value of the shrinkage parameter a , which illustrates 
a key role in the overall analysis. The simulated results confirm the robustness of the 
model. It is important to note that the above framework can be used to capture the 
phenomena that accompany drying of a wet tile even for more realistic shrinkage 
scenarios, i.e., when 𝑎𝑎 ∈ (0,1), in which the tile’s thickness decreases while its porosity 
increases. 
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Abstract 
The application of a highly efficient continuous counter-current extraction to extract 

Artemisinin from Artemisia Annua leaves is desirable since Artemisinin is efficiently 

used as anti-malaria drug. The residence time distribution (RTD) of the solid and liquid 

phases are most important for understanding this process since they influence the reaction 

efficiency. This work is devoted to the numerical investigation of the solid-phase RTD in 

a fully-filled screw extractor by using computational fluid dynamics (CFD). The solid 

phase is considered as a liquid Eulerian phase with a high viscosity. To track it, the 

commonly used species model has been implemented in a frozen quasi-steady-state 

simulation. Validation experiments have been performed by using dry leaves. A very 

good agreement between numerical and experimental residence times can be observed, 

with a relative error lower than 12 %. As a next step the model will be extended to predict 

the RTD in a multiphase flow model including the liquid solvent.  

 

Keywords: computational fluid dynamics (CFD), extraction, residence time distribution 

 

1. Introduction 
The implementation of counter-current extraction processes provides advantages 

compared to the direct current method, since higher final concentrations of the target 

substance can be achieved in the solvent. Especially in the field of natural product 

extraction high yields of plant substances are required for drug preparation (Lack, 1985). 

In this work the solid-liquid counter-current extraction process of Artemisia Annua leaves 

to gain Artemisinin is investigated. Derivatives of Artemisinin (e.g. artesunate) are 

increasingly used as efficient anti-malaria drugs (Gilmore et al., 2014). The extraction 

efficiency of this leaching process is influenced by the contact times between the liquid 

solvent and the solid plant material. Consequently, the knowledge of the residence time 

distribution (RTD) of both phases is of particular interest. The RTD is directly linked to 

the apparatus performance as it is influenced by various process parameters, such as 

throughput, the rotation speed of the screw, or the process temperature. Its 

characterization is highly important for many industrial processes such as the continuous 

production of chemicals, food and pharmaceutical products (Gao et al., 2012). 

Experimental measurements are the most common way to study the RTD in an apparatus. 

However, such measurements can be very expensive, especially when considering scale 

up or plant design. Here, computational fluid dynamics (CFD) may provide a deeper 
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understanding of the multiphase flow and of the controlling interactions. Chen et al. 

(2019) used CFD simulation to measure the particle residence time distribution in a 

fluidized bed by using the species method and the multi-solid method for tracer injection, 

which are the most common Eulerian methods. While the species method only solves a 

species transport equation for a numerical tracer, the multi-solid method describes two or 

more solids as Eulerian phases by considering interactions. Both methods can in principle 

deliver accurate predictions of the RTD, but the species method needs prior information 

concerning the diffusion coefficient. Nevertheless, the associated computational time is 

lower compared to the multi-solid method. This is the reason why several additional 

studies used the species method for getting the RTD behavior of multiphase flows, e.g. 

Adeosum et al. (2009), Deshmukh et al. (2009), and Zhang et al. (2015). 

In this study the species method is used as well to describe the RTD distribution of the 

solid phase in a fully-filled screw extractor. The diffusion coefficient is derived from prior 

experiments. Finally, the numerical results are validated by comparison with 

experimental data.  

 

2. Mathematical Model 

2.1. Mean residence time and variance 
The mean residence time and variance can be determined from the residence time 

distribution (RTD), which is a function of the length of the observed extruder. For 

measuring the RTD in a device, the stimulus response technique with pulse or stepwise 

input of tracer is typically used. The tracer concentration is measured by an appropriate 

device at the outlet of the extruder, leading to concentration curves named 𝐸(𝑡) and 𝐹(𝑡) 

curves, also known as normalized residence time distribution function and cumulative 

exit age distribution function, respectively. Both functions can be transformed into each 

other following Levenspiel (1999): 

𝐹(𝑡) = ∫ 𝐸(𝑡)𝑑𝑡
𝑡

0

 (1) 

or conversely 

𝐸(𝑡) =
𝑑𝐹(𝑡)

𝑑𝑡
 (2) 

The mean residence time 𝜏 and the variance 𝜎2 can be derived from 𝐸(𝑡). 

𝜏 = ∫ 𝑡 ∙ 𝐸(𝑡)𝑑𝑡
∞

0

 (3) 

𝜎2  = ∫ (𝑡 − 𝜏 )² ∙ 𝐸(𝑡)𝑑𝑡
∞

0

 (4) 
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screw extractor

2.2. Dispersion coefficient 
The dispersion model is frequently applied to describe back-mixing effects in tubular 

reactors. For this purpose, an additional axial dispersion coefficient 𝐷𝑎𝑥  is introduced into 

a second-order term in the mass balance:  

𝜕𝑐𝛼

𝜕𝑡
= −𝑢𝑎𝑥

𝜕𝑐𝛼

𝜕𝑧
+ 𝐷𝑎𝑥

𝜕2𝑐𝛼

𝜕𝑧2
 (5) 

Implementing the species method in CFD requires the provision of the axial dispersion 

coefficient as input parameter. It can also be expressed via the dimensionless Bodenstein 

number 𝐵𝑜, which includes the axial velocity 𝑢𝑎𝑥 and the length of axial coordinate 𝐿. 

𝐵𝑜 =
2𝜏 2

𝜎2
 (6) 

𝐷𝑎𝑥 =
𝑢𝑎𝑥𝐿

𝐵𝑜
 (7) 

3. Experiments and Simulation 

3.1. Experimental Setup 
For validating the CFD simulations three experiments with equal operating conditions 

have been performed. The employed screw extractor with a total length of 320 mm is 

shown in Figure 1. The milled dry leaves are introduced as powder on the left-hand side 

until total filling of one segment is reached. When starting the screw rotation with 1.3 rpm 

the leaves are transported towards the right side of the device over a total flow length of 

260 mm. The RTD during the transport process is controlled by a sampling of leave 

material at four different locations, marked 1 to 4 in Figure 1. Since only the dry leaves 

transport in the screw extruder has been considered no compression inside the device 

occurs. Consequently, the pressure equals atmospheric pressure.  

 

Figure 1: Counter-current screw extractor used for solid RTD experiments with equally 

distributed sampling points 1-4, 𝐿 = 320 mm, d = 29.7 mm 
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3.2. Numerical Setup 
The flow investigation was performed by using the commercial CFD software package 

StarCCM+ (Simcenter STAR-CCM+ 2019.2.1 Build 14.04.013). The computational 

geometry corresponds to the configuration used in the experimental setup (Figure 1). A 

block-structured mesh has been generated with a total number of 830.931 finite-volume 

cells. According to a previously performed mesh independence study this resolution 

provides the most accurate results by reducing numerical diffusion. Since only the screw 

rotates, the domain has been separated into a rotating and a stationary domain. 

Refinements at the interface between the domains were implemented to accurately 

capture the occurring leakage flows. As the numerical simulation of solid phases is very 

complex, the Artemisia annua leaves have been modelled as a Newtonian fluid with a 

very high viscosity of η = 1,000 Pa∙s. Due to the slow rotation of the screw (1.3 rpm) and 

the high viscosity the resulting flow is laminar. A slip boundary for all walls has been 

implemented. The CFD simulation considers a completely filled system. The real 

experiments naturally involve a thin layer of gas phase (air) at the top, but it does not play 

any significant role for the extraction process. It is therefore neglected in CFD to reduce 

the computational effort. To adapt the inflow velocity of the leaves in CFD to the 

experiments an average axial velocity 𝑢̅𝑎𝑥 has been calculated from experimental data. 

𝑢̅𝑎𝑥 =
𝐿

𝜏𝑒𝑥𝑝

 (8) 

To measure the residence time distribution, the species method has been implemented by 

using the experimentally determined axial diffusion coefficient at the outlet (sampling 

point 4). First, the flow has been solved for 30 s of physical time until velocities and 

pressure converged to a specific value to ensure a quasi-steady state. Subsequently, the 

resulting flow has been frozen, and the species has been initialized and solved as single 

transport equation in the domain. Further modeling details can be taken from Table 1. 

 

Table 1: Physical models and boundary conditions 

Models  Parameter Value Unit 

Laminar  Density 260 kg/m³ 

Liquid  Viscosity 1000 Pa∙s 

Segregated Flow  Velocity Inlet 4.5× 104 m/s 

2nd order Implicit Unsteady  Time Step 0.5 s 

Three Dimensional  Screw rotation 1.3 rpm 

  Gravity z -9.81 m/s² 
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4. Results and Discussion 
The residence time distributions obtained from the CFD simulation at four sampling 

points are shown in Figure 2a and compared with the residence time distributions of the 

first experiment. The RTD curves are similar, but the differences in maxima increase with 

time. Figure 2b shows the resulting mean residence times of experiments and CFD 

depending on the sampling points. The numerical results show slightly higher values than 

the experiments resulting in an error of 7.05 % for sampling point 2, up to 14.65 % for 

sampling point 4 (Table 2). These errors correspond to a difference in residence time 

between 0.31 and 1.32 min. Nevertheless, during the independent repetitions of the same 

experiment, some deviations of the RTD curves have also been observed. They occur due 

to minute changes of particle size distributions, particle-particle interactions, but also 

small variations in the screw rotation speed. As the experimental values are not perfectly 

repeatable a second comparison of numerical residence times is performed by involving 

three experimental realizations, considering the mean values and their deviations to each 

other (Figure 3). Here, the numerical mean residence times fit the experimental residence 

time for sampling points 2 and 3. For sampling point 1 the experimental residence time 

is slightly higher than the numerical one, by 12 % (Table 3). For sampling point 4 the 

numerical residence time is outside the experimental range by only 2.48 %. 

Consequently, the numerical predictions are very close to the experimentally measured 

values, proving that the CFD model can appropriately predict the residence time. 

 

Table 2: Comparison of numerical results and experimentally measured residence times 

(𝐷𝑎𝑥 = 1.41 × 10−6 m²/s) 

Sampling Point 𝜏𝐶𝐹𝐷 (min) 𝜏𝑒𝑥𝑝,1 (min) error (%) (vs. exp.) 

1 1.54 1.74 11.49 

2 4.71 4.40 7.05 

3 7.88 6.99 13.31 

4 10.33 9.01 14.65 

 

 
Figure 2: Results of the solid RTD study and comparison between experiments and numerical 

simulation regarding a) RTD curves at four sampling points, b) mean residence times 
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Sampling 

Point 

τCFD 

(min) 

τ̅exp,all 

(min) 

σexp,all 

(min) 

error (%) 

(vs. 

range) 

1 1.54 1.89 ± 0.14 12.00 

2 4.71 4.94 ± 0.47 - 

3 7.88 7.77 ± 0.68 - 

4 10.33 9.58 ± 0.50 2.48 

 

5. Conclusion and Outlook 
In this study the solid residence time in a counter-current screw extractor has been 

analyzed by using CFD simulations. Since solid-phase RTD experiments show deviations 

in the resulting mean residence times, the numerical simulations have been first compared 

to one single experimental trial, then to the average value involving three measurement 

campaigns. The results show that the CFD mean residence time fits in the range of the 

experimental observations. The first sampling point shows the largest deviation, with an 

error of only 12 % (12.6 s). As this is considered an acceptable range, the numerical model 

with a fully-filled Eulerian phase can appropriately predict the solid RTD of Artemisia 
Annua leaves. Using the frozen quasi-steady-state flow allows short computational times 

for the implemented species method. This will enable future multiphase flow simulations 

with liquid and solid phase even closer to the experimental reality.  

The numerical representation of the RTDs will then be used to parametrize compartment 

models (CM) in which the reaction kinetics can be considered with acceptable 

computational times. This mixed CFD/CM model will be used for the final optimization. 
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Abstract 

Background: Parallel to the impending hydrogen economy, the simultaneous treatment of 

organic waste and biohydrogen synthesis by the photosynthetic bacterium 

Rhodopseudomonas palustris is a promising renewable energy technology. However, 

studies so far have been mostly laboratory based with upscaling of the bioprocess still 

being an open challenge. Therefore, this study investigates two different photobioreactors 

(PBRs): schott bottle-based and vertical tubular-based PBRs and presents three original 

contributions to facilitate the biotechnology transfer across PBR scales and 

configurations.  

Study Design: Firstly, a dynamic model is constructed to simulate the complicated 

influences of light intensity, light attenuation, and temperature, previously not unified for 

any photosynthetic bacteria to the best of our knowledge. Secondly, perturbation analysis 

was exploited to identify critical parameters influencing the model accuracy and 

reliability for across the scale extrapolations. Thirdly, two model parameters: effective 

light coefficient and biohydrogen enhancement coefficient, both linked to the PBR’s 

transport phenomena were proposed for recalibrations during bioprocess upscaling 

predictions.  

Major results: By comparing against experimental data, the upscaling prediction accuracy 

was thoroughly verified for the two investigated PBR scales. As well, the enhancement 

of biohydrogen production rate by improved culture mixing and gas removal was 

mechanistically described.  

Conclusion: This provides important advances for the efficient design of novel PBRs and 

future online optimisation for biohydrogen production.  

Keywords: Photobioreactor, Biohydrogen production, kinetic modelling, Purple non-

sulfur bacteria, Upscaling. 

1. Introduction 

Renewable biohydrogen is a key biofuel identified as one promising alternative to the 

conventional fossil-based fuels for providing energy meant for: (i) electricity generation, 
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(ii) transportation, and (iii) heating [1, 2]. Amongst the several species of photosynthetic 

microorganisms which can synthesis biohydrogen, the purple-non-sulfur photosynthetic 

bacterium Rhodopseudomonas palustris (hereinafter referred to as R. palustris) has been 

identified as a promising candidate due to: (i) the absence of oxygen-induced nitrogenase 

repression; (ii) a versatile metabolic repertoire with capabilities of degrading a wide 

variety of organic substrates including those toxic to other microorganisms; as well as 

(iii) the continuous synthesis of biohydrogen during all the growth phases, including the 

stationary phase which is observed to last significantly longer under anaerobic conditions 

than in cyanobacteria and microalgae species [2]. Despite these benefits, literature 

investigations have been mostly carried out at the laboratory scale and to a lesser extent 

at the pilot scale but remains pending industrial scale applications. Although 

mathematical models can help facilitate the experimental design and process upscaling, 

two of the most important cultivating factors, namely temperature and light intensity (plus 

light attenuation herein - the decrease in light transmission due to cellular absorption and 

scattering within PBRs) have never been unified/coupled in a biokinetic model of any 

photosynthetic bacteria in general and R. palustris in particular. Therefore, this paper  

aims to: (i) investigate the photoheterotrophic biomass growth and biohydrogen 

production of R. palustris in two different Photobioreactors (PBRs) configuration and 

scales: schott bottle-based (0.5 L) and vertical tubular-based (1 L) PBRs, (ii) construct an 

accurate mechanistic model of the bioprocess under the unified influences of temperature, 

and light intensity, and light attenuation, and (iii) evaluate model’s applicability for 

simulating process dynamics over different scales and configurations of PBRs.  

2. Methodology 

2.1. Mechanistic model construction  

The photo-heterotrophic biomass growth, substrate consumption and biohydrogen 

production under the influences of light intensity, light attenuation, and temperature are 

simulated with Equations (1) to (3). The biomass growth (Equation 1) assumes negligible 

cell death and replete amount of substrate (i.e., > 20 mM at the end of each batch) with 

the rate of substrate consumption described in Equation (2). The biohydrogen production 

model (Equation 3) is an extension of the Luedeking-Piret model with the incorporation 

of temperature and light intensity influences on the linear dependence of biomass growth 

rate and instantaneous biomass concentration. The first square brackets on the Right-

Hand-Side of Equations (1) and (3) simulates the monotonic increase of microbial activity 

by temperature which does not exceed the optimal operational value (i.e., 313.15 K) for 

R. palustris biomass growth [3]. Assuming the absence of photoinhibition for light 

intensities not higher than 200 Wm-2 [4], photolimitation and photosaturation are the main 

photo-mechanisms captured from the Aiba model as represented by the second square 

brackets on the Right-Hand-Side of Equations (1) and (3).  

2.2. Dynamic parameter estimation 

Generally, the model parameter estimations were solved by weighted nonlinear least-

square regression. However, due to the high nonlinearity, the entire process was 

decoupled into two steps with step I: estimating biomass growth and substrate 

consumption model parameters, and step II: estimating biohydrogen model parameters 

while fixing the optimal solution of step I. Due to stiffness and nonlinearity, orthogonal 

collocation over finite elements in time was used to discretise the differential equations, 

then solved with the interior point solver, IPOPT through the open-source interface 

Pyomo, within Python version 3.7 programming environment.  
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(3) 

where 𝑋, 𝑆 and 𝐻2, are the biomass concentration (g L-1), substrate concentration (mM) 

and biohydrogen production (mL) respectively,  𝜇𝑚𝑎𝑥  and 𝛼𝑚𝑎𝑥 are the maximum 

specific growth rate (h-1) and maximum specific production rate (h-1) respectively,  𝜇𝑚𝑎𝑥 ∙
𝐴 = 𝐴′ (h-1) and 𝛼𝑚𝑎𝑥 ∙ 𝐴𝐻2

= 𝐴𝐻2
′ (h-1) are the pre-exponential factors which are lumped 

for identifiability purposes, 𝐸𝑎 and 𝐸𝑎,𝐻2
 are the activation energies (J mol-1), R the is 

universal gas constant (8.3145 J mol-1K-1), T is the absolute temperature (K), 𝐼0 is the 

incident light intensity (Wm-2), 𝜏 (m2 g-1) is the light absorption coefficient, 𝐿 (m) is the 

light path length, 𝑌𝑋𝑆 and 𝑚 as the substrate yield coefficient (mmol g-1) and maintenance 

coefficient (mmol g-1 h-1), respectively. 

2.3. Parameter perturbation analysis  

The parameters in the mechanistic model are grouped into three classes: Class I (i.e., 𝑌𝑋𝑆 

and 𝑚) for reaction conversion related parameters, Class II (i.e., 𝑘𝑠, 𝑘𝑠,𝐻2
 and 𝜏) for light 

intensity associated parameters, and Class III (i.e., 𝐴′, 𝐸𝑎 , 𝐴𝐻2
′ and 𝐸𝑎,𝐻2

) for temperature 

associated parameters based on expert knowledge (e.g., Class I are well-known to great 

accuracy from microbiological studies meanwhile the same is not true for Class III). Input 

parameter uncertainties are assigned to each Class, then probabilistic sampling with Latin 

Hypercube Sampling was carried out, and the effects on the model’s prediction 

uncertainty was propagated by Monte Carlo simulations. 

2.4. PBR large scale simulations  

The frequencies of local light/dark cycles are the only factor influenced by the PBR’s 

transport phenomena on biomass growth rate. This effect was simulated in our recent 

study [5] by introducing one additional parameter (i.e., effective light intensity 

coefficient, 𝜂) which is larger than 1 if the PBR’s culture mixing is intensified thereby 

leading to Equation (4). As the biohydrogen production rate is known to be a function of 

the PBR’s biohydrogen partial pressure since this reaction is reversible, another parameter 

(i.e., biohydrogen enhancement coefficient 𝜙) is added into Equation (6) to affect the 

overall hydrogen production rate as per the influence of biohydrogen removal rate and 

gas-liquid mass transfer.  
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3. Results and discussion 

3.1. Dynamic parameter estimation results  

Table 1 lists the obtained parameter values while the orange line in figure 1 shows the 

model fitting result after the step I of the parameter estimation for 100 Wm-2 and 200 Wm-

2 at 35℃ and 30℃, respectively with the remainder (i.e., 200 Wm-2 at 35℃ and 40℃) not 

shown due to fitting similarities.  

Table 1: Model parameter estimates and literature validation. 

Parameters  Estimated  Parameters  Estimated  

Step-one optimisation 𝛼𝑇=308.15 𝐾 (h-1) 81.0 

𝜇𝑇=303.15 𝐾 (h-1) 0.159 𝛼𝑇=313.15 𝐾 (h-1) 106.0 

𝜇𝑇=308.15 𝐾 (h-1) 0.185 𝑘𝑠,𝐻2
(Wm-2) 500.0 

𝜇𝑇=313.15 𝐾 (h-1) 0.225 Step-two optimisation 

𝑘𝑠 (Wm-2) 500.0 𝐴′(h-1) 8.30×103 

𝜏 (mm2 g-1) 90.8 𝐸𝑎(J mol-1) 2.74 ×104 

𝑌𝑋𝑆 (mmol g-1) 9.66 𝐴𝐻2
′ (h-1) 1.01×1010 

𝑚 (mmol g-1 h-1) 0.0140 𝐸𝑎,𝐻2
(J mol-1) 4.78×104 

𝛼𝑇=303.15 𝐾 (h-1) 56.9   

3.2. Results of parameter perturbation analysis 

Figure 1 shows the uncertainty bands and average percentage uncertainty over the process 

trajectory to be lowest and highest for Class I parameters (not shown) and Class III 

parameters respectively. This suggests that the model is highly sensitive to changes of 

Class III parameters but is less responsive to Class I parameters. Therefore, it is necessary 

to design more experiments for the accurate identification of temperature associated 

parameters meanwhile it is unsafe to update these Class III parameters during model-

based process online optimization considering the high level of prediction uncertainty 

that can be introduced into the model output. Conversely, Class II parameters only 

showed a similar magnitude of model uncertainty when their input uncertainty was 

around 20% thereby indicating the model to be robust in their mild changes. Hence, Class 

II parameters are the ideal candidates to be re-estimated during online operation if the 

model is used for dynamic process optimisation. 

3.3. Results of PBR large scale simulation  

Figure 2 (a) to (c) shows that the model can well predict substrate consumption and 

hydrogen production in the large scale PBR with the calibrated transport phenomena 

associated parameters being 𝜂 = 4.515 and 𝜙 = 1.945. The 𝜂 was observed to be higher 

than that reported in the literature [5] (i.e., 0.25 to 3.625) thereby implying a better light 

utilisation efficiency in the upscaled PBR which can be associated to the enhanced 

transport phenomena (i.e., better culture mixing that promotes a more frequent light/dark 

cycling). The obtained 𝜙 implies that the maximum specific 𝐻2 production rate was 

almost doubled due to a decrease in the PBR’s partial pressure which facilitates 

biohydrogen synthesis. Similar observations were reported in the literature [6] whereby a 

12% increase in the biohydrogen productivity of Rhodobacter sphaeroides ZX-5 was 

attained when the total pressure at the PBR’s headspace was decreased from 1.082×105 

to 0.944×105 Pa.  

Figure 2 (d) to (f) shows the biomass, substrate and biohydrogen models to be sensitive 

to the transport phenomena associated parameters. This implies: (i) they tune all of the 

state variables during any re-calibration process for the prediction of a different PBR scale 

and configuration, and (ii) can be updated during process online optimisation for 

scenarios such as a sudden disturbance of the PBR operation (e.g., random failure event 
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of the mixing pumps in the PBR) since their sensitives were relativity low in comparison 

to Class III parameters.  

 

 

Figure 1: Perturbation analysis for input uncertainties of (a) to (c) 4% for class III, (d) to (f) 20% 

for class II. The mean, 10th and 90th percentile, and %RE for 100 Monte-Carlo simulations. Also, 

(a) to (c) and (d) to (f) are state variables corresponding to the biomass, substrate and biohydrogen 

models respectively  

4. Conclusion 

In this paper, a mechanistic model capable of simulating the photoheterotrophic biomass 

growth and biohydrogen production by the photosynthetic bacterium R. palustris under 

the unified influences of light intensity, light attenuation and temperature was developed. 

Model-based upscaling capabilities via two transport phenomena dependent parameters, 

𝜂 and 𝜙 embedded into the mechanistic model was possible after re-calibration. By using 

experimental data from a small (0.5 L) and large (1 L) scale photobioreactors (PBRs), the 

model prediction accuracy was thoroughly verified for both intra and across-scale 

predictions. Whilst perturbation analysis revealed temperature, light and transport 

phenomena associated parameters to be sensitive, the first should be identified and fixed 

during online model-based process optimisation meanwhile the second and last are more 

suitable to be updated. Amongst the investigated PBR scales, the enhanced biohydrogen 

production rate in the large scale PBR was attributed to the superior culture mixing and 

gas removal performance, and was mechanistically described for the first time. This 

provides important advances for the efficient design of novel PBRs and future online 

optimisation for biohydrogen production. 
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Figure 2: Simulation result of the large scale PBR: (a) to (c) and perturbation analysis (d) 

to (f) of 20% for transport phenomena associated parameters. The mean, 10th and 90th 

percentile, and %RE for 100 Monte-Carlo simulations. Each fitting is accompanied by 

the percentage relative error (%RE). Also, (a) to (c) and (d) to (f) are state variables 

corresponding to the biomass, substrate and biohydrogen models respectively. 
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Abstract 
In oral solid-dosage manufacturing through direct compression, lubrication is used to 
enhance powder flowability and the ejection of the tablet from the die. However, 
lubrication can negatively impact tablet quality attributes such as tablets hardness or 
dissolution. In order to facilitate the selection of an appropriate lubrication extent, 
different models describing the relation between compaction performance and process 
conditions may be used. In particular, the extension of the Kushner and Moore model 
proposed by Nassar et al. (Nassar et al., 2021, Int. J. Pharm., 592, 119980) allows 
predicting tensile strength over a wide range of tablets solid fraction and powder blending 
time values. The main drawback of this model is that it requires a large number of 
experiments for parameter estimation. This results into a significant consumption of 
active pharmaceutical ingredient (API), which may be scarce and considerably expensive.  
In this study, model-based design of experiments is used to reduce the required 
experimental effort for the identification of the model parameters. We propose a novel 
procedure that is able to reduce parameters uncertainty while minimizing the number of 
required experiments. Results based on a simulated case-study demonstrate the 
effectiveness of the approach. 
Keywords: model-based design of experiments; pharmaceutical engineering; quality by 
design; oral solid-dosage manufacturing 

1. Introduction 
In tablet manufacturing, while dry or wet granulation facilitates compaction and flow 
properties by converting fine powders into agglomerates (Šantl et al., 2011), direct 
compression improves powder manufacturability only through lubrication. Accordingly, 
lubrication is a crucial step: an excessive usage of lubricant may degrade tablets 
properties, like disintegration and dissolution, thus prejudicing the correct absorption 
when they are ingested by the patients. Many lubrication models have been proposed to 
aid the product development in tablets production through direct compression. Kushner 
and Moore (2010) developed a model which relates tensile strength and lubrication at the 
fixed solid fraction of 0.85. Recently, Nassar et al. (2021) introduced two additional 
parameters to the abovementioned model to describe the effect of solid fraction when it 
varies in a wide range of values. Despite the satisfactory predictive power, a considerable 
amount of experiments is needed for model parameters identification. In the industrial 
practice the experiments are usually carried out in a suboptimal, and consequently 
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ineffective, manner, based on trial-and-error approaches. The typical experimental 
procedure goes through the preparation of up to 7-9 blends with different lubrication 
extents, in which one powder blend is first prepared with a specific lubrication extent, 
and then a compression profiling is performed to produce tablets with different solid 
fractions. While changing compression pressure to have different solid fractions is not an 
issue, preparing a considerable number of blends (i.e., a considerable number of 
lubrication extents) leads to an excessive usage of API, which is expensive and may not 
be available in the required quantity during drug development.  
In this work we adopt model-based design of experiments (MBDoE; Asprey and 
Macchietto, 2000), which is a science driven method to select optimal experimental 
conditions yielding the maximum information content for the purpose of parameters 
estimation. In order to minimize the number of blends to be prepared, a novel approach 
is proposed based on a two-step optimization: first the optimal solid fractions are found 
for every possible value of lubrication extent (i.e., blend); then, the lubrication extent 
providing the most informative experiment is selected.  

2. Materials and methods 
The efficacy of the proposed MBDoE procedure is demonstrated through numerical 
simulations (Figure 1): (1) a proper model describing the lubrication process is selected, 
together with preliminary parameters guesses; (2) based on model equations and 
parameters, MBDoE provides the design of the most informative experiments; (3) optimal 
experiments are executed in the process, which in this study is simulated through a digital 
model; (4) optimal data are available to update parameters estimates. This procedure is 
iterated until satisfactory parameters precision and model predictive power are obtained. 

  
Figure 1 Workflow to validate the MBDoE procedure through numerical simulations.  

2.1. Lubrication model 

The compression performance in the tablet press is quantified in terms of tablets tensile 
strength (𝑡𝑡𝑡𝑡, MPa), which is related to powder lubrication extent and to tablets solid 
fraction (𝑠𝑠𝑠𝑠,-) through the extended Kushner and Moore equation proposed by Nassar et 
al. (2021): 
𝑡𝑡𝑡𝑡/𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠=0.85,0 =  (1 − 𝛽𝛽) + 𝛽𝛽exp(−𝛾𝛾𝛾𝛾)                                                                                    (1)        
𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠=0.85,0 = 𝑎𝑎1 exp(𝑏𝑏1(1 − 𝑠𝑠𝑠𝑠))                                                                                                     (2) 
𝛽𝛽 = 𝑎𝑎2(1 − 𝑠𝑠𝑠𝑠) + 𝑏𝑏2                                                                                                                                     (3) 
where Eq. (1) represents the original Kushner and Moore (2010), while Eqs. (2) and (3) 
introduce the dependence of tensile strength from solid fraction.  
Five parameters (𝜽𝜽) must be identified in this model: 𝑎𝑎1 [MPa], 𝑎𝑎2 [-], 𝑏𝑏1[-], 𝑏𝑏2 [-] and 𝛾𝛾 
[dm-1]. Two variables can be manipulated in the experiments to estimate those 
parameters, namely solid fraction and lubrication extent.  

2.2. Model-based design of experiments and global sensitivity analysis 

MBDoE aims at finding the optimal experiment conditions 𝝓𝝓opt = [𝑠𝑠𝑠𝑠opt, 𝑘𝑘opt]T in terms 
of solid fraction and lubrication extent in such a way as to estimate the model parameters 
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with minimum uncertainty. This is performed by solving an optimization problem which 
maximizes the information obtained by the experiment, which is evaluated through the 
Fisher information matrix (FIM), 𝑯𝑯 𝜽𝜽� (Box and Lucas, 1959): 
𝑯𝑯 𝜽𝜽��𝜽𝜽�,𝝓𝝓� = 1

𝜎𝜎𝑦𝑦2
𝑺𝑺(𝜽𝜽�,𝝓𝝓)T𝑺𝑺(𝜽𝜽�,𝝓𝝓)   ,                                                                                                        (4) 

where 𝑺𝑺 is the sensitivity matrix whose elements are:  
𝒔𝒔𝑠𝑠𝑠𝑠,𝑘𝑘�𝜽𝜽�,𝝓𝝓� = �𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝑎𝑎1
�𝜽𝜽�,𝝓𝝓�, 𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝑏𝑏1
�𝜽𝜽�,𝝓𝝓�, 𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝑎𝑎2
�𝜽𝜽�,𝝓𝝓�, 𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝑏𝑏2
�𝜽𝜽�,𝝓𝝓�, 𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
�𝜽𝜽�,𝝓𝝓��

𝑠𝑠𝑠𝑠,𝑘𝑘 
  ,               (5) 

the decorator symbol (  �) indicates estimated quantities, 𝝓𝝓 is the design vector which 
collects inputs variables, i.e. 𝝓𝝓 = [𝑠𝑠𝑠𝑠, 𝑘𝑘]T,  and 𝜽𝜽� are the estimated parameters. In this 
study, the information content is maximized through a D-optimal strategy (Pukelsheim, 
1993) which minimizes the volume of the parameters uncertainty region: 
𝝓𝝓opt = argmax

𝝓𝝓
{det[𝑯𝑯𝜽𝜽�(𝜽𝜽�,𝝓𝝓)]}                                                                                      (6) 

Note that, to avoid the dominance of some variables or parameters due to different scales, 
data are pre-treated through a division by a reference value (e.g., the mean value of each 
variable) and the parameters are estimated with scaled data and indicated with capital 
letters, i.e. 𝜣𝜣� = [𝐴̂𝐴1,𝐵𝐵�1, 𝐴̂𝐴2,𝐵𝐵�2,𝛤𝛤�]T.  
Considering that MBDoE calculations rely on sensitivity indices and that parameters with 
negligible influence on the response tend to have higher uncertainty, a preliminary global 
sensitivity analysis is performed. Sobol’s method (Saltelli et al., 2008) is applied, 
estimating first-order (𝑆𝑆main,𝑖𝑖, 𝑖𝑖=𝐴𝐴1, … ,𝛤𝛤) and total-order (𝑆𝑆T,𝑖𝑖, 𝑖𝑖=𝐴𝐴1, … ,𝛤𝛤) sensitivity 
indices with a latin-hypercube sampling strategy. In particular, 8000 resamplings are 
performed in the entire parameters domain whose ranges are shown in Table 1.  

Table 1 Lower and upper bounds for model parameters used in global sensitivity analysis. 

Parameter Lower bound Upper bound 
𝑨𝑨𝟏𝟏 0 5 
𝑩𝑩𝟏𝟏 -7 -2 
𝑨𝑨𝟐𝟐 0 5 
𝑩𝑩𝟐𝟐 0 5 
𝚪𝚪             0 5 

 

2.2.1. Two-step MBDoE  

With a classic MBDoE, input variables are freely varied inside their domain; therefore, 
in each iteration of the MBDoE procedure 𝝓𝝓opt may have different 𝑘𝑘opt, which 
corresponds to the preparation of different powder blends after one compression point. 
However, the number of blends that should be prepared (i.e., the changes in powder 
lubrication extent) should be minimized for operational reasons. To reach this goal, we 
adapt the MBDoE procedure by developing a two-step optimization. At first, 
experimental domains of the input variables are specified: 𝑠𝑠𝑠𝑠 varies in the continuous 
range [0.65, 0.90], while 𝑘𝑘 can take on integer values in [90, 2000] dm. Then, the 
following optimizations are performed: 
• a possible value of 𝑘𝑘 is fixed and the optimization (6) is solved to get 𝑁𝑁𝑆𝑆𝑆𝑆 optimal 

values of 𝑠𝑠𝑠𝑠; the set of 𝑁𝑁𝑆𝑆𝑆𝑆 solid fractions for the same lubrication extent is named 
“profile”; this procedure is repeated for every possible value of 𝑘𝑘;  

• among all calculated profiles, the one maximizing the objective function in (6) is 
selected as the optimal experiment to be executed (𝝓𝝓opt =
 [𝑠𝑠𝑠𝑠opt,1, … , 𝑠𝑠𝑠𝑠opt,𝑁𝑁𝑆𝑆𝑆𝑆 , 𝑘𝑘opt]T). 

57

27



 F. Cenci et al. 

In general, the same values of 𝑠𝑠𝑠𝑠opt,𝑖𝑖 and 𝑘𝑘opt can be obtained by solving (6) multiple 
times; however, since the objective is to reduce the experimental burden, replications of 
similar optimization results are avoided by imposing that the optimal values differ by at 
least 150 dm for k and 0.04 for sf. This allows to better explore the experimental domain, 
which is advantageous in case of process-model mismatch.  
In order to have sufficient experimental data for model calibration, the two optimization 
steps are iterated 𝑁𝑁𝐾𝐾 = 4 times, thus obtaining 𝑁𝑁𝐾𝐾 profiles. For each profile, 𝑁𝑁𝑆𝑆𝑆𝑆=5 
optimal solid fractions are calculated.  
In both optimization steps, results depend on the quality of the parameters estimates 𝜣𝜣�  
used in (6), but usually “true” parameters estimates are not available at the beginning of 
the experimental campaign and parameters guesses 𝜣𝜣�  guess must be used. In this study, 
we choose guesses based on historical data. Indeed, the datasets of five different 
formulations named A, B, C, D and E (for details, see Nassar et al., 2021) are available. 
Since they comprise a considerable amount of data points, the estimated parameters are 
treated as “true values” (𝜣𝜣A, 𝜣𝜣B, 𝜣𝜣C,𝜣𝜣D,𝜣𝜣E respectively) and reliable initial guesses are 
obtained by setting 𝜣𝜣�  guess = mean(𝜣𝜣A, 𝜣𝜣B, 𝜣𝜣C,𝜣𝜣D,𝜣𝜣E). 

2.3. Process 

In this study, we represent the process through a digital model of the historical 
formulation A, which is made of equations (1)-(3) and “true” parameters 𝜣𝜣A. Noise is 
added to the in-silico data to mimic experimental and measurement errors. In particular, 
given that specific solid fractions are difficult to be achieved in the physical system, 
pseudo-random noise is added to 𝑠𝑠𝑠𝑠opt,𝑖𝑖, 𝑖𝑖 = 1, … ,𝑁𝑁𝑆𝑆𝑆𝑆 to reproduce experimental errors 
(the mean 𝑠𝑠𝑠𝑠 error is 0.01). Furthermore, pseudo-random noise is added also to the values 
of 𝑡𝑡𝑡𝑡 generated by the digital model to reproduce a 𝑡𝑡𝑡𝑡 error variance of 0.02. 

2.4. Global sensitivity analysis 

First-order and total-order sensitivity indices are calculated in the selected domain of 𝑠𝑠𝑠𝑠 
values for three different given lubrication extents, namely 90 dm, 800 dm, 2000 dm. 
Results (Figure 2) show that: 

• at low lubrication extents (𝑘𝑘=90 dm in Fig 2.a), the most influential parameters 
are 𝐴̂𝐴1, 𝐵𝐵�2 and 𝐵𝐵�1, while at medium and high lubrication extents (𝑘𝑘=800 dm and 
𝑘𝑘=2000 dm in Fig 2.a) the influence of 𝐵𝐵�2 on the response is dominant;   

• parameter 𝐴̂𝐴2 has always little influence on the response (Fig 2.b); therefore, it 
is expected to have higher uncertainty when the model is calibrated with 
experimental data. However, 𝑆𝑆T,𝐴𝐴�2 is not constantly equal to zero, thus this 
parameter cannot be set to a nominal value; 

• the summation of the total effects (omitted for sake of conciseness) is almost 
always higher than 1, suggesting a high level of interaction among parameters 
at every 𝑠𝑠𝑠𝑠 and 𝑘𝑘 value, which in turn complicates the unique identification of 
parameters. 
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(a) 

 
(b) 

Figure 2 Global sensitivity analysis on model (1)-(3). Two types of sensitivity indices are shown: 
(a) main effects; (b) total effects. They are calculated for three different lubrication extents: 90 dm, 
800 dm and 2000 dm (separated by vertical black dotted lines).  

2.5. Design of optimal experiments 

By applying the two-step MBDoE procedure, the following optimal lubrication extents 
are obtained: 90 dm, 2000 dm, 718 dm, 1849 dm. Since the process is affected by 
experimental and measurement errors, four replicates are generated in silico for every 
optimal solid fraction level. 
Optimal profiles are used to identify model parameters, whose precision is assessed 
through a t-test (Table 2). Moreover, model validation is performed by calculating the 
tensile strength absolute error (𝑡𝑡𝑡𝑡 AE) with the historical dataset A in the domain of the 
MBDoE optimization, i.e. with 𝑘𝑘 in [90, 2000] dm. As suggested by the process experts, 
the desired model predictive power is a percentage of at most 5% of data points with a 𝑡𝑡𝑡𝑡 
AE exceeding 0.25 MPa. 
Table 2 Results of model calibration performed with an increasing amount of optimal profiles 
generated in silico. Parameters estimates are shown together with 95% confidence intervals (𝜣𝜣�𝒊𝒊, 
± 100(1-𝛼𝛼)%CI); CI are not calculated when the FIM is ill-conditioned. Parameters precision is 
assessed though a t-test; estimates not satisfying the t-test are indicated with an asterisk (*). 

no. 
𝒌𝒌opt 

𝜣𝜣�𝒊𝒊, ± 100(1-𝜶𝜶)%CI 
𝐴̂𝐴1 𝐵𝐵�1 𝐴̂𝐴2 𝐵𝐵�2 Γ� 

2 0.14* -4.82* 0.92* 1.00* 0.63* 
3 0.15±0.03 -4.81±0.41 0.72±0.44* 0.79±0.23 1.26±0.58 
4 0.15±0.03 -4.81±0.40 0.71±0.37 0.80±0.19 1.21±0.53 

 
The t-test for parameters precision show that two optimal profiles do not allow to obtain 
statistically sound parameters estimates; a considerable improvement is achieved by 
adding the third profile, since all parameters except for 𝐴̂𝐴2 pass the t-test. The higher 
uncertainty of this parameter is likely due to the scarce influence on the response, as 
revealed by GSA (Section 2.4). The addition of the fourth optimal profile significantly 
improves the quality of 𝐴̂𝐴2, which passes the t-test; moreover, and the fourth optimal 
profile slightly improves the precision of parameters 𝐵𝐵�2 and Γ� (their 95% CI are smaller) 
and brings negligible differences in terms of parameters estimates and intervals for 𝐴̂𝐴1 
and 𝐵𝐵�1. Moreover, three optimal profiles allow to attain the desired model predictive 
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performance (Fig. 3), leading to a reduction of the experimental effort by more than 50% 
with respect to the standard industrial practice. 

 
Figure 3 Tensile strength absolute error when the model is calibrated with three optimal profiles.  

3. Conclusions 
Lubrication models are used in the pharmaceutical industry to aid the design of lubrication 
processes, which in turn are crucial to facilitate tablets manufacturability and to ensure 
the desired product quality. Precise model parameters are required to the scope, but they 
are usually obtained with an excessive amount of experimental data, which implies a 
considerable API usage (thus, high costs) and time-consuming experimental campaigns.  
We solve this issue by proposing a novel MBDoE procedure that allows to select the most 
informative experiments for the purpose of parameters estimation. Moreover, the 
proposed MBDoE approach is able to minimize the change in lubrication extent, thus the 
number of blends to be prepared, through a two-step optimization: first, solid fraction 
values are optimized for every lubrication extent, thus providing multiple profiles of 
optimal 𝑠𝑠𝑠𝑠; among them, the profile maximizing parameters precision is selected as the 
best experiment to be performed. We demonstrate that it is efficient in reducing the 
experimental effort by more than 50% with respect to the standard industrial practice, 
with considerable savings in terms of API and time for the experimentation. Indeed, three 
optimal blends instead of the typical 7-9 are sufficient to obtain both statistically sound 
parameters estimates and the desired prediction quality. However, with three optimal 
profiles a higher uncertainty has to be accepted for parameter 𝐴̂𝐴2, which is likely due to 
the small influence of this parameter on the model response.  
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Abstract 

In oral solid dosage (OSD) forms manufacturing, understanding and characterizing the 
flowability of pharmaceutical formulations is pivotal since product and process performance 

directly depend on this property. Therefore, whenever a formulation change occurs during 

drug development, the impact on powder flowability must be quantified to address any 
potential effects on the manufacturability or critical quality attributes of the final product. 

Current industrial practice relies on extensive experimentation to address this problem, 

resulting into a significant consumption of active pharmaceutical ingredient (API), which is 
expensive and scarce during the early stages of drug development. 

In this study, we propose a mixing rule model that can be used to predict the flowability of 
pharmaceutical blends from the flowability of the individual components. The model is 

validated with 35 different powder blends consisting of common APIs and excipients used for 

directly compressed pharmaceutical formulations. Results show that, by measuring the 
flowability of the pure API and only 6 binary mixtures, the mixing rule model can be used to 

predict the flowability of directly compressed pharmaceutical blends containing the API 

without further experiments. For a new pharmaceutical product, the reduction in experimental 
effort using this modelling approach can translate to ~80% reduction of API consumption, 

depending on the formulated product and the API physical properties. 

 
Keywords: quality by design; pharmaceutical manufacturing; mixing rules; OSD 

 

1. Introduction 
Understanding powder flowability is critical to the success of several unit operations involved 

in the manufacture of oral solid dosage (OSD) forms (Prescott and Barnum, 2000). The 
performance of feeders, blenders, tablet presses and capsule fillers depends, among other 

factors, on the flow properties of the formulation = (Osorio and Muzzio, 2013). Nevertheless, 

measuring and predicting powder flowability from the individual components of the 
formulation is notoriously a difficult task (Seville et al., 2000), especially for powders with 

small particle size and uncontrolled size and shape distributions (Leung et al., 2017).  

Despite this complexity, attempts to predict the flowability of multi-component mixtures of 
solids have appeared in the literature. These attempts can broadly be categorized in two 

groups: empirical approaches based on statistical models (Hildebrandt et al., 2019; Barjat et 
al., 2021) and approaches based on the granular Bond number (Capece et al., 2015; Giraud et 

al., 2021). In the former case, powder flowability was predicted from both bulk and particle 

properties of the individual components using multivariate regression techniques, latent 
variable models, support vector regression models or a combination thereof (Barjat et al.,  

2021). In the latter case, specific flow properties of the powder mixture such as the flow 

function coefficient (ffc) were correlated to bulk and particle properties of the individual 
components via the Bond number, which quantifies the relative balance between gravitational 

forces and attractive interparticle forces such as the van der Waals forces. 
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Both these approaches have limitations. From one side, the prediction fidelity of statistical 

models depends on the size and the range of composition and bulk/particle properties included 

in the calibration dataset. The models currently available cover only a small range of powder 
flow characteristics observed in pharmaceutical OSD forms, and therefore have limited 

applicability for industrial applications, independently of the manufacturing platform 
considered (direct compression, dry or wet granulation). On the other side, the approaches 

based on the granular Bond number, although promising, require some input measurements  

that are not routinely collected in an industrial environment (e.g., particle surface energy), and 
often show a low prediction fidelity. Their applicability is therefore limited, since the 

additional effort to retrieve the required input measurements does not often justify their 

resulting low prediction fidelity. 
In this study, we develop a pragmatic mixing rule model to predict the flowability of 

pharmaceutical blends from the individual components. We constrain our study to 

formulations that are suitable to direct compression as the chosen manufacturing platform for 
the final OSD product. Under this assumption, we identify a restricted set of components and 

composition ranges for the formulations which are relevant in an industrial context, and we 

quantify the prediction fidelity of the proposed modelling approach with experimental data.  
 

2. Materials and experimental methods 
2.1. Materials 
Experiments were performed using blends composed of the following materials: 

• microcrystalline cellulose (MCC) as Avicel PH102 (FMC Corporation, USA); 

• anhydrous lactose as lactose Supertab 21AN (DFE Pharma, Germany); 

• croscarmellose-sodium as Ac-Di-Sol (FMC Corporation, USA); 

• magnesium stearate as LIGAMED MF-2-V (Peter Greven, Germany) 

• monohydrate crystalline lactose as Pharmatose 200M (DFE Pharma, Germany) 

(used as surrogate API) 

• micronized paracetamol (Mallinckrodt Pharmaceuticals, USA).  

All materials were used as received by the vendors. Binary and ternary mixtures containing 
Pharmatose 200M as API (formulation A) and micronized paracetamol (formulation B) were 

prepared spanning the range of composition reported in Table 1. These components and 

composition ranges were selected based on current state-of-the art for directly compressed 
pharmaceutical formulations in an industrial environment. 

 
Table 1. Materials used in this study and composition ranges used for the ternary mixtures.  

 

Material Grade Range (%w/w) 

API n/a [5,40] 

MCC Avicel PH102 [10, 90] 

Lactose anhydrous SuperTab 21AN [15, 70] 

Croscarmellose sodium Ac-Di-Sol Fixed at 3% 

Magnesium stearate LIGAMED MF-2-V Fixed at 1% 

 

Binary blends and ternary blends were prepared for the two formulations at different 
compositions according to the ternary plots shown in Figure 1. 

 

2.2.     Blend preparation (pre-lubrication) 
2.3. The blends were prepared using 3L bin blender (Sino Pharmaceutical Equipment 

Development Co, Ltd). All excipients and the API were transferred into the blender after 
screening through 1.0 mm sieve, and then mixed at 20 rpm for 20 min. 
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(a)                                                                   (b) 

Figure 1. Powder blends prepared for this study using (a) Pharmatose 200M as surrogate API and 

(b) micronized paracetamol as API. Red stars are pure components, black squares binary blends and 
blue circles ternary blends. The shaded area represents the formulation design space of interest.  

 

2.4. Blend lubrication 

Magnesium stearate (MgSt) was added to the pre-lubricated blends in the amount of 1% w/w 
in the 5L bin blender. The mass of the non-lubricated blend required to achieve 40% head 

space and the lubrication time were calculated respectively from the blend bulk density, and 

according to the relationship proposed by Kushner (2012), by setting a target lubrication extent 
equal to 100 dm. 

 

2.5. Flowability measurements 
Powder flowability was measured using a Brookfield shear cell tester (Amtrek, USA). Prior 

to the analysis, all blends were pre-conditioned at 20 °C/50% RH for 24h. Flow function tests 

were performed for each blend using a standard (volume = 266 cm3) cell. 
 

3. Proposed modelling approach 
We aimed to construct a mixing rule model that could predict the following properties of the 
powder blend: 

• slope and intercept of the flow locus; 

• fill bulk density 

using these properties of the individual components as inputs. From the slope and intercept of 

the flow locus, we derived the flow function coefficient at a consolidation endpoint = 3 kPa. 
This value is often used in industry to assess the flowability behaviour of the blend according 

to the classification system reported in Schulze (2008). 

Most of the APIs and excipients that are used in pharmaceutical development are fine, dry and 
uncharged powders. In this scenario, previous studies (Capece et al., 2015; Giraud et al., 2021) 

have shown that the flowability of the mixture is dominated by inter-particle cohesive forces 

such as the van der Waals forces. Based on this assumption, we used statistical-mechanical 
arguments developed for mixture of fluids to propose a functional relationship between the 

property of the solid mixture and the individual components. 

For a mixture whose pair intermolecular potential energy as a function of distance between 

the pair (𝑢𝑖𝑗(𝑟)) can be described as: 

𝑢𝑖𝑗(𝑟) = 𝜖𝑖𝑗𝑓 ( 𝑟

𝜎𝑖𝑗

),                                                                          (1) 

 

the following mixing rules can be derived to describe the molecular volume 𝜎3 and the 

molecular energy 𝜖 of the mixture: 
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𝜎3 ∝  ∑ ∑ 𝑤𝑖𝑤𝑗𝜎𝑖𝑗
3𝑁

𝑗=1
𝑁
𝑖=1                                                                            (2) 

 

𝜖 ∝  
∑ ∑ 𝑤𝑖𝑤𝑗𝜖𝑖𝑗𝜎𝑖𝑗

3𝑁
𝑗=1

𝑁
𝑖=1

𝜎3  .                                                                              (3) 

 

Here, 𝜎𝑖𝑗 is intermolecular interaction distance between molecules of component 𝑖 and 𝑗, 𝜖𝑖𝑗 is 

the interaction energy parameter, 𝑁 is the number of components in the mixture and 𝑤𝑖 is the 

mass fraction of the 𝑖-th component. For a mixture of solids, we assumed that the property of 

the mixture can be described as a sum of two terms: 1) a term that depends on the molecular 

volume of the mixture 𝜎3 (zero-interaction term), and 2) a term that depends on the product 

(molecular energy) × (molecular volume) 𝜖𝜎3 (first-order interaction term). Leveraging on the 

mixing rules developed by Van der Waals for fluids and their statistical mechanics  
interpretation (Van der Waals, 1873; Kwak and Mansoori, 1986), and considering the analogy 

with our assumptions, we formulated the following mixing rule for a generic property 𝜙𝑚 of 

the mixture: 
 

                       𝜙𝑚 =  ∑ 𝑤𝑖𝜙𝑖 + 𝑁
𝑖=1 ∑ ∑ 𝑤𝑖𝑤𝑗√𝜙𝑖 𝜙𝑗 (1 − 𝑘𝑖𝑗)𝑁

𝑗=1
𝑁
𝑖=1                                         (4) 

 
where 𝑘𝑖𝑗 is a binary interaction parameter (BIP) for the pair of components 𝑖 and 𝑗 that needs 

to be fitted from experimental data of the binary mixture, and 𝜙𝑖  is the property of the 𝑖-th 
component of the powder blend. The first term on the right-hand side of Eq. (4) is the zero-

interaction term, while the second term is the first-order interaction term. Note the analogy 

between the first and second term of Eq. (4) and the "𝑏” and "𝑎" term in the van Der Waals 

equation of state for mixture of fluids. 
Eq. (4) sets the structural relationship between the property of the mixture and the individual 

components. In order to use it, binary interaction parameters must be estimated for each pair 

of components of the mixture. For the formulation considered in Table 1, this requires 
estimation of the binary interaction parameters 𝑘𝐴𝑃𝐼 ,𝑀𝐶𝐶 , 𝑘𝐴𝑃𝐼 ,𝐿𝑎𝑐  and 𝑘𝑀𝐶𝐶,𝐿𝑎𝑐 , with MCC = 

Avicel PH102 and Lac = Lactose SuperTab21AN. Note that, for a specific property of the 

mixture, only the first two parameters depend on the API, and therefore need to be estimated 
from experimental data when a new product is considered. The binary interaction parameter 

𝑘𝑀𝐶𝐶,𝐿𝑎𝑐  can be estimated only once and then used for any formulation containing those two 

components. 

 
3.1. Software 

The models presented in this study were coded in MATLAB R2020b. All simulations were 
performed on an Intel Core i7-5600U CPU@2.60GHz processor with 16.0 GB RAM. 

 

4. Results 
The BIPs were estimated from the binary mixtures reported in Figure 1 (black square points) 
for each binary system API-excipient or excipient-excipient. The parameter estimation was 

performed using a maximum likelihood estimator (Johansen and Juselius, 1990). The 

estimated values of the BIPs for the slope and intercept of the flow locus and for the fill bulk 
density are reported in Table 2. Model predictions were validated against the experimental 

data obtained for the ternary mixtures reported in Figure 1 (blue circles). Note that these 

mixtures were chosen in order to cover the design space of mixtures of industrial relevance 
(yellow area in Figure 1). The same plot shows the classification ranges for the flow behavior 

of the mixture according to the ffc values reported in Schulze (2008). Good agreement 

between the model predictions and the experimental observations was obtained for both 
formulations. 
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Table 2. Estimated value of the binary interaction parameters for the two formulations considered 
in this study.PT = Pharmatose 200M. MCC = Avicel PH102. Lac = Lactose SuperTab21AN. 

APAP=micronized paracetamol. 
 

Binary interaction 

parameter 

Value for slope of 

the flow locus [-] 

Value for intercept of 

the flow locus [-] 

Value for fill 

bulk density [-] 

𝑘𝑃𝑇,𝑀𝐶𝐶  3.648 0.085 0.753 

𝑘𝑃𝑇,𝐿𝑎𝑐 -0.861 1.756 0.830 

𝑘𝐴𝑃𝐴𝑃,𝑀𝐶𝐶  -9.575 4.695 1.061 

𝑘𝐴𝑃𝐴𝑃,𝐿𝑎𝑐 -8.897 3.497 2.387 

𝑘𝑀𝐶𝐶,𝐿𝑎𝑐  3.107 0.720 1.306 

 

The classification of the flow behavior of the blend was predicted correctly by the model for 

all blends apart from a single blend with micronized paracetamol (blend #3), where the blend 
was categorized as cohesive rather than very cohesive. However, the model prediction was 

still within the experimental error for the specific blend. 

 

   
(a) (b)                        

Figure 2. Model predictions Vs experimental values of the flow function coefficient at 3kPa 

consolidation endpoint for (a) formulation A (API: Pharmatose 200M) and (b) formulation B (API: 
micronized paracetamol. 

 

Figure 3 shows the parity plots predicted vs experimental for the fill bulk density. Good 
prediction fidelity was obtained for both formulations; however, the model seemed to 

systematically underestimate the bulk density of the formulation containing micronized 

paracetamol. Investigation on this behavior is ongoing and the study will be further 
corroborated with additional experimental data for model validation. Overall, the model was 

able to consistently predict the behavior of the ternary blends with just binary and pure API 

data used as model inputs. Whenever a minor or major change of the formulation occurs, the 
model can be used to assess any impact on the flow behavior without additional experiments. 

 

5. Conclusions 
In this study, we developed a simple, yet effective, mixing rule model to predict the flowability 

of multi-component pharmaceutical powder blends that are suitable for direct compression. 

The model requires an upfront experimental characterization of the flowability of the pure API 
and 6 binary mixtures, and can then be used to predict the flowability of any ternary blend 

whose ingredient compositions fall within pre-defined ranges relevant to a direct compression 
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manufacturing route in an industrial environment. Whenever a minor or major change in the 

formulation composition occurs during the drug development process, the model can be used 

to predict the impact on the blend flowability without requiring any further shear cell 
experiments. 

 
(a)                                                                 (b)                        

Figure 3. Model predictions Vs experimental values of fill bulk density for (a) formulation A (API: 
Pharmatose 200M) and (b) formulation B (API: micronized paracetamol). 

 

For some OSD products, where several alterations of the formulation composition might 

occur, this can translate into a reduction of up to 80% of API consumption for blend flowability 
assessment. Future work will focus on testing the methodology with additional APIs and 

excipients (e.g., mannitol) with different particle properties in order to define the range of 

validity of the underlying assumptions of the proposed approach. 
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Abstract 

MIBA (Methyl Iso Butyryl Acetate) is an intermediate used in the pharmaceutical 
industry and is generally produced in small scale batch processes making it expensive to 
produce.  This study was to look at the potential for a continuous process for the 
manufacture of MIBA, with the aim to improve yields and hence reduce costs., with the 
initial stage of the work focused on the purification of the MIBA product, this being 
required at high levels of purity, typically in excess of 99 weight %.  Vacuum distillation 
column models were built using both AVEVA’s PRO/II Simulation and AVEVA Process 
Simulation process modeling tools with the feasibility of separations assessed using 
PRO/II’s Ternary VLE tool.  This study investigated achieving high purities of MIBA by 
using different column configurations modelled in AVEVA PRO/II Simulation and 
AVEVA Process Simulation. This paper summarizes the methods and findings of this 
study.  
 
 
Keywords: MIBA, Distillation, Simulation, modeling, Ternary Plots. 

1. Introduction 
The component Methyl Iso Butyryl Acetate (MIBA) has good demand in Pharmaceutical 
Industry across the world. Most of the manufactures are synthesizing MIBA in batch 
processes and as a result the cost of the product is high. So, in this work we tried to design 
a single continuous distillation unit. This is a challenging problem because the properties 
of the components involved in the reaction are not well known. It is a general method that 
MIBA is synthesized by the reaction of Methyl Acetoacetate with Iso Butyryl Chloride 
in the presence of Calcium Hydroxide and Ammonium Chloride. In the reaction the main 
byproducts are Acetamide and water. In this work the reaction part of the process is not 
considered for simulation. Rather, the focus is on removing Acetamide and water to 
produce 99.9 wt% MIBA by means of a continuous distillation process. 

2. Simulation of continuous distillation of MIBA  

2.1. Simulation using AVEVA PRO/II Simulation Software 
 
In this simulation the following feed composition and conditions were used: 
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Table 1. Feed stream composition and condition 
 

Stream Name                            FEED 

Temperature C 80 

Pressure MM HG 133.488 

Total Molar Rate g-mol/hr 1384.401 

Total Mass Rate KG/HR 125 

Stream Phase                            Liquid 

Thermodynamic system                            NRTL 

Total Weight Comp Fractions                             
  ACETAMIDE  0.0739   

  MIBA  0.8561   

  WATER  0.07   

Total Weight Comp. Rates KG/HR  
  

  ACETAMIDE  9.2323   

  MIBA  107.0159   

  WATER   8.7518   

 
A rigorous distillation column unit operation with 13 trays, reboiler and condenser is used 
to model the separation. The feed enters at the bottom. This is to make the distillation 
equivalent to the configuration in a batch distillation. The pressure of the column is 
maintained at 4 mmHg. The thermodynamic method used is Non-Random Two Liquid 
(NRTL). When the simulation model is run the top product purity achieved was 92.7 wt% 
MIBA, but this purity is not of sufficient quality for use in practical applications. The 
objective is to reach 99.9 wt% purity. An attempt has been made to improve the purity by 
changing several parameters for the column, but none of them achieved the desired purity. 
The MIBA composition profile versus the tray number, as illustrated by Figure 1, reveals 
a peak composition MIBA in the upper stages below the condenser. Resulting from this 
observation a side draw was added at tray 3 and this produced 99.9 wt% pure MIBA 
stream. The stream details of the top product and side draw are shown in Table 2. 

2.2. Simulation using AVEVA Process Simulation Software 
The same approach as mentioned in 2.1 has been followed to simulate the Distillation 
operation using AVEVA Process Simulation Software with identical results. The initial 
results without side draw are shown in Figure 2., and the process flow diagram with side 
draw is shown in Figure 3. 
2.3 Application of Ternary plots 
The separation has been analyzed with PRO/II’s Ternary Plot tool confirming the 
obtained results through a conceptual analysis. The ternary plot analysis of the initial 
process flowsheet with 92 wt% pure MIBA is shown in Figure 4. The ternary plot analysis 
of the modified process flowsheet with 99.9 wt% pure MIBA is shown in Figure 5. 
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Table 2. Product stream composition and condition 
 

Stream Name                           SIDEDRAW TOP PRODUCT 

Temperature C 56.501 0.653 

Pressure MM HG 5.246 4 

Total Molar Rate g-mol/hr 650 576.954 

Total Mass Rate KG/HR 92.853 22.643 

Stream Phase                           Liquid Liquid 

Thermodynamic system                           NRTL NRTL 

Total Weight Comp. Fractions                               

  ACETAMIDE  0.0008 0 

  MIBA  0.9981 0.6182 

  WATER  0.0012 0.3818 

Total Weight Comp. Rates KG/HR     

  ACETAMIDE  0.074 0.0002 

  MIBA  92.672 13.9982 

  WATER   0.107 8.6447 
 

Figure 1. Weight fraction of MIBA from top tray to bottom tray 
 

  
 
 

69

39



 

Figure 2. MIBA synthesis initial process flowsheet using AVEVA Process Simulation 
software 

 

 
 

Figure3. 99.9 wt% MIBA modified process flowsheet using AVEVA Process 
Simulation software 

 

 

 
 

Figure 4. Ternary Plot for Base Flow diagram 
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The intention is to gain a 99 wt% pure MIBA distillate. But this is not achievable, it is 
infeasible. As the feed is a ternary system composed of MIBA, ACETAMIDE and water, 
we used the PRO/II Ternary Plot tool that allows to analyze the thermodynamic behavior 
along with the operational process specifications.  
The filled dots represent stream compositions, the marine circles represent the column 
profile for the extreme solution when 60 mol% MIBA is obtained. This allows to analyze 
the separation statement. We can see the residue curves in red. According to separation 
theory for ternary systems, two requirements describe the solution: 

a) Distillate, bottoms and feed compositions form a straight line. 
b) Distillate and bottoms compositions must lie on the same residue curve. 

This defines the separation region for a given feed. The chart below shows the feed as the 
blue dot. If we want the blue feed to separate into a pure MIBA composition then the 
bottoms must be resulting somewhere along the dotted green curve, it would be 
somewhere in the upper left section. This is due to requirement a). 
Requirement b) shows that a bottoms composition in that section is infeasible: 
The column can be solved for the distillate/bottom composition pairs in pink, green, and 
marine. The arrow shows that as we move the specification for the distillate’s MIBA from 
pink to marine, we also push the bottom’s ACETAMIDE towards 100 wt%. 
The point is that the residue curve does not extend upwards (the crossed out red arrow on 
lower left corner). Hence, there is no way a bottoms product can be gained that would be 
in the upper left section. The pure ACETAMIDE node (the chart’s lower left corner) 
limits the MIBA distillate to the marine blue fraction of 0.6, i.e. 60 mol%.  
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Below is a plot with various side draw rates (90, 50, 5 g/h), all at 99 wt% MIBA (ca. 92 
mol%), and the resulting top and bottom purities and rates.  In case of side draws, the feed 
is located in the gravity center of the triangle that can be spanned by the top, side and 
bottom composition (the dotted lines). It is a simple mass balance. 

 
Figure 5. Ternary Plot for 99.9 wt% MIBA Flow diagram 

 

 
 
Conclusion 
In this work a continuous distillation process has been proposed for purifying MIBA. 
Simulation has been carried out using AVEVA PRO/II Simulation software and AVEVA 
Process Simulation Software. The results from the standalone flowsheet have been 
verified with ternary plots feature available in both the software. The location of side 
draw plays an important role in achieving 99.9 wt% MIBA.  The data used and the 
predicted performance of the distillation columns should be validated by experimental 
analysis. 
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Abstract 

The motivation of the research is based on separation problem from fermentation 

industry, that is Acetone-Butanol-Ethanol solvent residue removal from its aqueous 

solutions. Pervaporation is a novel, promising technology for the separation of complex, 

azeotropic mixtures. Within pervaporation membrane category, organophilic 

pervaporation was investigated. In this work, laboratory experiments were performed 

with commercially available test membranes at different temperatures conditions. The 

separation factor and total organic fluxes were determined as well. It was found that, the 

separation factor and fluxes were inversely proportional to the feed butanol concentration. 

The laboratory results were consistent with literature studies. Using partial fluxes, 

semiempirical pervaporation models were fitted. Exponentially improved model version 

of Rautenbach pervaporation model (Szilagyi and Toth, 2020) was investigated in the 

case of binary mixtures. The aim of this work was to extend the observations of 

organophilic pervaporation model to more complex mixture. It can be observed that, the 

exponentially Rautenbach model describes accurately the transport process of 

organophilic pervaporation. Thus, it is possible to implement further studies in process 

simulator environment. 

 

Keywords: Parameter estimation, Organophilic pervaporation, Acetone-Butanol-Ethanol 

mixture. 

1. Introduction 

During the ABE (A: Acetone, B: N-butanol, E: Ethanol) fermentation, Acetone, N-

butanol and Ethanol are mainly produced, other components may be e.g. organic acids 

(butyric acid, acetic acid) (Kollarik, 2018). There are several possibilities for the 

separation of fermentation products. The most common solutions are distillation 

adsorption, liquid-liquid extraction, stripping, reverse osmosis, pervaporation (Valentínyi 

et al., 2018). The latter two methods fall within the scope of membrane procedures. The 

advantages of membrane operations are that they are generally energy efficient, flexible 

operations and do not require the addition of foreign (organic) substances to improve the 

separation. Any fouling and scaling during the process must be prevented. Furthermore, 

the membrane operations are environmentally beneficial because they do not produce 

significant additional waste (Haaz and Toth, 2018). 

Pervaporation is a membrane operation in which the mixture to be separated evaporates 

to the low-pressure side of the membrane and the separation between the components 

through the membrane is carried out by the principle of sorption-diffusion. Vacuum pump 

is mostly used to achieve the low vapor pressure on the permeate side. Depending on the 
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permeable component, two types of pervaporation are distinguished: hydrophilic and 

organophilic pervaporation (Baker, 2012). The “sorption-diffusion” model is the most 

accurate to describe pervaporation in bilayer composite membranes, so the separation 

process of pervaporation can be derived from the sorption-diffusion principle (Wijmans 

and Baker, 1995). The industrial application of pervaporation has become more 

widespread in recent decades due to its lower energy consumption compared to traditional 

separation techniques (distillation, absorption, etc.). In the case of the products of ABE 

fermentation, the actual task is the problem of separating the quaternary mixture of 

Acetone - N-butanol - Ethanol - Water. Only organophilic pervaporation is possible, not 

hydrophilic because dilute aqueous solutions must be separated. Tables 1 introduces some 

organophilic pervaporation membranes treating the products of ABE fermentation. 

Table 1 Organophilic membranes separating ABE fermentation products (Feed, total organic flux and separation 

factor values) 

Membrane type 
Feed [wt%] 

Total 
organic 

flux  

Separation factor  

[-] Reference 

A B E [kg/m2h] A B E 

PDMS/ceramic 0.6 1.2 0.2 1.21 34.6 20.0 6.5 Liu et al., 2014 

PDMS 1.1 1.0 10.2 58.60 4.7 11.6 2.7 Liu et al., 2005 

PEBA 0.6 1.9 0.7 0.03 5.1 12.4 3.5 Liu et al., 2005 

PDMS filled with s. 

(60wt%) 
7.0 15–20 1.0 0.91 7.0 20.0 1.0 

Huang and Meagher, 

2001 

PDMS/ceramic 0.6 1.1 0.2 1.05 30.0 18.0 5.0 Liu et al., 2011 

PDMS filled with s. 
(65wt%) 

0.5 1.0 0.2 0.28 40.0 70.0 10.0 Zhou et al., 2011 

PDMS filled with s. 

(50wt%) 
3.0 10.0 1.0 0.12 44.0 70.0 5.2 Qureshi et al., 2001 

TOA LM with PP s. 0.8 1.5 0.5 0.02 220.0 275.0 80.0 
Thongsukmak and 

Sirkar, 2007 

 

Studying Table 1, it can be seen that PDMS-based membranes are the most common in 

practical application. The aim of this research work is to investigate the quaternary 

Acetone - N-butanol - Ethanol - Water test mixture and the parameter estimation for 

semiempirical pervaporation model. 

2. Material and methods 

The measurements were performed on CM Celfa Membrantechnik AG P-28 membrane 

apparatus with the effective membrane area of 28 cm2. On the permeate side, constant 

13.33 mbar vacuum was provided with VACUUMBRAND PC2003 VARIO vacuum 

pump. Measurements were performed under isothermal conditions at three different 

temperatures (303, 318 and 328K) with an organophilic PDMS type membrane (Sulzer 

PERVAP 4060). The starting compositions of the 500 mL feed mixtures were 0.4 wt% 

Acetone, 0.8 wt% N-butanol and 0.1 wt% Ethanol. The rest of the test mixtures were 

water. The permeate was collected in liquid nitrogen-cooled traps and the compositions 

were analyzed by SHIMADZU GCMS-QP2010 gas chromatograph and Hanna HI 904 

Karl Fischer coulometric titrator (Toth, 2015). 

Appropriate computer modelling is an essential tool for designing and optimizing 

separation processes, which requires models that describe the processes as well as 

possible. Among the pervaporation models found in the literature, the used model 
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(Szilagyi and Toth, 2020) was based on Rautenbach's sorption-diffusion model. The 

model defines the process of pervaporation in the following steps. 

• adsorption of the component in the selective layer of the membrane, 

• diffusion of the component through the membrane material, 

• desorption of the target component on the steam side. 

The basic equation of this model is (J: partial permeate flux) (Szilagyi and Toth, 2020): 

Ji = Di
∗̅̅ ̅exp [

Ei

R
(

1

T∗ −
1

T
)] (

pi1−pi3

pi0 γi̅
) exp(xi1

B) 𝑖 = (1, … , 𝑘)   (1) 

First the parameters of the model must be estimated based on measured data. These 

parameters are the activation energies (Ei) and the reference transport coefficients (𝐷𝑖
∗̅̅̅̅ ), 

and the 𝐵 parameters that shows the concentration dependencies of the transport 

coefficients. Transport coefficient depends on the temperature in an Arrhenius type 

exponential way. The liquid activity coefficients can be calculated with different vapor-

liquid equilibrium models or with the Wilson equation (Haaz and Toth, 2018). The 

estimations are completed with the STATISTICA® program environment. The 

verification can be obtained with objective function, that is minimized the deviation of 

the modelled and the measured values (Toth et al., 2018). 

𝑂𝐹 = ∑ (
𝐽𝑖,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑−𝐽𝑖,𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑

𝐽𝑖,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
)

2
𝑛
𝑖=1       (2) 

Partial pressures (pi0) are calculated according to the Antoine equation (Haaz and Toth, 

2018). 

3. Results and discussion 

The most valuable component during the separation is N-butanol, so the parameters 

evaluating the separation was plotted as a function of this. Figure 1 shows the separation 

factors at 303K. Total organic fluxes at 303, 318 and 328K can be seen in the Figure 2. 

 

Figure 1. Separation factors of ABE mixtures in a function of feed N-butanol content in weight percent with 

Sulzer PERVAP™ 4060 membrane 
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Figure 2. Measured total organic fluxes of ABE mixtures in a function of feed N-butanol content in weight 

percent with Sulzer PERVAP™ 4060 membrane 

Figure 1 and Figure 2 show that the fluxes are inversely related to the separation factors 

as a function of the N-butanol feed concentration. Higher temperatures resulted in higher 

flux and separation factor values. In order of magnitude, the order is: Ethanol <N-butanol 

<Acetone, which is in agreement with the literature (Kujawska et al., 2015). Figure 3, 

Figure 4 and Figure 5 show the comparison of the measured partial fluxes with the model 

at 303K. 

 

Figure 3. Measured partial Acetone fluxes of ABE mixtures compared to Acetone fluxes calculated with 

pervaporation model at 303K in a function of feed N-butanol content in weight percent 
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Figure 4. Measured partial N-butanol fluxes of ABE mixtures compared to N-butanol fluxes calculated with 

pervaporation model at 303K in a function of feed N-butanol content in weight percent 

 

Figure 5. Measured partial Ethanol fluxes of ABE mixtures compared to Ethanol fluxes calculated with 

pervaporation model at 303K in a function of feed N-butanol content in weight percent 

It can be seen that, in the case of the pervaporation model good agreement is found at the 

lower and also at the higher feed N-butanol content between the measured and calculated 

values. The reason for the better fit of the supplemented model probably lies in the 

concentration dependence of the transport coefficient. The results of the laboratory 

measurements suggest that the transport coefficient is also concentration dependent. The 

minimized objective functions and estimated values for transport coefficients, activation 

energies and B parameters of the pervaporation model are shown in Table 2. It can be 

seen, the low OF values also confirm the accuracy of the model. 

Table 2 Estimated parameters for Acetone - N-butanol - Ethanol - Water mixture with Sulzer PERVAP™ 4060 

membrane and objective functions 

  Acetone N-Butanol Ethanol Water 

𝐷̅𝑖 [kmol/m2h] 0.034 0.193 0.003 65821 

𝐸𝑖 [kJ/kmol] 18075 34298 43943 35637 

𝐵 [-] 257.12 -30.45 624.12 -15.42 

𝑂𝐹 [-] 0.012 0.031 0.025 0.106 
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4. Conclusions 

In this study, organophilic pervaporation works in the literature related to the separation 

of ABE fermentation products was presented. Laboratory experiments were performed at 

three different temperatures. It was found that the separation factors and the fluxes are 

inversely proportional to the N-butanol feed concentration. The results are in good 

accordance with literature studies. It can be observed that the Rautenbach model with 

exponential exponent precisely describes the transport process of organophilic 

pervaporation. This publication was supported by NTP-NFTÖ-21-B-0014, MEC 140699, 

OTKA 128543, OTKA 131586 and TKP2020 National Challenges Subprogram. 
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Abstract 

In recent years, Artificial Neural Networks (ANNs) have received special attention to a 

widespread application in the field of engineering, biology, energy, and finance. Within 

the ANN design, several factors play a major role in the correct prediction of the process, 

such as the number of internal layers, the number of neurons, the number of used features, 

the training algorithm, the activation function, the number of epochs, among many others. 

Considering datasets of an intensified distillation column generated by Aspen Plus 

Dynamics at different operation conditions, here we bring clarity in the field with 

different architectures of ANNs to abstract the dynamics of both an intensified and 

conventional distillation process that separates an effluent coming from fermentation 

producing acetone, butanol, and ethanol (ABE) for spark-ignition purposes. Our results 

highlight that a one-layer neural network can represent the dynamics of an intensified 

column to forecast the concentration of acetone, butanol, and ethanol. Remarkably, the 

linear activation function overperforms the tangent hyperbolic as activation functions. 

Ultimately, we found that the reflux ratio and reboiler duty are key features to reconstruct 

the full dynamics of the intensified column. 

 
Keywords: Deep Learning, ABE purification, LSTM, Biobutanol. 

 

1. Introduction 
The use of liquid biofuels such as ethanol and butanol has been presented as an important 

advance due to their origin from biomass fermentation and their low emission levels 

(Ribeiro et al., 2007). One of the processes by which it can be obtained is ABE 

fermentation from biomass, this process produces a mixture composed of acetone, 

butanol, and ethanol which creates a challenge in trying to reduce the energy in the 

separation process (González-Bravo et al., 2016). The use of new design approaches for 

the control, modeling, and simulation of chemical processes has allowed the development 

of intensified processes, seeking a radical change in the unit operations used to meet 

current needs under the development of a sustainable process (Sánchez-Ramírez et al., 

2017). The dividing wall column (DWC) allows to reduce energy and capital costs due 

to the reduction of equipment since the separation of the mixture would be carried out in 

one column and not in two, in addition to the fact that shorter piping and electrical currents 
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are required (Gómez-Castro et al., 2008). Dynamic properties are an important issue in 

DWC since apparently dynamic behavior can be greatly reduced. Although it has been 

shown that control sequences can be better than conventional distillation sequences so 

you can have total annual cost savings as good dynamic performance (Rewagad & Kiss, 

2012). Furthermore, there is not any preliminary work reported involving the processing 

of mixtures with a high degree of complexity relative to thermodynamic modeling. Deep 

learning models can learn extremely complicated patterns from a large amount of data 

without much manual expertise so they can be used for a large number of applications 

where their structure is constituted by several hidden layers that allow transforming the 

input data several times before producing the output, so it is possible to manipulate their 

architecture to obtain better output values without overfitting (López-Tapia et al., 2021).  

The use of Long short-term memory (LSTM) ANNs in time series prediction may offer 

more efficient and effective alternatives for highly complex multivariate systems (Ookura 

& Mori, 2020). The main objective of this study is to optimize the ANN architecture that 

models the dynamics behavior of a DWC comparing the activation function, the 

optimizers that minimize the Mean Squared Error (MSE), and analyzing the increase in 

the number of hidden layers based on the AIC (Akaike Information Criterion) value. 

Finally, the manipulable variables that have a greater weight on the system modeling 

while maintaining a good prediction of the output data will be identified. 

 

2. Methodology 

Data generation. The datasets are obtained from a simulation software Aspen Dynamics, 

this simulation is performed in a closed-circuit test where a set point was implemented in 

the composition of each component of the mixture to be separated (Acetone-Butanol-

Ethanol), in this way three setpoint changes were performed, and tuned at the same time, 

thus producing time-varying operational datasets. Simulations of 100 hours were 

performed using a sampling time of 0.4 hours. The feed stream considers a mixture of 

acetone, butanol, ethanol, and water in proportions of 0.3018, 0.1695, 0.0073, and 0.5214 

wt%, respectively. The datasets were subdivided into the first 24 hours for training and 

the rest for testing. The data manipulation is done in the Python 3.8 programming 

language where use is made of the PANDAS library which is ideal for data analysis. 

Neural Network basic elements. An artificial neural network (ANN) is a distributed 

computing scheme inspired by the structure of the human nervous system. The 

architecture of a neural network is formed by connecting multiple elementary processors, 

being an adaptive system that has an algorithm to adjust its weights to meet the 

performance requirements of the problem based on representative samples. Eq. 1 and 2 

represent the equivalent model of the synaptic connections in a 𝑘 neuron. 

𝑢𝑘 = ∑ 𝑤𝑘𝑗𝑥𝑗

𝑚

𝑗=1

                                                                     (1) 

 

𝑦𝑘 = 𝜑(𝑢𝑘 +  𝑏𝑘)                                                                 (2) 

where the vector 𝑥𝑗 is the set of input signals, 𝑤𝑘𝑗  is the set of synaptic weights of neuron 

𝑘, 𝑢𝑘 is the linear combination of the weighted inputs, 𝑏𝑘 is the polarization and 𝑦𝑘  is the 

output signal of the neuron. The activation function 𝜑 serves the purpose of limiting the 

output range of the neuron and can be linear or nonlinear. In this study, we compare the 

performance of the functions Linear, ReLU, and Tanh. To obtain a good minimization of 

the loss function, the choice of the optimizer will be compared from a defined activation 

function to obtain a good prediction of the time series thanks to its convergence speed 

and its generalization speed (Manickam et al., 2021). The optimizers compared are 
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Adaptive Moment Estimation (ADAM), Root Mean Square Propagation (RMSP), and 

Stochastic Gradient Descent (SGD). 

LSTM modeling. Recurrent Neural Networks (RNN) are distinguished in that they have 

at least one or more feedback loops that have a profound impact on the learning capability 

of the neural network. The LSTM is a special type of RNN that can learn long-term 

dependent information making considerable progress in problems related to time series 

analysis. This type of network needs a higher computational power because it has 

feedback based on a time step (Hochreiter & Schmidhuber, 1997). In this study, a step of 

5 is used for the feedback, with which it is possible to have a good prediction for a large 

amount of data. 

Model Selection. Optimal architectures of the neural network model can be found by 

minimizing the MSE concerning the variation of the number of hidden neurons (Shin et 

al., 2020). 

𝑀𝑆𝐸 =
∑ (𝑦𝑖 − 𝑦𝑖̅)

2𝑛
𝑖=1

𝑛
                                                             (3) 

where 𝑛 is the number of data points, 𝑦𝑖  is the actual value and 𝑦𝑖̅ is the value estimated 

by the ANN. Given a collection of models for a dataset, AIC estimates the quality of each 

model, relative to each of the other models. Hence, AIC provides a value for model 

selection. It deals with the trade-off between the goodness of fit of the model and the 

complexity of the model. AIC does not provide a test of a model in the sense of testing a 

null hypothesis, so it can tell nothing about the quality of the model in an absolute sense. 

If all the candidate models fit poorly, AIC does not give any warning of that. The formula 

for AIC depends upon the statistical model. A lower AIC value means that a given model 

describes the data better than other models with higher values. 

𝐴𝐼𝐶 = 𝑁𝑙𝑜𝑔(𝑀𝑆𝐸) +
2𝑀𝑁

𝑁 − 𝑀 − 1
                                             (4) 

𝑁 is the number of data points, 𝑀 𝑖s the number of unknown parameters. 

The normalization was performed using Eq. 5 to transform all feature values into an 

interval of [0,1], mathematically speaking yi refers to the data values, 𝑚𝑖𝑛(𝑦𝑖) is the 

minimum value and 𝑚𝑎𝑥(𝑦𝑖) refers to the maximum value. Increasing the efficiency of 

the algorithm by reducing fluctuations. 

𝑦𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑦𝑖 − 𝑚𝑖𝑛(𝑦𝑖)

𝑚𝑎𝑥(𝑦𝑖) − 𝑚𝑖𝑛(𝑦𝑖)
                                                       (5) 

 

3. Results 
From the DWC system, were considered as manipulable variables the reflux ratio, side 

streamflow, and reboiler heat duty. In the Linear activation function and the RMSP 

optimizer, an analysis of the impact of these manipulable variables was performed; first, 

the ANN was fed with the three manipulable variables the result is shown in blue color 

line in Figure 1(a), then the reboiler duty input to the ANN was inactivated and the 

predictive capability of the ANN was measured with the input only of the reflux ratio and 

the side stream flow the result is shown in orange color line Figure 1(a), also the analysis 

of inactivating the reflux ratio to the ANN and feeding the ANN reboiler duty and the 

Side streamflow the result is shown in Figure 1(a) green color line and finally inactivating 

the side-stream flow feed to the ANN and feeding the ANN with the Reboiler duty and 

ratio the results are shown black line Figure 1(a). According to these results, it can be 

observed that the one that showed the worst behavior was the one that deprived the 

Reboiler duty feeding, and the ones that showed the best results were on the one hand the 
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one that feed the three manipulable variables and the ones that deprived the side 

streamflow feeding and the reflux ratio. The one that showed the best result for 5 neurons 

was the one feed with the reflux ratio and the reboiler duty. 

 

 

(a) 

 
 

   (b)                                  (c) 

     
 

Figure 1. ANNs with one single hidden layer (a) Effects of the input manipulable 

variables on MSE; (b) AIC value comparison for input manipulable variables; (c) Best 

value of AIC is for Reflux ratio/Reboiler duty. 

 

The ANN RMSP optimizer is analyzed for the three manipulable variables; Reflux ratio 

side streamflow and reboiler duty. The black-colored line in Figure 1(b) was the one that 

showed the lowest value of the AIC for 5 hidden neurons which is the one that was fed 

only with the Reflux ratio and the Reboiler heat duty. An error analysis was performed 

only for the one showing the lowest AIC shown in Figure 1(c). 

According to the analysis performed to the different hyperparameters, the final topology 

of the ANN shown in Figure 2(b) was configured, where the manipulable variables that 

showed the greatest influence in the modeling of the DWC dynamics, as well as the 

perturbed variables, are feed to the ANN and only one layer of neurons is used, achieving 

a good prediction in the output variables, the composition profiles of Acetone, Ethanol, 

and Butanol. With the architecture shown in Figure 2(b), a good prediction was achieved 

for the system shown in the diagram in Figure 2(a), the results obtained by ANN show a 

good fit to the data simulated by Aspen Dynamics for the mass fraction of Acetone, 

Ethanol, and Butanol (see Figure 3). Table 1 summarizes the methodology that gave the 

best results in the ANN configuration.  
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(a)                          (b)                                                      

                                                                                                                    

       
 

Figure 2. Artificial neural network final architecture. (a) Study case; (b) Final ANNs 

architecture. 

 

                              (a)                                                               (b) 

        
 

 

      (c)                                                              (d)   

     
Figure 3. Comparison between the predicted and actual a) acetone, b) ethanol and c) 

butanol mass fraction; d) MSE values for activation functions and optimizers. 

 

Table 1. ANN Configuration Summary. 

Percentage of training data 24% Activation function Linear 

Percentage of test data 76% Optimizer RMSP 

Feedback step 5 Key Features  Reflux ratio/ Reboiler heat 

duty 

Number of input features 5 MSE value 6.396095x10−6 

Type of neurons LSTM AIC value -591.96 

Number of hidden layers 1 Activation function Linear 

Number of hidden neurons 5 Optimizer RMSP 
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4. Conclusions  
The architecture of the ANN was optimized to obtain good forecasting of Acetone, 

Butanol, and Ethanol in a dividing wall column. A major result in our study is that we 

found that to have a good data prediction it is not necessary to consider the three 

manipulable variables. Results show that it is only necessary to consider two: the reflux 

ratio and the reboiler heat duty. This would have an impact on future work by 

implementing only two controllers for the three perturbed output variables of the DWC 

system, which would reduce the operating cost considerably by having fewer controllers 

and with a low number of neurons in the ANN structure. 
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Abstract 
Kinetic modelling covers a key role in process simulation and design. Recently the 
methanol sector is assisting a remarkable enhancement due to its applications as fuel, 
solvent, and precursor as shown in Bozzano and Manenti (2016). The increasing number 
of patents, the market prospects, and recent research witness this renewed interest. 
However, despite this rate in developing and improving technologies, the kinetics 
modelling does not follow these trends. The methanol synthesis chemical paths, the 
intermediates, and the real role of the active sites are nowadays still unclear. However, 
process engineering requires reliable models to estimate the methanol synthesis rate, 
hence, to design and size the reactor and downstream equipment. Currently, the most used 
kinetics are Graaf and Vanden Bussche - Froment’s models which in any case show some 
shortcomings and weaknesses. Starting from these premises, the need for updated kinetics 
is clear. This work aims at comparing and highlighting the impact of different kinetic 
models (1) original Graaf (or-GR), (2) Vanden Bussche - Froment (VBF), and (3) refitted 
Graaf (ref-GR) on the methanol synthesis configuration for different feedstocks through 
an in-silico assessment. The general simulation flowsheet includes the single-stage PFR 
for the methanol synthesis, the condensation step, and recycle loop for the unreacted 
syngas. The comparison with industrial data proves that the ref-GR model predicts better 
than the original Graaf model as in Graaf et al. (1988), while the VBF, Vanden Bussche 
and Froment (1997), tends to overestimate methanol production. The validation exploits 
industrial data published in the literature. 
 
Keywords: kinetics comparison, methanol reactor, process simulation, industrial 
comparative case studies, Lurgi and ICI technologies 

1. Introduction 
As highlighted in recent publications by Bisotti (2021), and Bozzano and Manenti (2016), 
the methanol molecule has been gaining increasing interest for twenty years as in Olah’s 
wishes for the methanol economy anticipating the energy transition period. Although the 
technology is shifting towards milder operating conditions decreasing pressure and 
optimizing catalyst formulation, the kinetic steps, species role and interaction with active 
sites, and consequently modelling appear to lack a comprehensive catalytic path 
description for CO and CO2 hydrogenation over CZA catalysts. The different kinetic 
models (Table 1) reflect this fragmented framework where carbon source and kinetic 
scheme are not uniform. The methanol synthesis is essentially limited to three different 
reactions: CO and CO2 hydrogenation, and (reverse) water-gas shift reaction. Looking at 
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the table, with few exceptions, these models were proposed more than 20 years ago, 
hence, a kinetic parameters robust refit would be beneficial as demonstrated in Bisotti et 
al. (2021) for the or-GR model. They decided to refit the Graaf model since several 
authors use regardless Graaf’s and VBF’s models showing good accuracy with industrial 
and/or experimental observations. Hence, or-GR and VBF models are considered as 
industrial benchmark for methanol synthesis modelling, as proven in Mäyrä and Leiviskä 
(2018). In this work, adopting the ref-GR model, we would show the impact and the 
different predictions in methanol synthesis for or-GR, ref-GR and VBF models furtherly 
corroborating observations/conclusions proposed in previous work, Bisotti et al. (2021). 
 
Table 1 – Main kinetic models available in the literature. 

Model (year) Source Model reactions 

Villa et al. (1985) CO CO + 2H2 ⇄ CH3OH 
CO + H2O ⇄ CO2 + H2 

Klier et al (1982) 
McNeil et al. (1989) 
Ma et al. (2009) 

CO and CO2 

CO + 2H2 ⇄ CH3OH 
CO2 + 3H2 ⇄ CH3OH + H2O 

Graaf et al. (1988) 
Park et al. (2014) 
Seidel et al. (2018) 
Slotboom (2020) 
Bisotti et al. (2021) 

CO + 2H2 ⇄ CH3OH 
CO2 + 3H2 ⇄ CH3OH + H2O 
CO + H2O ⇄ CO2 + H2 

Skrzypek et al. (1991) 
Askgaard et al. (1995) 
Vanden Bussche-Froment (1996) 
Kubota et al. (2001) 

CO2 
CO2 + 3H2 ⇄ CH3OH + H2O 
CO2 + H2 ⇄ CO + H2O 

2. Methods 
The in-silico assessment consists of two different steps: (1) comparison of the methanol 
production and reactants conversions using three different kinetic models, syngas quality, 
and operating conditions; (2) industrial case studies. For the first task, the analysis is 
performed in Aspen Hysys® V11 using a PFR followed by a cooling step (up to 25°C) 
and flashing unit where liquid products and light gas are separated. The recovered syngas 
is then recycled back to the reactor feed after a re-compression as in Figure 1. The fresh 
syngas make-up and recycled syngas temperatures are set to 225°C. Pressure drop is 
estimated using the Ergun model already implemented in Aspen Hysys®. The PFR length 
is subdivided into 100 segments (the default value is 20). The recycle function settings 
impose low errors in the molar flow and stream composition, the adjust guarantees the 
residual error for the feed stream (FEED) lower than 0.02%. Since, we aim at comparing 
kinetic models for industrial applications, we choose conventional feed compositions or 
at least close to industrial among the one proposed in Leonzio (2020). For the second 
task, reactor design/configuration and flowsheet are assigned in accordance with the 
analyzed industrial technologies (i.e., Lurgi and ICI). For the industrial plant data, we 
refer to Chen et al. (2011) and Froment et al. (1995) which report the process schemes 
and equipment details for the Lurgi and ICI technologies, respectively. We focused our 
attention on such technologies since they cover almost 90% the installed reactor 
technology worldwide, as proven in Bozzano and Manenti (2016). 
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3. Sensitivity analysis to the feed composition and pressure 
The sensivity analysis aims at comparing the methanol production using the three kinetics  
under different operating conditions: 50-75 bar is a typical operating window for the 
MegaMethanol technology and 70-90 bar range is a standard in other technologies such 
as Lurgi and ICI. To futher test the kinetics, different feed compositions are considered. 
Such compositions are petro-syngas, COG, and bio-syngas in Leonzio (2020) and 
reported also in Bisotti et al. (2021). The petro-syngas is representative for conventional 
syngas from natural gas (i.e., steam methane reforming), the COG for syngas from coke 
gasification that in China is still the main carbon source to chemicals, and bio-syngas for 
emerging biosources such as biogas and biomasses. The implemented Lurgi reactor 
specifications, including feed temperature, are the same reported in Chen et al. (2011). 
As purge ratio, we assumed that 10% of the recycle loop is removed. Figure 1 depicts the 
implemented reactor flowsheet, while Figure 2 gathers the simulations results. 
 

 
Figure 1 - methanol synthesis complete configuration. 

 
The results show that the ref-GR is like the VBF model in predicting the methanol 
production and reactant conversions meaning that the robust refit procedure modified the 
kinetic parameters forcing the or-GR to move closer to the VBF. Since the or-GR tends 
to underestimate the methanol productivity, the refit induced an increment in the CO2 and 
H2 conversion as depicted in Figure 2 (2A)-(2C). Furtherly, it is noticeable that VBF and 
ref-GR predicts larger methanol production with regards to the or-GR which never 
overcomes 3 ton/h. This is one of the main Graaf’s model shortcoming already emerged. 
Moreover, the ref-GR exhibits a strong pressure dependence in the methanol production, 
on average moving from 50 bar to 90 bar there is +35% increment, while or-GR and VBF 
is almost flat regardless the operating pressure. Generally, the ref-GR behavior is 
comprised the VBF and or-GR predictions (expect for the petro-syngas feedstock). These 
have been already discussed in Bisotti et al. (2021). However, considering the order of 
magnitude of the simulation results is possible to state that the ref-GR and VBF 
predictions are quite similar both in terms of methanol production (4.5 ton/h vs 3.7 ton/h 
respectively). Instead, it is quite evident that the discrepancies are magnified looking at 
COG and bio-syngas feedstocks. Under such conditions, using the VBF model, the 
methanol production is one order of magnitude larger than the one predicted with ref-GR 
as in Figure 2 (1B)-(1C). Finally, the reactants conversions point out that the VBF implies 
larger H2 and CO2 consumptions. This is due to: (1) the VBF tends to overestimate the 
methanol production as proven in Bisotti et al. (2021) and (2) the CO2 is the only direct 
hydrogenation path considered, hence, as expected, higher CO2 conversion are strictly 
related to the suppressed CO hydrogenation which push the water-gas-shift equilibrium 
towards CO2 production which is then converted into methanol. 
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Figure 2 - sensitivity analysis results: (1) methanol production and (2) CO2 and H2 conversions for 
different feedstocks (A) petro-syngas, (B) COG, and (C) bio-syngas. For the conversion chart CO2 
conversion is the solid line (left y axis) and H2 conversion is the dashed one (right y axis). 

4. Industrial case studies 
The industrial case studies include the Lurgi Boiling Water Reactor (BWR) and the fixed 
adiabatic beds gas-quenched reactor (formerly ICI, nowadays Johnson Matthey). The 
Lurgi and ICI technologies are described in Chen et al. (2011) and Froment et al. (1995) 
and depicted in Figure 3 and Figure 4 respectively. The cited works report further details 
such as the reactor specifications, feed composition, and operating conditions. 
Simulations results are graphically depicted in Figure 5 (BWR Lurgi) and Figure 6 (ICI). 
 

 
Figure 3 - Lurgi BWR technology: (A) reactor configuration and (B) simulation flowsheet 
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Figure 4 - ICI technology: (A) reactor configuration and (B) simulation flowsheet 

 
 

 
Figure 5 - Lurgi BWR reactor results: (A) temperature profile and (B) methanol production using 
or-GR (red solid line), ref-GR (green), and VBF (yellow). The blue dots are the experimental data. 

 

 
Figure 6 - ICI reactor results: (A) bed outlet temperatures, (B) methanol, (C) CO2, and (D) CO 
molar fractions in the outlet mixture using ref-GR (green dots), or-GR (red) and VBF (yellow). The 
blue dots are the industrial data. 
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The industrial case studies results show that the ref-GR kinetic better predicts the 
methanol production in the Lurgi reactor while the predicted outlet temperature is close 
to the industrial value. Similarly, also for the ICI technology it is possible to appreciate 
that the ref-GR is based on an accurate kinetic model since it enables to catch both 
methanol and COx molar fractions, and the outlet temperatures. Specifically, VBF and 
ref-GR have similar deviations with regards to the industrial data, however, the ref-GR 
model is the only one catching the final CO2 amount. In Figure 6, the hydrogen content 
is not reported since industrial data are not available. Concerning the ICI technology 
neither of the considered kinetic models can correctly predict the products mixture and 
outlet temperature values for the first and second adiabatic beds. This may be due to the 
presence of mass transfer limitation which may occur where temperature is larger than 
275°C. It is not possible to characterize this aspect using simulation software such as 
Aspen Hysys. The VBF model presents similar accuracy even though it is not as accurate 
as the ref-GR in predicting the methanol production, for instance, in the Lurgi technology 
VBF underestimates the methanol production for almost 1.0 ton/h. The or-GR exhibits 
the worst accuracy meaning that it does appear as a suitable kinetic model for the 
methanol synthesis reactor simulation and validation. 

5. Conclusions 
This work demonstrated that kinetics affect the reactor predictions. Furtherly, it proved 
that in process simulation environment (Aspen Hysys®) the or-GR is not a suitable model 
to properly design the methanol synthesis reactor. Conversely, the ref-GR guarantees 
accuracy, and it is more precise of the VBF in the analyzed case studies. Hence, it is 
possible to state that ref-GR solved the shortcomings emerged in the or-GR and it is a 
potential candidate as reliable alternative for industrial and simulation purposes. 
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Abstract 

Off-Site Modular Construction (OSMC) research has been a growing research area over 

the past two decades driven by low productivity levels in construction (Bock 2015). Some 

of the chemical plant industry has started analyzing small modular chemical plants. 

Some work has been achieved in automating earlier parts of the small modular chemical 

plant design process such as automated database creation and selection of equipment. 

However, a layout optimization methodology has not been applied to OSMC industrial 

process plants. Plant layout is an important step in the plant design process (Moran 2017). 

Methods have been made to proposed to optimize the plant for different requirements.  

Requirements have been modeled in a mathematical programming model as constraints 

such as connectivity, pumping, safety, pipe routing, multi-floor arrangements, etc., to 

establish the optimal cost and safe plant layouts. 

This paper proposes to develop and utilize a MILP mathematical layout optimization 

model to help design and construct modular process plant. The main considerations are 

the module sizes for transport requirements and factory handling. Data from previous 

research was utilized and run through the new modular optimization model. The previous 

research layout results were compared to the new modular layouts process plant 

optimization to compare how modularization may affect the design of industrial process 

plants. The results demonstrate that building a plant in road transportable, factory built 

could enable equipment to be located closer together due to advanced factory 

manufacturing processes as assembly and tools are more accessible than building stick 

built plants.  
 

Keywords: MILP, mathematical layout optimization, off site modular construction, 

industrial process plants, 

1. Introduction  

Off-Site Modular Construction (OSMC) research has been a growing research area over 

the past two decades driven by low productivity levels in construction (Bock 2015). 

Productivity is higher in factories when compared to a stick-built site due easier access to 

superior tools, methods and learning. This has spawned the development of small, factory 

built, rapidly deployable and flexible process plants (Seifert et al. 2012) to take advantage 

of the gains in OSMC productivity. This is a rapidly growing area in Chemical process 

plant research (Bielenberg and Palou-Rivera 2019). Research has shown that OSMC can 

provide 20% savings in cost and up to 50% savings in scheduling, providing reductions 

in risk and finance (Mignacca et al. 2018). The same work performed in a factory may be 
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8x more efficient and cost effective than performing work in situ according to a study in 

shipbuilding (Barry 2009). 

 

Plant layout is an important step in the plant design process (Moran 2017) where 

requirements are taken into consideration for layouts. Requirements can take the form of 

process flow connectivity, pumping, safety, pipe routing, multi-floor arrangements, etc., 

to establish the optimal cost and safe plant layouts. Three core approaches have been 

applied to optimising costs of plant layouts: Heuristics and Metaheuristics, Mathematical 

optimisation along with Rule based expert systems. Some work has been achieved in 

automating earlier parts of the small modular chemical plant design process such as 

automated database creation and selection of equipment, however, a layout optimization 

methodology has not been applied to OSMC industrial process plants (Eilermann et al. 

2018).  

 

In plant layout literature, heuristics were first utilised in the plant design problem to 

arrange equipment. Mathematical approaches were then developed using Mixed integer 

(Nonlinear) Programming (MINLP) and (MILP) and techniques (MINLP) or graph 

partitioning (Ejeh, Liu, and Papageorgiou 2019b) for pumping and floor construction 

costs, financial risk and safety. Pipe routing and other safety methods were developed 

(Ejeh, Liu, and Papageorgiou 2019b) along with methods to solve larger problems. Ejeh 

et al., expanded the optimisation model with considerations for tall equipment items that 

span across floors and the availability of predefined production sections (Ejeh, Liu, and 

Papageorgiou 2018) and an updated model accounting for fire and explosion risk (Ejeh, 

Liu, and Papageorgiou 2019b). In another work, three improvements are added over the 

previous methods: an extension for multi-floor equipment items to extend above the 

maximum possible number of levels, the choice of an available number of floors fewer 

than the maximum amount essential for any equipment item and Integer cuts to improve 

the efficiency (Ejeh, Liu, and Papageorgiou 2019a). 

 

This work builds upon the previous work of (Patsiatzis and Papageorgiou 2002) by 

extending the problem to consider process plant systems for OSMC and road 

transportable modules. 

2. Problem Description 

This work aims to obtain the optimal system layout for equipment in modules constrained 

for OSMC and transport. The factory-built road transportable requirement for this work 

is a key requirement. Requirements for EU transport are outlined in Table 1, (Barrot 

2019). 

 No permit (1) Long term permit (2) 

 

Corridor (3) 

(except Germany) 

Width  3 m 3,5 m  4,5 m 

Overall length 24 m  30 m  40 m 

Overall height Directive 96/53/EC 4,2 m 4,4 m 

Weight Directive 96/53/EC 80 tonnes 100 tonnes 

Axle load: 

Beam axle 

Directive 96/53/EC  

12 tonnes  

12 tonnes 15 tonnes  12 tonnes 15 tonnes 

Table 1 – EU road transport requirements (Barrot 2019) 
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In this section, the extension of the optimisation model will be considered with the 

addition of module cost. An outline of the modular process plant layout problem and the 

fundamental assumptions are provided in this section for the mathematical model 

formulation. If equipment items extend above the available module height, these are 

identified a suitable vertical module and located outside the module stack. Equipment 

items are assumed as a cuboid. The geometrical centres are utilized for rectilinear 

distances between equipment in the x-y axis. A position on the equipment height is 

determined for the vertical distances/connections. Every equipment item is permitted to 

rotate in 90angles in the x-y plane unless constrained.  Equipment items could be built on 

platforms to increase the work off site. A trade off study would be required to assess these 

criteria. The problem description is as follows 

 

Provided to the Model: 

• A set of N process plant equipment items, i, j,  size: (width, height, depth) 

• Directed connections between items 

• Module size (width, height, depth) 

• NF number of modules 

• a set of K available modules for layout with module height, MH; 

• Connection points height on items h 

• Costs of connections and modules connection, Cci j, pumping (horizontal, Chi j, and 

vertical, Cvi j), land purchase (LC) and construction (FC1, FC2) cost data; 

• Additional margin space between items  

• Module Positions (fixed) 

• i j, pumping (horizontal, Ch 

• i j, and vertical, Cv 

• i j), land purchase (LC) and construction (FC1, FC2) cost data; 

 

Determined by the Model 

• Positions of items 

• Rotations of items 

• Number of modules used 

• Cost of connections  

• floor area; 

so as to minimise the total plant layout cost 

 

2.1. Model Formulation 

Binary variables Vik and Zik, Integer variable NF, and Parameter H from (Patsiatzis and 

Papageorgiou 2002) are altered to represent modules rather than floors.  

Assuming construction and piping installation costs can be reduced 20% by constructing 

modules in factories (Barry 2009)(Mignacca et al. 2018), FC1&FC2 and connection costs 

Cij are reduced by 20%. 

 

2.2. Non overlapping of Items with module bounds  

A lower and upper bound must be imposed on the equipment coordinates to ensure they 

remain within the module dimensions depending on its current rotation  Assuming that 

all modules are positioned at the origin and distances are calculated by taking their 

relative position into account: 

𝑥𝑣 + 𝑙𝑖 ≤ 𝑊𝑘 + 𝑀(1 − 𝑚𝑘), ∀𝑣 ∈  𝑉, ∀𝑘 ∈  𝐾    Equation 1 
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𝑦𝑣 + 𝑑𝑖 ≤ 𝐻𝑘 + 𝑀(1 − 𝑚𝑘), ∀𝑣 ∈  𝑉, ∀𝑘 ∈  𝐾    Equation 2 

Considering if items can move in the z axis: 

𝑧𝑣 + 𝑑𝑣 ≤ 𝐷𝑘 + 𝑀(1 − 𝑚𝑘), ∀𝑣 ∈  𝑉, ∀𝑘 ∈  𝐾    Equation 3 

and (xuv, yuv, zuv) = (0, 0, 1) respectively. 

 

2.3. Rectilinear distance between connected items 

The rectilinear distance in the x-axis between item i and j can be calculated by the absolute 

value of Dxij and is considered for the set of connected items, f(i; j) 2 Eg, where Dxij is 

defined by: 

𝑅𝑖𝑗 − 𝐿𝑖𝑗 = 𝑥𝑖 + ∑ 𝑉𝑖𝑘𝑘𝜖𝐾 𝑚𝑥𝑘 − 𝑥𝑗 − ∑ 𝑚𝑗𝑘𝑘𝜖𝐾 𝑚𝑥𝑘, ∀(𝑖, 𝑗) ∈ 𝑓𝑖𝑗 Equation 4 

 

𝐴𝑖𝑗 − 𝐵𝑖𝑗 = 𝑦𝑖 + ∑ 𝑚𝑖𝑘𝑘𝜖𝐾 𝑚𝑦𝑘 − 𝑦𝑗 − ∑ 𝑚𝑗𝑘𝑘𝜖𝐾 𝑚𝑦𝑘  , ∀(𝑖, 𝑗) ∈ 𝑓𝑖𝑗 Equation 5 

 

Considering the rectilinear in the z-axis: 

𝑈𝑖𝑗 − 𝐷𝑖𝑗 = [𝑧𝑖 + ∑ 𝑚𝑖𝑘𝑘𝜖𝐾 𝑚𝑧𝑘] −  [𝑧𝑗 + ∑ 𝑚𝑗𝑘𝑘𝜖𝐾 𝑚𝑧𝑘], ∀(𝑖, 𝑗) ∈ 𝑓𝑖𝑗Equation 6 

 

2.4. Objective function 

Given that the unit cost of a connection between i and j is cij and the cost of a module is 

given by gk, minimise the following objective function, 

𝑂𝑓 = ∑ 𝑐𝑖𝑗

(𝑖,𝑗)∈𝐸

𝑇𝐷𝑖𝑗 + 𝐶𝑖𝑗
𝑣 𝐷𝑖𝑗 + 𝐶𝑖𝑗

ℎ(𝑅𝑖𝑗 + 𝐿𝑖𝑗 + 𝐴𝑖𝑗 + 𝐵𝑖𝑗) + 𝐶1 · 𝑁𝐹 + 𝐹𝐶2 · 𝑁𝐹 · 𝐹𝐴 

+ 𝐿𝐶 · 𝐹𝐴 

Equation 7 
 

All continuous variables in the formulation are defined as non-negative. Total layout cost 

(eq. 21), subject to floor constraints (eqs. 1 - 3, 5 - 9), multi-floor equipment constraint 

(eq. 4), distance constraints (eqs. 10 - 14), area constraints (eqs. 15 - 20), equipment 

orientation, non-overlapping and layout constraints 

3. Results and Discussion 

For the case study, the five-unit instant coffee process (Patsiatzis and Papageorgiou 2002) 

was chosen.  

3.1. 2 Module stack 

The results for the 3 layer module stack can be seen in Figure 1. 

 

 

 x y z 

Percolator 7.9 7.85 5 

Cyclone 7.9 4.7 5 

Spray Dryer 7.9 7.85 0 

Press 7.45 3.15 0 

Drier 15.3 3.15 0 

Figure 1 - Locations of equipment for 2 

floor module 
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Assuming construction and piping installation costs can be reduced 20% by constructing 

modules in factories (Barry 2009)(Mignacca et al. 2018), construction of the module stack 

(FC1&FC2) reduces to 26624rmu and connection costs decrease to 12374rmu.  The total 

plant cost is 77184rmu a 6.3% decrease compared to the original stick-built site. Land 

costs stay the same at 13340rmu. However, pumping costs increase to 24846rmu a 3.6% 

increase of the total original costs of 82366rmu. 

 

3.2. 3 Module stack 

The results for the 3-layer module stack can be seen in Figure 2. 

 

 x y z 
Percolator 7.9 7.85 10 

Cyclone 7.9 4.7 10 
Spray Dryer 7.9 7.85 5 

Press 7.9 3.15 5 
Drier 7.9 3.15 0 

Figure 2 - Locations of equipment for 3 

floor modules 

 

 

 

 

 

 

Again, assuming 20% reduction in construction and piping installation, construction of 

the module stack (FC1&FC2) increases to 39936rmu. Connection costs are 13863rmu.   

In this instance, pumping costs decrease to 12854rmu, a 41% decrease on the original 

pumping costs of 21909rmu. Land costs stay the same at 13340rmu. 

The total plant cost is 79992rmu, a 2.9% decrease compared to the original stick-built 

site.  

Although the construction costs have increased by 13312rmu (a 50% increase) the 

reduction in pumping costs is 11992rmu. The operators of this plant would therefore see 

significant savings if running the plant for over a year. 

4. Conclusions 

A layout optimisation model was introduced to consider off site manufacture and 

transport of process plant systems. Although operational pumping costs may increase 

slightly due to the requirement to locate equipment items in modules (more constrained), 

construction costs for structures and piping costs can be decreased. The results showed 

that this reduction provides an overall benefit when comparing OSMC to stick built 

process plants on the smaller scale plants analysed here. 

Future work would be to increase the process plant system size to see how it copes with 

larger models. A more detailed analysis is required on the construction of modules, this 

would require the involvement and collaboration with civil engineering and infrastructure 

experts. 
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Abstract 

The current global climate situation requires adequate energy technologies and systemic 

solutions to reduce CO2 emissions to reach the carbon neutrality target by 2050. 

Cogeneration in nuclear power plants can provide a low-carbon source of process heat. 

These plants are in most cases optimized only for electricity production, which is the case 

for Pressurized Water Reactors in France. A significant asset of cogeneration units is that 

they can efficiently switch from electricity-only production to hybrid heat and power 

production. In this context, the objective of this work is to assess the benefits of 

performance optimization for a multi-case operation applied to Rankine cycle system 

design. The key for such an optimization is to minimize the exergetic losses that change 

from one operational mode to another. As a proof of concept of the multi-case 

optimization relevancy for a steam-water cycle, a seasonal variation of the heat sink 

temperature is considered as it induces several operating modes for the cycle, even for 

electricity-only production. The model of the system developed in the Modelica 

environment with the ThermoSysPro library is first presented. The formulation of the 

optimization problem involves dimensional parameters as optimization variables to 

maximize the global efficiency of the cycle. Three cases are then simulated: minimal 

condenser pressure, maximal condenser pressure and a seasonal variation profile of 

condenser pressure. Multi-case optimization allows improving the mean operating 

efficiency of the cycle in the considered heat-sink temperature range, compared to an 

optimization focused on a single operating point. The relative efficiency gain obtained 

for a narrow condenser temperature range is about 0.5 %. While the gain is modest, this 

demonstrates the interest for the concept of partial regimes modelling in support of a 

multi-case optimization, which should be rather emphasized for a cogenerating Rankine 

cycle, for which operational modes will be much more different. Further developments 

on the model and the study of a cogeneration case constitute a natural perspective of this 

work. 

 

 

Keywords: Modelica simulation, Optimization, Cogeneration, Rankine cycle, CO2 

reduction. 

97

http://dx.doi.org/10.1016/B978-0-323-95879-0.50012-6 



 G. Vescovi et al. 

1. Introduction 

The energy transition has become a cornerstone of the global response to climate change. 

In order to avoid nature’s irreversible turning point, extremely challenging goals are being 

set for reducing greenhouse gas emissions to zero by 2050, and limiting the rise in global 

temperatures to 1.5 °C (IEA, 2021). The role of nuclear energy is very relevant in that 

context, since nuclear power plants (NPP) do not emit CO2 during electricity production. 

Alongside with the growth of renewables, which have an intrinsic variability, the need 

for flexibility in power systems increases. The combined production of electricity and 

heat in power systems contributes to grid stability and security, dealing with supply-

demand fluctuations and load following transients. The heat produced during a decrease 

in electricity supply has several potential applications depending on the available 

temperature levels, such as hydrogen production, thermal storage (for further shifted 

electricity production when the demand becomes higher), and district heating. Hence, 

cogeneration in power plants has a key role in decarbonisation of the energy systems in 

the long term (Taibi et al. 2018). 

In this work, a seasonal temperature variation is used as a proof of concept for the multi-

case optimization approach, which could be useful in the design of cogenerating systems. 

The dimensional characteristics of the cycle are optimized considering the whole 

temperature profile, instead of a single operation case with the extreme or average 

temperature values. The assessment of this case study will provide better insights in a real 

cogeneration case, with a larger range in temperature variations to which the cycle is 

submitted, so that more significant efficiency improvements could be achieved. 

2. Rankine cycle model 

The case study considered is a Nuclear Power Plant (NPP) equipped with a 540 MW 

Small Modular Reactor (SMR). In the secondary circuit, saturated steam exits the steam 

generator at 45 bar, is expanded in the turbine group, releasing heat through the condenser 

to the cooling circuit before being pumped back to the steam generator as liquid water. In 

the cooling system, sea water is pumped to the condenser, where it extracts heat and flows 

back to the sea in an open system configuration.  

The secondary circuit of the NPPs is usually a Rankine cycle containing a reheater and 

several preheaters. However, the reference case for the present work contains only one 

preheater and no reheat. Even if this cycle is significantly simplified, this choice facilitates 

the calculations and numerical convergence of the model, and is not restrictive for the 

goal of this work.  

Figure 1 shows the case study, which consists of the secondary circuit of the SMR-PWR. 

The system was modeled using Dymola software (Dassault Systèmes 2021) and the 

ThermoSysPro library (EDF 2021). These tools are capable of simulating system models 

comprising physical components from several engineering domains (Brück 2018).  

The cycle in Figure 1 was designed with the standard ThermoSysPro components. In 

order to validate the Rankine model developed in Dymola, the CYCLOP (Cycle 

Optimization) tool was used (Haubensack, Thévenot, and Dumaz 2004). This tool is 

being developed by the CEA and its accuracy has already been proven with real operation 

data of NPPs. Table 1 shows the results obtained with Dymola, compared to CYLOP, for 

the steady-state design operation for two values of the condenser pressure, i.e. 50 and 100 

mbar. 
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Figure 1: Rankine cycle model, designed with ThermoSysPro library in Dymola. 

 

For these two design conditions, the results show that Dymola model is capable of 

obtaining optimized values very similar to CYCLOP results for different nominal 

conditions, hence validating a single case optimization process with Dymola.  

 

Table 1: Validation of Dymola cycle in design conditions. Where 𝜂 is the cycle efficiency, 𝑇𝑖𝑛,𝑠𝑔 

is the steam generator inlet temperature, 𝑃𝑝ℎ and 𝑄𝑝ℎ are the pressure and mass flow of steam 

entering the preheater, respectively. The relative error between cases is presented. 

Design 

Value 

50mbar 100mbar 

CYCLOP Dymola Rel. Error CYCLOP Dymola Rel. Error 

𝜂 0.3306 0.3306 0 0.3141 0.3140 -3.2E-04 

𝑇𝑖𝑛,𝑠𝑔 (°C) 150.00 150.01 6.7E-05 150.00 150.01 6,7E-05 

𝑃𝑝ℎ (mbar) 5436 5436 0 5436 5437 1.8E-04 

𝑄𝑝ℎ (kg/s) 46.99 47.02 6.4E-04 42.77 42.79 4.7E-04 

3. Seasonal temperature variation of cold source 

In a water-cooled condenser, typical of a Pressurized Water Reactor (PWR), the pressure 

is defined by the available temperature of the cold source. Consequently, temperature 

variations of the cooling water in the vicinities of the NPP affect the electricity 

production, since the efficiency of the Rankine cycle (secondary circuit) is dependent on 

the condenser pressure. This effect is shown in Figure 2. 
 

 

Figure 2: Electrical power production sensibility to cold source temperature. Adapted from (Grard 

2014). Courtesy of the author.  
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As the condenser pressure decreases, due to a reduction in cooling water temperature, the 

production of electricity increases, as expected by the Carnot efficiency. However, there 

is an inflexion point beyond which electrical power begins to drop with a further decrease 

in condenser pressure. This effect is highly influenced by the increase in irreversibilities 

along the turbine during off-design operation. Indeed, the increase in condenser pressure 

causes an increase of turbine outlet swirl velocities, generating losses, which degrade 

cycle efficiency, reinforcing the Carnot tendency. In addition, the reduction in condenser 

pressure increases turbine outlet volumetric flow, which increases kinetic losses, 

contradicting the ideal Carnot cycle efficiency trend.  

Temperature variations occur seasonally, and their amplitude depends on the geographic 

location of the plant. Table 2 shows the monthly temperature averages for sea water used 

as a cold source in the nuclear power plant located in Blayais, France. 

 

Table 2: Average values of sea temperature, with corresponding condenser pressures, in Blayais, 

France (Weather Spark 2021).  

Month 𝑇𝑠𝑒𝑎 (°C) 𝑃𝑐𝑜𝑛𝑑 (mbar) Month 𝑇𝑠𝑒𝑎 (°C) 𝑃𝑐𝑜𝑛𝑑 (mbar) 

January 11 44,99 July 20 73,88 

February 11 44,99 August 21 77,91 

March 11 44,99 September 20 73,88 

April 13 50,38 October 17 62,85 

May 15 56,32 November 15 56,32 

June 18 66,36 December 13 50,38 

 

The water used for cooling the three 900 MW reactors of this NPP undergoes a 

temperature variation from 11 to 21°C, with a yearly average of 15.4°C. In order to assess 

the electricity production efficiency and optimize the cycle for the seasonal temperature 

variation, the exhaust loss effect must be considered in the turbine model. 

In order to account for off-design conditions, the turbine model available in 

ThermoSysPro library was then modified to include the exhaust loss as a function of last 

stage exit velocity (1) adapted from (Spencer, Cotton, and Cannon 1974). This loss has 

been chosen since it has considerable influence on the cycle efficiency in part-load 

operation. 

 

 
 ∆ℎ = 3.901 ∙ 10−8𝑉𝑠

4 − 4.515 ∙ 10−5𝑉𝑠
3 + 1.954 ∙ 10−2𝑉𝑠

2 − 3.447𝑉𝑠

+  2.28 ∙ 102 
(1) 

 

In this expression,  ∆ℎ is the enthalpy loss due to the exhaust-pressure loss, and 𝑉𝑠 is the 

velocity of steam leaving the last stage blades. In order to assess the operation at off-

design conditions, a pressure variation was imposed to the condenser, in a cycle designed 

for a condenser pressure of 57.63 mbar. For comparison, the same cycle was re-optimized 

at every pressure with CYCLOP tool, which does not account for the irreversibility 

effects. The results from the Dymola simulations in Figure 3 include the inflexion point 

seen in Figure 2, which is influenced by the exhaust loss in the turbine. As expected, the 

cycles simulated at rated conditions with CYCLOP follow the Carnot efficiency trend, 

which increases as the condenser temperature (and pressure) decreases. These results 

support the Rankine model developed in Dymola regarding the operation in off-design 

conditions. 
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Figure 3: Efficiency of Rankine cycle with exhaust loss in non-rated conditions (Dymola) and the 

design efficiency of each condition (CYCLOP). 

4. Optimization 

The optimization module available in Dymola was then used to optimize the Rankine 

model for the multi-case scenario given by the temperature profile of Table 2. The 

Simplex method was used with six optimization variables, given by dimensional 

characteristics: the Stodola coefficients of the turbines (Cooke 1984), the exhaust area of 

the turbine’s last stage and a coefficient for pump head characteristic curve (for both the 

high-pressure and low-pressure sections). The multi-case optimization was compared to 

the performance of cycles optimized for the minimal and maximal temperatures (Figure 

4). 

 

 

Figure 4: Multi-case optimization result for the Rankine cycle submitted to a seasonal variation of 

cold source temperature. A comparison is made with the cycle optimized for the minimal and 

maximal temperatures. 

 

The multi-case results do not give the best efficiency values at minimal and maximal 

pressures. However, it increases the average efficiency of the cycle with respect to the 

single-case extreme-temperature optimizations. Table 3 shows the respective average 

efficiency. 

The multi-case optimization presented the highest annual average efficiency for the 

Rankine cycle. This demonstrates the interest in considering the different operation 

scenarios during the optimization, instead of a single-case approach. The results obtained 

indicate that even if the cycle is optimized for the average temperature (of the seasonal 
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variation), the efficiency obtained is lower than the multi-case performance. This 

methodology allowed a relative gain of 0.41%, 0.67% and 0.06% with respect to the 

single case optimizations for the minimal, maximal and average temperatures, 

respectively. 

Table 3: Average values of Rankine cycle efficiency for the different optimization approaches. 

Average Efficiency 

(12 months) 

Single Case 

Tmin 

Single Case 

Tmax 

Single Case 

Tavg 

Multi 

Case 

0,3135 0,3127 0,3146 0,3148 

5. Conclusion 

The presented work is a proof of concept of the methodological feasibility of the multi-

case optimization approach. First, the case study was presented and the optimization was 

validated using two nominal conditions as a reference. The turbine model was then 

modified to include the exhaust loss effect, which has a considerable influence on cycle 

efficiency. A literature example was then used as a reference for supporting the behavior 

of the modified turbine model. For a seasonal temperature variation, relative efficiency 

gains of 0.41% and 0.67% were obtained through the multi-case optimization of the 

Rankine cycle, in comparison to the cycle optimized only for the minimal or maximal 

temperatures. When the cycle was optimized for the average value of the seasonal 

variation, the efficiency was still slightly lower than with the multi-case optimization 

result.  In a cogeneration situation, with temperature variations that might be much more 

significant, this methodology should further improve the efficiency of combined heat and 

power production. 
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Abstract 

A comprehensive multiphase model was developed for a trickle bed reactor with solid 

foam packings. Three-dimensional dynamic mass and energy balances in the three phases 

of heterogeneously catalysed reaction systems were implemented, and the mass and heat 

transfer resistances in the gas-liquid and liquid-solid phases and inside the pores of the 

catalyst were included in the model. Hydrogenation of arabinose and galactose mixtures 

on a ruthenium catalyst supported by carbon-coated aluminium foams was applied as an 

industrially relevant case study for the multiphase model. The kinetic parameters were 

estimated with confidence intervals within 10% error, indicating a good accuracy of the 

parameters, and the model results present a good adjustment to the experimental values. 

Finally, a sensitivity analysis on several model parameters demonstrated that the model 

could be applied to industrially sized reactors and various multiphase catalytic systems. 

 

Keywords: Open-cell foam catalyst packing, Non-isothermal trickle bed reactor, 

Reaction kinetics, Mass transfer, gPROMS. 

1. Introduction 

In the context of increasing energy costs and future stringent environmental regulations 

for industrial production, structured catalysts play an essential role in designing more 

energy-efficient chemical reactors. In recent years, several advances in this field have 

been taken, with diversified structured catalysts being invented and studied in detail, such 

as monoliths, fibres, solid foams as well as structures prepared by 3D printing. 

For three-phase catalytic systems (solid catalyst, gas phase, and liquid phase), open-cell 

foams have been investigated as suitable alternatives for catalytically active reactor 

packings because of their advantageous structural properties. The structures of pores and 

struts in open-cell foams provide high porosity (75-95%) and high specific surface area, 

allowing radial liquid flow and high local turbulence, which result in enhanced mass and 
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heat transfer. Axial and radial mixing are improved by the high pore tortuosity of solid 

foams, ensuring the even distribution of the gas and liquid phases, which is critical for a 

maximum product yield (Stemmet et al. (2008), Mohammed et al. (2014), Twigg et al. 

(2002)). 

In this work, an advanced mathematical model of a three-phase catalytic tubular reactor 

was developed for solid foam packings and implemented in the gPROMS® ModelBuilder 

7.0. software. The two-dimensional gas, liquid and solid phase mass and energy balances 

include individual terms such as internal diffusion, gas-liquid and liquid-solid mass 

transfer, and intrinsic kinetics. Furthermore, the gas and liquid flows are described by 

axial and radial dispersion terms along with liquid hold-up and pressure drop expressions. 

The hydrogenation of arabinose and galactose mixtures on a ruthenium catalyst supported 

by carbon-coated aluminium foams was applied as an industrially relevant case study. 

The  kinetic parameters of the reaction were estimated using experimentally obtained 

concentrations of arabinose, galactose, arabitol and galactitol in a continuously operating 

tubular reactor (Figure 1) with a diameter of 11 mm and bed length of 33 mm, equipped 

with an open-cell aluminium foam with a pore density of 40 PPI. The experiments were 

conducted at varying operating conditions, with temperatures between 90 and 120 °C and 

arabinose-galactose molar ratios of 1:1 and 1:2. The experimental methods are explained 

in detail in a previous study by Najarnezhadmashhadi et al. (2020). 

 

Figure 1 – Continuous tubular reactor system: trickle bed with cylindrical solid foam packing. 

2. Model development 

Modelling of trickle bed reactors is a very challenging and complex problem. In addition 

to the description of the flow pattern and the intrinsic reaction kinetics, mass and heat 

transfer effects must be accounted for accurately calculate the concentrations and 

temperatures inside the reactor tube. Heat and mass transfer resistances can appear at the 

gas-liquid and liquid-solid interfaces, as well as inside the pores of the catalyst layer. 

These resistances are more pronounced for lower fluid velocities (lower Reynolds, 

Sherwood, and Nusselt numbers) of the fluids inside the reactor. This is the case for many 

organic reactions applied in the production of fine and speciality chemicals and 
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ingredients in dietary products, where reactions are slow and long residence times are 

necessary to obtain high reactant conversions. On the other hand, internal mass and heat 

transfer resistances can be significant too, depending on the ratio between the reaction 

and diffusion rates, and, particularly, the thickness of the catalyst layer. Typically, internal 

mass and heat transfer resistances in the catalyst pores are negligible in structured reactors 

with thin catalyst layers such as 50 µm or less. However, these resistances might become 

prominent for rapid reactions and slow diffusion rates. 

It was assumed that the reactions proceeded in the porous catalyst layer exclusively. 

Hence, the reactants diffuse first into the solid catalyst, after which they react on the active 

centra on the surface of the solid catalyst. Figure 2 illustrates the scheme of the system 

considered in the present work. 

 

Figure 2 – Interaction of kinetic, mass and heat transfer effects in the three-phase system: gas, 

liquid, and solid foam catalyst. Adapted from Najarnezhadmashhadi (2021). 

2.1. Advanced model for continuous trickle bed reactors with open-cell foam packings 

The model for the tubular reactor enables the calculation of the axial and radial 

concentration and temperatures profiles in the gas and liquid phases, as well as within the 

catalyst active layer by solving the dynamic mass and energy balances simultaneously for 

the gas, liquid, and solid phases. The model considers intrinsic kinetics, gas-liquid mass 

and heat transfer, internal diffusion inside the catalyst pores, heat conduction within the 

reactor and inside the catalyst pores, and the flow description by axial and radial 

dispersion. These essential features are combined with up-to-date correlations for liquid 

holp-up, mass transfer coefficients, axial and radial dispersion coefficients and pressure 

drop. The energy balances for the tubular trickle bed reactor are presented in equations 

(1)-(3). Because the catalyst layers are very thin (< 10 µm), and the reactor and particle 

coordinates are quite different in the model, a dimensionless coordinate, 𝑥 = 𝑟𝑝/𝑅𝑐, is 

used in the mas and heat balances of the solid phase, where 𝑅𝑐 is the catalyst layer 

thickness, and 𝑟𝑝 is the distance from the catalyst centre to its surface. The mass balance 

equations and the correlations implemented in the reactor model are described in detail 

by Najarnezhadmashhadi (2021). 
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(3) 

The boundary conditions for the energy balances are presented below. The closed-closed 

boundary conditions of Danckwerts were applied at the reactor inlet and outlet in gas and 

liquid phases. In the solid phase, the energy balance is coupled to the bulk liquid balance 

through the boundary condition, which states that the heat flux through the liquid film is 

equal to the heat flux in/out to/from the catalyst particle. 

 

3. Modelling results and discussion 

The dynamic model for trickle bed reactors equipped with cylindrical solid foam packings 

was applied to describe the catalytic hydrogenation of arabinose and galactose mixtures 

as a representative case study. The kinetic parameters of the highly selective arabinose 

(A) and galactose (G) hydrogenation to arabitol and galactitol are presented in Table 1. 

The activation energies and pre-exponential factors for the process were estimated with a 

95 % confidence interval below 10 % error, indicating a good accuracy of the estimated 

parameters. 

Table 1 – Parameter estimation results. 

Parameters Estimated Value 95 % Confidence interval 

𝑬𝒂𝑨 5.32 × 104 0.36 × 104 

𝑬𝒂𝑮 5.48 × 104 0.37 × 104 

𝒌𝒓𝒆𝒇,𝑨 5.24 × 10-7 0.31 × 10-7 

𝒌𝒓𝒆𝒇,𝑮 5.31 × 10-7 0.30 × 10-7 

 

Figure 3 compares the experimental and calculated conversion values, of both arabinose 

and galactose, as a function of the reaction temperature. The model is able to predict the 

sugar conversions successfully, the average relative deviations being maximally about 

16 %. The experimentally recorded sugar conversions displayed in the figures are 

averages from multiple samples. The selectivity toward sugar alcohols was always very 

high, typically exceeding 95%. 
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(a) (b) 

Figure 3 – Experimental and model values for the conversion of sugar mixtures as a function of 

the temperature. Inlet molar ratio (a) 1:1, (b) 1:2. 

Figure 4 (a) and (b) present the arabinose concentration and the liquid-phase temperature 

axial and radial profiles for different reactor lengths. The conversion increases in line 

with the reactor length. The radial profiles in the conversion of arabinose were not 

observable because local conversions are very small. The temperature inside the reactor 

tube does not vary significantly because the reactor radius is very small. Higher 

temperature profiles are observed for higher reactor radiuses, Figure 4 (c). 

 

Figure 4 – Arabinose conversion (a) and liquid temperature (b) as a function of the reactor length, 

and liquid temperature as a function of the reactor radius for L=1320 mm (c). 

The capabilities of the model proposed were tested through a sensitivity analysis on the 

effect of the catalyst layer thickness on the concentrations (galactose) and temperature 

profiles inside the catalyst pores, for 𝑘𝑟𝑒𝑓,𝑖 = 25 × 𝑘𝑟𝑒𝑓,𝑖
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑. Analysing Figure 5, it is 

possible to conclude that, as the washcoat thickness increases, so do the concentration 

gradients and temperature in the catalyst layer. These results also demonstrate the 

flexibility of the generalised model, which can simulate both ideal cases, where there are 

no  internal  transfer  limitations, and  systems  dominated by high intraparticle transport 
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limitations. These properties demonstrate that this model is suitable for use in other 

chemical systems. 

  
(a) (b) 

Figure 5 – (a) Galactose and (b) temperature profiles in the washcoat in the middle of the reactor 

(z = 0.033m), for  𝑘𝑟𝑒𝑓,𝑖 = 25 × 𝑘𝑟𝑒𝑓,𝑖
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑  

4. Conclusions 

A comprehensive dynamic model for three-phase catalytic tubular reactors with solid 

foam packings considering all the main chemical and transport effects occurring in the 

system was developed and implemented successfully in the very modern software. The 

kinetic parameters of the model were estimated with good accuracy by non-linear 

regression analysis. The sensitivity analysis demonstrated that the model could predict 

the effect of different reactor dimensions, as well as the kinetic and transport phenomena 

included in the advanced multiphase reactor model. It is possible to conclude that this 

modelling approach can be applied to industrially sized reactors and various reactive 

multiphase catalytic systems, which are of fundamental and industrial interest. 
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Abstract
In this work, we present a scenario-based stochastic optimisation (SBSO) model to schedule a
wind farm with battery storage (BS) and a hydrogen electrolyser (HE) considering curtailment
and uncertainties in generation and market prices. We compare cases with BS only, HE only, and
a combination of the two. We apply Markov Chain (MC) and Gaussian Process (GP) techniques
to generate wind curtailment and electricity price scenarios, respectively, capturing their inherent
uncertainties. The model then assesses the economic benefits of incorporating BS and/or HE
alongside wind generation and their scheduling as a function of curtailed and non-curtailed wind.
The results can be used to determine the suitability of such systems for the purposes of maximising
profits and making optimal use of curtailed generation. Results show that HE increases mean
income and curtailed wind utilisation significantly more than BS. However, by combining the
two, wind curtailment can be reduced by 95%.

Keywords: Wind farm, Battery storage, Hydrogen electrolysis, Curtailment, Stochastic optimisa-
tion

1. Introduction

Energy storage technologies (EST) can facilitate the decarbonisation of energy systems and lead
to more sustainable futures. Battery storage (BS) has been found to improve power quality in
electrical grids (Das et al., 2018) – particularly with high renewable energy penetration – and
hydrogen storage (HS) can also replace fossil fuels in heating, industry and shipping (Gielen et al.,
2019). Operating these technologies alongside renewables allows for the adoption of variable
electricity sources (IRENA, 2019) and a means to use otherwise curtailed generation. However, in
order to do so optimially, the scheduling of these ESTs must further take into account uncertainties
relating to renewable generation, curtailment and market prices due to their unpredictable nature.

There are a number of recent studies optimising the scheduling of renewable energy - energy stor-
age systems under uncertainties, specifically wind-hydrogen systems. Xiao et al. (2020) consider
uncertainties in wind generation and electricity price and present a scenario-based stochastic op-
timisation (SBSO) model which evaluates financial risk. They find that a hydrogen electroyser
(HE) can increase the value of a wind system, the extent of which depends on hydrogen price.
Yu et al. (2019) and Mirzaei et al. (2019) present SBSO models which minimise operation costs
of a system with wind generation and HS, the latter study also considers demand response (DR).
Both of these papers consider uncertainties in wind generation, whilst Yu et al. (2019) also con-
siders uncertainties in demand. The efficacy of these models at reducing the risk of uncertainties
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is demonstrated. Finally, Cao et al. (2020) present a SBSO model to minimise operation costs of
an intelligent parking lot with HS and renewable generation. They present a Pareto set of solu-
tions for different levels of risk aversion. These studies highlight the value of SBSO models for
scheduling wind-hydrogen systems under uncertainties. However, they do not consider curtailed
wind, which is an important issue as renewable penetration increases, nor do they consider other
forms of energy storage, such as BS.

Several studies address using curtailed wind for an HE. For example, Yan et al. (2018) explore
different approaches for handling curtailed wind. They find that investing in an HE is both a
profitable and environmentally friendly approach. However, they do not consider uncertainties in
wind power or electricity price. Shams et al. (2021) present a machine learning model to predict
curtailed power which is used for an HE and BS. However, they optimise from a system operator
point of view rather than that of an investor. On the other hand, Jiang et al. (2019) present a
chance-constrained model that optimises the size of a wind-hydrogen system from an investor’s
perspective. Their methodology allows flexibility for the decision variables to not satisfy the
constraints at a given probability level; thus adverse conditions can be accounted for. However,
they do not model different curtailment or electricity price scenarios nor do they incorporate BS.

In this work we consider an investor’s point of view, and present an SBSO which schedules a wind
farm with HE and BS. We optimise their usage to maximise income, considering curtailment and
uncertainties in wind generation, curtailment and electricity price. We compare case studies with
HE and BS, HE only, BS only and no storage (NS). From this we determine the optimal choice for
a wind farm owner to maximise income and utilise the maximum amount of curtailed wind.

2. Model Description

Wind curtailment occurs when generation exceeds demand, and generators are instructed to re-
duce, or sometimes halt, power export. At time t, in scenario, i, total wind generation can be
divided into two categories: curtailed wind, wc

t,i, which cannot be exported, and non-curtailed
wind, wn

t,i, which is available to export. The electrolyser can be powered using curtailed, ec
t,i, or

non-curtailed wind, en
t,i. Likewise the battery can be charged using curtailed, cc

t,i, or non-curtailed
wind cn

t,i. The discharged power from the battery can be exported to the grid dn
t,i or curtailed dc

t,i.
It is assumed that at times when wind generation is not curtailed, wc

t,i = 0, discharged battery is
also not curtailed, dc

t,i = 0. However where there is wind curtailment, it is assumed that discharged
power cannot be exported to the grid, dn

t,i = 0, and is also curtailed.

The objective function is given in Equation 1 and maximises revenue due to selling non-curtailed
power in the day-ahead market (first term), selling hydrogen (second term) and minimises losses
due to using curtailed wind (third term). The day-ahead price at time, t, and scenario, i, is pda

t,i ,
ph is hydrogen price and ηc is electrolyser hydrogen conversion efficiency. The cost of using
curtailed wind, pc, is neglected in most models, which assume that curtailed wind is free. This
assumption is overly simplistic and not realistic, hence we consider pc here.

max
T,I

∑
t,i=0

(wn
t,i +dn

t,i− cn
t,i− en

t,i)pda
t,i +(en

t,i + ec
t,i)

ph

ηe − (ec
t,i + cc

t,i)pc (1)

The constraints are given in Equations 2-10. Equation 2 sets the lower limits on the battery charg-
ing and discharging powers and the power going to the electrolyser, where e represents the mini-
mum power required for hydrogen production. Equations 3 and 4 set the upper limits; the upper
bound on dn

t,i is set such that discharged power can only be exported when there is no wind cur-
tailed. Equation 5 prevents the sum of curtailed and non-curtailed powers exceeding the maximum
limits.

110

80 



Optimising a wind farm with energy storage considering curtailment and

cn
t,i,c

c
t,i,d

n
t,i,d

c
t,i ≥ 0, en

t,i,e
c
t,i ≥ e ∀ t, i (2)

cn
t,i,c

c
t,i ≤ c̄, dc

t,i ≤ d̄, en
t,i,e

c
t,i ≤ ē ∀ t, i (3)

i f wc
t,i = 0 : dn

t,i ≤ d̄, else : dn
t,i ≤ 0 ∀ t, i (4)

cn
t,i + cc

t,i ≤ c̄, dn
t,i +dc

t,i ≤ d̄, en
t,i + ec

t,i ≤ ē ∀ t, i (5)

Equations 6 and 7 set limits on the battery’s capacity, xt,i, and ensure that it is equal to the capacity
at the previous time period plus any charging/discharging in the current time period, respectively.
The charging and discharging efficiencies are ηc and ηc, respectively, and are equal to 90%.

x≤ xt,i ≤ x̄ ∀ t, i (6)

xt,i = xt−1,i +(cn
t,i + cc

t,i)η
c−

dn
t,i +dc

t,i

ηd ∀ t, i (7)

Equation 8 prevents the battery from being simultaneously charged and discharged. In Equation
9 the curtailed generation and discharge is greater than or equal to the curtailed power used for
charging and powering the electrolyser. Equation 10 ensures that when there is no wind curtailed
there is also no curtailment of discharged battery. M is a very large positive co-efficient which
allows curtailed discharge to take on any value, satisfying previous constraints, when there is
non-zero curtailed wind.

(cn
t,i + cc

t,i)(d
n
t,i +dc

t,i) = 0 ∀ t, i (8)

wc
t,i +dc

t,i ≥ cc
t,i + ec

t,i ∀ t, i (9)

Mwc
t,i−dc

t,i ≥ 0 ∀ t, i (10)

3. Scenario Generation

A range of scenarios are generated to represent possible outcomes of the uncertain parameters, in
this case wind generation, curtailment and electricity price. Three wind power profiles are ran-
domly generated from Drax Power Ltd (2021), by adding noise from a Gaussian centred around
each data point with a mean equal to that point and a standard deviation 0.25 * data point. This
wind data is scaled such that the farm has a maximum output of 20 MW. Five curtailment pro-
files are then generated using a MC with probabilities of moving between states ‘curtailed’ and
‘not-curtailed’ determined using historic data, and initial state ‘not-curtailed’. When the state is
‘curtailed’, the percentage of wind power curtailed is determined by randomly selecting from his-
toric data. The ‘not-curtailed’ wind profile is the difference between this and the original wind
profile. Three price profiles are created using Gaussian Process (GP) techniques as described in
Yeardley et al. (2021); the first profile is an ordinary GP, and the other two are created using
a novel hybridisation method which combines Gaussian Processes with K-means clustering and
hierarchical cluster.

A summary of the scenario generation procedure is shown in Figure 1. Each of these scenarios is
input into our SBSO model which optimises the scheduling our of energy storage for cases with
HE and BS, HE only, BS only, and no storage (NS). The input parameters for the storage for each
of these cases is shown in Table 1. Finally, it is assumed that hydrogen can be sold at a price of
£3.50/kg and the cost of curtailed wind is £0.01/kWh.
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Table 1: Input storage parameters for each case considered.

e (MW) ē (MW) c̄, d̄ (MW) x (MWh) x̄ (MWh)
HE + BS 0.04 2 2 1.6 8

HE 0.04 2 0 0 0
BS 0 0 2 1.6 8
NS 0 0 0 0 0

Figure 1: Scenario generation diagram

4. Results and Discussion

In Table 2 the mean income and percent of curtailed wind utilisation, across all scenarios, are
shown for the different case studies, along with their standard deviations. It can be seen that the
inclusion of storage increases both the mean expected income and curtailed wind utilisation. In
particular, the HE is able to increase the values of these more than the BS. However, the combi-
nation of both is the most effective of the case studies presented here. Additionally, the inclusion
of storage reduces the standard deviation of mean expected income. This is since storage adds
flexibility; for instance, when wind generation is low and curtailment is high, additional revenue
can still be achieved due to selling hydrogen and discharged power from the BS.

Figure 2 shows the optimised daily power profiles for each case study for Scenario 6. This scenario
was chosen because there is a large amount of wind curtailment, occurring between 4:00 and
14:00 (8 and 28 in Figure 2), and shows how the scheduling of the storage responds to this. Wind
generation is indicated by the red lines; wind power that is directly imported or curtailed is shown
by a solid area, power used for the HE: a dashed area, and power used for or discharged by the BS:
a dotted area. Non-curtailed wind may be exported, along with non-curtailed discharge from the
BS (indicated by a dark blue area); alternatively, it may be consumed by the storage (green area).
Curtailed wind (and BS discharge) is used to power the HE and/or BS (although the BS cannot
simultaneously charge and discharge) and is indicated by a white area.

In the case of NS, we can seen that all curtailed wind is wasted. By adding BS, we are able to use
some of the curtailed wind, however, once the BS is fully charged we cannot use it anymore. The
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Table 2: Mean and standard deviation of daily income and percentage of curtailed wind utilised
across all scenarios for each case study.

Mean Standard Curtailed wind Standard
income (£) deviation (£) usage (%) deviation (%)

HE + BS 4989 222 0.949 0.029
HE 4870 300 0.679 0.034
BS 4311 629 0.165 0.037
NS 4208 689 0.0 0.0

BS also allows a greater amount of power to be exported in the evening when electricity prices
are typically higher (34 - 38 in Figure 2). By adding HE we are able to use a greater proportion
of the curtailed wind. Furthermore, under the conditions specified here, it is economical to self-
consume and import power for the HE. By combining BS and HE we are able to utilise the most
curtailed wind and maximise power used for the HE; at 10:30 and 12:00 (21 and 24 in Figure 2),
there are two peaks above the red line which indicate curtailed BS discharge powering the HE.
As shown in Table 2 this case generates the highest mean income across the different scenarios.
Hence we conclude that of the cases explored here, a combination of BS and HE is optimal for
both maximising income and utilising the maximum curtailed wind.

(a) NS (b) BS

(c) HE (d) HE and BS

Figure 2: Daily power profile for Scenario 6, for each case study. Red line indicates total wind
generation.
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5. Conclusion

A scenario-based stochastic optimisatiom (SBSO) model is presented to schedule a wind farm with
battery storage (BS) and a hydrogen electrolyser (HE) under uncertain conditions and considering
curtailment. We generate wind curtailment and electricity price scenarios using Markov Chain
(MC) and Gaussian Process (GP) techniques, respectively, to model a range of possible outcomes.
We compare daily mean predicted income and utilisation of curtailed wind with BS only, HE only,
both BS and HE, and no storage (NS).

We find that HE increases mean income and curtailed wind utilisation significantly more than
BS. However, by combining HE and BS curtailed wind utilisation increases from 68% to 95%,
compared with HE alone. At times when curtailed wind is greater than the HE maximum power, it
can also be used to charge the BS; then at times when curtailed wind is lower than this maximum
power, it can be additionally powered by discharging the BS. Future work will consider capital and
operational costs of these technologies, as well as varying their sizes, ratios and hydrogen price.
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Abstract 

The aviation industry supports the world economy, contributing US$ 2.7 trillion to global 

the gross domestic product. However, aviation raises environmental concerns, where the 

industry has a 12% share of CO2 emissions within the transportation sector. Therefore, 

the International Civil Aviation Organization (ICAO) suggested the implementation of 

Carbon Offsetting Scheme for International Aviation (CORSIA) as a market-based 

measure to mitigate CO2. The CORSIA scheme may increase the operational costs by 

setting a carbon price on every extra tonne of CO2 beyond the baseline limits. In order to 

reduce operators' obligations, the integration of reduction measures such as Sustainable 

Aviation Fuels (SAF) may reduce the cost associated with offsetting requirements. As 

such, a multi-objective optimization model is presented in this study to identify optimal 

blending ratios of jet biofuels with conventional kerosene fuel for multiple aircrafts and 

destinations. The model considers the operators fuel cost, carbon price and renewable 

credit under CORSIA; aiming to minimize the total fuels’ associated costs. In addition, 

the model is implemented in a case study considering three fuel categories. The results 

indicate that Jatropha-based jet fuel, within the current tested data, is a preferable 

synthetic fuel to be blended with Jet-A at a maximum margin of 50%. Fuel prices highly 

influenced the results of the model. Whereas other factors including carbon prices, fuels’ 

lifecycle emissions, and supplied fuel quantity may directly or indirectly impact the 

process of incorporating SAF as an integrated mitigation tool under CORSIA. 

 

Keywords: CORSIA, Carbon Policy, Aviation, Sustainability, Mitigation. 

1. Introduction 

The airline industry has not only influenced global mobility, it has also contributed 

US$3.5 trillion to the global gross domestic product (GDP). In 2019, the aviation sector 

created over 87.7 million jobs and facilitated 4.5 billion boarding passengers on the 

world's airlines. During the pandemic, the economic contribution from the aviation sector 

reduced to US$1.7 trillion, eliminating 46 million jobs supporting the industry (ATAG, 

2020). As a mode of transportation, the aviation sector contributes 12% of the total CO2 

emissions produced from transportation (IEA, 2019). It is reported that in the next 15 

years, the demand for transportation will double (Airbus, 2019), thus increasing CO2 

emissions from the sector. As a consequence, the IATA suggested four CO2 mitigation 

techniques: market-based measures (MBM), alternative fuels, technological 

enhancement, and operational modifications. The International Civil Aviation 

Organization ICAO proposed the "Carbon Offsetting Scheme for International Aviation 
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(CORSIA)" as an applicable methodology of global MBM techniques to support aviation 

environmental goals. 

1.1. CORSIA 

During the 39th assembly, the ICAO announced CORSIA as a global offsetting scheme 

for international flights, with an applicable methodology of a combinatory approach, 

beginning  with a 100% sectorial approach and moving to a 100% individual approach 

(IATA, 2019). Fuels classified as CORSIA's Eligible Fuel (CEF) should have the 

capability of achieving a minimum 10% emission reduction compared to Jet-A, 

determined by life cycle assessment (LCA) of the fuel. The integrability of SAF, 

technological improvement, and operational enhancement within a CORSIA framework 

can help minimize the cost of carbon, support IATA's goal of reducing carbon emissions, 

and invest in research or through the implementation of SAF (Staples et al., 2018). The 

acceleration on developing drop-in fuels seems the most suitable substitute for Jet-A, in 

which its implementation may require minimum or no design modification of the engine 

or fuel system. These fuels can be synthesized from biomass for example, through 

production pathways of Fischer-Tropsch (FT), Hydroprocessed Easter Fatty Acid 

(HEFA), Hydrothermal Liquefaction (HTL), Alcohol to Jet (ATJ), and Direct Sugars to 

Hydrocarbons (DSHC) or commonly known as Synthesized Iso-paraffins (SIP) (Stratton 

et al., 2010).   

1.2. CORSIA Associated Models 

Optimization techniques can predict the influence of SAF in minimizing carbon 

emissions and support managerial decisions. Jiang & Yang (2021) discussed the  

correlation between SAF and SAF’s policies from an operational decisions perspective, 

comparing carbon tax and SAF quota. Sharma et al. (2021) investigated CORSIA by 

examining technologically innovative factors and the related emissions through 

regression techniques. Sharma et al. (2021) developed a minimization model of aviation 

emissions using Vensim. Chao et al. (2019) modified the Fleet-level Environmental 

Evaluation Tool (FLEET) and created multiple emissions scenarios. The modified model 

was integrated with the SAF lifecycle assessment to evaluate SAF development 

economically and environmentally. Whereas, this study presents a multi-objective 

optimization model to select optimal blending ratios based on carbon price, fuel price and 

lifecycle emissions. The model is applicable to multiple data entries considering different 

types of aircrafts and multiple destinations through the incorporation of key parameters, 

such as, aircraft fuel consumption rate, number of passengers and distance travelled. 

2. Methodology  

2.1. Mathematical optimization model  

A mathematical model was developed to select and set the blending ratios of viable SAF’s 

and Jet-A under CORSIA as presented in Table 1. The model was solved using CPLEX 

OPL considering two assumptions. The model assumed that the Trips Number (TNk,j) is 

a ready-prepared aircraft schedule and that the blending ratio does not vary for different 

trips on the same route. The model aimed to minimize the cost of investing and operating 

fleets using certain SAF and the cost of emissions under CORSIA framework. It also 

considers the reward provided to operators utilizing SAF. 

 

Table 1: Mathematical formulation of blend ratio selection of biofuel and Jet-A. 
Sets, Decisions Variables, and Parameters 

Sets 

k: is the aircraft type 

Parameters 

Pf: Price of fuel f ($/MJ.) 
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j:  is the routes 

f:  is the fuel 

Decision Variable 

BR f,k,j: Blending ratio 

of fuel f on aircraft k 

and route j. 

 

CPrice:  Price of carbon ($/kgCO2) 

Ef f: Amount of CO2 produced per MJ of fuel f. 

LCA f: Lifecycle Analysis value of fuel f. 

TNk,j: Number of trips of aircraft type k on route j. 

Pax k,j: Number of passengers using aircraft type k on route j.  

CR k:  Consumption rate using aircraft k (M.J./Pax.km). 

LHVf: Lower Heating Value of fuel f (M.J./liter) 

Supply f: The amount of supplied fuel f (liter) 

FCF: Fuel Conversion Factor (0.0718 kgCO2/MJ for Jet-A). 

GF: Growth factor of carbon (20%). 

NFC: Net cost of jet fuel. 

CTax: Carbon taxing cost. 

RCredit: Reduction credit, representing a reclaimed value of reduced 

emissions from the offsetting requirements. 

Objective Function 

Min NFC + CTax – RCredit 

Where: 

NFC = ∑ ∑ ∑ 𝐹𝑢𝑒𝑙𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑓,𝑘,𝑗 ∗ 𝑃𝑓 𝑗𝑘𝑓  

CTax =𝐶𝑃𝑟𝑖𝑐𝑒 ∗ 𝐺𝑓 ∗ ∑ ∑ ∑ 𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑓,𝑘,𝑗   𝑗𝑘𝑓  

RCredit=𝐶𝑃𝑟𝑖𝑐𝑒 ∗ 𝐹𝐶𝐹 ∗ ∑ ∑ ∑ 𝐹𝑢𝑒𝑙𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑓,𝑘,𝑗 ∗ (1 −
𝐿𝐶𝐴𝑓
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)       𝑗𝑘𝑓  

OperatorsEmissions= ∑ ∑ ∑ 𝐹𝑢𝑒𝑙𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑓,𝑘,𝑗 ∗ 𝐸𝑓𝑓  𝑗𝑘𝑓  

FuelConsumption=∑ ∑ ∑ 𝑃𝑎𝑥𝑘,𝑗 ∗  𝑇𝑁𝑘,𝑗 ∗ 𝐶𝑅𝑘 ∗ 𝐷𝑗 ∗ 𝐵𝑅𝑓,𝑘,𝑗𝑗𝑘𝑓  

Constraints 

∑ 𝐵𝑅𝑓,𝑘,𝑗 = {
1 𝑇𝑁𝑘,𝑗 ≠ 0

0 𝑇𝑁𝑘,𝑗 = 0
𝑓

                ∀ 𝑘, 𝑗 
The blending ratio of fuels f utilized by 

assigned aircraft k on route j should add 

up to 100%. 

𝐵𝑅𝑓=1,𝑘,𝑗 ≥ 0.5                  𝑇𝑁𝑘,𝑗 ≠ 0,   ∀ 𝑘, 𝑗  A minimum blending ratio of 50% should 

be allocated to Jet-A utilized by aircraft k 

on route j. 

∑ ∑ 𝑃𝑎𝑥𝑘,𝑗  𝑇𝑁𝑘,𝑗𝐶𝑅𝑘,𝑗𝐵𝑅𝑓,𝑘,𝑗

𝑗

/𝐿𝐻𝑉𝑓

𝑘

≤ 𝑆𝑢𝑝𝑝𝑙𝑦𝑓         ∀ 𝑓  

For each fuel, the total amount of the 

consumption by all aircraft k and all route 

j should not exceed 

∑ ∑ ∑ 𝐹𝑢𝑒𝑙𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑓,𝑘,𝑗 ∗ 𝐹𝐶𝐹 ∗ (1 −
𝐿𝐶𝐴𝑓
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)

𝑗𝑘

𝐹

𝑓=2

≥ 0.1 ∑ ∑ ∑ 𝐹𝑢𝑒𝑙𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑓,𝑘,𝑗 ∗ 𝐸𝑓𝑓

𝑗𝑘

𝐹

𝑓=1

         

The total SAF fuels utilized by all aircraft 

k associated with route j should pertain to 

a minimum of 10% emissions reduction 

from the total fuel consumption.  

2.2. Case study 

Aside from the conventional Jet-A, data of two biofuels including jatropha and algae-

based fuels, were obtained to test and validate the developed model. Previous literature 

referenced a well-to-wheel (WTW) approach to account for GHG emissions of jatropha 

and algae fuels as studied by Alherbawi et al. (2021a) and Fortier et al. (2014), 

respectively. CORSIA specifies that these values shall be compared to the lifecycle 

emissions of 89 gCO2/MJ of conventional jet fuel, as referenced by the ICAO (IATA, 

2019). Jatropha lifecycle emissions values were collected from Alherbawi et al. 

(2021a).  Whereas Fortier et al. (2014) performed an LCA using a WTW approach to 

study algae-based jet fuel’s environmental performance. The study analyzed two 

pathways: the Hydrothermal Liquefaction (HTL) and the wastewater treatment plant 

(WWTP) HTL. The study also compared the results to previous LCA values of bio-jet 

fuels. Table 2 shows the average emissions for the two selected fuels. Fuel prices were 

collected to evaluate the additional costs associated to clean fuels for airlines operators. 
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Algae and jatropha jet fuel prices were obtained based on the minimum selling price of 

jet biofuels (Alherbawi et al., 2021b). The fuel prices were presented in USD per energy 

equivalent units of (MJ) based on the lower heating value (LHV) and density 

characteristics for each biofuel (Azami & Savill, 2017),  and for jet-A as specified by 

Chevron Products Company (2007). In 2019, biojet production was estimated with 140 

million liters per year, the production is assumed to be shared between Jatropha and Algae 

as in Table 2 (Renewable Energy Agency, 2021).  

 

Table 2: Selected fuels’ price, quantity, and characteristic. 

Fuels  Price 

($/MJ) 

Supplies 

(Million L) 

LHV 

(MJ/L) 

LCA emissions 

(gCO2eq./MJ) 

Jatropha 0.026 70.000 39.0 37.95 

Algae 0.031 70.000 38.0 61.38 

Jet-A 0.015 87.625* 34.7 89.00 

* Jet-A supplied fuel amount was assumed. 

 

The associated direct emissions of Jet-A, jatropha, and algae synthesized fuels are defined 

based on their emissions factors of 3.16, 2.81(Carels et al., 2012), and 3.7  (kgCO2/kgfuel) 

(Ponnusamy et al., 2014), respectively. Implementing CORSIA requires setting a growth 

factor value by the ICAO to specify the increase in the emissions compared to a baseline 

of 2020 for each country. The tested scenario assumed a growth factor of 20% and a 

carbon price tax of 3 $/kgCO2. 

 

Table 3:Selected aircraft types and fuel consumption rates. 

Type of Aircraft Consumption Rate (MJ/Pax/km) 

Airbus A320-200 0.7814 

Airbus A330-200 1.0802 

Airbus A380 1.1357 

 

The scenario was developed with three aircraft types as summarized in Table 3 along with 

their consumption rates. It was assumed that the operators have a ready flight schedule 

associated with a specific aircraft type and an average number of passengers on board. 

The number of trips and passengers per aircraft on each route and the associated traveled 

distance are illustrated in Table 4 and Table 5. 

 

Table 4: Trips number per an aircraft type on a specific route 

 

Table 5:Trips destinations and distances. 

Route Doha-Kuwait Doha-London Doha- Miami 

Distance (km) 572 5240 12340 

Type of Aircraft 
Trips Number Passengers  

Route

1 

Route 

2 

Route 

3 

Route 

1 
Route 

2 
Route 

3 

Airbus A320-200 0 0 46 0 0 180 
Airbus A330-200 77 0 0 220 0 0 

Airbus A380 0 22 0 0 320 0 
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3. Results 

The results illustrated Figure 1 indicate that the model selected kerosene and jatropha to 

create an optimal blend. Algae is excluded from the blend in the current scenario, which 

is possibly due to its higher price as compared to Jet-A and jatropha fuels. The first route 

was assigned a 100% jet-A to minimize the overall fuel associated costs, while the SAF 

blend comes is introduced from the second route to satisfy the minimum emission 

reduction constraints. However, as the distance travelled increases, the subsequent 

emissions also increase, which require more SAF to be blended to restrict the emissions 

within the defined margins. As such the third route was associated with a 50:50 Jet-A and 

jatropha blended fuels. The initial run of the model suggested a cost of approximately 1.5 

million U.S.$. Along with fuel price, the supplied fuel quantity, fuel emission factor, and 

emissions reduction capability also influenced the optimal blending ratio and the SAF 

selection. In addition, an increasing carbon tax is expected to further promote the 

integration of SAF with higher blending ratios. In such case, airlines can shift to SAF 

with reasonable blending ratios to satisfy the environmental targets without 

compromising the economic gains. 

 

 
Figure 1: Results of the optimal fuel blending ratios for selected routes. 

 

4. Conclusion  

CORSIA promotes the integration of SAF to mitigate the environmental impact of air 

travel. The policy framework incentivizes operators utilizing SAF by providing a 

reduction reward function that allows operators to reclaim some of the offsetting carbon 

emissions. However, a 100% shift can be more challenging due to the high price of SAF 

as compared to Jet-A, leaving operators required to maintain a higher blending ratio for 

Jet-A utilization on fleets, as the results reflect a 100%, 88.88 %, and a minimum of 50% 

Jet-A utilization. It is expected that SAF blending ratios will be further promoted with the 

expected increase in carbon tax. However, more efforts are required to produce cheaper 

SAFs and reduced life cycle emissions to reach a full transition to clean fuels.  
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Abstract 

With the increasing amount of data to quickly process, surrogate modeling has become a 

topic of major interest in process engineering during the last decades. Recently, black-

box models have gained renewed interest as effective tools to reduce the computational 

effort and to enhance the solution of optimization algorithms. Among the surrogate model 

applications, scheduling and control problems are getting particular attention in the last 

years. However, when dealing with dynamics, the majority of literature works concern 

batch processes to be modeled within the corresponding residence time interval. With the 

purpose to extend the established procedures to continuous operations, in this research 

work the surrogate modeling procedure of a dynamic non-isothermal CSTR reactor is 

discussed and analyzed in detail. The modeling phase was carried out for the temperature 

and concentration with different sampling size and techniques by means of the software 

ALAMO®. After the open-loop model was built and validated, the related closed loop 

configuration has been tested by means of a conventional PID controller implementation. 

The controller has been properly tuned on both models in order to compare the 

performances. The obtained trends show good agreement with those of the rigorous model 

both for open loop and closed loop performances. More importantly, the implemented 

surrogate model requires reduced calculation time thanks to the explicit input-output 

variable correlations. In conclusion, the proposed dynamic surrogate modeling approach 

for process control applications has proved to be effective and provided reliable results. 

Moreover, the computational time was reduced by an order of magnitude and the best 

compromise between the performances and accuracy can be detected. 

Keywords: data-driven modeling, design of experiment, process control, ALAMO 

1. Introduction

Nowadays, the exponential increase of the available computational performances is 

leading the entire engineering domain towards a more and more data-driven approach. 

With respect to phenomenological models, data-driven models sometimes allow a 

smoother calculation, lower computational effort and better convergence of optimization 

algorithms. In the process engineering domain, the impact of data processing in the 

digitalization transition can be detected in particular in the growing interest towards 

surrogate modeling. Initially conceived to compensate the lack of phenomenological 

models, surrogate modeling for chemical processes has become a topic of major interest 

in the Process Systems Engineering and it is studied and exploited to considerably reduce 
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the computational effort for complex systems modeling as well as for optimization 

(Bhosekar and Ierapetritou, 2018; McBride and Sundmacher, 2019). 

The majority of surrogate modeling related research works addresses steady state models 

to derive input-output variables correlations without the need to solve all the units of the 

system. During the last years, the interest towards this approach is nevertheless involving 

dynamic systems as well (Di Pretoro et al., 2022). When dynamic models are analyzed, 

the literature studies mainly refers to batch operations to be modeled over the related 

residence time interval (Shi and You, 2015; Shokry et al., 2020). The purpose of this work 

is then to extend the surrogate modeling activity to continuous processes and suggest a 

preliminary approach that could be suitable for this scope. Moreover, once completed the 

modeling phase, we are interested as well in comparing the rigorous and data-driven 

model closed-loop performances for a conventional PID feedback control strategy. 

The selected case study is a simple non-isothermal CSTR reactor and its thorough 

description is addressed in the next section as well as the control strategy one. Section 3 

refers to the different approaches proposed for the surrogate modeling procedure and the 

obtained results are then discussed in section 4. Finally, some conclusions of general 

validity and possible perspectives and developments are commented in the last section. 

2. Case study

This section introduces first the selected case study, i.e. a non-isothermal CSTR reactor, 

along with its model equations and parameter values. The second part of the section is 

focused instead on the feedback control strategy and on the parameters tuning approach. 

2.1. The non-isothermal CSTR reactor 

The continuous process selected for the surrogate modeling procedure is a conventional 

non-isothermal CSTR reactor, with constant inlet and outlet overall flowrates, where a 

first order reaction occurs according to the kinetic scheme: 

𝐴
𝑘
⇒ 𝐵 (1) 

𝑘 = 𝑘0 ⋅ exp (−
𝐸𝑎

𝑅 ⋅ 𝑇
) (2) 

The set of differential equations required for the phenomenological modeling of the 

system consists of mass and heat balances as follows: 

𝑑𝐶𝐴

𝑑𝑡
=

𝑄

𝑉
⋅ (𝐶𝐴,𝑖𝑛 − 𝐶𝐴) − 𝑘0 ⋅ exp (−

𝐸𝑎

𝑅 ⋅ 𝑇
) ⋅ 𝐶𝐴 (3) 

𝑑𝐶𝐵

𝑑𝑡
= −

𝑄

𝑉
⋅ 𝐶𝐵 + 𝑘0 ⋅ exp (−

𝐸𝑎

𝑅 ⋅ 𝑇
) ⋅ 𝐶𝐴 (4) 

𝑑𝑇

𝑑𝑡
=

𝑄

𝑉
⋅ 𝑐𝑝 ⋅ (𝑇𝑖𝑛 − 𝑇) −

∆𝐻𝑟

𝜌 ⋅ 𝑐𝑝

⋅  𝑘0 ⋅ exp (−
𝐸𝑎

𝑅 ⋅ 𝑇
) ⋅

𝑈𝐴

𝜌 ⋅ 𝑉 ⋅ 𝑐𝑝

⋅ (𝑇𝑗 − 𝑇) (5) 

All physical properties and system parameters are listed in Table 1. 
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Process parameter Value Unit 

Q/V 1 1/s 

CA,in 0.98 mol/m3 

k0 7.2·1010 1/s 

Ea/R 8750 K 

Tin 304.2 K 

ΔHr 5·104 J/mol 

U·A 5·104 W/K 

ρ·cP 239 J/(m3·K) 

Table 1 – Process operating conditions and reactor parameters 

2.2. Control strategy and tuning 

This section introduces the control strategy employed for the aforementioned case study. 

As already explained, given the constant inlet and outlet flowrates, no level control is 

accounted for while the reactor temperature is controlled by manipulating the coolant 

temperature in the jacket. For this purpose, a conventional PID control was used 

according to the characteristic equation: 

𝑢(𝑡) = 𝑢𝑆 + 𝐾𝐶 ⋅ (𝑒(𝑡) +
1

𝜏𝐼

⋅ ∫ 𝑒(𝜏) ⋅ 𝑑𝜏
𝑡

0

+ 𝜏𝐷 ⋅
𝑑𝑒(𝑡)

𝑑𝑡
) (6) 

Where e(t) is the error, KC is the proportional gain, τI and τD the integral and derivative 

time constant respectively. As concerns these controller parameters, both for 

phenomenological and data-driven models, they were tuned so that they minimize the 

objective function given by: 

𝐹𝑜𝑏𝑗 = 𝑤1 ⋅ 𝐶𝐴𝑚𝑎𝑥 + 𝑤2 ⋅ 𝐼𝑆𝐸 + 𝑤3 ⋅ 𝑂𝑆 + 𝑤4 ⋅ 𝑆𝑇 (7) 

where wi is the relative weight of each term, CAmax is the maximum control action, ISE 

is the Integral Square Error, OS is the OverShoot and ST is the Settling Time. 

3. Methodology

The surrogate modeling procedure was carried out based on different approaches better 

detailed in the following subsections. 

In any case, the dataset used for temperature and concentration dynamic trends is the same 

and it was derived by means of the Latin Hypercube Sampling (LHS) function already 

implemented in MatLab®. The key difference between this approach for control of 

continuous processes and those available in the literature is that sampling should be 

performed over the [time]x[manipulated variable] domain for a time interval long enough 

to achieve the new steady state conditions. 

Figure 1 a and b show respectively the results obtained for reactor temperature and 

reactant concentration for coolant temperature step perturbation of different magnitude. 
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Figure 1 – a) Concentration and b) reactor temperature response vs coolant temperature and time 

A time interval equal to 10 seconds was found in order to achieve the new steady state 

conditions for both variables and every step perturbation size. 

3.1. Surrogate modeling with ALAMO® 

The first two approaches for surrogate modeling exploit the dedicated software 

ALAMO®. This tool performs surrogate modeling based on Response Surface 

Methodology by using selected interpolating base functions. In this study, mixed 

polynomial, logarithmic and exponential functions were selected for the regression. 

Datasets with different size have been imported and the related performances in terms of 

model accuracy and computational time required to solve the dynamic model over the 

10s time interval have been recorded as later discussed in the results section. 

The main difference between the two is related to the sample density. In particular, as 

pointed out in the next section, the model obtained with the conventional LHS sampling 

shows some discrepancies at the proximity of the domain boundaries and is not able to 

exactly represent the steady state behaviour. That is why, in the second approach, the 

sample density was doubled in proximity of the 10 s boundary, so that the steady state 

points have a higher weight on the objective function minimized by the software. 

3.2. First order response regression  

The third approach is based on the pre-selection of a polynomial function for the 

controlled variable whose coefficients are obtained by means of a regression minimizing 

the relative error with respect to the data sampling. Given the temperature behaviour (cf 

Figure 1b) a suitable candidate as response surface is a first order response function as: 

𝑇𝑟 = 𝑓(𝑇𝑗) ⋅ (1 − 𝐴 ⋅ 𝑒−𝐵⋅𝑡) + 𝐶 (7) 

The advantage of using this expression lies on the fact that, for high values of the time 

variable, it exhibits a steady state behaviour that is exactly what is experienced by the 

system under study. This procedure was implemented with a MatLab® dedicated script. 

The results for these three approaches, along with the related advantages and 

inconveniences are discussed in the next section. 
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4. Results 

4.1. Modeling  

This first subsection addresses the performances of the modeling procedure from a 

computational point of view. Although results are showed for the first approach, the same 

remarks both from a qualitative and a quantitative perspective are valid for the others. 

 

Figure 2 – a) Relative error [%] and b) computational time [s] vs dataset sample size 

Figure 2a presents the mean relative error for concentration and temperature while Figure 

2b compares the solution of the dynamic model over the 10 s time span for the rigorous 

and surrogate model respectively. As it can be noticed, for this specific case study, the 

relative error decreases almost exponentially with the sample size and achieves a stable 

value of about 0.1 % for a dataset with more than 40 points. On the other hand, the 

computational time, that is one order of magnitude lower than that of the rigorous model, 

follows an almost linear trend with respect to the sample size. 

From this first analysis, we can observe the considerably higher performance of surrogate 

model with respect to ODE system from a computational perspective and that a good 

compromise between accuracy and computational time can be obtained for a number of 

points in the range 40-60. 

4.1.1. Closed-loop response 

 

Figure 3 – Controlled/manipulated variable for the three approaches 

Once the surrogate models according to each of the three approaches have been derived, 

their closed-loop response to two sequential 5 K perturbations on the inlet reactor 

temperature have been tested. Figure 3 shows, for each of them, the controlled or 

manipulated variable behaviour according to the one that is more significant for the model 

performances. 
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As it can be noticed, in the first case, the model is able to reproduce with some 

inaccuracies the dynamic trend by respecting the settling time and the overshoot for the 

second perturbation in particular. However, in proximity of the second steady state, the 

curve starts dropping down to the impact of the exponential term of the obtained 

analytical function. In order to mitigate this behaviour, the second approach increases the 

number of points in proximity of the domain boundary. In this case, the steady-state issue 

has been fixed but the cost to pay is a higher inaccuracy in the central part of the time 

domain, in particular for the manipulated variable trend as showed in Figure 3b. 

Finally, the first order regression performances were tested. The obtained trend exhibits 

good agreement with the rigorous model one both in terms of transient quality and steady 

state behaviour. However, an offset with respect to the actual steady state values can be 

noticed due to the fact that the functional form of the surrogate model has been fixed and 

includes, as a function of time, the exponential term only. 

5. Conclusions 

As a first result, the study shows that surrogate modeling to describe continuous processes 

dynamics is possible and effective by means of the currently available tools. In particular, 

the obtained model is able to describe the system performances both in open- and closed-

loop behaviour. However, although the most critical aspects such as transient peaks and 

steady state value are correctly described, the accuracy of all points in the perturbation 

time interval is not always ensured. To deal with these inaccuracies different modeling 

and sampling approaches can be employed according to the specific parameter of interest. 

As concerns the computational aspects, with respect to the set of differential equation, the 

model obtained by means of the proposed procedure exhibits a solution time over the 

defined time span that is lower by an order of magnitude and a relative error lower than 

the 0.5 %. Moreover, it allows to detect the best compromise between solution accuracy 

and computational time in terms of sample size for the specific case study. 

In conclusion, the research work shows good potential for continuous process modeling 

by means of data-driven approach and it is worth a deeper investigation in terms of both 

modeling strategies and sampling in order to become a well-established tool in the process 

systems engineering domain and also further applications in different research fields. 
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Abstract
Statistical machine learning algorithms have been widely used to analyse industrial data for batch
process monitoring and control. In this study, we develop a three-step methodology to identify,
visualize and systematically reduce data dimensionality for the construction of robust soft-sensors
for end-product quality prediction. The approach first employs partial least squares to screen the
entire dataset and identify critical time regions and operational variables, then adopts multiway
partial least squares to construct a latent space descriptive of the existing batches. Nonlinear esti-
mators are then constructed from the reduced latent space to estimate final product quality, which
is able to express model uncertainty. Specifically, in this study, we explore the performance of
Gaussian processes. Innovations of this approach include the ease of data visualisation and ability
to identify major operational activities within the factory, as well as robustly predict end-quality.
To highlight efficiency and practical benefits, an industrial consumer goods product manufactur-
ing process was presented as an example and the soft sensor was successfully constructed and
cross validated. Furthermore, the accuracy, reliability, and interpretability of the soft-sensor is
discussed, tested and shown to generalise well.

Keywords: Machine Learning, Batch process, Soft-sensor, Dimensionality reduction, Viscosity
prediction, Interpretability

1. Introduction

The operation of nonlinear, uncertain batch processes is a well established domain of research
within process systems engineering. Batch process data tends to consist of rank-3 tensorial datasets
which are highly dimensional. Further, given that the process is batch, it tends to be the case that
operation’s primary concern is to ensure that end-quality is kept on specification (meaning that
one typically only has a single measurement of the desired qualities of a given batch). As a re-
sult, the construction of end-quality predictive models for process monitoring and operation is a
highly complex process, requiring identification of different dynamical regimes (handling of non-
stationarity in the data) and highly dimensional data points that typically exhibit multicollinearity.
This is combined with the fact that operational data is often reasonably limited (at least relative to
the era of big data) and the identification of physical mechanisms (mathematically) is extremely
challenging. Conventionally, the problem has been handled by various dimensionality reduction
techniques (see e.g. Wold et al. (2009)). However, proper quantification of the uncertainties asso-
ciated with latent variable models is challenging as discussed in Zhang and Garcia-Munoz (2009).
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As a result, in this work we consider the development of probabilistic latent variable models, which
can naturally quantify the uncertainty of their prediction. This is important because not only is the
nature of end-quality prediction in batch processing of high uncertainty, but such quantification
can help inform operation of the batch to mitigate waste and reduce inefficiencies.

2. Methodology

2.1. Model construction with rank-3 tensorial input data

In this work, we assume the availability of a dataset, D = {X ,Y}, composed of N batch runs, with
J process variables recorded at T discrete time intervals, such that X = [X1, . . . ,XN ]

T ∈ RN×J×T

and Y = [y1, . . . ,yN ] ∈ RN×ny , where ny represents the number of process qualities one would like
to monitor. In this work, we would like to identify a predictive mapping expressed as follows:

y = f (X ,θ) (1)

where θ ∈Rnθ are the parameters of the functional mapping, f (·,θ), defined generally. The input
data, X , represents a rank-3 tensorial dataset, which generally poses challenge to constructing
classical predictive models. A number of techniques exist to handle such data (that all aim to
obtain a rank-2 tensorial representation), including convolutional neural networks, and a number
of tensorial analysis approaches as outlined in Sun and Braatz (2020). Further, it is common in
the paradigm of batch processing for datasets to exhibit multi-collinearity, such that the problem
of identifying the mapping (in Eq. 1) is ill-posed. As a result, in this work, we use the method
developed in Hicks et al. (2021) with inspiration from Nomikos and MacGregor (1995, 1994) to
construct a reduced latent representation of a batch, such that the dataset X can be well described
by Z = [z1, . . . ,zN ], where zi ∈ Rnz and i ∈ {1, . . . ,N}. This reduced latent representation, Z can
be used for model construction as outlined subsequently. Specifically, we propose to identify Z
via multi-way projection to latent structures (MPLS), which can be thought as a special case of
projection to latent structures (PLS). Essentially, the additional component of MPLS (relative to
vanilla PLS) is the transformation (or unfolding) of a rank-3 tensorial dataset via a functional
transformation, fun f , to obtain a rank-2 matrix. In this work, we use time-wise unfolding, which
may be defined as fun f : RN×J×T → RN×JT . Having obtained an unfolded representation of the
dataset, X̂ = fun f (X ), one can then identify Z that correlates with the variables one desires to
predict via PLS:

X̂ = ZPT +E

Y =UQT +F
(2)

where P ∈ RJT×nz are the input loadings, which project X̂ to the input latent space; Q ∈ Rny×nu

are the output loadings, which project Y to the output latent space; U = [u1, . . . ,uN ]
T ∈RN×nu are

the output scores; and, E ∈ RN×JT and F ∈ RN×ny quantify the information loss from projecting
both X̂ and Y to their respective latent spaces. The latent spaces themselves are related via a
linear regression, which enables formation of a predictive model (which together with an unfolding
mechanism enables identification of a model of the form of Eq. 1).

Although PLS is a linear decomposition, the relationship expressed within the latent spaces can
often be nonlinear. This means that PLS may inherently underfit the modelling problem at hand.
Further, approximation of the model uncertainties is a difficult problem given that the typical
methods for uncertainty estimation do not consider the indirect relationship of model input and
output via the latent structures. This was studied in Zhang and Garcia-Munoz (2009). To handle
these two facets, we propose to a nonlinear estimation from the latent space, U to the target Y , to
identify a model which naturally expresses predictive uncertainty via probabilistic inference. A
suitable estimator is discussed in the following.
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2.2. Nonlinear Estimators for Probabilistic Inference and Gaussian Processes

Here, we briefly formalise a general introduction to nonlinear estimators which lend naturally to
probabilistic inference. Specifically, we can consider probabilistic inference as the construction of
a conditional probability distribution function over predictions, y, given a model input, z. In this
case, we would like to identify a prediction as follows:

y ∼ p(y|z, ·) (3)

Specifically, we consider the use of Gaussian processes (GPs), the high level intuition for which is
provided in the following. The use of GPs is particularly appealing as the predictive distribution
constructed (in Eq. 3) expresses both aleatoric (arising due to the underlying process) and epis-
temic (due to a lack of information) uncertainties in closed form. In short, GPs operate within a
nonparametric, Bayesian inference framework. The idea here is to (instead of identifying a fixed
model structure and number of parameters) simply exploit the statistical relationships within the
data to identify a function, f : Rnz → R, (i.e. an infinite dimensional weight vector) such that we
can make predictions, f = [ f (z1), . . . , f (zN)], where f (zi) ∈ R, by simply querying the function at
given model inputs, Z. Formally, however, GP models are a subset of stochastic process models
(SPs). SPs define a probability model over a collection of random variables, such that any finite
subset of the random variables have a joint distribution - meaning they are often identified as a
distribution over functions. When this joint distribution is assumed Gaussian, one obtains a GP. A
GP is fully specified by a mean, m(·), and covariance function, k(·, ·). Many covariance functions
exist, but all are constituted by some hyperparameters, which we define generally as λλλ , such that
the covariance function may be denoted k(z,z′;λλλ ). Selection of the covariance function, and the
associated hyperparameters, defines the behaviour of the GP in function space, otherwise known
as the prior, p(f|Z,λλλ ):

f (z)∼ p(f|Z,λλλ )
p(f|Z,λλλ ) = G P

(
m(z),k(z,z′;λλλ )

) (4)

The mention of a prior, leads us nicely into discussion regarding probabilistic inference in GPs.
As mentioned, inference leverages a Bayesian framework, which allows us to directly exploit the
statistical relationships in data to infer f (zi) ≈ y ∈ R (i.e. a product end-quality). Therefore, we
may write a variant of Bayes’ rule for inference of a latent coordinate at the training points in GPs
as follows:

p(f|Y j,Z,λλλ ) =
p(Y j|Z, f,λλλ )p(f|Z,λλλ )

p(Y j|Z,λλλ )
(5)

where Y j ∈ RN , j ∈ {0, . . . ,ny − 1} denotes the jth column of Y ; p(f|Y j,Z,λλλ ) is known as the
posterior predictive distribution; p(Y j|Z, f,λλλ ) is the likelihood (formalised as conditional to the
covariance function hyperparameters); and, p(Y j|Z,λλλ ) is the marginal likelihood. Due to the
dependence on λλλ , it is important to properly identify λλλ . This is achieved by maximisation of the
marginal log-likelihood, p(Y j|Z,λλλ ). If a homoscedastic Gaussian additive noise model is chosen
in construction of the likelihood term, and given that Gaussians are closed under both conditioning
and marginalisation, we can construct the posterior exactly as a Gaussian distribution, such that at
a new test point z∗, a posterior predictive distribution over function values, f ∗, may be constructed
as:

p( f ∗|Y j,Z,z∗,λλλ ) = N
(
µ(z∗;Y j,Z,λλλ ),σ(z∗;Y j,Z,λλλ )

)
(6)

As GPs are multiple-input, single-output models, if one has an ny dimensional latent representation
of desired process qualities to predict, then ny separate GP models can be constructed with the
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predictions aggregated as follows:

µµµ(z∗;Y,Z, ·) =
[
µ1(z∗;Y 0,Z, ·), . . . ,µny(z

∗;Y ny−1,Z, ·)
]

ΣΣΣ(z∗;Y,Z, ·) = diag(σ2
1 (z

∗;Y 0,Z, ·), . . . ,σ2
ny(z

∗;Y ny−1,Z, ·))

p(y∗|z∗, ·) = N
(
µµµ,ΣΣΣ

)
y∗ ∼ p(y∗|z∗, ·)

(7)

2.3. Contribution

By integrating the concepts outlined in this Section, one can identify a reduced latent representa-
tion of the batch trajectory, which correlates to the desired end-qualities to predict. By constructing
nonlinear estimators from the latent space, Z, one can make predictions given a new test batch,
X∗ ∈ R1×Ĵ×T̂ , as follows:

y∗ ∼ p(y∗| fun f (X∗)P, ·) (8)

Given, we identify our mapping from the latent space to end-batch quality as a Gaussian process,
we can write y∗ ∼ N

(
µµµ,ΣΣΣ

)
, which describes both the expected end-quality given the trajectory

information of the batch, as well as a variance which is quantitative of the aleatoric and epistemic
uncertainty associated with the prediction.

3. Case Study
3.1. Consumer goods product-quality prediction

The work developed in this paper focuses on product quality prediction in batch processes. The
feasibility and performance of the proposed soft-sensors is assessed by predicting the viscosity
of a consumer good product with data obtained from a production plant. This data belongs to
two different product specifications with similar processing procedure. Specifically, the data was
generated from real-time monitoring of the process as well as one off-line measurement of end-
viscosity. These measurements are performed with a rheometer, and can take upwards of 20 min to
be completed, which can potentially make errors irreversible. As is demonstrated subsequently,a
possible solution is to substitute periodical off-line viscosity measurements with on-line final vis-
cosity prediction using live process data.

3.2. Datasets

The first dataset used to develop the soft-sensor belongs to the first product specification. It com-
prises 30 individual batches that follow the same recipe, and have the same target viscosity. De-
viations from the set target are due to operation errors and uncertainty in the final viscosity mea-
surements. This dataset was used to train all the models. In the first instance, model performance
was assessed using leave-two-out cross-validation on dataset α . Two further datasets, β and γ ,
were used for testing. Dataset β originates from the specification as dataset α and has 16 batches,
while dataset γ belongs to a different product specification and is composed of 11 batches. Hence
datasets β and α represent the same process. As for dataset γ , test predictions assess the generali-
sation capacity of the model, since γ belongs to a different specification of product.

To ensure that all datasets could be used for prediction, heterogeneity was standardised via a pro-
cess of batch alignment and critical time regions and process variables were selected to constitute
X (for the respective datasets). This was conducted via the framework outlined in Hicks et al.
(2021), which is based on finding datapoints that correlate strongly with the process quality one
would like to predict. For all datasets, critical data regions were identified such that J = 8 and
T = 300, reducing the datasets from an original dimensionality of 7000 measurements of 30 dif-
ferent process variables.
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3.3. Metrics for Model Selection and Evaluation

The evaluation and comparison of the different models’ performance was based on the follow-
ing metrics that are required to quantify the quality of the predictive distribution constructed by
the models. The accuracy of the models was calculated with the mean average percentage error
(MAPE) with respect to the real viscosity as seen in Eq. 9:

MAPE =
|y−µ(X∗, ·)|

y
×100 (9)

where | · | denotes the absolute value; y is the real viscosity measurement and µ(z) corresponds to
the mean of the predictive distribution over viscosity values given a latent coordinate, z, as pre-
dicted by the models constructed in this work. The scaled coefficient of variation, σc, is denoted:

σc =
cσ(z)

µ(X∗, ·)
×100 (10)

where c ∈ R is defined to quantify the normalised spread of potential viscosity values observed
under the predictive distribution modelled, with a given probability (i.e. c = 3 indicates the spread
of potential viscosity with probability 0.997); σ(X∗, ·) =

√
ΣΣΣ(X∗, ·) is the standard deviation of

the predictive distribution identified. In the region of the latent spaces that one has data, this
should be reflective of the aleatoric uncertainty of the data generation process and e.g. represent
variability in the measurement of viscosity and operational error. For the underlying process it has
been estimated that this aleatoric uncertainty should be in the range of σc = 26% The final metric
used in this work, is the coverage probability, CP:

CP = P(|y−µ(z)| ≤ cσ(z)) (11)

As in Zhang and Garcia-Munoz (2009), CP is defined with c and hence the inequality should be
satisfied with a hypothetical probability (i.e. c = 3 indicates CP = 0.997, as used in this work).

4. Results and Discussion
Given the nonparametric nature of Gaussian process models, determination of model structure
primarily considered the number of latent variables used with the MPLS model input latent space.
The results of the cross validation for the model are expressed by Fig. 1. From Fig. 1, one can
see the optimal number of latent variables (PCs) in the latent space is around 2. At this PC, there
is the lowest validation MAPE (≈ 10%), σc ≈ 26%, which well represents the expected variation
of the process, and CP = 0.95, which considering the finite number of predictions is close to the
hypothetical value desired.

The results obtained in model testing are displayed by Table 1. The results demonstrate the ability
of the model identified to obtain impressive predictive accuracy (via low MAPE ≈ 10%) and
identify predictive distributions, which well represent the aleatoric and epistemic uncertainties
(quantified via CP ≈ 0.9). The framework has particular utility, because it is able to identify
predictive uncertainties (innately) in closed form. Further, combining Bayesian inference with
latent space modeling, interpretability is provided in the form of both the uncertainty prediction,
but also clustering and loading type analyses, which together are able to jointly inform operators
when the process is displaying dynamical regimes not commonly observed (i.e. when operational
error is present) and for what reason. This enables efficient process monitoring and an online
indicator if operators should take action and how best to take it.

5. Conclusions
In this work, we have provided a framework for the identification of a robust soft sensor for
end-quality prediction in batch processes. The soft sensor is able to well identify a predictive
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(a) (b)

Figure 1: a) Average training and validation MAPE (bar 1 and 2, respectively) and σc (bar 3 and 4,
respectively) over all cross validation folds as latent variables are added to the MPLS latent space.
b) Evolution of coverage probability with the addition of latent variables.

Table 1: Results of predictive tests on datasets β and γ .

Dataset MAPE (%) σc (%) CP

β 10.0 22.46 0.88
γ 11.4 22.90 0.83

distribution that quantifies both the expected end-quality (quantified via MAPE in the region of
10% on both validation and test predictions), as well as a closed form uncertainty prediction, which
represents the underlying process variation and epistemic uncertainty of the model (quantified via
the coverage probability and coefficient of variation). Combining both Bayesian inference and
latent space modelling enables interpretability of the predictions, and could help inform operators
if and how to take action. We hope to implement this framework to a real process in the scope of
process monitoring.
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Abstract 

Nowadays, medical cannabis has great importance as a coadjuvant in the treatment of 

some pathologies as glaucoma, rheumatoid arthritis, HIV, Alzheimer's, asthma, cancer, 

chronic pain that is difficult to control, Crohn's disease, epilepsy, multiple sclerosis, 

insomnia, and Parkinson's; additionally, cannabinoids and terpenes have important 

properties that need to be considered and studied in a deeper way to understand the way 

these compounds work. The main goal of this study is to develop a new hybrid 

methodology based on both contribution groups and machine learning algorithms. In this 

particular case, the study is focused on estimating properties of cannabinoids and terpenes 

whose experimental information is really scarce and, in most cases, not yet reported. To 

do so, a database of hundreds of thousands of molecules which includes different 

thermodynamic properties have been considered. Our method is able to estimate different 

properties such as: boiling point, melting point, vapor pressure, viscosity, and 

vaporization enthalpy. Machine learning algorithms have been used to establish the 

contribution of every functional group and its prediction capability has been compared 

with other well-known methods like the Joback and Reid (1987) method, Constantinou 

and Gani (1994) method, among others. One of the major findings of the present study is 

the fact that the current estimation methods are not adequate enough for cannabinoids and 

terpenes, so there is an important need to find new and more precise ones that allow to 

improve the accuracy in the groups as well as to extend the predictions to a bigger set of 

chemical groups. This study clearly shows the importance and utility of the machine 

learning methods in one of the most relevant chemical engineering areas such as the 

properties estimation one. This study clearly shows the benefits of machine learning 

techniques in chemical engineering applications. 

Keywords: Property Estimation Method, functional groups, Machine Learning, Neural 

Networks, Cannabinoids. 

1. Introduction 

In the last years the interest in studying the cannabis plant has increased notoriously in 

different fields due to the different pharmaceutical properties of several of its chemical 

compounds, for instance it is known cannabinoids are of great importance as coadjuvants 

in the treatment of different pathologies as cancer, epilepsy, and multiple sclerosis 

Abyadeh et al. (2021). Besides cannabinoids, cannabis plants also contain several 

compounds such as flavonoids, fats, and terpenes.  The latter have biological properties 

that make them potential mechanism against different diseases, including cancer chemo 

preventive effects, antimicrobial, antifungal, antiviral, and antiparasitic activities Paduch 

et al. (2007). Despite the great range of applications, the thermodynamics properties of 
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cannabinoids and terpenes are difficult to find in the literature or in specialized databases. 

Therefore, as a first cheap and fast alternative predictive tool such as the based ones on 

group contribution methods can be used in order to estimate them based on experimental 

data of other molecules, in particular due to their importance in the crystallization and 

distillation process it is relevant to study properties such as melting and boiling points, 

densities, viscosities, among others. This work is aimed to study the melting point of 

several cannabinoids and terpenes using a group contribution strategy along with machine 

learning techniques. The basic idea when using group contribution methods, once a set of 

chemical groups is defined, all molecules belonging to the database are split accordingly 

allowing to establish a system of algebraic equations. Finally, an optimization method is 

used in order to minimize the error between predictions and experimental data. Several 

contribution methods have been proposed for different purposes in the property’s 

estimation field. One of the most famous was proposed by Joback and Reid (1987), this 

method is able to estimate critical points, melting temperature and normal boiling 

temperature, it is commonly used for relatively simple molecules and is based on 41 

molecular groups. Additionally, Constantinou and Gani (1994) made the estimation of 

critical properties of pure organic compounds, which due to its sophistication promises 

better results than Joback's method, as the estimation is performed at two levels: the basic 

level that uses contributions from first-order groups, and the next higher level that uses a 

small set of second-order groups having the first-order groups as building blocks. The 

predictions, first and second order approximations, are based on the molecular structure 

of the compounds, and is able to make the distinction between isomers. Recently, other 

studies unified the group contribution methods with artificial neural networks. For 

instance, Valderrama et al. (2015) created this type of hybrid method for the estimation 

of the density of ionic liquids. For this purpose, an experimental database of 399 data for 

100 ionic liquids was used for the network training. In order to discriminate between 

different isomers, the molecular mass and the structure of the molecule were given as 

input variables. Additionally, Gharagheizi et al. (2011) proposed an artificial neural 

network-group (ANN-GC) contribution method in order to determine surface tension of 

pure compounds at different temperatures and pressures. They used 4700 data belonging 

to experimental surface tension values of, approximately, 750 chemical compounds and 

151 functional groups at different conditions. Although several methods have been 

proposed, none of them is able to reproduce the experimental data of cannabinoids or 

terpenes, additionally since the experimental information is scarce for these compounds 

it is certainly to propose a methodology to estimate them, in this particular a hybrid 

strategy of group contribution methods along with machine learning techniques and a big 

set of experimental data will be used. The manuscript will be presented as follows, first 

in the computational section, the database generation for and the group contribution 

method is described, second the neural network algorithms are presented, third the results 

are presented and finally the conclusion and future work is presented. The code and the 

best predicted model will be available after publication.  

2. Methodology 

2.1. Database features 

In order to build the machine learning algorithms, a database with the property data was 

needed to train the method. To do so, an open database available on the U.S. 

Environmental Protection Agency (EPA) was used, this database contains the chemical 

name, the Simplified Molecular Input Line Entry Specification (SMILES) and different 

chemical and physical properties such as the melting point, the boiling point among many 
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others. This database has, approximately, 700,000 compounds with their respective 

melting point, as it is the property being studied. Additionally, the database created has 

the functional groups present in each compound, which are group of atoms that have their 

specific characteristics and contribute to the properties of the compound. The functional 

groups were obtained using RDKit, a library created for Python, which prints the 

functional groups of each compound based on its SMILES. Additionally, to evaluate the 

model a database of 50 cannabinoids and terpenes was generated, the information was 

obtained from the Cannabis Compound Database Version 1.0, a freely available 

electronic database containing detailed information about small molecules found in 

Cannabis sativa, Cannabis indica and Cannabis hybrids (Cannabis Database). The 

functional groups of the cannabinoids and terpenes were also found using RDKit and the 

compounds SMILES. Finally, it is important to mention that, as this was the database 

used for the evaluation of the model, the melting point was not included in it. 

2.2. Machine learning algorithms 

In this subsection, we introduce the concept of Artificial Neural Networks (ANN), and 

the process of its training and evaluation. ANN was inspired by the structure and functions 

of biological neurons, and it generally consists of an input layer where data is fed, the 

hidden layers standing for the internal structure of the model where information goes 

through until arrive at the output layer Schmidhuber (2015). Each layer comprises 

neurons that transmit the information downstream to connected neurons belonging to 

other layers. The previous layer acts as an input for the next one   after applying nonlinear 

activation on it, and finally propagates the current result to the following layer. In a vector 

notation we have Wang et al. (2020): 

 
        ℎ𝑖+1 = 𝑊𝑖+1𝑙𝑖 + 𝑏𝑖+1;      𝑙𝑖+1 = 𝑓(ℎ𝑖+1)                                                                                         (1) 

 

where 𝑙𝑖 is the input row vector of the 𝑖 − 𝑡ℎ layer, 𝑊𝑖+1 and 𝑏𝑖+1 are the weights and 

biases trainable parameters, ℎ𝑖+1 is the intermediate vector after linear transformation, 

and 𝑓 is the activation function. The goal of training an ANN is to minimize the difference 

between the predicted value given by the output layer 𝑦̂ = 𝑓𝑊,𝑏(ℎ) and the ground truth 

𝑦. The minimization is described through the loss function 𝐿, by optimizing the 

parameters 𝑊 and 𝑏. In regression tasks Schmidhuber (2015), it is common to use 𝐿 as 

the mean squared error (MSE), the mean absolute error (MAE) or the Huber loss (H): 

 

        𝑀𝑆𝐸 =
1

𝑁
∑(𝑦 − 𝑦̂)2,   𝑀𝐴𝐸 =

1

𝑁
∑|𝑦 − 𝑦̂|,  𝐻𝛿(𝑦, 𝑦̂) = {

0.5(𝑦 − 𝑦̂), |𝑦 − 𝑦̂| ≤  𝛿

𝛿(|𝑦 − 𝑦̂| − 0.5𝛿), 𝑜𝑡ℎ𝑒𝑟 𝑤
(2) 

 

where 𝑁 stands for the number of samples. The aforementioned functions will be adapted 

to this work. Following the chain rule, one could transmit gradients of the trainable 

parameters in the 𝑖 − 𝑡ℎ layer from the (𝑖 +  1)𝑡ℎ layer. During backward propagation 

the parameters are updated, then forward propagation is performed again. This is repeated 

until the loss function achieves the desired precision and thus, the NN is trained and ready 

to make predictions. Two types of artificial neural networks are implemented in this work: 

deep Feedforward Neural Networks (FNN) and Convolutional (Conv1D). The FNN 

described above does not have cycles contained within it and the connections between 

layers and the information flow are straightforward, while the Conv1D is a structured 

network with multiple sets of weights (filters) that "slide" or convolve across the input-

space to analyze distance-pixel relationship opposed to individual node activation in the 

FNN Schmidhuber (2015). On the other hand, the dataset is split in training 70%, 

validation 15%, and test 15% sets. The first set is used to train the ANN, while the 

135

105



 

validation and test set contain unseen values, relevant for testing the performance of the 

model. The latter can be achieved using a metric that in most of cases is similar to the 

loss function shown in Eq.(2) or thought the coefficient of determination (𝑅2) Hortúa et 

al. (2020): 

 

        𝑅2 = 1 −
∑ (𝑦̂ − 𝑦𝑖)2

𝑖

∑ (𝑦𝑖 − 𝑦̅)2
𝑖

,                                                                                                                         (3) 

where 𝒚̅ is the average of the true parameters and the summations are performed over the 

entire test set. 𝑹𝟐
 ranges from 0 to 1, where 1 represents perfect inference. 𝑹𝟐

 will be  

used in this work as metric for measuring the performance of the NN models. Finally, a 

downside behind of the standard NNs is that they are sensitive to  the training process and 

the hyper-parameter choices,  finding different set of weights each time they are trained, 

which in turn produce different predictions and high variance. An attempt  approach to 

reduce this variance  is to train multiple models instead of a single one and to combine 

the predictions from these models. This is called ensemble learning and it helps to reduce 

the variance of predictions and  can also result in better performance Tao (2019). 

3. Analysis 

In order to predict the melting point in terms of  the establish chemical groups, we started 

with single NN regression models. First, we built in TensorFlow a FNN consists in four 

dense layers with 256, 128, 64 and 1 neurons, followed by an  ELU activation function, 

a Batch Normalization in order to optimize and accelerate the convergence, and a Dropout 

layer (with a rate of 0.1), for regularization purposes. Here, we adopt Adam  as the 

optimizer, and a learning rate decay with 0.01 in its initial value, with a factor of 0.8 

during each 10 epochs. On the other hand, the conv1D architecture comprises of four 

convolutional layers of 64, 32, 32, 16 filters, then a MaxPool layer is used    to reduce the 

dimensions of the feature maps,  followed by four dense layers of 256,126,64 and 1 

neurons. As before, each layer is followed by an ELU activation function, Batch 

Normalization and Dropout (rate 0.1). 

 
Table 1. Performance for different models in terms of 𝑅2 

Metric/Model 
Ensemble Single 

MSE MAE Huber MSE MAE Huber 

𝑅2-FNN 0.88 0.84 0.84 0.83 0.82 0.82 

𝑅2-Conv1D 0.87 0.87 0.87 0.81 0.80 0.83 

 

The results of the performance for both, FNN and Conv1D for different loss functions are 

reported in the right hand side of the Table 1.  As we observed, both models seem to work 

well, reaching a decent coefficient of determination value. FNN model trained with MSE 

is the best model that we obtained through all single NN experiments, and the behavior 

for predicting unseen instances can be seen also in Fig.1a.  Finally, we also worked with 

ensembles of Neural Networks (BNN) in order for including variances during the 

inference process, and improve the estimates for predictions. The   schema for those 

ensembles with either FNN or Conv1D are displayed in Fig.(2)-(3) respectively. For these 

ensembles we added at the top of the models, an Average-layer which provides of an 

unique neuron for predicting the melting point. Furthermore, we could extract the 

information from the top-before layer  to get the outputs for all the models in the ensemble 

and thus, to be able to compute the standard deviation for the predicted values. As we can 
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see in the left part of the Table 1, the ensemble models outperform the results that we 

have obtained in the single scenario. Indeed, we achieved coefficient of determination 

around 0.8 for the FNN ensemble trained with MSE loss function. The prediction for the 

test dataset can be also seen in Fig.1b. Here, we observed not only a better accuracy in 

the predictions, but also, we acquired  new information about the uncertainty of those 

estimations.  One of the main analysis that we can get from the ensemble models, is that 

there is a huge variance for chemical groups with melting points around 10-100 Celsius 

degrees, basically because of the few dataset in this range. Also, we can argue that five 

models in the ensemble is not good enough, and it requires more single NN for yield 

better results in terms of variability. These additional remarks along with the use of  

models which provide uncertainties such as Bayesian Neural Networks Hortúa et al. 

(2020) or Gaussian Processes are tools that we are proposing for a future work. 

 

                   
(a)Predicted values again against true 

values for a single FNN model.                                                      

(b) Predicted values for an ensemble 

consisting on 5 FNN models. 

Figure 1. Predicted vs true values for the best experiments found for a single and ensemble NN 

 
Figure 2. NN architecture used in the work based on ensembles of several NN Fully-connected 

models. 

 

 
Figure 2. NN architecture used in the work based on ensembles of several NN convolutional 

models. 

 

Table 2. Prediction provided by the ensemble FNN model for different cannabinoids 

Compound Name Predicted Value (°C) Reported value (°C) Standard Deviation 

Mircene -70.0 <-10.0 48.4 

Apha-pinene -30.8 -62.0 26.8 

Menthol 87.0 36.0-38.0 36.0 

Cannabidiol 152.4 66.0 39.2 

Cannabigerol 152.3 49.0-52.0 36.4 

Beta-pinene -53.1 -61.5 35.4 

Limonene -45.8 -74.0 35.8 
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Table 2 summarizes the predictions for some of the studied cannabinoids,   not previously 

used by the algorithm. Standart desviations are also reported. As shown: i) qualitively 

speaking the model is able to predict positive and negatives melting points, however, it 

still need a lot of improvement in compounds such as cannabidiol one of the most 

important in the current processes ii) the obtained standard deviations are very high 

indicating that a pre-treatment process is certainly necessary to improve the model. 

4. Discussion and Conclusions 

In this paper, we  have explored several machine learning techniques for estimating the 

melting point property in chemical compounds. We contrasted two main approaches: the 

use of trained single NN models based on FNN and Convolutional layers, along with 

ensembles comprise of those single NN. We have found that these ensembles outperform 

single NN, and additionally provide uncertainties in its predictions. The best model found 

in this paper comes from the ensemble of FNN trained with MSE loss function, reaching 

a 𝑅2 = 0.88. Even if the results are good enough and promising,  we observed that the 

variance for the models built so far is huge. This effect can be associated with either a 

noisy dataset  or because of  few instances in the dataset for some temperature ranges.   In 

order to overcome this issue, we suggest for a future work,  a strong reprocessing method 

before feeding the data into the NN model, and also the use of more robust techniques 

such as Bayesian Neural Network in order to get the aleatory and epistemic uncertainties 

which give a clearer picture about the huge  variability in the predictions. Finally, we are 

currently working on improving the accuracy of this model as well as determining more 

thermodynamic properties of interest in the cannabinoid extraction process. 
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Abstract 

Microbiological production of γ-linolenic acid (GLA) via a temperature-shift strategy has 

been found to shorten the batch cultivation period, improve GLA yields and reduce the 

operational cost. However, the underlining biochemical mechanistic phenomena are 

highly complex and challenging to model, thus hindering commercial upscaling 

applications of this fermentation technology. To bridge this gap, a dynamic model capable 

of simulating biomass growth, substrate consumption, and GLA biosynthesis of 

Cunninghamella echinulata for a wide temperature range was proposed for the first time. 

Once the model parameters were identified, the model’s high simulation accuracy was 

demonstrated against data from a small scale 1L bioreactor. It was found that the optimal 

temperatures for biomass growth and GLA production were 37 ℃ and 14 ℃, respectively. 

Model aided upscaling to a 5L bioreactor with a two-stage temperature-shift strategy 

showed a 69.6% increase in GLA production, which was verified experimentally. 

Therefore, this presents a significant advance for the upscaling of GLA production 

biotechnology from laboratory to pilot scale.  

 

Keywords: fermentation; kinetic modelling; γ-linolenic acid; temperature-shift; process 

upscaling. 

 

1. Introduction 

The polyunsaturated fatty acid (PUFA), γ-linolenic acid (C18:3n-6, GLA), is widely 

utilised within the pharmaceutical and nutraceutical industries due to its outstanding value 

for treating diseases. As an essential precursor for the biosynthesis of several 

prostaglandins, GLA is an essential fatty acid with proven anti-inflammatory and anti-

cancer effects (Wan, 2009). However, with the body unable to manufacture its own 

(Somashekar et al., 2003), GLA must be assimilated through the consumption of poultry, 

beef, pork or egg yolk, or else as a dietary supplement.  

Plant seeds such as borage, black currant, evening primrose, and hemp have been used as 

commercial sources of GLA oil (Tanticharoen et al., 1994). However, cultivating these 

plants requires large swathes of arable land owing to their seeds low intracellular GLA 
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content. In contrast, a promising alternative source: the oleaginous fungus 

Cunninghamella echinulata (C. echinulata), possesses a much higher GLA content, and 

is simpler to cultivate (i.e., traditional fermentation). Taken together, this marks the 

fungus as an economically competitive source of GLA for large-scale production. 

Temperature-shift: an approach where the operating temperature is switched during 

cultivation to increase the accumulation of the targeted metabolite has been reported to 

influence the intracellular PUFAs content of fungal species (Jang et al., 2005). 

However, whilst C. echinulata is oleaginous fungi, the optimal temperature for biomass 

growth, lipid production, and product accumulation might differ significantly between 

strains. Hence, it is valuable to investigate the optimal temperature-shift strategy for 

industrial GLA production with C. echinulata. Moreover, model-based design of 

experiments is considered an effective tool to accomplish bioprocess scale-up from 

laboratory to pilot and industrial scale (Zhang et al., 2015). 

Therefore, this work aims to: (i) investigate the effect of temperature on the C. echinulata 

biomass growth and GLA production through the construction of a rigorous kinetic 

model; (ii) evaluate the performance of the temperature-shift strategy when up-scaling 

the fermentation processes from a 1L to 5L bioreactor; (iii) evaluate the predictive 

accuracy and sensitivity of the kinetic model over different bioreactor scales.  

2. Methodology 

2.1. Experimental setup 

In our lab, C. echinulata X-15 was a screened high-yield strain, which was maintained on 

potato dextrose agar (PDA) plates at 4 °C and transferred every 3 weeks to PDA plates. 

The culture was grown at 28 °C for 2 days and then stored at 4 °C until fermentation. 

GLA fermentation was carried out in 1L bioreactors (Infors-2015 Bioprocess controller, 

Netherland) containing 0.7L of medium and cultivated at different temperatures (14 °C, 

28 °C, and 37 °C) with 10% (v/v) of the seed culture without pH controlled. In the two 

temperature-shift experiments, GLA fermentation was carried out in a 5L bioreactor 

(Infors-2015 Bioprocess controller, Netherland) containing 3.5L of medium, ultimately 

switching the temperature from 37 °C to 14 oC at either 168 hours or 96 hours. All the 

control conditions were the same as those in the single temperature experiments, and all 

cultivation experiments were performed in triplicate and analysed individually. 

2.2. Kinetic model construction  

2.2.1. Model structure identification 

The Contois model accounts for the effect of cell flocculation and diffusional barriers that 

arise in high-density cell cultures. Thus, the Contois model was adopted in this study to 

describe biomass growth. Equation (1) simulates the total biomass growth rate, and 

Equation (2) simulates the fat-free biomass growth rate, assuming that the fat-free 

biomass growth rate is proportional to the total biomass growth rate. 
𝑑𝑋𝑇

𝑑𝑡
= 𝜇𝑚 ∙

𝐶

𝐾𝑐𝑜 ∙ 𝑋𝑇 + 𝐶
∙ 𝑋𝑇 − 𝜇𝑑 ∙ 𝑋𝑇                                                                                   (1) 

d𝑋𝐵

d𝑡
= 𝑘0 ∙

d𝑋𝑇

d𝑡
= 𝑘0 ∙ (𝜇𝑚 ∙

𝐶

𝐶 + 𝑋𝑇 ∙ 𝐾𝑐𝑜

∙ 𝑋𝑇 − 𝜇𝑑 ∙ 𝑋𝑇)                                                 (2) 

Where 𝑋𝑇 is total biomass concentration (g L−1), 𝐶 is glucose concentration (g L−1), 𝜇𝑚 

is the maximum specific growth rate (h−1), 𝜇𝑑 is the specific cell death rate (h−1), 𝐾𝑐𝑜 is 

the half-saturation constant and 𝑘0 is the ratio of fat-free biomass to total biomass (g g−1). 
𝑑𝐶

𝑑𝑡
= −𝑌𝐶0 ∙ (𝜇𝑚 ∙

𝐶

𝐾𝑐𝑜 ∙ 𝑋𝑇 + 𝐶
∙ 𝑋𝑇 − 𝜇𝑑 ∙ 𝑋𝑇) − 𝑚 ∙ 𝑋𝑇                                                  (3) 
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Equation (3) simulates glucose consumption rate, where 𝑌𝐶0 is the yield coefficient from 

glucose to biomass ( g g−1 ) and 𝑚  is the biomass specific maintenance coefficient 

(g g−1h−1). 

Finally, GLA accumulation was simulated by adapting the Luedeking-Piret equation to 

include a novel GLA consumption term which is used to describe the decay stage of GLA 

in experiment shown in Equation (4).  
d𝑋𝐺

d𝑡
= 𝑘𝑚 ∙ (𝜇𝑚 ∙

𝐶

𝐶 + 𝐾𝑐𝑜 ∙ 𝑋𝑇

∙ 𝑋𝑇 − 𝜇𝑑 ∙ 𝑋𝑇) + 𝑘𝑛 ∙ 𝑋𝑇 − 𝑘𝑑 ∙
1

𝐶 + 𝐾𝑝

∙ 𝑋𝑇                (4) 

Where 𝑘𝑚  is the growth-dependent synthesis constant ( g g−1 ), 𝑘𝑛  is the growth-

independent synthesis constant (g g−1h−1), 𝑘𝑑  is the specific GLA decay rate ( g g−1h−1) 

and 𝐾𝑝 is the saturation product constant (g L−1) for GLA decay. 

2.2.2. Simulating temperature effects 

In order to investigate the temperature dependence of each kinetic parameter, seven 

parameters were modelled as a function of temperature (𝜇𝑚, 𝐾𝑐𝑜 , 𝑌𝐶0, 𝐾0, 𝑘𝑚, 𝑘𝑑  and 

𝐾𝑝), whilst the remaining three parameters (𝑚, 𝜇𝑑, 𝑘𝑛) where considered temperature 

independent. The positive or negative temperature dependence was captured by either 

Equation (5), or Equation (6) (Laidler, 1984), respectively, where the former is simply 

the standard Arrhenius equation.  

𝜃𝑖 = 𝐴𝑖 ∙  exp (
𝐵𝑖

𝑇
)                                                                                                                       (5) 

𝜃𝑖 = 𝐶𝑖 − 𝐴𝑖  ∙ exp (
𝐵𝑖

𝑇
)                                                                                                              (6) 

Where 𝐴𝑖 , 𝐵𝑖  and 𝐶𝑖 in the above equations are specific parameters to be fitted for each 

kinetic parameter 𝜃𝑖 and 𝑇 is the temperature in Kelvins K. Thus, two or three constants 

describe each of the seven temperature-dependent parameters. 

2.3. Parameter estimation method  

The 24 parameters required by the model were estimated by formulating the nonlinear 

least-squares optimisation problem defined by Equation 7, identifying parameter vector 

parameters 𝜃 by minimising the objective function (Del Rio-Chanona et al., 2015):  

min
𝜃

𝐸(𝜃)  = ∑ [
(𝑋𝑇𝑛−𝑋𝑇𝑒𝑛

)
2

𝑋𝑇𝑒𝑚𝑎𝑥

2 +
(𝐶𝑛−𝐶𝑒𝑛)

2

𝐶𝑒𝑚𝑎𝑥
2 +

(𝑋𝐵𝑛−𝑋𝐵𝑒𝑛
)

2

𝑋𝐵𝑒𝑚𝑎𝑥

2 +
(𝑋𝐺𝑛−𝑋𝐺𝑒𝑛

)
2

𝑋𝐺𝑒𝑚𝑎𝑥

2 ]
𝑛𝑝
𝑛=1                   (7)  

Where 𝑋𝑇𝑒𝑛
, 𝐶𝑒𝑛

, 𝑋𝐵𝑒𝑛
and 𝑋𝐺𝑒𝑛

 are the measured concentrations of biomass, substrate, 

fat-free biomass and GLA respectively, at each sampling time 𝑛. Whilst, 𝑋𝑇𝑛
, 𝐶𝑛, 𝑋𝐵𝑛 

and 𝑋𝐺𝑛 are the respective concentrations computed by the model at each sampling time 

𝑛, and 𝑋𝑇 𝑒𝑚𝑎𝑥
, 𝐶𝑒𝑚𝑎𝑥, 𝑋𝐵𝑒𝑚𝑎𝑥

 and 𝑋𝐺𝑒𝑚𝑎𝑥
 are the maximum measured concentrations 

and 𝑛𝑝 is the number of sampling points. 

This derivative-based nonlinear programming problem (NLP) was solved by adopting the 

parameter estimation framework widely employed. Given the high nonlinearity and 

stiffness of the system, the differential system of equations was discretised by direct 

transcription by orthogonal collocation into a series of nonlinear algebraic equations. The 

NLP was then solved using the interior point nonlinear optimisation solver IPOPT 

(Wächter & Lorenz T. Biegler, 2006). 

2.4. Sensitivity analysis  

Although the solution to a parameter estimation problem may provide point estimates that 

agree with the data instantaneously, questions about model stability remain unaddressed. 

Therefore, model sensitivity to parameter uncertainty was investigated by resampling 

each parameter in turn with all others fixed, simulating the state variable trajectories each 
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time. These trajectories were then aggregated into the propagated uncertainty bounds 

shown later. All the model parameters were assumed to be distributed uniformly between 

a lower bound (𝑃𝑚𝑖𝑛) and an upper bound (𝑃𝑚𝑎𝑥) centred on the mean (𝑃𝑚𝑒𝑎𝑛), defined 

as follows: 

𝑃𝑚𝑖𝑛 = (1 − %𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛) ∗ 𝑃𝑚𝑒𝑎𝑛                                                                                          (8) 

𝑃𝑚𝑎𝑥 = (1 + %𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛) ∗ 𝑃𝑚𝑒𝑎𝑛                                                                                         (9) 

In total, Latin Hypercube Sampling (LHS) of the input space selected 200 parameter 

samples. All code was executed in Python version 3.7 using the SMT 1.0.0, SciPy libraries 

and NumPy. 

3. Results and discussion 

3.1. Results of model construction 

Table 1: Parameters values with different operation temperatures 

T ( ℃) 𝜇𝑚 (h−1) 𝐾𝑐𝑜 (g L−1) 𝑌𝐶0 (g g−1) 𝐾0 (g g−1) 𝑘𝑚 (g g−1) 

14 0.115 41.345 1.420 0.700 0.01160

0 28 0.164 49.586 1.307 0.780 0.003085 

37 0.218 55.000 0.591 0.901 0.001173 

   𝑘𝑑(g g−1h−1) 𝐾𝑝 (g L−1) 𝜇𝑑  (h−1) 𝑚 (g g−1h−1) 𝑘𝑛 (g g−1h−1) 

14 0.00352 25.013 0.0017 0.00498 0.00013814 

28 0.00480 34.277 0.0017 0.00498 0.00013814 

37 0.00727 37.888 0.0017 0.00498 0.00013814 

The values of the parameter estimates are shown in Table 1.  

 

 

 

 

 

 

 

 

 

 

Figure 1. Experimental results and simulation fitting results for (a) total biomass, (b) 

glucose, (c) fat-free biomass and (d) GLA. 

From Figure 1, it is evident that the model accurately captures the bioprocess dynamics 

over the different operating temperatures, with the state variables’ mean relative 

percentage error falling within 20%. Furthermore, features observed experimentally are 

successfully described by the proposed model structure. However, whilst the model 

struggles to fit the GLA decay stage at 28 °C, the error remains relatively small.  

3.2. Model sensitivity analysis 

For a more comprehensive comparison of the model’s sensitivity to each parameter, the 

mean relative percentage deviation (MRPD) was measured between the lower and upper 

bound for each state variable and operating temperature. 

The result of MRPD indicated that the model is more sensitive to 𝐵𝑖  than either 𝐴𝑖  or the 

remaining temperature-independent parameters, an expected result given that 𝐵𝑖  modifies 

the exponent of the temperature-dependent parameters. Of these, the MRPD is largest for 
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𝐵𝜇𝑚
, 𝐵𝑘𝑐𝑜

 and 𝐵𝑌𝑐𝑜
 in decreasing order, and therefore contribute most to model 

uncertainty.  

3.3. Effects of temperature on bioprocess kinetics 

The effect of temperature on C. echinulate fermentation was studied by inspecting the 

temperature correlations captured by fitting Equations (5) and (6).  

Table 2. The coefficient of determination (𝑅2 ) of the optimal parameters fitting as 

functions of temperature and the obtained constant (𝐴, 𝐵 and 𝐶). 

Parameter 𝑅2 𝐴 𝐵 𝐶 

 𝜇𝑚 0.99 590.58 -2457.29 N/A 

𝐾𝐶0 0.98 1239.43 -966.81 N/A 

𝐾0 0.96 18.41 -942.62 N/A 

𝑘𝑚 0.99 5.58E-16 8813.01 N/A 

𝑘𝑑  0.93 62.24 -2808.45 N/A 

𝐾𝑝 0.98 7670.33 -1640.48 N/A 

𝑌𝐶0 0.99 5.60E+10 -7655.47 1.67 

From Table 2, it can be seen that the majority of the kinetic parameters follow the standard 

Arrhenius relationship between 14 ℃ and 37 ℃. However, whilst 𝑘𝑚 and 𝑌𝐶0 exhibit the 

same trend overall, 𝑘𝑚 decreases exponentially from the offset, unlike 𝑌𝐶0 which remains 

relatively static from 14 ℃ to 28 ℃ before plummeting over 28 ℃ to 37 ℃. Since 𝑌𝐶0 is 

associated with the efficiency with which glucose is utilised to synthesis biomass 

constitutes, the sudden drop in 𝑌𝐶0  indicates that high temperatures deactivated the 

overflow metabolism that previously produced by-product. 

3.4. Design of a temperature-shift strategy 

A two-stage temperature-shift strategy promises to maximise GLA yield, given the 

different optimum temperatures for C. echinulata biomass growth and GLA 

accumulation. The bioreactors were operated at 37 ℃ to maximise biomass density in the 

first stage before dropping to 14 ℃ to maximise GLA accumulation in the second stage. 

The scale-up factor is not taken account in the work since the dynamic influence of scaling 

up from 1L to 5L can be neglected. 

(A)                                                                   (B) 
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Figure 2. The experimental results and model prediction results for (a) total biomass, (b) 

glucose, (c) fat-free biomass and (d) GLA of temperature-shift strategy at 168hr (A) and 

96 hr (B) in 5L fermenter. 

Figure 2 compares the model predictions and corresponding experimental results when 

employing the chosen temperature-shift policy. The state variables were predicted 

accurately within 30% error in both cases. Of particular success was the upscaled 

temperature-shift experiment, which despite being a first for C. echinulata, achieved a 

GLA concentration of 1323 mg L-1, a 69.6% increase over 780 mg L-1 attained by the 

fixed temperature culture at 14 ℃. 

4. Conclusion 

In this work, a temperature-dependent biokinetic model capable of simulating the 

fermentative biomass growth and GLA biosynthesis of C. echinulata was proposed for 

the first time. Using experimental data from a 1L bioreactor, the biokinetic parameters 

were identified and the prediction accuracy verified over a wide temperature range from 

14 ℃ to 37 ℃. Higher cultivation temperatures around 37 ℃ were found to benefit cell 

biomass growth, whilst GLA accumulation favoured lower temperatures around 14 ℃. 

Thus, a two-stage temperature-shift strategy was designed and tested by optimising 

biomass growth and GLA biosynthesis of C. echinulata for the first time. Compared to 

fixed temperature cultivation at 14 ℃, the optimised two-stage temperature shift strategy 

increased GLA production by 69.6% when verified experimentally. The proposed 

biokinetic model’s high predictive accuracy when up-scaling the bioreactor from 1L to 

5L demonstrates the model’s reliability for continued scale-up of the biotechnology. 

However, further studies on the impact of scale-dependent transport phenomena such as 

mixing induce shear rate, aeration and eddy size is recommended to improve the 

upscaling predictions. 
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Abstract 

The intensive use of plastic in modern society has accumulated a significant and 
damaging quantity of plastic waste. The management of plastic waste is challenging due 

to its un-degradable nature and increasing polluting impact on land, water, and air 
systems. Polyethylene terephthalate (PET) is one of the most important plastic types used 
and constitutes a large fraction of plastic waste. The pyrolysis thermochemical conversion 

process is an important technique used to convert the PET into value-added products such 
as char, oil and gas. This study develops a process simulation model for the pyrolysis of 
PET plastic to convert into char, bio-oil and gas. The process flow sheet model is  

developed using the Aspen Plus V11® and the impact of pyrolysis temperature and 
pressure on the production of char, pyrolysis oil and gas are investigated, where a techno-

economic-environmental feasibility is also conducted using Aspen Plus built-in features. 
Furthermore, an optimisation is applied, where three sets of optimum operating 
parameters other than base case are generated through maximising the generation of each 

pyrolysis product. The base case demonstrates pyrolysis gas, char and oil production 
approximately at 330 kg/h, 490 kg/hr and 180 kg/hr, respectively at a temperature of 450 
oC and 1 bar.  The gas production is favourable at a high temperature of more than 450 

C, in contrast to oil and char. The techno-economic evaluation demonstrates the 
optimised capital and operating costs are obtained at a lower temperature with maximum 
yields of char and oil at 53% and 28%, respectively. Moreover, the increase in 

temperature to optimise gas production demonstrates enhancement in the gas quality and 
reduction in capital cost compared to the base case in addition to a reduction in 

environmental emissions (86 kg/h CO2 emissions).  In conclusion, this study provides a 
baseline for the utilisation of the pyrolysis process to convert PET into value-added 
products. 

 
Keywords: PET, Aspen Plus, Char, Pyrolysis, Techno-economic-environmental 
analysis. 

1. Introduction 

As the global population increases, more waste streams are generated, for which effective 
waste management remains an issue. The most critical waste in municipal solid waste 
(MSW) is plastic waste, produced 99% from fossil fuel sources. Since the introduction of 

plastic in 1950, approximately 8.3 billion tons of plastic litter have been accumulated, 
and only 567 million tons have been recycled. More than 5 billion are disposed through 
landfill and only about 756 million tons recycled respectively (hub, 2019). The plastic 

production was approximately 393Mt/year in 2016, and it is expected to double in the 
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next 20 years (Lebreton and Andrady, 2019). The disposal of plastic waste is a salient 
issue as the degradation of plastic takes many years if it is disposed through landfilling 
and emits toxins upon incineration. The state of Qatar generates approximately 1.5 

kg/capita/day, which is higher than the average global waste generation approximated at 
3kg/capita/day (Miandad et al., 2017). It has been reported that the current 2.5 million 
population of Qatar produces approximately MSW of 4000 ton/day. Furthermore, plastic 

waste was approximately 8.8% of the total MSW in Qatar in 2006 (Al-Maaded et al., 
2012), and later increasing to 13% (Hahladakis and Aljabri, 2019). The consumption of 

plastic is approximately 240000 ton, consisting of various plastics such as HDPE, LDPE, 
PP, PET, PS, and othersm, where PET is one of the most important types of plastic, and 
is used for packaging, especially for beverages and water bottles (Hahladakis and Aljabri, 

2019). 
 
The PET has a 14% share in total plastic waste in Qatar. Although PET is one of the 

plastic types that can be recycled, it is generally landfilled or incinerated (Hahladakis and 
Aljabri, 2019), noting that incineration of PET results in greenhouse gas emissions. In 

contrast, its conversion into value added products such as syngas, char and bio-oil through 
gasification and pyrolysis represent sustainable pathways (Anuar Sharuddin et al., 2016). 
There has been much work conducted in the pyrolysis of plastics domain (Anuar 

Sharuddin et al., 2016). For instance, the pyrolysis of PET in a fixed bed reactor yielded 
liquid oil and gaseous fuel in a ratio of 23.1% and 76.1%, respectively (Çepelioğullar and 
Pütün, 2013). Most studies demonstrate that the pyrolysis of PET produces yields of oil 

and gaseous products in the range of 24-40 wt% and 52-77 wt%, respectively, which 
renders PET as an attractive plastic for pyrolysis (Anuar Sharuddin et al., 2016). Although 

the pyrolysis of PET is well-investigated, very few studies have reported a techno-
economic and environmental analysis and feasibility, especially for a Qatar case study. 
As such, this study aims to develop a process simulation model for the pyrolysis of PET 

for the generation of bio-oil, char and gas products, integrated with a sensitivity and 
optimisation of process parameters to maximise the yield. Furthermore, the study details 
a techno-economic and environmental analysis to investigate the investment and 

sustainable potential of PET pyrolysis. 

2. Methodology 

The approach followed for the process development begins with the pyrolysis model of 
plastic feedstock using Aspen Plus software. The proximate and ultimate analyses of PET 

presented in Table 1 are used to define the raw plastic feedstock (Oh et al., 2018). The 
base pyrolysis model is then evaluated in terms of economic and environmental 
performance. The base case is further optimised by means of sensitivity analyses to 

identify the optimum operating conditions that maximise the generation of bio-oil, char 
and gas products. The optimum operating conditions are then utilised to benchmark the 

different simulation models.  
 
Table 1: Proximate and ultimate analyses of biomass feedstock as received basis (Oh et 

al., 2018). 

Proximate Analysis 
MC VM FC Ash  

0.2 87.2 12.6 0  

Ultimate analysis 
C H N S O 

61.2 5.1 0 0 33.7 
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The current model is configured by considering the assumptions of; steady state 
operation, uniformity in heat and mass transfer, zero tar formation, and  kinetic-free 
equilibrium as depicted in the study of AlNouss et al. (2021). The property package and 

equation of state PR-BM is selected for flowsheet development due to its applicability for 
hydrocarbon and refinery process (Shahbaz et al., 2020). The pyrolysis model illustrated 
in Figure 1 begins with an RYIELD reactor linked with calculator block to convert the 

feedstock attributes into conventional components based on the ultimate analysis as given 
in Table 1 (Shahbaz et al., 2021). The effluent stream enters the pyrolysis reactor 

simulated as RGIBBS to produce the pyrolysis main products. The process propagates 
based on Gibbs free energy minimisation by selecting the Gibbs equilibrium reactor 
(AlNouss et al., 2020).  The hot product is then cooled prior entering a separator to flash 

out the pyrolysis gases. The remaining stream enters a solid separator to remove the char 
from the bio-oil liquid product. 

 
Figure 1: Aspen Plus model for plastic (PET) pyrolysis. 

The techno-economic and environmental evaluation of the model is conducted using 
Aspen’s built-in economic and environmental impact assessment features to estimate the 

capital, operating, and raw material costs for all cases in addition to CO2 emissions. 
Moreover, the sensitivity analyses for the pyrolysis temperature and pressure are 
conducted to study their effect on the product yields. The pyrolysis temperature is varied 

between 150 and 850 oC at a constant pressure of 1 bar to cover the whole range of 
conventional pyrolysis  process and find the optimum parameters for all three types of 
products including char, oil and gas. Whereas, the pressure is varied between 1 and 10 

bar to observe the effect of different pressure models on the products yield by maintaining 

the temperature constant at 450 C. The optimum values and static figures from the 
sensitivity analyses are then evaluated to benchmark their economic and environmental 

impact performance relative to the base case. 

3. Results and discussion 

The results of different PET (plastic) pyrolysis analysis are discussed in this section. The 
sensitivity analyses of pyrolysis reactor operating conditions illustrated in Figure 2 

demonstrate the variation in the different product yields. From Figure 2, char production 
decreases from 527 kg/hr to 366 kg/hr with the increase in pyrolysis temperature from 
150 to 850 °C. A similar trend is deduced for pyrolysis oil with increase in pyrolysis 

temperature. Whereas the gas generation is in direct relation with the elevation of 
pyrolysis temperature hence its production increases from 181kg/hr to 633 kg/hr. The 

increase in pyrolysis temperature yields an increase in thegaseous product from 181 to 
633 kg/h. The higher generation of gas relative to oil and char products from the pyrolysis 

of PET at a higher temperature of 500 C is also  noticed  in other studies (Çepelioğullar 

and Pütün, 2013). In another study, the gas yield was about 53.13 % for PET pyrolysis 
(FakhrHoseini and Dastanian, 2013).  Whereas, the increase in pressure demonstrates an 
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increase in the bio-oil production from 192 to 213, and a decrease in the gaseous and char 
yields from 317 and 489 to 303 and 483, respectively. The domination of gas and char 
yields as compared to oil at 1 bar of pressure is due to the higher fixed carbon and lower 

volatile content in PET plastic (Anuar Sharuddin et al., 2016). Based on the trend depicted 
in Figure 2, three optimum parameters  sets are found for each type of product to provide 
flexibility for making decision  in upscaling and applications listed in table 2.  

 
Figure 2: Sensitivity analyses trends for temperature and pressure of pyrolysis reactor. 

The results from the sensitivity analysis are then utilised to evaluate the economic and 
environmental performance of three cases as summarised in Table 2. Optimised case 1 is 
expected to have higher bio-oil and char yields. Whereas, optimised case 2 is expected to 

demonstrate higher gaseous product yield while optimised case 3 is expected to 
demonstrate higher bio-oil yield. 

 
Table 2: Optimum parameter cases for Pyrolysis of PET. 

Case Base Optimised 1 Optimised 2 Optimised 3 

Pyrolysis Temperature (oC) 450 150 750 150 

Pyrolysis Pressure (bar) 1 1 1 10 

 
The results of the economic benchmark for the different optimised cases are illustrated in 

Figure 3. The process is analysed based on the capital cost, operational cost, and total 
annualised cost in millions USD (M$). The base case illustrates the highest capital cost 
(3.421 M$), while the optimised case 2 illustrates the highest operating cost (2.255 M$) 

and overall annualised cost. The higher operating cost in optimised case 2 is due to the 

higher heating load to operate the reactor at 750 C. The total annualised cost is slightly 
higher for optimised case 2 because of the extra heating load. The optimised case 2 also 

demonstrates the highest in terms of gaseous product yield approximated at 59%. The 
higher heating yield of gas at high temperature is due to higher carbon conversion and 

endothermic reactions as evident from the lower volatile matter and higher carbon content 
(Anuar Sharuddin et al., 2016). Whereas, the highest bio-oil and char yields are achieved 
in optimised case 3 with values of 28% and 53%, respectively. Although  pyrolysis is 

usually performed at a lower pressure of 1 bar, investigation of higher pressure pyrolysis 
is to determine the maximum pyrolysis oil. 
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Figure 3: Techno-economic results of PET pyrolysis process. 

The results of the environmental impact benchmark and gas quality for the different 
optimised cases are illustrated in Figure 4. The techno-environmental evaluation 
demonstrates optimised environmental emissions at a lower temperature of around 150 
oC for the optimised cases 1 and 3 compared to the base case with 106 and 101 kg/h CO2 

emissions, respectively. However, the quality of pyrolysis gas is decreased with almost 
no hydrogen content. Moreover, the increase in temperature to 750 oC of optimum gas 
production (optimised case 2) demonstrates the best enhancement in the gas quality and 

the lowest environmental impacts approximated at 86 kg/h CO2 emissions. 

 
Figure 4: Techno-environmental results of PET pyrolysis process. 

4. Conclusion:  

The generation of value-added products such as char, oil and gas from the waste plastic 
(PET) don’t contribute to effective PET plastic management only, however it can result 
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in environment and economic benefits. For this purpose, a process simulation model for 
the pyrolysis of PET is developed through Aspen Plus. The sensitivity and optimisation 
of process parameters such as temperature and pressure are conduced to maximise 

production. The outcomes indicate that the increase in pyrolysis temperature results in an 
increase in the gaseous product yield from 181 to 633 kg/h. The other two products; bio-
oil and char, decrease from 291 and 527 to approximately 0 and 366 kg/h, respectively. 

The three optimised sets of temperature and pressure are found to maximise the yield of 
each pyrolysis product. The higher temperature favours the gas production, while oil 

generation is found to be maximum for higher pressure. The base case illustrates the 
highest capital cost (3.421 M$), while the optimised case 2 illustrates the highest 
operating cost (2.255 M$), and overall annualised cost with lowest environmental impact 

(86 kg/h CO2 emissions). In conclusion, this study provides a basis for techno-economic-
environmental feasibility which can support policy makers in making decisions as related 
to the conversion of PET to value added products.  
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Abstract 

Compositions are omnipresent in process engineering, and often directly interact with 

process performance. In this work, a Monte Carlo based approach for considering their 

impact in the case of fluctuating compositions is presented. Based on experimental data, 

the first component – a model for the compositional probability density is targeted. A 

variety of descriptive approaches that involve parametric and non-parametric density 

estimations is discussed. Finally, for a 𝐷-dimensional composition, a multivariate 

Gaussian kernel density estimation for a bijective projection on 𝐷-1 linearly independent 

statically constrained coordinates in combination with boundary reflection is presented 

as a suitable approach. 

 

Keywords: Monte Carlo simulation, kernel density estimation, compositional data, 

mixed solid waste, reflection 

1. Introduction 

Process engineers are dealing with compositions all the time. Examples are the chemical 

compositions of petroleum or combustion gases, but also compositions in terms of 

particle size fractions’ shares. These compositions do not only describe product 

properties, but also affect the performance of individual processing steps. For example, 

the share of hydrogen in the reacting gas affects the kinetics of CO-methanation 
(Kopyscinki, 2010). 

Some of these compositions are highly variable. This is especially the case when the input 

material stream to a process is (untreated) mixed solid waste (cf. Khodier et al., 2021).  

Despite the waste’s variability, its compositions are often only reported in terms of 

average values. Such information is not sufficient for calculating process optima, as soon 

as their dependence on the composition is non-linear. At the same time, optimizing waste 

processing is becoming more important, considering increasing legally required recycling 

rates, e.g., due to the Circular Economy Package of the European Union (European 

Union, 2018). 

Based on these considerations, a concept was elaborated for calculating stationary optima 

for the mechanical processing of mixed solid waste (and in general for composition-

dependent processes, with variable compositions): a material model and a process model 

are coupled through a Monte Carlo simulation. The material composition is described 

through the probability density distribution of compositions. Virtual model batches of 

material are created randomly, based on the probability density distribution. The 

condition of the processing product is then calculated, using a model for the individual 

process. Finally, all virtual processing products are joint, calculating the resulting overall 
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product condition. Based on this method, a static optimum of the process can be 

determined, and moreover the theoretical potential of dynamic material-adaptive 

processing can be evaluated. 

Furthermore, a test scheme was designed, for evaluating the accuracy of the method, 

based on a lab-scale setup with a circular vibratory screen. The scheme consists of three 

experiments: first, a compositionally variable mixture of three model materials is 

sampled, taking at least 100 samples, for testing different descriptive approaches for the 

probability density distribution. Second, a quadratic regression model for the dependence 

of the screening efficiency on the composition is derived from a Design of Experiments-

based test. Finally, five evaluation runs are performed, where compositionally variable 
mixtures of the model materials are sampled and screened. The expected compositions 

and amounts of the output streams are calculated using the suggested Monte Carlo 

approach and validated by a complete manual analysis of the processing products. The 

first experiment is covered in this paper, discussing a variety of descriptive approaches 

for the compositional probability density distribution, their advantages and limitations. 

2. Experimental Data Generation 

For evaluating different methods for describing the compositional probability density 

distribution, the variability of waste was experimentally simulated by mixing differently 

composed mixtures of three granular materials: undersize (with respect to the later used 

screen) gravel, undersize plastic particles, and oversize quadratic paper pieces. The choice 

reflects the relevance of an undersize fraction’s share on one hand, and the negative 

influence of two-dimensional oversize particles on screening efficiency, due to the partial 

covering of the screen’s perforation on the other hand (cf. Kaufeld et al., 2017). 

The mixed material was then placed on a conveyor belt while ensuring a constant height 

of the flowing bulk. Finally, every fifth second, a sample, with a sampling duration of one 

second was taken. For designing the sampling process, Pierre Gy’s Theory of Sampling, 

and its application on mixed solid waste (Khodier et al., 2020) were considered. In total 

148 samples were taken. Their compositions are shown in Figure 1. 

 

 

Figure 1: Compositions of the samples. 

3. Probability Density Distribution 

Compositions are naturally multivariate and constrained: a composition consists of at 
least two parts, of which each must be zero or positive, and the sum of all parts is constant 
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(usually 100%). Hence, a 𝐷-dimensional composition belongs to a (𝐷-1)-dimensional 

cartesian subspace of the 𝐷-dimensional real space. That subspace is called the 

𝐷-dimensional simplex (Pawlowsky-Glahn et al., 2015). For three parts, the visualization 

of this subspace is well known in process engineering: the ternary diagram.  

The mathematical nature of compositions must always be kept in mind when working 

with them. This nature, and also the relevance of correlations in the occurrence of 

different compositional parts, requires multivariate models for the probability density 

distribution. 

3.1. Parametric Distributions 

Parametric distributions describe the probability density through an analytical distribution 
with a limited number of parameters to be determined. They are hence favourable in terms 

of compactness and often require fewer individual samples for a reliable model of a 

population’s distribution.  

3.1.1. Multivariate Normal Distribution 

The most commonly applied parametric distribution is the normal distribution. Its 

multivariate extension is the multivariate normal distribution. Strictly speaking, it always 
violates the constraints of the simplex, being positive from -∞ to +∞. Nonetheless, it can 

be a good approximation, if, e.g., at least 95% of the probability fall within the simplex. 

For the data at hand, the Henze-Zirkler test from the R-package “MVN” (Korkmaz et al., 

2021) was applied, which neglects its multivariate normality. Considering, that 

multivariate normality requires univariate normality of each individual dimension (Wang, 

2015), the univariate non-normality of the Paper fraction according to the Anderson-

Darling test (MVN package) is at least one reason for that (Plastics and Gravel are 

univariate normal each, according to the test). 

3.1.2. The Dirichlet Distribution 

The Dirichlet distribution is the multivariate extension of the Beta distribution. It is 

simplicial by nature (i.e., fulfils the constraints of the simplex) and is generated by closing 

(normalizing to the summation constant) a set of independent, gamma-distributed random 

variables, with equal scale parameters. Consequently, it is quite inflexible in terms of 

fitting data, and hence only seldomly applicable for this purpose (Pawlowsky-Glahn et 

al., 2015).  

Due to its inflexibility, in combination with the complexity of finding and applying 

packages that cover all of parameter estimation, distribution tests, and random number 

generation, for such a non-mainstream multivariate probability density function, it is not 

further investigated in this work, which targets finding widely applicable approaches. 

3.2. Logarithmic and Log-ratio transformations 

Many distributions, like the multivariate normal distribution, do not conform with the 

constraints of the simplex. For data with a one-sided boundary at zero, e.g., particle sizes, 

a log-transformation of the data is an often suitable approach. It can also facilitate dealing 

with compositional data, when the majority of compositional parts are much closer to 

zero than to one.  
The more common approach in the community of compositional data mathematics is 

applying a so-called log-ratio transformation. For a 𝐷-dimensional composition, usually 

(𝐷-1) such log-ratios are calculated, corresponding to the number of degrees of freedom 

of the composition, due to the summation constraint. The log-ratios are logarithms of 
ratios of compositional parts, or products or sums of compositional parts (Greenacre, 

2019), with so-called isometric log-ratios being the state of the art (Weise et al., 2020). 
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In the field of waste management, they have already been applied to waste compositions 

by Edjabou et al. (2017) and particle size class distributions by Khodier and Sarc (2021). 

For the data at hand, though, the most significant limitation of log-ratios is obstructive: 

they are not defined for zeros in the numerator or denominator of the ratio. For 

multiplicative log-ratios, they are hence not defined, as soon as one compositional part is 

zero. For the experimental data in this work, log-ratios involving amalgamations still do 

not solve the issue, since two out of three compositional parts include zeros. While there 

are zero-replacement approaches to treat that issue (cf. Pawlowsky-Glahn, 2015), their 

impacts have proven to be problematic, considering that around one third of the samples 

do not contain paper. 

3.3. Non-parametric density estimation 

While the compactness of parametric distributions is advantageous, due to the identified 
issues for the present data and the desired robustness of the modeling approach, non-

parametric density estimation was finally targeted, in particular: kernel density 

estimation, with a multivariate Gaussian kernel. 

The general kernel density estimator for the univariate case is shown in Equation (1), 

where 𝑞 is the probability density, 𝑛 is the number of samples, ℎ is the bandwidth, 𝐾𝑖 is 

the kernel function for the sample 𝑖, 𝑥 is the point for which the probability density is 

estimated and 𝑥𝑖 is the value of an individual sample. The kernel function is usually a 

non-negative, ideally continuous function, which is symmetrical to the origin. A widely 

applied kernel is the standard normal distribution. The more important choice, though, is 

the bandwidth, which reflects the amount of smoothing. It is often chosen based on a 

least-squares evaluation of the kernel density estimation in comparison to the sample data 

(Nedden, 2012).  

𝑞(𝑥) =
1

𝑛ℎ
∑ 𝐾𝑖 (

1

ℎ
(𝑥 − 𝑥𝑖))

𝑛

𝑖=1

 

  (1) 

The multivariate case, using a multivariate Gaussian kernel is shown in Equation (2), 

where the bandwidth matrix 𝐇 corresponds to the covariance matrix of the multivariate 

normal distribution (Wand and Jones, 1993). 

 

𝑞(𝑥⃗) =
1

𝑛ℎ𝐷
∑

1

√(2𝜋)𝐷|𝑯|

𝑛

𝑖=1

 𝑒𝑥𝑝 (−
1

2
(𝑥⃗ − 𝑥⃗𝑖)𝑇𝑯(𝑥⃗ − 𝑥⃗𝑖)) 

  (2) 

3.3.1. Summation constraint 

For compositional data, again the constraints of the simplex must be respected. A reliable 

approach for the summation constraint is a bijective projection of the 𝐷-dimensional 

composition onto (𝐷-1) linearly independent coordinates, as is usually done with the log-

ratio transformations. The authors finally decided to follow a pragmatic approach, that 

does not induce issues with zeros, while the individual projected coordinates have static 

constraints, being defined from 0 to 1: the first coordinate is the share of one component 

in the overall composition. The second is the share of another component in the sub-
composition that contains all components but the first. Continuing this principle, a defined 
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representation can be found for all cases, where at least one component is never zero. In 

this work, the first coordinate is the percentage of paper in the total composition, and the 

second is the percentage of gravel in the non-paper sub-composition.  

3.3.2. Boundaries 

While the chosen projection guarantees compliance with the summation constraint, each 

of the new coordinates is constrained with a minimum of zero and a maximum of 1. An 

approach for dealing with this in kernel density estimation is so-called reflection, where 

data is reflected in the boundary (cf. Jones, 1993). 

3.3.3. Application on the experimental compositional data 

Figure 2 shows the non-normalized histogram of the experimental compositional data and 

the corresponding bivariate kernel estimate, applying the projection from section 3.3.1 

and a lower boundary of -0.00001 and upper boundary of 1.00001 for each dimension. 

As the Figure shows, the results are promising, while a detailed evaluation is subject to 

further research. 

 

Figure 2: Non-normalized sample data histogram and kernel estimate of the compositional 
distribution of the experimental data 

4. Conclusion and Outlook 

There is a variety of approaches for estimating the density distribution of compositional 

data, including analytical simplicial distributions, non-simplicial distributions of log-ratio 

transformations and non-parametric density estimations which are adaptable to simplex 

data. For the investigated data, kernel density estimation, using a multivariate Gaussian 

kernel, a transformation to shares in sub-compositions and reflection boundaries appears 

to be a promising approach, and hence may contribute an essential component to the 

targeted Monte Carlo simulation of the processing of compositionally fluctuating bulks. 

The in-detail evaluation of the suggested method is still subject to further research. 

Furthermore, kernel density estimation, using a Dirichlet kernel (Aitchison and Lauder, 

1985) is another interesting approach to be considered. Finally, the Monte Carlo approach 

as a whole will soon be evaluated. 
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Abstract 

Pillow plates are characterised by a high degree of geometrical and manufacturing 

flexibility, excellent structural strength, hermetic tightness and high thermo-hydraulic 

efficiency. These advantages open up a wide range of possible applications, and in the 

last two decades, numerous research studies have been dedicated to the thermo-hydraulic 

characteristics of pillow plates. In contrast, operational safety of pillow-plate-based 

equipment has gained limited attention. Due to the lack of design equations, the 

permissible operating pressure of such equipment is currently determined on the basis of 

the burst pressure obtained in time-consuming and cost-intensive experiments. In this 

work, we examine whether the burst pressure can be determined with the aid of finite 

element simulations. Furthermore, since preliminary studies have shown that the thermal 

resistance of pillow-plate heat exchangers can be significantly increased if they are 

fabricated from aluminium instead of stainless steel, we checked whether technically 

relevant pillow plates can be made of the aluminium alloy EN AW-5083. 

 

Keywords: Pillow plates, Heat exchanger, Finite Element Analysis, Burst pressure 

1. Introduction 

Along with satisfactory thermal performance, heat exchangers must ensure sufficient 

operational safety, while both these criteria influence the equipment design. For 

conventional equipment, such as shell-and-tube heat exchangers, a calculation-based and 

hence non-destructive verification of the permissible operating pressure is possible by 

following established regulatory standards, e.g. AD2000 or ASME code. In contrast, 

pillow-plate-based heat exchangers represent a comparatively novel type of heat transfer 

equipment that has not yet been fully investigated. Therefore, currently, no appropriate 

design equations for the determination of the permissible operating pressure exist, mainly 

because of the high geometrical complexity and variability of pillow plates resulting from 

the simple fabrication process free of forming tools. 

As a first manufacturing step, two superimposed metal sheets are spot-welded by means 

of a CNC-controlled laser welding machine, allowing the shape and spacing of the 

welding spots to be arbitrary selected. After welding of the edges and joining the nozzles, 

the sheets are inflated in a hydroforming process and achieve their characteristic pillow-

like shape. The latter ensures high structural strength, which, along with the fully welded, 

hermetically sealed design, represents one of the main advantages of pillow plates. By 

arranging several plates in parallel, so-called pillow-plate heat exchangers (PPHX) can 

be assembled (cf. Fig. 1). These exchangers offer a flow path through the inner channels 
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of the pillow plates and another flow path through the wavy channels between adjacent 

plates. The welding spots and the complex, wavy-channel structure cause a periodic 

disturbance of the boundary layers, resulting in a high thermo-hydraulic performance of 

PPHX. Along with the planar design, pillow plates can also be shaped cylindrically to be 

applied as jackets in tempered pipelines and vessels.  

 

Figure 1. Periodic sections of a pillow plate (left) and of a PPHX composed of two pillow plates (right), adapted 

from Zibart et al., (2021). 

Due to the lack of calculation methods, permissible operating pressure of pillow-plate-

based equipment is currently evaluated in dependence on the burst pressure, which has to 

be determined experimentally by means of expensive and time-consuming burst tests. 

Previous studies were primarily concerned with the investigation and optimisation of the 

thermo-hydraulic behaviour of PPHX. Structural mechanics investigations were only 

carried out by Piper et al. (2015), with the focus on the correct reproduction of the pillow-

plate geometry by means of FEM simulations. The burst pressure was determined for 

only one geometry, while no validation was performed. A comparison with experimental 

data obtained by the pillow plate manufacturer BUCO Wärmeaustauscher International 

GmbH showed that the simulations by Piper et al. (2015) significantly underestimate the 

burst pressure. 

This work was aimed at establishing a correct prediction of the burst pressure of pillow 

plates using finite element methods which can replace experimental burst pressure 

determination. Furthermore, investigations by Zibart et al. (2021) showed that the thermal 

resistance of PPHX can be reduced by up to 25% by using aluminium instead of stainless 

steel. Therefore, in a second step, it was investigated whether technically relevant pillow 

plates can be manufactured from aluminium with regard to permissible operating 

pressures and achievable internal channel inflation height. 

2. FEM Simulation 

The finite element solver ABAQUS (version 2017) by Dassault Systèmes was used, 

which is well established in both academia and industry. The simulations were carried 

out in a transient manner with an explicit temporal discretisation. Since large 

displacements are encountered in the course of simulations, the stiffness matrix depends 

on geometry. To capture the arising geometric non-linearities, the stiffness matrix is 

updated in each time increment. In contrast to our approach, Piper et al. (2015) determined 

the stiffness matrix only once in the initialisation step of the simulation. Consequently, 

the increase in stiffness of the sheets associated with the formation of the shell-like pillow 

plate structure could not be captured in the simulations, and this was probably the main 

reason for the significant underestimation of the burst pressure in that work. 

Further non-linearities result from the elasto-plastic material behaviour. In this work, 

along with the stainless steel AISI304, the most commonly used material for the 

manufacturing of pillow plates, the aluminium alloy EN AW-5083 was also considered. 
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Compared to other aluminium alloys, it is characterised by comparatively high strength 

combined with good forming capabilities. Furthermore, it offers good corrosion 

resistance and weldability. Thus, no filler material is required for welding, making EN 

AW-5083 ideally suited for laser welding. The non-linear plastic material behaviour 

exemplified in Fig. 2 was taken into account in the simulations. 

  

Figure 2. Flow curves of AISI304 and EN AW-5083 (Ostermann, 2007; Barthelmie, 2017). 

For both steel and aluminium alloy, the Young's modulus, Poisson's ratio and yield 

strength, which characterise the linear elastic material behaviour, are summarised in 

Table 1. The so-called 'Ductile Damage Model' from ABAQUS was used to capture the 

bursting process in the simulations. The model parameters were fitted in such a way that 

computational elements completely lose their stiffness when they reach the material-

specific elongation at break and are consequently eliminated from the computational 

mesh. Thus, cracks arise at the most highly stressed locations, which finally leads to the 

bursting of the pillow plate due to further crack growth. In order to decrease the 

computational effort, the simulation domain was reduced to the smallest possible 

characteristic section of a pillow plate, taking into account symmetries with regard to 

geometry and load. The chosen simulation domain has the dimensions �� and 0.5��. A 

mid-cut was performed in the thickness direction of the pillow plate, which separates the 

two metal sheets along their contact surfaces in the welded areas. The initial state 

represents a welded but still flat sheet as it is before the hydroforming process. The 

boundary conditions used are shown in Fig. 3.  

Table 1. Elastic material parameters. 

Material Young's modulus / [GPa] Poisson's ratio / [-] Yield strength / [MPa] 

AISI304 200 0.3 637 

EN AW-5083 70.3 0.33 285 

 

Symmetry boundary conditions in x- and y-direction were set at the lateral end faces, 

while symmetry boundary conditions in z-direction were specified at the free-cut contact 

surfaces of the plates in the welding spot regions. This causes a blockage of the translation 

in the respective coordinate direction as well as of the rotations around the other two 

coordinate axes. The free surface of the plate between the welding spots, which forms the 

inner channel wall of the pillow plate, was subjected to pressure. For the burst pressure 

determination, a physical duration time of ��	
 = 1000 � with a time step of ∆� =

0.001 � was simulated. Here, the pressure was increased linearly from � = 0 ��� at � =

0 � to ��	
 , which corresponds to ��	
. At the beginning of each simulation, the burst 

pressure is not known. Therefore, ��	
  must be determined iteratively, until the condition 

��	
 > ������ is fulfilled and mechanical failure of the pillow plate is encountered. Care 
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was taken to ensure that ��	
 is only slightly higher than ������, so that the strain rates 

and thus inertia effects are kept as low as possible. To determine the maximum inflation 

height, the simulation time was increased to ��	
 = 2000 �, while keeping the time step 

at ∆� = 0.001 �. Up to � = 1000 �, pressure increases linearly to ��	
 . This is followed 

by a static phase until � = 1500 �, in which pressure is kept constant in order to eliminate 

inertial effects. In this case, ��	
  was iteratively determined in such a way that bursting 

during the static phase was avoided. Subsequently, pressure was linearly reduced to � =

0 ��� at ��	
 in order to remove elastic strains. 

  

Figure 3. Applied boundary conditions shown on the inner surface of the initially undeformed plate. 

Structured hexahedral computational grids were used to achieve a high computational 

accuracy combined with high computational efficiency. The ABAQUS specific 

computational element of type C3D8R was chosen, as this element type was proven in 

the work of Dancette et al. (2012) for the investigation of welding spot failures. 

3. Validation 

For the validation of the simulations, the pillow plate manufacturer BUCO provided 

protocols of burst tests carried out for two geometrically strongly different pillow plates. 

The geometry parameters of these plates are summarised in Table 2.  

Table 2. Geometries used for validation. 

 

 

Figure 4. Results of the FEM simulations carried out for VAL1 and VAL2: the deformed geometries for the 

first time step after bursting of the pillow plates. 

Case 2�� / [mm] �� / [mm] ��� / [mm] �� / [mm] Reference 

VAL1 95 55 10 1 BUCO 

VAL2 52 30 11 1.5 BUCO 

160

130 



Determination of the burst pressure of pillow plates using finite element methods  

Both pillow plates were made of AISI304. The simulation results are illustrated in Fig. 4, 

showing the deformed plate geometries in the first time step after bursting. For the VAL1 

geometry, the simulation with ������,��� = 61.6 ��� shows an overestimation of the 

experimentally determined burst pressure (������,!
" = 58 ���) of approx. 4.8%. The 

experimental burst pressure (������,!
" = 390 ���) for the VAL2 geometry is approx. 

11% underestimated by the simulation with ������,��� = 347 ���. The agreement 

between simulated and measured values can be considered satisfactory for both 

geometries, and hence, the performed FEM simulations are successfully validated. 

4. Results 

After the successful validation of the FEM simulations, the next step was to investigate 

whether the aluminium alloy EN AW-5083 would be a suitable material for pillow plates. 

In this study, welding spot pitches 2�� and ��  matching VAL1 and VAL2 geometries 

were chosen, while the welding spot diameter (��� ∈ ,10; 11; 12. //) and the plate 

thickness (�� ∈ ,1; 1.5; 2. //) were varied. The burst pressure was found to increase 

almost proportionally with increasing welding spot diameter and plate thickness (cf. Fig. 

5). This is due to the fact that in the region of the welding spots, the load-bearing material 

cross-section depends linearly on ��� and ��. Furthermore, it can be seen that the burst 

pressures are significantly higher for smaller welding spot pitches. This stems from the 

fact that the number of welding spots per unit area increases. Thus, at equal acting 

pressure, the forces affecting each welding spot become smaller and consequently higher 

pressures can be withstood. Comparing the results with those of VAL1 and VAL2 

geometries, it becomes apparent that the burst pressures are approx. 80% lower than for 

the counterpart made of AISI304. Considering the significantly lower tensile strength and 

elongation at break of EN AW-5083, this result is not surprising. 

 
Figure 5. Burst pressure in dependence on the welding spot diameter for 2�� = 95 //, �� = 55 //, �� ∈
,1; 1.5; 2. // (a), 2�� = 52 //, �� = 30 //, �� ∈ ,1; 1.5; 2. // (b); filled circles denote geometries 

matching VAL1 resp. VAL2.  

Fig. 6 shows the maximum achievable inflation height (�23,�	
) for the investigated 

pillow-plate geometries plotted against welding spot diameter. Comparing Fig. 6a with 

6b, it can be seen that �23,�	
  decreases with reducing welding spot pitch, which results 

from the decreasing free bending length. Furthermore, �23,�	
  decreases with increasing 

plate thickness due to the growing bending stiffness of the plates. The dependence of the 

maximum inflation height on the welding spot diameter is much less pronounced than for 

the burst pressure. It is also visible that the trends are different, namely, for 2�� = 52 // 

& �� = 30 //, �23,�	
  decreases with increasing ���, whereas for 2�� = 95 // & 

�� = 55 //, �23,�	
  increases with increasing ���. When considering the thermo-

hydraulic performance of pillow plates, Piper et al. (2016) showed that the thermo-

hydraulic efficiency (heat flowrate divided by required pumping power) for inner channel 
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flow depends almost quadratically on �23. Small values of �23 mean small effective flow 

cross-sections, resulting in high flow velocities and thus high pressure drop. For this 

reason, expansions of �23 < 3 // should be regarded as technically irrelevant. Fig. 6a 

shows that with a welding spot pitch of 2�� = 52 // & �� = 30 //, technically 

relevant pillow plates can only be realised with a plate thickness of �� = 1 // and a 

further pitch reduction is not useful. For the remaining pillow plate geometries of this 

study, which are considered to be technically relevant, a maximum burst pressure of 

approx. 60 ��� was obtained (cf. Fig. 5, for the geometry with 2�� = 52 // & �� =

30 //, �� = 1 //, ��� = 13 //). According to AD2000, a safety factor of 5 must be 

taken into account, so that a maximum permissible operating pressure of approx. 12 ��� 

can be achieved with pillow plates made of EN AW-5083. Thus, pillow plates made of 

aluminium are mainly suitable for low-pressure applications, but can offer significant 

advantages due to their lower thermal resistance and much lower weight. 

  
Figure 6. Maximum inflation height in dependence on the welding spot diameter for 2�� = 95 //, �� =

55 //, �� ∈ ,1; 1.5; 2. // (a), 2�� = 52 //, �� = 30 //, �� ∈ ,1; 1.5; 2. // (b); filled circles denote 

geometries matching VAL1 resp. VAL2.  

5. Conclusions 

It was demonstrated that FEM simulations are suitable for predicting the burst pressure 

and hence the operating pressure of pillow plates. A validation with experimental data 

showed a maximum deviation of 11%. Furthermore, it was found that technically relevant 

pillow plates with a burst pressure of up to 60 ��� can be manufactured from the 

aluminium alloy EN AW-5083, which corresponds to a permissible operating pressure of 

approx. 12 ���. Thus, pillow plates made of aluminium alloys can be judged as a good 

alternative for low-pressure applications, providing lower thermal resistance and lower 

mass compared to steel-made pillow plates. 
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Abstract 

Brackish water desalination is one of the most promising methods to generate freshwater 

for the community in water-scarce regions. The current research proposes a hybrid Multi 

Effect Distillation and Thermal Vapor Compression (MED-TVC) and double Reverse 

Osmosis (RO) system for brackish water desalination for the Jordanian arid and semi-arid 

regions. In this regard, ten effects MED system was coupled with two permeate and 

retentate reprocessing designs of RO processes to desalinate brackish water. For this 

purpose, the model for the hybrid system developed by the same authors in the past has 

been used for simulation. For a given set of brackish water properties, the indicators such 

as the freshwater productivity, freshwater salinity, specific energy consumption, and 

disposed brine flow rate are used to evaluate the performance of the process in terms of 

economics and environment. The results show that freshwater can be produced from 

brackish water with high productivity and reduced specific energy consumption and with 

reduced brine flow rate into the environment compared to seawater desalination. 

  

Keywords: Brackish Water Desalination; Multi Effect Distillation; Reverse Osmosis; 

Productivity; Specific Energy Consumption; Disposed Brine Flow Rate. 

1. Introduction  

Jordan is basically suffering from water shortage as it is located in a transitional position 

between arid and semi-arid climatological zones of mild rainy winter and hot dry summer. 

Menzel et al. (2007) stated that Jordan has approximately 90,000 km² of the semi-arid 

region stretching from the upper north of the Jordan basin to the south in the Gulf of 

Aqaba, and from the Mediterranean coast to the Jordanian Highland / Jordanian Plateau. 

Furthermore, the growth of population and industrialization besides the climate change 

and uneven spatial distribution of water resources with over-exploitation of aquifers have 

increased water demands that possibly would cause future water conflict. In such a 

complicated situation, the ground and surface water treatments are a long-term and vital 

solution to the issue of water scarcity specially for those coastal regions such as Red Sea 

region (Afonso et al., 2004). Furthermore, the wastewater reclamation and reuse is 

another alternative source of freshwater in arid and semi-arid regions in Jordan (Saidan  

et al., 2020).    

The techno-economic feasibility of instilling RO system to desalinate brackish water in 

the Zarqa basin, Jordan was investigated by Afonso et al. (2004). This study demonstrated 
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the success of RO system for providing freshwater. However, the membrane fouling was 

one of many challenges in the water desalination. In this regard, Walschot et al. (2020) 

discussed in detail the challenges faced by RO desalination in Jordan despite the 

increasing utilisation of the process. They stated that RO desalination plants require 

higher maintenance than thermal desalination plants (due to fouling propensity) besides 

other environmental concerns. On the other hand, the thermal desalination system such 

as multi effect distillation is another commercially viable water desalination method 

which has been extensively used to generate a vast amount of freshwater, but with higher 

energy consumption and higher investment and operational cost compared to RO system 

(Filippini et al., 2018). This explains the expansion of water desalination using membrane 

technology and thermal processes. Jones et al. (2019) confirmed the existence of 16000 

desalination plants around the world which use RO process, Multistage Flash (MSF), and 

MED that share 69%, 18%, and 7%, respectively, to produce 95 million m³/day of 

freshwater. 

The potential of integrating both membrane and thermal technologies in a hybrid system 

was assessed by several colleagues and demonstrated its robustness to mitigate the 

drawbacks of individual processes and enhance the overall operation (Filippini et al., 

2019). However, the high energy consumption of seawater desalination using the hybrid 

system still remains a challenge (Al-hotmani al., 2021). Feria-Diaz et al. (2021) 

confirmed an intensive specific energy consumption between 14 to 21 kWh/m3 of MED-

TVC system for seawater desalination. However, this is not the case for brackish water 

desalination using MED and RO hybrid system. Thus, it is imperative to analyse the 

potential of investigating the viability of a hybrid system of MED and double RO 

processes for brackish water desalination in arid and semi-arid regions in Jordan due to 

lower salinity of feed water compared to seawater. In other words, this research will 

introduce a feasible option of water desalination in Jordan compared to seawater 

desalination. For the first time, this study attempts to assess the feasibility of constructing 

a hybrid system of MED and permeate reprocessing and retentate reprocessing RO 

processes to desalinate brackish water in the coastal area of Red Sea in Jordan. The 

simulation results of this system including the performance indicators will be compared 

against the results of seawater desalination to evaluate the operational, economic, and 

environmental perspectives of brackish water desalination.  

2. Description of MED-TVC and double RO processes  

Fig. 1 shows a schematic diagram of the hybrid system of permeate reprocessing and 

retentate reprocessing RO processes (PRRO and RRRO) and MED-TVC system to 

desalinate brackish water. The PRRO process is designed as 20, 15, and 8 of pressure 

vessels (PVs) in a series where each PV contains eight spiral wound membranes 

synthesised by Toray, USA (brand: TM820M-400/SWRO of 37.2 m²). The water is fed 

into PRRO process using a high pressure pump of 85% efficiency. The forward MED-

TVC system is designed of ten effects connected to thermal vapor compression (TVC). 

The combined brine streams of PRRO and MED-TVC are fed for further refining into the 

third process of RRRO. The temperature of the inlet stream of RRRO process is 

moderated to a specified temperature using a heat exchanger. The RRRO process is 

designed to process high flowrate of brackish water in 40, 30, and 16 PVs configuration. 

The fresh water of RRRO process is combined to the product water of PRRO and MED-

TVC to form the final product stream of freshwater. However, the brine stream of RRRO 

process represents the brine disposal stream back to the environment. 
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3. Modelling of MED-TVC and double RO processes 

Al-hotmani et al. (2019) developed a mathematical model for the double RO processes 

and MED-TVC to correlate the inlet and outlet variables of each process and the overall 

performance indicators of the hybrid system. Some important model equations are given 

in Tables 1 and 2. 

 
Fig. 1. A hybrid system of PRRO+MED-TVC+RRRO processes to desalinate brackish 

water 

 

Table 1. Mathematical modelling of MED-TVC system (Filippini et al., 2018) 
Eq. 
No. 

Description Equation Unit 

1 Feed flowrate 𝑀𝑓 =  
𝑀𝑠 𝜆(𝑇𝑠)

𝑄𝑠𝑒𝑛𝑠𝑖𝑏𝑙𝑒  +  𝑄𝑙𝑎𝑡𝑒𝑛𝑡

 kg/s 

2 Sensible heat in the 1st stage 𝑄𝑠𝑒𝑛𝑠𝑖𝑏𝑙𝑒 = 𝑀𝑓 ∫ 𝑐𝑝(𝑇1, 𝑥1)𝑑𝑇
𝑇1

𝑡1

 kJ/s 

3 Portion of freshwater by evaporation 𝛽 =
𝛼[𝑥𝑏(1 − 𝛼)𝑛 − 𝑥𝑓]

(𝑥𝑏 − 𝑥𝑓) [1 − 𝛼)𝑛]
 - 

4 Estimated area of each stage 
𝑄𝑖

𝑈𝑒𝑣,𝑖𝛥𝑇𝑒𝑣,𝑖  
=  𝐴𝑒𝑣,𝑖 m2 

5 Area of each preheater 𝑀𝑓. ∫ 𝑐𝑝(𝑡, 𝑥𝑓)𝑑𝑡 = 𝑈𝑝ℎ,𝑖  𝐴𝑝ℎ,𝑖  ∆𝑡𝑙𝑜𝑔,𝑖

𝑡𝑖

𝑡𝑖+1

 m2 

6 
Logarithmic temperature variance in 
preheater 

∆𝑇𝑙𝑜𝑔,𝑖 =
∆𝑇

𝑙𝑜𝑔 (
𝑇𝑣𝑖 − 𝑡𝑖+1

𝑇𝑣𝑖 − 𝑡𝑖
)
 

°C 

7 
Logarithmic temperature variance in 
final condenser 

∆𝑇𝑙𝑜𝑔.𝐶𝑂𝑁 𝐷 =
𝑡𝑛 − 𝑇𝑤

𝑙𝑜𝑔 (
𝑇𝑣𝑛 − 𝑇𝑤
𝑇𝑣𝑛 − 𝑡𝑛

)
 

°C 

8 
Temperature and pressure correction 

parameters 

𝑇𝐶𝐹 = 2𝑒 − 8. 𝑇𝑣𝑛
2 − 0.0006. 𝑇𝑣𝑛 + 1.0047  

𝑃𝐶𝐹 = 2𝑒 − 7. 𝑇𝑃𝑚2 − 0.0009. 𝑃𝑚 + 1.6101 
°C, 

bar 

9 Pressure at vapour temperature 𝑃𝑣 = 𝑃𝑐𝑟𝑖𝑡𝑒
(

𝑇𝑐𝑟𝑖𝑡
𝑇𝑣𝑛

+273.15)−1
. ∑ 𝑓𝑖

8

𝑗=1

 bar 
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10 Pressure at steam temperature 𝑃𝑠 = 𝑃𝑐𝑟𝑖𝑡𝑒
(

𝑇𝑐𝑟𝑖𝑡
𝑇𝑠 +273.15)−1. ∑ 𝑓𝑗

8

𝑗=1

 bar 

 

Table 2. Mathematical modelling of an individual RO process (Filippini et al., 2018) 
Eq. 

No. 
Description Equation Unit 

1 Freshwater Flux 𝑄𝑝 =  𝐴𝑤(𝑇)   (𝑃𝑓 −
∆𝑃𝑑𝑟𝑜𝑝,𝐸

2
− 𝑃𝑝 − 𝜋𝑤 − 𝜋𝑝) 𝐴𝑚 m3/s 

2 Solute flux  𝑄𝑠= 𝐵𝑠(𝑇)(𝐶𝑤 − 𝐶𝑝) m3/s 

3 

Osmotic pressure in high-

concentration and 

permeate sides 

𝜋𝑤 = 0.76881 𝐶𝑤 , 𝜋𝑝 = 0.7994 𝐶𝑝 atm 

4 
Pressure droplet for each 
membrane and Reynolds 

number 

∆𝑃𝑑𝑟𝑜𝑝,𝐸 =
9.8692𝑥10−6 𝐴∗𝜌𝑏 𝑄𝑏

2 𝐿 

2𝑑ℎ 𝑅𝑒𝑏
𝑛 (𝑊 𝑡𝑓 𝜖)2

 𝑅𝑒𝑏 
=

𝜌𝑏 𝑑ℎ 𝑄𝑏

𝑡𝑓 𝑊 𝜇𝑏
 

atm, 

- 

5 Permeate concentration 𝐶𝑝 =
𝐵𝑠 𝐶𝑓    𝑒

𝐽𝑤
𝑘 

𝐽𝑤+𝐵𝑠     𝑒
𝐽𝑤
𝑘 

  ppm 

6 
Rejection and water 

recovery rate 
𝑅𝑒𝑗 =

𝐶𝑓−𝐶𝑝

𝐶𝑓
, 𝑅𝑒𝑐 =

𝑄𝑝

𝑄𝑓
 - 

7 
Specific energy 
consumption of PRRO 

𝐸𝑠,𝑅𝑂

=  {
[(𝑃𝑓(𝑝𝑙𝑎𝑛𝑡) 𝑥101325)  𝑄𝑓(𝑝𝑙𝑎𝑛𝑡)]

𝜂𝑝𝑢𝑚𝑝 𝑄𝑝(𝑝𝑙𝑎𝑛𝑡)

3600000

}

− 
(𝑃𝑟(𝑏𝑙𝑜𝑐𝑘2) 𝑥101325) 𝑄𝑓(𝑏𝑙𝑜𝑐𝑘3) 𝜂𝐸𝑅𝐷

 𝑄𝑝(𝑝𝑙𝑎𝑛𝑡)

3600000

  

 
kWh/m3 

8 
Specific energy 
consumption of RRRO 

𝐸𝑠,𝑅𝑂 =  {
[(𝑃𝑓(𝑝𝑙𝑎𝑛𝑡) 𝑥101325)  𝑄𝑓(𝑝𝑙𝑎𝑛𝑡)]

𝜂𝑝𝑢𝑚𝑝 𝑄𝑝(𝑝𝑙𝑎𝑛𝑡)

3600000

}  
 

kWh/m3 

4. Simulation and performance evaluation of the brackish water 
desalination system using MED-TVC and double RO processes 

This section utilises the simulation of MED and double RO process (presented in Figure 

1). The brackish water is simultaneously fed to the PRRO and MED-TVC processes at 

3000 ppm and 25 °C of salinity and temperature, respectively. The operating pressure and 

feed flow rate of PRRO process are 50 atm and 5011.2 m3/day, respectively. For both 

cases of seawater desalination and brackish water desalination, the feed flow rate and 

brine temperature of MED-TVC system are same (16867.24 m3/day and 40 °C). The brine 

salinity for seawater is 60000 ppm for inlet salinity 39000 ppm while for brackish water 

is 4615 ppm for inlet salinity of 3000 ppm. Also, the motive steam of TVC is designed at 

8 kg/s, 1300 kPa, and 70 °C of steam flow rate, pressure, and temperature, respectively. 

The combined brine of MED and PRRO is fed at 50 atm into the RRRO process. 

However, the inlet brine temperature of RRRO process is moderated to 25 °C using a heat 

exchanger (Fig. 1).  

Table 3 shows the simulation results of desalinating brackish water including the most 

important performance indicators of the hybrid system of MED-TVC and double RO 

process. To justify the potential of this hybrid system, the simulation results of treating 

seawater of 39000 ppm at 25 °C are included in Table 3 for the purpose of comparison. 

This indicates that brackish water desalination using the hybrid system has a considerable 

increase of freshwater productivity of 20996.41 m3/day compared to 8516.66 m3/day of 

seawater desalination. This is an approximate growth of 146% leading to the reduction of 
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total specific energy consumption by 58.8%. The brackish water desalination of 3000 

ppm produces a high quality water of less than 100 ppm compared to 277.87 ppm of 

seawater desalination of inlet salinity 39000 ppm besides attaining a high water recovery 

of 95.96%. Moreover, the concern of disposing brine into the environment is significantly 

reduced by 93.4%, which highlights a merit of brackish water desalination. The 

simulation results indicate the potential of constructing the proposed design of MED and 

double RO processes for arid and semi-arid regions in Jordan due to its superiority of 

producing freshwater of a high productivity compared to seawater desalination. In turn, 

this would be a cost-effective solution to tackle the issue of water shortage in Jordan.  

 

Table 3. Simulation results of the hybrid system for two types of treated water  
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3000 20996.41 6.50 75.06 95.96 882.01  72762 
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39000 8516.66 15.78 277.87 38.92 13361.77 63689.93 

5. Conclusions  

Water desalination from brackish water source was recognised as one of the most 

promising methods to produce freshwater in arid and semi-arid regions of water shortage. 

This research attempted to develop a new option of water desalination in Jordan based on 

brackish water compared to seawater desalination. Thus, a hybrid system of MED and 

double RO processes to desalinate brackish water has been introduced and analysed. The 

associated results confirmed the superiority of the proposed system and it looks very 

promising option in Jordan. The potential of the proposed hybrid system was assessed via 

comparing the simulation results with those obtained for seawater desalination. In turn, 

the proposed hybrid system has water recovery of 95.96% with lower energy 

consumption of 6.5 kWh/m3 compared to seawater desalination option. 
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Abstract 

Enzymatic esterification reactions of fatty acids with sugars generate non-ionic 

biosurfactants widely used in food, pharmaceutical and cosmetic industries, because of 

their high capability to reduce surface and interfacial tensions. In turn, mathematical 

modeling can be a useful tool, in its different approaches, for the simulation and 

optimization of enzymatic processes. Particularly, neural and fuzzy approaches are still 

scarcely evaluated for data of producing sugar fatty acid esters. Thus, this study aimed at 

using these approaches to model data of enzymatic esterification of fatty acids (oleic and 

lauric acids) with xylose, catalyzed by immobilized lipase B from Candida antarctica 

(CALB-IM-T2-350) and CALB immobilized on silica magnetic microparticles (SMMPs) 

modified with octyl groups (CALB-SMMP-octyl) or octyl+glutaraldehyde moieties 

(CALB-SMMP-octyl-glu). Using Matlab Neural Network Toolbox, five artificial neural 

networks (ANNs) were trained to predict the reaction rate, one for each type of biocatalyst 

and acid, obtaining R-squared values greater than 0.97. Furthermore, as an additional 

effort in neural modeling, two new ANNs were fitted (for two of the biocatalysts), each 

one of them incorporating, in its inputs, an option referring to the type of acid. R-squared 

values above 0.98 indicated good predictive capability. To carry out the modeling study 

by fuzzy inference systems, the Neuro Fuzzy Designer tool from ANFIS (Adaptive 

Network-Based Fuzzy Inference System) of Matlab was used. Fuzzy models were built 

for each of the three biocatalysts under study (CALB-IM-T2-350, CALB-SMMP-octyl 

and CALB-SMMP-octyl-glu), considering as input linguistic variables the type of acid, 

the temperature, the reaction time and the substrates molar ratio, to predict the conversion 

of the esterification process. Gaussian membership functions and linear output functions 

were used, in a Takagi-Sugeno’s fuzzy approach. The fuzzy systems parameters were 

fitted by a hybrid parametric optimization method. The results showed that the fuzzy 

model outputs were very close to the targets, with RMSE (root mean squared error) values 

below 0.006. Finally, to demonstrate the potential of fuzzy modeling to optimize 

processes, response surfaces were built for the conversion of xylose as function of 

different operating conditions. The fuzzy surfaces indicated that higher values of xylose 

conversion are reached after 45 h of reaction, temperatures above 50°C, and at substrates 

molar ratio of 1:0.2 (acid:sugar). Thus, the present work presents, in a broad way, the 

potential of computational intelligence tools in the study of enzymatic production of 

biosurfactants. 

 

Keywords: biosurfactants, artificial neural networks, fuzzy logic. 
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1. Introduction 

Sugar fatty acid esters (SFAEs) are surfactants mainly applied in food, pharmaceutical 

and cosmetic industries (Colla et al., 2010; Khan; Rathod, 2015). From the process point 

of view, different conditions can be applied to produce biosurfactants by heterogeneous 

biocatalysts using immobilized lipases. Therefore, the mathematical modeling of 

enzymatic reactions can be a useful tool for process simulation and optimization. This 

technique allows the prediction of the effects on the process due to changes in operating 

conditions, pointing towards factors that most influence the conversion of substrates. In 

addition, mathematical modeling can be applied in optimization projects, equipment 

sizing, economic feasibility analysis and scale-up (Nelles, 2001). However, in some 

situations, when complex phenomenological (white-box) models are not able to fully 

describe a certain reaction process, the use of black-box or gray-box models can be an 

interesting choice. Besides, rational exploration of the parametric space of a white-box 

model can impose a huge load of work (which is usually very time consuming), to 

guarantee that the set of mechanistic parameters satisfy chemical/biochemical and 

physical meanings (even more when considering possible correlations between them). 

Among black-box and gray-box models, stands out Artificial Neural Networks and fuzzy 

systems. Thus, the present work deals with the mathematical modeling of enzymatic 

syntheses to produce biosurfactants under two distinct approaches: use of artificial neural 

networks and the development of a fuzzy model. 

2. Methodology 

The experimental data for esterification modeling was provided by Lima et al. (2016). 

The dataset was acquired based on the syntheses of xylose esters obtained by 

esterification with oleic or lauric acid in tert-butyl alcohol. The experiments were 

conducted under the following conditions: stirring speed of 300 rpm, 72h of reaction, 1g 

of molecular sieve, acid-xylose molar ratio (substrates molar ratio) of 1:0.2 (base case), 

load of activity of 37.5 UE/gacid and reaction temperatures of 46°C and 55°C. The 

biocatalysts employed were immobilized lipase B from Candida antarctica (CALB-IM-

T2-350) and CALB immobilized on silica magnetic microparticles (SMMPs) modified 

with octyl groups (CALB-SMMP-octyl) or octyl+glutaraldehyde moieties (CALB-

SMMP-octyl-glu). 

 

2.1. Modeling by artificial neural networks (ANNs) 

Initially, five ANNs were trained based on xylose concentration data (mM) along time 

(h), one for each type of biocatalyst and acid. Training targets consisted of the 

experimental esterification data of sugar consumption rate (mmol.L-1.h-1) for both 

temperatures (46°C and 55°C). Construction and training of neural networks were 

performed using Matlab Neural Network Toolbox. A two-layer feed-forward network 

was designed for training, while classical backpropagation learning algorithm was used 

to adjust the weights and bias. After several tests, the architecture chosen for networks 1, 

2, 4 and 5 was one hidden layer of 2 sigmoid neurons, followed by an output layer of a 

single linear neuron. Network 3, in turn, contained 5 sigmoid neurons followed by an 

output layer of a single linear neuron. Finally, to further study the potential of neural 

network modeling, two new ANNs were fitted (for two of the biocatalysts), each one of 

them incorporating, in its inputs, an option referring to the type of acid. Thus, the data 

initially used in the fit of networks 1, 2, 4 and 5 were grouped according to the type of 

biocatalyst, and two new (final) neural networks were obtained (6 and 7, “replacing” 

networks 1, 2, 4 and 5). 
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2.2. Modeling by fuzzy systems 

To model the process using a fuzzy inference system (FIS), the linguistic input variables 

chosen were: temperature (T), substrates (acid-sugar) molar ratio (SMR), reaction time 

(t) and fatty acid type (FA). Xylose conversion was chosen as the output variable. Aiming 

to improve the quality of the FIS adjustment, further data was added from an interpolation 

made at 36h. 

 

Matlab fuzzy logic toolbox was used to build the inference systems according to the type 

of biocatalyst. For each input variable, the respective linguistic values were identified: 

fatty acid (oleic and lauric), temperature (low and high), reaction time (low, medium and 

high) and SMR (low, medium and high). All membership functions chosen were Gaussian 

type. As the ANFIS (Adaptive Network-Based Fuzzy Inference System) tool used to 

generate the final FIS only supports Takagi-Sugeno fuzzy systems, the output was a linear 

function of the inputs as shown in Equation 1: 

 

𝑓(𝐹𝐴, 𝑇, 𝑡, 𝑆𝑀𝑅)𝑖 = 𝑎 ∗ 𝐹𝐴 + 𝑏 ∗ 𝑇 + 𝑐 ∗ 𝑡 + 𝑑 ∗ 𝑆𝑀𝑅 + 𝑒                     (1) 

 

Where “a”, “b”, “c”, “d”, and “e” represent fitting parameters. 

 

For each model (or biocatalyst) 36 fuzzy If-Then rules were stablished based on the 

combination of the 10 linguistic values (e.g., Equation 2), where fi is the linear 

combination described in Equation 1. 

  

IF FA is oleic and T is low and t is low and SMR is low THEN conversion is fi         (2) 

 

For the FIS training phase ANFIS tool was employed. This technique adjusts fuzzy 

parameters by mapping inputs and outputs based on process data and a feedforward neural 

network with a hybrid learning technique. In the forward pass, the consequent parameters 

are calculated by a least square method. In the backward pass, the error is back 

propagated, and the premises parameters are updated based on the gradient descent 

method.              

3. Results and discussion 

3.1. Modeling by ANNs 

During the neural networks training to predict the rate of xylose consumption in the 

biosurfactant synthesis processes, R-quadratic values higher than 0.97 were obtained 

(from the comparison between the network output and its targets values), indicating a 

very good performance of the networks. Graphics of enzymatic kinetics were drawn from 

the output data of the networks. It was verified a very consistent fit of the five ANNs to 

the experimental data provided. 

 

Figure 1 shows one of the enzymatic kinetics graphs, drawn from the output data of 

network 3, which refers to the syntheses of xylose laurate catalyzed by CALB-SMMP-

octyl at two temperatures. The graph shows the reaction rates calculated from the 

experimental data and the rates estimated by the neural network modeling (dotted lines). 
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Figure 1: Kinetic modeling of xylose laurate syntheses catalyzed by CALB-SMMP-octyl at two 

different temperatures (ANN-3).  

 

It can be observed that reaction rate curve at 55°C presented higher reaction rates than for 

the esterification at 46°C, throughout the profile. Therefore, it is indicated the possibility 

of acquiring xylose laurate synthesis behavior, reaction rates and sugar concentration by 

simple interpolation between the curves.  

 

To further study the potential of neural network modeling, the data used in the fit of 

networks 1, 2, 4 and 5 were grouped according to the type of biocatalyst. Therefore, two 

new networks were created and trained: ANN-6 (with 5 neurons in the hidden layer, 

biocatalyst CALB-IM-T2-350, for oleic and lauric acids at 46 and 55°C) and ANN-7 

(with 3 neurons in the hidden layer, biocatalyst CALB-SMMP-octyl-glu for oleic and 

lauric acids at 46 and 55°C). Regression analysis for networks 6 and 7 presented R-

squared above 0.98, which suggests very good predictive capability. The kinetic graphs 

created after training the networks are shown in Figure 2. 

 

 
Figure 2: Kinetic modeling of xylose ester syntheses catalyzed by (A) CALB-IM-T2-350 (ANN-6) 

and (B) CALB-SMMP-octyl-glu (ANN-7) at different temperatures and with two fatty acids. 

 

Once more, the modeled neural networks ANN-6 and ANN-7 presented a good fit to the 

experimental data. In Figure 2-A, an overlapping of the reaction curves occurred at 46°C 

for both acids, indicating that there is no influence regarding the type of fatty acid 

employed when the reaction occurs at this temperature. In general, it was possible to 

notice higher reaction rates for reactions at 55°C. For the CALB-SMMP-octyl-glu 
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biocatalyst, indicated in Figure 2-B, the curves at 55°C showed that there was no hard 

influence regarding the type of fatty acid. 

 

3.2. Modeling by fuzzy systems 

The adjustments of the input membership functions and output linear equation parameters 

of FIS were performed by ANFIS. During the testing phase, root mean squared error 

(RMSE) values below 0.006 were obtained for all inference systems, proving that the 

model outputs were similar to the experimental ones (indicating almost perfect fits). 

Proper graphs of xylose conversion along time were plotted (by fixing the type of fatty 

acid and the substrates molar ratio in 1:0.2). The graphs in Figure 3 were elaborated 

considering experimental esterification data and the predicted values by the fuzzy models 

at 46°C, 50°C and 55°C.  

 

 
Figure 3: Fuzzy modeling of xylose ester syntheses with (A) oleic acid and CALB-IM-T2-350, (B) 

lauric acid and CALB-IM-T2-350, (C) oleic acid and CALB-SMMP-octyl-glu, (D) lauric acid and 

CALB-SMMP-octyl-glu, (E) lauric acid and CALB-SMMP-octyl. 

 

Promising results regarding the modeling of the esterification process, by the fuzzy 

model, were obtained. It is worth noticing that the intermediate reaction conversion at 

50°C was predicted by the fuzzy systems, at which no experimental data was available. 

 

To further demonstrate the potential of fuzzy modeling for optimization of the operating 

conditions, response surface graphs were built combining the three input variables 

(temperature, reaction time and the substrates molar ratio) in pairs, for each biocatalyst, 

separated by fatty acid type. Figure 4 shows the response surfaces from the fuzzy model 

referred to the CALB-IM-T2-350 biocatalyst. 
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Figure 4: Response surfaces from the fuzzy model referred to xylose esterification with oleic (A, 

B, C) and lauric (D, E, F) acids by CALB-IM-T2-350. 

It is possible to notice similarities between the response surfaces results with those from 

Lima et al. (2016). In general, the highest values of xylose conversion are reached after 

45h of reaction, at high temperatures (55°C) and in the lowest condition of SMR (1:0.2 = 

5).  

4. Conclusions 

ANN modeling successfully predicted the behavior of the xylose esterification process in 

biosurfactant syntheses for three different biocatalysts. All ANNs presented R-squared 

values higher than 0.97, which was translated to reliable mathematical models for the 

esterification processes. To expand the computation analysis, fuzzy logic was used to 

build fuzzy models of the esterification processes. Results point towards an excellent 

prediction of xylose conversion under experimental conditions, with RMSE values below 

0.006, as well as under intermediate temperatures. In addition, it was showed the potential 

of fuzzy models for optimizing operational conditions as an alternative to the use of 

regression models in response surface methodologies. 
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Abstract
It is desired to model the effect of three input features, the LPG flow rate, drum rotation speed
and blower speed on the measured temperature profile in a rotating drum coffee roaster of a 30 kg
capacity for operator prediction purposes. The performance of a first-principles model of this
rotating drum coffee roaster (Schwartzberg, 2002) is compared to the performance of a compos-
ite/hybrid empirical model. The hybrid empirical model is composed of two gradient boosted
regression trees and an artificial feedforward neural network which predicts two characteristic
portions of the measured temperature profile by accurate prediction of the minimum in measured
temperature. The first-principles model under-predicts the heat transfer to the coffee beans and as
a result over-predicts the minimum temperature point when compared to true data. The relevant
root mean squared error (RMSE) between the Schwartzberg model and the true measured tem-
perature of an unseen test set of data is calculated as 23.05 as compared to the RMSE between
the hybrid empirical model and the true measured temperature of 9.153. It is recommended that a
larger set of data be used to train the empirical model to improve the generalisation of the model
to new sets of input features.

Keywords: Coffee roaster, empirical modelling, machine learning, applied modelling

1. Introduction

1.1. Background

The process of converting the green arabica coffee bean into the cup of coffee one enjoys involves
the roasting process, which brings to light an abundance of coffee flavours. The construction,
design, and development of roasters and roaster technology alike is something a company located
in South Africa, takes pride specialising in. There is a need for the development of a predictive
model which will accurately predict changes in the temperature profile of the coffee beans due
to changes in the inputs to the system. The inputs are the LPG (liquefied petroleum gas) flow
rate to the burner, the drum rotation speed and the air blower speed. The model will be utilised
in manually operated runs to preemptively adjust the inputs in order to shape the desired bean
temperature profile, which is strongly correlated to the flavours produced. This paper will focus
on the development of a model which generalises well to new sets of input features.

This paper investigates the modelling techniques applicable to the coffee roasting system based
on theoretical first-principles (Schwartzberg, 2002) as well empirical (data-driven) methods such
as linear regression, decision trees, random forests, support-vector machines and neural networks
implemented using the scikit-learn and tensorflow python libraries (Géron, 2019). Comparison is
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made between models based on performance metrics such as root mean squared error (RMSE) on
a validation set of input features.

1.2. The coffee roaster

The coffee roaster of interest consists of a double walled ceramic coated drum, orientated hori-
zontally on a central axis. The drum rotates above an open flame LPG burner. The flame heats the
inlet air as well as the drum. Air is drawn through the roaster by an air blower located at the outlet
of the roaster. As the air is drawn through the drum, smoke, steam, and chaff is removed from the
drum and separated by a cyclone located at the outlet of the roaster. The blower is located at the
top of the cyclone in order to separate out the coffee bean outer-skins (otherwise known as chaff)
as well as additional solids. The gas separated from the emissions in the outlet is then passed to
the stack and released to the environment. It is desired to model the measured bean temperature as
a function of the roaster inputs, namely the LPG flow rate to the burner, the drum rotation speed
and the blower speed.

Figure 1: Traditional direct heated drum coffee roaster, adapted from Schwartzberg (2002).

The temperature profile shown in Figure 3 is obtained by measurement of the temperature of the
coffee beans within the roaster. One will very quickly observe a local minimum in the curve
followed by a steady rise in temperature. This inverse response is as a result of how the roaster
is operated. Before the beans are released into the roaster drum through a hopper, the roaster
operating temperature is primed to a set-point temperature, measured by a thermocouple located
within the drum. At the point in time when the coffee beans are released into the drum (at the
point t = 0 in Figure 3), the thermocouple within the roaster has reached the steady state priming
temperature. As the room temperature beans begin making contact with the thermocouple, heat
is transferred from the thermocouple to the beans. It is this dynamic lag of measured temperature
which produces the measured temperature profile shown in Figure 3.

1.3. The adapted Schwartzberg model

The following semi-empirical model of the coffee roaster proposes a scalable model for a drum
roaster. This model suggested by Palma et al. (2021) builds upon the model suggested by
Schwartzberg (2002) by allowing for adjustments as a function of the size of the roaster i.e. the
roaster mass and volume. The model can be summarised as follows:
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Ṫb =
Qgb −Qgm +Qbm +Mbd(Qr +λ Ẋ)

Mbd(1+X)cb
(1)
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1− exp

(
−

heAgb(1+F)

Ggcpg

))
(5)

Nomenclature

A Arrhenius constant
Agb air to bean heat transfer surface area
cb coffee bean specific heat capacity
cpg air specific heat capacity
cm metal specific heat capacity
Db coffee bean diameter
F ratio of air-metal and air-beans thermal resis-

tance
Gg air (gas) flow rate
he air to beans heat transfer coefficient
Ha activation energy
He cumulative heat of reaction
Het total reaction heat
k1, k2 semi-empirical constants
mb mass of a single bean
Mbd mass of dry bean batch
Mm mass of roaster metal
Qgb heat transfer from the air to the coffee beans
Qgm heat transfer from the air to the roaster metal
Qbm heat transfer from the beans to the roaster

metal
Qr heat production by exothermic reaction
R universal gas constant
Tb measured coffee bean temperature
Tgi inlet air temperature
Tgo outlet air temperature
Tm roaster metal temperature
X coffee bean moisture content
λ latent heat of vaporisation of water

A notable advantage of the adapted Schwartzberg model is the scalability of the model to different
sized coffee roasters. The adapted Schwartzberg model does however not take into account the
effect of the drum rotation speed on the measured temperature. This is a considerable disadvantage
if the proposed model is to be used for the purposes of process control such as in the case of a
model predictive controller. The semi-empirical constants k1 and k2 will be chosen as proposed
by Schwartzberg (Schwartzberg, 2002).
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2. Methodology

Developing a realisable model of the coffee roaster which is multiple input – multiple output in
nature can be achieved in one of two distinct approaches. Firstly, a model may be developed which
makes use of first principle mass and energy balances in order to determine the effect of the three
inputs, namely the LPG flow rate to the burner, the drum rotation speed and the blower speed
on the measured temperature within the system. Available literature (Schwartzberg, 2002) will
be utilised to simulate the “first-principles” model. Alternatively, measured temperature and input
feature data sets may be used to develop empirical regression models which may accurately predict
the measured temperature in the coffee roaster. Examples of such modelling techniques include
linear regression, random forests, decision trees and neural networks. The theory behind the inner
workings of these empirical methods will not be covered in this paper. The reader is referred to
the excellent introduction to such topics provided by Géron (2019). These two approaches will be
assessed and compared in order to determine inaccuracies that exist in either approach.

Data from a 30 kg (capacity) drum roaster is available which contains information about 42 runs
(containing a total of 22 149 measurements). The current data acquisition software does not allow
for the recording of total bean mass for each roast. As mentioned, the measured bean temperature
exhibits a local minimum in temperature. The laws of heat transfer would lead one to believe that
this local minimum’s location in time and temperature is strongly correlated to the initial starting
temperature of the roast and the total mass of beans being roasted (assuming a constant specific
heat capacity of beans for different temperatures and coffee bean species). Accurate prediction
of this point in time will allow one to address the non-linear nature of the temperature profile by
splitting the empirical model into two characteristic portions.

Figure 2: Relationship between the observed minimum temperature of the coffee beans and the
associated priming temperature.

Available data from the roaster is plotted in Figure 2 which displays two distinct clusters of data.
The first cluster of minimum times occur between 64–73 seconds from the beginning of each
respective roast. This cluster is strongly correlated to a set of colder priming temperatures (in the
region of 180–190 ◦C). The second cluster of minimum times occur between 73–90 seconds from
the beginning of respective roast and is strongly correlated to a hotter set of priming temperature
(in the region of 215–240 ◦C). A gradient boosted regression tree is used to model the relationship
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between the priming temperature and the time at which the local minimum in temperature occurs.
All the test data will be split into two portions, the “downward” portion (the region with a negative
gradient in temperature) and the “upward portion”. A model will be developed for each portion
applying the aforementioned regression techniques. The “downward” and “upward” data-sets will
be split into training (data used to train the regression models) and test sets (data used to validate
the regression models). The performance of each model will be assessed by calculating the RMSE
on the relevant validation sets.

3. Results and Discussion

Upon splitting of the available data into the aforementioned “downward” and “upward” data sets,
the following regression techniques are made use of: gradient-boosted regression trees, linear-
regression, support-vector machines, random-forests and neural networks. The performance of
each model is assessed against a validation data set using the root mean squared error (RMSE),
the calculated performance norms are summarised in Table 1.

Table 1: RMSE of each model evaluated for the each characteristic portion.

Model Downward portion Upward portion

Linear 18.46 8.428
Gradient boosted regression tree 2.612 5.724
Support-vector machine 12.49 4.386
Random forest 2.659 1.161
Feedforward neural network 6.746 1.150

The results obtained indicate that a composite/hybrid modelling approach can be used to model the
coffee roaster. The proposed hybrid model will be selected on the basis of the RMSE performance
norms of the relevant models on the validation data set. A gradient boosted regression tree will be
used to predict the downward portion of the measured temperature up to the predicted minimum
time (where the local minimum in temperature is predicted to occur in time by use of an additional
gradient boosted regression tree), subsequently the upward portion in measured temperature will
be predicted by use of a feedforward neural network.

A visualisation of the results obtained by predicting the measured coffee bean temperature dur-
ing roasting as a function of the roaster input features is shown in Figure 3. The supplied input
features as shown in Figure 3 did not occur in the training or validation set of data and is typical
of a roasting operation, the LPG input is initially maintained at 100% (an artefact of the priming
process) before stepping down at a later stage. The empirical model predicts the measured bean
temperature exceptionally well on the downward portion by use of a gradient boosted regression
tree. The neural network deviates from the true measured temperature between 80–600 seconds
before coinciding with the true temperature, interestingly a considerable reduction in LPG input
occurs at 600 seconds. The Schwartzberg model was implemented using the semi-empirical con-
stants and heat transfer coefficient approximations provided by Schwartzberg. The Schwartzberg
model seems to model a system in which there is less heat transfer to the beans by the hot air
and/or drum. This can be noted by the local minimum in the Schwartzberg model which occurs
at a later point in time and at a hotter temperature than the true minimum. The relevant RMSE
between the Schwartzberg model and the true measured temperature is 23.05 as compared to the
RMSE between the hybrid model and the true measured temperature of 9.153. The RMSE for the
hybrid model is surprisingly large when one considers the errors calculated in Table 1. This can
be attributed to the size of the data set used (22 149 measurements). Use of a larger data set will
allow the hybrid model to generalise with increased accuracy to unseen input features.
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Figure 3: Comparison of the composite empirical model to the first-principles model.

4. Conclusions and Recommendations

The empirical hybrid model has been successfully developed. The empirical model is composed
of two gradient boosted regression trees and an artificial feedforward neural network which pre-
dicts two characteristic portions of the measured temperature profile by accurate prediction of the
minimum measured temperature. The relevant RMSE between the Schwartzberg model and the
true measured temperature of an unseen test set of data is calculated as 23.05 as compared to the
RMSE between the hybrid empirical model and the true measured temperature of 9.153. It is
recommended that a larger set of data be used to train the empirical model to improve the gener-
alisation of the model to new sets of input features. The methods shown can easily be applied to
unrelated physical system modelling problems. The Schwartzberg model does not incorporate the
effects of drum rotation speed on the measured temperature. It is suggested that with the develop-
ment of an accurate model of the coffee roaster, the use of model-based control algorithms such
as model-predictive control (MPC) be investigated.
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Abstract 

The increasing number of microalgae-based applications has contributed for development 

of new models to describe the complex interactions taking place in mixed algal-bacterial 

wastewater treatment systems. Mathematical models contribute to system optimization in 

terms of operation and control. The goal of this work is modeling and simulation of an 

anoxic-aerobic algal-bacterial photobioreactor with biomass recycling for wastewater 

treatment. Process model and simulation have developed in dynamic simulation software 

PROOSIS®. The model was set-up and calibrated with data from a pilot plant treating 

synthetic wastewater, located in facilities of University of Valladolid. Simulations have 

shown the capability of mathematical model to predict the removal efficiency of nutrients 

from wastewater. Removal efficiencies simulated are closely with experimental results 

ones. 

 

Keywords: Modeling, Optimization, Simulation, Wastewater treatment. 

1. Introduction 

In recent years, microalgae-bacteria based technologies for wastewater treatment has 

generated a growing interest in scientific community. Microalgae-based technologies for 

wastewater treatment were proposed in the 1960s, but till now, remains certain limitations 

related with their exploitation at industrial scale. The European Directives concerning 

wastewater treatment processes; efficient gestion of nutrients; and transit to low-carbon 

economy, have reactivated the interest in microalgae-based technologies and have 

motivated the development of large number of improvements and applications (Muñoz & 

Guieysse, 2006). 

The costs associated with mechanical aeration represent 45–75% of the total operational 

costs in conventional wastewater treatment plants (WWTPs) (Chae & Kang, 2013). These 

costs could be reduced using wastewater treatment systems based in microalgae-bacteria 

consortia. In addition, the capacity of microalgae to simultaneously remove carbon (C), 

nitrogen (N) and phosphorus (P) via mixotrophic assimilation represents an important 

advantage in comparison with aerobic activated sludge or anaerobic digestion 

technologies in terms of enhanced nutrient recovery. 

The increasing number of microalgae-based applications has contributed for development 

of new models to studying of main processes, factors, and variables affecting microalgae 

growth in different cultures media, including wastewater (Casagli, et al., 2021), (Sánchez-

Zurano, et al., 2021), (Solimeno, et al., 2019). Recently, design and improvement of 
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facilities for optimization of algae biomass yield and adequate depuration of wastewater 

has generated a growing interest. In this regard, in (De Godos, et al., 2014), an innovative 

anoxic–aerobic algal–bacterial photobioreactor configuration with biomass recycling was 

proposed. The configuration described in (De Godos, et al., 2014) was optimized in 

(Alcántara, et al., 2015) in order to promote N removal via denitrification and the 

development of a rapidly settling algal–bacterial population. Within this framework, the 

goal of this work is modeling and simulation for first time the anoxic-aerobic algal-

bacteria photobioreactor for wastewater treatment proposed in (Alcántara, et al., 2015). 

In this work, simulation results for the concentration of Total Suspended Solids (TSS) 

and ammonium are presented. These values are used to estimate removal efficiencies in 

the anoxic-aerobic reactor configuration. Values of TSS and ammonium in effluents are 

key indicators for an adequate depuration of wastewaters. Process model and simulation 

have developed in dynamic simulation software PROOSIS®.   

2. Materials and Methods 

2.1. Plant Description 

Experimental data were collected from anoxic–aerobic algal–bacterial photobioreactor 

configuration with biomass recycling located in facilities of University of Valladolid (Fig. 

1). In (Alcántara, et al., 2015), the influence of the Hydraulic Retention Time (HRT), 

intensity and regime of light supply, and dissolved O2 concentration (DOC) in the 

photobioreactor were analyzed in five-stage experimentation. 

The aerobic tank (photobioreactor) was an enclosed jacketed 3.5 L glass tank (AFORA, 

Spain) with a total working volume of 2.7 L. The photobioreactor was continuously 

illuminated by LED lamps. The anoxic reactor consisted of a gas-tight 1 L polyvinyl 

chloride tank with a total working volume of 0.9 L maintained in the dark. The synthetic 

wastewater (SWW) was fed to the anoxic tank and continuously overflowed by gravity 

into the aerobic photobioreactor.  

The algal–bacterial broth was continuously recycled at 3 L/d from the photobioreactor to 

the anoxic tank. An Imhoff cone with a volume of 1 L and interconnected to the outlet of 

the photobioreactor was used as a settler. The algal–bacterial biomass settled was recycled 

from the bottom of the settler into the anoxic tank at 0.5 L/d and wasted 3 days a week to 

control the algal–bacterial sludge retention time (SRT). A detailed description of the 

system, microorganisms and culture conditions, experimental design, and analytic 

procedures is provided in (Alcántara, et al., 2015). 

2.2. Experiment Design 

The design of the experimentation was conducted based on the hypothesis that algal–

bacterial photobioreactors for wastewater treatment can support the oxidation of 

ammonium (N-NH4
+) into NO2

- /NO3
- , which can then be easily removed through 

denitrification (using the organic matter present in SWW) under anoxic conditions via 

internal recycling of the photobioreactor broth (De Godos, et al., 2014). Liquid samples 

of 100 mL were drawn three times a week from the SWW storage tank, anoxic tank, 

aerobic tank, wastage, and clarified effluent to monitor the concentration of dissolved N 

species (total nitrogen (TN), N-NH4
+, N-NO2

−, and N-NO3
−) and biomass concentration, 

expressed as TSS. The data used for simulations were obtained from previous studies in 

the Institute of Sustainable Process (University of Valladolid). Data used in this study 

were collected from May 2014 to July 2014 (corresponding with two experimentation 

stages with different HRT). Data from Stages I and II were selected, because same 

conditions of illumination and no oxygen supply are considered in both stages.  
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Fig. 1. Schematic of the anoxic-aerobic algal-bacterial photobioreactor configuration 

 

2.3. Modeling 

In the last two decades, several microalgae-bacteria models were developed (Reichert, et 

al., 2001), (Solimeno, et al., 2017), (Solimeno, et al., 2019), (Casagli, et al., 2021), 

(Sánchez-Zurano, et al., 2021). The review of these models has allowed to choose the 

model BIO_ALGAE 2 for the present work, since it includes the interactions between 

microalgae and bacteria, without presenting excessive complexity. Model BIO_ALGAE 

2 (Solimeno, et al., 2019) has been used to represent the biochemical reactions and 

processes that take place in both anoxic and aerobic reactor described in (Alcántara, et 

al., 2015). Model BIO_ALGAE 2 uses the common nomenclature of the International 

Water Association models and considers 19 components – 6 particulate and 13 dissolved 

– implicated as variables in the physical, chemical and biokinetic processes. In (Solimeno, 

et al., 2017) those components are described, as well as their main role in the processes 

and their interactions with other components. 

Settler model is described using the mass-balance expressions of Takács model (Takács, 

et al., 1991). Takács model is a multi-layer dynamic model for the clarification and 

thickening processes. In this work, a 5-layer settler is considered. A description of settler 

model used in this work can be found in (Bausa, et al., 2021).  

Reactors and settler model are coded in dynamic simulation software PROOSIS® 

(Empresarios Agrupados Internacional, 2021). 

2.4. Parameter Estimation 

Previous to parameter estimation, a sensitivity analysis is realized with the aim of identify 

the parameters that have the greatest impact on the model. To this purpose, a subset of 

the most influential parameters on model outputs was analyzed.  

The approach to solve a parameter estimation problem in terms of optimization considers 

that for each value of the vector of parameters θ (decision variables) the model provides 

a prediction of the response of the system in each experiment. For this purpose, a set of 

data samples from inputs u(t) and outputs y(t) of process is needed. The same sequence 

of process inputs is applied to model. For each time sample t, the prediction error is an 

indicator of model goodness. The dynamic optimization problem for the start-up 

optimization can be converted into a nonlinear programming (NLP) problem by means 

of a control vector parameterization technique and a proper procedure for computing the 

cost function. In this work, the SNOPT nonlinear programming algorithm has been used 

in the PROOSIS® dynamic simulation environment to solve the optimization problem. 

The selected integration method was IDAS. The fair function estimator (Huber, 2014) is 

used here as a robust objective function 𝐽 against measurement outliers and gross errors. 

Dynamic optimization problem reads: 
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𝑚𝑖𝑛
𝛉̂

𝐽(𝜃, 𝜃) = ∑ 𝑐2 [
|𝜀𝑗|

𝑐
− 𝑙𝑜𝑔 (1 +

|𝜀𝑗|

𝑐
)]𝑗∈𝑀    (1) 

Subject to restrictions (2) and (3)  
𝑑𝐱(𝑡)

𝑑𝑡
= 𝐟(𝐱(𝑡), 𝐮(𝑡), 𝛉, 𝑡)

𝐲̂(𝑡) = 𝐠(𝐱(𝑡), 𝐮(𝑡), 𝛉, 𝑡)
    (2) 

𝛉 ≤ 𝛉̂ ≤ 𝛉̅    (3) 

Where εj= (θ̂j-θj) θm⁄  represents the error between available process measurements (θ) 

and their estimated values θ̂ limited between user-defined minimum and maximum 

values, 𝑐 ∈ ℝ+ is an user defined fitting parameter to tune the slope for large residues, 

and θm is the media of process measurements. 

3. Results 

The results of sensitivity analysis in both reactors indicated that model outputs are 

especially sensitive to the maximum specific growth rate of microalgae (µALG) and 

heterotrophic bacteria (µH), the decay-rate of microalgae (kdeath,ALG) and heterotrophic 

bacteria (kdeath,H), and the mass transfer coefficient for ammonia (Kla, NH3). Limits for 

decision variables and initial values for optimization were established from similar 

studies reported in the literature. Values of decision variables resulting from optimization 

in both reactors are shown in Table 1. The optimized values of µH and kdeath,H, are closely 

related with calibrated values reported in (Solimeno, et al., 2017) and (Casagli, et al., 

2021), respectively. Value of kdeath,ALG coincide with value used in (Reichert, et al., 2001) 

and (Solimeno, et al., 2017). In sum, all parameter values are within values ranges adopted 

in literature for similar facilities. Results of sensitivity analysis and parameter estimation 

in settler is described in (Bausa, et al., 2021). Data from first 30 days of stage I were used 

for parameter estimation (corresponding with 14 samples). Validation was performed 

using data from stage I (days 33 to 47) and stage II (days 47 to 63). Both, parameter 

estimation, and model validation were performed using 14 samples of data. 

Fig. 2 show simulation results for the concentration of TSS. Fig. 2a) and 2b) represent 

data set used for parameter estimation and for validation in anoxic reactor, respectively. 

Results for parameter estimation and validation in the aerobic reactor are presented in 

Fig. 2c) and 2d), respectively. Simulation results show model capability to reproduce 

dynamic behavior of the system. Fig. 3 presents simulation results for the concentration 

of ammonium. Fig. 3a) and 3b) represent data set used for parameter estimation and for 

validation in anoxic reactor, respectively. Results for parameter estimation and validation 

in the aerobic reactor are presented in Fig. 3c) and 3d), respectively. Although some 

discrepancies are observed in transient behavior prediction for ammonium concentration, 

average values (and, consequently, removal efficiencies) are closely with experimental 

results. Average values for simulated data are compared with experimental values 

reported in (Alcántara, et al., 2015) at steady state during stage I with the aim of evaluate 

model capability for prediction. This comparison is presented in Table 2.  

Experimental removal efficiency of TSS for anoxic-aerobic configuration during stage I 

was roughly 98 %, the estimated value for removal efficiency of TSS was 97,7 %. Both 

experimental and estimated data are consistent with the percentage of reduction 

established by the European Union (CEE, 1991). Concentrations of ammonium in the 

effluent are above the maximum concentration permissible for wastewater discharge into 

the environment according to European Directive 91/271/CEE (CEE, 1991) on discharge 

of domestic waters. In this context, further research is needed to improve the N-NH4
+ 

removal efficiency of the configuration. 
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Table 1. Values of estimated parameters in anoxic and aerobic reactor 

Parameter Value 

μALG 0.4 d-1 

μH 1.4 d-1 

kdeath,ALG 0.1 d-1 

kdeath,H 0.9 d-1 

Kla, NH3 22.3 d-1 

 

 
Fig. 2. Experimental and simulated TSS concentration in anoxic and aerobic reactor 

 
Fig. 3. Experimental and simulated N-NH4

+ concentration in anoxic and aerobic reactor 

 
Table 2. Average values ± standard deviations at steady state during stage I 

Parameter Experimental  Simulated 

TSS anoxic (mgTSS/L) 2575 ± 160 2627 ± 148 

TSS aerobic (mgTSS/L) 2531 ± 191 2392 ± 111 

N-NH4
+ anoxic (mgTSS/L) 

N-NH4
+ aerobic (mgTSS/L) 

42±1 

28±1 

41.1±4.5 

22.9±7.4 
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4. Conclusions 

In this paper, modeling of anoxic-aerobic algal-bacterial photobioreactor for wastewater 

treatment is presented. Parameter estimation via optimization is realized to fit 

experimental and simulated data. The model proved to be effective in reproducing 

dynamic behavior of different measured variables. Removal efficiencies simulated are 

closely with experimental results ones. Removal efficiency for total suspended solids is 

over 95% for experimental and simulation results. 
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Abstract
Li-ion batteries (LIBs) are widely adopted in EVs and stationary battery energy storage due to
their superior performance over other battery chemistries. But LIBs come with the risk of thermal
runaway (TR) which can lead to fire and explosion of the LIB. Hence, improving our understand-
ing of TR is key to improving LIB safety. To achieve this, we aim to develop a detailed model
of LIB TR, as existing models are oversimplified and often lead to inaccuracies when compared
to experiments. To build a realistic representation of the reaction network (RN) for LIB TR, we
present a case study on the ethylene carbonate (EC) solvent component of the LIB electrolyte. We
use a RN for EC identified from literature to build a micro-kinetic model and optimize it against
experimental data. Parameters optimisation and sensitivity analysis for a complex RN is made
possible by using Gaussian Processes (GPs). It is found that the only four of the 14 parameters
influence the simulation output significantly. Also, this work highlights areas of GP development
for improved surrogate modelling of this type of problem. From this the methodology can be
scaled to larger networks and can be applied LIB TR models to improve their accuracy, which in
turn will help the development of safer LIBs.

Keywords: Thermal runaway, Gaussian Process, Li-ion battery, Reaction network analysis, Ro-
bust optimization

1. Introduction

Li-ion batteries (LIBs) have become the favoured electrochemical energy storage device in EVs
and stationary applications as they benefit from high energy density and low cost (Keshan et al.,
2016). However, they can undergo the rare but hazardous phenomenon of thermal runaway (TR),
which through exothermic decomposition can lead to fire and explosion (Wang et al., 2012). Im-
proved battery safety is paramount as the use of LIBs is increasing enormously.

Computational modelling is a proven method to aid the design of safer LIBs (Abada et al., 2016;
Bugryniec et al., 2020b,a). However, models used in previous works can be considered oversim-
plified as they do not consider (1) the multi-pathway and interdependent reaction network (RN)
(Wang et al., 2012), or (2) the generation of decomposition products which could be used for
chemical hazard assessment. Also, existing models can be limited to the experimental conditions
on which they are developed. Hence, there is a desire to build a more detailed model of LIB TR
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based on a realistic representation of the RN. In this paper a new approach is developed to meet
this goal.

RNs can be developed by inference of reactants and products from experimental observations,
or from molecular simulations studies (Campion et al., 2005; Hirai and Jinnouchi, 2021).Micro-
kinetic modelling techniques can be applied, which provide a detailed description of the reaction
pathways, including each possible elementary step and reaction intermediate. In this approach,
the kinetic parameters are typically estimated based on a solid theoretical basis and no a priori
assumptions on the rate determining steps are needed (Hermes et al., 2019).

We have previously shown (Milton et al., 2019; Yeardley et al., 2020) that applying Gaussian
Processes (GPs) surrogate modelling to LIB modelling is beneficial due to the efficiency of the GP
prediction technique (Sacks et al., 1989). Further, as the GP is mathematically tractable it allows
sensitivity analysis (SA) and optimisation of the complex RN. The implementation of the GP can
be conducted through two main methods. The first, is by fitting the GP to a heuristic fit of the
computer simulation, providing information about the error between simulation and experimental
data. The second, is to fit multiple GPs to create a direct surrogate model that uses the same input
variables as the computer simulation to predict the same outputs as computer simulation.

The aim of this work is to develop a methodology for the efficient generation of realistic RNs of
LIB TR, from which the optimal and most influential reaction parameters can be determined. To
assess the validity of the aforementioned methodology, an exploratory study has been conducted
to analyse the thermal decomposition of ethylene carbonate (EC) as a model component of the
electrolyte.

2. Methodology

As stated previously, this work focuses on the RN of EC oxidation decomposition. For this work,
the energy diagram from Hirai and Jinnouchi (2021) (containing 3 reaction pathways for the EC
decomposition) is used to define the RN. This size of network provides a suitable problem to test
and validate our proposed methodology. From the energy diagram a micro-kinetic model can be
created. The forward and backward reaction steps are listed in Table 1, for a total of 14 reactions
and 8 species, along with the corresponding activation energies of each step. The micro-kinetic
model (a.k.a. the full order model or FOM) consists of a system of 8 ordinary differential equations
(ODEs) describing the change in concentration of the 8 species. Each ODE is expressed as the
algebraic sum of all relevant reaction rates (Ri) corresponding to a given reaction step, where Ri is
governed by an Arrhenius equation of the form Ri = Aiexp(−Ea,i/RT )Π jC j.

To analyse the RN, and to obtain the optimised frequency factors, GPs are applied. To generate
training data for the GP, the desired parameter space of the 14 frequency factors is sampled using
Latin Hypercube sampling, which through the FOM, is used to generate 10 000 outputs that are
used for training.

The log base 10 of each input variable is taken before being standardised as the bounds of the
variables extend over several orders of magnitude. In this research both a GP behaving as a direct
surrogate model and a GP predicting a heuristic fit are chosen to analyse the data. A GP is a non-
parametric machine learning technique which takes a 1× d row vector of inputs x and returns a
Gaussian random variable through calculations using the predictive equations shown in Yeardley
et al. (2020). The difference between the direct surrogate model and the heuristic fit is the output
that the GP predicts. For the surrogate model, numerous GPs are trained to predict the mole
ratio every step in temperature. Whereas, the heuristic fit maps the log of the 14 parameters
to a single output of interest. This output is the root mean squared error (RMSE) between the
experimental and simulated mole ratio over the entire temperature range. In essence, the heuristic
fit GP behaves as a blackbox function using training data to predict the RMSE from the log of the
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Table 1: Calculated activation energies for the forward and backward reactions of EC decomposition ac-
cording to the energy diagram from Hirai and Jinnouchi (2021). The notation Ri in brackets identifies each
reaction step.

Reaction
Activation Energy (eV)
Forward Reverse

EC←−→ C2H4O+CO2 1.12 (R1) 1.86 (R2)
EC←−→ C3H5O3 +C3H3O3 0.06 (R3) 1.31 (R4)
EC←−→ *C2H5O3 +C3H3O3 0.20 (R5) 0.37 (R6)
C3H5O3 +C3H3O3←−→ C2H3O+CO2(+C3H5O3) 0.84 (R7) 1.55 (R8)
C3H5O3 +C3H3O3←−→ *C3H5O3 +C3H3O3 1.08 (R9) 0.00 (R10)
*C3H5O3 +C3H3O3←−→ C2H5O+CO2(+C3H3O3) 0.21 (R11) 1.58 (R12)
*C3H5O3 +C3H3O3←−→ C2H3O+CO2(+ *C3H5O3) 0.84 (R13) 1.56 (R14)

model parameters

Both methods require GP learning which uses training data to optimise d + 2 hyperparameters
found in the predictive equations, consisting of Λ, σ f , and σe. This optimisation is completed by
maximising the marginal likelihood p[y|X] using the ROMCOMMA software library (Milton and
Brown, 2019).

The GPs are used for a global sensitivity analysis (GSA) and to optimise the model simulation with
respect to the experimental data from Lamb et al. (2015). For this work, we opted to implement a
GSA using the variance based Sobol’ indices technique (Sobol, 1993, 2001). As previously men-
tioned, GPs are mathematically tractable, therefore, we can compute the semi-analytic evaluation
of complex multi-dimensional integrals resulting in Sobol’ indices which measure the contribution
to the outputs variance attributable to each input parameter. Hence, to understand how the input
parameters impact the model simulations closeness to the experimental data, the GSA required an
output that measures said closeness, resulting in a GP predicting the heuristic fit. Additionally,
the direct surrogate model is required to be able to optimise the parameters throughout the model
simulation as a function of temperature. In this way, the GP is trained to accurately copy the model
simulation and is used to make fast, efficient predictions. Thus, the optimisation of model param-
eters is achieved by minimising the error between the GP predictions and the experimental data.
GPs predict a probability distribution presenting the uncertainty in the predictions. Therefore, the
optimisation should include constraints where the predicted standard deviation (STD) is limited to
be within 2 standardised units from the mean. In this research, we compare both a constrained and
an unconstrained GP for parameter optimisation.

3. Results and Discussion

3.1. GP Validation

Both techniques are tested using the 5-fold cross validation technique. The results of which are
scrutinised by calculating the error metrics between the GP predictions and the model simulation
data. In this work, we conduct a robust validation by calculating three popular error metrics and
by plotting figures to provide a visual understanding of the error. Table 2 shows the coefficient
of determination (R2) and the root mean squared error (RMSE) values for each output. Both di-
agnostics measure a skill score, corresponding to the accuracy of the predicted mean (Al-Taweel,
2018), but with different scales. Further, the predictive distribution is analysed to ensure the GPs
are not predicting with over confidence. This is shown by counting the outliers for any predic-
tion where it’s true standardised value is outside of the predictions 95% uncertainty distribution.
Table 2 presents the outliers of both around the 5% as expected for a normal distribution. How-
ever, the two skill scores show the heuristic fit to have a worse accuracy than the direct surrogate
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Table 2: Error metrics used to validate the GP models.

GP R2 RMSE Percentage of outliers

Heuristic Fit 0.486 0.486 5.60 %
Direct Surrogate Model 0.931 0.279 5.25 %
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Figure 1: a) Validation, standardised value predicted by GP vs standardised value from FOM simulation,
also shown is the linear fit (dashed line, y = 1.102x− 0.041 with R2 = 0.931) of the scatter data. b) The
cumulative Sobol indices’ overlaid with first order Sobol indices’ for each of the 14 frequency factors, first
order totals 65.7 %. c) Optimisation output, GP predicted mean with error bounds (one STD) for scenarios
where the STD is constrained and unconstrained. d) FOM output using optimised parameters determined by
GP. (Note experimental data is from Lamb et al. (2015))

model as the R2 is small and the RMSE is large. Further, Fig. 1(a) shows the correlation of GP
predictions against the outputs of the FOM in a standardised form. The quality of prediction is
shown by the closeness of the fit line to the y = x line, with a coefficient of determination equal to
0.931. However, there are some large residuals, as well as instances of residuals far away from the
straight line.

From this, it can be seen that the GP predicting the heuristic fit is satisfactory and appropriate for
the calculation of Sobol’ indices due to 95% of the true observed values fitting into the predicted
distribution. However, the point estimations for the heuristic fit require further work to increase
accuracy. Hence, the direct surrogate model is used for a parameter optimisation.
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Table 3: Error (RMSE) from predicted output and FOM output (calculated against experimental) for opti-
mised parameters under un/constrained conditions.

Type GP predicted FOM

Best training data - 0.1190
Constrained GP 0.0980 0.1197
Unconstrained GP 0.0821 0.2304

3.2. Sensitivity Analysis

SA of the model output dependent on the 14 frequency factors can be realised by calculation
of the Sobol’ indices. The first order and cumulative Sobol’ indices are presented in Fig. 1(b).
From the first order Sobol’ indices, it can be seen that the frequency factors relating to the initial
decomposition of EC (A1, A3, A5) by the forward reactions R1, R3, R5 are of the most dominant
parameters. This is besides parameter A7, which is the most dominant and relates to the second
stage (forward) reaction from the products of R2 and leads to the generation of CO2. Further,
the first order Sobol’ indices show that the frequency factors for all the backwards reactions and
forward reactions R9 and above have negligible influence of CO2 generation.

From the cumulative Sobol’ indicies in Fig. 1(b) it can be seen that the increase in value is driven
by the interactions from the frequency factors related to the first three forward reactions. The
backwards reactions, with A2, A4, A6, have little effect on the increase in indices value. A7 has
a great effect on increasing the cumulative Sobol’ indies value, equating to almost 87 % of the
total Sobol’ indices. Where over 50 % of the value is due to interactions with the first 6 frequency
factors. After this, little change is seen in Sobol’ indices until A11 at which there is an increase to
99 %. From Table 1, the influence of A11 can be rationalised by the fact that it is a second stage
reaction that leads to CO2 generation by a relatively low activation energy. Overall, first order
Sobol’ indices total 65.7 %, thus interaction account for 34.3 %. Hence, it can be seen that the
frequency factors relating to R1, R3, R5 and R11, which relate to the forward reaction of the first
stage of EC decomposition and the forward reaction of the decomposition of the products from
R5, have the most influence on predicted output.

3.3. Parameter Optimisation

The best training data, with the lowest RMSE relative to experimental, was chosen from FOM
simulations, see Table 3. So the aim is to optimise the GP against experimental data to determine
parameters that lead to a smaller RMSE than 0.1190. The results of the direct surrogate model
for parameter optimisation are presented in Figs. 1(c) and 1(d). Fig. 1(c) shows the GP predicted
mean with STD for two scenarios, where the deviation is (1) unconstrained and (2) constrained.
The constraint was applied to minimise the size of the STD around the predicted mean. It can be
seen from Table 3 that the unconstrained GP predicts a smaller RMSE than the constrained GP.
However, when the optimised parameters from the GP are implemented in the FOM the resulting
output (see Fig. 1(d)) leads to RMSEs larger than the GP predicted in both scenarios. Further, the
parameters from the unconstrained GP lead to a much larger RMSE than the best training data,
while the parameters from constrained GP lead to a similar RMSE to the training data.

It is shown that constraining the GP increases the RMSE of the prediction but leads to a GP that
is better at capturing the FOM behaviour. However, as the GPs both predict better than the FOM
output for the same parameters it indicates that our surrogate model is not accurately capturing the
behaviour of the FOM. This may be due to the slight deviation of the correlation plot from the y=x
line (see Fig. 1(a)). Or it may be possible that the FOM is already as close to optimal, due to the
large number of starting point considered, and the GP cannot improve on it. To further refine the
GP to improve the correlation plot, then the follow can be applied: 1) restricting the training data
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to sets with lower RMSE, 2) using both cross-validation and a test set to validate the GP so that
there is a data set purely for testing, 3) optimise against experimental data using the continuous
ranked probability score to account for uncertainty rather than using the RMSE.

4. Conclusion
The modelling of chemical reactions is usefully for calculating reaction barriers, the effects of
catalysts, product yields and analysing theoretical reactions schemes. Here, decomposition of EC
is studied using micro-kinetic modelling. A GP approach is applied for SA and optimisation of
the frequency factors. The SA shows that most of the error between the simulation output and
experimental data comes from 4 of the 14 parameters. The GP, while predicting a mean close to
the simulation, currently does not capture the FOM to a standard required to calculate optimised
model parameters. This work provides lessons for GP development applicable to RN analysis. It
can be used for safer LIB design by applying it to LIB TR models so that the most likely reaction
pathway and production of hazardous species can be predicted.
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Abstract 

Hydrogen is considered as a clean energy carrier that can be produced from several 

renewable resources. Biomass as an alternative energy resource can be used to produce 

hydrogen to substitute fossil fuels. The objective of this work is to propose a coupled 

process modelling under Aspen for H2 production based on anaerobic digestion for syngas 

production and methane transformation to hydrogen based on steam reforming (process 

1) and partial oxidation (process 2). The modelling was validated with experimental 

results. The modelling has allowed to establish an evaluation of the energetic performance 

of each installation with a quantification of the CO2 production which is considered as 

greenhouse gas. The feed of the process was set equal to 0.33 l/day of cow manure 

biomass for both modelling. The results show that the process 1 produced 5.71 l/day of 

H2 with an energy efficiency of 82.72% and the emission of the CO2 is about 12.83 kg 

per kg of H2 produced. These values are highly advantageous compared to the second 

process. 

Keywords: biomass, anaerobic digestion, hydrogen, methane, modelling. 

1. Introduction 

The current production of hydrogen is mainly based on fossil fuels as feedstocks (coal, 

natural gas, oil, etc.), and 4% is produced by electrolysis of water [1]. Hydrogen could be 

the fuel of the future because of its high energy content, as well as it presents 

environmental, economic and social issues, it is considered a clean energy that does not 

cause air pollution. The production of hydrogen from renewable sources, in particular 

biomass, instead of fossil fuels, is a green way and shows many advantages due to its 

availability, abundance and its carbon neutrality.  

Anaerobic digestion, also called "methanization", is the transformation of organic 

materials into a gas rich in methane and carbon dioxide called biogas containing about 20 

to 40% of the energy value of the original biomass. It is carried out in the absence of 

oxygen by a complex microbial community in a closed chamber (digester, fermenter or 

reactor), and is widely used for the treatment of wet organic waste (80 to 90% moisture) 

[2,3]. 

The different hydrogen production techniques are mainly based on syngas and methane 

reforming techniques, such as (i) steam reforming (methane and steam converted to 

syngas), (ii) partial oxidation reforming (methane and oxygen converted to syngas), (iii) 

autothermal reforming (methane, oxygen and steam converted to syngas), (iv) dry 

reforming (methane and carbon dioxide converted to syngas), (v) bi-reforming (methane, 
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carbon dioxide and steam converted to syngas), (vi) tri reforming (methane carbon 

dioxide, steam and oxygen to syngas).  

In the light of these considerations, this work is aimed at studying two different processes 

of hydrogen production from biogas. The two main steps involved in these processes are 

the production of biogas from biomass by anaerobic digestion and the transformation of 

the methane produced to produce pure hydrogen.  

2. Process modeling in Aspen Plus 

2.1. Process description 

The main steps in the production of hydrogen from biogas or methane are shown in the 

Figure 1. The bio-digestor model was established and validated by [4]. Steam reforming, 

partial oxidation reforming and  the autothermal reforming models were validated by 

Hajjaji et al. [5] while the bi-reforming, dry reforming and tri-reforming models were 

validated by Phan at al. [6]. 

 
Figure 1: Main steps in the production of hydrogen from biogas or methane 

 

The thermodynamic method selected was NRTL (Non-Random Two Liquid) which is 

recommended for anaerobic digester simulation [7]. The cow manure is considered as the 

feedstock with a loading rate of 0.33 l/days. The first step of anaerobic digestion which 

is the hydrolysis of biomass was not modeled due to complexities such as the difficulty 

associated with specifying the composition of biomass in terms of its constituents, 

therefore, the flow for this process is assumed to be pretreated (hydrolyzed) [6,7]. Two 

streams were produced at the outlet of the digester (i) biogas and (ii) undigested slurry 

(mixture of solid and liquid phases) which can be used for agricultural purposes. 

 

Steam Reformation of Methane (SRM) is the most industrially applied and commonly 

used to produce hydrogen in large quantities. This technique consists in reacting methane 

with steam to produce a synthesis gas, in the presence of a nickel-based catalyst, at a high 

temperature of 800 to 1000 °C, and at a moderate pressure of about 5 to 25 bars. This 

transformation is followed by different operations which lead to the production of 

hydrogen and carbon monoxide, carbon dioxide, methane and water [1,8], as shown in 

the following reaction system: 

 
The first reaction (R.1) corresponds to the steam reforming, it is endothermic and is 

characterized by a ratio H2/CO of about 3 where the second reaction (R.2) corresponds to 

the conversion of CO, known as the water gas shift reaction, and it is slightly exothermic. 

A desulfurization pre-treatment is usually applied to the feedstock, to avoid poisoning the 

catalysts. 
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The partial oxidation of methane consists in converting hydrocarbons into hydrogen and 

carbon monoxide in the presence of oxygen, carried out at high temperature from 1200 to 

1500°C and at high pressure from 20 to 90 bars. The reaction is exothermic and takes 

place with or without catalyst depending on the load and the reactor used, this technique 

remains however much less common than steam reforming because of its high cost. Shell 

and Texaco processes are the most known, the operating conditions for these two 

processes involve a temperature of around 1000°C and a pressure of 35 bar [9]. 

 
The CO conversion reaction (Water Gas Shift reaction) carries out the conversion of the 

CO existing in the syngas by reaction with steam, this reaction is also the same in all 

reforming processes. The WGSR is balanced as follows: 

 
This conversion is carried out in two successive stages, the first the conversion at high 

temperature which is carried out in HTS reactor (High Temperature Shift) at temperatures 

between 350°C and 450°C, then, the conversion at low temperature in a LTS reactor (Low 

Temperature Shift) at temperatures between 200°C and 250°C [10]. 

 

Metal membranes operate at high temperature and convert catalytically hydrogen gas into 

hydrogen atoms that can pass through solids. The atoms recombine on the product side 

into molecular hydrogen [11]. These membranes operate at temperatures ranging from 

300°C to 600°C and the purified hydrogen exits the separator at an atmospheric pressure  

[8][12]. 

2.2. Process flowsheet and operating conditions 

Several blocks were used to achieve this modelling for both processes. The process 1, for 

example, is essentially composed of 4 blocks: 

 

 
Figure 2: Flowsheet of hydrogen production from biomass via steam reforming 

(i) Reformer block: The process feeds the reformer modeled by the RGIBBS model at 

973Kand 10 atm by methane and steam at high pressure (10 atm). The syngas et the at 

the exit of the reformer block (REF-S stream) is cooled to 573K to be returned to the 
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WGS block. (ii) The Water Gas Shift block: The syngas at 573 K and 10 atm is 

converted by steam into a H2 and CO2 rich gas. The WGS reactor is modeled by the 

RSTOIC with a conversion rate of CO equals 0.98. The (WGS-S stream) from this block 

is heated to 723 K before being fed into the purification block. (iii) The purification 

block: The purification block is modeled by the Sep model under Aspen plus. The gas 

leaving the purifier still containing CH4, CO, CO2, H2O and residual H2 (PURF-S stream) 

is expanded to atmospheric pressure, to be returned to the combustion block. (iv) The 

combustion block: The combustion furnace is fed with the gas from the purification 

block to provide heat to the reforming reactor. The global flowsheet in the case of process 

1 (coupling with steam reforming) is shown in figure 2.  

 

2.3. Process energy analysis 

The energy performance of coupled “anaerobic digestion-reforming” processes has been 

examined based on several [8,13]: 

Ƞ𝒃𝒊𝒐𝒎𝒂𝒔𝒔 = 
𝐷𝐻2×𝐿𝐻𝑉𝐻2

𝐷𝑏𝑖𝑜𝑚𝑎𝑠𝑠×𝐿𝐻𝑉𝑏𝑖𝑜𝑚𝑎𝑠𝑠  + 𝑊𝑐𝑜𝑚𝑝𝑟𝑒𝑠+𝑊𝑝𝑢𝑚𝑝
                     Eq.1 

Ƞ𝒃𝒊𝒐𝒈𝒂𝒔  =
𝐷𝐻2×𝐿𝐻𝑉𝐻2  

𝐷biogas ×𝐿𝐻𝑉biogas + 𝑊𝑐𝑜𝑚𝑝𝑟𝑒𝑠+𝑊𝑝𝑢𝑚𝑝
                              Eq.2 

Ƞ𝒎𝒆𝒕𝒉𝒂𝒏𝒆 =
𝐷𝐻2×𝐿𝐻𝑉𝐻2

𝐷CH4  ×𝐿𝐻𝑉CH4   + 𝑊𝑐𝑜𝑚𝑝𝑟𝑒𝑠+𝑊𝑝𝑢𝑚𝑝
                                  Eq.3 

With : 

Di : The mass flow rate of i component (hydrogen, biomass, biogas, methane) (kg/s), 

processes (kg/s), LHVi: Lower Heating Value of i component (hydrogen, biomass, biogas, 

methane) (kJ/kg), Wi: Mechanical work of the compressor and pump (kW)  

The biomass considered as hydrolyzed cow manure. The LHV of this last was set equal 

to 12.47 MJ/kg [14]. 

3. Results and discussion 

The simulations of the "DA-Reforming" processes have been modeled on Aspen Plus, 

these models allow to compare the production of hydrogen from biomass via the coupling 

of the anaerobic digestion process with the different reforming models. 

Table 1: comparison between the two processes 

Process Process 1 Process 2 

H2 (L/day) 5.57 3.58 

Ƞ biomass (%) 30.58 19.67 

Ƞ biogas (%) 82.72 47.21 

Ƞ Methane (%) 83.24 53.51 

Exhaust gas (L/day) 30.06 33.18 

CO2 (L/day) 5.2 5.2 

kg CO2 per kg H2 12.83 19.95 

The results given by the simulations carried out show that the process 1 "DA-steam 

reforming" is the most productive of hydrogen, this process has the greatest volume flow 

in H2 produced, for a feeding of 0.33 l/day of biomass, we obtained 5.57 l/day of 

hydrogen produced. The purified biogas containing CH4 (51.97%), CO2 (32.07%), H2O 

(15.77%), H2 (0.19%) where the presence of CO2 and moisture in the biogas is an 

advantage or the biogas can be used directly, without the removal of steam because it 

promotes the WGS reaction [7], this reduces energy consumption and improves the ratio 
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H2/CO, the biogas is reformed with an excess of steam. Figure 3 shows the mass and 

energy balance for the two simulations. 

 
Figure 3: Mass and energy balance for the two process models 

 

based on the energy balance and the different efficiencies shown above, the process1 

(DA-steam reforming) has shown more interesting efficiencies compared to process 2 

(DA- partial pressure (table 1). 

It is necessary to consider the related pollutant emissions for a comparison of the two 

coupling processes for hydrogen production from biogas. Table 1 presents a comparison 

between the processes in terms of CO2 emissions and exhaust gas released into the air 

from each process at identical temperatures and pressures. The CO2 emissions per kg of 

H2 produced in both processes show that process 1 emits less CO2 than the process for 

producing the same amount of H2. Overall, the amount of CO2 released is almost the same 

for both process and equal to 5.2 L/day. 

 

Conclusion 
This study focuses on hydrogen production processes from biogas obtained from 

anaerobic digestion of biomass. The overall process consists of two main steps: (1) biogas 

production and (2) biogas reforming to generate pure hydrogen adapted from the 

literature. The important results of this section are summarized in the following points: 

- The process 1 coupling DA and a steam reforming section is the most productive of H2, 

with a flow of H2 of 5,57 l/day, for a feed of 0.33 l/day of biomass. 

- An energy efficiency Ƞbiogas (hydrogen to biogas) of the process1 is about 82.72% which 

is the highest. 

- The process 1 remains significantly interesting compared to process 2 in terms of 

quantity of CO2 and gas exhaust released for 1 kg of H2 produced 

This global model can be improved by replacing the hydrogen separators by a purification 

section based on more efficient models for a better estimation of the energy consumed in 

the installation. Also, the energy optimization based on the pinch method seems 

indispensable followed by an exegetic study for each coupling process to calculate the 

exegetic efficiency and to determine the thermodynamic irreversibility.  
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Abstract 

Carbon capture and utilization (CCU) based chemicals' have become an appealing 

strategy towards more sustainable production patterns. Several previous CCU studies 

often overlook the variability of renewable power technologies (by assuming average 

capacity factors) and focus on single technologies. To enlarge the scope of these studies, 

we optimize location-specific renewable energy systems (ES) clustered with CCU, 

while accounting for the yearly variability, to evaluate their environmental and 

economic performance more accurately. Our approach, based on a mixed-integer linear 

programming (MILP) model, coupled with life cycle assessment (LCA) principles, was 

applied to evaluate nine locations in the European Union (EU) and considering solar 

photovoltaics (PV), wind turbines, pumped hydro storage (PHS), and the interactions 

with the national grid. Overall, our tool could complement future assessments, 

expanding their scope and boosting the successful industrial implementation of CCU. 

Keywords: Life cycle optimization; Energy system; Carbon capture and utilization. 

1. Introduction 

The fossil-based chemical industry should transition towards a low-carbon future 

aligned with the Paris climate agreement target (United Nations, 2016). Notably, even 

though the EU has adopted several policies, the envisioned carbon neutrality goal by 

2050 is still beyond reach (European Commission, 2019). Thus, reducing the chemical 

sector's footprint could aid in achieving the climate mitigation target, which could be 

attained by replacing fossil-based resources with renewable carbon. Among the 

proposed alternatives, CCU, which requires large amounts of energy (often via an 

energy carrier, e.g., electrolytic H2) to activate the carbon dioxide (CO2), has received 

substantial attention (Ioannou et al., 2021). Moreover,  by using CO2 feedstock captured 

directly from the air –while using low-carbon energy (Deutz and Bardow, 2021)–, CCU 

could significantly aid the direct atmospheric carbon removal.  

Within this general context, the design, location, and operation of the ES, covering the 

power demand, strongly affect the performance of the low-carbon chemicals (Ioannou et 

al., 2020). At present, LCA assessments of CCU assume a single power technology, 

e.g., wind or solar, for H2 production while overlooking energy storage and links with 

the power sector. Furthermore, CCU chemicals are often economically inferior relative 

to their fossil-based counterparts due to their high energy consumption and the low 

capacity factor of the electrolyzer, which is powered by renewable technologies 

(Parkinson et al., 2019). Therefore, the variability and availability of renewable power 

could act as barriers to the successful implementation of CCU.  

Here we develop a MILP model to design an ES-CCU cluster, considering nine EU 

locations, delivering an energy demand at a minimum levelized cost of electricity 

(𝐿𝐶𝑂𝐸). We integrate the ES with electrolytic H2, CO2 capture, and their transformation 

to methanol (MeOH), benefiting the sector's downstream applications. Our analysis 
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shows that since the ES's performance can vary significantly within and among 

countries, an integrated design of the ES-CCU clusters is key to assessing the chemicals' 

production feasibility and viability accurately. 

2. Methods 

To carry out our analysis, we developed a network model to design location-specific 

renewable ES, with energy storage, to minimize the 𝐿𝐶𝑂𝐸. The latter aim could aid in 

coping with the variability of renewable technologies while attaining reductions in the 

cost of the CCU chemicals. The temporal representation is 2015 –on an hourly 

discretization–, which is adequate for the scope of the current design study. Hence, our 

model's unique feature is that it explicitly considers the hourly synergetic effects of 

hybrid ES –and storage– for CCU applications. The proposed methodology is divided 

into five steps, described briefly in the following sections: (i) selection of location(s), 

(ii) life cycle inventory generation (LCI) –based on assumptions, process simulation 

data or other sources–, (iii) model execution to obtain a tailored ES for the location 

defined in (i), while delivering the hourly power consumption defined in (ii), (iv) 

techno-economic and environmental assessment, and (v) interpretation of results. 

2.1. Locations 

We focus on three EU countries and three regions within each of them –Germany: 

Schwerin, Essen, and Haundorg; Austria: Parndorf, Tulln, and Zwettl; and Spain: 

Tarragona, Huelva, and Cartagena. Thus, we create a representative sampling to 

interpret the potential behaviour of the location-specific ES-CCU systems. 

2.2. LCI of the CO2-based MeOH production cluster  

We design an ES that supplies the power requirements of a chemical facility, based on 

CO2 capture and electrolytic H2 generation, that produces 11.08 kt y-1 of MeOH, acting 

as the functional unit. Within this general context, we assume an electrolytic efficiency 

of 80 % based on the LHV of H2 and consider the co-product oxygen as a burden-free 

byproduct. Furthermore, we retrieved from the literature the LCI of the CO2 

hydrogenation to MeOH (González-Garay et al., 2019) and of the direct air capture 

(DAC) process (Fasihi et al., 2019). Finally, the LCI of raw materials and utility inputs 

are retrieved from the Ecoinvent V3.5 database (Wernet et al., 2016). Based on the 

latter, the hourly delivered power should be 10.84MW (amounting to 94.95 GWh y-1), 

where 10.00MW is consumed for the generation of electrolytic H2, and the remaining is 

used to synthesize MeOH and DAC (0.38 and 0.46MW, respectively). Furthermore, the 

facility will require 9.13 GJ of steam to capture 16.06 kt y-1 of CO2. The remaining 

inputs and direct emissions for MeOH production can be found in the original source. A 

cradle-to-gate LCA is carried out using the global warming (GW) indicator of the 

ReCiPe 2016 Midpoint (H) methodology (Huijbregts et al., 2017).  

2.3. Mathematical model 

We briefly describe the ES model, expressing parameters with regular letters and 

variables with italics. Our model integrates a set of power technologies (solar PV and 

wind turbines, 𝑖 ∈ 𝐈), exploiting the complementary strengths to design the hybrid ES 

with storage at minimum 𝐿𝐶𝑂𝐸 –Eq.(1). The 𝐿𝐶𝑂𝐸 is based on the total annualized cost 

(𝑇𝐴𝐶), and the predefined power demand of electrolysis, DAC, and MeOH production 

(Ht + Dt).  

𝑚𝑖𝑛 (𝐿𝐶𝑂𝐸 =
𝑇𝐴𝐶

∑ (Ht + Dt)𝑡∈𝐓

) (1) 
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The 𝑇𝐴𝐶 considers the costs of purchasing power –from the national grid–, and the 

capital and operational expenses for installing (i) a PHS facility, with installed capacity 

𝑆𝑚𝑎𝑥 , (ii) solar PV, with installed capacity 𝐶𝐴𝑃𝑖=𝑃𝑉 and 3 kW nominal capacity per unit 

(NCAP), and (iii) wind turbines, with installed capacity 𝐶𝐴𝑃𝑖=𝑤𝑖𝑛𝑑  and 3 MW NCAP. 

𝑇𝐴𝐶 = ∑ 𝐺𝑟𝑖𝑑𝑡𝑡∈𝑻 ∙ LCOEgr + StorageCAPEX ∙ crfS ∙ 𝑆𝑚𝑎𝑥 + ∑ ((𝐶APEXi ∙𝑖∈𝐈

crf𝑖 + OPEXi) ∙ 𝐶𝐴𝑃𝑖)       
(2) 

, where crf is the annual capital charge. The grid interactions and the PHS are necessary 

to satisfy the ES hourly availability, and thus, cope with the intermittent character of the 

installed renewables. 𝐶𝐴𝑃𝑖 is calculated based on the NCAP𝑖  of the technology 𝑖, and the 

respective number of units –integer variable 𝑁𝑖. 

𝐶𝐴𝑃𝑖 = NCAP𝑖 ∙ 𝑁𝑖 , ∀𝑖 ∈ 𝐈      (3) 

We assume that, within the ES lifespan, the annual local solar irradiation and wind 

speed patterns (obtained by "European Commission: PVGIS tool") will remain constant 

during the time horizon, and thus, the power generated from a unit 𝑖 (NPi,t) –Eq.(4)–, for 

2015 is representative for the upcoming years.  

NPi,t = 𝑓(wind speed, solar irradiation), ∀𝑖 ∈ 𝐈, 𝑡 ∈ 𝐓  (4) 

The number of renewable units is then connected with the hourly power generation 

from the respective renewable source –NP𝑖,t. 

𝑃𝑖,𝑡 = NPi,t ∙ 𝑁𝑖 , ∀𝑖 ∈ 𝐈, 𝑡 ∈ 𝐓 (5) 

An energy balance is defined –Eq.(6)– and expressed in power units since the hourly 

representation allows us to omit the Δt = 1h. 

Ht + Dt + 𝑃𝐻𝑆𝑐ℎ,𝑡 + ∑ 𝐶𝑢𝑟𝑖,𝑡
𝑖∈𝐈

= ∑ 𝑃𝑖,𝑡
𝑖∈𝐈

+ 𝐺𝑟𝑖𝑑𝑡 + 𝑃𝐻𝑆𝑑𝑖,𝑡 , ∀𝑡 ∈ 𝐓 (6) 

The power demand (Ht + Dt) is covered by the renewable technologies (𝑃𝑖,𝑡), by 

purchasing power from the grid (𝐺𝑟𝑖𝑑𝑡), and by discharging the PHS (𝑃𝐻𝑆𝑑𝑖.,𝑡 ). 

Notably, the PHS capacity may not be sufficient to store the excess renewable power 

(𝑃𝐻𝑆𝑐ℎ,𝑡 ) at all times. Thus, we consider power curtailment (𝐶𝑢𝑟𝑖,𝑡) to the national grid 

with zero cost. We further constrain the curtailment since it cannot physically exceed 

the amount delivered from the respective renewable source.  

𝐶𝑢𝑟𝑖,𝑡 ≤ 𝑃𝑖,𝑡 , ∀𝑖 ∈ 𝐈, 𝑡 ∈ 𝐓 (7) 

The PHS stored energy (𝑆𝑡) at period 𝑡 is determined from a second balance –Eq.(8)–, 

including the charging and discharging of power, with an efficiency 𝜂𝑠, and a self-

discharge, with a coefficient λ𝑑𝑖 . Therefore, due to losses by (i) charging-discharging 

efficiency or (ii) curtailment, the model prioritizes the direct use of renewable power. 

𝑆𝑡  =  (1 − λ𝑑𝑖) ∙  𝑆𝑡−1  +  𝑃𝐻𝑆𝑐ℎ,𝑡−1  ∙ 𝜂𝑠 − 𝑃𝐻𝑆𝑑𝑖,𝑡−1/𝜂𝑠 , ∀𝑡 ∈ 𝐓 > 1 (8) 

Furthermore, since we consider a yearly base to design the ES –8760 periods–, a 

periodic condition is necessary to model the storage facility dimensions appropriately. 

𝑆𝑡=1 = 𝑆𝑡=8760 (9) 

Subsequently, the highest value of 𝑆𝑡  is defined as the maximal amount of stored energy 

(𝑆𝑚𝑎𝑥) –Eq.(10)–, which is needed for the cost calculations in Eq.(2).  
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𝑆𝑡 ≤ 𝑆𝑚𝑎𝑥  , ∀ 𝑡 ∈ 𝐓 (10) 

We further define the binary variable 𝑦𝑡  which restricts the PHS discharging when 

charging, and vice versa, while an upper bound, Cub, limits both energy flows.  

𝑃𝐻𝑆𝑐ℎ ≤ 𝐶𝑆, ∀ 𝑡 ∈ 𝐓  (11) 

𝑃𝐻𝑆𝑐ℎ,𝑡 ≤ Cub ∙ 𝑦𝑡 , ∀ 𝑡 ∈ 𝐓 (12) 

𝑃𝐻𝑆𝑑𝑖,𝑡 ≤ 𝐶𝑆, ∀ 𝑡 ∈ 𝐓  (13) 

𝑃𝐻𝑆𝑑𝑖,𝑡 ≤ Cub ∙ (1 − 𝑦𝑡), ∀ 𝑡 ∈ 𝐓  (14) 

Subsequently, we assume that the designed PHS facility must have stored power able to 

satisfy at least a day of operation –t1=24 h– at all times, whereas we further ensure that 

in the first period of the year it can deliver power for at least two days of operation –

t2=48 h. Both of the latter limits affect the PHS design. 

𝑆𝑡 ≥ (Ht + Dt) ∙ t1, ∀ 𝑡 ∈ 𝐓  (15) 

𝑆𝑡=1 ≥ (Ht=1 + Dt=1) ∙ t2 (16) 

Finally, since the solution for minimum 𝐿𝐶𝑂𝐸 might be degenerate, we apply a post-

process step to minimize the GW of the ES (𝐶𝑊𝐸𝑆) –Eq.(17)–, subject to not increasing 

the minimum cost identified by solving Eq.(1). Please note that the GW of the 

renewable technologies GW𝑖∈𝐈 should be adjusted to reflect the location-specific 

capacity factor. 

𝐶𝑊𝐸𝑆 = (GW𝑔𝑟𝑖𝑑 ∙ ∑ 𝐺𝑟𝑖𝑑𝑡𝑡∈𝑻 + ∑ ∑ GWi ∙ 𝑃𝑖,𝑡𝑡∈𝑻𝑖∈𝐈 )/ ∑ (Ht + Dt)𝑡∈𝐓   (17) 

3. Results and discussion 

Focusing on the 𝐿𝐶𝑂𝐸 (Figure 1, left), we observe that the designed ESs show a 

substantial economic enchantment in Spain (reduction by 46.2–59.8 %), followed by 

more moderate improvements in Germany (22.7–42.8 %) when compared to the 

respective national grid. In contrast, the selected locations in Austria are less appealing 

(reduction by 2.9–17.3 %). The ESs' benefits emerge mainly due to the high 𝐿𝐶𝑂𝐸 of 

the national grid –significant in Spain for 2015 and less prominent in Germany and 

Austria ("eurostat 2016"). Furthermore, local synergies of wind and solar generation, 

and their storage, significantly influence their lower 𝐿𝐶𝑂𝐸 (see Table 1 and Figure 1, 

e.g., Cartagena and Schwerin), as also discussed in other studies (Demirhan et al., 2021; 

Fasihi and Breyer, 2020). For Huelva and Haundorg, the hourly wind speed and solar 

irradiation characteristics fail to complement each other. Thus, their ES operates 

without harvesting wind power, while the national grid supplies a considerable share to 

the ES (12.5 and 19.5 %, respectively). Even though both solar and wind power are 

being harvested, significant synergies are absent in Essen and the Austrian selected 

locations. For the latter regions, we observe a significantly lower supply of power from 

the PHS facility and substantial shares from the national grid –32.4–56.4 %– to attain 

the required high availability (Table 1).  
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Compared to the national grids, the designed ESs provide significant GW benefits in all 

locations (Figure 1, middle). Putting these reductions into perspective, the designed ESs 

in Spain reduce the GW by 79.3-90.6 %, 64.4-86.5 % in Germany, and 37.8-59.6 % in 

Austria. The latter improvements are attained via high renewables share in the hybrid 

ES, i.e., 43.6 to 94.7 % in Zwettel and Cartagena, respectively (see Table 1, accounting 

for both the direct and indirect –via PHS– use of renewable power). Notably, the high 

shares of grid power at Essen and in the three locations in Austria lead to a more 

moderate GW improvement, which influences the CCU performance –as discussed 

next. Finally, we observe high power losses for most regions due to the charging-

discharging and curtailment (Table 1). The model's scope could be expanded to 

investigate alternatives with a lower curtailment, which we will leave as future work. 

Figure 1. 𝐿𝐶𝑂𝐸 (left) and GW (middle) of the designed ESs compared to the national grid –for 

2015. Notably, in 2019 the Spanish grid showed a lower LCOE compared to 2015 (17.1 % less), 

whereas the reported 𝐿𝐶𝑂𝐸 for Germany's and Austria's grid increased by 5.7 and 10.12 %, 

respectively, within the same period ("eurostat 2016"). On the right, we provide the relative cost 

and GW of the CO2-based MeOH compared to the conventional counterpart. 

Table 1. ES delivered power shares as a percentage of the total. The percentage of stored 

renewable energy is the same as in the ES, e.g., 13.6/86.4 % of solar/wind for Cartagena. 

  ES delivered power shares in % ES losses as an additional % 

Country Region Solar 

PV 

Wind 

turbines 

PHS Grid Curtailed PHS losses 

Spain 

Cartagena 9.7 61.9 23.1 5.3 17.7 6.1 

Huelva 43.6 0.0 43.9 12.5 8.2 11.5 

Tarragona 40.9 14.6 32.9 11.5 9.4 8.7 

Austria 

Zwettl 20.1 20.7 2.8 56.4 1.5 0.8 

Tulln 18.6 27.9 4.8 48.7 3.0 1.3 

Parndorf 15.9 38.2 11.3 34.6 4.6 3.0 

Germany 

Haundorg 42.8 0.0 37.7 19.5 3.3 9.9 

Essen 17.0 40.5 10.1 32.4 4.8 2.7 

Schwerin 20.9 47.3 21.2 10.6 9.6 5.6 

Finally, green MeOH production based on the designed ESs (Figure 1, right) is 

economically unappealing in all selected locations, due to the vast power consumption 

for H2 production. Furthermore, we show that in two areas, Essen and Zwettl, the GW 

of the MeOH is even higher –by 1.6- and 1.2-fold, respectively– compared to the fossil-

based counterpart, and thus, the investigated CCU application is unfavourable. The 

latter burdens emerge due to the high shares of grid power in the ES. Compared to the 

benchmark, a lower GW for the green MeOH is observed in the remaining regions, 

indicating a successful application due to the effective utilization of atmospheric CO2. 

203

Life cycle optimization of energy systems integrated with carbon capture

and utilization

173

 



  I. Ioannou et al. 

Finally, we observe negative GW values for MeOH (on a cradle-to-gate) in Schwerin, 

Cartagena, Huelva, and Tarragona, due to the better performance of their ESs.  

4. Conclusions 

Here we addressed the integrated design of power mix and CCU plants within a single 

cluster. In seven out of nine locations, we found that carbon footprint reductions 

(compared to fossil methanol) can be attained via CO2-based methanol when location-

specific hybrid ES powers the production. Our results highlight the benefits of hourly 

synergetic effects of renewable ES, while providing a roadmap for assessing CCU 

chemicals more accurately. An optimal and cost-effective integrated design of ES-CCU 

clusters, predominantly based on renewables, could help overcome the renewable's 

inherent variability. Notably, our assessment highlighted that even though a renewable-

based ES can provide significant benefits compared to the national grid, these might be, 

in cases, insufficient to make CCU environmentally appealing.  
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Abstract 

This study investigated two artificial intelligence techniques, Swarm Intelligence(SI) and 

Artificial Neural Networks(ANN), aiming to overcome the difficulties of simulating 

complex processes with unknown reactions and intermediates. These techniques are 

incorporated in reaction modeling via mass balances and reaction kinetic models. The 

accuracy and the applicability of the resulting models from ANN and SI were compared 

in the trained semi-batch reactors and the new continuous flow reactors. The ANN-based 

model is recommended when the extrapolation is unnecessary, and the data is high in 

volume and variety at the applied space. In this case, no profound reaction knowledge is 

required. Otherwise, the SI-based model should be employed, which provides detailed 

information of the target process and is constrained by physical meaning parameters. 

 

Keywords: swarm intelligence, artificial neural networks, hybrid models, semi-batch 

reactors, continuous flow reactors 

1. Introduction 

The modeling and simulation of a chemical process are vital for digitization in the modern 

chemical industry, where the reaction process plays a significant role. The duty of 

downstream processes can be reduced dramatically if a substantial improvement in 

reaction controls is achieved. An optimal process design can be achieved by using 

accurate models, resulting in reducing working time and human errors. However, the 

modeling of the reaction process is complicated to perform, especially when it includes 

complex reactions that have not yet been studied earlier. The white-box (first-principle), 

black-box (data-driven), and grey-box (hybrid) approaches all have got decent 

performances in chemical reaction process modeling (Rojnuckarin et al., 1993; Xie et al., 

2018; Babanezhad et al., 2020). Depending on the knowledge of the target process and 

the available data, the optimal modeling approach differs. Nowadays, people spend much 

time searching for the appropriate methods, and the inappropriate use of Artificial 

Intelligence(AI) techniques is one of the greatest threats because most chemical engineers 

have limited training in computer science and data analysis (Dobbelaere et al., 2021). 

This paper gives insights about which method is suitable according to the limited data at 
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hand by modeling unknown reaction processes via two AI techniques from different data 

scenarios. The data scenarios were analyzed by 4V characteristics - Volume, Velocity, 

Variety, and Veracity (Anagnostopoulos et al., 2016). The data volume refers to the 

involved data quantity, and the low data volume can lead to unreliable derived 

information. The data velocity shows the speed of getting and feeding new data. The data 

variety is the diversity of data, and the data veracity defines the data accuracy and 

precision.  

The data coming from two different reactors are employed in this study, namely the 

Continuous Flow Reactor(CFR) and the Semi-Batch Reactor(SBR). The model aims to 

predict the time profiles of the process outputs (concentrations, temperatures). Because 

of a limited amount of CFR data, the kinetic model is trained using only the information 

coming from SBR. It contains a higher amount of data with a greater variety. This 

approach is possible since the model focuses only on the common chemical reactions for 

both CFRs and SBRs. The SBR and CFR models are developed taking mass and heat 

balances into account. The model of SBR is divided into fed-batch and batch subsections, 

and the CFR modeling is through a series of continuous stirred tank reactors. 

Swarm Intelligence(SI) and Artificial Neural Networks(ANN) are the two AI methods 

applied in this paper. SI is a class of heuristic optimizers utilized to tune the parameters 

of a system. They are a sub-field of AI inspired by the social behavior of animals and 

other living beings. The collaboration of simple individuals performs the optimization 

task. Each individual has the freedom to move within the parameter search space, and its 

movement is affected both by its own experience and the experiences of the other group 

components (Chakraborty and Kar, 2017). The applications of SI algorithms have been 

popular in recent years. Schlueter et al. (2009) applied the ant colony optimization 

successfully in the design and control of wastewater treatment plants. ANNs are inspired 

by the biological neurons and their structures in the human brain. They have been widely 

applied in chemical engineering. Schweidtmann et al. (2019) proposed a hybrid modeling 

approach with ANN for the deterministic global process optimization. The available 

applications of SI and ANN in the open literature have proven their strong abilities in 

developing or improving the models. This paper compared these two techniques in 

modeling complex reaction processes from different data scenarios, aiming to offer 

insights about which method is suitable according to the limited data at hand for chemical 

engineers. 

2. Methodology 

The data employed in this paper for the training of the models was generated from 

experiments performed on SBRs. The available data were sorted into five scenarios 

representing the problems or situations in reality. The causes of these problems are 

usually safety requirements, device restrictions, or time limitations when collecting data 

in the chemical industry, resulting in challenges in data volume, velocity, variety, and 

veracity (Chiang et al., 2017). The data volume is represented by 𝑛, and the data velocity 

(𝑠) is the number of measured points in one minute in this case. Commonly, the 

measurements from plants are restricted to a specific range or even a certain point, which 

can lead to low data variety. The mean chi-squares (𝜒2) were calculated to assess the 

variety quantitatively, and a lower 𝜒2 indicates a wider variety. For the utilized data, the 

data veracity of all scenarios is considered equal. Among the available five data scenarios, 

Scenario 1 was considered the baseline to achieve a vision for the lower or higher volume, 

velocity, and variety. The two modeling approaches by ANN and SI integrated with 

Arrhenius equations were performed with different data scenarios as shown in Figure 1. 
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Figure 1: Modeling approaches: a) Artificial Neural Networks(ANN): The preprocessing of the 

available data is necessary. Each model is trained with an optimal ANN architecture for each data 

scenario; b) Swarm Intelligence(SI): Based on the possible reaction networks and Arrhenius 

equations, the related parameters for the model are determined by minimizing the error between 

modeled and experimental results through SI. 

In the ANN approach (Figure 1a), it is necessary to preprocess the data because of the 

existing high noise and the indirect inputs/outputs. A Savitzky-Golay filter was applied 

firstly to the generated data from Raman spectra. Its inputs are molar concentrations 

(𝐶𝐴, 𝐶𝐵,𝐶𝐶) and temperatures (𝑇), and the outputs are the reaction rates (𝑟𝐴, 𝑟𝐵 , 𝑟𝐶). The 

molar concentrations of the components were calculated from the mass weights obtained 

from Raman spectra. For each data scenario, an optimal ANN architecture was obtained 

by searching the number of layers and the neuron number of each layer. 70% of the data 

is utilized to form the training set, while the remaining 30% are used for the validation 

set. The inputs/outputs were both scaled to the range from 0.00 to 1.00 before feeding 

into the model. The searching regions of the hidden layer number and the neuron number 

of each hidden layer are up to 5 and 50, respectively, and the activation function is “tanh”. 

A 𝜆1 = 10−5  L1 regularization term is also utilized to avoid overfitting. The developed 

reaction model was then combined with the material balance equations to simulate both 

SBRs and CFRs. There is no need for reaction knowledge in this approach, while the 

knowledge is compulsory for the following SI approach (Figure 1b). 

Table 1: Possible reaction pathways for the SI approach 

No.  Reaction  Reaction rates  Remarks 

1 A + B ↔ C 𝑟1 = 𝐴1𝑒−
𝐸𝑎1
𝑅𝑇 𝐶𝐴𝐶𝐵 − 𝐴1

′ 𝑒−
𝐸𝑎1

′

𝑅𝑇 𝐶𝐶  𝑟: reaction rate 

2 B + C ↔ D 𝑟2 = 𝐴2𝑒−
𝐸𝑎2
𝑅𝑇 𝐶𝐵𝐶𝐶 − 𝐴2

′ 𝑒−
𝐸𝑎2

′

𝑅𝑇 𝐶𝐷 𝐴: frequency factor 

3 A + E ↔ F 𝑟3 =  𝐴3𝑒−
𝐸𝑎3
𝑅𝑇 𝐶𝐴𝐶𝐸 − 𝐴3

′ 𝑒−
𝐸𝑎3

′

𝑅𝑇 𝐶𝐹 𝐸𝑎: activation energy 

4 A + C ↔ G 𝑟4 =  𝐴4 𝑒−
𝐸𝑎4
𝑅𝑇 𝐶𝐴𝐶𝐶 − 𝐴4

′  𝑒−
𝐸𝑎4

′

𝑅𝑇 𝐶𝐺 𝑅: gas constant 

5 A + B ↔ H 𝑟5 = 𝐴5 𝑒−
𝐸𝑎5
𝑅𝑇 𝐶𝐴𝐶𝐵 − 𝐴5

′  𝑒−
𝐸𝑎5

′

𝑅𝑇 𝐶𝐻 𝑇: temperature 

6 I + B ↔ J 𝑟6 = 𝐴6 𝑒−
𝐸𝑎6
𝑅𝑇 𝐶𝐼𝐶𝐵 − 𝐴6

′  𝑒−
𝐸𝑎6

′

𝑅𝑇 𝐶𝐽 𝐶𝑖: 𝑖 concentration 

Table 1 gives the pre-studied possible reactions from the open literature. The parameters 

(𝐴𝑠, 𝐸𝑎𝑠) are determined by minimizing the error between modeled and experimental 

results through SI. 𝑅 is the gas constant, and 𝑇 is the temperature. Only three components 

(A, B, C) were tracked among the ten components listed in the table because of the limited 

reliable information derived from Raman spectra. The applied objective function is the 

b) a) 
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normalized mean squared error adding the 𝜆1 = 10−5  L1 regularization term. The SI 

algorithm used in this paper is Ant Colony Optimization(ACO) (Riadi, 2014). 

3. Results 

The five data scenarios are shown in Figure 2, and the corresponding values indicating 

data volume, velocity and variety are listed in the following:  

    1) Baseline (𝑛=1083, 𝑠=1 min-1, mean(𝜒2)=227);  

    2) Less volume, same velocity, more variety (𝑛=361, 𝑠=1 min-1, mean(𝜒2)=37);  

    3) More volume, same velocity, less variety (𝑛=1805, 𝑠=1 min-1, mean(𝜒2)=288); 

    4) More volume, more velocity, less variety (𝑛=2163, 𝑠=2 min-1, mean(𝜒2)=441); 

    5) Less volume, less velocity, more variety (𝑛=365, 𝑠=0.2 min-1, mean(𝜒2)=64). 

 

Figure 2: Data distribution of different scenarios. The x-axises are the data ranges, and y-axises are 

the data amount in each bin. The total number of bins is 25. Scenario 1): Baseline; 2): Less volume, 

same velocity, more variety; 3): More volume, same velocity, less variety; 4): More volume, more 

velocity, less variety; 5): Less volume, less velocity, more variety. 

Data volume, velocity, and variety are correlated with each other in this case, while their 

importance for different applications is diverse. The highest amount in this paper is 

contained in Scenario 4 with 2163 samples, but its data variety is lower, meaning the data 

majority is in a certain range. It can be seen from Figure 2 that for A concentrations, 

almost no data in the range from 20.0 to 25.0 in Data scenario 4. Data scenarios 2 and 5 

have similar data volumes, while their velocities differ, leading to different data varieties. 

The imbalanced data is common for all data scenarios, especially for B concentrations 

and temperatures. 

In the ANN approach, a unique architecture of MultiLayer Perceptron(MLP) was 

employed for each scenario. The optimal architecture was searched using the “keras-tuner 

Hyperband” algorithm (Li et al., 2018). For all data scenarios, the input neurons are 4 and 

the output neurons are 3. The resulting optimal structures for scenario 1-5 are: 1) 19-5-

36; 2) 8-22-13-5-41; 3) 6-33-12-23; 4) 28; 5) 41-5-35, where the kth position from left is 

the neuron number of the kth hidden layer. From the optimal trained structures, it can be 

concluded that an ANN trained with a higher data amount results in a lower amount of 

hidden layers, because the training of ANN parameters with more data is more efficient. 

For those with more than one hidden layer, the number of neurons usually increases first 

and then decreases, increases again, overcoming the difficulties from the imbalance data. 
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The final models were trained with 1,000 epochs with optimal ANN structures. The 

training processes are shown in Figure 3a, and all of the final losses were in the magnitude 

of 10-3. 

        

Figure 3: The training process: a) Artificial Neural Networks(ANN): The loss function is the mean 

squared error with the L1 regularization term, and the used optimizer is “Adam”; b) Swarm 

Intelligence(SI): The objective values are the sum of the normalized mean square errors and the L1 

regularization term. 

Scenarios 1, 2, 5 with the greater variety surpass the others. However, the data set with 

the highest amount (Scenario 4) returns a high loss function value without any significant 

improvement after the 200th training iteration. This number for the other scenarios is over 

600. It can be discussed that a large amount of data but with a low variety does not help 

the ANN training and can even lead to unfavorable overfitting. 

Figure 3b shows the progress of the parameter search executed using the ACO algorithm. 

The total number of parameters (𝐴𝑖 , 𝐸𝑎𝑖) is 24 for 6 possible reversible reactions, and the 

literature study of similar reactions determined their search boundaries. For each scenario, 

1,000 iterations were performed and 30 ants were employed to obtain the optimal 𝐴𝑠 and 

𝐸𝑎𝑠. The decreasing of the objective values is stepped because ACO used the same 

particle until it found another outperforming one, requiring a large number of iterations 

to mitigate this phenomenon. Within the limited 

iterations, the training of Scenario 3 ended the 

earliest with the highest objective value and the 

least accurate model. Scenario 2 is superior to 

the others due to the greatest variety. Compared 

to the ANN approach, fewer efforts were put on 

the data processing, but more efforts were given 

to the chemistry reaction study. If the target 

reactions are already well-studied, this 

approach is suggested because of less pre-stage 

work and more delivered information. 

However, inappropriate assumed reactions can 

lead to totally different pathways from reality 

for the unknown complex reactions. The ANN 

approach can give more insights into 

unconsidered reaction routes. 

The determination coefficients (𝑅2) of ANN and SI models are shown in Figure 4. The 

training results were from the data scenarios mentioned above. A brand-new data set of 

SBR gave the testing results. The ANN approach outperforms the SI approach for most 

data scenarios. In Scenario 1, the SI obtains a slightly higher 𝑅2 for the testing set, which 

Figure 4: 𝑅2 score of different data 

scenarios with SI and ANN approaches in 

semi-batch reactors. The training results 

were based on mentioned data scenarios. 

The SI/ANN test results were calculated 

from a brand-new test set. 

a) b) 
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shows the strong approximation ability of ANN for the same reactors. In the further 

stages, the obtained models from different scenarios were applied as the reaction model 

of a flow reactor. Unexpectedly, ANN models for CFRs gave 𝑅2 <0.5 because their 

temperatures are out of the ranges of the training data. The SI-based models with 𝑅2 > 

0.8 showed their advantages for extrapolating since the involved parameters are related 

to the physical meanings and are temperature independent. 

4. Conclusions 

This paper applied and compared two artificial intelligence techniques, the SI approach 

with ACO integrated with Arrhenius equations and the ANN approach with MLP to 

model complex reaction processes. The ANN model is recommended when the data is 

high in volume and variety at the applied space, where no profound reaction knowledge 

is required. The data variety is more important than other data characteristics, especially 

when the data amount reaches a certain level, such as 300 in this paper. However, the 

ANN approach is sensitive to the applied region and may be inappropriate for 

extrapolations. The SI model can provide more detailed information for straightforward 

extrapolations to other reactors. 
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Abstract 
Continuous pharmaceutical campaigns may exhibit extremely short operating windows. 
As a result, the impact of the start-up and shutdown on both costs of production and 
environmental footprint is extremely important. In this paper, a systematic model-based 
dynamic optimization strategy was developed to address the combined start-up, shutdown 
and grade transition of a multistage combined cooling and antisolvent continuous 
crystallizer. Firstly, the optimal shutdown process was addressed, and several scenarios 
were considered. Subsequently, a combined start-up and shutdown optimization aimed at 
the maximization of on-spec production based on the maximization of the steady-state 
operating window for a fixed total manufacturing schedule. It was shown that 5510.2 g 
of on-spec products can be obtained during an operating window of 800 minutes, which, 
compared to the non-optimized scenario, corresponds to a 10% increase in production 
along with a significant reduction of wastes. In addition, the optimization of grade 
transition was also considered to improve the dynamic performance and flexibility of the 
process and helped reduce the transition time from 38.5 minutes to 2.7 minutes. 
 
Keywords: Dynamic Optimization, MSMPR, Start-Up, Shutdown, Grade Transition, 
combined start-up and shutdown optimization 

1. Introduction 
Continuous manufacturing is increasingly considered as the most flexible option for 
pharmaceutical manufacturing (Mascia et al., 2013). Despite its great advantages, such as 
lower costs and increased productivity, the achievement of the full potential of continuous 
pharmaceutical manufacturing is still hindered by technical challenges such as the lack 
of optimal strategies to operate the plant during dynamic transitions, particularly under 
short operation windows (Benyahia et al., 2018). Hence, the development of systematic 
and rigorous strategies to optimize start-up, shutdown, and grade transition of single 
processes and integrated continuous pharmaceutical processes is critical to minimize 
wastes and further enhance resilience and cost efficiency.  

Most upstream pharmaceutical processes require at least one crystallization unit, which 
is adopted as the key purification technology. Various model-based and model-free 
techniques have been developed to optimize and control crystallization processes (Nagy 
et al., 2020; Parekh et al., 2018). Typically, there are three types of widely used 
continuous crystallization technologies namely mixed suspension mixed product removal 
(MSMPR) crystallizers, plug flow crystallizers, and continuous oscillatory baffled 
crystallizers. A systematic optimization of the start-up, to minimize the time required to 
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reach steady state, has already been investigated and multiple decision variables and 
optimization strategies have been already implemented, including the optimization of 
discrete profiles of the jacket temperatures, antisolvent flow rates, seeding policies, initial 
state of the crystallization vessels, and several discretization methods (Liu & Benyahia, 
2022). However, despite the importance of shutdown optimization and its significant 
impact on the cost and environmental performance of continuous pharmaceutical 
processes, given the large amounts of wastes generated at the end of unoptimized 
operation, the problem has been seldom reported in the literature.  

In this work, a systematic optimization of the shutdown of a multistage continuous 
crystallization process was developed to maximize on-spec production by manipulating 
and adopting different discretization methods for the jacket temperatures and antisolvent 
flow rates. With the experience gained from previous start-up optimization (Liu & 
Benyahia, 2022), an effective optimization approach was proposed to optimize a scenario 
that combines start-up, steady-state, and shutdown. The optimal operating profiles of the 
control variables were identified in the case of the cooling and antisolvent crystallization 
of Aspirin in a three-stage MSMPR crystallizer. To enhance process flexibility and 
resilience, the problem of optimal grade transition of the crystal product is also considered 
to pave the way for the optimal operation of future continuous pharmaceutical processes 
focused on multiproduct manufacture. Optimal grade transition which has been widely 
investigated in the polymer industry to produce different product grades inherent to 
dynamic market demand (Wang et al., 2000, Benyahia et al., 2011). However, it has never 
been addressed in the context of continuous pharmaceutical manufacturing. In the current 
scenario, the product grade is associated with different targeted mean crystal sizes. The 
optimal grade transition aims at improving the flexibility of the multistage continuous 
crystallization process by minimizing the transition time based on a dynamic optimization 
approach which manipulates a set of decision vectors in a similar way as in the start-up 
and shutdown optimization. 

2. Material and Method 
2.1.  Process model 

As a case study, the crystallization of Aspirin (acetylsalicylic acid, ASA) in ethanol 
(solvent) and water (antisolvent) was used to demonstrate the dynamic optimization 
strategies. The dynamic mathematical model of the continuous crystallization process, 
which consists of the population balance model based on the standard method of moment, 
as well as the energy and mass balances, was developed under a set of assumptions as 
clearly discussed elsewhere (Liu & Benyahia, 2022). The model was modified to capture 
the shutdown procedure and allow additional decision options for the optimization 
problem.  The full set of modified equations will not be presented here for the sake of 
brevity.  
2.2. Formulation of the optimization problem 

A three-stage MSMPR crystalliser was used, and the operating profiles of the antisolvent 
flow rate, jacket temperature were used as decision vectors based on several discretization 
methods. Several shutdown scenarios were developed to maximize on-spec production 
under both fixed and optimized total shutdown time. The shutdown process starts when 
the fresh feed to the first MSMPR is stopped. The operation profile of antisolvent and 
jacket temperature at each stage are used as decision variables for the optimization. When 
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a vessel undergone a complete shutdown, the antisolvent flow rate is also switched off as 
well as the flowrate of the coolant to the jacket. The combined process involves the start-
up, steady state and shutdown. The start-up part has already discussed in great details in 
the previous work (Liu & Benyahia, 2022). For sake of brevity, only the mathematical 
formulation of the optimal shutdown is introduced here which can be described by the 
generic optimization problem shown below: 

 
𝒎𝒂𝒙

!!,#,$,#%&,#,$,∆%#,$
𝑀&' 

 

s.t. 
𝑥̇ = 𝑓(𝑥, 𝑦, 𝑢, 𝑝, 𝑡) 

𝑥!"# = 	𝑥# 

 
0 = 𝑔(𝑥, 𝑦, 𝑢, 𝑝, 𝑡) 

 

 
𝐶1: 0 ≤ 𝐹$%,',( ≤ 20 

 

 
𝐶2: 25 ≤ 𝑇),',( ≤ 40 

 

 
𝐶3: 0.5 ≤ ∆𝑡',( ≤ 8 

 

 
𝐶4:<𝑡*,( ≤ 8 

 

 
𝐶5:<𝑡+,( ≤ 15 

 

 
𝐶6:<𝑡,,( ≤ 21 

 

 
𝐶7:𝜔-.,' ≤ 70% 

 

 
𝐶8: 𝑆'(𝑡) ≥ 1 

 

 𝑖 = 1,2,3	, 𝑗 = 1,2, … , 𝑛/ 
 

𝑀&' is the overall on-spec production during shutdown, the Decision variables are the 
vectors of discrete jacket temperatures and antisolvent flow rates, and time intervals 
( 𝑻𝑱,𝒊, 𝑭𝑨𝑺,𝒊∆𝒕𝒊 ). The 𝜔,',-  is the antisolvent mass ratio and 𝑛.  is the number of 
discretization point considered the same for all vessels.  
 
For the shutdown optimization the initial conditions were set at the steady-state values. 
Based on the optimization problem above, several optimization scenarios were 
developed. The jacket temperature of the ith stage and jth time intervals were regarded as 
the decision variables in Scenario 1 (Constraints: C2 and C8), and antisolvent flow rate 
were regarded as decision variables in Scenario 2 (Constraints: C1, C7 and C8). The 
combined optimization of jacket temperature and antisolvent flow rate are considered in 
Scenario 3 (Constraints: C1, C2, C7 and C8). In these three cases, the shutdown time was 
fixed as 30 minutes. The discretisation method of the time intervals is also important, and 
as such, Scenario 4 was developed based on the combination of several decision vectors 
including jacket temperatures, antisolvent flow rates and time intervals (C1-C8). In 
scenario 4, the shutdown time is not fixed. Constraints C1-C3 represent the upper and 
lower bounds of the decision variables. C4-C6 are the linear constraints for the shutdown 
of each stage. C7 is a nonlinear constraint which is used to keep the antisolvent mass ratio 
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in each stage below 70% which is dictated by the prediction capability of the polynomial 
model of the solubility. C8 is a critical nonlinear constraint used to help avoid dissolution 
at all stages. 

To address the optimization problem with different product requirements, a on the 
problem of optimal grade transition was also developed. Here, the optimization is 
designed to shift from a mean particle size of 417 𝜇𝑚 to 300 𝜇𝑚. This is considered to 
present the case where 2 different pharmaceutical products are required to have different 
dissolution profiles which may be encountered in the context of multiproduct or on-
demand continuous manufacture. The combined manipulation of jacket temperatures, 
antisolvent flow rates and discretisation method was adopted to address the optimal grade 
transition problem. The objective is to minimize the transition time which in turn 
minimizes wastes and enhances operation flexibility. The full description of the 
optimization problem will not be presented here for the sake of brevity, but overall, it can 
be formulated in a similar way as the optimization problem described above.  

3. Result and Discussion 
The optimization problem was solved using a combination of a genetic algorithm and a 
deterministic method (SQP algorithm form MATLAB). The optimization results for the 
shutdown optimization are shown in table 1. It can be clearly seen that the total on-spec 
product mass collected during shutdown increases with the increased number of decision 
variables (increased degree of freedom). The scenario which combines the jacket 
temperatures and antisolvent flow rates gave the maximum on-spec product mass within 
the 30-minute shutdown time. The fourth scenario, with the shutdown time extended to 
42 minutes which very close to the considered upper bound of the shutdown time, 
demonstrated additional gain in production capacity but on the expenses of a large 
shutdown time. 

Following the successful shutdown optimization, the dynamic optimization of the overall 
campaign was developed to optimize the combined start-up, steady-state and shutdown 
to maximize on-spec production over a fixed continuous manufacturing window. The 
jacket temperature, antisolvent flow rate, seeding policies and discretisation method were 
all used as decision variables. The optimal mean crystal size and on-spec product profiles 
obtained with the resulting optimized operation profiles (Figure 2) are shown in Figure 1.  
 

      
 

 

Figure 1. Dynamic profile of the mean crystal size, (a) On-spec production and mean crystal size 
over the whole process. (b) Mean crystal size during start-up and (c) Mean crystal size during 

shutdown.  
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Figure 2. Optimal operating profiles during start-up and shutdown.  

Compared to the shutdown process (scenario 4: 42 minutes shutdown and scenario 3: 30 
minutes shutdown), in the integrated process optimization, the shutdown is shortened to 
15 minutes and less on-spec product mass is collected during this period. When the total 
operating window is fixed as 800 minutes, shorter shutdown time will prioritise a 
production rate at the steady-state operating conditions which is higher than the one 
associated with the shutdown optimization. In other words, longer shutdown time will 
increase yield of the shutdown process, but shorter shutdown time will increase the 
production over the fixed total operating window. It is worth mentioning that the 
maximum on-spec production does not mean to rule out completely the shutdown 
optimization. It can be observed in figure 1 (c), that the shutdown starts at 785 minutes, 
and on spec products are still generated until the mean crystal size dropped below the 5% 
lower bound. 
Table 1. Summary of the optimal shutdown results.  

Scenario 1 2 3 4 
𝑀&' (g) 177.6 205.6 208.0 216.7 

Figure 2 shows that that the jacket temperature varies more significantly that in the case 
of the shutdown which tends to indicate that it is more sensitive to a variation in the 
antisolvent flowrates. In the shutdown, there are small variations in the jacket temperature 
which may be associated with the need to maintain the supersaturation at a lower level 
when a large amount of antisolvent is added. The addition of antisolvent has a conflicting 
effect as it increases supersaturation but also causes dilution of the system.  

In the case of grade transition shown in Figure 3, the operation conditions associated with 
the second steady state (second product grade) were performed as a single step change 
for all manipulated variables to generate the base case scenario for the grade transition 
problem. With the optimal profile, the transition time was shortened from 38.49 minutes 
to 2.68 minutes, and a total of 290.3 g of the second grade on-spec products were collected. 

 
Figure 3. Performance of the optimized grade transition vs base case scenario.  
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4. Conclusion  
The shutdown, combined start-up and shutdown and grade transition scenarios were 
optimized through a systematic model-based approach. To maximize on-spec production 
during the shutdown period, several strategies were implemented including discretized 
jacket temperature, antisolvent flow rate and discretization. Overall, antisolvent showed 
a more significant impact on the production, and additional on-spec products can be 
collected by slightly extending the shutdown time.  

The dynamic optimization of the whole production process, which combines start-up, 
shutdown, and steady-state, were developed to maximize on-spec product mass by 
manipulating the jacket temperatures, antisolvent flowrates, seeding policies along with 
various discretization methods. With the optimized operation profile, 5510.2 g of on-spec 
products can be collected over a fixed operating window of 800 minutes. The problem of 
optimal grade transition was also addressed based on a similar dynamic optimization 
strategy which demonstrated a significant improvement of process flexibility by 
minimizing transition time by more than 90% which allows the minimization of wastes 
and maximization of on-spec production of different product grades. 
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Abstract
A systematic way to compute the finite dimensional dynamic model of the counter current heat
exchanger network based on the graph theory is proposed. This contribution focuses to the serial
interconnection of heat exchanger. The proposed models are build from the elementary block com-
posed of two compartments corresponding to the hot and cold streams. The method is based on the
graph based input-output representation of the convective heat flux between the heat exchangers.

Keywords: Heat exchanger network, Dynamic modelling, Graph theory

1. Introduction

Modelling and simulation are essential tools for the design of heat exchangers (HE) and Heat
Exchangers Networks (HEN) (Roetzel et al. (2020)). Typical HE and HEN design approaches are
primarily based on steady-state models. They are suitable for HENs retrofitting, upgrades and for
estimating optimal steady-state operating points. However, dynamic performance of HEN has also
to be explored in order to improve flexibility and controllability properties of HEN (Yang et al.
(2021)) as well as their energy efficiency.

Roetzel et al. (Roetzel et al. (2020)) cited several mathematical models for transient analysis
of heat exchangers: (i) the lumped parameter model, (ii) the distributed parameter model and
(iii) the cell model. The first model is a systemic approach wherein the HE is considered as a
single box; each fluid in the whole HE has an uniform temperature which is used to calculated the
heat transfer through the partition wall and the energy balance involves only the inlet and outlet
temperatures. The second model is an infinite dimensional model for which the HE space must be
discretized (Michel and Kugi (2013)). The latter, also called lumped-distributed parameter model,
consists in dividing the HE space into many elements along its length and applying the lumped
method to each element (Correa and Marchetti (1987)). All the models were used for a better
understanding of HE behaviour and the model building methods were discussed for small systems
with simple topology like HE that are not nearly as large as district heating or heat networks.
In addition, energy balances were written based on temperatures as state parameters and do not
separate the convective and heat transfer parts, which makes it impractical to use them for scalable
and extensible HENs.

For this purpose, we propose a systematic way to compute the finite dimensional dynamic model
of a network of counter-current heat exchangers based on graph theory. This method gives the
dynamic model in an iterative way and is well suited for modification of the network topology.
The obtained model is given in a structure form that can be also used for control purposes.
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2. Model formulation

This contribution focuses to the serial interconnection of heat exchangers. The proposed models
are built from the elementary block named i composed of two well stirred compartments cor-
responding to the hot and cold streams as shown in Figure 1. Notations h, h̄ stand for specific
enthalpies and Q, Q̄ for mass flows of the two streams. The indexes in and out stand for inlet
and outlet flows resp. In this paper, we considered these two compartments were separated by
a wall without heat accumulation for pedagogical purpose. However, this assumption could be
overcomed using mean heat capacities including both the fluid and wall properties as described in
Correa’s paper annex (Correa and Marchetti (1987)).

Q̄i
inh̄i

in

Qi
outh

i
out

Q̄i
out h̄

i
out

Qi
inhi

in

- -

� �
6
?

i

i

Figure 1: Elementary block i with enthalpy flows

The method is based on the graphic input-output representation of two heat exchangers in series
with [i] and [ j] elementary blocks, resp. as shown in Figure 2. The arrows are the convective inlet
or outlet flows. They are also the edges of the graphs linked to the matter convection. The nodes of
the matter and energy graphs are (i) the grey circles which represent the connections of the input
and output convective fluxes (grey nodes without matter and energy accumulation) and (ii) each
compartment where energy accumulation occurs. There are two graphs, since there are one hot
and one cold streams by compartment, but they are treated simultaneously in order to implicitly
take into account the heat transfer through the block partition walls (the heat transfer is represented
in the block and the edge does not appear in the graph representation). The general construction
of the model is based on the adjacency matrix of the convective graphs based on the material and
energy balances. With this method, dynamic models of block series can be easily obtained. One
of the main advantage of this approach is its modularity as the network can be extended as much
boxes (representing a single or network heat exchangers) and streams as needed. So it can be used
for network retrofitting or upgrade. Furthermore this modelling method gives structured matrices
for which mathematical network analysis can be easily applied and used for control purposes such
as dynamic energy assessment approach.

Q̄h̄[i+ j]
in

Qh[i+ j]
out

Q̄h̄[i]in

Qh[i]out

Q̄h̄[i]out

Qh[i]in

Q̄h̄[ j]in

Qh[ j]out

Q̄h̄[ j]out

Qh[ j]in

Q̄h̄[i+ j]
out

Qh[i+ j]
in

- - - -- -

� � � �� �

[i]
[i]

[ j]
[ j]

b bb b bb
Figure 2: Two heat exchangers or two heat exchanger networks in series

The main assumptions for the modelling of blocks are the following:

(a) The compartments are perfectly stirred.

(b) The two streams remain in liquid phase.

(c) The pressure P, P̄ in the compartments as well as the mass densities (ρ ,ρ̄), the heat capacities
(cp, c̄p) and the mass flow rates (Q,Q̄) are constant.

(d) There is no heat accumulation in the block partition wall and no heat exchange with the
environment.

(e) The global heat transfer coefficient λ and the volumes V , V̄ are constant and equal for all
the compartments.
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With the previous assumptions, the mass balances in each block are reduced to the equalities of
the inlet and outlet mass flow rates, that for brevity we denote as Q̄ et Q:

0 = Q̄i
in− Q̄i

out 0 = Qi
in−Qi

out

and the enthalpies are defined as H = ρV h(T ), H̄ = ρ̄V̄ h̄(T̄ )

Proposition 1 With assumptions (a) to (e), the energy balances in an elementary block 1 write as:
d
dtH

1 = −λ (I1⊗At)T1− Q
ρV A1H1− Q̄

ρ̄V̄
Ā1H1 +B1V

[
Q 0
0 Q̄

][
H1

in
H̄1

in

]
F1

out = V
[

Q 0
0 Q̄

]
C1H1

(1)

where H1 =

[
H1

H̄1

]
, T1 =

[
T 1

T̄ 1

]
and

[
H1

in
H̄1

in

]
are the enthalpy state, temperature and input enthalpy

vectors resp. F1
out is the ouptut enthalpy flow vector. ⊗ stands for the Kronecker product. Matrices

are as follow: At =

[
1 −1
−1 1

]
, A1 =

(
(I1−S1)⊗Ac

)
, Ā1 =

(
(I1−ST

1 )⊗ Āc
)

with I1 = 1, S1 =

0, Ac =

[
1 0
0 0

]
and Āc =

[
0 0
0 1

]
, V =

[
(ρV )−1 0

0 (ρ̄V̄ )−1

]
, B1 =

[
B B̄

]
with B =

[
1
0

]
,

B̄ =

[
0
1

]
, C1 =

[
C
C̄

]
with C =

[
1 0

]
, C̄ =

[
0 1

]
,

The indexes t and c stand for heat transfer through the partition wall and for convection, resp. The
matrices Bc et B̄c are null in this case but not for several blocks in series. The proof is trivial in
this case. It suffices to write the energy balances and identify the matrices.

3. Model of two interconnected blocks
The objective of this section is to show on a simple case how the systematic modelling is con-
structed. For this purpose, we consider two elementary HEs composed of one block each as
shown in Figure 3.

Q̄h̄[2]in

Qh[2]out

Q̄h̄1
in

Qh1
out

Q̄h̄1
out

Qh1
in

Q̄h̄2
in

Qh2
out

Q̄h̄2
out

Qh2
in

Q̄h̄[2]out

Qh[2]in

- - - -- -

� � � �� �

1
1

2
2

b bb b bb
Figure 3: Two elementary HEs composed of one block each in series

Proposition 2 With assumptions (a) to (e), the system of energy balances for 2 blocks in series
writes as:

d
dtH

[2] = −λ (I2⊗At)T[2]− Q
ρV A2H[2]− Q̄

ρ̄V̄ Ā2H[2]+B2V
[

Q 0
0 Q̄

][
H [2]

in

H̄ [2]
in

]

F [2]
out = V

[
Q 0
0 Q̄

]
C2H[2] =

[
Qh[2]out

Q̄h̄[2]out

] (2)

with H[2]T =
[
H1 H̄1 H2 H̄2

]
, T[2]T =

[
T 1 T̄ 1 T 2 T̄ 2

]
. The matrices are given by:

A2 =
(
(I2− S2)⊗Ac

)
, Ā2 =

(
(I2− ST

2 )⊗ Āc

)
with I2 the 2× 2 identity matrix, S2 =

[
0 1
0 0

]
,

B2 =

[
02 B̄
B 02

]
, C2 =

[
C 0T

2
0T

2 C̄

]
with 0T

2 =
[
0 0

]
.
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Proof First let us consider two systems of energy balances as written in Proposition 1, the first for
the block 1 and the second for the block 2. After vector and matrix concatenations, considering
the global state vector H[2] and the temperature vector T[2] as written in Proposition 2 and denoting
by O the zeros matrices when the size is not specified, we can immediately write:

dH[2]

dt = −λ

[
(I1⊗At) O

O (I1⊗At)

]
T[2]− Q

ρV

[
A1 O
O A1

]
H[2]− Q̄

ρ̄V̄

[
Ā1 O
O Ā1

]
H[2]

+

[
B1

02×2

]
V
[

Q 0
0 Q̄

][
H1

in
H̄1

in

]
+

[
02×2
B1

]
V
[

Q 0
0 Q̄

][
H2

in
H̄2

in

]
F1

out = V
[

Q 0
0 Q̄

][
C1 02×2

]
H[2], F2

out = V
[

Q 0
0 Q̄

][
02×2 C1

]
H[2]

(3)

Clearly the first right hand side term of (3) is equal to first right hand side term of (2). In order
to write the other terms, let us consider the interconnection matrix Ad for the enthalpy flows. The
matrix elements are 1 if a grey node links two enthalpy flows, 0 else. By premultiplying on both
sides the flow equality equations by ρV , ρ̄V̄ for flow related to Q, Q̄ respectively, we obtain:



QH1
in

Q̄H̄1
in

QH2
in

Q̄H̄2
in

QH [2]
out

Q̄H̄ [2]
out


=

Ad︷ ︸︸ ︷
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0





QH1
out

Q̄H̄1
out

QH2
out

Q̄H̄2
out

QH [2]
in

Q̄H̄2]
in


=

[
Adlu Adru

Adld 02×2

]


QH1
out

Q̄H̄1
out

QH2
out

Q̄H̄2
out

QH [2]
in

Q̄H̄2]
in


(4)

Ad is intrinsic to the series of two HEs independently on their sizes.

• Computation of the inputs of the 2 subsystems that become global input variables. We have:

[
QH [2]

in

Q̄H̄ [2]
in

]
= AT

dru


QH1

in
Q̄H̄1

in
QH2

in
Q̄H̄2

in

=

[
QH2

in
Q̄H̄1

in

]
(5)

• Computation of the internal inputs: They are given by:

QH1
in =Adlu1

[
QH1

out Q̄H̄1
out QH2

out Q̄H̄2
out
]T (6)

Q̄H̄2
in =Adlu4

[
QH1

out Q̄H̄1
out QH2

out Q̄H̄2
out
]T (7)

where Adlu1 and Adlu4 are the first and fourth line of Adlu respectively.

Inserting the expressions of the internal outputs with respect to global state vector, we obtain
the following relations for the internal inputs:

H1
out

H̄1
out

H2
out

H̄2
out

=

C2︷ ︸︸ ︷[
C1 02×2

02×2 C1

][
H1

H2

]
=⇒

{
QH1

in = QAdlu1C2H[2]

Q̄H̄2
in = Q̄Adlu4C2H[2] (8)

Let us rewrite the following terms in (3) :
[
B1

02×2

]
V
[

Q 0
0 Q̄

][
H1

in
H̄1

in

]
+

[
02×2
B1

]
V
[

Q 0
0 Q̄

][
H2

in
H̄2

in

]
in order to recompose with respect to internal and global inputs. We have :[

B11 02
02 B12

]
V
[

Q 0
0 Q̄

][
H1

in
H̄2

in

]
+

[
02 B12
B11 02

]
V
[

Q 0
0 Q̄

][
H2

in
H̄1

in

]
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where B11, B12 are the first and second column of B1, that are respectively B and B̄.

So for the global inputs, the last right hand side term of (2), we can identify that

B2 =

[
02 B12
B11 02

]
=

[
02 B̄
B 02

]
.

Finally, for stream Q, let us add the convective term in (3) and the term on internal inputs
and replace H1

in by the formula given in (8), we obtain:

− Q
ρV

[
A1 O
O A1

]
H[2]+

Q
ρV

[
B11
02

]
H1

in =−
Q

ρV

[
A1 O
O A1

]
H[2]+

Q
ρV

[
B11
02

]
Adlu1C2H[2].

It remains to show that
[
A1 O
O A1

]
−
[
B11
02

]
Adlu1C2 = A2. It can be checked that Adlu1C2

is equal to the third line of C2. So
[
B11
02

][
0 0 1 0

]
=

[
02×2 Ac
02×2 02×2

]
. So

[
A1 O
O A1

]
−[

B11
02

]
Adlu1C2 =

(
(I2−S2)⊗Ac

)
.

The same computation can be made for stream Q̄.

• Computation of the global outputs. From the equations (4) and (8), we have:

F [2]
out =

[
QH [2]

out

Q̄H̄ [2]
out

]
= Adld


QH1

out
Q̄H̄1

out
QH2

out
Q̄H̄2

out

 =

[
Q 0
0 Q̄

] C2︷ ︸︸ ︷
Adld C2 H[2]. It is easy to check that C2 =

Adld C2 =

[
C 0T

2
0T

2 C̄

]
This ends the proof. �

This method can be iteratively used in order to obtain models for HE with i blocks.

4. Model of Heat Exchanger Network interconnection in series

The objective of this section is to give the model of two series interconnected HENs as shown in
Figure 2. The results are given without proof.

As in the previous section, we do not present the graphic representation of matter flows since the
graph is trivial and leads to equality of matter flows with two flows only: Q and Q̄. However, as
soon as mixer or splitter units will be consider this matter graph representation will be important
to analyse.

First the model of a HE composed of i blocks in series is given by:

Proposition 3 With assumptions (a) to (e), the system of energy balances for a heat exchanger
composed of i blocks in series writes as:

d
dtH

[i] = −λ (Ii⊗At)T[i]− Q
ρV AiH[i]− Q̄

ρ̄V̄ ĀiH[i]+BiV
[

Q 0
0 Q̄

][
H [i]

in

H̄ [i]
in

]

F [i]
out = V

[
Q 0
0 Q̄

]
CiH[i] =

[
Qh[i]out

Q̄h̄[i]out

] (9)

with H[i], T[i] are the enthalpy and temperature 2i vectors of the i-blocks HE resp. The matrices
are given by: Ai =

(
(Ii−Si)⊗Ac

)
, Āi =

(
(Ii−ST

i )⊗ Āc

)
with Si the upper shift i× i matrix and
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Ii the i× i identity matrix, Bi =

[
02i−2 B̄

B 02i−2

]
, Ci =

[
C 0T

2i−2
0T

2i−2 C̄

]
with 02i−2 the 2i− 2 zero

vector.

Now let us consider the series of the i-blocks HE with a j-blocks HE or HEN. We have for the
representation of the system of energy balances:

Proposition 4 With assumptions (a) to (e), the system of energy balances for the global system
composed of two systems of the form (9) in series (the first of size i and the second of size j) writes:

dH[i+ j]

dt = −λ (Ii+ j⊗At)T[i+ j]− Q
ρV Ai+ jH[i+ j]− Q̄

ρ̄V̄ Āi+ jH[i+ j]+Bi+ jV
[

Q 0
0 Q̄

][
H [i+ j]

in

H̄ [i+ j]
in

]
F [i+ j]

out = V
[

Q 0
0 Q̄

]
Ci+ jH[i+ j]

(10)

with H[i+ j]T =
[
H[i]T H[ j]T

]
, T[i+ j]T =

[
T[i]T T[ j]T

]
and the notations are the same as previ-

ously using i+ j instead of i.

The generalization of this approach when heteregeneous blocks parameters are considered can be
easily deduced. Consider the i× i heat transfer parameter diagonal matrices Λi with notations λi,k
for the kth element. Since volume of compartment can be different for the blocks, the previous
(2× 2) matrix V has to be indexed by the number of the block: Vn for the nth block. Let us
consider the block diagonal matrix Wi with Vn on the diagonal for the nth block and the matrix
W T

i =
[
V1 V2 . . . Vi

]
= 1T

2iWi with 12i the 2i vector of 1. The matrix Wi is a (2i×2i) matrix
while the matrices Wi and W T

i have the same dimensions as Bi and Ci, resp. Finally let us denote
the Hadamard product as �.

Corollary 4.1 With assumptions (a) to (d), the system of energy balances for a heat exchanger
composed of i blocks in series writes as:

d
dtH

[i] = −
(

Λi⊗At

)
T[i]−QWiAiH[i]− Q̄WiĀiH[i]+

(
Bi�Wi

)[
Q 0
0 Q̄

][
H [i]

in

H̄ [i]
in

]

F [i]
out =

[
Q 0
0 Q̄

](
W T

i �Ci

)
H[i] =

[
Qh[i]out

Q̄h̄[i]out

]
(11)

5. Conclusion
The proposed systematic way of modelling series coupling of heat exchangers or heat exchanger
networks has the advantage to have intrinsic matrices (with only 1 and 0 as elements) such Ai,
Bi and Ci. The perspective is to extend this method to parallel interconnections in order to model
collectors or distributors. The genericity of the proposed structured dynamical model can be easily
implemented as a computer aided process engineering.
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Abstract 

2020 has been identified as the worst year in the history of the aviation sector. Now, this 
sector faces its sustainable economic recovery; one of the alternatives to reach this is the 
use of renewable aviation fuel. Aviation biofuel is produced from several biomasses 
through different processing routes, which are technically feasible, but still not 
economically competitive with its fossil counterpart. In this context, biorefineries are an 
interesting processing scheme to produce aviation biofuel. Therefore, in this work the 
computer-aided modelling of a biorefinery for the conversion of castor bean plant (stems, 
leaves, husk and kernel) to produce biojet fuel is presented. The biorefinery is simulated 
in Aspen Plus, including mechanical pressing of kernel, pyrolysis of press cake, 
gasification, pyrolysis, fermentation of stems and leaves, transesterification and 
hydrotreating of vegetable oil. The fermentation stage produces bioethanol, which is fed 
to the alcohol-to-jet process; also, the gasification produces biohydrogen, used into the 
hydroprocessing. In this biorefinery, products as biochar, biogases, bio-oil, biohydrogen, 
bioethanol, biodiesel, light-gases, naphtha, green diesel and biojet fuel are obtained. The 
assessment of the biorefinery considers the calculation of economic (total annual cost and 
net gross profit of products), environmental (CO2 emissions from electricity and steam), 
and energetic indicators (total energy invested in the processing, and total energy 
delivered by products). Based on results, the main factors affecting the TAC are the steam 
requirements (48.6 %) and the raw material cost (22.5 %); biojet fuel represents 35.4 % 
of the net gross profit. Also, in this scheme 4.97 ton CO2 per kg of products are generated, 
and 5.49 kW are invested per kW of energy delivered by products. This biorefinery can 
be further improved by process intensification to reduce energy consumption. 
 
Keywords: biorefinery scheme, castor bean plant, biojet fuel, computer-aided design. 

1. Introduction 

The pandemic caused by the accelerated spread of SARS-CoV2 virus has affected all 
economic sectors. In particular, the aviation sector has suffered a dramatic decreasing in 
its operation, mainly due to the social isolation measures and border closure. According 
to the International Air Transport Association, in 2019 the net profit of the sector was 
26.4 billion USD, while in 2020 this indicator drops to -137.7 billion USD (IATA, 2021). 
In spite of a slight improvement during 2021, this sector is facing its sustainable economic 
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recovery, for which one of the alternatives is the use of renewable aviation fuel. The 
aviation biofuel can be produced from different biomasses through several processing 
routes; these processes are technically feasible, but still not economically competitive 
with its fossil counterpart (Gutiérrez-Antonio et al, 2021). In this context, the conversion 
of complete biomasses through a biorefinery scheme is a promising alternative to produce 
renewable aviation fuel, bioenergy and value-added products. According to the literature, 
the production of biojet fuel through a biorefinery scheme has been proposed for 
microalgae, Jatropha curcas fruit, sugarcane, soybean, waste cooking oil, rice straw 
(Romero-Izquierdo et al, 2021). Nevertheless, the conversion of castor bean plant is still 
missing in the literature; this study is relevant in México, since it is the energetic crop 
with major productive potential (Gutiérrez-Antonio et al, 2021). Thus, in this work the 
computer-aided modelling of a biorefinery for the conversion of castor bean plant to 
produce biojet fuel is presented. The complete castor bean plant is processed, which 
includes stems, leaves, husk and kernel. The biorefinery is simulated in Aspen Plus V.10, 
considering mechanical pressing of kernel, pyrolysis of press cake, gasification, pyrolysis 
and fermentation of stems and leaves, as well as transesterification and hydrotreating of 
vegetable oil.  

2. Modelling and simulation of castor bean plant biorefinery 

The biorefinery feedstock is castor bean plant, which consist of stems (38.8 wt %), leaves 
(14.4 wt %), husk and kernel (seeds, 46.8 wt %). The composition of stems and leaves 
includes cellulose (47 wt %), hemicellulose (28 wt %), and lignin (25 wt %); the husks 
consist of cellulose (4 wt %), hemicellulose (5 wt %), lignin (36 wt %), proteins (24 wt 
%), and other compounds (31 wt %). The feed stream is assumed as 3,531,954.98 kg/h of 
castor bean plant; this flowrate is obtained from an average yield for castor bean seed 
(1.41 ton/ha/year) and assuming 10.286 million ha available for its cultivation (Romero-
Izquierdo, 2020). To generate biojet fuel and value-added products, the biorefinery 
consist of 4 internal processing zones: oil extraction (Z1), pyrolysis of stem, leaves, husk 
and press cake (Z2), lignocellulosic residues treatment (Z3), oil processing and 
purification of products (Z4). The structure of the biorefinery is shown in Figure 1.  
Zone Z1 considers the modelling of mechanical pressing of the kernel (Belaid et al., 2011) 
with module Crusher, and NRTL thermodynamic model; 90% of oil is obtained in this 
step. Zone Z2 includes the modelling of the pyrolysis of stem and leaves (Kan et al., 2016; 
Kaur et al., 2018), husk (Mohammed et al., 2014), and press cake (Santos et al., 2015) to 
generate bio-gases, biochar and bio-oil; these thermochemical processes were modelled 
with the modules Rbatch and the NRTL model. On the other hand, the lignocellulosic 
residues are processed in zone Z3 through acid hydrolysis plus co-fermentation (Conde-
Mejía et al., 2013) and gasification (Inayat et al., 2010a), using RStoic and Rbatch 
modules with the NRTL model, respectively; also, in Z3 the alcohol is converted to biojet 
fuel through the Alcohol-to-Jet (ATJ) process based on the models reported by Ristovic 
and Pacolli (2017), Heveling et al. (1988), Gounder and Iglesia (2011) and Tshabalala 
and Ojwach (2018), using RStoic modules and NRTL as thermodynamic model. In Zone 
Z4, the hydrotreating of the oil is described (Liu et al., 2015), using a Rstoic module and 
the Peng-Robinson equation. Transesterification of the oil is also modelled (Lima Da 
Silva et al., 2006), using a RStoic module and the UNIFAC model. Also, in Z4 the 
purification of the hydrocarbons produced in the ATJ and the hydrotreating processes is 
carried out in a distillation train, first designed with DSTW module assuming key 
components’ recoveries of 99%, and later simulated using the Radfrac module with 
equilibrium stage model and BK-10 as thermodynamic model. The simulation of the 
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biorefinery is performed in Aspen Plus; indicators are calculated based on the results of 
the simulation. The economic and environmental indicators are the total annual cost 
(TAC) and the counting of released CO2 emissions. The TAC involves capital cost, 
calculated by Aspen Economics, adding 18% and 61% due to contingencies, installation 
fees and equipment maintenance (Turton et al., 2012); and the operating cost, which 
considers utilities cost (heating and cooling), raw material cost (castor bean, hydrogen, 
ethanol, methanol) and additional reagents cost (glycerol, urea, H2SO4, etc), excluding 
catalyst cost and filters. The CO2 emissions due to the production of steam and electricity 
are considered, and they are calculated through the methodology presented by Gutiérrez-
Antonio et al. (2016). The gross profit is calculated with the product volume estimated 
from simulation results, and the market price of each product. Moreover, two proposed 
indicators are calculated: IE, energetic indicator defined as invested energy used for 
heating, regarding to energy delivered by the products; and IA, environmental indicator 
defined as CO2 emissions regarding to total product mass obtained from the biorefinery. 

 
Figure 1. Block diagram of the proposed biorefinery for the conversion of castor bean plant. 

3. Analysis of results 

Table 1 presents the products obtained on the sections of the biorefinery and their mass 
flowrate. The kind of product is also indicated. RM means that the obtained product is 
used as raw material inside the process, while SP implies that the product is intended to 
be externally sold. It is observed that vegetable oil corresponds to approximately 11% of 
the initial biomass. From the mass of vegetable oil, approximately 50% is converted into 
hydrocarbons through hydrotreating, while 31% is transformed into biodiesel. It is 
important to notice that the hydrocarbons products from hydrotreating consists 
approximately on 62% of the biojet fuel fraction, which is the main product for this 

225

renewable aviation fuel: a computer-aided design
195



 

biorefinery. From the gasification of biomass, an important quantity of hydrogen is 
obtained, which can be used to partially satisfy the H2 requirements of the hydrotreating.  
 

Table 1. Products obtained from the biorefining scheme. 

Zone Process Products kg/h Kind of product 
 

1 
 
Mechanical pressing 

Vegetable oil without 
impurities 

398,320.81 RM 

Residual cake 678,428.38 RM 

 
 
 
 
 
 
 

2 
 
 
 
 

 
Fast pyrolysis 
(residue) 

Bio-oil 
 

190,461.98 SP 

Charcoal 
 

15,665.26 SP 

Bio-gases 357,562.55 RM 
 
 
Fast pyrolysis 
(husk) 

Bio-oil 
 

56,843.35 SP 

Charcoal 
 

55,991.02 SP 

Bio-gases 4971.70175 RM 
Gasification Syngas (H2, 98.75 

mol%) 
58,903.99 RM 

 
 

DA-AHCF 

Glycerol 6,322.45  
Non-recovered Succinic acid 7,349.43 

Acetic acid 15,282.89 
Furfural 114,555.53 
Ethanol 312,808.46 RM 

ATJ Naphthas 72,119.12 SP 
Biojet fuel 45,224.3 SP 
Green diesel 11,149.31 SP 

3 Pyrolysis (residual 
cake) 

Bio-oil 424,209.79 SP 
Charcoal 26,134.88 SP 
Bio-gases 240,266.56 RM 

 
 
 

4 

 
Hydrotreating 
 
 

Naphthas 46,533.57 SP 

Biojet fuel 124,627.77 SP 
Green diesel 28,648.65 SP 

Transesterification Biodiesel 125,457.45 SP 
Glycerol 11,839.08 RM 

 
From the ATJ process, it can be observed that approximately 41% of the ethanol is 
transformed into hydrocarbons, where the biojet fuel fraction corresponds to 
approximately 35%.  
Table 2 shows the results for the economic assessment of the biorefinery. It is observed 
that operational costs have the high contribution to the total annual cost, higher than 
99.5%. Particularly, heating represents 48.7% of the operational costs, followed by others 
(which includes the cost for reactants) with 31.6%. This is a clear indicator of the need 
for reducing the energy requirements of the biorefinery, which could be achieved through 
the application of process intensification and energy integration. As reference, in January 
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2021 the price of fossil jet fuel was 1.51 USD/gal, while at September 2021 the price 
increased to 4.29 USD/gal; it is observed that the price of fossil jet fuel is increasing, so 
taking this aspect under consideration as well as a reduction in the processing costs could 
help to renewable aviation fuel to be economically competitive with its fossil counterpart. 
 

Table 2. Results for the economic assessment of the biorefinery. 

 
From the environmental assessment, it has been determined that the total CO2 emissions 
are 51,626.31 Mt CO2/y.  Those emissions of carbon dioxide are all associated with the 
production of steam for heating purposes. There is no production of CO2 due to the 
generation of electricity, since the changes of pressure in the process are used to produce 
electricity, where this generation is even high than the electricity needs of the process. 
Thus, the excess electricity is sold. Then, reductions on heating requirements through 
advances technologies would also allow reducing the emissions of carbon dioxide. 
 

4. Conclusions 

The design and simulation of a biorefinery for the conversion of castor bean plant into 
biojet fuel, other biofuels and value-added products has been presented. The processing 
scheme considers four internal zones, where thermochemical, chemical, as well as 
biochemical processes are carried out. The proposed biorefinery allows obtaining biojet 
fuel as main product from two different routes: hydrotreating and ATJ, making use of the 
whole castor oil plant. It has been determined that the main contribution to the total annual 
cost and the environmental impact is due to the heating requirements, thus further 
enhancements are required to reduce those requirements and turn the production scheme 
economically feasible. 
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Operational cost (USDx106/y) 

Heating 
utilities 

Cooling 
utilities 

Others 
 

Castor oil 
plant 

Electricity 
selling 

Total 
operational cost 

9,513.766 20.155 6,163.281 4,413.256 605.521 19,504.626 
Capital cost (USDx106) 

Equipment cost A1 A2 Total 
equipment cost 

180.996 32.568 110.407 323.971 
TAC 

19,569.732 USDx106/y 
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Abstract 

Materials prepared via the polymer-derived ceramic route have been increasingly 
studied for protection against electromagnetic energy to mitigate electromagnetic 
interference. Both experimental and computational evaluations of electrospun SiCN 
fibers applied to electromagnetic shielding are not yet reported in the literature. This 
work aims to evaluate the electromagnetic properties of SiCN electrospun fibers by 
experiments and computational modelling and simulation. Polysilazane and 
polyacrylonitrile were used respectively as the ceramic precursor and spinning aid. 
After electrospinning, the fibers were pyrolyzed at 1000 °C. The samples were named 
SiCN_0, SiCN_40, and SiCN_70 respectively for 0, 40, and 70 wt.% polyacrylonitrile. 
The scattering parameters, impedances, and reflection losses were collected under X-band 
(8.2-12.4 GHz) in a vector network analyzer employing the waveguide 
propagation setup. The experimental scattering parameters were converted through the 
Nicolson-Ross-Weir method together with the shielding effectiveness and numerical 
electromagnetic computational studies. Simulations of scattering parameters were 
performed, and introductory electromagnetic scattering calculations in free space were 
computed including the radar cross-section (RCS) study. The relative complex 
electrical permittivity was approximately 3, 4.5, and 4 (real part) and 0.05, 0.22, and 0.1 
(imaginary part) respectively for SiCN_0, SiCN_40, and SiCN_70. The SiCN_40 could 
experimentally store and lose more electromagnetic energy in the material, exhibiting a 
minimum reflection coefficient of -1.4 dB at 12.4 GHz. The computational simulation 
corroborated the better performance of SiCN_40 in reflection loss as well as in other 
electromagnetic spectral responses. Additionally, correlations between electromagnetic 
properties extracted from experiments and computational results from the RCS study 
were observed. The free space electromagnetic scattering of SiCN_40 showed better 
features when compared to the other samples. Owing to the microstructure and product 
design, SiCN_40 fibers demonstrated satisfying electromagnetic shielding properties in 
X-band. The computational experiments showed to be a new modelling and simulation
approach to evaluate the electromagnetic properties of electrospun SiCN fibers. Further
research will focus on material optimization and computational evaluation.

Keywords: complex electrical permittivity, polymer-derived ceramic, radar cross-
section, reflection loss, shielding effectiveness. 
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1. Introduction

Materials prepared via the polymer-derived ceramic route have been increasingly studied
for protection against electromagnetic energy to mitigate electromagnetic interference
(Chen et al., 2021). The lightweight ceramic provided by these advanced materials is an
important advantage over metallic alloys classically used in the military and aircraft
industries (Hou et al., 2021). The protection against electromagnetic waves in X-band
(8.2-12.4 GHz) is especially important since this frequency range is used for radar,
satellite communication, and wireless computer networks. Recent research on electrospun
preceramic fibers applied to electromagnetic shielding in X-band has been boosted with
the manufacturing of SiC, SiCN, and SiBCN systems. The first work was published in
2017 reporting the electrospinning of polycarbosilane and polycaprolactone followed by
crosslinking and pyrolysis at 1300 °C to produce SiC fibers with a reflection loss of -25
dB at approx. 10 GHz (thickness of 3 mm) (Hou et al., 2017).
Various methods based on modelling and simulation approaches have been addressed to
investigate the shielding effectiveness of various materials (Liang et al., 2021; Ud-Din
Khan et al., 2020). Despite some efforts, the manufacturing of polymer-derived ceramic
fibers for high-performance in X-band electromagnetic shielding remains a daunting
technical challenge. This work aims to evaluate the electromagnetic properties of SiCN
electrospun fibers by experiments and computational modelling and simulation. This
work contributes to studying electrospun SiCN fibers for electromagnetic shielding
applications by experimental-computational technique. The results obtained here open
new grounds for developing these advanced materials by computational techniques,
which will be useful to assess and develop these ceramics to final applications, thus,
reducing the cost of the experimental procedure. A comprehensive electromagnetic
simulation is urgently needed to improve the safety and reliability of different
applications in complex electromagnetic environments.

2. Material and methods

Polysilazane synthesized from crosslinked Durazane 1800 (Merck KGaA, Germany) and
polyacrylonitrile 200 kDa (Polysciences, Inc., USA) were used respectively as ceramic
precursor and spinning aid. The solutions were prepared using dimethylformamide 99.5%
(Fisher Chemical, USA) as solvent and dicumyl peroxide 98% (Sigma-Aldrich
Corporation, Germany) as crosslinker. After electrospinning, the fibers were pyrolyzed
at 1000 °C in nitrogen. The samples were named SiCN_0, SiCN_40, and SiCN_70
respectively for 0, 40, and 70 wt.% of polyacrylonitrile. Five samples were prepared in
silicon matrices: 5, 10, or 20 wt.% (thickness of 2.35 ± 0.32 mm). The scattering
parameters, impedances, and reflection losses were collected under X-band in a vector
network analyzer (VNA) N5230C-PNA-L (Agilent Technologies, USA) employing the
waveguide propagation setup. The experimental parameters were converted through the
Nicolson-Ross-Weir (NRW) method. The complex permittivity (ε)  in a dispersive
(frequency-dependent), homogeneous, and isotropic material medium can be expressed
by Equation (1) (Naito and Suetake, 1971),

�(�)  = ����(�) = �����
� (�) −  ���

��(�)� = ����
� (�)(1 − ����[��(�)]),  (1) 

where ε0 is the electric permittivity in vacuum, εr is the relative complex electrical 
permittivity, ��

�  and ��
�� are the real and imaginary parts of the relative complex electrical 

permittivity, respectively. The electrical tangent loss term, tan[��(�)] =  ��
��(�) ��

� (�)⁄ , 
directly relates the imaginary and real components of the permittivity and measure the 
inherent dissipation energy due to electrical losses. The term ω = 2πf is the angular 
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frequency (rad·s-1) with f being the frequency in Hz. The reflection loss (RL) assuming 
the slab considerations ended by a conduction plane in decibel units (dB) is given by 
Equation (2), 

����(�) = 20���������(�)� = 20����� �
���(�)���

���(�)���
�, (2) 

where S11 is the scattering parameter obtained from VNA measurements (observed from 
the port 1 of the waveguide), ��� is the input impedance, �� is the reference to the 
impedance load. The equation for shielding effectiveness (SE) related directly to the 
scattering parameters in dispersive and reciprocal media is given by Equation (3) (Al-
Saleh et al., 2013), 

�����(�) = 10����� �
�

��|���(�)|�� + 10����� �
��|���(�)|�

|���(�)|� � = �����(�) +

�����(�), (3) 

where SET(ω), SER(ω), and SEA(ω) represent respectively total, reflected, and absorbed 
shielding effectiveness and the scattering term ��� = ��� in reciprocal media. The radar 
cross-section (RCS) is a far-field parameter employed to characterize the scattering 
properties of a radar target (Balanis, 2012). For three-dimensional objects, the RCS can 
be calculated considering the spherical coordinate system by Equation (4) (Balanis, 
2012), 

����(�, �, �) = ���
�→�

�4��� �⃗�(�,�,�)

�⃗�(�,�,�)
� = ���

�→�
�4��� ���⃗ �(�,�,�)�

�

���⃗ �(�,�,�)�
��, (4) 

where r is the distance between the target object and the observer, �⃗�(�, �, �) is the 

scattered power spectral density, �⃗�(�, �, �) is the incident power spectral density (or the 

incident Poynting vector), ��⃗ �(�, �, �) is the scattered electric field intensity vector, and 

��⃗ �(�, �, �) is the incident electric field intensity vector. The unit of ����(�, �, �) is m2, 
although the RCS is also commonly presented in dBsm (decibel squared milliwatt), as 
expressed by Equation (5) (Knott et al., 2004), 

��������
(�, �, ∅) = 10 �����[����(�, �, ∅)].  (5) 

Based on the experimental electromagnetic properties, numerical electromagnetic 
computational studies were implemented. Simulations of reflection losses were 
performed in a guided electromagnetic wave study, and introductory electromagnetic 
scattering calculations in free space including the RCS study were computed. The 
computational experiments were simulated with FEKO® software (Altair, USA), which 
allows solving Maxwell’s equations in three dimensions for solving full electromagnetic 
waves. The method of moments (MoM) was used by both the waveguide electromagnetic 
propagation with one and two ports and the free space electromagnetic propagation 
simulations. 

3. Results and discussion

According Equation (1), the relative complex electrical permittivity was approximately 
3, 4.5, and 4 (real part) and 0.05, 0.22, and 0.1 (imaginary part) respectively for SiCN_0, 
SiCN_40, and SiCN_70 (Figure 1). The studies showed that 5 wt.% fibers concentration 
in silicone was effective on electromagnetic shielding. The SiCN_40 could 
experimentally store and lose more electromagnetic energy in the material, exhibiting a 
minimum reflection coefficient of -1.4 dB at 12.4 GHz (Figure 2-a). Likewise, the 
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computational simulation corroborated the better performance of SiCN_40 in reflection 
loss (Figure  2-b), considering the incident electric intensity field vector with unitary 
amplitude value, �� = 377 Ω (approximately the free space impedance), 2 mm of sample 
thickness, and WR-90 rectangular waveguide section dimensions (a = 22.86 mm 
and b = 10.16 mm) for all cases according to Equation (2). 

Figure 1. a) Real and b) Imaginary components of the complex relative electrical 
permittivity obtained experimentally by the NRW method in X-band. 

There is a slight difference between experimental and computational results, which can 
be attributed to the alignment and agglomeration of fibers, matrix curing, and variation 
of sample thickness. The ability to adjust shielding properties through the addition of the 
carbon precursor (spinning aid), the nanostructure of SiCN, and fiber morphology opens 
new strategies for the development of electromagnetic shielding materials. 

Figure 2. a) Experimental and b) Computational measurement of reflection loss in X-
band. 

As reported by Equation (3), the total shielding effectiveness calculation in experimental 
electromagnetic guided conditions suggests the dominance of the waveguide 
experimental S11 scattering term contribution, i.e., the scattering reflection mechanism 
contribution is predominant (Figure 3-a). The correlations on the amplitudes are also 
pointed out (Figure 3-b). 
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Figure 3. a) Total shielding effectiveness calculation and b) Experimental waveguide S11 

and S21 scattering parameters in X-band. 

The free space scattering radiation performance of an object describes how energy is 
scattered when an object is exposed to under a plane wave electromagnetic incident field 
(see the free space computational setup in Figure 4-a). The simulated target was defined 
with a thickness of 2 mm and 300 mm of side length. The blue arrow represents the 

direction of the electromagnetic wave propagation (i.e. the incident Poynting vector, �⃗�) 
as normal orientation (-z axis direction) assuming the x-y target plane, while the green 
arrow represents its polarization vector direction (i.e. the incident electric intensity field 

vector ��⃗ �) defined in –x axis direction, whereas its amplitude value was set as unitary 
(Figure 4-a). For clarification, the three-dimensional (3D half sphere) RCS simulated 
results (Equations (4) and (5)) using experimental electromagnetics properties from 
SiCN: 5 wt.% were calculated assuming the frequencies of � = 8.2 GHz (Figure 4-
b), � = 10.3 GHz (Figure 4-c), and � = 12.4 GHz (Figure 4-d). The main RCS lobe 
amplitude is enhanced when the electromagnetic wave frequency increases as well the 
number of lateral RCS side lobes also increase due to the increments in the frequency of 
the wave excitation. The free space electromagnetic scattering of SiCN_40 defined with 
arbitrary frequency (� = 10.3  GHz) showed better features when compared to the other 
samples (Figure 4-e). 

Figure 4. Computational results of RCS scattering study in free space. a) Computational 
setup illustration for the far-field spectral diagram of radiation scattering from SiCN: 5 
wt.% at the frequency of b) 8.2 GHz, c) 10.3 GHz, and d) 12.4 GHz. e) Radiation diagram 
with theta, (�), observation angle from -90° to 90°, for all sample materials at the 
frequency of 10.3 GHz which was chosen arbitrarily. 

Direct correlations between the amplitudes from the electromagnetic properties extracted 
from experiments (Figure 1) and computational results from the amplitudes of the RCS 
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study were observed (Figure 4-e). This fact suggests the possibility of exciting 
opportunities owing to the advanced studies evaluations which can be performed over 
real and practical applications of shielding materials supported by simulation methods. 
Computer simulation is important for real applications that have specific targets since the 
RCS is a function of the effective permittivity of the material, its roughness, geometry, 
and angle. The simulation enables in analyzing the performance of a wide range of 
applications to answer RCS questions for military and aircraft industries. The simulation 
study showed the wave scattering in free space over the SiCN_40 material in 
electromagnetic shielding, showing that final applications can be simulated using the 
experimental parameters (Figure 4). 

4. Conclusion

The experimental and computational results suggest that polymer-derived ceramics act as 
electromagnetic shielding materials, greatly attenuating the incoming radiation for certain 
frequency values. Owing to the microstructure and product design, SiCN_40 fibers 
demonstrated satisfying electromagnetic shielding properties in X-band. The 
computational experiments showed to be a new modelling and simulation approach to 
evaluate the electromagnetic shielding of electrospun SiCN fibers. The practical 
implications of this work are the scattering simulations with the use of the SiCN fibers 
for final applications including military and aircraft industries. Using electromagnetic 
simulations, various types of electromagnetic problems involving the use of polymer-
derived ceramic fibers can be quickly and accurately solved. Further research will focus 
on material optimization with computational evaluation. 
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Abstract 
This work addresses the control optimization of time-varying systems without the full 
discretization of the underlying high-fidelity models and derives optimal control 
trajectories using surrogate modeling and data-driven optimization. Time-varying 
systems are ubiquitous in the chemical process industry and their systematic control is 
essential for ensuring each system to be operated at the desired settings. To this end, we 
postulate nonlinear continuous-time control action trajectories using time-varying 
surrogate models and derive the parameters of these functional forms using data-driven 
optimization. Data-driven optimization allows us to collect data from the high-fidelity 
model without pursuing any discretization and fine-tune candidate control trajectories 
based on the retrieved input-output information from the nonlinear system. We test 
exponential and polynomial surrogate forms for the control trajectories and explore 
various data-driven optimization strategies (local vs. global and sample-based vs. model-
based) to test the consistency of each approach for controlling dynamic systems. The 
applicability of our approach is demonstrated on a motivating example and a CSTR 
control case study with favorable results. 
 
Keywords: Data-driven optimization, dynamic optimization, time-varying systems, 
optimal control, surrogate modeling. 

1. Introduction 
Time-varying processes are omnipresent in chemical engineering and postulating the 
correct optimal control laws are critical for a feasible and safe operation of any process. 
Commonly, such processes are studied and modeled with a set of differential or 
differential-algebraic equations that captures the overall dynamic balances and other 
algebraic relationships (e.g., rate laws) (Diangelakis et al., 2017).  

A vast number of dynamic optimization techniques rely on approximations that utilize 
uniform and nonuniform discretization, leading to the solution of large-scale linear, 
nonlinear, or linearized problems (Biegler, 1984). Yet, such problems are solely 
addressed using calculus of variations due to the inherent complexity of the approach and 
its applicability is commonly limited to linear ODE systems. For highly nonlinear 
problems, linear control schemes are often insufficient to portray an appropriate nonlinear 
control strategy for a given nonlinear process. In such cases, the full discretization of the 
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time-varying problem is preferred to take a manipulated action at each discrete time point, 
which is computationally prohibitive.  

Recent efforts focused on using machine learning and data-driven techniques to overcome 
computational challenges associated with optimizing dynamic systems. Sorek et al. 
(2017) used interpolation and polynomial approximations to reduce the computational 
burden of discretized controls for maximizing the profit in oil production optimization 
problems. Beykal et al. (2020) used Support Vector Machines (SVMs) to model implicit 
constraints and numerical infeasibilities of dynamic systems as a classification problem. 
The SVM model is later used within a deterministic optimization framework to find the 
best initial conditions of a steam cracking reactor that maximizes the profit of operation.  

Although these studies have shown that data-driven modeling and optimization provides 
a feasible path for solving such a difficult class of optimization problems, their 
applications were limited to deterministic formulations and failed to address the direct 
derivation of optimal control trajectories within a dynamic optimization framework. In 
this work, our goal is to bridge this gap in dynamic optimization by avoiding the use of 
full discretization-based control schemes in linear and nonlinear time-varying models via 
surrogate modeling and data-driven optimization. To this end, we parametrize the 
control/input actions of a dynamic problem by postulating nonlinear surrogate models 
that are functions of time. The parameters of these control actions are then derived by 
collecting input-output information from the dynamic models and by using data-driven 
optimization techniques. The fine-tuned parameters are finally used to retrieve the 
optimal state trajectories across the time horizon. We test the applicability of our approach 
on a stable motivating example, as well as on a nonlinear unstable CSTR case study. 

2. Continuous-Time Surrogate Models and Data-Driven Optimization 
Our key idea is to represent the decision variables of a dynamic optimization problem 
(i.e., the control actions) with a continuous-time model rather than with discrete decisions 
taken at every time point. By representing the decision variables as a functional form, the 
decision variables of the dynamic optimization problem are parametrized and reduced to 
the number of parameters considered in the surrogate models. Previously, various forms 
of exponential and polynomial surrogate models have shown to be effective in 
deterministic optimization problems (Sorek et al., 2017; Beykal et al., 2018). Inspired by 
this, we heuristically construct one exponential (Eq. (1)) and one polynomial (Eq. (2)) 
continuous-time surrogate model as candidate control actions, 𝑢(𝑡).  

𝑢(𝑡) = 𝛼 ⋅ 𝑒𝑥𝑝(𝛽𝑡) + 𝛾	 (1) 

𝑢(𝑡) = 𝛼𝑡! + 𝛽𝑡 + 𝛾	 (2) 

The bounds on the unknown parameters are carefully identified by plotting these 
continuous actions across a wide range of parameter space. This ensures that the 
continuous-time action models capture all possible actions within the bounds of 𝑢(𝑡) 
while being flexible and generic such that they can be applied to various dynamic 
optimization problems.  

Once the parametrization is completed and the dynamic model is constructed for a given 
problem, our goal is to find the optimal continuous control action that will minimize the 
control objective by fine-tuning the surrogate model parameters, 𝛼, 𝛽, and 𝛾, using data-
driven optimization. The data-driven optimization algorithm creates samples for the 
model parameters and these sampling points are used to construct 𝑢(𝑡). This continuous-
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time control action is then fed to the dynamic model, which is simulated to collect the 
final value of the control objective as output information. If there are terminal constraints 
in the dynamic model, these can also be collected from the simulation and will be treated 
as additional output information (i.e., grey-box constraints). Using this input-output data, 
the solvers identify promising regions for exploration based on their specific data-driven 
optimization strategies and converge to a solution. We then use the fine-tuned parameters 
to generate the optimal state trajectories and evaluate the results. In this work, we explore 
two different data-driven optimization algorithms for fine-tuning: (1) ARGONAUT, a 
global model-based solver (Boukouvala & Floudas, 2017), and (2) NOMAD, a local 
sample-based algorithm (Le Digabel, 2011). The performance of these techniques is 
demonstrated in the following motivating example. 

3. Motivating Example: A Stable Dynamic Model 
We study the following dynamic formulation as our motivating example: 

min
"($)

𝑥&2𝑡'3 ⋅ 𝑃 ⋅ 𝑥2𝑡'3 + 5 𝑥(𝑡)& ⋅ 𝑄 ⋅ 𝑥(𝑡) + 𝑢(𝑡)& ⋅ 𝑅 ⋅ 𝑢(𝑡)𝑑𝑡
$!

(
 

𝑠. 𝑡. 		
𝑑𝑥(𝑡)
𝑑𝑡 = 𝐴 ⋅ 𝑥(𝑡) + 𝐵 ⋅ 𝑢(𝑡),						𝑥(0) = ?−0.50.5 B	

										𝐴 = ?−3 −2
1 0 B , 𝐵 = ?10B , 𝑃 = ?0.082 0.082

0.082 1.082B , 𝑄 = 𝐼, 𝑅 = 0.01	

										−2 ≤ 𝑢(𝑡) ≤ 2, 𝑢(𝑡) ∈ ℝ, 𝑥(𝑡) ∈ ℝ!	

(3) 

where 𝑡' is the final time, 𝑢(𝑡) is the control action that has the surrogate model form of 
either Equation 1 or 2 and is bounded between [-2, 2], 𝑥(𝑡) are the two states in the 
problem with initial points [-0.5, 0.5], and 𝑑𝑥(𝑡)/𝑑𝑡 is the rate of change in the states 
with respect to time. The unknown parameters of the surrogate control action (i.e., 𝛼, 𝛽, 
and 𝛾) are the decision variables of this dynamic optimization problem and optimized 
using the recipe described above.  

The results of the motivating example are summarized in Figures 1A and B which show 
that the exponential continuous-time control action can drive the states to zero and 
produce favorable results with a stable objective function trajectory across the time 
horizon. The trajectory of the optimal control action is also provided in Figure 1C. 
However, when polynomial continuous-time control action is employed, the states do not 
converge, and favorable results are not achieved (Figure 1D). This shows that not all 
surrogate functional forms are appropriate for pursuing data-driven dynamic 
optimization. Specifically for the motivating example, the exponential continuous-time 
surrogate model outperforms the polynomial control action by allowing states to converge 
at zero. 

We also test the effect of changing initial conditions on the dynamic problem (Figure 2A). 
We observe that even with more “difficult” initial conditions, our data-driven approach 
will lead the states to convergence. In addition, we characterize the effect of using global 
versus local data-driven optimizers on the dynamic optimization performance. Over 5 
random repeated runs, Figures 2A and B show that ARGONAUT, as a global solver, 
consistently leads to the convergence of states at zero whereas in some instances 
NOMAD, as a local solver, will return results that diverges the states. Hence, we observe 
that global optimization will consistently provide the best parameters necessary for the 
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control of the motivating example. Here, it is important to note that global optimality is 
not theoretically guaranteed due to the data-driven nature of the approach. 

 
Figure 1 (A) State trajectories and (B) objective function trajectory with exponential continuous-
time control action; (C) Optimal control action derived from the exponential surrogate model and 
data-driven optimization; (D) State trajectories with polynomial continuous-time control action. 

 
Figure 2 State trajectories for the new initial conditions, 𝑥(0) = [0.2, 0.75]. The parameters of the 
continuous-time model are fine-tuned with (A) ARGONAUT and (B) NOMAD algorithm. 

We further compare the data-driven solution to the linearized Simulink solution to 
quantify the performance of our approach. The state profiles obtained from these two 
different approaches are provided in Figure 3 and the errors are quantified by calculating 
the area under the curve (AUC) of each state profile. The results show that the data-driven 
solution matches the linearized solution with high accuracy. For the case of  𝑥(0) =
[−0.5, 0.5] shown in Figure 3A, the relative and absolute errors between the data-driven 
and the linearized solution are very small (State 1: Abs. Err. = 0.0013; Rel. Err. = 0.0025; 
State 2: Abs. Err. = 0.0167; Rel. Err. = 0.0335). Likewise, for the case of  𝑥(0) =
[0.2, 0.75] shown in Figure 3B, the absolute and relative errors are very small (State 1: 
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Abs. Err. = 0.0005; Rel. Err. = 0.0007; State 2: Abs. Err. = 0.0070; Rel. Err. = 0.0077), 
which shows that continuous-time surrogate models can capture the correct dynamics and 
provide satisfactory results. Next, we test our approach on a nonlinear unstable system. 

 
Figure 3 Comparison of state trajectories obtained from the linearized solution and the data-driven 
solution for: (A)	𝑥(0) = [−0.5, 0.5], and (B) 𝑥(0) = [0.2, 0.75]. 

4. Continuous-Stirred Tank Reactor Example: An Unstable Nonlinear 
Dynamic Model 
To further test the limits of our data-driven approach, we formulate the following 
nonlinear setpoint tracking problem for an unstable CSTR system: 

𝑚𝑖𝑛
𝒖($)

5 R𝐶*
(𝑡) − 0.5

𝑇(𝑡) − 400V
&
⋅ 𝑄𝑅 ⋅ R𝐶*

(𝑡) − 0.5
𝑇(𝑡) − 400V 𝑑𝑡

$!

(
	

𝑠. 𝑡. 		
𝑑𝐶*
𝑑𝑡 =

𝑚̇
𝜌𝑉

(𝐶*( − 𝐶*) − 𝑘+𝐶*𝑒𝑥𝑝	(−
𝐸,
𝑅𝑇)	

												
𝑑𝑇
𝑑𝑡 = 𝑚̇𝐶-(𝑇( − 𝑇) + 𝑉𝛥𝐻./0𝑘(𝐶* 𝑒𝑥𝑝 ^−

𝐸,
𝑅𝑇_ +

𝑈𝐴(𝑇1 − 𝑇)
𝑉𝜌𝐶-

	

𝑄𝑅 = ?50 0
0 1B , 𝐶*(0) = 9, 𝑇(0) = 400, 0 ≤ 𝑚̇(𝑡) ≤ 100, 10 ≤ 𝑇1(𝑡) ≤ 600	

(4) 

where 𝐶* is the concentration of reactants with the reaction mechanism 𝐴 → 𝐵, 𝑇 is the 
reactor temperature, 𝑚̇ is the mass flowrate of the reactant into the CSTR, 𝑉 is the reactor 
volume, 𝑇2 is the cooling jacket temperature, 𝑈 is the overall heat transfer coefficient, 𝐴 
is the heat transfer area, 𝐶3 is the heat capacity at constant pressure, 𝜌 is the density, 
Δ𝐻./0 is the heat of reaction, 𝑘+ is the pre-exponential factor, 𝐸, is the activation energy, 
and 𝑅 is the gas constant. The values of the model parameters are available upon request.  

As this problem is more challenging compared to the motivating example, we use the 
rolling horizon approach to perform data-driven dynamic optimization with continuous-
time surrogate models with 𝑡 = 0.2𝑠 intervals. The results in Figure 4A show that the 
concentration of the reactants is depleting as the reaction is carried out over time. The 
temperature profile of the reactor presented in Figure 4B shows that the continuous-time 
control action can track the temperature at the required setpoint (400 K) by adjusting the 
cooling temperature as shown in Figure 4C. Overall, the data-driven dynamic 
optimization with continuous-time control actions shows favorable results in both linear 
stable and nonlinear unstable case studies. For a comparison with an MPC scheme based 
on a linearized version of the CSTR, please refer to Avraamidou and Pistikopoulos 
(2017). 
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Figure 4 (A) Concentration profile for the reactants over time; (B) Reactor temperature profile over 
time; (C) Control action for the cooling temperature to keep the reactor temperature at the setpoint. 

5. Conclusions 
In this work, we present a dynamic optimization strategy based on continuous-time 
surrogate models and data-driven optimization. By parametrizing the input control 
actions on the dynamic system using surrogate models that are functions of time, we avoid 
the full discretization of the dynamic model. The parameters of the control actions are 
fine-tuned by data-driven optimization which is based on collecting input-output 
information from the dynamic system. We explore two different continuous-time 
surrogate models and rigorously test the effect of initialization and type of data-driven 
optimizer on the control performance. Results showed that exponential continuous-time 
control actions lead to stable convergence for the states and perform setpoint tracking in 
dynamic optimization problems. Global optimization of the surrogate model parameters 
is also found to play an important role in achieving stable solutions. Finally, when 
compared to the linearized solution, our data-driven approach provides results with 
minimal errors and matches the linearized state profiles perfectly. This research was 
funded by the U.S. National Institutes of Health (NIH) grant P42 ES027704. 
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Abstract
Dynamic Flux Balance Analysis (dFBA) models are widely applied in the system biology field.
The model connects the cellular genome information to the cell’s phenotype, it can therefore be
applied to predict the effect of gene deletions or the insertion of new enzymes into the metabolic
network. The dFBA model consists of a system of differential equations and an optimization prob-
lem that is performed to compute the internal flux distribution. Furthermore, kinetic equations (i.e.
Michaelis-Menten) are used to model the uptake of substrates. The kinetic equations have some
parameters that must be estimated from batch fermentation experimental data. When the dFBA
model is inserted in a parameter estimation architecture, a bi-level optimization problem arises.
As is well known, bi-level optimization problems are hard to solve and suffer from convergence
problems. A recent method to replace the FBA optimization with a surrogate model was developed
in our research group and applied to the simulation of a model predictive control of a bioreactor.
Here, that recently developed surrogate dFBA model is applied to a parameter estimation problem.
The approach was tested in a case study of Saccharomyces cerevisiae fermentation using glucose
and xylose as substrates. S. cerevisiae is the main microorganism for industrial alcoholic fermen-
tation and there is research to amplify the range of substrates that can be used, such as xylose.
dFBA models can be applied to link possible genetic modifications strategies with the bioreac-
tor performance. In order to achieve this aim, the kinetic parameters in the dFBA model must
be well defined. First, the surrogate model was trained using Flux Balance Analysis simulations
of the Yeast 8.3 genome-scale model. After that, the kinetic parameters on the surrogate dFBA
were fitted to in silico data. The surrogate dFBA outperformed the sequential approach where the
nested LP needs to be solved many times during the estimation. Furthermore, solving the param-
eter estimation with the surrogate model in a simultaneous approach can considerably reduce the
computational time. The results indicated that the surrogate dFBA can be an important tool for the
parameter estimation and optimal design of experiments of dynamic metabolic models.

Keywords: Parameter estimation, Surrogate model, dFBA, Systems Biology, Metabolic Engi-
neering

1. Introduction

System biology models are widely applied to characterize microorganisms and aid strain opti-
mization (Maranas, 2016). Kinetic models of cell metabolism are a very promising category of
models because of their high prediction capabilities. However, the lack of knowledge of enzy-
matic reactions mechanisms and the need to estimate an unbearable number of parameters makes
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the application of kinetic models restricted to the description of small enzymatic pathways so
far. Dynamic Flux Balance Analysis (dFBA) models appear as an alternative approach where the
internal flux distribution is described by a steady-state model and the solution computed by an
optimization problem. Therefore, in dFBA models, only a small number of parameters must be
estimated from experimental data making the problem solvable in practice. Despite the fact that
the number of parameters to be estimated is reduced, the dFBA model consists of a system of
differential equations and an embedded optimization problem, making the parameter estimation
problem challenging to solve.

The sequential solution of the problem consists in solving the nested LP and the ODE system in-
side the optimization. The lack of gradient information and the non-smoothness of dFBA makes
the problem hard to solve. Leppävuori et al. (2011) developed a sequential gradient-based solution
with direct sensitivities equations. They estimated 8 parameters and used a metabolic network of
1266 enzymatic reactions and 1061 metabolites. Waldherr (2016) reformulated the bi-level prob-
lem as a Mixed Integer Quadratic Program, however, due to the computational burden they used a
small-scale network of 10 reactions and 12 metabolites. Raghunathan et al. (2003, 2006) reformu-
lated the problem as a Mathematical Program with Complementary constraints (MPCC). MPCC
cannot be solved by standard NLP solvers, therefore they relaxed the complementary constraints
using a barrier parameter. They applied the approach to a small-scale metabolic network of 39
reactions and 43 metabolites.

Recently, our group developed a methodology to insert dFBA models in Model Predictive Control
(MPC) architecture (Oliveira et al., 2021a). The methodology consists in replacing the embedded
optimization problem solution by a surrogate model making the solution of FBA faster and al-
lowing gradient computation. Here, we investigate the suitability of this methodology in order to
reduce the computational load of parameter estimation problems using dFBA models. As a case
study, a dFBA model is formulated to describe batch cultivation of glucose and xylose mixtures
by Saccharomyces cerevisiae. S. cerevisiae is the main microorganism for industrial alcoholic
fermentation; however, the spectrum of substrates is almost restricted to sugars, such as glucose
and fructose. S. cerevisiae does not naturally consume xylose and the development of strains
of S. cerevisiae for the conversion of xylose into ethanol by S. cerevisiae has been implemented
(Kuyper et al., 2004). However, studies are needed in order to make the xylose fermentation by S.
cerevisiae more efficient. Metabolic models can be very useful to achieve this aim, because they
allow the understanding of xylose fermentation in a multi-scale approach, from a genome-scale
level to the bioreactor operation.

2. Methodology
Flux Balance Analysis (FBA) has become one of the most popular mathematical methods for
simulating metabolism using genome-scale models in the past years (Maranas, 2016), the reason
for that relies on the simplicity and applicability of the method. FBA is a method based on an
optimization approach using the stoichiometric matrix, by exploiting the fact that all the possible
flux distributions of the cell are present in the null space of the stoichiometric matrix. FBA uses an
objective function, to try to select one phenotype between the many possibilities. Mathematically,
the FBA can be formulated as a Linear Programming problem as follows:

max cT v

subject to: S · v = 0
lb ≤ v ≤ ub

(1)

where lb and ub are lower and upper bound vectors for metabolic fluxes, respectively. The fluxes
constraints are typically measured external fluxes or derived from thermodynamics data. S is the
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stoichiometric matrix and c is the vector of coefficients that multiplies the flux vector in order
to express the objective function. The most applied objective function on FBA is to maximize
the biomass formation (Maranas, 2016), where the vector c is a vector with zeros except for the
biomass reaction. Many genome-scale reconstruction models for S. cerevisiae have been devel-
oped so far. Among them, the consensus yeast metabolic network model is the largest network (Lu
et al., 2019). Yeast 8.30 has 2666 metabolites and 3928 enzymatic reactions. The genome-scale S.
cerevisiae model Yeast version 8.30 (Lu et al., 2019) was downloaded from the project’s website:
http://sysbiochalmers.github.io/yeast-GEM/. The uptake rates of the substrates were fixed to solve
the FBA problem (note, not dFBA), the uptake rate of oxygen was set to zero, and the objective
function was the maximization of biomass yield.

The dynamic version of the FBA (dFBA) model can be built by incorporating mass balance equa-
tions for the external metabolites and Michaelis–Menten kinetics equations for describing the
uptake of substrates. For the anaerobic fermentation of glucose and xylose by S. cerevisiae, the
dFBA model can be formulated as follows:

dX
dt

= µX
dG
dt

= vgX

dE
dt

= veX
dZ
dt

= vzX

ve, µ = Ξ(vg,vz) vg =vg,max
G

Kg +G

X ,G,Z,E ≥ 0 vz =vz,max
Z

Kz +Z
1

1+(G/Kig)

(2)

where µ , vg, vz, and ve are the growth rate, and the exchange fluxes of glucose, xylose, and ethanol,
respectively. X, G, Z, and E represent the biomass, glucose, xylose, and ethanol concentrations,
respectively. vg,max and vz,max are the maximum uptake rate for glucose and xylose respectively.
Kg and Kz are the saturation constants, and Kie is the glucose inhibition constant. The exchange
flux of ethanol ve and cellular growth µ are computed by the mapping Ξ, which can be solved
either by the optimization FBA problem (Equation 1) or by the surrogate approximation.

The methodology to generate the surrogate FBA model was performed as described in Oliveira
et al. (2021a). First, a series of optimization problems (FBA) were solved covering the whole flux
input domain (vg and vz). After that, a polynomial model for each output (µ and ve) was fitted
to the data by Partial Least Square (PLS) to avoid over-fitting. A parameter estimation problem
for estimating the five parameters in Equation 2 was implemented. The measurements data of
the extracellular metabolites were generated by in silico experiments using the nominal parameter
values presented in Table 1. The parameter estimation was solved as a nonlinear constrained
least-squares problem as follow:

minθ ∑
j
(yc

j(θ)− ym
j )

2 subject to: Equation 2 (3)

where θ is the vector of the parameter to be estimated, and y is the vector of extracellular con-
centrations. Indexes c and m indicates calculated and measured quantities respectively. Three
different methods were applied to solve the problem in Equation 3:

1. dFBA + lsqnonlin: Solved as a bi-level optimization problem. The outer parameter esti-
mation problem was solved by lsqnonlin routine in MATLAB with the levenberg-marquardt
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method. The ODE system was solved by ODE15s with the embedded LP (FBA) solved in
GUROBI. No gradient information was supplied.

2. dFBA surrogate + lsqnonlin: Solved as a single-level optimization problem by lsqnonlin
routine in MATLAB with the levenberg-marquardt method. The ODE system was solved
by ODE15s with the embedded LP (FBA) replaced by the surrogate model. No gradient
information was supplied.

3. dFBA surrogate + IPOPT: Solved as a single-level optimization problem in Julia language
with the interior point NLP solver IPOPT. The ODE system was solved by orthogonal col-
location with the embedded LP (FBA) replaced by the surrogate model. Automatic differ-
entiation package was used to compute the gradient.

3. Results

Figure 1: Profiles of the FBA (Equation 1) solutions for different values of the uptake rates of
glucose vg and xylose vz. We solved the FBA problem for every value of the independent variables
in an equidistant 40 by 40 grid.

First, the surrogate FBA model was trained using FBA simulations performed in COBRA Toolbox
for MATLAB. The FBA was solved for every value of the vg and vz uptake fluxes in an equidistant
40 by 40 grid (Figure 1). Both response surfaces for µ and ve are flat, which means that the amount
of ethanol and biomass being produced are linearly proportional to the uptake of each substrate.
Different from the non-linear response surface in Oliveira et al. (2021a) where a piecewise poly-
nomial surrogate model was needed, here a single polynomial could fit the data. The relative Root
Mean Square Error (RMSE) was 6.67e− 8 % and 1.41e− 4 % for µ and ve respectively. While
the relative Root Mean Square Error of Prediction (RMSEP) was 2.99e− 10 % and 1.91e− 6 %
for µ and ve respectively. The relative RMSE and RMSEP were computed by dividing the fluxes
by the maximum value of the correspondent uptake flux.
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Parameter estimation in dynamic metabolic models applying a surrogate
approximation

After the FBA surrogate model was trained, the parameter estimation problem was solved using
the three different methods described in the methodology section. Ten different initial guesses
were supplied to solve the problem by each method and the solution with the lower objective
function (OF) was selected. Figure 2 compares the predicted concentrations with the best-fitted
set of parameters for each case. Visually, the methods that applied the surrogate FBA fit the in
silico data adequately, on the other hand, the method that uses the nested LP to solve the dFBA
model was unable to fit the data. In fact, all the attempts to solve the estimation problem using
the nested LP resulted in a set of parameters close to the initial guess. Because of the embedded
optimization problem, the lsqnonlin solver was not able to compute efficiently the gradient of the
problem. Furthermore, the attempts of using derivative-free methods like simplex (i.e. fminsearch)
have failed as well.
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Figure 2: Simulated profiles for dFBA surrogate in Julia (solid), dFBA surrogate in MATLAB
(dashed) and dFBA DA in MATLAB (dotted). in silico data points are presented as circles.

The performance of each method for solving the problem is presented in Table 1. The dFBA with
the embedded optimization had a CPU time about 60 times higher than the methods that used
the surrogate FBA. Despite the larger CPU time, the solver performed only 5 iterations and 36
function evaluations. The need of solving the nested LP at each step of the ODE solver makes this
method computationally expensive and ineffective, as it can be seen by the poor fit as well (Figure
2). Comparing the methods that applied the surrogate approximation, the utilization of automatic
differentiation can improve performance. However, the utilization of the surrogate FBA is enough
to guarantee a good fitting. These results illustrate the advantage of the surrogate approximation
FBA to solve parameter estimation problems. The time and effort to train the surrogate model
must be taken into account in that analysis, but for a small number of input fluxes the task can
be easily done. Moreover, Table 1 also presents the set of parameters estimated in each case, as
well as the set of parameters used to generate the measurements. The set of estimated parameters
was different from the one used to simulate the measurements data even when a good fit was
achieved. In fact, the set of parameters in dFBA models are typically dependent and cannot be
uniquely identified (Leppävuori et al., 2011). In order to make a complete analysis, the parameter
uncertainty must be taken into consideration. This is a practical identifiability issue that should be
discussed with more depth. A possibility is to apply a recent methodology developed in our group
that used sparse Principal Component Analysis to access the identifiability of metabolic fluxes on
carbon labeling experiments (Oliveira et al., 2021b).
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Table 1: Comparison of the Computational Performance of each method and the parameter values
used in model simulation to yield measurements.

Model dFBA surrogate dFBA surrogate dFBA
simulation IPOPT lsqnonlin lsqnonlin

CPU - 0.05 s 26.47 s 27.82 min
iterations - 29 20 5

function evaluations - 50 126 36
Objective function - 0.049 0.009 7.17

vmax
g 7.30 6.44 7.13 30.01
Kg 1.03 0.64 0.94 12.02

vmax
z 32.00 26.07 4.69 7.99
Kz 14.85 10.48 1.60 0.80
Kie 0.50 0.39 0.81 1.00

4. Conclusion
Dynamic metabolic models are a powerful tool that can be applied from metabolic engineering to
bioprocess fields. The estimation of the model parameters poses a challenge due to the bi-level
optimization architecture and the non-smooth behavior of the dFBA model. Here, the replace-
ment of the embedded optimization problem by a surrogate model was evaluated. The results
demonstrated that the surrogate model can be easily trained from FBA simulations and improve
the performance of the estimation problem. In the future, the methodology should be applied to
parameter estimation and uncertainty quantification problems using experimental data.
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Abstract
This work presents a benchmark model of a batch process to generate data where active chal-
lenges, disturbances, and noise are fully controlled. The process is viewed at the unit level with
filling, processing, draining and cleaning operations. The simulation is limited to mass balances.
Chemical reactions and kinetics are omitted, as they are not relevant for the intended Machine
Learning (ML) application. Several scenarios were generated where 21 disturbances of different
types, causes, or fault origins are injected (isolated or combined) in the simulation to test and
compare ML algorithms. The scenarios were grouped into six benchmark cycles with increasing
levels of complexity in terms of intensity and duration, tackling some major challenges in ML.

Keywords: Batch Process, Machine Learning, Process Modeling, Data Generation, Hybrid Dy-
namic Simulation

1. Introduction

Batch processes are ubiquitous in pharmaceutical and fine-products industries (Bähner and Huu-
som, 2019). They are characterized by cyclic operations of one or several units whose sequence
and operation parameters follow a specific recipe and a production schedule, typically based on
heuristics, and regulatory constraints. Decisions in planning and scheduling are based on batch
demonstrated practices (aggregate production rates) and quality constraints. Targeted tracking of
batch cycle times enables improved scheduling, but this information is not always available. Time-
series values of sensors and controllers are usually available in process historians, and they implic-
itly contain information about start, end, delays, and variability in the processes. Pre-processing,
analyzing and modeling these data are of interest to the planner to support the decision-making.

The development and application of mechanistic models are often not economical in an indus-
trial setting, especially if complex batch processes involve many units and operations. Building
those models can be challenging, and extensive experiments for parameter estimation and model
validation may be needed. In addition, the resulting nonlinear differential algebraic models are
non-smooth, demanding specialized solvers for integration (Floudas and Lin, 2004). Due to the in-
herent repetitiveness of batch processes, one would expect the Machine Learning (ML) algorithms
to be able to recognize patterns and generate meaningful predictions. However, their performance
in practice is degraded by data noise (transient, stochastic, or discrete), scarcity of good quality
training data, or disturbances in the processes. Incomplete monitoring and complex manual oper-
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ations can create reasonable doubts about the quality of data acquired during production (Bähner
and Huusom, 2019). Also, the time-varying and nonlinear profiles in batch systems complicate
the predictions of ML algorithms. Consequently, it is hard to know which challenges constitute
fundamental limitations to the performance of an ML algorithm when working with real process
data. Hence, a simulated batch process with modeled data challenges that serve as a benchmark
model for the development and study of data-driven techniques, in particular, ML algorithms, is
valuable.

This contribution presents a benchmark model for generating simulated data that can be used to
develop and test ML algorithms for batch phase-detection problems. By working with simulated
data where the active challenges, disturbances, and noise are fully controlled, ML methods can
be tested systematically. The dynamic simulations were conducted with a hybrid computational
framework where the discrete-events are modeled as state machines in the Stateflow® environ-
ment, while the continuous components of the model were implemented in Simulink®.

2. Benchmark Process Model

The benchmark process features filling, processing, draining, and cleaning operations on a single
unit. Three liquid raw materials (Educt1, Educt2, Educt3) are valve-controlled; and solids are
added through a hatch placed on top of the vessel.

Centrifugation

(ID 5)

Product_Transfer

(ID 6)

Post_Reaction

(ID 8)

Cooling

(ID 9)

Material_Transfer

(ID 10)

Reaction

(ID 7)

CIP

Spray_Cleaning

(ID 11.1)

PumpIn_Recirculation

(ID 11.2)

Flush_Tank

(ID 11.3)

Secondary_Rinse

(ID 11.4)

Flush_Tank1

(ID 11.5)

Add_Educt1 

(ID 1)

Add_Educt2

(ID 2)

Add_Educt3

Add_Material

(ID 3.1)

Agitation

(ID 3.2)

Add_Solids

Wait_Field_Operator

(ID 4.1)

Add_Solid_Material_

Through_Hatch (ID 4.2)

Wait_Control_Operator

(ID 4.3)

Figure 1: Benchmark Model Recipe.

Table 1: Characteristics of the simulation.
Property Value Unit
Vessel volume 12.5 m3

Threshold volume † 6.25 m3

Batch duration 19.5 h
Cleaning procedure duration 1.4 h
Simulation Time ‡ 333 days
Inactivity Period † ‡ 5 min-2 h -

† The vessel is curved, and as a result, the height has a logarithmic profile until a threshold value, followed by a linear
behavior. The height is given as a function of the vessel volume with the threshold mentioned above.

‡ Operation year has 333 days, already leaving a month for cleaning and maintenance.

† ‡ The inactivity period is the time between the end of a cleaning procedure and the beginning of a new
batch. It is set as a random duration between 5 min and 2 h, differing on each new batch production.

Besides raw materials, it is considered that before and after the reaction, hot (steam) and cold
(water) utilities are, respectively, needed to obey the process design parameters and batch recipe.
Fig. 1 illustrates the path, operations (dark blue), and phases (light blue) for the reference process
designed. A batch is produced from ID 1 to ID10 with filling, processing, and draining operations.
The last operation (ID 11.1 to ID11.5) of each batch is the cleaning procedure.

Modeled variables are vessel contents and their sensors, valves, flows, and the hatch position.
While the process just described is apparently simple, complexity is induced through mathemat-
ical expressions which emulate various disturbances. Besides linear profiles, the vessel level can
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follow an exponential, step, stair function. The recipe is based on duration and volume conditions.
For this purpose, the flow rate is adjusted as a degree of freedom to connect volume with time.
Characteristics of the process, such as level profile and conditions, can be found in Tables 2 and 1.

Table 2: Transition trigger conditions, nominal durations, and level profiles of the benchmark
process.

Event ID Transition Trigger Condition † Nominal Duration Level Profile
1 L1 PV ≥ 30% 3 min Linear
2 L1 PV ≥ 60% 3 min Linear
3.1 L1 PV ≥ 65% or t > 5 min 5 min Linear
3.2 L1 PV ≥ 70% 5 min Noise (± 5%)
4.1 t > 15 min 15 min Linear
4.2 L1 PV ≥ 85% 5 min G = 16/(s2 +3.2s+16)
4.3 t > 5 min 5 min Linear

5
L1 PV ≥ 90%
Design: 5 steps

increase: 3 min
inactivity: 7 min Step

6 L1 PV ≤ 60% 3 h Linear
7 L1 PV ≥ 85% 12 h G = 10e−0.05s/(s2 +18s+15)
8 t > 2 h 2 h Linear
9 L1 PV ≤ 70% 1 h G = 5e−0.05s/(0.001s2 +0.2s+3)
10 L1 PV ≤ 0% 5 min Linear
11.1 L1 PV ≥ 10% 30 min

Noise ‡
11.2 t > 14 min 14 min
11.3 L1 PV ≤ 0% 5 min
11.4 L1 PV ≥ 5% 30 min
11.5 t > 2.5 min 2.5 min
† L1 PV corresponds to filling percentage. ‡ The injected noise is part of the process nominal profile.

3. Process Model Implementation

The tank volume is calculated from a mass balance where incompressible flow and constant den-
sity at the vessel entry and exit are assumed:

d Volume
dt

= valveout ·qout − valvein ·qin (1)

where valvein and valveout are binary variables indicating the opening of the inlet valve and the
outlet valve. Changing valvein and valveout makes it possible to control the liquid flow direction.
To model realistic instrumentation, the volume is transformed to a level signal representing the
vessel filling level (L1 PV in Table 2). The flow rates of heating/cooling agents are assumed to
increase/decrease the profile according to the transfer functions of ID7 and ID9 in Table 2. In
specific states, noise is added to the level signal to obtain a specific level profile. During cleaning
procedures, it is worth noting that heavy sensor noise is often masked due to the filling and draining
of water, which induces agitation and oscillation behaviors.

3.1. Disturbances Mapping and Implementation

Disturbances are classified as a step: which mirrors time effects such as recipe changes; seasonal-
ity: oscillation emulating time effects such as season of the year; stair: for example, consecutive
steps (changing supplier multiple times); and drift: such as a linear term overlay. Table 3 lists key
disturbances scenarios studied. All disturbances are modeled stochastic wherein the user controls
likelihood and severity. Twenty one simulation scenarios have been implemented in Stateflow®

(ID1-ID10, ID13) or Simulink® (ID11, ID12, ID14-ID21).
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4. Evaluation of ML algorithms

As a first step towards assessing how ML algorithms respond to the challenges mentioned above,
Just (2021) compared the performance of Random Forests (RF) and the Hidden Markov Model
(HMM). These algorithms are capable of classifying sequences in time-series data (Tsay and Chen,
2019). Several studies compare the two in terms of overall accuracy on labeling, classification
speed, memory consumption, feature computation, and model complexity. A comparison between
both algorithms is provided in Munther et al. (2016) regarding internet traffic data. Two criteria
discussed in Just (2021) were used to evaluate the algorithms learning performance. Accuracy
describes the number of correct labels divided by the total number of labels. The mean absolute
error (MAE) measures the average error in identifying change points (CPs) using the distance
between real (CPreal) and predicted change (CPpredicted) points in time units.

MAE =
∑

#CP
i=1 | CPpredicted −CPreal |

#CP
(2)

Table 3: Disturbances mapping and description, classified by cause. ID identification for each
benchmark cycle with multiple disturbances scenarios (second column).

ID Cycles Cause of Noise/Fault Behavior Description
1 A-F Delay of single-phase end Phase end is delayed, no change in actuation

occurs during the phase2 A-F Delay of multiple phases ends

3 C-F An irregular single-phase occurs e.g., if the yield was found to be insufficient after
quality sample, an additional reaction step is provided

4 C-F An irregular series of phases occur The CIP does not always occur at the batch end

5 A-F Tank is filled to different final fill levels
After a specific number of batches, the volume decreases
between 30-70% of the batch size. Also, small varia-
bility of 2% to 5% can be added to final filling stages

6 † Start/End points of the label(s) are shifted End of phase 1 happens, but logged time of phase 1
is at the beginning of phase 2, the label of which is delayed

7 F Phase wrongly labeled It appears wrongly labeled as phase 1 lasts for the time of
the 2 phases, but the sensor measurements remain the same8 † Two consecutive phases have the

name of the first phase

9 A-F
A valve is opened and closed several
times, and nothing happens
before the material transfer starts

Instead of being opened and closed once, it happens
more times. Valve starts open

10 A-B, D-F Valve opens and closes several times, and
nothing happens after material transfer ends

Instead of being opened and closed once, it happens
more times. Valve starts closed

11 B-F Phase name remains the same, but the
actuation changes

A different valve is opened at several instances without that
behavior having meaning to the reference process

12 A-F A pump slowly supplies less throughput The flow rate decreases in time. To reach the same level of li-
quid in the tank, a certain task takes more time to complete

13 A, D-F The motor provides less agitation Rotation number decreases randomly, resetting after a batch
14 C-F Utility Flow masked with noise Incremental changes in the flow with increasing spikes
15 C Loss of signal A series of data points are not written for the sensors

16 † Value outside of sensor range If the level measurement deviates from normal values
(from 0 to 100), an error message appears

17 C, D A sensor suffers from a gradual drift
for a period of time

Drift lasting until the end of the simulation, resulting in
volume shift, as much as the slope chosen

18 B, E-F A sensor suffers from a gradual drift
and is suddenly recalibrated

Similar to ID15 but the sensor has a sudden
recalibration after a specific number of batches

19 B, D-F A sensor suddenly has an offset
(recalibration or fault)

At random points in time, with small durations, the sensor
has offsets. The actuation remains unaltered

20 B-F A wide variety of sensor noise Statistical distributions: Gaussian, uniform, and waveform
21 A-F White-Band Noise Added to the signal introducing spikes in measurements
† Implemented but not included in the benchmark cycles reported here.

5. Results

The profile L1 PV at nominal behavior (i.e., disturbances-free) of the reference model for a single
batch is represented in Fig. 2. By following a sequence with an increasing complexity level,
disturbances scenarios were grouped by six benchmark cycles and listed in Table 3. Simulation
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runs were conducted for the duration of a year (ca. 382 batches). Fig. 3 summarizes the accuracy
and MAE obtained by RF and HMM for the benchmark cycles A-F.

Figure 2: Nominal behavior of a batch and a cleaning procedure for the reference model with
batch phase identification.

Cycles A and B yield the best results for accuracy, with the MAE decreasing slightly for the
HMM on Cycle B. HMM correctly estimates in Cycle A the number of change points and the
correct recipe sequence is recognized. Nonetheless, there are cases where the location of the
change points is incorrectly estimated. Just (2021) show that the most problematic transitions
are from Centri f ugation to Product Trans f er and between all phases of the cleaning procedure.
Between the HMM and RF, the latter confuses these state transitions more often than the HMM.
This confusion between states might be due to heavy noise being added to the signal for the CIP,
where the overlap of volumes for consecutive states is a limitation.

Prediction performance was worst for Cycle C, especially for the HMM. Because the implemen-
tation of ID15 is independent of the number of batches, fewer occurrences of the CIP affected the
level profile for a longer time. While the RF can order input characteristics according to their in-
fluence on the classification decision, the HMM always outputs the same phase for these batches.
The HMM could not predict Cycle F because individual observations could not be assigned to any
state. By enabling a label disturbance, this algorithm failed in recognizing states.

The overall results indicate the RF to be less generalizable and tends to overfit. Also, the RF
confuses more states (lower MAE), whereas the HMM can identify the correct sequences because
it can learn the sequence of recipe steps. This is particularly relevant when ID4 is active for Cycles
C to F. The HMM delivered accuracies above 85% in all but Cycles C and F. In these two cycles,
the performance of RF was not affected, achieving accuracies of 79%–81%. The disturbances that
caused the most degradation in performance were ID7 (purpose incorrectly labeled training data)
and ID15 (loss of several signal points) combined with ID4 (phase occurring irregularly).

6. Conclusions

The focus of this work was to develop a benchmark model to support the testing and comparison
of ML methods concerning their capability of recognizing and predicting batch recipes based on
labeled time-series data. This is motivated by the fact that there are few comparable applications
of ML and no formal methods for assessing the capability of the shown algorithms in the open
literature. The entire process model is viewed at the unit level with filling, processing, draining,
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Figure 3: Evaluation of accuracy and MAE for each benchmark cycle with RF and HMM (Just,
2021).

and cleaning operations. Since active disturbances and data noise are fully controlled, the bench-
mark model offers capabilities that enable the user to design several simulation scenarios, building
a deeper understanding of the ML algorithms.

Different scenarios were generated where up to 21 disturbances of several types, causes, or fault
origins are injected into the simulated data to compare the RF and HMM algorithms. The scenarios
were grouped into six benchmark cycles with increasing levels of complexity in terms of intensity,
duration, and probability. The disturbances shown to be more challenging were the ones where
likelihood and dependency between consecutive states are affected, which correspond to ID4,
ID5, ID7, and ID11. The results show that the HMM deals with most of the implemented process
disruptions and makes better predictions than the RF.

The process model here presented can be readily expanded to incorporate additional features in-
spired in real-life process data as those discussed in Stief et al. (2019), including: (i) valves that
partially open, (ii) inclusion of equilibrium- and kinetically-controlled chemical reactions, (iii)
temperature monitoring and incorporating heat transfer, and (iv) more nonlinear profiles can be
considered in the batch recipe. A performant model implementation could be achieved by reduc-
ing the continuous part of the model to a simple design of experiments and emulating disturbance
profiles based on process insight rather than building a detailed mechanistic model. Separating
the discrete model part (Stateflow®) and continuous part (Simulink®) allowed building a modular
model, facilitating its expansion and adaptation.
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Abstract
The government of Chile has pledged that 100% of the city buses fleet will be powered by electric-
ity by 2040. Since the fabrication processes of electric vehicles and electricity generation are not
emissions-free, process analysis appears as a valuable tool to quantify their implications towards
the optimization of the industrial processes in terms of better use of resources and recycling. This
work aims to quantify the global warming potential and identify critical stages in the fabrication
and use of electric and diesel city buses in Chile by process simulation of: (i) metallurgical pro-
cesses (aluminum, copper and steel), (ii) thermoelectric power plants, and (iii) diesel production
plants. A total of 618 kg of aluminum, 187 kg of copper and 11,538 kg of steel are required for
the fabrication of an electric bus, while for a conventional bus are required 61 kg of aluminum,
10,354 kg of steel and 268 kg of cast iron. The results indicate that 12.94 tons of CO2,eq per ton
of aluminum, 1.22 tons of CO2,eq per ton of copper and 1.38 tons of CO2,eq per ton of steel are
generated, with the major contribution to emissions coming from the Hall-Héroult process, the
electrorefining stage and the iron blast furnace, respectively. A natural gas power plant in Chile
produces 1.0 kg of CO2,eq per kWh generated, which corresponds to 0.51 kg of CO2,eq per km
driven for electric buses. The processing of crude oil in the United States (main supplier of diesel
in Chile) generates 0.61 kg of CO2,eq per litre of diesel produced, corresponding to 1.38 kg of
CO2,eq per km driven for conventional buses. These results are in good agreement with previ-
ous reports which suggest that the positive impact of switching to electricity-powered vehicles is
strongly correlated with the carbonization-level of the electricity grid related to buses fabrication
and charging.

Keywords: city buses, metallurgical raw materials, electricity generation, diesel production, green-
house gas emissions

1. Introduction

Electricity-powered vehicles do not produce greenhouse gas emissions directly during their use.
However, the processes associated with their fabrication (mainly mining and metallurgical pro-
cesses) and electricity generation (still strongly based on combustion of fossil fuels) are not
emissions-free. Therefore, numerous life cycle assessment (LCA) studies have been issued in
the past two decades aiming to quantify the real impact of switching from a transport system
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powered by fossil fuels to one powered by electricity (Bouter et al., 2020; Cooney et al., 2013;
Nordelöf et al., 2014; Tagliaferri et al., 2016; Xylia et al., 2019).

Nordelöf et al. reported an LCA of city buses powered by electricity, hydrogenated vegetable oil,
or diesel. The dependence of the environmental impacts on the buses degree of electrification
and the charging electricity generation system were studied for Sweden, the European Union and
the United States of America. Their results show that the impact decrease in climate change is
strongly correlated with the carbonization-level of the electricity grid related to buses fabrication
and charging (Nordelöf et al., 2019c). The importance of the electric grid makeup in the life cycle
inventory assessment (LCIA) of electric public transportation buses is also suggested by other
authors (Cooney et al., 2013; Ercan and Tatari, 2015). Moreover, Nordelöf et al. suggested that the
abiotic resource use in the fabrication of the electrical automotive traction machines, automotive
power electronic inverter units, and permanent magnet electric traction motors (which includes
copper, cobalt, steel, aluminum and rare earth elements such as neodymium, dysprosium and
samarium) can have significant impacts in climate change (Nordelöf and Tillman, 2018; Nordelöf
et al., 2018, 2019a,b).

This work aims to quantify the global warming potential (GWP) associated with the higher-impact
stages in the fabrication and use of city buses powered by electricity or diesel in Santiago, Chile,
pursuing the industrial processes optimization via a circular economy approach. Its novelty is
centred in the methodology employed, which consist in the direct simulation of processes for key
raw materials production and energy generation to determine the stages with the higher GWP
associated. This method comes to complement the conventional LCA method based on the use
of commercial software databases to assess the environmental impacts of production processes,
which can generate data for each stage in a life cycle but cannot go into the operational details
(for example, kinetics, efficiencies, stream compositions, specific energy consumptions, and their
interrelations).

2. Case Study

This study is centered in two different vehicles of the bus line no. 506 in Santiago, Chile: (i)
an all-electric powertrain bus, model BYD K9 (hereafter electric bus); and (ii) a diesel engine
powertrain bus, model Mercedes Benz O500U (hereafter conventional bus). The latter was used
as a reference for the assessment of the GWP impact associated with the fabrication and use of
an electric bus. For the electric bus the analysis considered the key raw materials production
processes associated with the fabrication of the lithium iron phosphate (LFP) batteries module,
chassis, frame and body, and the electricity generation according with the existing energy matrix
in Chile. For the conventional bus the analysis considered the key raw materials production pro-
cesses associated with the fabrication of the engine, chassis, frame and body, the production of
diesel, and the emissions associated with the bus operation. Data related to buses parts and opera-
tion was provided by a local bus operator stakeholder (Reborn Electric SpA1), while information
related to electricity generation and diesel production (import) was obtained from public Chilean
government databases (Comisión Nacional de Energı́a, 2020a).

Technical information indicates that a considerable weight fraction of the LFP batteries module is
represented by aluminum (33 wt.%) and copper (10 wt.%) (Golubkov et al., 2014). The fabrication
of a bus chassis, frame and body requires considerable amounts of steel, while the fabrication
of a conventional bus engine requires steel, cast iron and aluminum (Harr et al., 1999; BYD,
2018). Because the production of aluminum, copper, steel and cast iron is associated with difficult-
to-decarbonize processes, they were considered critical stages in the fabrication of electric and
conventional city buses (Davis et al., 2018). Table 1 summarizes the amounts of aluminum, copper,
steel and cast iron required for the fabrication of an electric bus and a conventional bus.

1https://www.rebornelectric.cl/
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Regarding electricity generation in Chile, fossil fuel power plants stand for almost a 49% of the
total electricity generation capacity. Of these a 16% corresponds to pulverized coal combustion,
integrated gasification combined cycle and fluidized bed combustion power stations, while another
16% corresponds to gas turbine and natural gas combined cycle technologies (Comisión Nacional
de Energı́a, 2020a; Gaete-Morales et al., 2019). Concerning diesel consumption in Chile, an 82%
of the imports comes from the United States of America (Comisión Nacional de Energı́a, 2021).

Table 1: Weight of aluminum, copper, steel and cast iron required for the fabrication of an electric
bus and a conventional bus.

Electric bus

Bus part Metal required Weight / kg
Cathode current collector Aluminum 618
Anode current collector Copper 187
Chassis, body and frame Steel 11,538
Conventional bus

Bus part Metal required Weight / kg

Engine
Steel 205

Cast iron 268
Aluminum 61

Chassis, body and frame Steel 10,149

3. Methodology

The conventional Bayer process in conjunction with the Hall-Héroult process were simulated for
aluminum production from a gibbsite rich mineral (Habashi, 1998). For copper the pyrometallur-
gical via for the metal refining was simulated since this is the method mostly applied for processing
sulfide minerals, particularly chalcopyrite, which are the mostly abundant source of copper world-
wide (Schlesinger et al., 2011). Similarly, for steel and cast iron the pyrometallurgical via was
simulated considering that most of its production worldwide comes from processing hematite rich
minerals (Seetharaman, 2014). The computational simulations consisted of the conceptualization
of the three processes flowsheets, the resolution of steady state mass and energy balances for each
stage in these flowsheets, and the determination of the GWP associated with each of these stages.
For this purpose, data reported in scientific publications, metallurgy books and technical reports
was used to characterize the input streams flow rates and compositions, the operational param-
eters (e.g., solid particle sizes, temperatures, conversions) and thermodynamic values (standard
enthalpies and specific heat values) associated with each process flowsheet. Suitable software for
processes simulation, such as HSC Sim 10, was used.

Regarding electricity generation, pulverized coal power plants (PCPPs) and natural gas com-
bined cycles (NGCCs) were simulated considering they are the mostly used technologies in Chile
(Gaete-Morales et al., 2019). Details on the stages and data about the operational parameters asso-
ciated with both processes were obtained from environmental reports published by the Servicio de
Evaluación Ambiental (2015) and the information provided by the Comisión Nacional de Energı́a
(2020b). Averages of the gross power generated in Chile by each technology were considered to
facilitate the simulation of the processes.

Concerning the production of diesel, a common process for petroleum refining in the United States
of America was considered since this country is the main supplier of this fossil fuel in Chile.
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Details on the stages and data about the operational parameters associated with this process were
obtained from (Comisión Nacional de Energı́a, 2020a; Liu et al., 2018).

The computational approach followed for the simulation of electricity generation and production
of diesel was the same as described for the metallurgical processes.

4. Results

The results of the simulation indicate that an electrical power consumption of 984.16 MW and a
heating power consumption of 6.28 GW are associated with the Bayer process in the aluminum
production. These values correspond to total emissions flows of 341.97 tons of CO2,eq per hour and
1,253 tons of CO2,eq per hour associated with electricity generation and natural gas combustion,
respectively. An electrical power consumption of 4.96 GW was determined for the Hall-Héroult
process, which corresponds to a total emissions flow of 1,720 tons of CO2,eq per hour. Addition-
ally, 346.08 tons of CO2,eq per hour are generated as product of the graphite anodes oxidation in
the electrolysis cells. Therefore, considering a production rate of 282.91 tons of aluminum per
hour (matching with the alumina production capacity of the Alcoa Pinjarra plant in Australia), a
global emissions factor of 12.94 tons of CO2,eq per ton of aluminum produced was determined.
The process stages identified with the higher GWP are the digestion stage (Bayer process): 34.2%
of the total CO2,eq emissions, the calcination stage (Bayer process): 9.3% of the total CO2,eq
emissions, and the electrolysis stage (Hall-Héroult process): 56.4% of the total CO2,eq emissions.

Regarding copper production, an electrical power consumption of 27.77 MW and a heating power
consumption of 130.35 MW were determined. These values correspond to total emissions flows
of 17.22 tons of CO2,eq per hour and 29.52 tons of CO2,eq per hour associated with electricity
generation and natural gas combustion, respectively. Therefore, considering a production rate of
38.2 tons of copper per hour (matching with the copper production capacity of the “El Teniente”
Codelco plant in Chile) a global emissions factor of 1.22 tons of CO2,eq per ton of copper produced
was determined. The process stages identified with the higher GWP are the drying stage: 18.2%
of the total CO2,eq emissions, the fire refining stage: 16.5% of the total CO2,eq emissions, and the
electrorefining stage: 58.6% of the total CO2,eq emissions.

Finally, the simulation of the steel production process indicates a heating power consumption of
627 MW. This value corresponds to a total emissions flow of 126.18 tons of CO2,eq per hour.
Additionally, 663.8 tons of CO2,eq per hour are generated as product of the reactions taking place
in the iron blast furnace and the basic oxygen furnace. Considering a production rate of ca. 570.78
tons of steel per hour (matching with the steel production capacity of the Arcellor Mittal Asturias
plant in Spain) a global emissions factor of 1.38 tons of CO2,eq per ton of steel produced was
determined. Since cast iron is an intermediate product of the steel production process an emissions
factor of 1.26 tons of CO2,eq per ton of iron cast produced was determined, which indicates that
in this case the iron blast furnace is the stage with the higher GWP (96.7% of the total CO2,eq
emissions).

Concerning electricity generation, a PCPP that generates a gross power of 249.1 MW and a NGCC
that generates a gross power of 390.4 MW (with 2/3 of this power generated in the gas turbine and
the remaining power generated in the steam turbine) were simulated. A total emissions flow of
576.8 tons of CO2,eq per hour was determined for the PCPP technology, of which a 48.7% is asso-
ciated with the pulverized coal boiler operation and a 37.8% is associated with the desulfurization
stage. Correspondingly, a total emissions flow of 173.2 tons of CO2,eq per hour was determined
for the NGCC technology associated with the combustion chamber, turbine operation, and heat
recovery steam generator (HRSG) stages. Finally, considering capacity factors of 0.81 and 0.53
for the PCPP and the NGCC, respectively (Gaete-Morales et al., 2019), emission factors of 3.1
and 1.0 kg of CO2,eq per kWh generated were determined. Since an electric bus consumes 1.1
kWh per km driven and assuming that the electricity matrix in Chile includes a 48.6% of natural
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gas based power plants, an emissions factor of 0.51 kg of CO2,eq per km driven was determined
for this type of vehicle.

To conclude, the simulation of a petroleum refining plant processing 100,000 barrels of crude
oil per day indicates that a total amount of 1.32 million litres of fuel per day (fuel coming from
the same plant) is required to satisfy the utilities requirements of the process. This is associated
with an emissions factor of 0.61 kg of CO2,eq per litre of diesel produced. Therefore, since a
conventional bus has a performance of 2.4 km per litre of diesel and the combustion of this fuel
produces 2.69 kg of CO2,eq per litre (Dirección de Transporte Público Metropolitano, 2014; US
Environmental Protection Agency, 2018), the emissions factor associated with its use is 1.38 kg
of CO2,eq per km driven.

5. Conclusions

The results obtained indicate that the electrolysis stage (Hall-Héroult process) in the aluminum
production process is related to a significant GWP due to its high electricity consumption and the
generation of CO2 as a by-product. Similarly, the electrorefining stage in the copper production
process is related to the higher GWP due to its elevated electricity and heat power requirements.
This represents a big challenge for the experts in electrochemical engineering to develop alterna-
tives to these conventional processes which offer similar kinetics and the absence of undesirable
by-products operating under moderate conditions. In the case of the steel production process, the
CO2 generated as by-product in the iron blast furnace is another sign of the need of developing
new technologies which do not depend on the use of fossil fuels or an energy matrix with high
carbonization levels. Since the fabrication of an electric bus requires a higher amount of these raw
materials than the fabrication of a conventional bus (having in mind that this study does not in-
clude other materials such as lithium and rare earths also related to high environmental impacts),
it is required to consider new developments and a circular economy approach for the effective
implementation of these vehicles.

The resulting emissions factor associated with the use of an electric bus (0.51 kg of CO2,eq per km
driven) is, as expected, lower than the emissions factor associated with the use of a conventional
bus (1.38 kg of CO2,eq per km driven). This is a positive result considering that the electricity
matrix in Chile is still highly dependent on fossil fuels. However, the fabrication impact must not
be disguised by this result since it is also associated with the urgent need of recycling strategies
at the end of life considering, for example, that batteries modules have an optimal lifetime of
approximately six years (a half of the optimal lifetime of a conventional bus).

It is thought that the proposed methodology successfully complements the LCA studies reported
in the literature since it allows to identify the processes stages with the higher GWP associated and
the operational aspects that explain it, thus offering guidelines for future research and optimization
in the fabrication and use of electric vehicles.
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A. Nordelöf, M. Alatalo, M. L. Söderman, 2019a. A scalable life cycle inventory of an automotive power electronic
inverter unit—part I: design and composition. The International Journal of Life Cycle Assessment 24, 78–92.
URL https://doi.org/10.1007/s11367-018-1503-3
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A. Nordelöf, M. Romare, J. Tivander, 2019c. Life cycle assessment of city buses powered by electricity, hydrogenated
vegetable oil or diesel. Transportation Research Part D: Transport and Environment 75, 211–222.
URL https://doi.org/10.1016/j.trd.2019.08.019
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Abstract 
The production of ammonia accounts for nearly 2% of global carbon emissions 

(Palys et al. 2018) and therefore finding ways to make ammonia using renewable energy 
sources is paramount. The current mechanism for NH3 production is dominated by the 
Haber-Bosch process, in which the hydrogen is produced from a water-gas shift reaction 
(Martín, 2016). Rather than obtaining this hydrogen from fossil fuels, this project 
employs electrolysis, driven by a solar plant coupled with battery storage. In this work, a 
dynamic simulation of a chemical process plant for the synthesis of the production of 
ammonia electrolysis is simulated using Aspen Hysys. Since renewable sources of energy 
are naturally variable, the plant’s dynamic performance over varying electricity 
availability is also investigated. Case studies are used to demonstrate the feasibility of the 
plant as well as to explore the maximum and minimum battery capacities required.  

Results show production profiles utilizing variable energy availability while 
avoiding shutdowns and minimizing battery charging cycles. The results also demonstrate 
the feasibility of completely sustainable ammonia production. This study produced 60.25 
tons/day of ammonia using 8 tons/day of hydrogen at a current density range of 43 – 90 
A/cm2. The minimum battery capacity required is 56.25 MW. 
 
Keywords: Electrolysis, Ammonia, Battery, Renewable, Solar Energy. 

1. Introduction  
Ammonia (NH3) is the second most produced chemical in the world. 

Traditionally, hydrogen is produced from methane steam reforming, while nitrogen is 
separated from the air. This project utilizes Aspen Hysys to simulate a dynamic model of 
an ammonia production plant that utilizes sustainable hydrogen production. Nitrogen is 
obtained from an air separation unit using a pressure swing adsorption technique. 
Hydrogen is produced via water electrolysis at moderate pressure and temperature 
conditions to ensure overall energy usage is reduced and high purity of hydrogen is 
obtained.  

While renewable energy is crucial to handling global warming, a major 
challenge is intermittency. In this work, rechargeable lithium-ion batteries are 
implemented to allow continuous production of ammonia. The specific objectives of this 
study are (1) to simulate a dynamic model for hydrogen production, nitrogen separation, 
and ammonia synthesis (2) to integrate the process with a solar energy and battery source, 
(3) to test and analyze the effects of varying process parameters (4) to perform an 
assessment of the system to determine battery charging and discharging schedules.   
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2. Background  

2.1. Hydrogen Production  
Several production methodologies for hydrogen production can be considered in 

the context of ammonia production, including Alkaline Water Electrolysis (AWE), Proton 
Exchange Membrane Electrolysis (PEM), and Solid-Oxide Water Electrolysis (SOWE). 
These methods are differentiated by two major parameters: pH, and temperature. The 
criteria used to decide the most effective technique is based on the temperature range, the 
electrolytes and durability of the system. AWE was chosen because of its low capital cost, 
low corrosivity, high durability, and thermodynamic stability. Based on these factors, the 
AWE process was chosen for this project. The simulation for the proposed AWE was 
completed using Aspen Custom modeler. 

2.2. Nitrogen Separation 
A renewable-resourced ammonia production facility should obtain the required 

nitrogen directly from the air. Three methods of air separation were considered for this 
project: cryogenic distillation, pressure swing adsorption, and membrane separation. 
Although cryogenic distillation is the most common process employed in industry, it 
requires large energy input. While membranes offer a low-energy solution for air 
separation, the current production of membranes does not provide sufficient selectivity 
for practical use. PSA, on the other hand, provides a trade-off between practically and 
energy consumption. Furthermore, high-quality adsorbents for oxygen already are in 
industrial practice. PSA was not modelled in this work, it is recommended for future 
work.  

3. Process Description 
A dynamic process is simulated which integrates a Haber-Bosch reactor with 

water electrolysis for hydrogen production. It utilizes a solar plant as the main source of 
energy with lithium-ion batteries to buffer the power availability. The process model was 
developed using Aspen Hysys and Aspen Custom Modeler. An overall schematic of this 
process is shown in Figure 1. 

 
Figure 1: Overall schematic for ammonia production 

 

3.1. Hydrogen Production Section 
Alkaline water electrolysis is a process by which water is decomposed into 

hydrogen and oxygen in an electrolytic cell. Water is fed to the cell, which includes a 
porous nickel electrode and a diaphragm. Figure 2 shows the anode circulation loop, 
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which produces oxygen while the cathode circulation loop produces hydrogen for the 
Haber-Bosch process. This affects a direct separation between the hydrogen and oxygen 
produced. The AWE was simulated using a custom unit operation created in this work.   

 
 

 
 

Figure 2: Alkaline Water Electrolysis showing anode and cathode circulation 
 

3.2. Ammonia Production System 
As discussed earlier, the Haber Bosch process is operated in a plug flow reactor 

temperature of 580 K and 150 bar. Heat integration is applied to recover excess energy 
from the product. Unreacted nitrogen and hydrogen are recycled to reduce energy usage.  

3.3. Energy Specification 
Upon the implementation of the above process model, a dynamic simulation was 

completed for three different case studies to demonstrate the energy requirements of the 
system. The objective of these case studies is to show the dynamic profile of the plant 
given various weather and location scenarios. The case studies are also used to understand 
the battery capacity required for the plant. 

The storage energy system is an essential part of most off-grid renewable energy 
systems. Batteries are employed to store the surplus power produced from solar power 
allowing them to serve the load demand while balancing the hybrid system’s fluctuations. 
The model used in this paper estimates the state of charge of the battery storage following 
the methods by Guezgouz et al. (2019).  

4. Results and Discussions 
The case studies shown describe the relationship between power availability and 

ammonia production level. Knowing that water electrolysis dominates the power 
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consumption operation of this plant, it is important to understand the power requirement 
of the alkaline water electrolysis based on the overall ammonia produced. The study uses 
a minimum and maximum current density specification to control the amount of hydrogen 
produced. This controls the overall ammonia production rate. The maximum and 
minimum current density is identified by using the specific requirements of AWE, at a 
limiting temperature of 90° C. Current density is directly properly proportional to 
temperature of the electrolytic cell. At current density ranging from 0.2 A/cm2 to 0.3 
A/cm2, temperature ranges from 66 ° C – 90 ° C respectively.  

The dynamic behavior of the integrated process was modeled using Aspen 
Hysys. In the system, controllers are placed in strategic places to stabilize the open loop 
response of the system as the current density of the process is changed. The controllers in 
the AWE will be tunned electrolysis to decrease the settling time and overshoot by tuning 
the control parameters. Dynamic studies will be continued to determine optimal operating 
conditions and charging/discharging schedules 

For each case, the electrolyzer inlet temperature is set to 25 °C, while the inlet 
temperature of the for the Haber-Bosch PFR is set to 257 °C. This gives a 92% conversion 
rate of hydrogen to ammonia.  

Case study one shows a startup for this process leading to full-capacity 
operation. The plant then runs at a constant density of 0.3 A/cm2. Figure 3 describes the 
dynamic profile of the plant. It can be observed that at a constant density of 0.3 A/cm2, 
the maximum amount of ammonia produced is 27.45 tons/day, which corresponds to a 
small industrial facility.  The energy requirement is estimated to be 5.54e +04 kW per 
day. This case study serves as a base case to compare with real-word scenario.  

 

 
 

Figure 3: Ammonia production profile for case study one 
 

Case study two assumes construction at a location closer to the equator, where 
there is approximately 12 hours of daylight. The current density at high solar hours is 
assumed to be 0.3 A/cm2 which gives an ammonia production rate of 27.84 tons/day, as 
seen in the previous case study. This production rate decreases to 19 tons/day at a lower 
current density of 0.2 A/cm2 when power is obtained from batteries. The excess energy 
produced from the solar panel at peak hours is transferred into batteries for use during the 
night. A total of 600 solar modules are utilized for functionality of the plant. Figure 4 
shows the response to the change in current density of the overall ammonia production. 
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The dynamic profile also illustrates a second order response to the change in current 
density.  
 
 

 

 
Figure 4: Ammonia production profile for case study two 

 
Case study three involves a location further away from the equator, where there 

is lower amount of sunlight. The plant runs at 0.2 A/cm2 for 16 hours at night while it 
runs at a higher current density 0.3 A/cm2 for 8 hours. From the result shown in Figure 5, 
it can be inferred that there is an 60% increase in battery required to make the same 
amount of ammonia. excess energy supplied during the data is stored because it is needed 
to power the plant at night.  
 

 

 
Figure 5: Ammonia production profile for case study two 
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5. Conclusions and Future Work 
In this project, the feasibility of a 100% renewable energy chemical production 

plant to produce ammonia was considered. Due to the intermittency of renewable energy 
sources, the dynamic production profile was considered, to size the energy storage 
requirements. Water alkaline electrolysis and pressure swing absorption were applied to 
produce hydrogen and separate nitrogen respectively. The resulting profiles show the 
feasibility of a full-scale ammonia plant utilizing 100% renewable energy by integrating 
the entire Haber Bosch process with solar power. Analyzing these case studies at different 
current densities and time intervals gave insights on the effects of solar radiation and 
battery capacity on the ammonia production rate.  

The battery system employed is large but not beyond currently used industrially 
sized systems. The key conclusion explained from the analysis shows that, the scale of 
the ammonia plant is necessary for the renewable energy to be economical. Several small-
scale renewable plant is more cost effective than one large renewable plant. The results 
also show that case study 2 is more economical for the ammonia plant because it is much 
closer to the equator, therefore more energy can be harvested and stored in the battery for 
night-time. Lastly, the results also show a promising future holds for a renewable 
ammonia plant although this focuses on a smaller production scale. Future studies will 
perform MINLP optimization to minimize battery requirements and thus improve overall 
sustainability.  
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Abstract 

Hydrogen, a clean multipurpose energy carrier with application in various industrial and 

chemical processes has been identified as a key player in meeting the global clean energy 

sources target. There are several ways to produce hydrogen, however, 95% commercial 

hydrogen is produced via steam methane reforming (SMR) which emits CO2 as by-

product making it environmentally unfriendly. Although carbon capture sequestration 

(CCS) can be applied, only about 90% CO2 capture has been reported in the literature, 

and the burgeoning water electrolysis technology which enables zero GHG emission 

depending on the source of energy applied is quite expensive and limited. Hence the 

increasing research attention on Methane pyrolysis (MP). In this study, the different TDM 

technologies are explored to develop an optimization model that considers energy 

efficiency, CO2 emission and water consumption in production of hydrogen at a minimum 

cost, selecting a sustainable MP path that is comparable to prevalent technologies– SMR 

with and without CCS as well as water electrolysis- for further research. An MINLP 

optimization model for selecting a sustainable pathway to produce hydrogen in 

commercial quantity is formulated using associated data from the literature with respect 

to the different technologies considered. Sensitivity analysis is also performed to analyze 

the impact of the by-products produced from each technology on the cost of production. 

The model is implemented in GAMS. The findings from this work selected TDM with 

Plasma and TDM with metal catalyst as the optimal hydrogen production pathways that 

can compete with prevailing technology for sustainable hydrogen production based on 

the process performance index considered. It also shows that the quality of carbon could 

greatly influence the commercialization of MP. Moreover, MP is flexible and can attain 

carbon-neutrality depending on the feedstock and energy source. However, the results 

show that this transition depends on the cost and availability of renewable energy sources. 

With the supposition that MP Low to zero CO2 emission and valuable solid carbon 

product features makes it sustainable, TDM technology should be explored to compete 

with the current technology to meet hydrogen demand, and this study provides a pointer 

to the optimal TDM technology as well as precedes a process simulation that explores the 

kinetics and thermodynamics for optimization. 

Keywords: Methane pyrolysis, Hydrogen production, Optimization, Carbon. 

1. Introduction

There is a global burden to find sustainable ways to reduce greenhouse gases (GHG) 

emissions while meeting increasing energy demand. Hydrogen, a multipurpose energy 

carrier with application in various industrial and chemical processes has been identified 

as one solution to de-carbonization, given that it does not directly emit CO2. However, 
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the current techniques for commercial hydrogen production to meet global demand is 

heavily dependent on fossil fuels (mainly Natural Gas and Coal) either directly as 

feedstock and fuel for the process or indirectly for electricity generation (Muradov 2017). 

Utilizing natural gas which is composed mainly of methane will considerably reduce CO2 

emission in comparison to its fossil fuel counterparts because it is more environmentally 

friendly.  

Methane pyrolysis (MP) is the thermal decomposition of methane (TDM) to produce 

hydrogen and solid carbon. It is an endothermic reaction like the dominant SMR but it 

has a smaller heat of reaction as well as only one reaction step, making it much simpler 

than the SMR that requires the water gas shift reaction. There are several techno-

economic analysis and reports on the relevance of MP towards the hydrogen economy, 

as well as process simulation and experiments on the different MP technologies available 

to push its competitive potentials. However, to the best of the authors’ knowledge as of 

the time of this work there are quite few research works, if any, that applied modelling 

and optimization to decisively select an optimal pathway.  

In this work, we adopt and formulate an optimization model that selects the sustainable 

MP technology that can be comparable to prevalent technologies– SMR with and without 

CCS as well as water electrolysis for commercial hydrogen production considering 

energy efficiency, CO2 emission and water consumption in production of hydrogen at a 

minimum cost. We analyze different scenarios of energy source combination as well as 

the influence of the price of valuable carbon and CO2 emission tax/credit. The work is 

structured as follows: section 2 describes the different hydrogen production technologies 

currently used or researched. Section 3 describes the process modelling. Section 4 

describes the model and optimization implementation as well as discussion of results 

obtained. Section 5 concludes with the finding and further works considered. 

2. Hydrogen Production Methodologies

There are several technologies for producing hydrogen, the hydrogen produced from 

these technologies are mostly identified in color codes - based on dependence of the 

production process on fossil fuel or clean energy sources. These mainstream technologies 

include: 

- Grey Hydrogen (SMR, Partial Oxidation, Auto-thermal reforming, Steam-

oxygen gasification of coal, flue gases) (Muradov 2017; Keipi et al. 2016; 

Nikolaidis and Poullikkas 2017) 

𝐶𝐻4(𝑔) + 𝑦𝐻2𝑂(𝑔) → 𝑎(𝑦𝐶𝑂(𝑔) + 𝑦𝐻2(𝑔)) + (1 − 𝑎)𝐶𝐻4(𝑔) 𝐸𝑛𝑑                   (1)

𝐶𝑂(𝑔) + 𝐻2𝑂(𝑔) → 𝐶𝑂2(𝑔) + 4𝐻2(𝑔) ∆𝐻𝑟 = −41.2𝑘𝐽/𝑚𝑜𝑙     𝐸𝑥𝑜𝑡ℎ𝑒𝑟𝑚𝑖𝑐   (2)

- Blue hydrogen (SMR with CCS) 

- Green hydrogen (Electrolysis) (Muradov 2017).  

𝐻2𝑂 → 𝑎(𝐻2 + 𝑂2)     ∆𝐻 = 285.8 𝑘𝐽/𝑚𝑜𝑙                                                         (3)
- Turquoise Hydrogen (Methane Pyrolysis, TDM) (Keipi et al. 2016). 

𝐶𝐻4(𝑔) → 𝑎(𝐶𝑠 + 2𝐻2(𝑔)) + (1 − 𝑎)𝐶𝐻4(𝑔)      ∆𝐻298𝑘 = 74.52𝑘𝐽/𝑚𝑜𝑙      (4)

3. Process Modeling

To select the optimal Hydrogen production route, we employ synthesis-design processing 

route modelling approach proposed by Bertran et al. (2017). A superstructure based 

optimization problem is formulated to choose among processing alternatives. The 

Methodology is a three-step approach design for achieving an optimal production 

pathway. The three stages involve synthesis (superstructure optimization process 

synthesis), Design (detailed design and simulation), and Innovation (optimization, 
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modification or improved and sustainable process integration design) with output of each 

stage as the input of the next (Quaglia et al. 2012). The complicated and data intensive 

process is decomposed into these stages to simplify the problems and finally integrate the 

solution obtained from each stage to form a sustainable solution. For this work, we 

implement the first step to choose the sustainable hydrogen processing pathway, this is a 

precursor to the subsequent 2 steps which would explore in detail in future works. 

In modelling, a CO2 emission target in included to assess the total CO2 emitted from the 

process and energy sources of each technology, this constraint is essential for the 

technology selection. Figure 1 shows a representation of individual process and its 

components to be modelled which is repeated for the different technologies considered. 

Where 𝑓𝑖,𝑘
𝐼𝑁, 𝑓𝑝,𝑘

𝑜𝑢𝑡𝑓𝑝,𝑘
𝑜𝑢𝑡,1, 𝑓𝑝,𝑘

𝑜𝑢𝑡,1 represents the input and output (product and by-product)

variables respectively, 𝐸𝑗,𝑘 are the energy consumed with respect to the source for each

technology,  𝐶𝑂2
𝑒𝑚𝑖𝑡

𝑗,𝑘
 accounts for the CO2 emitted from each energy source for each

technology, given that there is no direct CO2 emission from MP and electrolysis, and 

𝑆𝑊𝑖,𝑘 accounts for process waste or unconverted feedstock.

Figure 1: stages of hydrogen production process 

4. Simulation, Results and Discussion

The synthesis-design processing route model as adopted from by Bertran et al. (2017) 

was implemented in GAMS using data from the literature on the current and competing 

hydrogen technologies. The objective is to select hydrogen production technology with 

the minimum cost given the constraints and considering the scenarios provided. The 

decision variables 𝒚𝒌 for the choice of technology, 𝒚𝒂 and 𝒚𝒃 for the emissions constraint.

We used disjunctive programing for the modelling in GAMS and the optimization 

problem was solved using the BARON solver. For this work five (5) MP technologies 

were considered and compared to the matured technologies – SMR, SMR_CCS and 

Alkaline Electrolysis. The technologies considered are represented as: T1-conventional 

gas reactor, T2- plasma, T3-Heat exchanger reactor, T4-catalytic decomposition with 

metal based catalyst, T5- catalytic decomposition with carbon catalyst, T6-SMR, T7- 

SMR_CCS and T8-Alkaline Electrolysis.  The data used for the simulation was obtained 

from Agency (2019); Keipi et al. (2016); Keitz (2021); Timmerberg, Kaltschmitt, and 

Finkbeiner (2020); Muradov 2017; Keipi, Tolvanen, and Konttinen (2018)). 

4.1. Simulation 

The simulation analysis was based on three (3) scenarios: 

- Impact of energy sources applied: this scenario considers three sources of energy 

required for heating namely: Combusted natural gas (NG), electricity from the grid 

(EG) and renewable energy (RN) sources. A simulation for the application of 
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different combinations of these sources for heat as well as a single source for all 

technologies was carried out and the results analyzed discussed  

- Impact of process by-products: considers the effect of the price of carbon on the 

choice MP technology to compete with prevalent technologies. Likewise, the 

analysis considers the influence of total CO2 emission of each technology in the 

choice of technology; the carbon credit, carbon tax and carbon target were changed 

respectively and the effects analyzed; 

- Impact of feed to product conversion ratio: this scenario considers the effect of the 

conversion rate of the process on the choice of technology. 

4.2. Results 

Table 1 shows the key variables obtained from the simulation as well as significant results 

obtained, the third scenario was not presented as it did not show a significant difference. 

The CO2 emission constraint included in the process model is essential in the choice of 

technology, as it intends to meet the global emissions objective. It provides a solution 

space within which a decision among multiple options is made, as well as revealing 

parameters. It also provides a desired range with a condition for alternative decision when 

there is a violation, which in the case of this work influences the path selection.  

The result in table 1 shows that the constraints were considered in the choice of 

technology for each of the scenarios assumed. It can be seen that the decision for the feed 

flowrate is such that it can obtain a product quantity that satisfies the CO2 emission target, 

however in the case where the target is exceeded and yet a technology is selected, it points 

to the influence of the parameters, noting that the optimizer only tries to find the 

minimum. A global optimum was obtained with the given scenarios. For instance in the 

cases where T7- SMR with CCS is selected, the CO2 target could be exceeded but the 

emission tax could easily be compensated with the cost of technology or energy cost 

compared to choosing electrolysis with almost zero emission but with high technology 

cost. 

Table 1: Simulation analysis result 

Variables 𝒇𝒊,𝒌
𝑰𝑵(kg) 

CH4/H20 

𝒇𝒑,𝒌
𝒐𝒖𝒕(kg) 𝒚𝒌 Z 𝑪𝑶𝟐,𝒌

𝒆𝒎

H 𝑪/𝑪𝑶𝟐

Base_1 36.422 3.788 10.781 T4 783.9 100 

Scenario 1 21.381 1.871 5.613 T2 750.672 100 

24.510 1.838 5.515 T3 736.861 100 

36.944/ 5.000 2.112 16.762 T7 706.346 100 

24.510 1.838 5.515 T3 736.861 100 

Scenario 2 21.381 1.871 5.613 T2 1555.9 100 

30.941 3.094 9.282 T5 1542.7 100 

21.381 1.871 5.613 T2 1550.3 100 

242.469 11.361 100.000 T7 70945.5 100 

Emission 

target 

72.844 7.576 21.562 T4 3149.2 100 

26.489 3.788 10.781 T4 783.7 100 

Scenario 1: Energy consumption 
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The simulation results shows, that the combination of NG and EL provided the least 

objective function selecting T4 i.e. the thermo-catalytic decomposition using metal 

catalyst using electricity from the Grid. However, the CO2 emission was above the given 

emission target. This can be because of the separation requirement for the catalyst and 

the carbon product, given that using catalyst lowers the energy consumption thereby 

reducing possible emission associated with this technology. Furthermore, in the case 

where only electricity is applied across all the MP technologies, it is still able to select 

one of the MP technologies over the SMR with CCS technology. On the other hand, using 

the other sources of energy independently for all the technologies leads the optimizer to 

select the SMR process which is cheaper and has the capacity to offset for the CO2 

emission either through enough profit to pay the given tax or with the CCS technology to 

avoid the tax. 

Scenario 2: Effects of Technology by-products 

From Table 2, we observe that the byproducts of each technology significantly influence 

the final cost of hydrogen production. In the MP technologies there is no CO2 produced 

from the process, the only emission is from the energy source giving it an advantage over 

the matured SMR,- given that even with CCS only about 60% have been reported 

practically and 90% theoretically- hence the higher chance of obtaining carbon credits 

than tax. Moreover, the different MP technologies produce different grades of carbon, 

which have different prices based on their qualities. Therefore, the price of these different 

types of carbon can influence the cost of production. This can be observed from the 

simulation result with choice T2 and T4 which have the highest prices of carbons 

(graphene and carbon nanotubes CNT). 

The results also show that a more strict carbon emission tax leads to the selection of MP 

over SMR, although the increase in carbon credit had no significant effect on the selecting 

SMR with CCS over the MP technologies. 

By using the 3-stage synthesis-design processing route approach, it gives a more 

structured and informed process design and optimization. In addition, the results obtained 

demonstrates the advantages of MP such as: 

- Low CO2 emission, 

- Valuable carbon by-product 

- No water required  

- Ability to apply different sources of heat at different stages of the process for 

optimization purposes. 

These attributes significantly influence the choice of the hydrogen technology. 

5. Conclusion

A synthesis-design processing route approach for superstructure optimization was 

implemented to select the optimal hydrogen processing technology, this technique is the 

first of three steps which serves as a precursor to a more detailed process design, 

simulation and optimizations. The result of the optimization provided a direction as to the 

parameters that can significantly affect the optimal hydrogen production process route as 

well open more questions for the author to decipher in the course of the research. The 

result of the simulation demonstrates the advantages of Methane pyrolysis over the 

prevailing technologies by showing that the use of electricity from the grid as the main 

source of heat can lead to a more optimal MP process that can compete with the current 

SMR and SMR with CCS technology. The result also show that while MP has the 

potential to be emission free when renewable energy sources are applied, it is currently 

not optimal due to the maturity stage and cost of renewable energy sources. 
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The results obtained also showed that the quality and price of carbon product can 

significantly make MP a competing hydrogen production technology. Furthermore, MP 

technologies can enable hydrogen to have a better chance in the world energy mix with 

more countries adopting more strict Carbon emission regulations as the world move 

toward a low-zero emission. With the result of this work a detailed process simulation 

will be carried out with the best technology selected which in this case is between T2 

(TDM with Plasma) and T4 TCDM (with metal catalyst). 

The results also open room for more question for research exploration such as: The 

thermodynamics of the process that can lead to optimal quality carbon production, the 

properties of carbon produced and their modification for different applications to enable 

more demand, energy mix in the different process steps that can enable optimal 

processing. What are the main distinctions between T2 and T4, and how can they be 

improved to compete with the SMR technology while more research on the possibility of 

making MP technologies emission free is ongoing. 
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Abstract 

Lactic acid (LA) is a raw material for poly lactic acid, which is used in food, 

pharmaceutical, textile, and various chemical industries. Evaporation is an essential 

process to produce highly pure LA after the fermentation process. Notably, the 

evaporation process is energy intensive, and the energy consumption corresponds to 

approximately 50% of the total production cost. Consequently, the energy efficiency of 

the LA evaporation process must be enhanced. To this end, this study was aimed at 

establishing a process model based on a multi-effect evaporator (MEE) and mechanical 

vapor recompression (MVR) system. The MEE process model involved a distillation 

column, virtual reboiler, and flash drum. The steam consumption was reduced by 

recovering the latent heat of secondary vapor. Furthermore, the steam and condensate 

were recovered from the final evaporator. The MVR process model involved a 

compressor that substituted the steam consumed in the evaporation with electricity by 

recompressing the vapor in the evaporator. The energy efficiency of the two processes 

was analyzed by comparing the steam and electricity consumption values. The steam 

consumption decreased from 99.381 to 37.913 ton/h with the increase in the number of 

effects (from one to eight), and the electricity consumption of the MVR system was 31.32 

kW. 

 

Keywords: Evaporation process, Multi-effect evaporator, Mechanical vapor 

recompression, Process modeling 

1. Introduction 

Lactic acid (LA) is an eco-friendly material produced by fermenting sugar and 

lignocellulosic substrates. LA is a raw material for poly LA (PLA), which is a bioplastic 

that can replace petrochemical polymers. Consequently, the demand for LA has increased 

considerably in recent years. To produce the final LA product, several purification steps 

must be implemented after the fermentation process, with evaporation representing the 

most commonly applied approach for purification. However, the evaporation process is 

energy intensive, with the energy consumption corresponding to approximately 50% of 

the total production cost. To reduce costs, the energy efficiency of the evaporation process 

must be enhanced. Many researchers have investigated LA purification as a potential 
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approach to increase the energy efficiency. Oscar et al. recommended the use of a reactive 

distillation column for LA purification, which could achieve 99.89% recovery of LA. 

Tong et al. increased the yield of LA to 82.6% through purification with paper sludge as 

a cellulosic feedstock by using an anion exchanger, Amberlite IRA-92. Madzingaidzo et 

al. demonstrated the concentration of LA through monopolar electrodialysis and obtained 

an average yield of more than 98% after carbon treatment.  

Despite the significant efforts to increase the energy efficiency of the evaporation 

process, several challenges remain to be solved, specifically, the high equipment cost, 

reduced stability owing to the addition of chemical substances, and low economic 

feasibility because continuous operation cannot be realized.  

To address these process, in this study, two alternative process models were designed 

using a multi-effect evaporator (MEE) and mechanical vapor recompression (MVR) 

system. The MEE can reduce the steam consumption in the evaporation process by 

reusing the heat of the secondary steam discharged from the evaporators arranged in series 

under different conditions as a heat source. In the case of MVR, the steam consumption 

can be reduced by replacing a part of the steam consumed during the evaporation process 

with electricity. The energy efficiency of these processes was analyzed by comparing the 

steam and electricity consumption.  

2. Process description 

 
Figure 1. Process flow diagram of single-column evaporation 

 

 

Among separation processes, distillation is the most effective method for evaporation in 

the biorefinery process. Distillation based on a single column is a conventional 

evaporation process for refining LA from a low concentration feed. Figure 1 shows the 
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process flow of single-column evaporation. After the feed is preheated through a 

preheater, it is supplied to the evaporator. After distillation, LA with a relatively high 

boiling point is discharged to the bottom of the column together with undistilled water, 

and water, the boiling point of which is lower than that of LA is discharged to the top of 

the column in the form of a gas.  

 

3. Model development 

Aspen plus V10.0 was used to simulate the process, and the considered thermodynamic 

equation was the UNIQUAC activity coefficient model. This equation can represent the 

vapor–liquid equilibrium behavior and is commonly used for simulating evaporation and 

condensation processes. The following assumptions were implemented. 

 

 The feed composition is as follows: 𝐻2𝑂 (90 wt%) and LA (10 wt%).

 The product composition is as follows: 𝐻2𝑂 (25 wt%) and LA (75 wt%).

 Heat exchange occurs through the latent heat of steam input to the reboiler.

 The steam pressure is 9 kg/cm2·g, and the temperature is 180 ℃.

 When the heat duties of the virtual reboiler and reboiler of the column are 

identical, the steam consumption is the optimal point.

 

3.1. Multiple-effect evaporation process 

Multiple-effect evaporation is one of the oldest processes in desalination frameworks. In 

this study, the MEE process was used to increase the efficiency of the LA purification 

process. Figure 2 shows the process flow for a MEE.  

 

 

 
Figure 2. Schematic of multi-effect evaporator (MEE) process 

 

 

The evaporator was divided into a distillation column, virtual reboiler, and flash drum in 

the process modeling. The virtual reboiler was used to predict the steam consumption of 

the distillation column. The heat calculated through the virtual reboiler and heat 

consumed in the distillation column were set equal to estimate the steam consumption. 

The impurities in the feed were ignored. The feed was preheated in the preheater and fed 

to the distillation column with increased pressure and temperature. The temperature and 

pressure of the feed and vapor continuously decreased from the first effect to the last 
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effect, and the least temperature and pressure corresponded to the last effect. Steam from 

the outside was used to evaporate the feed water in the first effect. The steam from the 

distillation column was used to evaporate the water/solvent in the second effect, and the 

steam from the second effect was used to evaporate the water/solvent in the third effect. 

This process was repeated until the last effect. After heat exchange at the last effect, the 

discharged water was separated through a flash drum and used to preheat the feed. By 

repeating this process until the last column, the waste heat could be effectively reused, 

thereby reducing the amount of steam used, which could help decrease the energy 

consumption. The distillation column involved 15 stages, the feed was supplied in stage 

11, and the reflux stream at the top of the column was input in stage 1. The steam used as 

the heat source was medium-pressure steam.  

 

3.2. MVR 

MVR is a commonly used technique to recover waste heat sources as useful energy 

sources through mechanical compression. MVR uses only electricity as the energy source 

as it concentrates LA using only the secondary steam compressed through a centrifugal 

compressor. In general, the MVR can significantly reduce utility costs throughout the 

evaporation process because electricity is cheaper than steam. In the developed model, 

the heat of the compressed secondary vapor was set equal to the heat required by the 

evaporator to predict the power consumption of the centrifugal compressor.  

 

 

 
Figure 3. Schematic of mechanical vapor recompression (MVR) 

 

 

Figure 3 shows the process flow for the MVR framework. In the process modeling, the 

evaporator was divided into a distillation column, virtual reboiler, and compressor. 

Furthermore, a virtual reboiler was added to predict the steam consumption of the 

distillation column. Feed entered the column through preheating, and the mass fraction 

of the product at the top and bottom of the column was the same as that for the MEE 

model. 
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4. Results 

Figure 4 shows the steam consumption for each equipment in this process. The model 

with one effect corresponded to the conventional process. In the MEE model, the amount 

of steam consumption gradually decreased as the number of effects increased to eight. 

This phenomenon occurred because the waste heat of the steam at the top of the 

distillation column was reused. In particular, when eight effects were used, the steam 

consumption reduced from 161,656 kg/h to 37,913 kg/h. Moreover, the steam 

consumption for the MVR model (11,083 kg/h) was significantly smaller than that for the 

MEE model. This finding could be attributed to the use of electricity as the energy source 

in the MVR model.  

 

 

 
Figure 4. Steam consumption according to equipment, with the number of MEE effects 

ranging from 1–8 

 

 

Figure 5 shows the electricity consumption for each equipment in this process. In the 

MEE model, the electricity consumption increased as the number of effects increased. 

Specifically, when eight effects were used, the electricity consumption increased from 

52.88 kW to 78.899 kW. However, in the case of the MVR model, the electricity 

consumption reduced from 52.88 kW to 31.32 kW. 
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Figure 5. Electricity consumption according to equipment, with the number of MEE 

effects ranging from 1–8 

 

 

5. Conclusions 

Two process models, MEE and MVR, were established to enhance the energy efficiency 

of the LA evaporation process. The LA mass fractions for the feed and product were 10 

wt% and 75 wt%, respectively, for both models. The energy consumption was compared 

by estimating the amount of steam and electricity consumed for heat exchange in each 

process. In the conventional process, 161,656 kg/h of steam was used. However, when 

eight effects were introduced, the steam consumption of the MEE model reduced by 

76.55%. The MVR model, which used electricity as the main energy source, 

corresponded to a 93.14% smaller steam consumption. The electricity consumption of the 

MEE and MVR models was 49.14% higher and 40.77% lower than that of the baseline, 

respectively. In future work, the economic feasibility of the models can be compared by 

performing a techno-economic analysis considering the investment cost and operating 

cost. 
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Abstract 

To understand the mechanism of a catalytic system, computational analysis is essential. 

Once a potential reaction mechanism has been identified, it typically involves (a) 

evaluating the energetics for the species and transition states using a computational 

chemistry method such as density functional theory (DFT), (b) relating these microscopic 

properties to macroscopic quantities such as reaction time. Microkinetic models may not 

match experimental data due to (1) inaccuracies in the energetic estimation, (2) 

inadequate catalyst models that are not representative of the surface environment. As a 

result of using experimental data, a more accurate model may be developed. If the model-

experiment mismatch is resolved, a microkinetic model solution compatible with DFT 

assumptions may be identified. This work presents a generic optimization framework for 

solving parameter estimation and catalyst design problems in catalysis. Using a stochastic 

optimization method, Differential Evolution with Tabu List in conjunction with Aspen 

Plus, and considering experimental data, various activation energy and kinetic constants 

values were predicted. A sequential approach is a traditional approach to solving 

parameter estimation problems. Issues with the stiffness of the microkinetic model and 

the optimizer's capacity to tackle such highly nonlinear systems are common challenges. 

This proposal has the potential to use all the reactor models present in Aspen Plus, as well 

as be able to use all the kinetic models and solvers, avoiding numerical difficulty in 

optimization solutions. This method has several advantages, including ease of 

implementation, which leads to physically realizable steady-state solutions, and a reduced 

overall optimization problem in terms of the number of variables involved. To validate 

this method, a dimerization of isobutane to produce isooctane is used as base line. The 

data considered as base case were previously worked considering experimental and 

simulation work. Once the parameter estimation was performed, the error produced was 

almost zero, and it was possible to generate the same kinetic data, concentration profile 

and molar flow produced. 

 

Keywords: optimization, kinetic data prediction, oligomerization, hydrogenation, biojet 

fuel. 

1. Introduction 

In many techniques to understand a catalytic system and for ultimate design for enhanced 

catalysis (Nrskov et al. 2009), computational analysis is a vital tool. Incorporating 

experimental data, on the other hand, enables more appropriate model construction. This 

activity necessitates the estimate of parameters that will allow the model-experiment 
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connection to be reconciled and a kinetic solution model to be identified. Nonlinear 

optimization challenges include parameter estimates and catalyst design. In such cases, 

objectives must be maximized or minimized while being constrained by the catalytic 

system. A traditional approach to solving the parameter estimation problem is to use a 

sequential approach (Biegler 2010), in which the optimizer obtains necessary information 

about the reaction rate, surface coverage, and gradients at each step of the optimization 

process, looking for a simulation of the kinetic model. The stiffness of the kinetic model 

and the optimizer's capacity to deal with the system's nonlinearities make this technique 

problematic. The equations, for example, may discover many solutions that would be 

undetectable under normal physical conditions. As a result, a successful solution 

identification may be predicated on a solver-proposed starting assumption. Furthermore, 

when the kinetic system exhibits a temporal variation, the NLP formulation must be 

modified to account for the dynamics, and orthogonal collocation methods are required. 

Due to the simplicity of use, access, and rigorous resolution of the models connected with 

each piece of equipment, computer programs to duplicate the model of diverse unit 

activities are currently a highly important tool. The Aspen Plus simulator was created to 

represent chemical processes such as non-ideal phases, processes involving recycling 

currents, chemical reactions, adiabatic operations, and so on. It's made to handle a wide 

range of operating conditions in process design. Using experimental data to construct 

kinetic models might be a way to improve equilibrium-based models. Kinetic models vary 

from equilibrium-based models in that they may depict chemical reaction conversion, 

which is an important stage in process design, as well as the assessment and research of 

the findings obtained under various operating circumstances. Because of the intricacy 

with which kinetic models are treated, they are more precise and comprehensive than 

equilibrium-based models. As a result, there is a pressing need to build kinetic rate-based 

simulations capable of accurately forecasting the products of numerous processes that are 

difficult to describe, simulate, and operate under multiple conditions. In light of the 

foregoing, this research proposes a generic sequential optimization framework for solving 

kinetic parameter estimates for the reproduction of chemical processes in the Aspen Plus 

process simulator. The novelty of this proposed framework is that it allows for: a) a 

comprehensive exploration that allows for a robust explanation of experimental 

observations, b) comparing and constraining solutions through automated data analysis 

that allows for hypothesizing competing for dominant chemistries, c) proposing 

objectives that maximize the expected performance of kinetic systems, and d) identifying 

sparse solutions that avoid overfitting by selecting the fewest number of parameters that 

allow for a robust explanation of experimental observations. The article begins with a 

description of the methodology for determining the kinetic parameters, followed by a 

validation example. 

2. Framework description: Methodology 

The models solved by the framework in this study will be described in general in this 

part. It will begin with the kinetic model being solved in the simulator, the goal function 

being solved, and the parameter estimation solution approach. 
 

2.2 Kinetic Model 

Another reason to study reaction rates is to learn more about the reaction's mechanism 

and fundamental stages. A kinetic of any reaction represented by a rate equation should 
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be thoroughly understood by studying and investigating the characteristics of a rate 

equation, such as the order of the reaction, rate constant, and kinetic parameters such as 

A (pre-exponential factor) and E. (activation energy). The rate equation is used to 

quantitatively characterize the rate of a reaction and to explain its functional dependence 

on temperature and species concentrations. In symbolic form, the rate equation is as 

follows: 
𝑟𝐴 = 𝑟𝐴(𝑇, 𝑎𝑙𝑙 𝐶𝑖)  (1) 

 

The term "all Ci" is used to emphasize that the concentrations of the reactant(s), 

product(s), and any other compounds present, even if they do not participate in the 

reaction, can affect the reaction rate. The partial pressure of a material pi is another sort 

of rate equation, especially for gases. The coefficient k in the reaction rate equation is the 

rate constant (as in Eq. (2)). This rate constant is changed by temperature, but not by the 

concentration of the species involved in the reaction. In the rate equation, the units of k 

are always used as a conversion factor for the product of species concentrations and units 

given as a change in concentration divided by time. The temperature-dependent term, or 

reaction rate constant, is clearly defined by Arrhenius' law: 
𝑘 = 𝑘0 ∗ 𝑒𝑥𝑝 (−𝐸/𝑅𝑇)  (2) 

The frequency or pre-exponential factor and activation energy, respectively, are the two 

parameters of Arrhenius' law. These parameters are also known as Arrhenius parameters. 

These figures are obtained by plotting lnk (rate constant) against 1/T (absolute 

temperature) and drawing a straight line. Experiments have shown that Arrhenius' law 

holds across a wide temperature range. 

2.3 Objective function  

The fundamental problem to address is to determine which kinetic parameters E and K 

best characterize the empirically observed behavior. In this case, the goal of the 

optimization issue is to decrease the observed error between experimental data and aspen 

plus simulator results when different values of E and K are represented. The following is 

a formula for the optimization/parameter estimation issue. 

 

𝑍𝑝𝑎𝑟𝑎𝑚,𝑒𝑠𝑡 = min∑ (𝑦𝑐 − 𝑦̅𝑐)
𝑇

𝑐𝜖𝐶 𝑊(𝑦𝑐 − 𝑦̅𝑐) + 𝛿(𝜋 − 𝜋𝑛𝑜𝑚)𝑇(𝜋 − 𝜋𝑛𝑜𝑚) (3) 

 

Subject to 
𝑑𝑥𝑐

𝑑𝑡
= 𝑓(𝑥𝑐 , 𝑘𝑐, 𝑢𝑐) (4) 

𝑔(𝑥𝑐 , 𝑘𝑐 , 𝑢𝑐) = 0 (5) 

𝑦𝑐 = 𝐵𝑥𝑐(𝑡 → ∞); 𝑥𝑐(0) =  𝑥𝑐(𝑢𝑐); 
𝑢𝑐 = {𝐹𝑖𝑛,𝑐, 𝑃𝑡𝑜𝑡,𝑐 , 𝑇𝑐}  (6) 

ℎ(𝑦𝑐 , 𝑢𝑐 , 𝑘𝑐) ≥ 0  (7) 

𝑘𝑐 = 𝜓(𝑝, 𝜋𝑐 , 𝑢𝑐)  (8) 

For each experimental condition c C, the collection of all experimental circumstances has 

limitations that must be met. x, y, and u are referred to as xc, yc, and uc, respectively since 

they are dependent on the experimental circumstances c. Because the objective function 

can be used in a variety of contexts, the subscript c and a summation have been included. 

All terms in equations 3–8 are depending on the experimental circumstances. The 

weighted least-squares error Zparam,est represents the model-experiment mismatch. y c is 
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used to represent the experimental data. The goal to be minimized is subject to the 

constraints relating to the kinetic model, as well as the restrictions, where p is the 

collection of constraints and is the set of decision variables, and h is the set of inequalities 

assuring thermodynamic feasibility and the choice variable bounds. The kinetic reaction 

of the system (function of ψ) can be described as an Arrhenius pre-exponential constant. 

 

2.3 Optimization Strategy 

 

This case study was solved using Differential Evolution with Tabu List, a metaheuristic 

optimization approach based on natural selection theory. This evolutionary approach 

employs the usual Differential Evolution stages. On the other hand, the Tabu List (TL) 

concept improves its actions. This hybrid optimization technique was created to improve 

DE's computing efficiency by trying tough phase equilibrium computations followed by 

parameter estimation challenges in dynamic systems with numerous minimums. A 

modified and expanded DETL approach was then applied to handle constrained multi-

objective optimization problems (Sharma and Rangaiah 2013), and the resulting 

algorithm was named an integrated multi-objective differential evolution algorithm. 

Visual Basic is used to implement the hybrid algorithm. The numerical approach 

generates input vectors that are evaluated using dynamic data exchange (DDE) in the 

process model (Aspen Plus). After that, the model evaluates the input vector before 

generating output vectors. After that, the hybrid approach assesses the input and output 

data before iterating the process depending on the evolutionary nature of the algorithm. 

The stochastic method's operational settings were 120 individuals, 200 generations, 50% 

of the number of persons as tabu list, 0.6 for the crossover, and a taboo radius of 1 1006. 

These values were derived from a prior calculation's tweaking procedure. The 

optimization approach works in such a manner that it proposes E and K values for the 

kinetic model in each iteration. The reactor represented in aspen will generate an output 

as a result of this idea. 

 
Figure 1. Determination of parameters E and K with DETL and Aspen Plus 

 

3. Results: Isobutene dimerization. 

In the 1930s, researchers looked at the dimerization of isobutylene caused by the 

dehydration of 2-methylpropan-2-ol. This reaction is frequently presented as an example 
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of alkene dimerization, and it is the subject of a laboratory experiment that allows students 

to check the predicted outcomes. The fact that two isomeric trimethylpentenes are created 

and evaluated as a mixture is a limitation of this experiment as a preparative experiment. 

Because of its high octane number, low vapor pressure, and lack of aromatics and sulfur, 

isooctane has become one of the most popular gasoline additions. Because of its high 

compression ratio and knock resistance, isooctane is also the principal component of 

aviation gasoline (Avgas). Due to the MTBE phase-out, isooctane synthesis technology 

allows refineries to use surplus isobutene and boost refinery earnings by converting light 

olefins into gasoline blends. In the not-too-distant future, isooctane use and production 

are predicted to skyrocket. To avoid catalyst sintering due to the highly exothermic 

reaction and the formation of higher oligomers that could result from the increased 

concentration of dimer in the reactor, most conventional isooctane production processes 

operate at low conversions (20-60 percent, with conversions varying depending on the 

catalyst and reactor design). Because of these limits, conversions of more than 60% each 

pass are frequently impossible and uncommon in the industry. Goortani et al. published 

a prior study in 2015. They propose utilizing Aspen Plus to mimic a typical commercial 

flowsheet that includes a dimerization reactor, distillation column, and hydrogenation 

reactor. They presented a concentration profile as well as kinetic data in their paper. The 

dimerization of isobutene to isooctane is the reaction system chosen for isooctane 

synthesis, as shown in the equation. 

𝟐𝑪𝟒𝑯𝟖      𝒌𝟏
⃗⃗ ⃗⃗  ⃗      𝑪𝟖𝑯𝟏𝟔  (9) 

 

Previous experimental experiments in our laboratory (Goortani et al. 2015) employing a 

nickel sulfate and a Pd catalyst independently supported on Al2O3 were used to combine 

reaction kinetic data for the dimerization and hydrogenation processes in the isooctane 

synthesis process. These kinetic data were acquired in a 300 mL Parr autoclave reactor 

and pertained to liquid-phase oligomerization and hydrogenation of isobutene. The 

Arrhenius equation, k = Ae(E/RT), was used to determine the relationship between the 

reaction rate constant and the reaction temperature. The reaction constants k1 for 

dimerization are listed below. The reaction of Dimerization: 

𝑟𝐶𝐶4𝐻8
=

𝑑[𝐶𝐶4𝐻8
]

𝑑𝑡
= −2𝑘1𝐶𝐶4𝐻8

  (10) 

Table 1 shows the k and E optimization limits considered for this work. 

Table 1. Optimization limits 

Type of Variable Search Range 

k (mol/s/kg-cat) Continuous 100-200 

E ((kJ/kmol)) Continuous 20000-25000 

Figure 2 shows the results obtained. It shows the concentration profile obtained at the 

reactor outlet of the reference case, and the same graph shows the concentration profile 

obtained by the optimization exercise proposed in this work. 

Table 2. Optimization results 

  

k 
(mol/s/g-
cat) E (kJ/kmol) 

ISOBUT 
(mol/s) ISOOCT  (mol/hr) 

ISOPENTA  
(mol/hr) 

% 
error 
isobut 

% 
error 
isooct 

% error 
isopent 
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Baseline 175.1818 -22184 0 21.05588 138.2018 0 0 1.23009E-07 

Calculated 175.18803 -22184.0003 0 21.05588 138.201783       

 

The simulation was performed using the RPlug module of aspen plus as considered for 

the base case. A reactor length of 0.5 meters was considered, with a constant temperature 

of 410°K. 

 

 
Figure 2. Concentration profiles for both the case base and this work 

 

 

4. Conclusions 

 

In the present work, a metaheuristic optimization technique was used for the prediction 

of kinetic data. As a case study, the dimerization of isobutane to produce isooctane was 

considered. Once the adjustment/optimization tool was used, it was possible to obtain k 

and E data, as well as concentration profiles very close to those reported, with an error 

percentage of less than 0.1%. The use of this tool presents a considerable numerical 

advantage in the prediction of kinetics for the adequate use of simulators, based on 

experimental data or similar situations. 
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Abstract 
Automatic control systems have a strong development and diversification. The research 

undertaken by the authors considered the development of an automatic system for 

optimal control of products quality from an industrial deethanizer column. The research 

aimed the following aspects: modelling the process using the resources of the Unisim 

Design simulator; process sensitivity analysis on disturbance/control agents - quality of 

separated products channels; identification of dynamic models associated with input-

output channels; design of the dynamic simulator and controllers’ tuning; design of the 

feedforward control system; design of the optimal control algorithm and the structure of 

the automatic control system; validation by simulation of the proposed control structure. 

 

Keywords: deethanizer column, optimal control, product quality, simulation. 

1. Introduction 
Natural gas processing is a current global requirement. The structure of processing 

plants, installations components, used equipment, products and operating parameters 

depend on the natural gas composition and flowrate but also on the market requirements 

and price. One of the finished products of the natural gas processing plant is ethane. 

The specialized literature dedicated for ethane product deals with three research 

directions. The first direction is associated with studies on natural gas processing 

techniques (Almeland et al., 2009, Shimekit and Mukhtar, 2012).  

The second research direction is represented by the modelling and simulation of the 

distillation process. This category includes modelling and simulation of liquefied 

petroleum gas production (Elbadawy et al., 2017), studies on the modelling, simulation 

and optimization of an ethane and propane recovery plant (Mukherjee et al., 2013), 

simulation and optimization of deethanizer tower (Esfeh and Mohammadi, 2011).  

The third research direction is dedicated to distillation control processes. Many papers 

in this category are educational or industrial manuals (Lipták and Venczel, 2016, 

Hughes, 2006). A small category of papers is dedicated to ethane distillation control 

system (Hori and Skogestad, 2007, Luyben, 2013). 

Given the presented literature study, the authors researched and developed an optimal 

control system for products quality from a deethanizer column. 

2. The Deethanizer Column 
The studied deethanizer column is part of a natural gas processing plant (Halafawi et al., 

2020). The deethanizer column is a classic column with partial condenser. The column 

feed comes from the bottom of the demethanizer column, this flow being previously 
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calculated by the authors (Patrascioiu et al., 2021). The quality conditions imposed for 

the two products are presented in Table 1. The control structure of the industrial column 

has as controls agents the reflux flowrate and the reboiler steam flowrate.  

Table 1. Quality conditions for the deethanizer column 

Product  Component Restriction type  Value [mole %] 

Distillate C1 max 5.00 

C2 min 90.00 

C3+ max 5.00 

Bottom product C2 max 0.25 

 

The necessary steps to design the automatic system for optimal control of products 

quality are as follows: 

a) Design of steady-state simulator for the deethanizer column. 

b) Process sensitivity analysis. 

c) Basic control system. 

d) Dynamic simulation of the basic control structure for the deethanizer column. 

e) Design of the feedforward control system. 

f) Testing of the proposed feedforward control system. 

g) Design of the optimal control system. 

h) Testing of the proposed optimal control system. 

3. Modelling and simulation of the deethanizer column 
The first four steps listed above contain elements for modelling and simulation of the 

fractionation column. The Unisim Design simulator was used to perform the four 

stages, a simulator that contains mathematical models of various processes and allows 

the steady-state and dynamic simulation of the deethanizer column model. In the 

following will be presented the defining elements of the modelling, the results and the 

conclusions of these modelling stages.  

3.1. Design of steady-state simulator for the deethanizer column  
The Distillation Column model from Unisim Design simulator was used to simulate the 

deethanizer column. This model, configured for a column with partial condenser and 

reboiler, has three degrees of freedom and consequently three material or energy flows 

associated with the column must be set. Considering the structure of the column, the 

existing automatic system but also the requirements of the optimal control system, the 

authors opted for the following specifications: non-condensable gas flowrate, reflux 

flowrate and bottom product flowrate. 

3.2. Process sensitivity analysis 
The deethanizer column is characterized by the input-output variable shown in Figure 2. 

The sensitivity analysis aims to determine the influence of disturbances and control 

agents on products quality, to select control agents for products quality control. The 

process output variables are the concentration of ethane in the overhead product (subject 

to maximization), the concentration of propane in the overhead product (subject to 

minimization), and the concentration of ethane in the bottom stream. The most 

important disturbance is the feed flowrate. 
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Figure 1. Block diagram of the deethanizer process 

The sensitivity analysis was performed for the variation of the three control agents 

presented in Figure 1. 

3.2.1. Process sensitivity to the variation of the non-condensable gas flowrate 
From the study it was observed that a change in the non-condensable gas flowrate does 

not lead to significant variations in the quality of the distillate. This situation is 

primarily due to the high value of reflux, the usefulness of the non-condensable gas 

flowrate as a control agent being very low. A negative influence of the non-condensable 

gas flowrate is represented by the financial losses generated by the ethane lost in the 

non-condensable gases. 

3.2.2. Process sensitivity to the variation of the reflux flowrate 
The reflux flowrate is a powerful control agent for control of the separated products 

quality in a fractionation column. The influence of the reflux flowrate on the quality of 

the two separate products in the deethanizer column is as follows: 

a) The variation of the reflux flowrate changes the concentration of ethane in the 

distillate by 0.05% / kgmole/h, which gives importance to the reflux flowrate 

as control agent. At the same time, the variation of the ethane concentration in 

the distillate with the reflux flowrate is nonlinear, at values higher than 340 

kgmole/h the variation of the ethane concentration in the distillate being small. 

The increase of the reflux flowrate also implies the increase of the energy 

consumption, both for the reboiler (steam consumption) and for the condenser 

(propane refrigerant consumption). 

b) For the same range of variation of the reflux flowrate, the concentration of 

propane in the distillate also decreases by 0.05% / kgmole/h, the nonlinear 

character being present in this case as well. 

c) Sensitivity analysis on the influence of reflux flowrate on the concentration of 

ethane in the distillate indicates the need to design an optimal system for 

control of the impurity concentration in the distillate (5 mole% propane) while 

minimizing the thermal load of the reboiler and compliance with the minimum 

of the quality condition for ethane (90 mole%). 

3.2.3. Process sensitivity to the variation of the bottom product flowrate 
The influence of the bottom product flowrate on the quality of the two separated 

products in the deethanizer column is as follows: 

a) The variation of the bottom product flowrate produces the change of the ethane 

concentration in the distillate by 0.86% / kgmole/h, 17 times higher than the 

gain generated by the variation of the reflux flowrate. 

b) The ethane is an impurity in the bottom product. The variation of the ethane 

concentration in the bottom product, depending on the bottom product 

flowrate, is 0.13% / kgmole/h. 

 

Deethanizer 

column

Feed flowrate

Uncondensed ethane flowrate

Reflux flowrate

Bottom product flowrate

Ethane concentration in the 

overhead product

Propane concentration in the 

overhead product

Ethane concentration in the 

bottom product
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The sensitivity analysis performed by the authors leads to the following conclusions: 

a) The flowrate of non-condensed ethane only influences the concentration of 

methane in the distillate, being a control agent only usable in the situation 

when the upstream column, the demethanizer column, does not work according 

to the specifications. 

b) To control the quality of the two separated products, two control agents are 

available, the reflux flowrate and the flowrate of the bottom product.  

c) The influence of the two control agents on the products quality is nonlinear.  

d) The reflux flowrate influences the energy consumption. 

3.3. Dynamic simulation of the basic control structure for the deethanizer column 
The development of the dynamic simulation program represented a substantial effort, 

being carried out according to the methodology in the literature (Patrascioiu et al., 

2014). Given the lack of industrial data, the authors had to size both the flowrate 

measurement systems and the control valves. After the elaboration of the dynamic 

simulation program, the controllers were tuned, and the mathematical models associated 

with the input - output channels were determined. Of these models, the reflux flowrate - 

ethane concentration in the distillate channel and the bottom product flowrate - ethane 

concentration in the bottom product channel present special interest. 

4. Design of the feedforward control system 
The disturbances of the fractionation process are the feed flowrate and composition. Of 

these disturbances, the feed flowrate is the most important disturbing component, the 

feedforward control system being designed to reject the effect of this disturbance. The 

central element of the control system is the controller. Given the multivariable nature of 

the process (2x2), the controller will have the same characteristic, respectively 2 set-

points (xi
D and xi

B) and two control signals (Li(t) and Bi(t)), Figure 2. The two controller 

outputs represent set-points for the reflux flowrate control system and bottom product 

flowrate control system respectively.  

 

Figure 2. Block diagram of the feedforward controller 

The feedforward control algorithm has two components (Marinoiu et al., 1986, 

Patrascioiu et al., 2015):  

 a steady-state component for the calculation of the control signals values in steady-

state; 

 a dynamic component for the compatibility of the disturbance dynamics with that 

of the control signals. 

4.1. The steady-state component 
This component is based on the Fenske-Gilliland-Underwood model of the fractionation 

process and is applicable over a wide range of feed flowrate variation (the main process 

disturbance). The constants of the Fenske-Gilliland-Underwood model are the relative 

average volatility of the light component in relation to the heavy one, the number of 

theoretical plates. The controller has been designed with the following features: 

a) The average relative volatility α was calculated based on the equilibrium 

constants of ethane and propane. 
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b) The feed concentration xF was calculated considering only the ethane 

component. 

c) The controller set-points xi
D and xi

B refer only to the ethane component. 

The implementation in the Unisim Design environment of the Fenske-Gilliland-

Underwood relations, an extremely laborious operation, was realized using the 

SPRDSHT module from the environment library. 

4.2. The dynamic component 
The dynamic component associated with the controller outputs is materialized by 1st 

order transfer function for the feed flowrate - ethane concentration in the distillate 

channel and 2nd order transfer function for the feed flowrate - ethane concentration in 

the bottom product channel. 

5. Optimal control system 
The quality conditions of the two products (ethane and C3+ stream) are expressed by the 

restriction system 
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The performed simulations confirmed the obtaining of a xC2,B < 0.0025 ethane 

concentration in bottom product regardless of the set-point for ethane concentration in 

distillate, which validates the choice of the type and the value of the set-point xi
B.  

For the distillate quality the xC2,D ≥ 0.9 condition was taken into account so the set-point 

for the distillate quality was considered xi
D = xC2,D. Maximizing the ethane concentration 

in the distillate is achieved by increasing the set-point value.  

Because the concentration of propane in the distillate must comply with the condition 

xC3,D < 0.05, the graph in Figure 3 shows the area where the column cannot be operated.  

 

 

Figure 3. Variation of xC3,D concentration depending on controller set-point xi
D 

As the energy effort of operating the column depends on the value of the ethane 

concentration in the distillate, it is proposed to operate the column at a minimum value 

of the xi
D set-point for which the xC2,D ≥ 0.9 and xC3,D < 0.05 conditions are met. 

The dependency shown in Figure 3 has the equation xC3,D = 103.102 – 105.8 ∙ xi
D. 

By imposing xC3,D = 0.05, the minimum value of the controller set-point xi
D is obtained, 

xi
D=0.9272. The pair of values xi

D=0.9272 and xi
B=0.0025 represent the optimal set-
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point of the feedforward controller. The average deviation of the ethane concentration in 

the distillate in relation to the set-point is 0.85%, which validates both the calculation 

relations implemented in the concentration controller and the selection of the two set-

points of the controller, xi
D and xi

B. 

6. Conclusions 
The research carried out by the authors led to the development of a structure for optimal 

control of the quality of the separated products in the deethanizer column. Steady-state 

and dynamic simulations validated the objective function and the proposed automation 

solution. The limitations of the structure developed by the authors were generated by the 

lack of industrial operation data and by the complexity of the industrial plant. Under 

these conditions, some of the elements developed in the research can only be 

theoretical. Future access to industrial operating data may lead to industrially applicable 

control structures. 
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Abstract
Spray drying of sensitive pharmaceuticals is challenging due to thermal and other stresses which
can have large effects on product quality. In addition, the design and scale up of such processes
is a difficult which oftentimes requires many experiments at different scales. By using model
based design, the number of experiments can be reduced. To that end, experimental data of single
droplet drying experiments is used to fit a drying model and degradation kinetics of a model
heat sensitive protein. The calibrated model is used to propose large scale designs. However,
it is uncommon that the literature offers such data, and such detailed experimentation requires
many resources. Therefore, the large scale designs from the models calibrated using the whole
data set are compared to using only inlet/outlet values, to find the importance of the intermediate
data points. The results show that designing with a model fully calibrated can produce designs
that consider product degradation, while using models calibrated with only start/end values poses
the risk of unwanted product degradation. Consequently, full range experimental data of droplet
drying is necessary to use lumped parameter drying models in process design.

Keywords: Spray drying, droplet drying, pharmaceutical design

1. Introduction

Spray drying has been a robust and widely used manufacturing process in the pharmaceutical
and other industries used to produce particulate products from liquid solutions or dispersions.
Pharmaceutical spray dryers are available in lab, pilot, and production scales, with capabilities
for processing grams to tons per day (Poozesh and Bilgili, 2019). While the design of large
production-scale spray drying processes is usually the labor-intensive experimental based result
of scale up from lab or pilot scale tests, current modeling trends are trying to improve this by
reducing the number of experiments required and project lead times (Dobry et al., 2009).

Protein pharmaceuticals are usually formulated in aqueous forms, however, this poses limited shelf
life even under refrigerated conditions and, therefore, dry formulations can be very advantageous
(Pinto et al., 2021). Although several pharmaceutical commercial protein products produced via
spray drying are on the market, their drying is challenging due to the potential loss of their physic-
ochemical properties by spray drying related stresses. Thermal stresses have been pointed out
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to be the major source of protein loss of activity during spray drying of a monoclonal antibody
(Schüle et al., 2007), but shear and surface effects are also present (Das et al., 2021).

Mathematical modelling can be applied to understand and predict the drying kinetics of the sprayed
starting solution (droplets) and resulting particles under varying operating conditions, and relate
them to product quality. Several models for the drying of droplets are available in the literature.
The characteristic drying curve (CDC) concept is used here. This is a lumped parameter model
that offers a good balance between complexity and prediction power when combined with param-
eter fitting to experimental data. Even when using simplified models, mathematical modelling of
the spray drying requires fitting the predictions to experimental results. Published experimenta-
tion in spray drying is focused on proof of concept studies, process optimization studies, or model
validation; however, the effect that different experimental studies would have on the fitted model
are most often not the focus.

2. Mathematical model

In this study the drying of droplets into particles is considered, and other steps of a typical spray
drying process such as the atomization step and the separation step are ignored. The presentation
of the model used is split between the drying kinetics and the rest of the spray drying model.

2.1. Drying kinetics

Drying kinetics are at the core of the drying model for spray drying. Heat and mass transfer
between the droplet and surrounding air are considered, which determines the change in droplet
temperature, moisture and diameter. Analytically, the change in moisture can be expressed as
in equation 1 (Parti and Palancz, 1974). The rate of evaporation ṁv is typically expressed as a
mass transfer coefficient times a driving force between the bulk of the drying medium and the
droplet surface, for example in terms of humidity in equation 2. Substitution of the humidity at
the surface Ys by the saturation humidity Ysat would overestimate the drying rate for a dissolved
product compared to a pure liquid droplet, thus in the CDC approach an empirical function f is
included in equation 4 (Langrish and Kockel, 2001). f varies from 0 to 1 to account for the reduc-
tion of the drying rate when dissolved or dispersed proteins enrich the droplet surface, eventually
forming a crust through which water must diffuse before it can evaporate. f is a function of a
non-dimensional moisture content, typically taken as a power function as shown in equation 3.

dWp

dt
= ṁvA/ms (1)

ṁv = kY (Ys −Yb) (2)

f =
(

Wp −Wp,eq

Wp,crit −Wp,eq

)nCDC

(3)

ṁv = f kY (Ysat −Yb) (4)

2.2. The drying model

The model used is a 1-dimensional plug flow for both the gas and condensed phases. The space
coordinate is 0 at the tip of the atomizer and is positive in the downward direction. Equation 1
translates to equation 5 by the variable change z = vpt. Particle diameter is evaluated from the
balloon shrinkage assumption in equation 6, for which the density is evaluated using equation
7 (Parti and Palancz, 1974). However, equations 6-7 are only used until the moment of crust
formation, which happens at moisture content Wp,crust . Further drying from this point does not
change the diameter, only the density decreases with equation 8 (Cotabarren et al., 2018). Mass
balance with surrounding air yields the change in air humidity shown in equation 9, heat balances
yield equations 10-11 (Cotabarren et al., 2018) and momentum balance yields the particle velocity
equation 12 (Truong et al., 2005). Finally, the protein residual activity ra, which varies between
1 (no degradation) and 0 (complete degradation), is calculated using eq. 13, which shows the
importance of water as a stabilizer for this protein as hypothesized by Lorenzen and Lee (2012).
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dWp

dz
=−

πdp
2ṁv

vpms
(5)

dp = dp0
3

√
ρp0 −ρw

ρp −ρw
(6)

ρp = ρs
1+Wp

1+ ρs
ρw

Wp
(7)

dρp

dz
=

−6ṁv

dpvp
(8)

dYb

dz
= Nd

πdp
2

vpma
ṁv (9)

dTp

dz
=

πdp
2[h(Ta −Tp)− ṁv∆vH]

vpms(cps +Wpcpw)
(10)

dTa

dz
=

−Ndπdp
2(ṁvcpwv +h)(Ta −Tp)− vpUπD(Ta −Tamb)

vpma(cpa +Ybcpwv)
(11)

dvp

dz
=

(
1− ρa

ρp

)
g
vp

−
3ρaCd(vp − va)

2

4ρpdpvp
(12)

dra
dz

=

{
k0/vp Wp >Wp,r

k1 exp
( Ea

RT

)
/vp Wp ≤Wp,r

(13)

3. Methods

3.1. Modelled system

The spray drying of L-glutamate dehydrogenase (GDH) in triethanolamine hydrochloride buffer
is modelled. Single droplet drying experiments are reported by Lorenzen and Lee (2012). GDH
was chosen as model system due to its high heat sensitivity, in addition to practical requirements
such as high enzymatic activity and high water solubility. Lorenzen and Lee (2012) continuously
measured droplet surface temperature and droplet radius for several minutes while the droplets
dried in an acoustic droplet levitator. In addition, they measured the protein’s residual activity at
several time points in order to follow degradation kinetics.

3.2. Model calibration

The results of Lorenzen and Lee (2012) are used to fit the model parameters in two ways.

First, the totality of the data is considered and unknown parameters are fitted: Wp,crit , Wp,crust ,
Wp,r, nCDC, k0, k1, Ea, SEF . These parameters are as defined in section 2., in addition we define
the SEF parameter empirically as follows. First the Nusselt number is evaluated from the Ranz
and Marshall correlation for drying droplets (Ranz, 1952), from which the heat transfer coefficient
can be obtained. Then, the SEF factor is used to account for the elevated temperatures seen in the
acoustic droplet levitator in the form NuAL = SEF ×Nu. Note that this parameter is only required
to reproduce the experimental results in the acoustic droplet levitator and that it is removed when
using the model to produce actual spray drying results. Equilibrium moisture is included in the
form of the GAB desorption isotherm of skim milk taken from Lin et al. (2005) for the GDH
system since they have similarities, and the data captured by single droplet drying experiments is
not enough to improve on this. Further parameters and boundary conditions applied to equations
5-13 are taken from the experimental conditions of Lorenzen and Lee (2012), Wp0 = 33kg/kg,
Vdrop = 2µL, Ta0 = Tp0=35-60 °C, RH0 = 10− 50%, ra0 = 1. U is assumed 0 in the acoustic
levitator. The fitting method is based on minimization of the sum of absolute errors computed for
temperature, droplet diameter and protein residual activity at 1s intervals, for the 6 experimental
runs of Lorenzen and Lee (2012), implemented in python.

Second, only starting and ending points are considered. Typically, spray dryers used in laboratories
or pilot facilities have temperature sensors for the air before entering the drying chamber and in the
collection pipe after the drying chamber, and similarly, droplet and particle sizes can be measured
at the atomizer and after the product is collected. Therefore, it is common to see reported in
literature the initial and final values of these variables for a multitude of spray drying equipment
and (pharmaceutical) products, e.g. Jiang et al. (2021), and this second model tries to mimic this.
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(a) Including all data points (b) Including initial/final data points

Figure 1: Parameter fit results at different temperatures (°C) and relative moisture (RH%). Lines
indicate model prediction, broken lines and dots indicate experimental values.

Parameters and boundary conditions used are the same as in the previous case. Wp,crust and SEF
are fitted by minimizing the error of both temperature and droplet diameter at time point 0 and
end time, while nCDC is assumed to be 1. The linear assumption of the characteristic drying curve
is relatively common, used by Langrish and Kockel (2001) and later for example by Truong et al.
(2005). In turn, Wp,crit is taken to be equal to Wp,crust , and only the parameter k0 is fitted in the
residual activity equation 13 due to the lack of data, achieved in the model by setting Wp,r to 0.

3.3. Methods for comparison of the fitted models in a design operation

A spray dryer design is given for a hypothetical GDH production facility. In this case the parame-
ters and initial values are as follows. The production rate is fixed at 300L/h of liquid and the initial
droplet size is fixed at 70 micron, values common in the industry. For simplicity all droplets are
kept at the same size. The fitted model parameters from each of the calibrated models are used,
namely Wp,crit , Wp,crust , Wp,r, nCDC, k0, k1, and Ea. Inlet air humidity RH0 is set to 0 and the
assumed coefficient for heat loss to ambient U = 5W/m2K. The remaining parameters are taken
as the design variables, namely the chamber diameter D, inlet air temperature Ta0 and air flow rate
ma0.

The design approach used here is similar to the thermodynamic design space (Dobry et al., 2009),
which is based on drawing acceptable limits of variables calculated from a thermodynamic model
on a flow-temperature diagram. By drawing boundaries it is easy to visualize which conditions
remain inside all boundaries, which leads to an easy design process.

4. Results

4.1. Model calibration results

Figure 1 shows the predicted temperature and diameter profiles together with the experimental
data. The parameters fitting with complete data are Wp,crit = 2.8, Wp,crust = 1.1, nCDC = 1.5, SEF =
(3.2, 3.2, 3.2, 3, 2.7, 2.1), Wp,r = 8e-2, k0 = 5.0e-5, k1 = 8.0e4, Ea = 4.0e4 J/mol. The parameters
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Importance of detailed experimentation in the model based design and scale up of
pharmaceutical spray dryers for heat sensitive products

Table 1: Criteria used to define boundaries in figure 2

Parameter Limit Color (fig 2) Reasoning

Residual moisture 5% Red if > 5% Product shelf life
Protein residual activity 95% Pink if < 95% Product quality

Outlet air humidity 0.2 Black if < 0.2 Economic optimization

(a) 1.5m diameter
complete data

(b) 1.5m diameter
start/end data

(c) 2m diameter
complete data

(d) 2m diameter
start/end data

Figure 2: Design spaces predicted for different diameter dryers with both calibrated models

fitting with starting/final values are Wp,crust = 1.1, SEF = (3, 3, 3, 3, 3, 3), Wp,r = 0, k0 = 6.6e-
4. Experimental data and predictions agree in the case when all data points are included in the
calibration. However, in the case of only using starting and final values, differences are notable.
This is specially true in the case of the protein residual activity, in view that the only logical
assumption is to set Wp,r = 0 (equation 13).

4.2. Comparison of spray drying design space using the fitted models

Figure 2 shows the predicted design spaces for a 1.5 m diameter and 3 m length dryer, as well
as for an increased diameter of 2 m. The boundaries have been defined based on the criteria
of table 1. The points remaining in green after all other colors removed are all valid choices
according to the defined criteria. However, it becomes apparent that the windows predicted from
the different models are different: while the predicted boundary of maximum residual moisture is
not largely different, the model without the intermediate data fails to predict that GDH will degrade
at higher temperatures. In addition, while from an economic standpoint it would be advantageous
to operate the dryer at lower air flows, the model with intermediate data points suggests using
higher flows and lower temperatures. More importantly, when the diameter is increased the model
without intermediate data suggests positive outcomes on a large window (figure 2d), the model
calibrated with intermediate data predicts protein degradation due to particles having too long
residence time (figure 2c). This comparison showcases the importance of having good lab scale
experimentation before attempting to scale up the process. Protein degradation is one of the major
sources of restrictions when scaling up, but data is not easily obtained, and this comparison shows
that measurement of only spray dryer outputs might not be enough to predict it.

5. Conclusions

Experimental data for drying of acoustically levitated single droplets has been used to calibrate the
drying model in two ways; using the full data set to try to provide the best reproduction of reality,
and using only starting and ending values, to try to reproduce the steps that might be used when
trying to fit the model to lab or pilot scale process data. The calibration of both models reproduces
reasonably well the complete experimental data. However, both models perform very differently
in terms of protein degradation.
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The models have then been used to calculate design spaces for a commercial scale spray dryer.
The acceptable ranges are defined by 3 criteria: product sufficiently dry, product not degraded,
and air moisture in the outlet above a minimum value to justify operating costs. As expected both
give similar results in terms of residual moisture and dryer performance. However, they differ
when predicting protein degradation. Therefore single droplet drying experimental data is crucial
when using lumped parameter models for the design of spray drying of heat sensitive products.

List of Symbols
Cd Drag coefficient [-]
cpa Heat capacity air [J/kg K]
cps Heat capacity solid [J/kg K]
cpw Heat cap. water liq. [J/kg K]
cpwv Heat cap. water vap. [J/kg K]
cpwv Heat cap. water vapor averaged

between Tp and Ta [J/kg K]

D Diameter drying chamber [m]
∆vH Heat of vaporiz. of water [J/kg]
dp Diameter droplet [m]

Ea Reaction rate parameter [J/mol]
f Characteristic drying curve [-]

h Heat trans. coef air-droplet [W/m2]

k0 Reaction rate parameter [s−1]

k1 Reaction rate parameter [s−1]

kY Mass transfer coefficient [kg/m2s]
ma Mass flow of gas [kg/s]
ms Mass of solids in a droplet [kg]

ṁv Evaporation rate [kg/m2s]
nCDC Character. drying curve exp. [-]
Nd Number of droplets [drops/s]
Nu Nusselt number [-]
NuAL Nusselt in acoustic levitator
ra Residual activity protein [-]
RH Relative moisture air [%]

ρa Density air [kg/m3]

ρp Density droplet [kg/m3]

ρp0 Density droplet initial [kg/m3]

ρs Density dry solid [kg/m3]

ρw Density liquid water [kg/m3]
SEF Sonic energy factor [-]

Ta Temperature of air [K]
Tamb Temperature ambient [K]
Tp Temperature of particles [K]

U Heat trans. coef. ambient [W/m2]
va Velocity air [m/s]

Vdrop Droplet volume [m3]

vp Velocity particles [m/s]

Wp Moisture cont. [kg-wat/kg-solid]

Wp,crit Moisture at start hindering

Wp,crust Moisture at crust formation

Wp,eq Moisture at equilibrium

Wp,r Moisture at start degradation

Yb Bulk humidity [kg-wat/kg-air]
Ys Surface humidity [kg-wat/kg-air]
Ysat Saturation hum. [kg-wat/kg-air]
z Position vertical coordinate [m]
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S. Schüle, W. Frieß, K. Bechtold-Peters, P. Garidel, jan 2007. Conformational analysis of protein secondary structure

during spray-drying of antibody/mannitol. European Journal of Pharmaceutics and Biopharmaceutics 65 (1), 1–9.
V. Truong, B. R. Bhandari, T. Howes, nov 2005. Optimization of co-current spray drying process of sugar-rich foods. Part

I—Moisture and glass transition temperature profile during drying. Journal of Food Engineering 71 (1), 55–65.

294

264



PROCEEDINGS OF THE 32nd European Symposium on Computer Aided Process Engineering  

(ESCAPE32), June 12-15, 2022, Toulouse, France  

L. Montastruc, S. Negny (Editors) 

© 2022 Elsevier B.V. All rights reserved.  

Process modelling of Direct Air Capture (DAC) of 

CO2 using solid amine sorbents 

So-mang Kima, Grégoire Léonarda 
aChemical Engineering, University of Liège, Belgium 

Abstract 

This paper presents a fixed bed reactor system to capture CO2 from ambient air via 

Temperature Vacuum Swing Adsorption (TVSA) cycles employing Lewatit® VP OC 

1065 amine-functionalized adsorbents. Firstly, a model describing CO2 mixture flow, 

mass, and heat transfer with adsorption isotherm model is developed in Aspen Adsorption 

environment to study the performance of DAC processes with TVSA. Then, a single 

adsorption column is simulated to study both adsorption and breakthrough curves, and 

the model is validated with literature results. Secondly, a full DAC model with TVSA 

cycle is developed and the results are compared to TVSA cycle with a steam purge in 

literature to validate the reliability and simulation capabilities of the software tool. Lastly, 

a model of a process capturing 1.1 kilograms of CO2 per day is developed as a base case, 

and studies on the energy requirements, capital, and operating costs of the DAC system 

are conducted. In addition, sensitivity studies on the model parameters are carried out. 

This work stands as one of the first identified modelling studies of TVSA-based Direct 

Air Capture and serves as a basis to analyze the feasibility of DAC system deployment 

and its relevance in comparison to CO2 capture from point sources. 

 

Keywords: Direct air capture, Carbon capture, TVSA, Adsorption, Process modelling 

1. Introduction 

The idea of CO2 capture from ambient air, also referred to as Direct Air Capture (DAC), 

was first suggested by Lackner and coauthors in 1999 to mitigate climate change. CO2 

adsorption processes are often considered as the most suitable option for DAC and many 

laboratory and pilot scaled units have been developed over the last decade. In particular, 

there are 15 operational DAC plants globally capturing more than 9000 tCO2/year (IEA, 

2020). Some of the industrial pioneers are Climeworks (Switzerland) and Global 

Thermostat (USA) where solid sorbents are used to capture CO2 while Carbon 

Engineering (Canada) has developed a liquid solvent-based DAC system. Also, some 

examples of active academia are Twente University and ETH Zurich where DAC systems 

with amine solid sorbents are studied while Arizona State University is developing 

Moisture Swing Adsorption (MSA). However, there is currently a scarcity of literature 

on simulation studies of adsorption processes in the DAC context. To address this gap, 

the present work studied a TVSA DAC process in an attempt to bring a new light on 

process system design and DAC performances under cyclic operation.  

2. Modelling and validations 

In this paper, a one-dimensional model for gas adsorption in a fixed bed is developed in 

Aspen Adsorption. The adsorption isotherm and model assumptions are described below.  
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2.1. 2 Adsorption Isotherms 

Toth Isotherm parameters described in Bos et al. (2019a) are used to describe an amine-

based solid sorbent, Lewatit® VP OC 1065 that numerous authors including Veneman et 

al. (2012), Bos et al. (2019a&b), Young et al. (2021) have studied extensively. The Toth 

isotherm is presented in Equation 1 and the fitting parameters can be found in the work 

of Bos et al. (2019a).  

𝑞𝑒 =  
𝑞𝑠𝑏𝑃𝑐𝑜2

(1+(𝑏𝑃𝑐𝑜2)
𝑡

)

1
𝑡

        (1) 

The parameters q𝑠, b and  t  in the Toth isotherm described in Equation 1 are the saturation 

loading, the affinity of the sorbent to CO2 and the heterogeneity respectively and each 

parameter is a function of temperature. These parameters can be used to calculate CO2 

equilibrium loading (qe) at various CO2 partial pressures (Pco2
) and operating 

temperatures. More details of the parameters and related equations can be found in the 

work of Bos et al. (2019a).  

 

2.2. Fixed bed model validation 

2.2.1. Model Assumptions 

The model consists of mass, momentum, and energy balances of the gas and the adsorbent 

phases. The balance equations form a set of partial differential equations (PDEs) that are 

solved using a software package, achieving a cyclic steady state in Aspen Adsorption. 

The process model is based on the following assumptions: 

• The gaseous mixture obeys the ideal gas law. 

• Only carbon dioxide is adsorbed. 

• The resistance of mass transfer in the gas phase is negligible; the kinetics of 

mass transfer within a particle is approximated by the linear driving force 

(LDF) model.  

• A constant heat of adsorption is used.  

• The adsorbent is considered as a homogenous phase and its physical properties 

are assumed to be constant.  

The first-order upwind differencing scheme (UDS1) spatial discretization method was 

selected for its comparatively higher stability. A default number of nodes (20) was used 

and the system is assumed to be isothermal for the model validation steps in section 2.2.2. 

 

2.2.2. Breakthrough curve  

The experimental breakthrough curves of Yu et al. (2017) at air inlet conditions of 25 °C, 

at atmospheric pressure, and 400 ppm on a clean adsorption bed are compared with the 

results from the Aspen Adsorption fixed bed model in Figure 1. Table 2 presents 

modelling parameters and operating conditions used in the fixed column model.  
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Table 1. Parameters and operating conditions for breakthrough modelling 

Parameter Description Value Unit Source 

Vg Superficial velocity 0.14 and 0.27 m s−1 Yu et al. (2017) 

Cp,s Sorbent heat capacity 1580 J. mol−1K−1 Veneman et al., (2012) 

Rp Particle diameter 0.26 mm Bos et al., (2019b) 

𝛒𝐩 Particle density 1580 kg m−3 Bos et al., (2019b) 

𝛜 Particle voidage 0.23 m3 m−3  Lanxess 

MTC Mass transfer 

coefficient 

3.26 × 10−4 s−1 Yu et al. (2017) 

L Column height 0.5 m Yu et al. (2017) 

D Column diameter 0.016 m Yu et al. (2017) 

 

Figure 1 shows the model results (solid lines) obtained at the operation conditions 

presented in Table 2 and experimental breakthrough curves (dotted lines) from Yu et al. 

(2017) at 0.14 m/s and 0.27 m/s superficial velocities of inlet feed. The model lines show 

a slightly steeper increase at the beginning of the breakthrough curve which may be due 

to the existence of dead spaces in the actual experimental column.   

 

 

Figure 1. Fixed bed operations breakthrough curves at the superficial velocity of 0.14 m/s and 

0.27 m/s with 1 g of Lewatit® VP OC 106 solid sorbent at 25 °C.   

Yu et al. (2017) also computed adsorption half-time (t1/2), which is the time required to 

adsorb 50% of the maximum adsorption capacity, at different Vg. In this study, t1/2 were 

simulated and the model and literature values are compared in Table 3.  

Table 2. Adsorption half-time comparison between this work and the results of Yu et al. (2017). 

 

 

 

 

 

 

 

 

The results were found to be consistent with the experimental works of Yu. Also, an 

equilibrium loading of 1.06 mol/kg of CO2 was obtained from the fully saturated model 

at the feed CO2 concentration of 400 ppm as calculated using the Toth isotherm presented 

in Equation 1, and this simulation value agrees with Bos et al. (2019a) and Yu et al. 

(2017).  
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2.2.3. Temperature Vacuum Swing Adsorption (TVSA) cycle 

In order to further validate the reliability and simulation capabilities of the software tool, 

a full TVSA cycle using a different adsorbent, an amine nanofiber, was simulated using 

Aspen Adsorption based on the work of Stampi-Bombelli et al. (2020). The change of 

materials is due to insufficient cycling results identified in the literature for Lewatit. The 

Toth isotherm equations, parameters, and operating conditions can be found in the 

aforementioned literature.  Note that the value of one parameter (𝐛𝟎) needed to be 

retrieved from Gebald et al. (2014) which is one of the preceding studies on the nanofiber 

adsorbent, as the value reported by Stampi-Bombelli et al. (2020) for this parameter led 

to aberrant results. The cycle validation is presented in Figure 2. 

Figure 2. Cyclic profiles (solid lines) from Aspen Adsorption during the adsorption (red), 

evacuation (grey), heating (yellow), and desorption (blue) steps. The dotted lines show the cyclic 

profiles reported in Stampi-Bombelli et al. (2020). (a) CO2 loading profile, (b) pressure profile 

and (c) temperature profile.  

The TVSA cycle (Stampi-Bombelli et al., 2020) consists of four steps which are 

adsorption (20 °C, 1bar, 13772 s), evacuation (0.05 bar, 30 s), heating (via heating jacket, 

704 s), and desorption (95 °C) with purge steam. The difference observed in the 

temperature profile could be due to the absence of a wall energy balance and the usage of 

the overall heat transfer coefficient in Aspen Adsorption. In general, the results from the 

simulation showed the same trends as reported in the literature. The next section will 

present a kilogram scaled DAC model as a basis to study the operating and economic 

performances. 

3. DAC model of 1.1 kg/day results and discussion 

3.1. DAC model CO2 capture rate, purity and recovery  

In the recent paper of Schellevis et al. (2021), a complete kilogram scale TVSA fixed bed 

model utilizing Lewatit® VP OC 1065 was presented based on experimental results 

collected on a small-scale DAC pilot. In the present paper, an Aspen Adsorption model 

is developed to study a similar process with a steam purge. Details of the bed geometry 

and operating conditions were retrieved from Schellevis et al. (2021). The cycle involves 

four steps which are the adsorption, evacuation, desorption, and cooling, and in this study, 

the step time of 3200 s, 30 s, 4700 s, and 2300 s were assumed respectively since these 

parameters were not reported in the literature. Figure 3 presents a cyclic CO2 loading at 

the end of the adsorption bed over a period of 24 hours.  
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Figure 3. Cyclic CO2 loading results at the end of column obtained from Aspen Adsorption 

Based on our simulation results, 0.0339 kgCO2
/cycle could be obtained, leading to 0.2712 

kgCO2
/day. Indeed, as can be seen in Figure 3, a total of 8 cycles could be achieved within 

a day. To achieve 1.1 kg CO2 capture per day, Schellevis et al. (2021) proposed a DAC 

process with several parallel fixed bed reactors. In our case, four parallel reactors are 

needed to capture 1.1 kg of CO2 per day. Finally, assuming all the purge steam will be 

condensed out of the CO2 product stream,  purity of 99.98% was achieved while a 

recovery of 71.70% was obtained.  

 

3.2. Economic performances of the 1.1 kg/day DAC process 

 The feasibility of the DAC system was studied where such system consists of thermal 

and electrical energy requirements. Main thermal energy uses arise from the reaction and 

sensible heats of CO2, H2O, and steam while pumps and compressors contribute to the 

electrical energies. The distribution of exergy assuming an ideal heat transfer is presented 

in Figure 4 and the magnitude of distributions calculated in the current study are in the 

same magnitude as reported in Schellevis et al., (2021).  

Table 3 Capital and operating expenditures 

Figure 4. Distribution of exergy use 

Annualized capital and operating expenditures are summarized in Table 4 where 

contactors, fans, and vacuum pumps are considered for CAPEX in this study. The costs 

of equipment are obtained from the per-unit costs from the manufacturers and annualized 

assuming a lifetime of 10 years. Since the unit size is smaller (D = 0.4 m, L = 0.024 m) 

than the usual industrial size, the price of each unit could be more expensive to 

manufacture. In the case of operating costs, sorbents are expected to have a lifespan of 

2.6 years (NASEM, 2019), and electricity and steam costs are included while maintenance 

and labor are assumed to be 3% of total capital requirement and 30% of maintenance cost 

respectively. Based on the aforementioned information, a preliminary capture cost of 942 

€/tonne of CO2 was obtained for this non-optimized process, which is slightly higher than 

the figure reported by IEA (2020).  
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3.3. A preliminary sensitivity analysis 

The effects of adsorption time on recovery and CO2 capture rate per day are examined 

under the same operating conditions. It was observed that as the adsorption time increases, 

recovery decreases. This is due to the adsorption bed being fully saturated and CO2 is 

being lost in the outlet stream. In the case of capture rate, by varying the adsorption time, 

the total number of cycles per day changes. For example, when the adsorption time is 

1200 s instead of 3200 s, it is possible to achieve 10 cycles per day. However, the CO2 

capture rate per cycle (0.0163 kgCO2
/cycle) is very low and requires more DAC units to 

achieve the same output per day when compared to the adsorption time of 3200 s which 

involves 8 cycles with 0.0339 kgCO2
/cycle output. Therefore, there is a tradeoff between 

the adsorption time, recovery, and the capture rate. From the sensitivity analysis, it was 

found that the optimal capture rate can be achieved at the adsorption time of 3200 s as 

presented in Figure 5 

 

Figure 5. CO2 recovery (bars) and CO2 capture rate per day (line) for different adsorption times. 

4. Conclusion and future work 

This study has developed a fixed-bed DAC process model and presented validation for 

adsorption and breakthrough curves of Lewatit® VP OC 1065 amine-functionalized solid 

sorbents under DAC conditions with the literature. Also, a full TVSA model for DAC is 

developed to analyze cyclic operations as well as feasibility and economic performances. 

Further work needs to be done to include co-adsorption of H2O and CO2 on solid sorbents 

to better understand the influence of humidity on the adsorption stability which requires 

more work for accurately assessing the impact of operating conditions on sorbent 

performances and lifetime. Finally, these elements will lead to a more detailed techno-

economic analysis and provide more insights into the relevance and possible deployment 

of DAC in comparison to CO2 capture from point sources. 
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Abstract
This contribution introduces a data acquisition and modelling framework for the prediction of ba-
nana pests’ incidence. An IoT sensors-based system collects weather and micro-climate variables,
such as temperature, relative humidity, and wind speed, which are uploaded in real time to a cloud
storage space. The incidence of the red rust thrips (Chaetanaphothrips signipennis) is collected
“manually” by periodic inspection. The mathematical model is adapted from population growth
functions and a model of insect species development and allows predictions to be made at var-
ious time intervals with an accuracy greater than 80%, improving decision-making capacity for
agro-producers and enabling the improvement of pest management actions.

Keywords: Mechanistic modelling; IoT sensors; Precision agriculture; Organic banana; Red rust
thrips.

1. Introduction

Peru, with an extension of organic agriculture of 197,837 ha (Sánchez Castañeda, 2017), is one
of the main suppliers of organic banana to the American market (Machovina and Feeley, 2013),
representing approximately 3% of the world production. However, like other crops produced in
this country and worldwide, the presence of pests and diseases, influenced by climate change,
is one of the main problems that afflict farmers (Dadrasnia et al., 2020; Gaitán, 2020), directly
affecting the productivity and quality of the product.

Mathematical representation of the phenomena taking place on the farm (e.g., plant growth, pest
incidence and its impact on the plant development, etc.) are of paramount importance for improv-
ing the knowledge and decision-making for banana production. The data available shows that, in
the case of the banana pests incidence, an exponential growth can be observed. Moreover, pest
control measures have an effect of reducing the insect number in a similar way that antibiotics
reduce bacterial populations. Various mathematical representations have been developed to de-
scribe the behaviour of bacterial population growth, which consider the effect of antibiotics on the
development (Romero Leiton et al., 2011).

The problem of inefficient pest management affects small and medium agro-producers in the Piura
region, impacting on the quantity and quality of their produce, and preventing them from compet-
ing on the international market. Thus, the development of a tool that improves the pest man-
agement will bring along benefits. However, to achieve this, improved representation of the pest
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behaviour is required. Therefore, in the following sections, a mathematical model for predicting
the level of pest incidence in banana crops is proposed, based on first principles of population
growth in insect species, with roots in bacterial population growth models. The objective is to de-
velop a tool to facilitate decision-making for organic banana agro-producers worldwide, enabling
the adjustment of the model parameters to account for environments where the atmospheric and
microclimate conditions differ from those studied in the current work.

2. Methodology

2.1. Data acquisition

A network of IoT sensors, Figure 1, is used to measure the weather, micro-climate and soil vari-
ables listed in Table 1.

Table 1: Features of the IoT sensors

Level Sensor Variables Manufacturer

Weather
station Climate Vantage

Pro 2

- Temperature
- Relative humidity
- Atmospheric pressure
- Wind speed
- Rainfall rate

Davis
Instruments

Node 1
and

Node 2

Micro-climate
Davis
Instruments
6830

- Temperature
- Relative humidity

Davis
Instruments

Soil GS3
decagon

- Water content
- Bulk electrical conductivity
- Temperature

Decagon
Devices

Figure 1: Nodes and weather station
distribution, dimensions in meters.

The data acquisition system measures these variables ev-
ery minutes, while its gateway device stores it at 15 min-
utes intervals and uploads it to a web server. For this du-
ration, the average, the maximum and minimum value,
and variables that are not directly measured (e.g., dew
point, evapotranspiration, heat index, etc.) are calculated
automatically. Thus, a total of 96 items are stored in the
database every day. Finally, the data acquisition inter-
face takes these values and calculates a daily average for
each of the variables stored.

Based on previous studies (Elbehri et al., 2015), (Zhang
et al., 2019), the variables with the highest impact on the
efficiency of the process are the temperature, the rela-
tive humidity, the rainfall rate, and the wind speed. In
the following, the average daily atmospheric tempera-
ture will be used, since it was found that a correlation
exists between this and the growth rate of the pests.

2.2. Pest incidence

To assess the level of infection in the banana crop, the pest incidence will be used. The pest inci-
dence is a statistical metric resulting from the inspection of the crop and is calculated by randomly
choosing a defined number of plants per hectare and examining each of them for the presence of
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the respective pest in the stem and leaves. The following equation is used for determining the pest
incidence (α) (Pasapera Cordova, 2013):

α =
Total insects

Total of plants inspected
(1)

Table 2: Thrips incidence level classification

Criterion Incidence level Control action Cost
0 < α ≤ 0.5 Low Leaf fumigation 18.64 USD/ha
0.5 < α ≤ 1 Medium Stem fumigation 35.13 USD/ha

1 < α High Stem fumigation and cleaning 54.04 USD/ha

Based on this measure, the corresponding control action is decided according to the criteria illus-
trated in Table 2.

2.3. Mathematical Modelling

Figure 2 shows the data of the incidence of red rust thrips (Chaetanaphothrips signipennis) from
December 2019 to April 2021. During the summer (January, February and March), there is an
accelerated growth of the thrips incidence, which confirms the information collected from the
farmers on the field on the seasonal behaviour of the pests.

Figure 2: Thrips incidence over time.

As the behaviour in Figure 2 resembles an exponential function, a relationship can be written for
the incidence of the thrips in differential form as:

dIT (t)
dt

= r · IT (t) (2)

r = β −µ −α1F1 −α2F2 − γC (3)

Where t is the time (day), r is the effective growth rate (1/day), and IT (t) is the incidence of Thrips
as a function of time (insects/plant). The growth rate is a function of: the natural population growth
rate, β (1/day), the mortality rate by natural causes, µ (1/day), the mortality rate by fumigation of
thrips, α1 (1/day), and by fumigation of other pests, α2 (1/day), the mortality rate by cleaning γ

(1/day), the concentration of the fumigation chemical for thrips, F1, and for other pests, F2, and
the theoretical concentration of the plot cleaning, C.
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For the modelling of the thrips development, a relationship based on temperature, following the
Sharpe Schoolfield Ikemoto (SSI) function is used (Prasad et al., 2021):

β =
T −Tmin

k
(4)

Where T is the average daily temperature (°C), Tmin is the minimum temperature at which the
species develops (°C), and k is the thermal constant in degree days (°C day).

To calculate the concentration of the fumigation chemicals Fi and the theoretical cleanup C a
modification of the equation used to calculate the antibiotic concentration in (Esteva et al., 2011)
is used, which after integration results in:

Fi =
∫ t2

t1
−ΦFiFidt = e−ΦFi (t2−t1) (5)

C =
∫ t2c

t1c

−ΦCCdt = e−ΦC(t2c−t1c) (6)

Where ΦFi is the degradation rate corresponding to the fumigation chemical i, ΦC is the degra-
dation rate of the cleaning, t1 is the date of the last fumigation, t2 is the date pest incidence is
evaluated after the fumigation, and (t2 − t1) is represented in days.

2.4. Training and testing algorithm

The model is implemented as a multi-period integration, so that the next value of the thrips in-
cidence can be predicted from the previous one. The experimental data is split into training and
test sets, and the Group Shuffled Split (GSS) method of the Sci-kit learn Python library (Ojala and
Garriga, 2010) is used to perform cross validation. The metrics used for the analysis of the model
performance are the coefficient of determination (R2) and the root mean square error (RMSE),
calculated for each set generated with the GSS algorithm. The process is detailed in Figure 3.

Figure 3: Flow diagram for training and testing algorithm.

3. Results

A total of 500 sets are used in the cross validation to obtain the histograms shown in Figure
4. Analysis shows that using a higher number of sets does not have a significant impact on the
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results. In the training data sets, 1.56 and 0.77 are obtained as average values of RMSE and R2,
respectively, while for the test sets the values of 1.60 and 0.68 are obtained.

Figure 4: R2 and RMSE histogram for training and testing sets

Table 3: Estimated parameters

Variable Name Value
µ Mortality rate by natural causes 0.150195
α1 Mortality rate by fumigation of thrips 0.529771
α2 Mortality rate by fumigation of other pests 0.05
γ Mortality rate by cleaning 0.0

ΦF1 Degradation rate corresponding to the thrips fumigation chemical 0.045171
ΦF2 Degradation rate corresponding to the other pests fumigation chemical 0.598177
ΦC Degradation rate corresponding to the cleaning 0.0496006
Tmin Minimum temperature at which the species develops 10.98

k Thermal constant in degree days 0.012956

Furthermore, looking into more detail at the data set for which the best results are obtained during
training and testing, the prediction of the total number of points collected is performed. The Figure
5 shows a good accuracy of the model for the prediction of the low and medium values of thrips
incidence, while for large values there is a greater margin of error. This may be caused by the fact
that the SSI model is linear and fails to mimic the real behaviour of population growth. However,
the selected model achieves a coefficient of determination of 0.83 and an RMSE of 1.46.

4. Conclusions

This work is a starting point for the development of new techniques and models that promote
artisanal agriculture, and can compete with the industrialized agricultural sector. Based on growth
models with roots in bacterial population growth, a mathematical model for predicting the level
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Figure 5: Comparison of model prediction and experimental data

of pest incidence in an organic banana crop is obtained. The results show that the implementation
of a linear relationship based on temperature does not correctly describe the pest behaviour across
the whole range of temperatures.

Future work will focus on considering more realistic, nonlinear representations of the growth rate,
in order to improve the accuracy of the results. However, it should be emphasised that the cur-
rent linear model gives a real physical meaning to the considered variables and offers sufficient
understanding of the abiotic components and spread of the pests. Thus, it can prove a sufficiently
accurate solution for implementation of fumigation or cleaning schedules, that may require itera-
tive computations of the pest incidence model.

This will enable the farmers to improve their performance in pest control, increasing the quality
of the organic product and reducing costs of spraying and maintenance of the plot.
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Abstract 

In this contribution, the development of a toolbox for the simulation of trickle bed reactors 

based on a model able to account for the local properties of the liquid and gas flow in a 

packed bed at particle scale is introduced. The implementation uses a modular and 

flexible setup, with local liquid distribution considered as a function of the operating 

conditions and the physical properties of the three phases. Moreover, the impact of the 

local incomplete wetting on the conversion, as well as the mass transport and kinetics at 

both particle and reactor scale are accounted for. Furthermore, different particle 

geometries are considered, and the model is able to reliably predict the performance of 

the catalytic trickle bed reactors. 

 

Keywords: Trickle bed reactors; Multiphase reactors; Modelling; Multiscale analysis. 

1. Introduction 

The trickle bed reactors (TBRs) are a frequently used solution for industrial multiphase 

exothermic catalytic reactions between gaseous and liquid components (e.g., 

hydrogenation, oxidation), in which the gas and the liquid flow downward through packed 

beds and undergo chemical reactions (Guo et al., 2008). The feedstock, in liquid phase 

forms a film around the solid catalyst, while the reactant, in a continuous gaseous phase, 

fills the remaining space of the catalyst bed, flowing separately (Fan et al., 2020). TBRs 

provide simple and safer operation at high temperature and pressure, higher conversion 

and selectivity due to the low axial dispersion, high interfacial area, less catalyst cost per 

operation run, and often lower energy consumption compared to other reactor types 

(Degirmenci & Rebrov, 2016; Markthaler et al., 2020; Zhao et al., 2020). On the other 

hand, the TBR’s behavior is very complex and depends on mass and heat transfer, as well 

as on hydrodynamics (Qi et al., 2020). Its performance largely depends on the complex 

wetting morphology, which consists of film flow, rivulet flow, liquid pendulum and liquid 

pocket (Tang et al., 2022), with the hydrodynamic parameters (e.g., liquid holdup, gas 

holdup, liquid distribution, catalyst particle size, particle porosity, bed porosity) having a 

significant impact (Azarpour et al., 2021). However, TBRs show unacceptable levels of 

performance when moving from laboratory to pilot or commercial scale due to the 

maldistribution of the gas/liquid flow and the difficult control of the temperature 

(Muharam et al., 2020). Thus, the proper understanding of the TBRs remains a challenge, 

since numerous transport and reaction phenomena occur simultaneously inside the 

reactor, with uncertainties in the catalyst heterogeneity, packing, fluid flow, and transport 

parameters elevating the complexity (Azarpour et al. 2021). In this sense, different 

approaches have been developed over time to deal with their highly coupled multiphysics 

and multiscale nature, ranging from experimental techniques that enable global 

characterization of hydrodynamic behavior and reaction characteristics, to modelling and 
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simulation studies, with different levels of description, developed depending on the 

objective to satisfy, and the phenomena of interest (Qi et al., 2020). As a result, varied 

assumptions accompany these models, such as considering constant velocity profiles and 

no pressure drop for multiphase plug flow reactor (PFR) models, neglecting mass and 

energy radial gradients, which often result in reduced accuracy of the predictions (Uribe 

et al., 2019). More rigorous, computational fluid dynamics (CFD) models to simulate the 

multiphase flow inside the TBRs are often computationally expensive and do not always 

capture the wetting characteristics of the gas-liquid interface (Deng et al., 2020). 

Furthermore, they are not always capable of handling the multiscale coupling and the 

establishment of two-way communication schemes between the different scales (Uribe et 

al., 2019). 

The focus of the paper is the improvement of a novel and intuitive tool for the design and 

analysis of trickle bed reactors operating in the low-interaction-regime, based on the work 

in Schwidder & Schnitzlein (2012). In that case, the modelling of the liquid distribution, 

the two-phase flow, and the reaction are modelled using an Euler-Lagrange approach. 

Furthermore, due to the complexity of the phenomena taking place inside the TBR, only 

isothermal processes are considered. To enable the extension of the tool to any type of 

particle geometry (e.g., cylinders, Raschig rings, Pall rings, etc.), not possible using the 

previous model version, a new description of the surface is proposed.  

2. BasMo – A simulation toolbox for trickle bed reactors 

2.1. An interactive toolbox for the simulation of trickle bed reactors 

The toolbox, BasMo (Basis Model), an interactive solution for the simulation of TBR, is 

implemented in C++ using a modular setup, mirroring the multiscale structure of the 

TBR, from reactor level to particle and fluid film levels, including reaction kinetics 

information, as illustrated in Figure 1.  

 

 

Figure 1: BasMo modular structure (adapted from Schwidder, 2012) 

 

The starting point for the model development is the generation of random-loose catalyst 

packing bed. A layer of particles is placed at the bottom of the reactor and every particle 

is assumed to move with small increments in every direction. In the resulting Monte 

Carlos simulation, should the movement of a particle come in conflict with another, its 

movement will be skipped. To achieve a close packing, a “raining” mechanism is added, 

which assumes that a particle drops inside the vessel until it is fixed, together with a 

compressing algorithm based on simulated annealing, and a shacking procedure for the 

packing, to ensure a particle is fixed inside the bed (Schnitzlein, 2001). The resulting 

packing can be used directly, or saved for later simulations. During the following stage, 

the packing model is used to extract all the necessary global and local geometric 

information, to be used for the further steps, e.g., the determination of system-relevant 

contact points, and the volume of every single bond existing at this points of contact 

(Schwidder & Schnitzlein, 2010). A distinction is made for the cases in which the contact 

point is between two packing particles or between the particle and the wall, due to the 

difference in wettability and curvature of the bulk or wall materials.  

Packing 
generation

(MPSim)
Geometry

Static 
holdup

Flow 
model 

(FlowSim)

Axial- and 
Radial-

Dispersion

Reaction
kinetics

Catalyst bed Fluid flow Reaction
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In the second step, using this geometric information (particle distribution, number of 

active and inactive particles, bed diameter and height, position of a single particle, etc.), 

the physical parameters and the static holdup can be predicted, as described in Schwidder 

& Schnitzlein (2012).  

Subsequently, during the third step, based on the specified operating parameters, the 

liquid flow is determined. This can be used to predict the axial and radial dispersion. 

Furthermore, with the addition of the kinetic model for the specific heterogeneous 

catalytic system under consideration, other measures such as the conversion inside the 

reactor, or the residence time distribution can be predicted.  

The modular structure of the simulation toolbox offers flexibility in adding new modules 

for improved representation of the internal geometries as well as of the different 

phenomena (e.g., holdup, fluid flow, kinetics, etc.) taking place inside the TBR, as well 

as expansion to energy and momentum balance. 

 

2.2. Graph network model 

The toolbox utilizes the approach introduced by Schwidder & Schnitzlein (2012) for the 

representation of the 

movement of the 

fluid through the bed, 

which is considered 

as a combination of 

two effects: the 

complete mixing in 

the cavities between 

the packing 

elements, and the 

displacement in the 

channels that connect 

these cavities.  

A three-dimensional 

network (Figure 2) of 

edges and nodes 

(vertices) is created 

based on the 

knowledge on the 

local distribution of 

the static and dynamic holdups. 

Furthermore, a steady-state approach is 

used to model the liquid distribution, while 

the dispersion and the reaction are 

modelled dynamically.  

It is considered that the liquid flows in the 

form of rivulets on the particle surface. 

These rivulets are mapped by Edges, while 

the liquid within the inter-particle spaces is 

mapped by Vertices. Furthermore, an ideal 

PFR is used to model the rivulets, while the 

inter-particle liquid is modelled as a 

continuous-stirred tank reactor (CSTR), as 

Rivulets
Inter-particle

liquid

PFR CSTR

EDGE

VERTEX

Figure 3: Representation of the liquid flow 

through the packing (adapted from Schwidder, 

2012) 

Figure 2: Three-dimensional graph network representation (right) 

based on the fluid distribution through the packing (left) 
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illustrated in Figure 3. Dynamic mass balances are used to describe the concentration of 

the two phases, accounting for both gas-solid and liquid-solid mass transfer. By 

connecting the two reactor types, the behavior of the liquid inside the reactor can be 

modelled, with experimental measurements used to account for the characteristic 

parameters of the reactors, mass transport, etc. As such, by using this simplified 

representation of the liquid as a set of PFRs and CSTRs, the computational time is 

significantly reduced compared to a full CFD simulation. 

 

2.3. Extension of the particle representation inside the packed bed 

 

An important disadvantage of 

the current implementation of 

the particle representation 

inside the packed bed is the 

fact that only simple spherical 

shapes can be used, which 

limits the applicability of the 

toolbox to more complex 

particle geometries. The 

geometry is accounted based 

on the symmetry properties of 

the spherical shape. To enable 

the use in the investigation of 

more realistic scenarios, 

methods such as the Lattice 

Boltzmann (LB) or the volume of fluid (VOF) methods can be applied (Rong et al. 2020; 

Tang et al. 2022). However, the main drawback would be the fact that the accurate 

modelling of a realistic TBR implies simulation of several thousands of particles, which 

leads to high computational times. Furthermore, the discrete element method (DEM) has 

been investigated, and deemed inappropriate for the calculation of the contact points. For 

the improvement of the toolbox towards applicability to any arbitrary particle geometries, 

a new approach is considered for the representation of the surface, which will be called 

further the liquid element tracking (LET) 

method. In the LET method, the particle 

surface is discretized over a finite number of 

triangles (Figure 4a). The path of the liquid 

flow (for example a rivulet) on the particle 

surface is then described as a pointwise 

sequence of motion of the fluid over individual 

partial surfaces, based on the applied forces. 

Thus, the position of impact on the particle 

surface can be determined (Figure 4b). The 

resolution of the discretization can be changed 

depending on the desired accuracy, although 

fine meshing will increase the model 

complexity, and lead to higher CPU times. 

Thus, complex particles can be represented, for 

example (although not a realistic catalyst 

shape) elephants (Figure 5). 

a b

Figure 4: a) Particle surface mesh and b) liquid path flow 

representation using the LET method 

Figure 5: Representation of complex 

geometries 
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2.4. Validation of the LET surface mesh representation 

Since the spherical particle representation existing in the previous version of BasMo has 

been validated experimentally in the precedent work (Schwidder & Schnitzlein, 2010; 

2012), in the following, the results based on the LET-approach will be validated against 

its predictions for spherical particle shapes. 

 

 

Figure 6: Prediction of static holdup based on BasMo v1 (left) and v2 (right) particle 

representation 

 

 

Figure 7: Prediction of the radial flow distribution 

Once the information on the geometry is available, the static holdup can be calculated, 

with acceptable accuracy (Figure 6). The static holdup is determined from the volume of 

every single bond existing at a contact point, as described in Schwidder & Schnitzlein 

(2010). Finally, the radial flow distribution can be predicted, as shown in Figure 7, using 

the models developed in Schwidder & Schnitzlein (2012). 

3. Conclusions 

This contribution introduces improvements done in the implementation of a modular 

toolbox for the simulation of trickle bed reactors. The implementation of BasisModel 

(BasMo) in C++ mirrors the multiscale nature of the phenomena taking place in the 

reactor, moving from the large scale of the reactor to the medium and low scale of the 

particle bed, fluid flow, as well as the fluid-solid and fluid-fluid interactions, including 

the chemical reactions. The toolbox allows for the implementation of complex geometries 

for the catalyst particles, enabled by the new representation of the surface mesh. A graph 

network model representation is used for the liquid flow, which enables the calculation 

of the properties based only on the local geometry, reducing significantly the 
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computational effort, without hindering the accuracy. Although the new implementation 

of the surface mesh shows in general good agreement with the previous version of the 

toolbox, validated experimentally in the previous work, significant experimental work is 

still ongoing to validate the models for complex, non-spherical geometries, for which new 

models for the static holdup or the radial dispersion may need to be derived.  

The knowledge gathered from the modelling of the liquid phase, and the liquid-solid 

interactions, as well as improvements on the particle surface representation enable new 

features to be displayed on the simulation toolbox in order to represent accurately the 

TBR under real operating conditions. Further improvements are envisaged which include 

the addition of enhanced modules for the continuous gas flow, liquid-gas interactions, as 

well as momentum balances, to improve the representation of the fluid pathways inside 

the bed. 
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Abstract 
It is essential that the Cl- ions purity contained in NaOH solutions for the use of the 
biopharmaceutical production processes would be below 30 ppm to meet Good 
Manufacturing Practice (GMP) guidelines (Gilleskie, G. et al.). The development of a 
commercially efficient process for purifying NaOH 50% aqueous solution of such purity is 
of interest in the related industry. This study describes a lab-scale electrochemical 
mathematical model for producing GMP grade NaOH aqueous solutions and a design of 
electrochemically efficient lab-scale production configuration. The model validation is 
carried out with experimental data for a different set of membrane configurations (Marangio, 
F. et al.). The model calculates the theoretical open-circuit voltage via a thermodynamic 
analysis of the electrochemical purifying process and then outputs the expected voltage 
during operation by applying the Butler-Volmer equation (Jang, D et al.). A set of physical 
properties of the solution are obtained from well-known theoretical equations: 
concentrations from Henry’s law and membrane diffusivity, permeability, and ionic 
conductivity from the Arrhenius equation, respectively. An experimental data fitting makes 
it possible to obtain estimated values of critical process parameters and their data tendency 
at different temperatures. The proposed model shows about 90% accuracy at an 
electrochemical lab-scale, to produce GMP grade (Cl- ions below 30 ppm) 50% NaOH 
aqueous solution, and an appropriate cation exchange membrane-based experimental 
configuration turns out to be of electrochemically high efficiency. Future work is to enhance 
the experimental scale model to scale up to a commercial scale, with an emphasis on the 
optimization of electrochemical reaction time, power and voltages. 
 
Keywords: Alkaline Water Electrolysis (AWE), prediction model, NaOH purification. 

1. Introduction 
With the ongoing globally pandemic COVID-19, the production of biopharmaceuticals is 
getting more attention as vaccines are highly demanded worldwide. In particular, efficient 
purification of NaOH up to GMP grade NaOH solutions becomes vital in 
biopharmaceutical manufacturing processes as it effectively removes proteins and nucleic 
acids and inactivates most viruses, bacteria, yeasts, fungi, and endotoxins (Girot, P et al.). 
As such, it is essential to produce GMP-grade NaOH of high purity. In this study, Alkaline 
Water Electrolysis (AWE) is proposed as an experimental configuration for purifying a 
50% aqueous NaOH solution at GMP grade, specifically targeting below 30 ppm of Cl- 
ion in 50% NaOH solution, and its electrochemical model is developed and verified with 
experimental data. 
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2. Experiment 
The proposed experimental framework comprises two electrodes immersed in a liquid 
alkaline electrolyte (See Fig. 1), and its specifications are given in Table 1 (Zeng, K et 
al.). As the NaOH solution in an ionic state undergoes electrolysis, the electrochemical 
reactions described in Eqs. 1 and 2 take place where hydroxide ions react to produce 
oxygen and water at the anode, and hydroxide and hydrogen are generated at the cathode. 
The characteristic of the membrane, which selectively allows Na+ ions passing through 
from the anolyte to the catholyte, leads Cl- ions to get diluted in the catholyte. As the 
reaction time goes by running the experiment, the concentration of the Cl- ion-free 
catholyte increases, and that of the anolyte decreases. It takes around 200 hours to reach 
19M of catholyte.  

𝐴𝑛𝑜𝑑𝑒: 4𝑂𝐻ି → 𝑂ଶሺ௚ሻ ൅ 2𝐻ଶ𝑂 ൅ 4𝑒ି  (1) 

𝐶𝑎𝑡ℎ𝑜𝑑𝑒: 2𝐻ଶ𝑂 ሺ௟ሻ ൅ 2𝑒ି → 𝐻ଶሺ௚ሻ ൅ 2𝑂𝐻ି  (2) 

 

Table 1. Operating conditions of AWE 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Fig. 1. Reaction mechanism of Alkaline Water Electrolysis (AWE) 

Parameters  Unit Value

Operating temperature K 313.15

Operating pressure atm 1

Anode electrode size/shape cm2 4/Rectangular

Anode electrode material - Ni foam

Anode electrode thickness mm 1

Anolyte concentration wt% NaOH 50 (=19M)

Anolyte volume  ml 200

Cathode electrode size/shape cm2 4/Rectangular

Cathode electrode material - Ni foam

Cathode electrode thickness mm 1

Catholyte concentration wt% NaOH 5.3 (=2M)

Catholyte volume ml 150

Membrane(Nafion117) μm 183
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Fig. 2. Conceptual framework of the AWE model 

3. Model and its Verification 
3.1. Alkaline Water Electrolysis (AWE) Model 
An AWE model is developed to derive the dynamics of the AWE based on gPROMS 
PROCESSTM, which is operated in batch mode (See Fig. 2.) The initial amounts of anolyte 
and catholyte in the tanks are 200 mL of anolyte, 150 mL of catholyte, respectively. It is 
assumed that the fluids are circulated between the tanks (anolyte and catholyte) and the 
Electrochemical Cell Reactor (ECR) in Fig. 2 simply as a way to make sure the fluid in 
the tanks interacts with the membrane and electrodes in order to represent batch operation 
in reality. 0.5A of current is kept constant in the entire experiment time. g-SAFT 
(gPROMS physical property package) is selected as its physical property model for 
materials involved in the experiment. The operating temperature of the current reactor is 
40°C, and the temperature change was found to be less than 1°C. Therefore, the reaction 
is assumed to be isothermal. Since there is no change in pressure as operated in the 
atmosphere, the reaction is isobaric. The AWE model shows the trends of electrolytic cell 
voltage as well as the catholyte concentration. The total voltage of the electrolysis is 
determined by summing up the open-circuit voltage, the activation and ohmic over-
voltages as Eq. 3 below (Han, B et al.):  

𝑉 ൌ 𝐸௢௖ ൅ 𝜂௔௖௧ ൅ 𝜂௢௛௠  (3) 

The open-circuit voltage is calculated based on the Nernst equation. 

𝐸௢௖ ൌ 𝐸௢ ൅
𝑅𝑇
𝑧𝐹

𝑙𝑛ሺ
𝑝ுଶ𝑝௢ଶ

଴.ହ

𝑝ுଶை
ሻ 

(4) 

where R, T, p, and F are the universal gas constant, operating temperature, partial 
pressure, and Faraday constant, respectively; pୌଶ&p୓ଶ i the partial pressure of hydrogen 
and oxygen gases near the electrode under Henry’s law. E୭, the standard electrode 
potential is calculated by the Eq. 5 (Han, B et al. & Prentice, G.): 

𝐸௢ ൌ 1.229 ൅ 0.9 ൈ 10ିଷሺ𝑇 െ 298.15ሻ  (5) 

The activation over-voltage is the consumed voltage caused by the electrochemical 
reaction (Jang, D et al.). It occurs at both electrodes, and the over-voltage on the anode 
appears larger than the cathode in most cases (Hammoudi, M et al.). The activation 
over-voltages can be determined by the Butler-Volmer equation (Prentice, G):  

𝜂௔௖௧ ൌ
𝑅𝑇

𝛼௔௡𝐹
𝑠𝑖𝑛ℎ

𝑖
2𝑖௢,௔௡

൅
𝑅𝑇

𝛼௖௔𝐹
𝑠𝑖𝑛ℎ

𝑖
2𝑖௢,௖௔

 
(6) 
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where αୟ୬ and αୡୟ represent the charge transfer coefficients of anode and cathode, respectively. 
The exchange current densities of anode and cathode are expressed as i୭,ୟ୬ and i୭,ୡୟ, respectively. 
The exchange current density has a significant influence on the activation over-voltage 
(Zhang, Z. et al.).  The exchange current density coefficients of the Ni electrodes used for 
the anode and cathode are calculated, using Eqs. 7 and 8, with data provided in (Henao 
Diaz, C).  

𝑖௢,௖௔ ൌ 1.5 ൈ 10ିସ ቆ
𝑃

𝑃௥௘௙
ቇ

଴.ଵ

𝑒𝑥𝑝 ൤െ
23000

𝑅𝑇
൨ ቆ1 െ

𝑇
𝑇௥௘௙

ቇ 
  (7) 

𝑖௢,௔௡ ൌ 0.9 ൈ 10ିସ ቆ
𝑃

𝑃௥௘௙
ቇ

଴.ଵ

𝑒𝑥𝑝 ൤െ
42000

𝑅𝑇
൨ ቆ1 െ

𝑇
𝑇௥௘௙

ቇ 
  (8) 

The charge transfer coefficients are calculated using Eqs. 9 and10 with data provided in 
Ref. [9]. 

𝛼௔௡ ൌ 0.07835 ൅ 0.001𝑇  (9) 

𝛼௖௔ ൌ 0.1175 ൅ 0.00095𝑇  (10) 

In general, the transfer of ions or electrons causes an ohmic over-voltage which is present 
at electrodes, electrolytes, and membranes, comprised of the electrolysis cell. The ohmic 
over-voltage is generated by the resistance encountered by the ions to the flow through 
the membrane (Marangio, F et al.). The obstruction to the flow of ions could be due to the 
ionic conductivity of the membrane and gas bubble coverage of the active area (Jang, D et 
al.). Choi et al. express this mechanism as below:  

𝜂௢௛௠ ൌ 𝛿௠
𝑖

𝜎௠
 

(11) 

The conductivity, σ୫ in Eq. 11, is calculated by Springer et al., which also considers the 
membrane hydration. 

𝜎௠ ൌ ሺ0.005139𝜆 െ 0.00326ሻ𝑒𝑥𝑝 ቆ1268 ൬
1

303
െ

1
𝑇

൰ቇ 
(12) 

Membrane diffusivity, permeability and ionic conductivity are calculated based on the 
Arrhenius equations, respectively. 

𝑘௜
ௗ௜௙௙ ൌ 𝑘௜,௥௘௙

ௗ௜௙௙𝑒𝑥𝑝 ൭െ𝐸௜
ௗ௜௙௙ ቆ

1
𝑇

െ
1

𝑇௥௘௙
ቇ൱

(13) 

𝑘௜
௣ ൌ 𝑘௜,௥௘௙

௣𝑒𝑥𝑝 ൭െ𝐸௔
௣ ቆ

1
𝑇

െ
1

𝑇௥௘௙
ቇ൱

(14) 

𝜎௜ ൌ 𝜎௜,௥௘௙ 𝑒𝑥𝑝 ൭െ𝑘ఙ௜ ቆ
1
𝑇

െ
1

𝑇௥௘௙
ቇ൱ 

(15) 

where 𝑑𝑖𝑓𝑓, 𝑝, 𝑟𝑒𝑓, 𝐸, 𝜎௜ and T indicate the diffusivity coefficient, permeability coefficient, 
reference, activation energy, ionic conductivity and temperature.  

316

Y. Kim et al.286 



Alkaline Water Electrolysis Model to Purify GMP grade NaOH Solutions for 
Biopharmaceutical Manufacturing Processes  

3.2. Na+ ions mass balance 
The mass balance of Na+ represents the dynamic of Na+ at the anode, which includes its 
migration to the cathode through the membrane. Eq. 16 illustrates the molar flow rate of 
Na+ corresponds to that of OH- at the anode and cathode. The molar flow rate of Na+ by 
diffusion ሺNሶ

୒ୟశ,ୢሻ and electroosmotic drag ሺNሶ
୒ୟశ,ୣ୭ሻ account for that of Na+ via the 

membrane in Eq. 17. The flux of water accompanied by the flow of Na+ is characterized 
by the electroosmotic drag coefficient (nd), which is an inherent property of the membrane. 
Eq. 19 describes the Na+ concentration gradient present in the NaOH solution across the 
membrane according to Fick’s law of diffusion, where A, D୵ and C are membrane area, 
diffusion coefficient and concentration. The following equations apply:  
 

𝑁ሶ
ே௔శ,௠ ൌ 𝑁ሶைுష,௔௡ ൌ െ𝑁ሶைுష,௖௔௧ (16) 

𝑁ሶ
ே௔శ,௠ ൌ 𝑁ሶ

ே௔శ,ௗ ൅ 𝑁ሶ
ே௔శ,௘௢ (17) 

𝑁ሶ
ே௔శ,௘௢ ൌ

𝑛ௗ𝑖
𝐹

(18) 

𝑁ሶ
ே௔శ,ௗ ൌ

𝐴𝐷௪

𝜕𝑚
൫𝐶ே௔శ,௖௔௧ െ 𝐶ே௔శ,௔௡൯

(19) 

 

3.3. Model Verification 
Fig. 3 shows the transient variation of NaOH concentration in the catholyte to verify the 
proposed model as compared to the experimental data. In the case of the Nafion 117, the 
experimental data show 240 hours of the reaction time at the cathode to reach 19M, and 
the reaction time calculated by the model is approximately 235 hours. This yields 5.69 
of a root mean square deviation. In the case of the thinner Nafion 212, the reaction times 
of the experiment and models are 171 and 165 hours, respectively, showing 6.15 of the 
root mean square deviation. The proposed model shows good agreement with the 
experimental data at our laboratory scale. 
 
 

 
Fig. 3. Transient variation of NaOH concentration in the catholyte 

4. Conclusion and Future Work 
In this paper, the cation membraned-based Alkaline Water Electrolysis (AWE) model to 
purify GMP grade NaOH solutions (below 30 ppm Cl- contained in 50% NaOH solutions) 
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is proposed, using gPROMS PROCESSTM and verified with experimental data, showing 
90% accuracy. As future work, the proposed model at a laboratory scale will be developed 
further for commercial biopharmaceutical manufacturing processes. 
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Abstract
In the pharmaceutical industry, the flow of fine powders between different manufacturing steps can
be challenging due to both the solid and liquid-like behavior of bulk solids. To better understand
flow behavior, the use of predictive models, such as the discrete element method (DEM) has
increased in recent years. However, a general model for fine bulk solids is not yet available.
This is mainly due to the long computational time requirements and the complexity of the flow,
as the discharge of fine particles is influenced both by cohesive forces and interaction with the
surrounding air.

In this study, a DEM model was used to predict the flow dynamics of a free-flowing powder
SuperTab® 11SD and to determine the extent to which the model can predict the discharge be-
havior of fine particles from a silo. Flow behavior was comprehensively characterized in terms
of flow profile development over time, mass flow index, and residence time distribution. Further-
more, mass flow rate predictions were verified considering experimental data of a laboratory-scale
cylindrical silo for different aperture sizes. Lastly, in order to obtain an accurate DEM prediction,
a leaner approach was implemented by introducing a relation that takes into account the aerody-
namic drag effect on the system.

Keywords: Fine particles, Discrete Element Model, Computational Fluid Dynamics

1. Introduction

In continuous manufacturing of solid dosage pharmaceuticals, powder flow in silos or bins is criti-
cal to the process performance and end-product quality. The flow properties of powders vary with
each material’s chemical and physical characteristics, which include particle size and shape, bulk
density, compressibility, cohesive strength, moisture, and the material’s behaviour under vacuum,
atmospheric, and loading conditions. Often, due to cohesive and poorly flowing powders, it can be
challenging to accurately feed, blend, and transfer between different manufacturing steps, despite
using tooling such as agitators and rotating bridge breakers to obtain uniform flow. Moreover, in
pharmaceutical applications where fine particles are commonly handled, in addition to the relevant
effect of the cohesive forces that affect flow behavior, the interaction between interstitial air and
particles also plays an important role, since the backflow of air can cause inconsistent discharge
rate.
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Owing to the degree of challenge and despite the increasing research in particle technologies for
pharmaceutical applications, a general model to predict such powder flow behavior is still missing
and the development of first-principles models to obtain mechanistic insights is limited. This is
often attributed to the exhibition of both solid and liquid-like behavior of the bulk solids. Com-
monly used models are based on empirical approximations for cohesionless coarse particles that
are not influenced by aerodynamic drag (e.g, Beverloo, Rose and Tanaka) Gu (1991), multivariate
predictions that require collection of a large amount of experimental data to generate a model, and
more recently, computational models that use fundamental first principles to capture the under-
lying physical phenomena and predict the overall bulk behaviour, such as finite element method
(FEM), computational fluid dynamics (CFD), and Discrete Element Method (DEM). There is a
growing interest within the pharmaceutical industry to develop predictive models for fine powder
discharge to avoid non-uniform flows and discharge rate variations, which can further affect down-
stream operations. While DEM has been extensively used to predict powder discharge, it remains
underutilized in the pharmaceutical industry due to the required computational time to simulate
particle dynamics in the micron size range, stringent process constraints, the wide variability of
powder and bulk properties, and the failure to capture the interstitial air effect on fine particles.
This last aspect is mostly resolved by the computationally intensive DEM-CFD coupling approach
(Hesse et al., 2020). In this study, a leaner approach is proposed by using scaled-up particles and
introducing a relation that can be directly applied to the DEM results to obtain an accurate pre-
diction of discharge rates in silos when handling fine particles. Therefore, a preliminary basis
for the application of DEM models to study discharge dynamics in a silo is provided for a free-
flowing powder (SuperTab® 11SD spray-dried lactose monohydrate) and determine to what extent
the model can predict the discharge behavior of fine particles.

2. Methodology and implementation

The DEM methodology is exemplified by an application case of discharge dynamics in a labora-
tory silo for a free-flowing powder (SuperTab 11SD ®). The implementation stages included bulk
calibration of DEM input parameters for the scaled particles. Subsequently, a qualitative compari-
son of powder flow patterns in two different silos (flat bottom and converging wall), determination
of flow uniformity, and quantitative comparison between the residence time of the particles located
in the upper layer of the powder bed. Then, a verification of the model results was performed by
comparing the experimental and numerical discharge rate values of a cylindrical laboratory-scale
silo for a set of aperture sizes was performed. Lastly, a relation was implemented to include the
effect of interstitial air and rectify the mismatch between the discharge rate prediction by DEM
and experimental values.

2.1. Numerical method

This contribution focuses on one of the most commonly used mechanistic models for granular
flow, DEM. In this numerical method, the macroscopic material behavior is predicted based on
the mechanical dynamics of discrete particles. Each particle is treated as a discrete element with
a specific position and velocity which is estimated for each time step based on the tangential and
normal contact forces exerted on the particles and Newton’s second law. This process is repeated
iteratively to track the dynamic motion of particles at any time. The rotational and translational
motion are calculated based on the following Eq. 1 and Eq. 2 respectively. Where I, ω ,Mp, t,
υ , m,Fg, Fc, Fnc, and Ff respectively correspond to moment of inertia, angular velocity, contact
torque, time, translational velocity, mass of the particle, gravitational force, contact forces (e.g,
elastic, plastic), non contact forces (e.g., Van der Waals, electrostatic) and particle–fluid interaction
forces (e.g, pressure gradient, drag).

I dω

dt = Mp (1) m dυ

dt = Fg +Fc +Fnc +Ff (2)
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This approach has been implemented in various pharmaceutical manufacturing processes such
as blending, coating, and tableting, and it has proven to be an effective tool to improve the un-
derstanding of the underlying interaction of material properties, process settings, and equipment
design Yeom et al. (2019). Despite its benefits, DEM application in the pharmaceutical industry
is still limited as it can be significantly computationally intensive to simulate particle dynamics in
the micron size range.

2.1.1. Contact model

The commonly used soft-sphere discrete simulation approach is considered in this study. In this
method, discrete particles are allowed to overlap to represent the deformation that occurs dur-
ing collisions. The contact models use the amount of overlap between particles to calculate the
magnitude of forces acting on normal and tangential directions. In pharmaceutical application,
the selection of a contact model that considers the elastic and plastic properties for non-cohesive
and cohesive materials is highly relevant to adequately represent the interaction phenomena and
overall bulk behavior. In this study, the commonly used Hertz-Mindlin contact model with JKR
(HM + JKR) is implemented. This is a non-linear elastic model that takes into account cohesion,
allowing the representation of materials as dry powders. This model has been applied in several
pharmaceutical manufacturing applications such as blending and granulation Yeom et al. (2019).A
detailed description of the model and governing equations can be found in Johnson et al. (1971).

2.2. Model parameter determination

The model parameters used in this study are subdivided into two types, intrinsic parameters and
contact parameters. The intrinsic parameters that depend on the material properties such as density,
shear modulus and Poisson’s ratio are fixed from literature values. The contact parameters, such as
surface energy and the coefficients of static and rolling friction, are not established directly from
experimental or literature values but are calibrated with virtual experiments.

Therefore, the calibration procedure is thus performed to gain confidence in the modeling results,
by linking the material properties to the actual bulk behavior. The calibration methodology used in
this study consists of the comparison between experimental tests carried out with the real material
and the virtually replicated test. The DEM input parameters are adjusted to match the experimental
bulk response with the prediction from the experiments.

The calibration test is selected to replicate the stress state and flow regimes expected of the real ap-
plication case. Therefore, as low stresses and quasi-static regime flow are expected in the selected
silo, the most suitable calibration test is considered to be the ring shear cell. The calibrated fac-
tors include rolling friction (particle-particle, particle boundary), static friction (particle-particle,
particle boundary), and JKR surface energy, and results between the experimental bulk response
and the virtual experiment prediction are compared in terms of apparent cohesion, yield locus
slope, and pre-shear point. Detailed information regarding the set of experiments and its results is
considered out of the scope for this study.

The DEM input parameters, including the calibrated values for SuperTab® 11SD, are shown in
Table. 1. Since the selected set of parameters achieves a satisfactory representation of the behavior
of the powder in the ring shear cell, these are later used in the silo discharge model.

2.3. Silo model setup

The discrete element method (DEM) is applied to model silo discharge flow of a free-flowing pow-
der (SuperTab® 11SD spray-dried lactose monohydrate), using the software package EDEM®,
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Table 1: DEM input parameters
Parameter Value

Particle density [kg/m3] 1530
Particle coefficient of restitution 0.5

Shear modulus [Pa] 5x106

Poisson’s ratio 0.25
Static friction particle-particle 0.6

Rolling friction particle-particle 0.1

considering gravity as an external force and Hertz-Mindlin with JKR as contact model. The com-
putational domain consists of a quasi-three dimensional silo with parallel periodic boundary con-
ditions. Particles are represented by scaled monodisperse bi-spheres. The general computational
procedure for each run consist of three steps. First, based on the set of calibrated parameters par-
ticles are created, inserted into the closed silo, and allowed to settle under gravity into a static
state. Second, the silo outlet is open and particles are allowed to discharge by gravity. Lastly, the
simulation continued until all the particles exit the silo. The developed DEM silo model is used
to qualitatively compare the changes in flow profile development (e.g., mass flow, funnel flow)
depending on the silo geometry (e.g., flat bottom, converging walls) for a specific material.

In addition to the visualization of the flow patterns, the mass flow index (MFI) and the residence
time distribution (RTD) are estimated using Eq. 3 and Eq. 4.The MFI is applied to more accurately
classify the developed flow profile between mass flow and funnel flow, where MFI values lower
than 0.3 correspond to funnel flow. The MFI estimation relates the particle average velocities near
the wall (υwall) and at the center of the silo (υcenterline), providing an estimation of flow uniformity
within the hopper Ketterhagen et al. (2009). The RTD was used to analyze the flow behavior in an
arbitrary spatial region in the silo, where F(t) represents the fraction of particles that leave the silo
that have spent a time t or less. In this study, the particles located in the top layer of the powder
bed are tracked to verify the flow sequence.

υwall
υcenterline

= MFI (3)
∫ t

0 E(t)dt = F(t) (4)

2.4. Model verification

As previously mentioned, during silo discharge of fine powder the air effect is highly relevant as
it can be an impediment to the gravitational powder flow and consequently reduce the discharge
rates. Since in the proposed DEM model no CFD coupling was involved, an overprediction of the
discharge rates could be expected. Therefore, to verify the suitability of the DEM model for the
prediction of discharge rates, an instrument to measure the flow rate of powders passing through
apertures of various diameters (24mm, 28 mm, and 32mm) is used and the discharge rate values
from the DEM model and the experiments for SuperTab® 11SD are compared.

The computational domain consists of a laboratory-scale cylindrical silo where the calibrated par-
ticles are allowed to be discharged by gravity. Throughout the discharge process, the mass flow
rate is monitored to verify the changes over time and the average value is estimated. The ver-
ification model allows a quantitative comparison between the discharge rates obtained with the
DEM model and the experimental values for different aperture sizes. Based on this comparison,
the need to include a relation that account for air impediments in the system is highlighted. The
relation proposed by Wikström et al. (2021) is implemented in Eq. 5, where g, ε , Dp, D, µA, and
M respectively correspond to gravity constant, voidage, particle diameter, outlet diameter, air vis-
cosity, and mass flow rate. The equation considers a balance between the gravitational effect and
the aerodynamic resistance, neglecting the inertial effects of fine particles.
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πgε2ρ2DpD2

720µA
= M (5)

3. Results and discussion

Based on the selected set of calibrated parameters, shown in Table. 1 and the simplified silo ge-
ometry the silo application case is implemented. The results in terms of developed flow profiles in
time, flow uniformity (MFI), and residence time distribution for particles located in the top layer
of the powder bed are shown in Fig. 1.

The results shown in Fig. 1 indicate that the flow profile developed depends on the silo geometry.
This finding is in agreement with the observations of Ketterhagen et al. (2009) for granular flow
and Jenike’s design methodology studies (Mehos, 2018). Jenike’s required silo angle to prevent
funnel flow is 30◦, which matches the predicted flow pattern for the converging wall silo (angle
35◦) . In general, as the flow progresses in time the flat bottom silo develops a central channel with
the formation of stagnant areas, while in the case of the silo with converging walls a uniform mass
flow develops. These results are corroborated by the values of mass flow index, which indicate a
uniform flow for the silo with converging walls, with a MFI higher than 0.3. The results regarding
RTD also corroborate our earlier observations regarding the flow profile development in the silos.
The RTD values showed that particles located in the top layer of the powder bed have smaller
residence values for the flat bottom silo compared to the silo with converging walls, with mean
residence time values of 0.08 s and 0.17 s respectively. These findings further support the idea that
funnel flow results in a first-in-last-out flow sequence, often leading to particle segregation. More-
over, this indicates potential challenge in setting-up material traceability in silos with flat bottom
and their application in continuous pharmaceutical manufacturing where material traceability is a
regulatory requirement (ICH Expert Working Group, 2018).

Figure 1: (A) Flow profile evolution snapshots and (B) residence time distribution of gray-colored
particles, for two silo geometries

Next, experimental and numerical mass flow rates were compared for validation model as shown
in Fig. 2. It is observed that the DEM model gives an overestimation of the discharge rate values
for all aperture sizes considered. This result can be explained by the fact that the DEM model
developed does not consider the critical air impediment effect during the fine particles discharge
process. This finding, while preliminary, suggests that a relation needs to be considered to account
and correct for air interaction in DEM discharge rate predictions for fine particles. The study
by Wikström et al. (2021) showed that for fine particles, a model that considers the effect of the
aerodynamic resistance and gravitational forces, neglecting the inertial effects, can adequately
predict the discharge rate of commonly used excipients in intermediate size silos (20 L IBC).
Since the assumptions in terms of the importance of forces such as drag in the discharge rate
calculation are still considered valid for the current case study, the relationship implemented by
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Wikström et al. (2021) is used to correct the predicted DEM discharge rates for a laboratory-
scale silo. The relation proved to adequately correct the DEM results for different aperture sizes,
with an average relative error of 10% with respect to the experimental values. However, the
general applicability of this model for different powders and silo shapes remains to be verified.
Furthermore, the assumptions in terms of the selected particle representation (size, shape) need to
be further reviewed.

Figure 2: Comparison of numerical and experimental mass flow rate values depending on orifice
size

4. Conclusions and outlook
A predictive model for powder discharge in a silo has been developed. The implemented model
served as a preliminary basis in identifying the DEM’s capabilities to predict flow profiles and
discharge rate of fine powders. In addition, it highlighted the influence of the interaction between
air and particles when discharging fine particles.

The first part of this study allowed a qualitative comparison of the flow profiles developed in
two silo geometries. The results in terms of flow patterns, flow uniformity, and residence times
indicated an association between silo geometry and flow profile, matching the findings of earlier
studies Mehos (2018). The second part of the study showed a comparison of discharge rates for
different silo apertures. The results indicated an overprediction of the DEM model in all cases,
these findings may be explained by the effect of air impediment. Additionally, a relation was
applied to the DEM results to accurately predict discharge rates.

The DEM model developed included assumptions in terms of the selected particle representa-
tion (size, shape, size distribution) that need to be further revised for the selected application.
Moreover, additional verification is ongoing to include discharge rate comparisons for smaller silo
openings.
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Abstract 

Today, the design of biorefineries is following the traditional chemical process design, 

thereby reflecting that biorefining-specific models are not established. This issue is one 

of the predominant reasons why most biorefinery concepts still remain limited in their 

commercial as well as sustainable capabilities. This situation most likely originated from 

the very heterogeneous, multi-scale as well as multi-disciplinary nature of 

biorefineries - a circumstance that often turns model design into an expensive and 

elaborate task. However, models are essential for understanding integrated biorefining 

and how feedstock and operating conditions affect performance. Correspondingly, the 

absence of reliable predictive models causes uncertainties, which put investors off and 

generate significant development bottlenecks in design, optimisation and control. 

The aim of this contribution is to outline the current state of biorefinery modelling, derive 

the presumed root causes, and expose the preferred characteristics of the models required 

for condign biorefinery research. 

 

Keywords: modelling, simulation, process control, optimisation, process design. 

1. Motivation 

The social support for a more sustainable process industry has never been this high yet, 

although the considered processes are leaping behind considerably. Most biorefinery 

concepts are still in the experimental design phase, thus remaining limited and far off the 

expected industrial standard in their commercial and sustainable capabilities. This is 

partly governed by the lack of proper design methods for plants and supply networks, as 

reported by Bauer et al. (2017), Dragone et al. (2020), Temmes & Peck (2020), and 

Ubando et al. (2020). Their further development and commercial implementation are 

hampered by high investment costs and risks, and little trust in its novel technologies, 

expected yields, and operating reliability.  

Although many biorefinery concepts are technically feasible and can have positive 

environmental impacts, the costs and sustainability are determined by the effectiveness 

of each process step and the utilisation of the different platform products 

(Corona et al., 2018). Therefore, a successful design requires intensive research and 

development activities, and one requires rigorous models to achieve a high-quality, 

reliable, and optimal design (Tey et al., 2021). Experimental studies may be the 

conventional alternative but they are expensive, time-consuming and often not viable in 

all operational areas or even reliable for the exploration and testing of differing process 

scales. Numerical simulations are done in computers and as such not limited by physical 

constraints. They thus allow for the exploration of physical regions that are commonly 
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not accessible by experimental work. The fast development of computing in recent 

decades rapidly increased the capabilities of process simulation, thereby enabling the 

simulation of more and more complex models. However, as we will discuss in this study, 

large parts of biorefinery research and development do not seem to follow this trend, 

thereby failing to provide robust models. 

Without rigorous holistic models, parameter estimates and process designs are 

speculative, and reliable identification of the dynamics is improbable. Correspondingly, 

Alzate et al. (2018) and Solarte-Toro et al. (2021) conclude that the absence of reliable 

predictive models causes uncertainties, which put investors off and generate significant 

development bottlenecks in design, optimisation, control, and implementation. 

Therefore, we reason that the hampered implementation of biorefinery processes is the 

result of a lacklustre state of modelling in this domain. To discuss this hypothesis within 

the scope of this short contribution, we shall first outline the present state of biorefinery 

modelling. Next, we uncover the primary challenges in biorefinery design, which will 

indicate the presumed root causes for the lack of modelling. To conclude, we expose the 

preferred characteristics of mechanistic models required for biorefinery concepts and 

their potential benefits for research, development and process integration.  

2. Outlining the current state of biorefinery modelling

Scopus® (Elsevier B.V., 2021) shows that less than 17 % of biorefinery-related 

publications in the last 20 years dealt with topics of modelling, while the overall share in 

chemical engineering publications is almost 24 %. This lack of modelling activities in the 

biorefinery community is significant and raises concerns. It implies that today 

biorefineries are designed on the backbone of industrial chemistry and not based on 

process systems engineering concepts. 

Although several biorefinery-specific conversion processes have been studied, the 

understanding of the dynamic nature of most of these reactions remains incomplete and 

limited. The lack of comprehensive mechanistic knowledge combines with a lack of 

experimental data: Since bioconversion platform processes are in most cases still 

confined to pilot-scale set-ups, De Buck et al. (2020) found that many related models are 

highly assumption-based, and often rely on ideal kinetics. These models are only valid 

for the narrow processing conditions and feedstocks for which they were created and 

extrapolation does not produce reliable results. 

Most of the published biorefinery designs follow a top-down approach, only 

demonstrating kinetic process models for one particular process part at a time 

(De Buck et al., 2020). Detailed and replicable process designs, especially ones designed 

for flexible operational conditions, are few, as observed by Chaturvedi et al. (2020). 

Without reliable modelling, assessment studies remain speculative. Although various 

decision support systems have been developed, strategic, tactical and operational decision 

tasks are not considered together in most of these studies, even though studies like 

Geraili et al. (2014) attest significant interdependence between them. 

Aristizábal-Marulanda et al. (2020) conclude that, until now, knowledge on the best 

configurations remains limited, and only few studies have looked at the environmental 

sustainability and socio-economic impacts of specific biorefinery routes. To the best of 

our knowledge, none has focused on finding the most-sustainable biorefinery cascade. 

Most life-cycle assessment (LCA) studies on biorefineries compare feedstocks between 

each other and to fossil references. Some compare the impacts of different processing 

routes, however, Julio et al. (2017) found these evaluations to concern already designed 

processes, thereby considering only unique operations in the assessments. Since even 
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small changes in operating parameters can notably modify environmental impacts, the 

reliability of those studies is questionable. 

Problems are best solved by attempting to correct or eliminate the root causes instead of 

merely addressing the immediately obvious symptoms of the current state. Therefore, we 

will discuss in the following section the presumed root causes for the lacklustre 

development of biorefinery modelling before we will list the characteristics of the models 

required for overcoming the present period of stagnation in the field.  

3. The challenges facing biorefinery modelling 

Modelling chemical and biological processes is intrinsically a multi-scale and multi-

disciplinary problem that requires expert knowledge from different scientific domains. 

This diversity is even more obvious in biorefinery concepts, which predominantly process 

aqueous solutions of manifold substances. Since many of the processed chemical 

compounds have not notably been encountered in traditional chemistry, their 

thermodynamic data and reaction kinetics are widely missing today (Corazza & Trancoso, 

2021). Furthermore, the widespread utilisation of solids in biorefining increases the need 

for robust particle and surface reaction simulations, which has not been accomplished 

satisfactorily so far due to the computational complexity inherent. These circumstances 

often turn model design into a time-consuming and elaborate task. 

With models being at the top end of the overall assessment process, the correctness and 

completeness of the model equations are of the highest priority in modelling. Since the 

processes we observe are intrinsically an ensemble of various sub-processes on different 

time and spatial scales, the model design has to incorporate this behaviour consistently, 

including linking multiple scales for accuracy and integrity. Multi-scale models pose 

notoriously difficult theoretical and computational problems, but the knowledge and 

abilities in mathematics, physics, biology, chemistry, process control, and engineering 

are proliferating. In biorefinery processes, the multi-scale issue is amplified by these 

systems being critically dependent on interactions often coupled through multiple spatial 

and temporal domains without clear, discrete differences between scales. Consistent and 

reliable mathematical relations of the behaviour and interactions of the various scales are 

required to obtain robust and predictive models. Modern biorefinery concepts have to 

utilise a vast amount of scientific disciplines for reliable design and optimisation 

(Punnathanam & Shastri, 2020), effective process control implementations (Petre et al., 

2020), and accurate assessment (Julio et al., 2017) to get the most out of any feedstock in 

competitive pricing ranges. One modeller cannot be an expert in all of the topics 

encompassed, and, more often than not, communication between experts of different 

scientific fields appears to be cumbersome. 

Biorefinery processes’ modelling, assessment, and control is challenging due to the 

complexity and non-linearity, uncertain kinetics, different scales of process and logistics, 

the heterogeneous and seasonally fluctuant solid biomass feedstocks, and high 

uncertainty in bioprocess kinetics (Ifrim et al. (2015); Nguyen et al. (2015)). Latter 

implies that understanding and modelling those processes requires taking several dynamic 

factors into account. However, dynamic models are often restricted to one dimension as 

otherwise, the computational cost would be tremendous. Nevertheless, they are critical 

for optimising start-up and shut-down procedures, HAZOP studies, and investigating the 

plant transient operation under high load change rates. Additionally, plant control 

systems, have to be trained on dynamic models. The cost or even lack of adequate sensors 

further hampers the design of reliable control structures (Petre et al., 2020). 
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Conversion models require fairly detailed feedstock composition, while supply network 

models are often limited to only predicting the expected amounts of the available 

feedstock during a specific time period. Additionally, conversion and logistics models are 

usually built on significantly different time scales (Baldea & Harjunkoski, 2014). Since 

many conversion processes in biorefinery concepts, like fermentation, are batch 

processes, it is very important to define the optimum conditions for both, logistics and 

operation, to achieve feasibility. Due to this and the small profit margins to be expected, 

the assessment of biorefineries must be accurate, utilise all biomass fractions, and 

encompass economic, environmental and social aspects as well as the erratic supply and 

pricing of feedstocks. The sustainability and economic feasibility of the required 

feedstock’s supply to the plant is crucial when designing and operating a biorefinery 

(De Buck et al., 2020). The time perspective in these assessments is particularly relevant 

for biorefineries due to the feedstock's highly seasonal cultivation characteristics.  

4. A wish list for biorefinery modelling 

To address the myriad of challenges to biorefinery modelling, adequate efforts have to 

encompass a multitude of characteristics that can probably only be achieved by extensive 

interdisciplinary liaisons. In the following, some of these characteristics will be discussed. 

Most of the flowsheeting packages commercially available are probably not suitable for 

the complex needs in biorefinery modelling and not flexible enough for custom-

modelling efforts. Since these packages have been developed for and traditionally been 

used by the petrochemical industries, their libraries lack unit operations as well as many 

chemical properties specific for biomass processing. Furthermore, most of these packages 

are designed to solve steady-state mass and energy balances on a plant-wide scale only. 

Quite obviously, this is rather not sufficient for the design of the dynamic, multi-scale 

models required for biorefineries. Fortunately, many of those issues have been addressed 

in non-commercial modelling suites like, for example, ModKit (Bogusch et al., 2001) and 

ProMo (Preisig, 2021). 

Since strategic, tactical and operational decision tasks have to be considered together in 

the design and operation of biorefineries, jack-of-all-trades modelling efforts are a 

necessity, targeting not only commercial feasibility and operational safety but also social 

and environmental sustainability (Sikdar, 2003). This high degree of interconnectivity is 

further reflected by the study of Corona et al. (2018), in which maximising product yields 

proved to be the most important environmental optimisation parameter for green 

biorefineries, even more important than reducing energy consumption. The secret to 

sustainability hides, after all, in the optimisation of processes. Hence, LCA studies cannot 

rely on black-box models but must be coupled to detailed process simulation. Suggested 

by Julio et al. (2017), those simulations should be built on multi-objective optimisation 

algorithms that establish iterative corrections between operational condition changes and 

the effects on life-cycle aspects. 

Although empirical models can offer some understanding of the processes, in-depth 

process understanding and predictive modelling are the only reliable perquisites for 

decision-making tools and to achieve a cost-effective design of biorefineries. This 

emphasizes the importance of multi-scale modelling approaches from the plant scale 

down to the molecular level. Holistic models require a more in-depth understanding of 

the processes, however, once developed, these models can be used for a wide range of 

processing conditions. Consequently, they enable efficient process optimisation and 

reliable up-scaling studies. 
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True process parameter estimates are crucial for the development of robust models. 

Therefore, non-linear process dynamics that are inherent in complex bioprocesses cannot 

be circumvented when modelling the plant. While steady-state models can provide 

accurate results regarding the plant operation on specific loads and are very useful in 

investigating the sustainable minimum load limit, only dynamic models are reliable 

sources to evaluate the plant performance, optimizing its operation, and improve its 

efficiency under the flexible operations inherent to most biorefinery concepts. 

A time scale is particularly relevant for biorefineries due to erratic feedstocks and the 

interdependence of processing and logistics. The feedstock fluctuations must be taken 

into account in the models, whilst also considering the multitude of possible feedstocks. 

Early considerations of fluctuant as well as substitutable feedstocks can eventually speed 

up the design and implementation of economically viable biorefineries. 

In conversion processes, kinetic modelling constitutes a critical step. Like any chemical 

plant, a biorefinery consists of multiple, interconnected equipment units. Thus, any unit’s 

performance is strongly affected by the operation of the others. This underlines the need 

for the implementation of proper plant-wide control concepts in such complex plants as 

biorefineries to ensure optimal productivity with the desired specifications. Furthermore, 

operational issues caused by a lack in adequate instrumentation can often be circumvented 

by utilising robust predicting models that estimate unavailable process variables. 

The complex exigencies on biorefinery models place a high demand on the modellers. 

This induces an increasing interest in more effective model generation processes that 

incorporate the various expert’s knowledge, which can additionally open up new 

prospects for many projects and may have the effect of building bridges between different 

disciplines and people (Preisig et al., 2019).  

5. Conclusion 

When aiming for condign biorefinery research and development efforts, modelling is not 

only an option but a necessity. However, the abundance of obstacles to biorefinery 

modelling led to a research community struggling to implement robust, holistic 

approaches but relying on empirical models if at all. The pulp and paper domain 

demonstrated the issue before: Although the significance of models in this field were 

identified early (Pilati & Rosen, 1978), a lack of model utilisation and a thereby caused 

stagnation have been reported even decades later by studies like Blanco et al. (2009). 

Similarly, if the biorefinery community’s current state is not abandoned but prolonged 

into the next scientific generations, biorefinery research will be hampered for decades to 

come, thus failing to comply with the urgency of attaining sustainable industries. 
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Abstract 

The reduction of CO2 emissions is a key aspect to the world energy transition. Fischer- 

Tropsch (FT) technologies can contribute to lower our CO2 emissions to the environment 

by transforming captured CO2 into a wide array of hydrocarbon chains. Under optimized 

conditions, the reaction yields a high concentration of long carbon chains; which in turn, 

can be further upgraded into jet fuel. Thus, difficult to electrify sectors of the economy 

such as the aviation sector could have a defossilized supply of fuel; provided that the 

feedstock required for the reaction originates from low-carbon energy. In this context, the 

objective of the present research is to design, install, operate and optimize a FT reactor to 

serve as core of a future Power-to-Jet Fuel pilot-scale implementation at the University 

of Liège (ULiège). The first step was to select from the literature the stoichiometry and 

the kinetics that accurately depict the FT reaction. In this study, the kinetics reported by 

Iglesia et al. (1993) and the stoichiometry proposed by Hillestad et al. (2014) were 

selected and implemented in a simulation model developed using Aspen Custom Modeler 

(ACM). This model was then validated by simulating a computational FT implementation 

reported in the literature by Tomte (2013). Once validated, the parameters are used to 

simulate a FT pilot reactor having an inlet of 62 mol H2/h and 29.5 mol CO/h, in 

compliance to the electrolysis capacity available at the ULiège. The results portray a 

production of 0.3 mol/h C12-20 chains that could be further upgraded to jet fuel and a 

conversion of almost 50% of CO towards the FT reaction. In future work, the ACM model 

of the FT reactor will serve as input for a more complex process model of the Power-to-

Jet Fuel production chain, further improving conversion efficiency. 

 

Keywords: Fischer-Tropsch, Jet Fuel, Aspen Custom Modeler, Simulation. 

1. Introduction 

The European Commission aims to lower CO2 emissions by 55 % compared to 1990 by 

2030. In 2016, the aviation sector accounted for 3.6% of overall emissions and 13.4% of 

transport emissions in the EU (EASA et al., 2019). The sector also has the lowest share 

of renewables, with only 6% (European Commission, 2020). Thus, innovative 

alternatives such as using green hydrogen as fuel or producing jet fuel in sustainable ways 

are considered to defossilize this means of transportation. Sustainable jet fuel could 

become an adequate substitute of its traditional counterpart by providing at least 70% life-

cycle carbon reductions (Sustainable Aviation, 2019).  

The present study is carried out in the framework of further improving the Power-to-Jet 

Fuel value chain. By utilising hydrogen and carbon monoxide as feedstock, a FT reactor 

synthesizes jet fuel as liquid energy vector. This chemical pathway is rendered more 

sustainable when the hydrogen is produced from renewable energy sources via water 
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electrolysis; and the carbon monoxide is obtained from the Reverse Water Gas Shift 

(RWGS) of said hydrogen and captured carbon dioxide.  

Although the production of sustainable FT fuels has already been studied (e.g. Loewert 

et al., 2019; U. Pandey et al., 2021), most of these studies do not focus on the 

maximization of jet fuel production. Moreover, previous studies mostly focus on reaction 

modelling, and less work has been carried out regarding process study. To do so, the 

present work uses ACM. First, it allows to make use of the vast properties database that 

Aspentech provides and second, it allows a detailed modelling of the reactor with 

complex kinetics associated to different catalysts and reactor configurations. In further 

work, the reactor model will then be included into a complete process model developed 

in Aspen Plus. Thus, it will be easier to understand the challenging interactions between 

the synthesis section and other process steps (RWGS, product upgrade, recycling loop…).  

In this paper, the main properties of the reaction and modelling assumptions are first 

portrayed. Then, the simulation is validated by comparison with a model developed by 

Tomte at the Norwegian University of Science and Technology (NTNU). Finally, the FT 

reactor model is scaled down in compliance to the electrolysis capacity available at the 

ULiège, corresponding to a pilot-scale reactor. 

2. Model description 

The FT reaction results in a wide array of hydrocarbon products. Jet fuel, the main focus 

product of this present study, has a desirable composition of 75-85 vol% consisting of 

paraffins, iso-paraffins and cycloparaffins and the remaining 15-25% of olefins and 

aromatics. Jet fuel also encompasses hydrocarbon chains of 12 to 20 carbon atoms 

(Doliente et al.,2020). There are many technological configurations that enable the FT 

reaction but to maximize the production of C12-20 chains the use of low temperatures (200-

230°C) as well as cobalt as catalyst is preferred (Dieterich et al., 2020).  

 

The developed reactor model uses kinetics from Iglesia et al. (1993) further adapted by 

Panahi et al. (2012); and the stoichiometry proposed by Hillestad et al. (2014) based on 

the Anderson-Schulz-Flory (ASF) distribution. The ASF model proposes a statistical 

distribution of FT products based on the chain growth probability (α). The Hillestad 

stoichiometry makes some simplifications. It only considers the methanation reaction in 

parallel to the FT reaction and the production of linear paraffins by the FT reaction (Table 

1). Likewise, it models all products with carbon atom number below 21 as individual 

units. On the other hand, components with carbon atom number from 21-30 were put 

together in a component designated C21+. The lumped component C21+ is modelled as 

C30H62 due to similar properties. 

  

For low-temperature cobalt FT, a constant 𝛼 value of 0.9 is assumed, as done by Hillestad. 

Based on Eq. 1, this leads to a H2/CO ratio (Z) of 2.1. By using Eq. 2 and Eq. 3, the ASF 

coefficients for every single potential hydrocarbon that can be produced via FT are 

estimated. These coefficients are then used in Eq. 4 to provide the full stoichiometry of 

the FT reaction. Additionally, Eq. 5 provides the stoichiometry for the methanation 

reaction.  

 

 𝑍 =
𝐻2

𝐶𝑂
= 3 − 𝛼                                                        (1)     
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𝐴𝑆𝐹 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑖 = (1 − 𝛼)2 ∗ 𝛼𝑖−1    for 𝐶𝑖 , 𝑖 = 1, 2, 3 …  20                     (2)   
 

 𝐴𝑆𝐹 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡21+ = (1 − 𝛼) ∗ 𝛼20 for 𝐶21→30                                            (3)    
              

Table 1. Reactions in parallel in the FT reactor. 

FT reaction: 

 𝐶𝑂 + 𝑍 𝐻2 →  ∑(𝐴𝑆𝐹 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡)𝑖𝐶𝑖𝐻2𝑖+2

20

𝑖=1

+ (𝐴𝑆𝐹 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡)21+𝐶30𝐻62 + 𝐻2𝑂       (4)   
 

Methanation 

reaction: 

 𝐶𝑂 + 3 𝐻2 →  𝐶𝐻4 + 𝐻2𝑂                                    (5)     

 

The Iglesia kinetics modified by Panahi, portrayed by Eq. 6 and Eq. 7, provide reaction 

rates in kmol/m3*s for the methanation (𝑟𝐶𝐻4
) and FT (𝑟𝐹𝑇) reactions respectively. With 

𝑘𝑖 being kinetic constants reported by Panahi and 𝑃𝐻2
& 𝑃𝐶𝑂  being the partial pressure for 

hydrogen and carbon monoxide. The kinetics are valid for a range of temperature between 

200 and 210 °C, 100 to 3000 kPa and a Z = H2/CO = 1 to 10. 

 

𝑟𝐶𝐻4
=

𝑘1𝑃𝐻2
𝑃𝐶𝑂

0.05

1 + 𝑘3𝑃𝐶𝑂

                                                    (6)     

 

     𝑟𝐹𝑇 =
𝑘2𝑃𝐻2

0.6𝑃𝐶𝑂
0.05

1 + 𝑘3𝑃𝐶𝑂

                                                     (7)     

For all models the reactor length is discretized in 5 sections and mass and heat balances 

are evaluated for each one of them. 

3. Validation model 

The Tomte study performed at NTNU (Tomte, 2013) is taken as main reference for the 

validation of the simulation. It simulated a Gas-to-Liquid (GTL) plant capable of 

achieving a similar production capacity to that of the Bintulu GTL plant, 14700 bbl/day. 

In the present study, only the FT reactor of the plant will be analyzed and simulated. 

Similar inlet conditions as in the reference model were chosen (Table 2). The Tomte study 

does not report the molar fractions of each of the components at the inlet flow of the 

reactor but the molar flow of groups of hydrocarbon chains (C1 – 2, C3 – 4, C5 – 11, C12 – 20, 

C30); thus, an estimate was calculated for each one of them. It is important to highlight 

that there is presence of products in the inlet flow of the reactor as a recycle is used to 

further improve the conversion of the reactor. 

 

Due to the highly exothermic nature of the FT reaction and to keep the reaction as close 

to isothermal as possible, the Tomte study used pressurized liquid water at 220°C to 

exchange heat with the reactor. A very large but not specified molar flow was used to 

keep the cooling water at a constant temperature. As no additional information is 
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provided, for the present study an overall heat value coefficient of 400 W/m2*K was 

chosen for the heat balance of the system (M. Boda et al., 2017). 

 

The Tomte study implemented a 1000 m³ multitubular fixed bed reactor but does not 

provide additional information; thus, the dimensions of the reactor had to be estimated as 

well. A patent for a gas phase reaction multitubular fixed bed reactor (G. Olbert et al., 

2007) states that these reactors have in between 10000 to 30000 catalytic tubes. These 

tubes have an internal diameter between 20 mm and 35 mm and a length of 1.5 to 7 m. 

By following these design parameters and keeping the same reaction volume as the Tomte 

study, a train of 16 reactors in parallel with 28500 catalytic tubes each is chosen. The 

catalytic tubes have an internal diameter of 20 mm and a length of 7 m each. Due to the 

low pressure drop reported by Tomte, these reactors are assumed isobaric. The chosen 

configuration achieves a similar outlet temperature and molar product flows from the 

reactor as the Tomte study (Table 2). It is worth highlighting that a similar configuration 

is used in the Pearl GTL plant in Qatar. This plant has 24 reactors, each containing 29000 

catalytic tubes, and achieves a production of 140000 bbl/day (Shell, n.d). 

 

Table 2. Inlet and outlet conditions of the validation model and comparison with the Tomte study.  

Variable Units Inlet  

stream  

Outlet,  

 this work   

Outlet,  

Tomte (2013)  

Relative 

difference 

(%) 

Total molar  

flow  

kmol/h 46563.2 34895.6 34228.03 1.95 

Molar flow  

CO 

12183.5 6349.68 6015.95 5.55 

Molar flow 

H2 

25595.8 13073.9 12354.56 5.82 

Molar flow 

C1 – 2 

3472.67 3882.25 3908.84 0.68 

Molar flow 

C3 – 4 

132.19 215.18 223.78 3.84 

Molar flow 

C5 – 11 

195.56 383.68 385.27 0.41 

Molar flow 

C12 – 20 

0 110.65 112.55 1.69 

Molar flow 

C30 

0 66.39 71.07 6.59 

Molar flow 

H2O 

4988.41 10822 11156.01 2.99 

Temperature °C 210 221.4 221.8 0.18 

Pressure Bar 20 20 19.4 3.09 

 

Due to the close proximity of the results (less than 7% deviation for partial flowrates), it 

was possible to confirm that the simulation was validated. The slight differences between 

the results could be attributed to the fact that the Tomte study does not report the exact 

compositions of each of the components at the inlet flow of the reactor, as previously 
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stated. It can also be attributed to neglecting pressure drops in the reactors. Likewise, the 

temperature profile of the Tomte reactor is not presented in the study. 

4. Case study - ULiège model 

Once the FT kinetics and stoichiometry have been validated in the previous section, the 

model is scaled down to integrate the operating conditions of a pilot-scale project at 

ULiège. The feed of the ULiège model is composed only of hydrogen and carbon 

monoxide; although, it is planned that future work will explore the influence of a recycle 

into the reactor. The hydrogen feed is based on the total hydrogen production capacity of 

the 3 electrolysers at ULiège, 62 mol H2/h. Based on the Z ratio used so far, a molar flow 

of 29.5 mol CO/h is required. As previously mentioned, the Iglesia kinetics work better 

in a range of 200 - 210 °C; therefore, a fixed bed reactor with a cooling jacket having a 

high inlet flow of water at 210°C is chosen (instead of 220°C as implemented in the 

validation model). The same overall heat coefficient, inlet temperature and inlet pressure 

are used as in the validation model. No pressure drops are considered in this model either. 

 

A reactor volume of 2.5 L (having an internal diameter of 0.05 m and a length of 1.275 

m) is chosen. This volume yields a 49.01% conversion of the inlet CO through the FT 

reaction and 2.57% through methanation. The rest remains unreacted, 13.95 mol/h. These 

conversion values are similar to the ones reported by Tomte and the validation model. 

Figure 1 displays the production of FT products inside the reactor. A molar flow of 0.3 

mol/h of C12-20 chains that could be further upgraded to jet fuel is achieved.  Figure 2 

displays the temperature profile, the temperature is kept close to 210°C as intended. 

 

Figure 1. Molar flow of FT products of the ULiège model. 

 

Figure 2. Temperature profile of the ULiège model. 
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5. Conclusions 

The kinetic model of Iglesia (Iglesia et al.,1993) and the stoichiometry proposed by 

Hillestad (Hillestad, 2014) for the FT reaction were validated using ACM by obtaining 

the same results as the Tomte study (Tomte, 2013), which in turn modelled a GTL plant 

with a capacity of 14700 bbl/day. The hydrogen production capacity available at ULiège 

was then used as guideline for a scaled-down design of a FT pilot reactor. 

 

Future work will focus on further improving the accuracy and the performance of the 

simulation for jet fuel production maximization. A sensibility analysis will be performed 

on multiple process variables to determine their influence on jet fuel production. Some of 

the variables to consider are: the temperature, volume and pressure of the reactor; the 

cooling medium and its temperature; the catalyst and its configuration; and the recycle 

ratio of the outlet flow of the reactor. In parallel, new models will be developed using 

more detailed kinetics. For example, they will comprise other products other than 

paraffins (e.g. olefins) and will evaluate α as a function of the temperature of the reactor 

and other operation conditions. Later phases will focus on improving the integration of 

the carbon capture, electrolysis, RWGS, recycle and post-treatment sub-processes to the 

reactor.  
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Abstract 

Biodiesel and bioethanol play an important role as renewable liquid fuels. The production 

of these biofuels generates low-value by-products, such as sugarcane bagasse (usually 

used for heat generation). This bagasse can be processed to produce a sugarcane bagasse 

hemicellulose hydrolysate (SCBH) that contains fermentable sugars, mainly xylose. 

Oleaginous yeasts (eg., Rhodotorula toruloides) can grow in this SCBH producing 

microbial oil (MO) which can be used as raw material for biodiesel production. This 

strategy arises as a promising approach to exploit a synergy between bioethanol and 

biodiesel production processes within a biorefinery. Since techno-economic-

environmental analysis (TEEA) can identify bottlenecks, providing insights concerning 

feasibility and sustainability of processes, in this work TEEA was applied to a study case 

consisting of a MO production from SCBH integrated into a first-generation (1G) 

bioethanol plant. The 1G section of the plant – processing 4x106 t of sugarcane per season 

(240 days) - produces bioethanol and bioelectricity generating a surplus bagasse, which 

is sent to the MO production. Net present value and internal rate of return were chosen as 

the economic metrics and global warming potential as environmental one for evaluating 

the process options simulations. The main result of this study had the plant producing 

74.8 m3/h of bioethanol, 2.8 t/h of MO, and 89.3 MW of bioelectricity. The integrated 

process exhibited a positive economic performance (net present value equals to US$ 

34.5x106 and internal rate of return of 12.4%) indicating that the microbial oil production 

from sugarcane is feasible. From the environmental perspective, a decrease of 13% in 

GHG emissions was obtained. 

 

Keywords: microbial oil, biorefinery, techno-economic analysis, modelling and 

simulation. 

1. Introduction 

The diversification of energy matrices is of vital importance in slowing down climate 

change effects caused by use of fossil fuels. In order to simultaneously mitigate climate 

change in transport and chemical sectors and reduce the dependence on oil, alternative 
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production chains are necessary. Biomass is considered as the primary emerging option 

to replace the fossil fuel resources, since it can deliver energy and multiple products 

through of the biorefineries. These facilities are integral to supporting a knowledge-driven 

and environmentally robust circular bio-economy (Awasthi et al. 2020).  

The established sugarcane mills in Brazil are biorefineries, since they produce bioethanol, 

sugar, power, fusel oil, yeast biomass, and other products. However, there still a potential 

for improvement of this process. One example is the integrated production of bioethanol 

and biodiesel, since these biofuels play an important role as renewable sources of energy 

for transport and they are an attractive solution for reducing global warming (GWP), 

energy crisis, and fossil fuel depletion (Souza and Seabra 2014). Sugarcane bagasse, a 

by-product of the sucrose and ethanol production, can be processed to generate a 

sugarcane bagasse hemicellulose hydrolysate (SCBH) that contains fermentable sugars, 

mainly xylose. Oleaginous yeasts (eg., Rhodotorula toruloides) can grow in this SCBH 

producing microbial oil (MO) which can be used as raw material for biodiesel production. 

Therefore, such MO production does not compete with food supply and arable land is not 

required (Bonturi et al. 2017).  

The integration of MO production into a first-generation (1G) bioethanol production plant 

could decrease this lipid cost due to the easier availability of raw material, utilities (steam 

and electricity), effluent treatment, and disposal and logistic distribution. Therefore, the 

objective of this study was to applied the techno-economic-environmental analysis 

(TEEA) to a study case consisting of a MO production from SCBH integrated into a first-

generation (1G) bioethanol plant in order to evaluate the feasibility of MO production 

from byproducts generated in the bioethanol process.  

2. Methods 

2.1. Process modelling and simulation 

EMSO (Environment for Modelling, Simulation and Optimization, Soares and Secchi 

(2003)), an equation-oriented simulator, was used to carry out the simulations. The TEEA 

was performed considering the implementation of the MO production process integrated 

into a 1G bioethanol plant. The modelled biorefinery (Figure 1) can produce 1G 

bioethanol from sugarcane juice, MO from bagasse, and electricity from bagasse and 

residues in an integrated process. 

The process data used in the 1G simulation were based on Elias et al. (2021). The bagasse 

obtained after milling is diverted into two fractions. The first one is fed in the boiler (Elias 

et al. 2021) and the second one is used for MO production. The bagasse diverted to MO 

production undergoes a diluted acid pretreatment to solubilize the hemicellulose fraction. 

This is carried out at solid to liquid ratio 1:10 (10% w/v of bagasse in 1.5% (w/v) H2SO4) 

for 60 min at 121 °C. The pretreated mixture cooled to 80˚C is filtered. The solid fraction 

is sent to the combined heat and power sector and the liquid fraction is concentrated to 

55 g/L of xylose in an evaporator at 80˚C. The obtained SCBH is directed to the MO 

production by the oleaginous yeast R. toruloides in a bioreactor for 120 h at 30 °C with 

the operating conditions described in Lopes et al. (2021). 

Yeast suspension from the bioreactor is concentrated through centrifuge operations. The 

moisture content of the microbial cells is reduced to 1% using a spray dryer. The dryed 

cells are mixed in a tank with hexane (25% w/w) and directed to the high-pressure 

homogenizer in order to disrupt cells and release the intracellular lipids (Koutinas et al. 

2014). The homogenate is then suspended in hexane and sent to a decanter, where the  
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Figure 1. Simplified process diagram of the integrated bioethanol-bioelectricity-MO 

sugarcane biorefinery 

defatted biomass is separated from the MO containing hexane. The MO is recovered from 

the organic solvent in an evaporator (Vieira et al. 2016) and the hexane is recycled. 

2.2. Environmental analysis  

The life cycle assessment (LCA) implemented in EMSO considered the climate change 

impact category using the GWP under a horizon of 100 years – GWP100. This metric is 

indicated in Renovabio, a Brazilian federal biofuels policy (Grassi and Pereira 2019). It 

was performed an inventory of inputs, outputs and emissions based on process simulation 

(item 2.1), agricultural data (Potrich et al. 2020), transporting and burning steps under a 

cradle to grave scope. The functional unit was defined as 1 MJ of bioethanol and impacts 

are allocated based on energy. SimaPro 8.4 software and Ecoinvent database 3.0 (Wernet 

et al. 2016) were used to for raw materials inputs. The average logistical distance of 

transport in the road modal was considered to be 700 km for bioethanol resulting in 

transport emissions of 0.80 CO2eq/MJ. The emissions of 0.44 CO2eq/MJ were considered 

for the biofuel burning step (Matsuura et al., 2018). 

2.3. Economic analysis  

The economic analysis was also implemented in EMSO coupled to the process model. 

The integrated plant processes 4 million tons of sugarcane per year operating 5040 h per 

year  (Elias et al. 2021). Capital Expenditure (capex) were estimated from industrial 

information (personal communication) and data reported in the literature (Koutinas et al. 

2014; Vieira et al. 2016) adjusted for inflation (Peters, Timmerhaus, and West 2002). The 

final investment included the costs of equipment and their installation, civil construction, 

electricity installation, instrumentation, land, and engineering. The price of the MO is 

US$ 1.077/kg (Vieira et al. 2016). Other relevant costs were US$ 0.535/L of ethanol, US$ 

68.758/MWh of electricity, US$ 0.352/kg of defatted biomass, US$ 17.853 US$/t of 

sugarcane, US$ 7.712/t of sugarcane straw. The CO2eq. saved, the carbon credit, was 

estimated. The price of US$ 5.203 US$ per t of CO2eq. saved was assumed (B3, 2021). 

Brazilian foreign trade statistics platform (ComexStat 2020) was used for others inputs 
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and outputs costs and Oliveira et al. (2018) was used for utilities price. Results of the 

economic analysis were reported in terms of net present value (NPV) and internal rate of 

return (IRR) (Peters, Timmerhaus, and West 2002). The economic evaluation is based on 

the following hypothesis: construction and startup period of 24 months; project lifetime 

of 25 years; discount rate of 11%; 100% of outlay of investment in the first year; linear 

depreciation over 10 years; no salvage value of direct fixed capital; maintenance of 3.0% 

of capex per year; tax rate of 34%; working capital of 10% of capex, and values at an 

exchange rate from Brazilian currency real to US dollar of 3.89 R$/USD (BCB, 2020). 

3. Results and discussion 

The integrated plant produces 74.8 m3/h of bioethanol (333.1 million of L/year of 

bioethanol), 89.3 MW of electric energy and 2.8 t/h of MO (13,001 t/year of MO). 

Considering that about 1 t of biodiesel is produced from 1 t of lipid (Pimentel and Patzek 

2008), this amount of MO has the potential to generate 13,001 t of biodiesel. This biofuel 

can be used to substitute the diesel in the agricultural operations without engine 

modification integrating and connecting the agricultural and industrial fields (Ogunkunle 

and Ahmed 2019). Considering an average specific consumption of 4 L of diesel per ton 

of sugarcane (Seabra et al. 2011), the biodiesel from MO could replace about 80% of the 

total diesel consumption in the sugarcane plant.  

The total emissions of 23.38 g CO2eq/MJ of ethanol were obtained from biorefinery 

assessed. This represent a decrease of 6.6% in GHG emissions when comparing with the 

emissions from traditional 1G bioethanol process estimated by Junqueira et al. (2017) 

(25.03 g CO2eq/MJ of ethanol considering the cradle-to-grave analysis of the 1G-base 

scenario). When compared with the emission of the gasoline process (emissions of 87.4 

g CO2eq/MJ of gasoline) (Grassi and Pereira 2019) this value represented a reduction by 

over 73% , saving about 540 · 103 t of CO2eq per year.The reduction in the emissions is 

observed because the integrated plants present higher energy yields (higher energy 

production per unit of biomass). The decrease in climate change impacts when MO is 

produced integrated into a 1G plant indicated that energy efficiency improvements in the 

industrial process are imperative for the improvement in the sustainability of sugarcane 

biorefineries in Brazil.  

The economic assessment (Table 1) was performed in order to evaluate the feasibility of 

the integrated bioethanol-bioelectricity-MO production from sugarcane. It can be realized 

that the process is economically feasible, since the NPV is positive and the IRR is higher 

than the discount rate applied (11%). However, the feasibility of the integrated 

bioethanol-bioelectricity-MO production is achieved mainly because 1G bioethanol 

process is a traditional, established, and highly profitable industry. It should be 

highlighted the importance of the carbon credits representing 1.02% of the annual sales 

of the plant, and indicating that the environmental performance have a direct impact on 

the economic profitability of the biorefinery. As MO production systems from R. 

toruloides are still at an early stage of development, the TEEA results can be further 

improved with the development of each step of the process. Therefore, further 

improvement of the MO process performance could enforce the potential for the MO use 

as a sustainable resource for biodiesel production. 
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Table 1. Economic assessment of the integrated biorefinery 

Parameter    Value 

Capex  

   Total (US$ · 106) 318 

   Sugarcane reception, juice extraction, and evaporation (%)a 14.4 

   Combined heat and power (steam and electricity) (%)a 32.3 

   Ethanol production (fermentation, distillation/dehydration) (%)a 18.2 

   Pretreatment, hemicellulose separation and concentration (%)a 3.01 

   MO production (bioreaction and separation) (%)a 20.03 

   MO extraction and purification (%)a 0.52 

   Others costs (%)a 11.45 

Annual operating costs (US$ * 106/year) 198 

Annual sales  

   Total (US$ · 106) 274 

   Bioethanol (%)b 73.7 

   Bioelectricity (%)b 11.3 

   MO (%)b 5.57 

   Defatted yeast (%)b 8.41 

   Carbon credit (%)b 1.02 

NPV (US$ * 106/year) 34.5 

IRR (%) 12.4 
a Percentage of the total industrial investment; b Percentage of the annual sales.  

4. Conclusions 

A techno-economic and environmental assessment was performed considering the 

implementation of the MO production process integrated to a 1G bioethanol plant. The 

integrated plant was able to produce 74.8 m3/h of bioethanol, 2.8 t/h of MO, and 89.3 

MW of bioelectricity. The integrated process exhibited a positive economic performance 

(NPV equals to US$ 34.5x106 and IRR of 12.4%) indicating that the microbial oil 

production from sugarcane is feasible. From the environmental perspective, the decrease 

in GHG emissions was 13%. 
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Abstract
Reactive distillation (RD) is the integration of reaction and thermal separation in one piece of
equipment. Structured catalytic packings have been developed for this application, but their sim-
ulation and design are often limited to manufacturer software. Studies in the literature that rely
on process simulation using Aspen Plus typically assume that the RD equipment has trays par-
tially filled with catalyst, and do not take into consideration the pressure drop across the column.
This simplification, in turn, affects the temperature profile and the reaction kinetics of the column,
which might lead to simulation results that would be unfeasible, due to catalyst degradation. In
this work, a custom model was developed for hydrodynamic modeling of the Katapak-S packing
in Aspen Plus. The model was validated using literature data on pressure drop and holdup for
the water-air system and the esterification of lactic acid with ethanol over Amberlyst-15, showing
a good fit between the literature data and the model results. Therefore, the model offers a more
representative description of RD columns and serves as a tool for the holdup, pressure drop, and
diameter sizing in Aspen Plus simulations.

Keywords: Aspen Plus, Structured packing, Katapak, Reactive distillation

1. Introduction

Reactive distillation (RD) is a successful application of process intensification concepts, in which
catalyzed reactions and distillation take place in a single equipment. Such a combination may be
beneficial to overcome equilibrium limitations of reactions, and separate azeotropes based on the
differences between the reaction rates of the substances forming the azeotrope with another reac-
tion (Kiss et al., 2019). RD can be held in structured catalytic packings, which are modular hybrid
structures composed of separation and reaction elements assembled in an alternate sequence. The
commercial Katapak-S packing, commonly used in RD, is characterized by separation elements
made of corrugated sheets of distillation layers, and reaction elements consisting of catalytic bas-
kets filled with catalyst particles (Viva et al., 2011).

The hybrid structure of the catalytic packing influences the flow development in the packed bed,
as well as the reactive and separation performances of the RD column. Parameters such as the
holdup inside the catalytic baskets and corrugated sheets and the pressure drop across the column
(Viva et al., 2011) must be monitored and represented via process simulation, but several works
in the literature adopt simplifications that affect the temperature profiles and reaction kinetics of
the column, leading to unfeasible simulation results. For example, Gudena et al. (2013) used the
Mellapak-250Y properties in Aspen Plus to calculate column pressure drop and holdup using the
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Figure 1: (a) Packing representation. Adapted from Hoffmann et al. (2004); (b) Pilot-scale RD
column configuration. Experimental setup from Asthana et al. (2005)

Stichlmair method to simulate a hybrid reactive stripper-membrane process for methyl lactate hy-
drolysis, which has resulted in the overestimation of pressure drop (Ratheesh and Kannan, 2004).
Su et al. (2013) performed simulation on lactic acid esterification in Aspen Plus assuming that the
column trays are partially filled with catalyst, but they do not provide enough information regard-
ing reaction holdup in their simulations. Therefore, the development of more rigorous models for
RD simulation is required.

This work developed a custom model in Aspen Plus for the rigorous hydrodynamic simulation of
the Katapak-S packing in an RD column, which was further validated against experimental data.
Model validation was conducted with literature data on pressure drop and holdup for the water-air
system and the esterification of lactic acid with ethanol over Amberlyst-15. The good fit between
the literature data and the model results demonstrate that the custom model developed in this work
offers a more representative description of RD columns and serves as a tool for RD column sizing
and performance evaluation in the Aspen Plus platform.

2. Methods

To estimate the liquid holdup, pressure drop, and column diameter, the Katapak SP-12 packing
characteristics were applied in a user model subroutine in the rigorous distillation model Radfrac
in Aspen Plus v10. Table 1 and Table 2 show the equations and packing parameters used in the
Aspen Plus packing user model, respectively. The modelling is based on the work of Ratheesh and
Kannan (2004), who obtained the experimental correlations to determine the loading point and the
pressure drop profile for liquid velocities in the range between 0.001 and 0.008 m/s. Figure 1a
shows a representation of the catalytic packing, where CB represents the catalyst bags and, OC,
the open channels.

The gas is assumed to flow only in the open channels, while the liquid flow is distributed in the
open channels and the catalyst bags. An important variable in the design of packed columns is the
gas loading velocity (uG,LP, Equation 11), i.e., the gas flow rate that causes the holdup to increase
from a constant value at a given liquid flow rate. The loading point distinguishes two different flow
regimes, that are treated separately. Below the loading point, the liquid holdup (hLP, Equation 13)

344

314314



Modeling the hydrodynamic sizing and rating of reactive packing in Aspen Plus

Table 1: Equations used in the Aspen Plus packing user model

Parameter Ref. Definition

Effective gas velocity a uG,e =
uG

εOC sinα
(1)

Liquid load; Liquid superficial velocity b uL = uL,CBϕ +uL,OCεOC (2)

Maximum liquid velocity inside the catalyst bags b uL,CBmax =

√
dpg
ψ

ε3
CB

(1− εCB)
(3)

Friction factor b ψ =
160

ReCBmax
+

3.1
Re0.1

CBmax

(4)

Effective Reynolds number inside the catalyst bags b ReCBmax =
uL,CBmax ρLdp

(1− εCB)µL
(5)

Flow distribution parameter c γ = 156.65uL−0.1512 (6)

Liquid velocity inside the catalyst bags c uL,CB =
uL

ϕ(γ +1)
, uL,CB < uL,CBmax (7)

uL,CB = uL,CBmax , uL,CB ≥ uL,CBmax (8)

Liquid velocity in the open channels c uL,OC =
uL

εOC(γ +1)
, uL,CB < uL,CBmax (9)

uL,OC =
uL−ϕuL,CB

εOC
, uL,CB ≥ uL,CBmax (10)

Gas loading velocity c uG,LP = 0.276u−0.285
L (11)

F-factor F = uG
√

ρG (12)

Liquid holdup below the loading point c hLP = hL,OC +hL,CB (13)

Liquid holdup in the open channels d hL,OC = 0.2

(
u2

L,OCASP

gsinα

)0.25

(14)

Liquid holdup inside the catalyst bags d hL,CB = ϕεCB

[
1−0.5

(
1− uL

uL,CBmax (εOC +ϕ)

)2
]

(15)

Liquid holdup above the gas loading point c hL = hLP +1.108
(
(∆P/∆Z)irr

ρLg

)1.89

(16)

Dry gas pressure drop c
(

∆P
∆Z

)
0
= f

ρgu2
G,e

dH
(17)

Friction factor c f =
2.293
Re0.308

g
, for Reg < 1500 (18)

f =
0.628
Re0.131

g
, for Reg > 1500 (19)

Gas phase Reynolds number c Reg =
dH uG,eρg

µg
(20)

Irrigated pressure drop below the loading point c
(

∆P
∆Z

)
irr
= 1.941(hLP)

0.446
(

∆P
∆Z

)1.12

0
(21)

Irrigated pressure drop above the loading point c
(

∆P
∆Z

)
irr
= 0.6208ρLgu0.815

L (ug
√

ρg)
4.183 (22)

a Ellenberger and Krishna (1999) b Moritz and Hasse (1999) c Ratheesh and Kannan (2004) d Hoffmann et al. (2004)

is independent of the gas velocity and pressure drop, and it has two contributions: one in the open
channels (hL,OC) and another in the catalyst bags (hL,CB). Due to difficulties in reproducing the
equations reported by Ratheesh and Kannan (2004) for the liquid holdup, Equations 14 and 15
were based on the work of Hoffmann et al. (2004) for MULTIPAK packing. The pressure drop is
calculated in terms of gas and liquid flow contributions, where the irrigated packing pressure drop
is determined as an enhancement of the dry gas pressure drop

(
∆P
∆Z

)
0, which is measured when

only air flows upwards in the packing (Ratheesh and Kannan, 2004).
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Above the loading point, the pressure drop is correlated in terms of liquid and gas superficial
velocities (Equation 22) and the liquid holdup (hL, Equation 16) is calculated as a function of the
pre-loading holdup (hLP) and the pressure drop. For design and rating purposes, the maximum
capacity is defined as the operating point at which a pressure drop of 1200 Pa/m of packing is
obtained. So, the approach to the maximum capacity is defined as the ratio between the superficial
gas velocity and the velocity that would result in the 1200 Pa/m pressure drop. Also, an iterative
procedure is used in the Design Spec tool of Aspen Plus. The reaction holdup in the reactive stages
is recalculated based on the holdup in the catalyst bags determined from the hydrodynamic model
(hL,CB) and the calculated diameter to satisfy the approach to maximum capacity.

The lactic acid esterification (Equation 23) in an RD column (Figure 1b) was simulated using
the pseudo-homogeneous kinetic model (Equation 24) for the liquid-phase reaction using the
Amberlyst-15 ion-exchange resin (Delgado et al., 2007) for an assumed catalyst bag void fraction
(εCB) of 0.35 and an Amberlyst-15 density of 608 kg/m3 (Yu et al., 2004). The temperature depen-
dence of the kinetic constant ke was determined in the range from 328 to 360 K (Equation 25), and
the activity-based equilibrium constant Keq estimated by Pereira et al. (2008) (Equation 26) was
used. To model the vapor-liquid equilibrium, the non-random two-liquid (NRTL) activity coeffi-
cient model was used for the liquid phase and the Hayden-O’Connell equation of state was used
for the vapor phase, using the parameters from Marchesan et al. (2021).

C3H6O3
LA

+C2H5OH
EtOH

r←→C5H10O3
Et-LA

+H2O (23)

r = ke

(
aLAaEtOH −

aEtLAaH2O

Keq

)
(24)

ke = 1.88×108
[

kmol
s ·m3holdup

]
exp

(
−

58.47
[ kJ

mol

]
RT

)
(25)

Keq = exp
(

2.9625− 515.13
T

)
(26)

3. Results and Discussion

The validation of the model was performed with the comparison with experimental data for two
RD systems, showing good agreement between experimental and simulated results. Figure 2
shows the comparison for air-water systems reported by Ratheesh and Kannan (2004); Götze et al.
(2001) as a function of the gas load (expressed in terms of the F-factor, Equation 12). The results
show that the model offers a reasonable estimate of the hydrodynamic behavior of the packing,
namely the holdup and pressure drop across the column for varying liquid and gas loads. Despite
its limitations, it offers a more suitable approximation of industrial applications compared to other
models based on tray columns with an estimate of the volume occupied by the catalyst in each tray
(Su et al., 2013; Dai et al., 2019; Mo et al., 2011).

Table 2: Packing parameters used in the hydrodynamic model

Packing properties Ref. Value Packing properties Ref. Value

dp – Catalyst particle diameter (m) a 0.0009 εCB – Catalyst bag void fraction a 0.35

ϕ – Catalyst volume fraction in the packing element a 0.242 εOC – Open channel void fraction a 0.738

ASP – Specific surface area in the open channel (m²/m³) b 454 dH – Equivalent diameter (m) 0.0065

α – Channel angle relative to the vertical axis a 45º
a Ratheesh and Kannan (2004) b value for MellapakPlus 752.Y, Viva et al. (2011)
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Table 3: Simulation and experimental results comparison for lactic acid esterification. Experimen-
tal results from Asthana et al. (2005)

.

Run FEtOH TLA
D Experimental

(mol/min) (ºC) (mol/min) xB,EtOH xB,H2O xB,EtLA xB,LA xB,EtOH xB,H2O xB,EtLA xB,LA XLA

1 0.35 25 0.36 0.730 0.095 0.140 0.030 0.320 0.680 0.003 0.000 79%

2 0.5 100 0.39 0.760 0.038 0.170 0.027 0.310 0.690 0.005 0.000 82%

3 0.5 100 0.37 0.810 0.033 0.130 0.020 0.320 0.680 0.005 0.000 83%

Run FEtOH TLA
D Simulation

(mol/min) (ºC) (mol/min) xB,EtOH xB,H2O xB,EtLA xB,LA xB,EtOH xB,H2O xB,EtLA xB,LA XLA

1 0.35 25 0.36 0.672 0.159 0.133 0.036 0.322 0.675 0.002 0.001 78.5%

2 0.5 100 0.39 0.733 0.079 0.161 0.027 0.300 0.697 0.002 0.001 85.1%

3 0.5 100 0.37 0.817 0.070 0.097 0.016 0.287 0.710 0.002 0.001 85.3%

Figure 2: Holdup (a-b) and pressure drop (c-d) at various liquid loads (m3/(m2 h)) in comparison
with experimental results from (a, c) Ratheesh and Kannan (2004) and (b, d) Götze et al. (2001).

A further validation of the custom model was performed with experimental data of the esterifica-
tion of lactic acid with ethanol over Amberlyst-15 in the RD column depicted in Figure 1b for three
scenarios under varying operational conditions (ethanol molar flow rate, lactic acid feed tempera-
ture, and distillate molar flow rate), based on the results reported by Asthana et al. (2005). Table 3
shows that, except for the overrepresentation of the water mole fraction in the bottom stream, the
mole fraction estimations produced by the custom model are in accordance with the experimen-
tal results. Also, the temperature of the reboiler (close to 80 °C) and the calculated conversions
(around 80%) in the three scenarios obtained via simulation were close to the values reported
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experimentally. The differences in the composition of the bottom streams can be explained by
the formation of lactic acid oligomers in small amounts for the chosen scenarios, which were not
included in this study for simplification. Furthermore, Asthana et al. (2005) reported material
balances closure of ±7%.

4. Conclusion
This work developed a rigorous custom model in Aspen Plus for the hydrodynamic modeling of the
Katapak-S packing in reactive distillation columns, considering the effect of performance parame-
ters such as the holdup and the pressure drop. The model was validated with experimental datasets
of two different applications (water-air system and esterification of lactic acid with ethanol). This
showed that it successfully represents the performance of RD columns with Katapak-S packings
for varying applications and process conditions. Therefore, the custom model serves as a reliable
tool for future studies on the sizing and performance evaluation of RD columns in Aspen Plus.
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Abstract 
Computational fluid dynamics (CFD) provides the detailed information about flow and 
pressure distributions in microdevices, whose importance in the chemical process 
industry has increased in recent years. However, since CFD requires a considerable 
computational time, the use of a simple model different from CFD would be desirable to 
efficiently investigate the influence of design parameters on the flow and pressure 
distributions in microdevices. In this study, the previously proposed simple model, which 
is based on the predictive equation for the pressure loss due to viscous forces, is extended 
by taking into account inertial forces. A case study on plate-fin microdevices shows that 
the extended simple model can predict the flow distribution among microchannels with 
almost the same accuracy as CFD not only under low flow rates but also under high flow 
rates. In addition, another case study demonstrates that the optimal shape of manifolds of 
stacked/unstacked plate-fin microdevices with uniform flow distribution is efficiently 
derived using the extended simple model. 
 
Keywords: Shape design, Microdevices, Simple model, CFD model. 

1. Introduction 
Microdevices, which are composed of channels on the order of micrometers or 
millimeters, have large specific surface area and short diffusion distance. Therefore, 
microdevices are characterized by high-efficiency heat exchange and rapid mixing. There 
are many reports that these characteristics have improved the reaction performance of 
organic synthesis, polymerization, particle synthesis, and so on. While expectations are 
growing that microdevices are used for mass production of chemical materials, it is 
necessary to develop models for analyzing flow and transport phenomena, optimal design 
and control methodologies, and sensing and monitoring technologies. The throughput of 
microdevices is increased by numbering-up, that is, parallelization of channels. At this 
time, if the flow distribution among the channels is not uniform, the product quality may 
deteriorate (Delsman et al., 2005). Since the channels are small, it is not realistic to install 
sensors and actuators in all the channels. Therefore, it is important to appropriately design 
a flow distributor that bundles the parallelized channels. So far, bifurcation-type (Amador 
et al., 2004), manifold-type (Commenge et al., 2002), and split-and-recombine-type 
(Tanaka et al., 2011) flow distributors have been reported. Computational fluid dynamics 
(CFD) model is often used to predict the flow patterns in the flow distributors and derive 
optimal design conditions (Tonomura et al., 2004). By comparison with experiments, it 
has been reported that CFD achieves high prediction accuracy of flow and transport 
phenomena in microdevices. (Bothe et al., 2006; Zhendong et al., 2012).  
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The use of CFD model enables rigorous flow simulation, but enormous time and effort is 
associated with geometric model creation, mesh generation, and calculations. Therefore, 
an optimal design method based solely on the CFD model may not be realistic. So far, a 
simple model has been proposed in place of the CFD model (Commenge et al., 2002). 
This simple model, which is called the conventional simple model in this paper, is based 
on the formula for estimating the pressure loss of laminar flow in a pipe from the average 
flow velocity and the pipe size. The pressure and flow velocity distributions over the 
device are approximated by connecting the compartments to which the conventional 
simple model is applied. However, since the conventional simple model does not consider 
the influence of fluid inertia forces, there is a problem that the prediction accuracy 
decreases for high Re (Reynolds) flow. In this study, the conventional simple model is 
extended by taking into account inertial forces. The usefulness of the extended simple 
model is verified through case studies on plate-fin microdevices. 

2. Simple Model Development 
A schematic diagram of the plate-fin microdevice is shown in Fig. 1. A reactant is fed to 
the inlet manifold, distributed to the parallelized microchannels, and rejoined at the outlet 
manifold. The model described in this chapter is used to efficiently design the shape of 
the device so that the flow distribution among the parallelized microchannels is uniform.  
 

As shown in Fig. 2, the plate-fin microdevice is divided by compartments. Each of 
microchannels is considered as one compartment, and the inlet and outlet manifolds are 
divided into as many compartments as the number of microchannels (N [-]). The 
compartments assigned to the inlet manifold, outlet manifold, and microchannels are 
called the distribution, junction, and channel compartments, respectively, which are 
numbered in order from the upstream side. In the distribution compartments, the flow 
velocity and pressure at the inlet of the i-th compartment are expressed as UI 

i and PI 
i, 

 

                     
Fig. 1 Plate-fin microdevice.            Fig.3 Small volume element for a compartment. 

 
Fig. 2 Compartment-based simple model for plate-fin microdevice. 
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respectively. In the junction compartments, the flow velocity and pressure at the outlet 
(after mixing) of the i-th compartment are expressed as UO 

i and PO 
i, respectively. In the 

channel compartments, the flow velocity, inlet pressure, and outlet pressure of the i-th 
compartment are expressed as UC

i, PC, in 
i, and PC, out

i, respectively. Each compartment is 
assumed to be a rectangular channel having length L [m], width W [m], and height D [m]. 
The subscript C for each variable is the microchannel, I is the inlet manifold, O is the 
outlet manifold, and M is both manifolds. WF [m] is the distance between parallel channels, 
that is, the fin width. In this study, D is fixed to be constant in all compartments and the 
z axis is defined in the direction of flow at the inlet. The flow velocity and pressure 
distributions over the device are predicted on the basis of the mass balance and pressure 
balance equations among the compartments. The mass balance is expressed by  

I I I I C C

1 ii i ii
W U W U W U

     1 i N  ,  (1) 

O O O O C C

1i i i i iW U W U W U   1 i N  .  (2) 

The pressure balance among adjacent compartments is expressed by  

C O I C

1 1Δ Δ Δ Δi i i iP P P P     1 1i N   .  (3) 

CΔ iP  is given by the following equation that estimates the pressure drop of a fully 
developed laminar flow in a rectangular channel.  

C C

C C,in C,out C2

C

32
Δ

H

i ii i L
P P P U

D

 
    1 i N    (4) 

Here, C  is the correction coefficient for the cross-sectional shape of the channel, μ is the 
fluid viscosity [Pa·s], and DH is the hydraulic equivalent diameter [m]. IΔ iP and OΔ iP
are given by the following equations:  

     I C I F

I I I II II I

I I

1 1
2 2

Δ 8 2
H

i i i
i i i ii i i

i i

D W W D W W
P P P U U U U

DW D
     

      (5) 

     O C O F

O O O O O O O O

O O

11
2 2

Δ 8 2
H

ii i
i i i ii i i

i i

D W W D W W
P P P U U U U

DW D
   

  
      (6) 

These equations were derived by formulating the momentum change in the z-axis 
direction due to pressure loss and shear stress for a small volume element as shown in 
Fig. 3. On the right-hand side of each equation, the first and second terms represent the 
viscous and inertia terms, respectively. The feature of this study is that the pressure loss 
and pressure balance equations are established in consideration of both viscous and inertia 
terms. The conventional simple model ignores the inertia term, and its application will be 
limited to low flow rates. When the dimensions of all compartments and the following 
 

Table 1 Design conditions and physical properties.                   Table 2. Design conditions. 

           

記号 値 単位

並列流路数 N 10 -
深さ D 500 μm

マニホールド幅 WM 1000 μm

フィン幅 WF 200 μm

流体密度 ρ 1000 kg/m
3

流体粘度 μ 0.001 Pa s

Symbol Value Unit

Number of channels

Depth

Manifold width

Fin width

Fluid density

Fluid viscosity

μ
Symbol Value Unit

Number of channels N 10 -
Channel depth D 500 μm
Channel length L C 40 mm

Channel width W C 500 μm

Fin width W F 200 μm

Device inlet width W I
1 2000 μm

Device outlet width W O
N 2000 μm

Inlet flow velocity U I
1 0.05 m/s

Fluid density ρ 1000 kg/m
3

Fluid viscosity μ 0.001 Pa s
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Fig. 4 Flow velocity distribution among channels. The results from (a) to (d) were obtained when (LC, WC) = 
(20 mm, 300 µm) and the results from (e) to (h) were obtained when (LC, WC) = (20 mm, 1000 µm). 
 

boundary conditions,  
1

I
fixedU  ,  

0

O
0U  ,  

1

I
0NU   ,   (7) 

are given to the mass balance and pressure balance equations, the number of unknown 
variables and the number of independent equations are equal to 4N, that is, the degrees of 
freedom are 0, and as a result, UI

i, UC
i, and UO

i can be derived.  

3. Evaluation of Prediction Accuracy of the Developed Model 
A case study on the plate-fin microdevice is conducted to compare the prediction accuracy 
of the conventional simple model, the developed simple model, and the CFD model. 
Table 1 shows the design conditions and fluid physical properties. The width of all 
compartments, WI

i and WO
i, is set to be constant at WM. The remaining design conditions 

are as follows: (LC, WC) = (20 mm, 300 µm) and (20 mm, 1000 µm). Under these 
conditions, flow simulation based on each model is performed for UI

1 = 0.001 m/s, 0.01 
m/s, 0.1 m/s, and 0.5 m/s. Ansys Fluent® and gPROMS® are used for calculations based 
on the CFD model and the simple models, respectively. Comparing the calculation times, 
the CFD model took tens of minutes to several hours, but the conventional and developed 
simple models took only 1 to 2 seconds. The flow velocity of each microchannel 
normalized by flow velocity averaged by all microchannels (UC, ave) is plotted in Fig. 4, 
where +, □, and ● represents the results of conventional, developed, and CFD models, 
respectively. The results of CFD model show that as the inlet flow velocity increases, 
more fluid flows into the microchannels far from the inlet due to the influence of flow 
inertia. The results of the conventional simple model differ from those of the CFD model, 
especially when the flow velocity is high. On the other hand, the results of the developed 
simple model are close to those of the CFD model under any flow velocity condition.  

4. Design of Plate-fin Microdevice 
The shape design of manifolds of a plate-fin microdevice is carried out. The design 
conditions are shown in Table 2. The design objective is to minimize the manifold 
volumes. The manifold shape is optimized under the following constraints: 1) in each 
microchannel, the relative deviation of the flow velocity from the value under uniform 
flow distribution is 0.25% or less, 2) the upper limit of the pressure loss of the entire 
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Table 3 Flow velocity in each microchannel.                      [m/s] 

 
 

 
Fig. 5 Manifold design results by the conventional model (a) and the developed model (b). 

 

device is 500 Pa, and 3) the upper and lower limits of the width of the manifolds are 2 
mm and 0.2 mm, respectively. The shape of the inlet and outlet manifolds is represented 
by a piecewise linear function. The design procedure is as follows. First, assuming that 
the device has a point-symmetrical shape, optimization is performed with the number of 
sections of the piecewise linear function in both manifolds being 1. If no solution is 
obtained, the device is considered to have a non-point symmetric shape and optimization 
is performed. If no solution is still obtained, the design optimization is repeated while 
increasing the number of sections by 1. As a result of this optimization, the manifold 
shapes shown in Fig. 5 were derived. Table 3 shows the flow velocity distribution among 
the microchannels by the simple models and the CFD model. The conventional simple 
model predicts the achievement of the uniform flow distribution, but this prediction result 
is not achieved when CFD is executed for the manifold shape derived by the conventional 
simple model. On the other hand, it is shown that there is almost no difference between 
the results of the developed simple model and the CFD model.  

5. Design of Stacked Plate-fin Microdevices 
In addition to parallelizing the channels in one device, it is possible to increase the 
production amount by stacking the device. In this chapter, the microdevice designed in 
the previous chapter is stacked. A schematic diagram of the entire apparatus when the 
number of stacked devices is 10 is shown in Fig. 6. The purpose of this chapter is to 
design the inlet and outlet headers that realize equal fluid distribution to the stacked 
devices. The design conditions are as follows: 1) the shape and dimensions of the channels 
and manifolds of each plate-fin microdevice are equal to the design result in the previous 
chapter, 2) the thickness of each plate-fin microdevice is 1 mm, 3) the header is a circular 
tube with a constant diameter, 4) the header and each microdevice are connected by a 
rectangular duct with depth of 500 µm, width of 2 mm and length of 4 mm, 5) the number 
of stacked microdevices is 10, 6) total flow rate is 0.5 cm3/s, 7) assuming that the pressure 
loss of each microdevice are proportional to flow rate, and 8) the fluid is water (298K). 
The design objective is to minimize the header volumes. The diameters of inlet and outlet 
headers are optimized under the following constraints: 1) in each microdevice, the relative 
deviation of the flow rate from the value under uniform flow distribution is 0.25% or less, 
and 2) the upper and lower limits of the header diameter are 10 mm and 2 mm, 
respectively. This optimum design problem is solved using the developed simple model. 
That is, the stacked microdevices and the headers are regarded as the parallelized 
microchannels and the manifolds in the developed simple model, respectively, as shown 
in Fig. 6. As a result of optimization, DIN and DOUT were determined to be 5.24 mm and 
5.96 mm, respectively. To verify this design result, CFD simulation was performed. Table 

Channel 1 2 3 4 5 6 7 8 9 10
Conventional model (CM) 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200
CFD for the result by CM 0.0189 0.0191 0.0193 0.0195 0.0198 0.0201 0.0204 0.0207 0.0209 0.0212
Developed model (DM) 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200

CFD for the result by DM 0.0197 0.0198 0.0200 0.0200 0.0200 0.0201 0.0201 0.0201 0.0201 0.0201

(a) (b) [µm]

203
1127

583
2000

258
2000

270
1188841

2000
258

2000
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Table 4 Flow rate in each microdevice. 

 
 

 
Fig. 6 Stacked plate-fin microdevice (left) and application of the developed model to it (right). 

 

4 shows the flow rate of each microdevice. It was shown that a more uniform flow 
distribution was achieved after optimization, compared to before optimization (DIN = 
DOUT = 2 mm), and that the predicted flow rates after optimization of the developed simple 
model and the CFD model were almost the same. Therefore, it was confirmed that the 
developed simple model is useful not only for the optimal design of the plate-fin 
microdevice itself but also for the optimal design when it is stacked.  

6. Conclusions 
The application of microdevices in the chemical process industry has gained significant 
importance in recent years. The production capacity of microdevices can be increased by 
numbering-up. Such microdevices often have manifolds that help to guide the fluid into 
many microchannels. The flow uniformity depends on pressure and flow distributions 
inherent to the design of manifolds and others. In this study, the compartment-based 
simple model was developed to realize efficient design. The developed model is 
composed of mass balance and pressure balance equations among compartments. When 
establishing pressure balance equation, both viscous and inertia terms were considered in 
the developed model. The conventional model ignored the inertia term, and as a result, its 
application was limited to low flow rates. The usefulness of the developed simple model 
was verified through case studies on plate-fin microdevices at high flow rates.  
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1 2 3 4 5 6 7 8 9 10

The developed model  (after optimization) 0.0499 0.0499 0.0499 0.0500 0.0500 0.0500 0.0500 0.0501 0.0501 0.0501

(after optimization) 0.0497 0.0500 0.0500 0.0500 0.0500 0.0500 0.0501 0.0501 0.0501 0.0500
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Abstract 
The fixed bed reactor design is traditionally based on a model that assumes a piston flow 
and regards the fixed bed as homogeneous porosity. This kind of model is often unsuitable 
for designing fixed bed compact reactors in which wall and local phenomena dominate. 
In this work, three-dimensional steady-state computational fluid dynamics (CFD) 
simulation was performed to analyze how the geometric structured packing with spherical 
particles, reactor diameters, and particle sizes, which are important design variables, 
influence the conversion and selectivity of a model reaction. The simulation results show 
that the generation of flow perpendicular to the axis of the reactor leads to the 
improvement of the reactor performance. In addition, it was suggested that the 
honeycomb type fixed bed compact reactor is superior to the packing type one in realizing 
a uniform reaction temperature field and reducing the pressure loss.  
 
Keywords: CFD simulation, Compact reactor, Fixed bed, Fluid dynamics, Heat transfer. 

1. Introduction 
The market for functional chemicals, including pharmaceutical intermediates, is growing. 
Currently, functional chemicals are manufactured exclusively by the batch method, and a 
large amount of waste containing organic solvents is discharged, and energy is consumed 
to dispose of the waste. In recent years, it has been reported that functional chemicals are 
synthesized by a flow method utilizing an immobilized catalyst having high selectivity 
(Tsubogo et al., 2015). It is expected that the use of such a flow method will increase in 
the future in place of the batch method. In a reaction process with an immobilized catalyst, 
compact reactors such as microreactors, which are expected to enable rapid mass and heat 
transfer due to the large specific surface area between different phases, are often used. 
However, research on fixed bed compact reactors is not sufficient compared to 
conventional reactors, and their design methods have not been established. Although 
catalyst development is being actively carried out, the performance of the developed 
catalyst will not be fully exhibited without consideration of appropriate reactor design. It 
is important to rationally solve the engineering problems of the fixed bed compact 
reactors such as temperature control and pressure loss reduction, based on the models, 
which can quantitatively express mass and heat transfer as well as fluid dynamics. 
 
When analyzing the flow and transport in a conventional reactor, a model that assumes a 
piston flow and regards the fixed bed as homogeneous porosity is often used. On the other 
hand, in the case of a fixed bed compact reactor, which is often used for reaction processes 
involving a large amount of heat of reaction, a model with high prediction accuracy of 
heat transfer is required to realize strict reaction control. Considering that heat transfer 
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depends on flow, a model that can analyze local flow and transport is required. Therefore, 
it is useful to analyze the fixed bed compact reactor based on CFD simulation, which can 
express the discrete porosity distribution in consideration of an individual shape of 
catalyst carriers. In CFD simulations of fixed bed conventional reactors, CFD has been 
considered to be a powerful tool for predicting the hydrodynamics and mass transfer from 
microscale perspectives (Haroun et al., 2012; Hamidipour et al., 2013; Bouras et al., 2021). 
CFD simulation will also be useful for fixed bed compact reactors. In this study, the flow 
and transport characteristics of a fixed bed compact reactor were analyzed by CFD 
simulation. How the packing methods of spherical catalyst carriers, reactor diameters, 
and catalyst carrier sizes, which are important design variables, affect the conversion and 
selectivity of a model reaction was investigated.  

2. Simulation settings 
This chapter describes the settings for CFD simulation of the reactor. 

2.1. Reaction system 
A reaction system, its rate equation, and the physical properties of fluid and catalyst were 
given with reference to the reaction examples dealt with in NEDO project (see Ref.). The 
parallel reaction was assumed to proceed on the surface of the catalyst particles. A is the 
raw material, B is the main product, and C is the by-product. The temperature dependence 
of each reaction rate follows the Arrhenius equation. The reaction parameters including 
standard reaction enthalpy ( ∆୰𝐻௜

° ) are shown in Table 1. The higher the reaction 
temperature, the more by-product is produced. The physical properties of the reaction 
fluid and catalyst are shown in Table 2. They were all assumed to be constant.  
 

Reaction 1 A → B 𝑟ଵ ൌ 𝑘ଵ଴expሼെ𝐸ଵ ሺ𝑅𝑇ሻ⁄ ሽ 𝐶୅ 

Reaction 2 A → C 𝑟ଶ ൌ 𝑘ଶ଴expሼെ𝐸ଶ ሺ𝑅𝑇ሻ⁄ ሽ 𝐶୅ 
 

2.2. Design and operation conditions 
Figure 1 shows an example of packing type fixed bed compact reactors used in this study. 
Assuming that spherical particles are regularly packed as a carrier, two typical of packing 
methods were examined as shown in Fig. 1. Packing method 1 (PM1) has a fundamental 
structure where one particle is placed between adjacent particles located below it. Packing 
method 2 (PM2) has a fundamental structure where one particle is placed directly above 
another particle located below it. Assuming that the shape of the reactor is tubular, the 
inner diameter of the reactor (dr) was set to 10 mm and 40 mm, and the ratio of the inner 
diameter of the reactor to the carrier particle size (N) was set to 10 and 4, referring to the 
reactors developed in the NEDO project. The reaction fluid was supplied from the reactor 
inlet at a temperature of 300 K, a linear velocity of 0.08 m/s, and a raw material 
concentration of 1 kmol/m3. The outlet pressure of the reactor was assumed to be equal 
to atmospheric pressure. The reactor wall temperature was constant at 300 K.  
 

Table 1 Reaction parameters.     Table 2 Physical properties of reaction fluid and catalyst. 
𝑘ଵ଴ሾ1/sሿ 4.78ൈ106   Density ሾkg/mଷሿ 700 (fluid), 3940 (cat.) 

𝑘ଶ଴ ሾ1/sሿ 4.78ൈ106   Specific heat ሾJ/kg/ Kሿ 2000 (fluid), 780 (cat.) 

𝐸ଵ ሾkJ mol⁄ ሿ 31.0   Thermal conductivity ሾW m⁄ /Kሿ 0.1 (fluid), 300 (cat.) 

𝐸ଶ ሾkJ mol⁄ ሿ 36.5   Viscosity ሾkg m⁄ s⁄ ሿ 0.0003 (fluid) 

∆୰𝐻ଵ
° ሾkJ/molሿ 10   Diffusivity ሾmଶ/sሿ 1ൈ10-5 (fluid) 

∆୰𝐻ଶ
°  ሾkJ/molሿ 20   Molar mass ሾg/molሿ 50 (fluid) 
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              <Packing method 1>              <Packing method 2>         Fig. 2 Effect of α on reaction results  
 

Fig. 1 A fixed bed compact reactor for N = 4.                 (Case 7 in Table 3).  
 

Table 3 Simulation conditions and results in each case 
Case α dr N PM Xr Xs 

1 

0.95 

10 
10 1 1.000 0.812 

2 2 0.997 0.810 
3 4 1 0.986 0.833 
4 2 0.915 0.834 
5 

40 
10 1 0.963 0.781 

6 2 0.905 0.781 
7 4 1 0.851 0.799 
8 2 0.712 0.806 

 
In a preliminary study to evaluate the flow velocity distribution over the packed bed while 
changing the number of layers from 3 to 10, the result was that there was almost no effect 
of the number of layers on the flow velocity distribution. Therefore, in consideration of 
the computational load, the number of layers was fixed at 3. In addition, regarding mesh 
generation by CFD, the mesh quality deteriorates near the contact points between particles 
and the contact points between particles and reactor wall, and as a result, mesh generation 
cannot be performed. To avoid this problem, the particle volume change coefficient α was 
introduced and set to 0.95 (Bai et al., 2009). This means that each particle is slightly 
shrunk in size but its position remains unchanged. It was examined in advance that the 
relationship between the reaction results and the particle shrinkage or expansion is as 
shown in Fig. 2. In this figure, it was judged that α does not have a large effect on the 
reaction results.  

3. Simulation results and discussion 
CFD simulation was performed using Ansys Fluent® software to investigate how the 
packing methods (PMs), reactor diameters (dr), and catalyst carrier sizes (dp=dr/N), which 
are important design variables, affect the reaction conversion and selectivity, which are 
represented by Xr and Xs, respectively. The simulation results of eight cases, where the 
diffusion coefficient D was set to 1.0×10-5 m2/s and the catalyst area in the reactor was 
constant, are summarized in Table 3. In addition, the cross section of the packed bed 
(Planes 1-3) and the cross section along the axis were analyzed to evaluate the 
distributions of velocity, concentration, and temperature. The following sections show 
and discuss the obtained CFD simulation results in detail.  

3.1. Packing methods: PM1 vs. PM2 
Focusing on Cases 7 and 8, the effect of the PMs on the reaction results is discussed. The 
Xr of PM1 was 0.139 higher than that of PM2. The tendency of this result was also  
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Fig. 3 Flow velocity distribution on the axis plane.      Fig. 4 Radial flow velocity distribution on plane 3. 

 
observed in other similar cases. It was also shown that the difference in Xr was larger 
when N was smaller and when dr was larger. As shown in Fig. 3, PM2 has more regions 
where the velocity is 0 above and below each catalyst particle, that is, stagnant portions, 
compared to PM1, and as a result, the raw material is not efficiently supplied to the 
particle surface. On the other hand, in the case of PM1, it can be seen that radial flows 
occur as shown in Fig. 4. The maximum radial flow velocity corresponds to 0.63 times 
the axial flow velocity in the bed. It can be estimated from the CFD analysis results that 
the effective area of the catalyst particles used for the reaction is about 1.3 times larger in 
Case 7 than in Case 8, and it was reflected in the reaction results.  
 

3.2. Reactor diameter and catalyst carrier size 
The effect of N (=dr/dp) on the reaction results is discussed. Focusing on Cases 5 and 7, it 
was shown that Xr was 0.112 higher and Xs was 0.018 lower for N = 10 than for N = 4. Xr 
became higher for N = 10 than for N = 4, regardless of cases. The increase in Xr may be 
due to the fact that the catalyst surface area per unit volume of N = 10 is 2.5 times that of 
N = 4. However, if the heat of reaction is not removed efficiently, it is expected that the 
catalyst surface temperature will rise, resulting in a decrease in Xs. This expected result 
was actually seen in Cases 5 and 7. When PM1 is adopted as the catalyst packing method, 
the efficient heat removal by convective heat transfer of radial flow may be achieved. As 
shown in Fig. 5, the radial flow was observed in both Cases 5 and 7. However, it can be 
seen that the maximum velocity of the radial flow in the case of N = 10 is about half that 
in the case of N = 4. Therefore, it was difficult to expect a great heat removal effect by 
the radial flow in the case of N = 10.  
 
The effect of dr on the reaction results is discussed. Focusing on Cases 3 and 7, it was 
shown that when dr was changed from 40 mm to 10 mm, the reaction rate increased by 
0.135 and the selectivity increased by 0.034. This is because as dr becomes smaller, 
mixing by diffusion is promoted, resulting in a more uniform concentration field, as 
shown in Fig. 6, and in addition, the efficiency in heat removal through the reactor wall 
is improved, resulting in a more uniform temperature field.  
 

 
Fig. 5 Radial flow velocity distribution on plane 3 (N=4, 10). 
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Fig. 6 Raw material dispersion on planes.    Fig. 7 Average cross-sectional temperature in the reactor. 
 

3.3. Heat transfer through catalyst carriers 
The effect of heat transfer through catalyst carriers on the reaction results is discussed. 
CFD simulation was performed for case 7 under the condition of α = 1.05. This value of 
α means that the size of each particle was increased by 5% but its position has not changed.  
As a result of CFD simulation, it is shown that Xr increased by 0.004 very slightly but Xs 
increased by 0.109. The large increase in Xs is largely due to the improvement in the 
ability to remove reaction heat by conduction heat transfer through the catalyst carriers, 
which partially overlap each other. Figure 7 shows average fluid temperatures on cross 
sections in the reactor with/without heat transfer through catalyst carriers. It can be seen 
that an isothermal reaction field was realized in the reactor with heat transfer through 
catalyst carriers, and as a result, Xs was improved.  
 

3.4. Honeycomb type catalytic reactor 
The result in the previous section suggests that promotion of conduction heat transfer 
through the catalyst carriers achieves a more uniform temperature field. However, in an 
actual particle-packing type fixed bed compact reactors, it may be difficult to realize the 
structure that connects particles by planes instead of points. Therefore, the usefulness of 
a honeycomb type compact reactor was examined by CFD. Figure 8 shows the 
honeycomb type compact reactor designed in this study. The cross section of the reactor 
and the cross section of each channel were assumed to be square, and the wall thickness 
and the channel width were set to 1.1 mm and 1.3 mm, respectively. This channel width 
was determined by dividing the channel volume by the catalyst surface area. Since 14 
channels were arranged in both the vertical and horizontal directions, the total number of 
channels was 196. The CFD simulation results for packing type and honeycomb type  
 

 
Fig. 8 Honeycomb type fixed bed compact reactor.  

Table 4 CFD-based evaluation of honeycomb type 
fixed bed compact reactor. 
 Xr [-] Xs [-] P [Pa] 

Packing type 0.979 0.879 101 

Honeycomb type 0.989 0.901   60 
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fixed bed compact reactors are summarized in Table 4. It can be seen that the honeycomb 
type can achieve the same reaction result as the packing type shown in the previous 
section. Furthermore, it can be seen that the pressure loss of the honeycomb type was 
reduced by about 40% compared to the packing type. 

4. Conclusions 
In this study, CFD simulation was used to analyze the flow and transport phenomena of 
the packing type fixed bed compact reactors, which are currently used for synthesizing 
functional chemicals, and to evaluate the reaction results. The simulation results showed 
that the generation of flow perpendicular to the axis of the reactor leads to the 
improvement of the reaction results because the surface area of each catalyst can be 
effectively used. In addition, it was suggested that the honeycomb type is superior to the 
packing type in controlling the reaction time, realizing a uniform reaction temperature 
field, and reducing the pressure loss.  
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Abstract 

Volatile organic compounds (VOC) use is ubiquitous in the pharma industry, posing great 

risks as potential organic gas releases are harmful to both environment and human health. 

Fixed-bed columns containing activated carbon or other adsorbents selectively remove 

VOCs from gas effluent streams. Nevertheless, they can be quickly and/or irregularly 

saturated, due to a great, simultaneous variation of flowrates and mixture compositions. 

This paper presents the development and implementation of a dynamic, non-isothermal 

adsorption model (under both adiabatic as well as non-adiabatic conditions) for the study 

of multicomponent alkane adsorption. A scenario-based investigation of binary mixture 

(heptane-decane) behaviour examines the effect of key parameter changes and reveals the 

preferential adsorption of decane on beaded activated carbon (BAC) under different 

flowrate, mixture composition and column length. Modeling of heat transfer boundary 

conditions (BC) combined with critical parameter variations improves our operational 

understanding, towards comprehensive technoeconomic VOC abatement optimisation. 

 

Keywords: Volatile Organic Compound (VOC), dynamic simulation, adsorption. 

1. Introduction 

 

The fragile interconnected relationship between human health and physical environment 

is increasingly highlighted, with air pollution heavily affecting both (Dobre, 2014). 

Volatile organic compounds (VOC) represent a class of solvents commonly employed for 

industrial process use, contributing to ca. 40% of VOC emissions in the EU for 2017 

(EEA, 2019). In an effort to mitigate climate impact, pharma industries turned to VOC 

abatement and its process optimisation. Adsorption, as less capital- and energy-intensive 

vs. other technological options, is established practice. Nevertheless, quick and irregular 

bed saturation due to feed variability impedes process efficiency and increases costs. 

This work presents the development and application of a dynamic, nonisothermal, VOC 

adsorption model under both adiabatic and non-adiabatic conditions. Recent literature 

studies (Fournel et al., 2010; Tefera et al., 2013 & 2014; Knox, 2016) forego the detailed 

investigation of heat balance boundary conditions. Our aim here is to highlight the effect 

of key operating parameter changes (flowrate, composition, column length) under varying 

heat transfer scenarios, to establish a framework for industrial column usage optimisation.  
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2. Dynamic Model Development: Assumptions and Structure 

 

The mathematical model used in the present study relies on the following assumptions: 

1. The temperature difference between particles and the gas phase as well as carrier gas 

adsorption are considered negligible, while the ideal gas law also applies (Suzuki, 1990).  

2. Equilibrium obeys the Extended Langmuir model/binary mixtures (Tefera et al., 2014). 

3. Mass transfer in the solid phase is approximated by the LDF model, Eq.  (Sircar, 2000). 

4. Adiabatic conditions modelled by eliminating last term in Eq. (22) (Ruthven, 1984). 

The model equations are derived from these sources, with Eqs. (17-21) from Knox (2016). 

The Bosanquet formula, Eq. (12) thus Eq. (5), is verified (Krishna & van Baten, 2012). 

 

𝜕𝐶𝑖

𝜕𝑡
= 𝐷𝑧,𝑖

𝜕2𝐶𝑖

𝜕𝑧2 −
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𝜕𝑧
−

(1−𝜀𝑏)

𝜀𝑏
𝜌𝑝

𝜕𝑞𝑖

𝜕𝑡
     (1) 𝑘𝑒𝑓𝑓 = 𝑘𝑔(

𝑘𝑝

𝑘𝑔
)𝑛  (17) 

𝐷𝑧,𝑖 = (𝛼0 +
𝑆𝑐𝑖𝑅𝑒𝑝

2
)

𝐷𝐴𝐵,𝑖

𝜀𝑏
            

(2) 

 

𝑛 = 0.28 − 0.757 log10 𝜀𝑏 −

0.057 log10 (
𝑘𝑝

𝑘𝑔
)    

(18) 

𝐷𝐴𝐵,𝑖 = 10−3𝑇1.75
√(

𝑀𝐴+𝑀𝐵
𝑀𝐴𝑀𝐵

)

𝑃((∑ 𝑣)𝐴
0.33+(∑ 𝑣)𝐵

0.33)
2  (3) 𝑘𝑒𝑧 = 𝑘𝑔(

𝑘𝑒𝑓𝑓

𝑘𝑔
+ 0.75𝑃𝑟𝑅𝑒)  (19) 

𝜕𝑞𝑖
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1

ℎ𝑜𝑑
=

1
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𝑅
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𝜏𝑝 =
1

𝜀𝑝
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   𝑄 = 𝑉𝑠𝐴  (32) 
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A short model description follows (i: component): in Eq. (1), C, Dz,i, u, εb, R and q are the 

gas phase VOC concentration (mol m–3), the axial dispersion coefficient (m2 s–1), the 

interstitial velocity (m s–1), the bulk bed porosity, the column inner radius (m) and the 

adsorbed phase VOC concentration (mol m–3), respectively. Eq. (2) further introduces Sci, 

Rep, DAB,i, and α0 as the Schmidt number of i, the Reynolds number (adsorbent particle), 

the molecular diffusivity (m2 s–1) and the empirical mass diffusion correction factor (20) 

respectively. In Eq. (3), Σν is the atomic diffusion volume (A: VOC, B: carrier), T is 

temperature (K), P is pressure (atm) and M is molecular weight (g mol–1). On Eq. (4), ρp, 

kLDF,i are the particle density (kg m–3) and LDF mass transfer coefficient (s–1) respectively 

and qe,i is the inlet PT adsorbent equilibrium capacity (mol kg–1). Ιn Eq. (5), εp is the 

particle porosity, C0,i is the inlet concentration of i (mol m–3), Deff,i  is the effective 

diffusivity of i (m2 s–1), τp is particle tortuosity, Cs0,i is the adsorbed phase concentration 

at equilibrium with C0,i (mol m–3) and dp the particle diameter (0.75 mm).  Eqs. (6)-(13) 

present ρb, D, Vpore, Dk,i , rp as bed density (kg m–3), bed inner diameter (m), adsorbent 

pore volume (5.7∙10–4 m3 kg–1), Knudsen diffusivity (m2 s–1) and pore radius (1.1∙10–9 m).  

Eqs. (14)-(15) introduce qe,i, qm,i, bi, bo,i, and ΔHad,i as the equilibrium and maximum 

adsorption capacity of i (mol kg–1), the Langmuir affinity coefficient (m3 mol–1), the pre-

exponential constant (m3 mol–1) and the heat of adsorption (J mol–1), respectively. Then, 

Eq. (16) presents αi, ΔHvap,i, IPi, γi and wmic as polarizability (10–24 cm3), heat of 

vaporization (kJ mol–1), ionization potential (eV), VOC surface tension (mN m–1) and 

average micropore width (nm), respectively. Eqs. (17)-(22) introduce Tw, ρg, Cpg, Cpp, kez, 

keff, kg, kp, ho, hi, kew, kw, x, dlm as the wall temperature (K), gas density (kg m–3), specific 

heat capacity of gas/particle (J kg–1 K–1), effective axial thermal conductivity/effective 

/gas/particle thermal conductivity (W m–1 K–1), overall/internal heat transfer coefficient 

(W m–2 K–1), effective wall/wall thermal conductivity (W m–1 K–1), column wall thickness 

(m), mean logarithmic column diameter, respectively. Finally, μ is gas viscosity (Pa s–1), 

Pr is the Prandtl number, Q the volumetric flowrate (m3 s–1), and A the bed area (m2). 

 

3. Dynamic Model Parameters for Adsorption Systems 
 

The adsorption of a binary (heptane–decane) mixture, with air as the carrier, has been 

examined on BAC (Tefera et al., 2014) under both isothermal and adiabatic BC (CS0), 

different flowrate, composition, bed length (CS 1–3). The set of PDEs is solved using 

orthogonal collocation on finite elements using the gPROMS® Process 2.0 software suite. 

Viscosities are computed from Wilke’s equation and densities through pure component 

data via mixing rules (T=300 K, P=1 atm) (NIST, 2021). Air is assumed a binary mixture 

(N2:O2 = 79:21 % v/v). Tables 1, 2 and 3 present key parameter values for the simulations.  

Table 1: Parameters for heptane-decane scenarios and axial dispersion coefficient calculation. 

Case Study ρ (kg m–3) μ (Pa s–1) Re Sc DAB,i (m2 s–1) R (m) 

0 1.52 2.19∙10–5       47.64 
1.96 7.35∙10–6 0.0076 

2.37 6.08∙10–6 0.0076 

1 1.52 2.19∙10–5 23.82 
1.96 7.35∙10–6 0.0076 

2.37 6.08∙10–6 0.0076 

2 1.53 2.20 ∙10–5 47.74 
1.96 7.35∙10–6 0.0076 

2.36 6.08∙10–6 0.0076 

3 1.52 2.19∙10–5 47.64 
1.96 7.35∙10–6 0.0076 

2.37 6.08∙10–6 0.0076 
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Table 2: Thermal properties parameters for heptane-decane mixture case studies. 

Case 

Study 
kez  

(W m–2 K–1) 

Tin  

(K) 
ho 

(W m–2 K–1) 

kp   
(W m–1 K–1) 

Cpp   

(J kg–1 K–1) 

Pr x 

(m) 
ρb 

(kg m–3) 

0 0.85 300 43.57 0.17 706.7 1.1 0.001 606 

1 0.46 300 25.07 0.17 706.7 1.1 0.001 606 

2 0.86 300 43.65 0.17 706.7 1.1 0.001 606 

3 0.85 300 43.57 0.17 706.7 1.1 0.001 606 

 

Table 3: Main simulation parameters for heptane-decane mixture adsorption case studies. 

Case 

Study 
Dz,i  

(m2 s–1) 

Tw  

(K) 

L  

(m) 

xVOC Vs  

(m s–1) 

qm  

(mol kg–1) 
ε kLDF  

(s–1) 
b0  

(m3 mol–1) 

Fig. 1 

CS0 
0.00129 

295 0.0650 
0.000250 

0.914 
3.69 

0.38 
6.88∙10–5 5.02∙10–13 

(a)-(d) 
0.00122 0.000250 3.16 2.26∙10–5 8.65∙10–14 

CS1 
0.00084 

295 0.0650 
0.000250 

0.457 
3.69 

0.38 
6.88∙10–5 5.02∙10–13 

(e)-(f) 
0.00077 0.000250 3.16 2.26∙10–5 8.65∙10–14 

CS2 
0.00129 

295 0.0650 
0.000125 

0.914 
3.69 

0.38 
8.44∙10–5 5.02∙10–13 

(g) 
0.00122 0.000375 3.16 2.75∙10–5 8.65∙10–14 

CS3 
0.00129 

295 0.0975 
0.000250 

0.914 
3.69 

0.38 
6.88∙10–5 5.02∙10–13 

(h) 
0.00122 0.000250 3.16 2.26∙10–5 8.65∙10–14 

 

4. Results and Discussion 
 

Breakthrough curves, temperature and pressure variations of the examined systems are 

shown in Fig. 1. Our model is succesfully validated, Fig. 1 (a), vs. published experimental 

breakthrough curves which dictated our inputs (CS0) in Fig. 1 (a)-(d) (Tefera et al., 2014). 

Fig. 1 (a) shows a breakthrough duration predicted with minimal error for decane, but a 

mismatch for heptane, particularly during the transient high-C phase of the latter. 

Discrepancies could be attributed to the limitations of our 1-D nonisothermal model, but 

we remark this mismatch is very similar to that in the published plot (Tefera et al., 2014).  
 

We consider three case studies (CS 1-3) of different flowrate (CS1), composition (CS2) 

and bed length (CS3), depicted in Fig.1 (e)-(h). Adiabatic BCs of the base case, Fig.1 (d), 

clearly induce a heat buildup within the bed, compared to the isothermal BCs of Fig.1 (c). 

A linear ΔΡ profile is seen in Fig.1(b), consistent with reported trends (Tefera et al., 2013). 

Fig. (e) presents the heptane-decane binary mixture behaviour at a flowrate 50% smaller 

than the base case (CS1). The order of affinity strength remains (decane > heptane), but 

the onset of breakthrough occurs later and the duration is longer compared to the base 

case. The lower flowrate is directly associated with a 56% pressure drop reduction 

presented in Fig. 1 (f), i.e. roughly half the pressure drop observed in Fig. 1 (b) for CS0. 

Fig. 1(g) illustrates the effect of mixture composition variation: Cdecane = 3∙Cheptane (CS2). 

Though gradual displacement of heptane persists, the plot indicates that the concentration 

change induces a earlier breakthrough onset for decane as well as a later one for decane, 

combined with a clearly shorter duration for both VOCs compared to the base case (CS0). 

Finally, Fig. 1(h) presents the effect of key design variable changes, considering a design 

variation of 50% increased bed length (CS3), and its effect on breakthrough behaviour. 

Once again, decane is adsorbed much later with the same trend of heptane displacement, 

but the onset of breakthrough for both occurs later in time, due to the increased bed size. 
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(a) (b) 

  
(c) (d) 

  
(e)  (f) 

  
(g) (h) 

Figure 1: Model validation (a) (Tefera et al., 2014); operat. profiles (b)-(d); case studies (e)-(h). 
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5. Conclusions 
 

Active Pharmaceutical Ingredient (API) manufacturing relies on the use of vast amounts 

of solvents, thus increasing risks on environment and public health due to VOC emissions. 

Cognizant of the growing environmental concern, pharma companies are shifting their 

focus towards drastic climate impact minimisation through process optimisation in an 

effort to mitigate air pollution caused by VOC emissions. Adsorption is often adopted as 

an industrial VOC abatement method, yet not without operational efficiency challenges. 

Although adsorption modelling is extensively studied in the literature, comprehensive 

studies examining the effect of operational decisions on VOC removal efficiency towards 

technoeconomic process optimisation still remain elusive (Tzanakopoulou et al., 2021).  

 

This paper demonstrates the development and application of a one-dimensional in space, 

multicomponent, nonisothermal adsorption model to highlight the complex phenomena 

taking place inside pharma VOC adsorption columns, considering axial dispersion in the 

gas phase and the Linear Driving Force model for solid phase mass transport. Differences 

between isothermal and adiabatic BC are critical considering the exothermic nature of the 

process. Our simulations revealed quicker uptake of heptane under varying flowrate, 

composition and bed length, with decane is adsorbed later in all four cases we considered. 

A decrease in the flowrate resulted in a later onset, a larger duration of breakthrough and 

a reduction of pressure drop compared to the base case, thus implying inefficient practice. 

In view of industrial applications, a larger (thus costlier) bed length investigation resulted 

in a later onset and longer breakthrough duration. Reliable modelling of multicomponent, 

nonisothermal VOC adsorption paves the way for technoeconomic optimisation efforts. 
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Abstract 

According to the International Energy Agency, hydrogen is one of the pillars to reach Net 

Zero CO2 emissions by 2050. Forecasts indicate a market size of 200 Mton in 2030, of 

which 35% will be blue hydrogen (IEA, 2021). This work approaches the separation of 

hydrogen from carbon dioxide, by integrating the Python software environment with 

Aspen Plus software. Compression and cooling of the feed components to the hydrate 

formation conditions upstream the NetMIX is modelled in Aspen Plus. In the Python 

interface, the heat and mass balances associated with the NetMIX are performed, 

including the Gibbs Energy Minimization algorithm, developed by Ballard (Ballard, 

2002) for the prediction of hydrate/liquid/vapor equilibrium. The model developed was 

applied to a case study, which considers a gas stream of 3300 m3 
PTN•h-1, containing 60 % 

of hydrogen and 40 % of carbon dioxide (molar percentages). The results show an 

improvement in the purity of H2 in the gaseous stream of nearly 25 %, reaching a value 

of 84 %, while also a recovery near 62% of CO2 via the hydrate phase is obtained, with 

30 MJe • m3 
PTN

-1 of electrical demand and 210 MJt • m3 
PTN

-1 of cooling demand.  

Key Words: Hydrogen separation; NetMIX technology; Hydrates. 

1. Contextualization 

1.1. CO2 concerns 

In 2015 in Paris, during the United Nations Framework Convention on Climate Change, 

the Paris Agreement was signed, where 195 nations agreed that changes were required to 

combat climate change and mitigate its impacts.  In 2021, at the COP26 UN Climate 

Conference, 190 countries reinforced the targets set by the Paris Agreement to limit global 

warming to below 2 degrees Celsius, and as close as possible to 1.5 degrees Celsius. This 

objective can be achieved through the reduction of the emissions of greenhouse gases, 

such as carbon dioxide (CO2) and methane (CH4). The CO2 concentration has increased 

around 40 times since preindustrial times, mainly due to its emissions by the burning 

process of fossil fuels. A solution to reduce these emissions urges and one possibility 

consists of finding fuel alternatives to fossil fuels, such as hydrogen. 

367

http://dx.doi.org/10.1016/B978-0-323-95879-0.50057-6 



 M. A. L. Fernandes et al. 338 

1.2. H2 as a source of energy 

Hydrogen has an energy density of 120 MJ•kg-1, which is more than two times larger than 

methane. In the context of reaching net zero emissions by 2050, hydrogen needs to be 

produced from electrolysis with renewable electricity, i.e., green hydrogen, or steam 

methane reforming with CO2 capture, i.e., blue hydrogen. Hydrogen can then be used as 

an energy source, either by producing energy in turbines or by its use in fuel cells, after 

going through the required purification steps. 

1.3. Hydrates 

Hydrates are non-stoichiometric crystalline structures, composed of hosts, typically water 

molecules, that are connected to each other by hydrogen bonds. These hosts create 

cavities, where guests, small gas molecules, are constrained. For hydrates to form, low 

temperatures and high pressures are required and the amount of gas in contact with the 

liquid must surpass the solubility limit of the gas on water. The hydrate formation 

conditions are specific to the gas molecule being hosted, thus providing a way for 

separating different gases in a gas mixture, such as flue gas (CO2 and N2) or mixtures for 

a reformer outlet (CO2 and H2), while allowing the storage of gases in solid form.  

For hydrates to keep their stability, the necessary temperature and pressure conditions 

must be maintained. This is very challenging for a continuous production scenario since 

the hydrate formation process is highly exothermic. 

A solution proposed to this challenge is the use of NetMIX technology, which consists of 

a network of mixing chambers, interconnected by transport channels, which enable better 

control of the mixing process, and result in outstanding heat transfer capabilities (Costa 

et. al., 2015), providing an efficient heat removal that keeps hydrates stable.  

The aim of this work is to develop a framework simulation for modelling the formation 

of hydrates in NetMIX device (Lopes et al., 2019), as a method to separate hydrogen from 

a mixture with carbon dioxide, to investigate the potential of this solution. 

2. Materials and Methods 

2.1. Process modelling 

The software used for creating the simulation model was Aspen Plus. The designed 

flowsheet is shown in Figure 1. 

 

Figure 1 - Designed flowsheet for the hydrogen separation via hydrate. 

The flowsheet consists of two feed streams: one for water, the other for the gas mixture. 

The water feed is sent to a pump, to increase the pressure to 125 bar, and through a cooler, 

to decrease the temperature to 0.5 ºC, the conditions for hydrate formation. The gas feed 

first goes through a cooler, to decrease the temperature, due to the high temperatures of 

the reforming stage. Then it goes through a two-stage compressor, with a cooler in 

between, to control the temperature increase due to the compression. The gas stream, at 

the operating pressure, then goes through a cooler, to decrease the temperature. The 

streams are then mixed, and to prevent temperature increase due to the mixing process, a 
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cooler is added after the mixer. This stream is then fed to the NetMIX device, where the 

separation occurs. 

Aspen Plus does not contain a model of the NetMIX device, nor can it predict the 

formation of hydrates. For these purposes, a Python code was implemented. This code, 

named HydrateFlash.py (Darnell et. al., 2017) is the Python translation of another 

software application, named CSMGem. This software was developed by Adam Ballard 

(Ballard, 2002) and predicts the formation of hydrates, based on the Minimization of the 

Gibbs Energy. It contains a set of components in its database, but not hydrogen. Thus, the 

properties of hydrogen were added to the HydrateFlash.py code database. 

2.2. The HydrateFlash.py simulator 

The HydrateFlash.py simulator minimizes the Gibbs Energy, coupling with the 

thermodynamic equilibrium conditions, where temperature, pressure, and fugacity are 

equal for all phases. The objective function uses the concept of K-values. These values 

represent the repartition coefficient between two phases, one of those being the reference 

phase.  

Assuming that the equilibrium of a mixture of carbon dioxide, hydrogen, and water, under 

certain conditions, can be restrained to a three-phase distribution, those being vapor, 

liquid and hydrate phases, two sets of K-values must be given. Assuming that the vapor 

phase is the reference one, then the simplified Raoult’s law can be used to express the 

liquid/vapor equilibrium, while a thirteen-parameter equation, described in Ballard’s 

work is used to express the equilibrium between the vapor and the hydrate phase. 

3. Results and Discussion 

3.1 Validation of HydrateFlash.py results 

The results of HydrateFlash.py for predicting the thermodynamic equilibrium between 

the vapor-liquid-hydrate phases were validated with the results obtained with CSMGem 

for different scenarios for vapor-liquid-hydrate equilibrium. When possible, these results 

were checked with results published in the literature.  

Figure 2 shows the results obtained by CSMGem and HydrateFlash.py for a mixture of 

CH4/CO2, since these components are present in both softwares. The objective was to 

compare the equilibrium line, i.e., the conditions at which hydrate is formed, for a 

temperature, in the range of 0.5 to 8.5 ºC.  

 

 
Figure 2 - Equilibrium lines for the H2O, CH4 and CO2 mixture 

As seen from Figure 2, the results present slight deviations of about 0.3 bar, on average. 

This behavior can be justified by the fact that CSMGem, at a certain range of pressures 

(very near the transition zone of vapor-liquid equilibrium to vapor-liquid-hydrate 

equilibrium), does not produce results, due to convergence problems. However, 
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HydrateFlash.py presented no convergence problems in these zones. Thus, the 

HydrateFlash.py code can be considered as a valid approach to simulate the equilibrium 

of formation of hydrates. 

3.2 Vapor-Liquid equilibrium  

The values obtained with HydrateFlash.py code for vapor-liquid equilibrium between 

hydrogen and carbon dioxide were validated against Aspen Plus predictions for the PSRK 

thermodynamic model with H2 as a Henry component, since H2 is at the supercritical 

region (Skogestad, 2009), and has a solubility in water less than 0.005 (mol:mol) at the 

target conditions (Rahbari et. al, 2019). The phase fraction, as well as the phase 

composition are shown in Figure 3 (a) and (b), respectively. 

 

(a) (b) 

Figure 3 – (a) Vapor fraction evolution at 0.5 ºC and, (b) Molar fraction on the vapor phase for 

CO2 and H2 at 0.5 ºC. 
The results are matching with a deviation of 0.36 % for the H2 vapor phase composition, 

while the average error for the phase fraction was 0.32 %. 

3.3 Validation of Vapor-Liquid-Hydrate equilibrium 

The results presented in the work of Kumar et. al (2006) were compared with the 

equilibrium pressure of a mixture of water/hydrogen/carbon dioxide, predicted by the 

HydrateFlash.py software, for different H2 fractions. As an example, Figure 4 shows the 

results concerning pressure vs. temperature for an H2 fraction of 0.608 and 0.579. 

 

(a) 

 

(b) 

Figure 4 – Equilibrium pressure variation for yH2 = 0.608 (a)and yH2 = 0.421 (b). 

The highest relative deviation between the published work and the model prediction was 

11.3 %, obtained for the H2 molar fraction of 0.579 (Figure 4b), being so these results 

were considered acceptable. 
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3.4 Influence of Pressure and Temperature for H2/CO2 hydrates formation 

Figure 5 (a) shows the pressure influence on the hydrate fraction, at 0.5 ºC, while Figure 

5 (b) shows the temperature influence on the equilibrium pressure. For the pressure, up 

to the equilibrium pressure of 51.6 bar, obtained via the equilibrium model of the 

HydrateFlash.py code, no hydrates are formed. After reaching this value, an increase of 

pressure leads to an increase in the hydrate phase fraction. For the temperature, it was 

noted that the increase in temperature increases the equilibrium pressure. 

 

(a) (b) 

Figure 5 – (a) Pressure influence on the hydrate fraction and, (b) temperature influence on the 

equilibrium pressure. 

3.5 Case study 

The flowrate assumed for this simulation was 3300 m3 
PTN•h-1, which was composed of 60 

% carbon dioxide, and 40 % hydrogen (molar percentages). For this flowrate, it would be 

required to feed 1000 ton•h-1 of water to the reactor.  

The conditions of the gas stream were a temperature of 200 ºC, and a pressure of 30 bar 

(Iulianelli et al., 2015). For the water stream, it was considered to be at ambient 

conditions, those being 20 ºC, and at 1 bar. 

The process was then set so that the operating conditions are 0.5 ºC and 125 bar, being 

these conditions defined to obtain a hydrate phase fraction larger than 30%. For the gas 

side, it was required to specify the conditions of the multi-stage compressor. For that, a 

compression ratio of 2.04 was used, and the outlet cooler temperature was 35 ºC. 

The results of the simulation indicate a gaseous stream with a molar H2 fraction of 84 %, 

while the remaining 16 % is CO2. The hydrate phase is mainly composed of water, 

representing 87 %, while 12.5 % is CO2. The phase distribution obtained was 50 % 

aqueous phase, 37 % hydrate phase and 13 % vapor phase. 

The results show an increase of nearly 25 % in the purity of the gas stream, regarding 

hydrogen. Additionally, 62 % of the carbon dioxide at the NetMIX inlet is recovered from 

the hydrate outlet stream. A separation factor, defined in equation (1), of 90 was obtained. 

This means that CO2 tends to be kept in the hydrate phase more than H2, while this last 

tends to remain in the vapor phase. 

 𝑆𝐹 =
𝑛𝐶𝑂2,ℎ𝑦𝑑/𝑛𝐶𝑂2,𝑣𝑎𝑝

𝑛𝐻2,ℎ𝑦𝑑/𝑛𝐻2,𝑣𝑎𝑝
 (1) 

Additionally, the energy consumption was calculated. A value of 30 MJe • m3 
PTN

-1 was 

obtained, considering the pump and the compression system, while it would be required 

210 MJt • m3 
PTN

-1 for cooling, considering heat removal on the heat exchangers, the 
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intercooler, and the NetMIX device. Reducing the energy requirements of the process 

may be achieved through heat integration and the use of promoters which will be covered 

in a future work. 

Conclusions 

This work approached the production of blue hydrogen, via continuous hydrate 

production. The results obtained show that the gas stream enriches in H2, reaching a purity 

of 84 % (mol:mol), while the hydrate produced is mainly composed of CO2. A separation 

factor of 90 was achieved between the vapor and hydrate phases, translating to a 

preference of H2 to be kept in the vapor phase, while CO2 tends to go to the hydrate phase. 

Due to the early stage in knowledge regarding this mixture behavior under hydrate 

formation conditions, these results can be further improved under different circumstances, 

such as different operating conditions, which will be approached in a future work. 
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Abstract
This work combines a particle model and experimental data as an alternative to improve the agree-
ment between predicted and experimental results in pyrolysis. A mechanistic model, implemented
and solved in gPROMS, is used to describe biomass pyrolysis in a shrinking particle. The content
of cellulose, hemicellulose and lignin in palm kernel shells (PKS) is determined with high perfor-
mance liquid chromatography (HPLC) and UV-Visible spectrophotometry. A synthetic sample of
cellulose, hemicellulose and lignin is prepared to resemble PKS composition. Pyrolysis of both
PKS and the synthetic sample is evaluated using thermogravimetric analysis (TGA). The results
highlight the complexity of pyrolysis and the importance of supporting modelling with experi-
mental data. TGA results show the effect of biomass components interactions in pyrolysis. A 20%
difference in pyrolysis mass conversion was found between PKS and the mixture. The agreement
between predicted and experimental results improves when the model is modified considering PKS
pyrolysis information. This work represents a step forward for understanding the role of combined
modelling and experimental strategies in describing complex processes like pyrolysis.

Keywords: biomass pyrolysis, mechanistic model, TGA, palm kernel shells

1. Introduction
The production of fuels and platform chemicals from renewable sources can contribute to gener-
ate a shift from our current oil-driven economy towards more environmental-friendly alternatives.
Biomass is an abundant resource that could facilitate such a shift. Pyrolysis is a key technology for
transforming biomass into both fuels and platform chemicals, which could support the transforma-
tion of agro-industries into biorefineries. However, the integration of pyrolysis into biorefineries
requires a better understanding of the complex interactions between biomass components. This is
particularly critical for the development of reliable models for pyrolysis process design (Bridgwa-
ter, 2018). Previous pyrolysis models consider biomass as a cellulose, hemicellulose and lignin
mixture (Ranzi et al., 2017; Di Blasi, 1994). However, biomass components interactions are not
fully understood and they are difficult to quantify (Wu et al., 2016); thus leading to poor agree-
ment between predicted and experimental results. There are previous experimental works that
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have identified interactions between biomass components (Hosoya et al., 2007; Wu et al., 2016).
However, this is not the case for modelling approaches, where there is little information regarding
the effect of such interactions over pyrolysis modelling outcomes. Moreover, information is still
scarce regarding the effect of such interactions in residues with a complex morphology like PKS.

2. Biomass pyrolysis and modelling strategies
Lignocellulosic biomass is an abundant resource that contains cellulose, hemicellulose, lignin, wa-
ter, inorganic components and extractives. Cellulose, hemicellulose and lignin represent more than
90 wt.% of biomass constituents. The thermochemical decomposition of biomass in pyrolysis in-
volves a complex system of primary and secondary chemical reactions. Hence, the determination
of biomass pyrolysis reaction mechanisms and their associated kinetic parameters is a difficult
task. This is particularly challenging for lignin because of the different composition and struc-
tures that lignin could present (Debiagi et al., 2015). Previous models have addressed pyrolysis
complexity by considering biomass as a cellulose, hemicellulose and lignin only mixture (Anca-
Couce and Zobel, 2012; Di Blasi, 1994). Other modelling approaches have included extractives
by using additional lumped pyrolysis reactions (Debiagi et al., 2015; Ranzi et al., 2017). Inorganic
components are not usually included in pyrolysis models; however, they could catalyze secondary
reactions (Ranzi et al., 2017). Existing interactions between cellulose, hemicellulose and lignin
have been identified in pyrolysis (Wu et al., 2016; Hosoya et al., 2007); however the effect of such
interactions over pyrolysis kinetics is not fully understood. Further work is needed to incorporate
such interactions into biomass pyrolysis models, for improving the agreement between predicted
and experimental results (Wu et al., 2016). The combination of modelling and experimental ap-
proaches in complex thermochemical processes like pyrolysis, stands out as an opportunity to
develop reliable models for future process design and optimization. This work aims to combine
modelling and experimental strategies as an alternative for improving predictions in pyrolysis.

3. Experimental approach and particle model for biomass pyrolysis
3.1. Materials and experimental methods

This work considers PKS and a synthetic mixture of cellulose, hemicellulose and lignin, as ma-
terials. PKS from the Elaeis guineensis Jacq. variety were collected from a palm oil extracting
company in Ecuador. The synthetic mixture combined cellulose (Alpha Chemika), low sulfonate
lignin (Sigma-Aldrich) and D-xylose (LobaChemie) to resemble PKS composition. The charac-
terization of the PKS includes moisture and ash content analysis, and cellulose, hemicellulose,
lignin and extractives determination. Moisture and ash contents are determined by gravimetry
in accordance with BS EN 18134-1:2015 and BS EN 18122:2015 standards, correspondingly.
Extractives were separated from PKS with solid-liquid extraction using ethanol USP grade and
water. The content of cellulose, hemicellulose and lignin is determined using high performance
liquid chromatography (HPLC) and UV-Visible spectrophotometry. For this purpose, samples
are prepared and hydrolyzed in accordance with the NREL/TP-510-42618 laboratory analytical
procedure (Sluiter et al., 2004). Cellulose and hemicellulose contents are determined using an
Agilent 1260 Infinity HPLC equipment with a refraction index detector. The acid soluble lignin
is determined with a Hach DR6000 UV-Visible spectrophotometer and the acid insoluble lignin is
determined by gravimetry. PKS and the synthetic mixture’s pyrolysis is studied with a Shimadzu
TGA-5 thermogravimetric analyzer. TGA experiments are performed by duplicate using a 50 mL
min−1 of nitrogen, a maximum temperature of 800 ◦C and a 50◦ C min−1 heating rate.

3.2. Particle model for biomass pyrolysis

A particle model for describing PKS pyrolysis is developed using mass, energy and momentum
conservation. Similar approaches exist to describe cellulose pyrolysis (Di Blasi, 1994; Chico-
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Proano et al., 2021); however, they do not analyze differences between pyrolysis of ideal and real
samples. For addressing this, a shrinking particle is modelled considering isometric behaviour
and including only radial variation of properties. Only gases move across the particle and they
follow an ideal behaviour. Moreover, gas/solid local thermal equilibrium is considered (Ranzi
et al., 2017). The model includes a combination of lumped kinetic models for cellulose, hemicel-
lulose and lignin pyrolysis from literature (Di Blasi, 1994; Miller and Bellan, 1997). Products are
grouped under three categories, solids (char), condensables (tar) and gases as shown in Figure 1.

Figure 1: Scheme of the kinetic model considered for pyrolysis.

The changes in the particle’s porosity, ϕ , are calculated using bulk, ρ̃ , and initial, ρ , densities.
The mass balance for the solid phase, S, and for each individual solid component, S,i, includes net
formation rates for the solid phase ΓS and for individual species ΓS,i as shown in Eqs. (1) to (6).

∂t [ρS(1−ϕ)] = ΓS (1)
∂t [ρS,i(1−ϕ)] = ΓS,i (2)

ϕ =
(ρ̃char + ρ̃biomass)

2

(ρchar ρ̃char +ρbiomass ρ̃biomass)
(3)

ΓS =
nc

∑
i=1

ΓS,i (4)

ΓS,i =
nr

∑
j=1

γi, j r j (5)

r j = A j e−
( Ea j

Rideal T

)
Ci, j (6)

In the previous equations, reaction rates, r j, are determined using the stoichiometric coefficients,
γi, of each i component in a j reaction. The Arrhenius equation is applied, using the concentration
of a specie, Ci, j, the pre-exponential factors A j and the activation energy Ea, j from literature (Miller
and Bellan, 1997). For the gas phase, G, and its individual components, G,i, the mass balance is
described in terms of the velocity of the gaseous phase, u, and its density, ρG, the net formation of
the gaseous phase, ΓG, and of individual components, ΓG,i, and mass fractions wG,i as follows:

∂t (ρG ϕ) =−∇ · (ρGϕu)+ΓG (7)
∂t (ρG ϕ wG,i) =−∇ · (ρG,i ϕ wG,iu)−∇· jG,i +ΓG,i (8)

The Darcy equation, Eq. (10), describes the movement of the gaseous phase, and the individual gas
flux through the porous particle is calculated with the diffusive term ∇· jG,i, the effective diffusivity,
Deffective, the gas phase viscosity, µG, the permeability of the solid phase, KS and the pressure P.

jG,i =−Deffective ∇ρG ϕ wG,i (9)

u =− KS

ϕ µG
∇P (10)

The energy balance in Eq. (11) includes averaged specific heats for the solid, ˆCpS, and gaseous
phases, ˆCpG. Similarly, the q term includes the heat of reaction and the thermal conductivities.

(ρS ϕ ˆCpS +ρG(1−ϕ) ˆCpG)
DT
Dt

=−∇·q−
(

∂ lnρG

lnT

)
P

DP
Dt

(11)

375

345

Individual
component

Active 
Individual

component

tar gas

char  +              gas

k1

k2

k3
k4



A. Chico-Proano et al.

Table 1: Properties of substances and initial conditions used in the model.

Property Value Units Reference
r0 138 ·10−6 m Experiments
ρcellulose 1656.00 kg m−3 (Gorensek et al., 2019)
ρhemicellulose 1865.42 kg m−3 (Gorensek et al., 2019)
ρlignin 1600.00 kg m−3 (Gorensek et al., 2019)
ρchar 1540.00 kg m−3 (Anca-Couce and Zobel, 2012)
µG 3.0 ·10−5 kg m−1 s−1 (Di Blasi, 1994)
P0 101325 Pa -
T0 373 K -

Table 2: Palm kernel shell characterization.

Property Value
Moisture content (wt.%) 10.62 ± 0.07
Extractives (wt.%) 5.78 ± 0.18
Cellulose (wt.%) 14.25 ± 1.89
Hemicellulose (wt.%) 21.44 ± 0.23
Lignin (wt.%) 45.65 ± 0.97
Ashes (wt. %) 1.93± 0.14

The particle’s initial temperature, T0, radius, r0 and pressure, P0, and the used properties are de-
fined in Table 1. The particle’s boundary is at temperature TR following a 50◦Cmin−1 heating rate,
like the experiments. The model is implemented and solved in gPROMS ModelBuilder® 7.0.

4. Results and Discussion

Table 2 shows that lignin is the main component of PKS, followed by hemicellulose and cellu-
lose. Consequently, cellulose/lignin and hemicellulose/lignin interactions would be expected in
pyrolysis (Hosoya et al., 2007). PKS also show a relatively low content of extractives and ashes.
Regarding the pyrolysis experiments, Figure 2 a) shows that the synthetic mixture decomposes dif-
ferently than the PKS during pyrolysis. Whereas PKS mainly decompose between 250−400 ◦C,
the synthetic mixture decomposes between 200−800 ◦C. Thus, the remaining mass after pyrolysis
reaches 18% for PKS and 34% for the mixture. This represents a biomass-to-gas mass conversion
of 82% for the PKS and of 66% for the mixture. Such behaviour could be due to the different mor-
phology that PKS and the mixture present. Moreover, lignin/cellulose and lignin/hemicellulose
interactions would be expected for PKS, which could affect pyrolysis conversion (Hosoya et al.,
2007). Figure 2 b) shows that the synthetic mixture’s pyrolysis resembles that of pure lignin. On
the contrary, in PKS, lignin seem to form a stable structure, which is more difficult to be pyrolyzed.

Figure 3 a) shows that the developed model reproduces cellulose pyrolysis from experiments. For
both the model and the experiments, cellulose pyrolysis occurs between 300 and 400 ◦ C, and
the remaining mass at 800 ◦ C is 3.3% for the experiment and 0.43% for the model. Discrepan-
cies are found between modelled and experimental results for hemicellulose and lignin, which is
evidenced in Figure 3 b). Indeed, for hemicellulose, experiments show pyrolysis occurring be-
tween 200− 500 ◦ C, whereas the model predicts pyrolysis between 300− 400 ◦ C. A similar
behaviour was observed for lignin. Although for hemicellulose, there is a good agreement be-
tween modelled (3.1%) and experimental (5.9%) remaining mass at 800 ◦C; a poor agreement
was found for lignin between predicted (3.0%) and experimental (43.1%) pyrolysis remaining
mass. This behaviour could be explained when considering that unlike cellulose, hemicellulose
and lignin are not formed by homogeneous building blocks. Whereas hemicellulose is a mixture
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Figure 2: Comparison of the remaining mass in TGA with 50 ◦Cmin−1 for pyrolysis of the syn-
thetic mixture and PKS a), and for the synthetic mixture and its individual components b).

Figure 3: Comparison of experimental and modelled remaining mass for cellulose a) and hemicel-
lulose b) pyrolysis, with a heating rate of 50 ◦Cmin−1.

of pentoses, hexoses and hexuronic acids; lignin contains a variety of aromatic monomers (De-
biagi et al., 2015), which are not included in the model. Consequently, modelling PKS pyrolysis
as a mixture of individual components, overestimates PKS pyrolysis conversion. This is shown
in Figure 4 as a lower remaining mass in the model (2.3%), compared to the experimental results
(17.9%). Modified models that included additional forms of hemicellulose, and a 2-stage lignin
pyrolysis model (Wang et al., 2016) were also included in the analysis. Although such modifi-
cations improve the model’s prediction, there is still a discrepancy in the lignin pyrolysis region
(> 400 ◦C). Considering the temperature ranges for cellulose, hemicellulose and lignin pyrolysis,
and the poor agreement between modelled and experimental results after 350 ◦C; discrepancies
could be attributed to lignin/hemicellulose and lignin/cellulose interactions. Moreover, the used
kinetic models consider types of hemicellulose and lignin that might not represent the PKS. Using
a detailed kinetic model for PKS, considering the effect of components interactions to adjust the
model, and including experimental kinetic parameters for PKS, could improve the model’s pre-
dictions. The internal structure of the biomass could be also playing a role in PKS pyrolysis, and
further work should be performed to understand the way morphology affects pyrolysis kinetics.
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Figure 4: Comparisson between experimental and modelled PKS pyrolysis at 50 Cmin−1. Mod-
elled PKS consider a mixture of cellulose, hemicellulose and lignin. The modified PKS models
consider different kinetics for hemicellulose and lignin from Wang et al. (2016).

5. Conclusions
The studied PKS decompose in the 250− 400 ◦C range throughout pyrolysis. The developed
mechanistic model describes cellulose pyrolysis better than hemicellulose and lignin pyrolysis.
The agreement between experimental and modelled results for PKS is improved by modifying the
model in accordance with the experimental TGA results.
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Abstract 

Methanation with regard to the symbiosis of the Borealis and voestalpine industries 
operating in the chemical park in Linz (Austria) is studied using the commercial 
software Aspen Plus.  The methanation of carbon dioxide with hydrogen allows a 
reduction of carbon dioxide emissions, especially by considering green energy for 
electrolysis. The reaction dynamics of carbon dioxide methanation is studied to obtain a 
suitable range of operating parameters, and a general flow diagram is proposed. Flow 
schemes and process parameters are proposed based on thermodynamic equilibrium and 
kinetic reaction models. The effects of using coke oven gas in an ammonia synthesis-
methanation complex are presented. 
Keywords: CO2 methanation, Haber-Bosch-process methanation coupling, process 
model design, kinetic model process simulation 
  

1. Introduction 

 
Borealis operates two ammonia plants at the chemical park in Linz, Austria. An 
integrated Haber-Bosch process is operated, which uses natural gas as feedstock for the 
ammonia synthesis. Ammonia is then used as feedstock for downstream fertilizer and 
melamine plants. Located adjacent to the chemical park are the voestalpine steelworks, 
a fully integrated steel mill. Coal is processed in coke ovens to produce coke as a carbon 
source for the blast furnace. This process emits off gas rich in hydrogen, also containing 
nitrogen, called coke oven gas. Coke oven gas is currently used thermally. A direct 
chemical utilization as hydrogen source in the methanation reaction would reduce 
emissions and increase the value chain. These local practicalities enable a methanation 
unit to run highly efficient. Abundant CO2 sources are available as concentrated streams 
along with off gases, and green hydrogen can be synthesized by electrolysis with green 
energy sourced locally. Carbon emissions could be reduced substantially with the 
additional benefit of producing a valuable feedstock extensively used by local 
companies. The implementation enables the formation of a continuous “carbon recycle” 
across multiple facilities, contributing economic and environmental benefits. 
 
Due to this favorable industrial site set up, the operation of a methanation unit coupled 
with the Haber-Bosch process and supported by coke oven gas input is simulated to 
estimate the benefits of its implementation. 
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Graphical abstract: Ammonia plant methanation coupling 

 

2. Methods 

 
In this work process simulations were performed with Aspen Plus Version 10 
(36.0.1.249). Physical properties of the components involved were provided directly by 
the software from following databanks: APV, APESV (Aspen Plus exclusive) and 
NISTV (Linstrom and Mallard). Thermodynamic models used are Redlich-Kwong-
Soave and Peng-Robinson equations of state. A second order rate expression kinetic 
model by Lunde (1973), modified and reported by Falbo et al. (2018) was used. The 
kinetic is: 
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The following kinetic parameters, provided by Falbo et al. (2018), are used: 
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3. Thermodynamic and kinetic baseline simulations 

 
Several reaction simulations were performed to establish a scientific basis, concerning 
temperature and pressure dependence of the methanation reaction. The influence of 
reaction temperature at 1 bar is shown in Figure 1. 
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Figure 1: Influence of temperature on product composition and CO2 conversion in methanation at 

1 bar and thermodynamic equilibrium (left). Influence of temperature on CO2 conversion in 
methanation at 1 bar and different catalyst loads (kinetic model) (right). 

Product gas composition is highly dependent on reaction temperature and in accordance 
with the observed changes in the conversion of CO2. Increasing temperature shifts the 
thermodynamic equilibrium of the methanation reaction to the educt side. An increase 
in reaction temperature dramatically boosts catalyst activity up to a maximum between 
340 and 500 °C after which conversion is reduced again due to the thermodynamic 
limits on reaction temperature. The methanation reaction responds strongly to an 
increase in pressure (figures not included). Under increasing pressure higher 
conversions can be achieved, and higher temperatures can be employed. 

 

4. Process model 

 
The full plant model used is shown in Figure 2. A two-reactor setup was chosen to 
compensate for thermodynamic and kinetic differences concerning the influence of the 
reaction temperature. 

 

Figure 2: Full kinetic plant model as Aspen Plus flowsheet. 
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Reactor cooling was simulated with cooling fluid at constant temperature. The volume 
of reactor one and two are 2 m3 and 3 m3, respectively. For reactor 1 cooling fluid at 
500 °C was chosen to simulate molten salt. The second reactor was used to perform 
with cooling medium at 350 °C resembling steam.  The compressors are set to 10 bar 
for reactor 1 and 30 bar for reactor 2. The split fraction is set to 0.5. All simulations are 
performed with 1000 kg/h CO2 and 181 kg/h H2 input. Steam addition before reactor 1 
is set to achieve 10 mol % of water at the reactor inlet by implementation of a design 
specification. Performance curves are shown in Figures 3 and 4. 
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Figure 3: Reactor temperature and CO2 conversion of both reactor B1 (1-11) and reactor B2 (12-
22) (left).  Product composition at changing reaction pressure in reactor B2 at 0.5 product recycle 

fraction (right). 
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Figure 4: Change in maximum reactor temperature of B1 and compressor B11 inlet at increasing 

recycle fraction (left). Change in maximum reactor temperature and CO2 conversion in reactor B1 
at increasing reaction pressure and 0.5 product recycle fraction (right). 

 
 
Characteristic for the methanation reaction is the severe temperature spike at the reactor 
inlet. This temperature spike could be successfully reduced by 150 to 200 °C if a 
product recycle and limitation of the reaction pressure in B1 is employed. These 
methods show disadvantages of higher compression work and lower conversion, 
respectively. It can be seen in Figure 3 that a product composition in agreement with 
Austrian natural gas grid quality guidelines according to ÖVGW G. 31 (2001) can be 
achieved if reaction pressure in B2 is set accordingly. 
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5. Coke oven gas utilization 

 
Coke oven gas generally contains sizeable amounts of nitrogen. Due to the large 
amounts of water formed and separated in the methanation reaction the nitrogen content 
is further increased in the finished product. Natural gas containing nitrogen is 
problematic for grid injection and may also lead to difficulties in further industrial use. 
It would be beneficial if the nitrogen content of the synthetic natural gas does not need 
to be removed before injection into the steam reformer in the Haber-Bosch process. The 
influence of increasing nitrogen load in the reformer natural gas feed, as commercial 
natural gas is exchanged, is therefore studied. This was done by manual configuration of 
the internal Aspen Plus simulation model for the ammonia 2 plant operated by Borealis 
in Linz. Four Simulations were performed. The observed parameters are reaction 
pressure (1), feed flow (2), process air flow (3), purge gas flow (4), product flow (5) and 
product quality (6). Table 1 and 2 show parameter allocation and overall results and 
Figure 5 examples of recorded performance indicators. 

Table 1: Fixed and variable parameter allocation for simulations performed. 

Simulation Fixed parameters Variable parameters 

1 (1), (2), (3), (4) (5), (6) 
2 (3), (5) (1),(2),(4),(6) 

2.5 (3), (6) (1),(2),(4),(5) 
3 (4), (6) (1),(2),(3),(5) 
4 (5), (6) (1),(2),(3),(4) 
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Figure 5: Comparison of NG feed flows and H2 losses according to CH4 source exchange at  

static CH4 amount 

Table 2: Comparison of synthesis gas, reaction pressure, H2 loss, CH4 input and NH3 output 
changes of different simulations with the base case 

 Change in % vs base case at maximum exchange 

Simulation Synthesis gas Reaction pressure H2 Loss CH4 Input NH3 Output 

1 +101.34 0.00 +0.04 -5.39 +1.27 
2 +20.45 -41.67 +48.98 +6.61 +0.00 

2,5 +14.25 -1.09 +12.03 +11.00 +10.43 
3 +3.44 -3.70 +0.06 +1.90 +2.32 
4 -0.46 -0.60 -4.33 -0.83 0.00 
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Simulations 1 to 3 show large changes in the observed process parameters and therefore 
bring large overall economic advantages and disadvantages. The setup in simulation 4 
shows only direct advantages, but the magnitudes are generally smaller. 

6. Conclusion 

 
Insight into CO2 methanation reaction characteristics is gained by detailed temperature 
and conversion curves at 1 bar. At thermodynamic equilibrium methanation is most 
effective at temperatures below 500 °C and high pressure. The kinetic model shows 
increasing conversion with temperature (maxima between 340 and 500 °C), due to 
rising catalyst activity. At temperatures exceeding 500 °C the conversion then starts to 
decline again as a result of the thermodynamic limitations. 
 
A full flow sheet simulation model able to convert 1 t/h of CO2 to SNG at high 
conversion and selectivity is designed and optimization paths based on temperature 
control and product quality are outlined. The model contains 2 cooled methanation 
reactors and a product recycle. A performance curve is recorded, showing 97 % CO2 
conversion under temperature requirements imposed by catalyst stability. 
 
It is concluded that a complete exchange of external natural gas with natural gas from 
methanation with coke oven gas as hydrogen source is not only tolerable, but has 
considerable advantages concerning feed requirements, as H2 loss, recycle gas volume 
and reaction pressure. Five different plant operation setups are simulated and able to 
reduce synthesis loop volume by 0.5 %, reaction pressure by 42 %, H2 loss by 49 %, 
CH4 input by 11 % and increase product output by 10 %. One setup showed purely 
positive effects of N2 input concerning the observed parameters. Recycle volume is 
reduced by 0.46 %, reaction pressure by 0.6 % H2 loss by 4 % and CH4 input by 0.83 % 
at the same product output. 
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Abstract 

Process simulations must involve evaluating output variables by specifying input 

variables and process parameters. However, in a real process, input data and parameters 

contain uncertainties, which requires a more realistic analysis, using for example, a 

stochastic simulation procedure. This technique is based on a large set of simulations 

using random data according to a suitable probability density function. The aim of this 

work is to analyze the propagation of uncertainties on the calculation of an equilibrium 

quantity in a distillation column through a stochastic simulation approach, a very useful 

tool in process system engineering. In this way, the result is not one exact value for the 

parameters, but a range of probable values. This method proved to be promising and 

means more accurate process calculations, generating energy savings in industrial units. 

A debutanizer column was specified based on FUG algorithm, and Monte Carlo (MC) 

approach has been used to quantify and calculate the uncertainty propagation on 

parameters. The feed vapor fraction, distillate (D), and bottom (B) temperatures and 

compositions were evaluated. The results demonstrate a smooth propagation and a large 

range in D and B temperatures. 

Keywords: Uncertainty analysis, Monte Carlo method, Distillation Column calculation. 

1. Introduction 

Process simulations must involve evaluating output variables by specifying input 

variables and process parameters. However, in a real process, input data and parameters 

contain uncertainties, which can limit the use of simulation results to predict plant 

behavior. Engineers must therefore know the importance of reliability in the property data 

of pure substances and mixtures, and understand how small uncertainties in this 

information can significantly affect the technical and economic performance of an 

industrial plant. (Santana, 2021a) 

A common mistake made in process calculations is to treat problems using a set of 

parameters and input data and not as a range. literature presents works using stochastic 

methods to quantify and measure the propagation of uncertainties along real chemical 

processes. (Santana, 2021b) 

The quantification of uncertainties, in general, consists basically of three steps: (1) 

representing the uncertainties in the input parameters of the system; (2) propagation of 

uncertainty throughout the process, and (3) estimating the stochastic effect on the 

calculations. (Ramos, 2014) These uncertainties can be introduced mainly in two ways: 

the first is associated with the method used and depends, for example, on the 

thermodynamic model, or on the numerical method, and the second way, the error 

presented in the input data propagates in the result. thus, the better the quality of the data 
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provided and the accuracy of the prediction methods, the better the estimate of the desired 

property will be. (Vasquez & Whinting, 2004)  

To obtain a more realistic analysis, a stochastic simulation procedure can be performed 

using the Monte Carlo method, the most widely used stochastic method for calculating 

uncertainties. This technique is based on a large set of simulations using random data 

according to a suitable probability density function to estimate the chance of a future 

event happening. thus, several simulations are performed to calculate the probabilities of 

hit or miss the generation of random numbers must follow a probability density function 

and respect a certain range. (Ramos, 2014.) 

This work presents an application of stochastic simulation procedures in the chemical 

process industry. The method was applied to the calculation of a distillation column (a 

debutanizer), under uncertainty in the Antoine parameters. The objective of this paper is 

to analyze the propagation of uncertainties on the calculation of an equilibrium quantity 

through a distillation column (i.e., debutanizer). 

2. Methodology 

The specifications for the debutanizer such as column operating pressure, reflux ratio, 

number of stages, and feed location were obtained and then the distillation column were 

obtained in the literature (Seader, et al., 2011.) through the FUG algorithm for 

multicomponent distillation on a debutanizer distillation column. And the component 

properties were obtained in the DIPPR data bank. (DIPPR801, 2021) and all these data 

were used to simulate the distillation column on Aspen Plus v12. 

Microsoft excel was used to compare pseudo-experimental data for vapor pressure from 

the DIPPR® data bank with the calculated vapor pressure from Antoine’s equation. and 

the least-squares method was employed using MS excel solver to minimize the 

uncertainty between the calculated values and the experimental ones. Thus, new 

parameters were defined (if necessary) and optimized for the estimated temperature range 

(simulated temperature ± 10%). 

Using the uncertainty from Vapor pressure comparation, the MC approach was applied 

to quantify and determinate how these uncertainties impact the operation. The column 

feed, which was flashed at column pressure using the adiabatic flash procedure (Eq. 1). 

was simulated under uncertainty in the vapor pressure using the generation of 10000 

random numbers for Psat defined by Eq. 4 and Eq. 5, of each component. The K-values 

for vapor-liquid equilibrium were given by Raoult law (Eq. 2) once the pressure system 

is near to ambient pressure. The stochastic approach generates a range of values for the 

vapor fraction in the feed stage. Using the boxplot chart, the outliers were removed and a 

vapor fraction range was found. 

Furthermore, simulations were performed on Aspen Plus using different vapor fractions 

in the feed stage. Different results were obtained on the top and bottom of the column, 

and MC procedure was used to estimate the probable range of temperature in the bottom 

and top based on the results of the under-uncertainty simulations. 

These different feed conditions generate a range of different product compositions at the 

bottom and in the top of the column. As the outputs are in a liquid state it must be 

calculated the bubble point temperature (Eq. 3), using the MC approach, with uncertainty 

in the Psat, like the feed calculations, and in the component’s composition (from feed 

uncertainty). 

The bubble temperature was calculated using 1000 MC simulations. Through the boxplot 

plot, the outliers were removed and a bubble temperature range was found. 
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∑
𝑧𝑖𝐾𝑖

1 + 𝑣(𝐾𝑖 − 1)
= 1

𝑖

 

Where zi is the molar fraction composition of the feed, Ki is the partition coefficient 

defined by the K-values equations, in this case the equation chosen was Raoult Law (Eq. 

2.) and v is the vapor fraction of the feed 

𝐾𝑖 =
𝑃𝑠𝑎𝑡

𝑃
 

For bubble point calculations it is defined that the vapor fraction of the mixture is equal 

to zero (v=0), and the composition is defined as zi=xi, so that Equation 1 is simplified in 

the form of Equation 3, below. 

∑ 𝐾𝑖𝑥𝑖 = 1

𝑖

 

 

The Ki values estimated from Raoult's Law can be defined by 𝐾𝑖 = 𝑃𝑠𝑎𝑡 𝑃⁄ , where Psat 

can be calculated using the Antoine equation defined in the Equations 4 and 5 (with 5 and 

3 parameters respectively). The Antoine parameters are found in Table 1. 

𝑃𝑠𝑎𝑡(𝑃𝑎) = 𝑒𝐴+𝐵 𝑇(𝐾)⁄ +𝐶 ln 𝑇(𝐾)+𝐷𝑇(𝐾)𝐸
 

 

𝑃𝑠𝑎𝑡(𝑃𝑎) = 10
(𝐴− 

𝐵

𝑇(𝐾)+𝐶
)

∗ 1000     
 

As can be seen, the variables temperature and vapor fraction can be easily found using 

numerical calculations. Microsoft Excel’s VBA programming language was used to solve 

the equations using interactive methods through Solver and to generate the random 

numbers from Monte Carlo simulations. 

 
Table 1. Antoine equation parameters (DIPPR801, 2021; L.  Santana, 2021b) 

Comp A B C D E Eq 

iC4 108.4300 -5039.9000 -15.0120 0.0227 1 4 

nC4 66 -4363.2 -7 9.45E-06 2 4 

iC5 3.89559 999.99096 -44,1236 N/A N/A 5 

nC5 79 -5420.3 -9 9.62E-06 2 4 

C6 104.65 -6995.5 -13 1.24E-05 2 4 

C7 88 -6996.4 -10 7.21E-06 2 4 

C8 96 -7900.2 -11 7.18E-06 2 4 

C9 109.35 -9030.4 -13 7.85E-06 2 4 

 

3. Results 

A preview of the debutanizer can be seen on the Figure 1 and the column specifications 

in the table 2. These results are based on FUG calculation procedure from Seader, et al., 

2011. The information from figure 2 and table 2 was used in the Aspen Plus v.12 where 

temperature, molar fraction, and other results have been obtained. 

 

 

Eq. 1 

Eq. 2 

Eq.3 

Eq. 4 

Eq. 5 
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Figure 1: Debutanizer specifications 

 

Table 2: Colunm specifications (J. Seader, et al., 2011.) 

Number of stages 18 

Reflux ratio 0.8 

Drop pressure 5 Psia 

Feed location Above stage 6 

 

Table 3 shows the first simulating results resume. Used as base case for the MC 

procedures. 
Table 3: initial simulating results. 

 Feed Distillate Bottom 

Molar vapor fraction 0.133 0 0 

Temperature 355.372 328.231 447.582 

Pressure (Pa) 497565.306 558475.340 592949.127 

 

The Antoine’s parameters shown to be very accurate for the range of initial feed 

temperature ± 10%, then wasn’t necessary to optimize the parameters values. The 

parameters uncertainties after this analysis can be found in Table 4 and the confident 

interval is based on this data. All uncertainties used in the calculations are presented in 

Table 4, and in Table 5 it can be seen the results of uncertainty analysis.  
 

Table 4: Uncertainty (%) based 

Component In Psat (from 

Literature data) 
(DIPPR801, 

2021) 

In Psat (after 

analysis) 

In distillate 

composition 

(after 

simulations) 

In bottom 

composition 

(after 

simulations) 
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Ic4 3.00000 0.09736 0.048625 44.74108 

Nc4 3.00000 0.12408 0.745863 42.80125 

Ic5 3.00000 0.12408 19.81697 10.06561 

Nc5 3.00000 0.12408 24.47607 7.398475 

C6 3.00000 0.36381 44.33357 0.146274 

C7 3.00000 0.12517 47.55897 3.09486E-03 

C8 3.00000 0.19169 51.43366 3.52628E-05 

C9 3.00000 0.20361 53.90483 5.45788E-07 

Based on the results from Figure 3 we can conclude that the uncertainty remains smooths 

in the process after the outliers have been excluded, the data from table 5 shows that the 

results respect an almost ideal normal distribution with a very low asymmetry coefficient. 

With a smooth platykurtic format curve, that is a distribution with a larger standard 

deviation than the mesokurtic curve, and so the curve is less peaked. 

 
Figure 3: Monte Carlo simulation result 

 

Table 5: Evaluated uncertainties results 

 Feed (v) Distillate (T [K]) Bottom (T [K]) 

Mean ± Std. dev. 0.13256 ± 0,02664 326.6694 ± 1.1097 435.9215 ± 3.0647 

Uncertainty 

(In vapor pressure) 

3% 3% 3% 

Confidence interval 12% 14% 

 

13% 

Kurtosis coefficient 0.26687 

(platykurtic) 

0.29101 

(platykurtic) 

0.28090 

(Platykurtic) 

Asymmetry 

coefficient 

-0.05281 -0.01199 0.03687 

4. Conclusion 

The stochastic approach is a good way to simulate and predict most of the feasible 

scenarios in an industrial plant, being an alternative to overcome the problems caused by 

the lack of reliability in the data for process calculations. Uncertainties are intrinsic to any 

process, so the approach to real physical problems must be seen as a range of probable 

values and not as a set of result. Therefore, it is essential that chemical engineers know 

the characteristics of this category of approach and know the fundamental steps to 

quantify process uncertainties. In this work, the method was applied to the calculation of 

chemical processes, the calculation of a debutanizer, the results show that a minimal 
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uncertainty in only one temperature-dependent property can produce larger output 

uncertainty.  
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Abstract 

The projected increase in the market share of renewable energy sources such as wind and 

solar power will demand a similar increase in the global energy storage capacity. Batteries 

represent one of the most flexible solutions to cope with this demand because of their 

easy installation and high energy density when compared to other large-scale energy 

storage systems. In this context, one of the most promising technologies is Li-O2, whose 

energy density can exceed 1000 Wh kg-1. However, many challenges need to be addressed 

for this battery technology before it can become available to the market. For instance, the 

O2 transport inside the battery limits the power density. One of the strategies to improve 

the supply of O2 to the battery is the so-called wet electrode approach, in which parts of 

the O2 electrode are filled with gas instead of electrolyte, thus serving as a means to 

deliver O2 to the interior of the electrode. Bearing all this in mind, this study presents the 

simulation of two battery models working under different current densities to demonstrate 

the impact of electrode geometry on the performance of the battery. The models, 

developed on COMSOL Multiphysics 5.6, consist of two Li-O2 batteries with either a 

simple flooded O2 electrode or a wet O2 electrode with gas diffusion channels, with both 

electrodes based on properties of carbon nanotubes. According to the results, although 

the gas diffusion channels take space inside the battery and decrease the surface area for 

deposition of discharge product, this electrode design strategy increased the accessibility 

of O2 throughout the length of the electrode. The increased transport capacity was 

fundamental to increasing the energy density of the battery. The results also indicate that 

this design approach was fundamental to enable increased power demand for Li-O2 

batteries without compromising their energy density because of the possibility to deliver 

O2 more easily to the whole electrode. Based on this design, it is important to optimize 

the density of these gas diffusion channels to increase the available surface area of the O2 

electrode without compromising the transport of O2 to the interior of the electrode. 

Moreover, the optimization of this design should also consider limitations related to 

surface properties of electrode materials such as hydrophobicity and hydrophilicity to 

ensure that the gas diffusion channels stay available for O2 transport. 

 

Keywords: energy storage, battery, lithium-air, simulation 

1. Introduction 

Solar and wind power have become the source of electricity with the lowest cost on a 

global average (Lazard, 2020). This achievement will enable the wide adoption of 

renewable electricity sources in the near future. However, these renewable electricity 

sources are intermittent, and their wide adoption will represent a challenge for grid 
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operators unless energy storage becomes widely available. To accomplish this, energy 

storage costs must decrease, and new capacity needs to be installed across the whole grid 

(Jülch, 2016). One technology option to meet these requirements is the Li-O2 battery. 

Batteries can be installed everywhere, independent of suitable geography. Moreover, this 

battery has a specific energy potential above 1000 Wh kg-1, higher than that of lithium-

ion, and this factor has an important contribution to device cost (Tan et al., 2017). 

However, the full potential of Li-O2 batteries is still hindered by many factors, such as 

instability of battery components, high resistivity of the discharge product, irreversibility 

of discharge product, mass transport of O2, among others (Wang et al., 2020). Sluggish 

O2 transport represents a large burden because the battery reaches the cut-off potential 

much sooner when more O2 transport is demanded at an increased discharge rate. 

As the diffusion of O2 is faster in gas than in liquid, one of the solutions to improve the 

transport of O2 is to only partially fill the electrode with electrolyte — the wet electrode 

approach (Gwak & Ju, 2016). Bearing all this in mind, this work shows the simulation of 

Li-O2 batteries operating with a flooded or a wet electrode. The performance of the two 

cases was compared in different current densities. Results demonstrate the potential of 

gas diffusion channels in improving the performance of Li-O2 batteries for increased 

power output without compromising the energy density of the device. 

2. Method 

Figure 1 illustrates a Li-O2 battery and the two approaches considered in this model: 

flooded electrode and wet electrode with gas diffusion channels. Both models were built 

on COMSOL Multiphysics® 5.6 (COMSOL AB, 2020). In both electrodes, the regions 

with carbon nanotubes were modeled using the Newman approach. In the wet model, gas 

diffusion channels with diameters of 3–9 μm were built to simulate the presence of 

macropores free of electrolyte inside the O2 electrode. The models represent a slice of the 

O2 electrode to account for the variability of pore shape, whose geometry was based on 

images of pores from other works (Su et al., 2020). The battery operates at 25 °C. 

 

 

Figure 1. Exploded-view drawing of a Li-O2 coin cell (not to scale) showing: a) perforated top 

cover, b) spring, c) O2 electrode, d) separator membrane, e) Li electrode, f) bottom casing. At the 

right side, the equivalent 2D model on COMSOL Multiphysics® for the flooded and wet electrodes, 

showing the c) O2 electrode (top domain), d) separator membrane (bottom domain), and the Li 

electrode (bottom boundary). O2 is fed at the boundary at the top of the O2 electrode. 

In this battery, the reactions described in Eq. (1) and (2) take place during discharge. Li+ 

is dissolved in the electrolyte (LiClO4 in dimethyl sulfoxide) at a concentration of 1 mol 

L-1, which is a range suitable for the application of the concentrated solution theory (Tan 

et al., 2017).  The concentration of a species � is expressed based on the Nernst-Planck 

equation as a function of the volume fraction of electrolyte (��), concentration (��
 ), molar 

flux (��), and a source or sink term (��), as shown in Eq. (3). The volume fraction of 

electrolyte is related to the electrode volume fraction (�	) and the volume fraction of Li2O2 

(�
, the discharge product), as shown in Eq. (4). The molar flux of Li+ and O2, considering 
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flooded electrodes   

that no convection is present, is a function of the effective diffusion (���

���

 or ���

���), 

concentration (���
 or ���), current density in the electrolyte (��), transference number (��), 

and the Faraday constant (�), as shown in Eq. (5) and (6).  

��
 

→ ��� + ��                                              (�� = 0.00 !)  (1)

2 ��� + $% + 2��  
→ ��%$%                       (�� = 2.96 !)  (2)

((����
 )/(� + ∇ ∙ �� =  ��   (3)

1 = �	 +  ��(�) + �
(�)  (4)

���
 =  −���

���∇���
 + ����/�  (5)

��� =  −���

���.���  (6)

Considering a binary Li+ electrolyte, the current density in the liquid solution is a function 

of the effective ionic conductivity of the electrolyte (/���), electrolyte potential (φ�), 

universal gas constant (1), temperature (2), and activity coefficient of Li+ (3±), as shown 

in Eq. (7). The derivative of 3± is given by Eq. (8) in the range of 0.2<���
<2 mol L-1 

(Nyman et al., 2008). Transport of charges in the O2 electrode follows Ohm’s law, and it 

is a function of the effective electronic conductivity of the O2 electrode (5���) and the 

potential of the electrode (6	), as shown in Eq. (9). Because of the porous structure of the 

O2 electrode, effective parameters are estimated based on the volume fraction and the 

tortuosity of the porous medium. According to the Bruggeman model (Tjaden et al., 

2016), in the case of carbon nanotubes, the tortuosity can be estimated as the reciprocal 

of the porosity, thus leading to Eq. (10)–(13) to estimate the effective parameters. In this 

model, O2 is fed to the battery by means of a boundary condition, as a function of the 

partial pressure of O2 (7��) and the O2 solubility in the electrolyte (8), as seen in Eq. (14). 

�� =  −/���∇φ� − 212/���/�(−1 + ��)(1 + 9 ln(3±) /9 ln ���
) ∇ ln(���
)  (7)

< =>?�±@
< => ABC


=
(�.%DEDFABC


� ��.FGEFDABC
��.GGH�I)/

�.H%DFABC

J ��GH�EABC


� ��GFHFABC
��.KK�D
− 1  (8)

�	 = −5���∇6	  (9)

���
,���
 = ��

%���
   (10)

���,���
 = ��

%���   (11)

/���  = ��
%/   (12)

5��� = �	
%5   (13)

���,�
	MN = 87��/12  (14)

Conservation of charges is described by Eq. (15). Transference of charge between phases 

is a function of available surface area (O) and local transfer current density (P), as shown 

in Eq. (16). Based on these parameters, the source term is calculated via Eq. (17).  

∇ ∙ �� + ∇ ∙ �	 = 0  (15)

∇ ∙ �� = OP  (16)

�� = −OP/�   (17)

The rate expression for the electrochemical reaction at the O2 electrode can be described 

by the Butler-Volmer kinetics, shown in Eq. (18), which is a function of the anodic and 

cathodic rate constants (QM and QR) and the activated overpotential (SR), described in Eq. 

(19). The activated overpotential is a function of the potential drop over the electrolyte, 

the electrode, and the film of Li2O2 (∆6���U), and the equilibrium potential of the reaction 

(�R°). The potential drop in the film of discharge product is a function of its thickness (∆W) 
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and conductivity (5
), as shown in Eq. (20). The volume fraction of discharge product 

deposited onto the O2 electrode (������), given by Eq. (21), is a function of its 

concentration (������), molar mass (X�����), and density (Y�����). This volume fraction is 

used to estimate the surface coverage (Z) with Eq. (22), the available surface area with 

Eq. (23), and the thickness of the film with Eq. (24). 

P/[� = QM����� exp(�SR/12) − QR���

% ��� exp(−�SR/12)  (18)

SR = 6	 − 6� − ∆6���U − �R°  (19)

∆6���U = P∆W/5
  (20)

������ = ������  X�����/Y�����   (21)

Z = ?������/��,�@
_

  (22)

O = O�(1 − Z), O� = 2�	/��  (23)

∆W = ?`(������Z + �	)/�	
� − 1@��   (24)

The membrane and electrode thicknesses were set to 25 μm and 500 μm, and the slice of 

O2 electrode had 3 mm. The conductivity of the O2 electrode was 300 S m-1 between 

planes and 5000 S m-1 in-plane (Matsumoto et al., 2021). Other parameters were based 

on previous literature (Sahapatsombut et al., 2013). A mesh refinement study was 

performed to decide upon the number of mesh elements and solver tolerance. The 

simulations were run on an Intel Core i5 9600KF (overclocked to 4.7 GHz and with 32 

GB RAM). The batteries were discharged at current densities of 0.5, 2.0, 3.5, and 5.0 A 

m-2 till the stop condition of deep discharge (cut-off potential of 2.5 V) was reached.  

3. Results and discussion 

Figure 2 presents the results of the mesh refinement study. In the case of the flooded 

electrode, the mesh with 336 elements was selected because increasing the number of 

elements to 760 leads to a variation of 0.1% in the specific capacity with an increase of 

80% in solver time. For the wet electrode, the mesh with 5135 elements was selected 

because increasing the number of mesh elements to 8389 leads to a change of 0.02% in 

the specific capacity with an increase of 82% in solver time. Relative tolerance of 10-3 

was selected because tightening the relative tolerance from 10-3 to 10-4 leads to a change 

in the specific capacity of 0.006% in the flooded electrode and 0.004% in the wet 

electrode, with an increase in the solver time of 60% and 130%, respectively. 
 

 

Figure 2. Mesh refinement study for the flooded (a, b) and wet (c, d) electrodes showing the specific 

capacity (a, c) and solver time (b, d) for different relative tolerances (10-2–10-5). 
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Figure 3 shows the specific capacity of the Li-O2 battery for different current densities 

(0.5–5.0 A m-2) in both flooded and wet electrodes, and Figure 4 shows the distribution 

of Li2O2 after discharge at 0.5 and 5.0 A m-2 and the concentration of O2 after discharge 

at 5.0 A m-2. Comparing graphs (a) and (b) of Figure 3, it is possible to see that, despite 

presenting 6.85% less area for discharge than the flooded electrode, the wet electrode 

reaches a specific capacity 15% larger at 0.5 A m-2 and almost three times larger at a 

current density of 5 A m-2. Also, a tenfold increase in the current density leads to a loss 

of capacity 21% lower in the wet electrode when compared to the flooded electrode. 

 

 

Figure 3. Specific capacity of the Li-O2 battery for different discharge current densities (0.5–5.0 A 

m-2) for the a) flooded and b) wet electrodes. 

 

 

Figure 4. Distribution of discharge product represented as the volume fraction of Li2O2 (������ in a, 

b, d, e) for current densities of 0.5 (a, d) and 5.0 (b, e) A m-2 and concentration of O2 (��� in c, f) at 

a current density of 5.0 A m-2 for flooded (a–c) and wet (d–f) electrodes. 

The decreased performance of the battery in the case of the flooded electrode is explained 

by the poor distribution of discharge product in the O2 electrode, as seen in Figure 4. 

Observing graph (a) of Figure 4, it is possible to see a large gradient of discharge product 

distribution, with a significant product buildup near the O2 feed side of the O2 electrode. 

In this case, the volume fraction of discharge product in the O2 electrode varies from 

0.438 to 0.499, a range of 0.061. On the other hand, in the wet electrode, it varies from 

0.547 to 0.551, a range of only 0.004. Because of the large rage in the case of the flooded 

electrode, the effective diffusion of O2 near the O2 feed side decreases faster as discharge 

takes place because of the increased volume of solids in this region, according to Eq. (11). 

This problem is circumvented in the case of the wet electrode. 
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The challenge of delivering O2 to the flooded electrode is better demonstrated at a current 

density of 5.0 A m-2. In this case, the final volume fraction of Li2O2 in the flooded 

electrode varies from 0.012 to 0.108, a range of 0.096. In the wet electrode, the final 

volume fraction of Li2O2 varies from 0.162 to 0.173, a range of only 0.011. The O2 

diffusion bottleneck is clear in the comparison of graphs (c) and (f) of Figure 4. At the 

end of the discharge, O2 concentration is below 10% of the saturated concentration in 

59% of the flooded electrode, and below 1% of the saturated concentration in 41% of the 

flooded electrode, making it underused. However, the lowest O2 concentration in the wet 

electrode is 76% of the saturated concentration, showing that the presence of gas diffusion 

channels greatly increases the capacity of supplying O2 to the cell during discharge. 

4. Conclusions 

Past works have demonstrated that one of the main problems of Li-O2 batteries is the 

transport of O2 inside the battery. This work compared two electrodes: the flooded 

electrode and the wet electrode with gas diffusion channels. The results show that mass 

transport of O2 is greatly assisted by the presence of gas diffusion channels despite the 

small space occupied by them inside the electrode (6.85%), and they allow a loss of 

capacity 21% lower for a tenfold increase in discharge current. The great improvement 

also indicates that the geometry of these gas diffusion channels can be further analyzed 

to find a balance between their size and performance improvement taking into 

consideration the limitations of materials for the manufacture of O2 electrodes. 
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Abstract 

Natural gas liquefaction has been deployed in different countries to produce liquefied 

natural gas (LNG) for the economic transportation to distant markets. However, when 

assessing a natural gas monetisation technology, the profitability of the project is 

evaluated using the economic performance indicator, net present value (NPV), under 

deterministic conditions. This does not reflect the real-life scenario since the risks 

associated with exogenous uncertainties arising from emergence of new suppliers, and 

changes in contractual structures are not captured under deterministic analysis. 

Consequently, risks associated with investing in a mega LNG plant shall be considered 

in the design stages to decide on an optimal strategy for dealing with possible 

uncertainties throughout the lifetime of the project. In this study, a techno-economic 

analysis is conducted for the flexible AP-X LNG production technology licensed by Air 

Products. A three-steps methodology is considered to assess the AP-X technology: (1) 

technical assessment; (2) economic evaluation; and (3) techno-economic risk assessment 

and management. In the technical assessment, an LNG production plant model is 

developed and simulated using the Aspen HYSYS software, and evaluated under 

deterministic conditions using the NPV. The process is then evaluated under stochastic 

conditions using Monte Carlo Simulation to understand the impact of different 

uncertainties on the profitability of the plant. A proactive mode of response strategy to 

deal with risks is tested to increase the responsiveness of the project to exogenous changes 

through embedding flexibility in production in the early design stages of the project. The 

results indicate that a flexible system demonstrates a better economic performance than a 

rigid system.  

Keywords: liquefied natural gas, flexibility, uncertainty, stochastic analysis  

1. Introduction  

In the past few years, natural gas has been the fastest growing fossil-based fuel due to its 

environmental and economic characteristics. This is especially true after the Paris 

Agreement in 2015, where different countries shifted to cleaner energy resources such as 

natural gas and renewables.  Natural gas can be physically or chemically monetized to 

increase its economic attractiveness. Amongst the different monetization options, 

liquified natural gas (LNG) has been adopted by different projects worldwide for 

economic transportation of natural gas to distant markets. However, the deployment of 

LNG infrastructures is capital intensive and require signing long-term purchase 

agreements with consumers in the pre-final investment decision phase of the project (Pre-

FID) to guarantee sales, and minimize risks associated with investment both suppliers and 
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consumers have been tied together with long-term contracts. However, different factors 

have influenced the LNG business in the last few years, such as the emergence of new 

suppliers, competitiveness with renewable resources and natural gas supply disruptions 

due to unexpected shocks, such as the latest unprecedented COVID-19 pandemic that 

disrupted global energy demand and halted the financing of several LNG projects 

worldwide due to associated investment risks.  

 

In addition to the latest changes in the LNG business, the liquidity of the US and European 

natural gas markets also contributed to reshaping the contractual structures, where spot 

selling and short/mid-term contracts have been favored by consumers to avoid long-term 

sales and purchase agreements under demand and prices uncertainties. This resulted in an 

increase of un-contracted LNG volumes, oversupply, and prices fluctuations. 

Consequently, investigating uncertainties prior to starting new LNG projects is crucial to 

understanding future possible market trends and behavior in terms of demand and prices. 

This investigation is essential for investors for financing such capital-intensive projects, 

for decision-makers to decide on production and selling strategies, and for policymakers 

for policies developments.  

 

After studying uncertainties involved in final markets, different passive and active mode 

of responses can be considered to deal with uncertainties. Amongst the different tools, 

the concept of flexibility arising from financial engineering has been trending for 

designing flexible engineering systems with certain characteristics and design to allow 

for changing the system when needed (Cardin et al., 2015; Saleh et al., 2009).  Designing 

a flexible LNG production system provides the producer the right, but not the obligation, 

to adjust the production capacity based on market demand and prices to capture high 

demand opportunities or avoid possible losses from selling LNG at lower prices.  This 

study evaluates the flexibility of an AP-X LNG production system under final markets 

prices uncertainties.  

 

2. Methodology and Data  

Natural gas liquefaction is the core of an LNG project and the most capital-intensive part 

of the project. After treating natural gas, the stream undergoes fractionation for removing 

heavy hydrocarbons (C3+) wherein by-products such as liquefied petroleum gases (LPG) 

and natural gas liquids (NGL) are produced. The natural gas stream then undergoes for 

liquefaction by cooling it down to -164 °C using the AP-X technology licensed by air 

products.  The AP-X technology consists of three main cooling sections: pre-cooling in 

propane multistage coolers, main cooling in the main cryogenic heat exchanger using 

mixed refrigerants, and final sub-cooling in the nitrogen expender.  

 

2.1. Process Simulation 

Initially, the AP-X LNG production system is simulated using the commercial software 

Aspen HYSYS V.11 for producing 7.5 MTPA of LNG with methane purity of 90mol%. 

The economic profitability of the AP-X technology is then evaluated using the economic 

performance indicator, net present value (NPV), at deterministic demand and forecasted 

Henry Hub natural gas price in international markets. A flexible design is then proposed 

to allow for changing the production capacity based on the market needs. Finally, the 

flexible AP-X system is evaluated under stochastic natural gas prices to evaluate the 

economic performance of the proposed design.  
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2.2. Deterministic and Stochastic Economic Analysis 

The economic performance indicator, net present value (NPV), is used to evaluate the 

profitability of the project under deterministic LNG sales price. Subsequently, the project 

value is evaluated using stochastic modelling under fixed capital and operational costs. 

Mean reverting jump diffusion Geometric Brownian Motion (GBM) (Poisson 

distribution) model is considered to describe the stochastic behavior of Henry Hub natural 

gas prices. Python programming language in Visual Studio Code enabled by Anaconda 

software is used to create a large sample size of 10,000 using Monte Carlo Simulation 

(MCS).  The stochastic analysis results are essential to understand risks arising from 

uncertainties. This is also known as Jensen’s Law: 

 

𝑓(𝐸[𝑥]) ≠ 𝐸[𝑓(𝑥)]             (1) 

 

Where the NPV under average prices and/or demand  𝑓(𝐸[𝑥]) does not equal the expected 

NPV under a distribution of prices and/or demand 𝐸[𝑓(𝑥)] (Cardin et al., 2015). Hence, 

time series modelling for natural gas prices is crucial to calculate the expected NPV under 

different price and/or demand scenarios. The mean-reverting jump diffusion GBM model 

was given by (Lucheroni & Mari, 2018):  

 

𝑑𝑙𝑜𝑔(𝑃𝑡) = (𝜃𝑔𝑎𝑠 − 𝛼𝑔𝑎𝑠 log(𝑃𝑡))𝑑𝑡 + 𝜎𝑔𝑎𝑠𝑑𝑊 + 𝐽𝑑𝑁                     (2) 

 

Where Pt is the natural gas Henry Hub spot price at time t; 𝜃𝑔𝑎𝑠  and 𝛼𝑔𝑎𝑠  are the mean-

reversion parameters; 𝜎𝑔𝑎𝑠 is the volatility of gas prices; 𝑊 is the standard Brownian 

motion Weiner Process, with zero mean and a standard deviation of 1; and N is the jump-

diffusion process, Poisson process, with a jump amplitude of J and intensity 𝜆𝐽𝑢𝑚𝑝. The 

jump-diffusion process is normally distributed with a mean of zero a standard deviation 

𝜎𝐽𝑢𝑚𝑝. Moreover, the jump diffusion process (N) and the standard Brownian motion 

Weiner Process are independent process.  
 

Table 1: Geometric Brownian motion and jump diffusion process model parameters 

(Lucheroni & Mari, 2015). 

Parameter Notation Value 

Mean-Reversion parameters 
θgas 0.0432                

αgas 0.0292 

Jumps intensity λJump 0.2542 

Standard deviation for Poisson 

process 
σjump 0.1258 

Volatility of gas prices σgas 0.0737 

Mean for Poisson process μJump 0.01 

 

The estimated natural gas Henry Hub spot prices (Pt) are then used to calculate 10,000 

NPV to analyze the NPV distribution, possible risks and opportunities associated with 

investing under market uncertainties. The capital and operating costs for a brownfield 

AP-X technology with 7.5 MTPA production capacity are $5.53 billion (year 2021) and 

$1.39 billion (year 2026), respectively (Steuer, 2019). A project’s lifetime of 25 years, 

with 5 years of construction and 20 years of operation is considered.  Revenues from NGL 

and LPG sales are assumed for evaluating the profitability of the fractionation section of 

the LNG plant. Hence, only revenues from LNG sales to Asia-Pacific markets under 
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different pricing/contractual systems were assumed for estimating the NPV and ENPV of 

the AP-X liquefaction process. LNG can be sold under long-term contracts (LTCs) at a 

fixed price of $8.76/MMBTU (year 2025), or under mid-term contracts (MTCs) and/or 

on spot based on forecasted Henry Hub natural gas prices. Different combinations of 

selling strategies influence the NPV and ENPV of the project. Consequently, scenarios 

based on different selling strategies are investigated based. Henry Hub natural gas prices 

are forecasted using mean-reversion GBM jump diffusion model utilizing parameters 

obtained from literature based on historical data from 1990 to 2013 (Lucheroni & Mari, 

2015): 

 

2.3. Flexibility Analysis 

Understanding the potential of embedding flexibility with an industrial system is essential 

to be evaluated in the early design stages of the project. After evaluating the baseline 

production system technically and economically under both deterministic and stochastic 

conditions. The flexibility of the AP-X technology is investigated technically and 

economically.  The stochastic ENPV is used to evaluate the economic performance of the 

flexible production system under different selling strategies. 

3. Results and Discussion 

Investing in mega-projects is capital intensive where different entities are involved in 

project financing. Moreover, with the changes in the LNG business due to emergence of 

new suppliers, changes in contractual structures and demand disruptions due to COVID-

19 pandemic, proactive risk management is required prior to starting new LNG projects.  

Flexibility implementation is one of the promising proactive modes of responses to be 

implmented in the AP-X technology. The AP-X natural gas liquefaction technology is 

simulated using Aspen HYSYS software as illustrated in Figure 1. After liquefying 

natural gas, nitrogen is removed in a nitrogen distillation column (T-300) and compressed 

in a series of compressors, whilst the bottom stream (S-301) is LNG produced at -164 ºC 

and pumped to storage before prior to shipping to final markets.  

 

Figure 1: AP-X natural gas liquefaction process simulated using Aspen HYSYS. 

The technology is further assessed under deterministic fixed capital and operating costs, 

and fixed selling price to Asia Pacific markets under LTCs, which results in an NPV of 

$5.86. billion. However, in real-life scenarios, it is challenging to secure 100% of 

production capacity for a single market under LTCs. This is due to the flexibility needed 

by consumers in diversifying their import portfolios to minimize risks. Consequently, the 

AP-X technology is further assessed through dedicating the full capacity to spot selling. 
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The stochastic simulation of the mean-reversion jump-diffusion GBM with an initial 

Henry Hub natural gas price of 3.06 $/MMBTU resulted in an ENPV of $ -3.57 billion 

and an NPV distribution illustrated in Figure 2. This proves that dedicating the full 

capacity of a mega LNG production process to spot markets is risky and would potentially 

involve economic losses. Hence, a diversified selling strategy is needed to hedge against 

market risks. Moreover, flexibility in production can be implemented though shutting 

down the third cooling unit (the nitrogen expander) in the AP-X technology. This would 

result in reducing the production capacity from 7.8 MTPA to 5 MTPA without technical 

limitations (Roberts et al., 2002).  

 

Figure 2: NPV distribution of AP-X's technology with LNG sold based on forecasted stochastic 

Henry Hub natural gas prices. 
 

An investor might decide on investing on a full capacity (7.8 MTPA) in the early years 

of the project or start with a production capacity of 5 MTPA and introduce the nitrogen 

expander during the project’s lifetime to increase the production capacity to 7.8 MTPA. 

Consequently, time-series market analysis is crucial in evaluating the optimal time to 

expand the production capacity. In this work, it is assumed that a full capacity AP-X 

technology is deployed in the early years of the project to capture any market 

opportunities. This is especially important due to the fact that LNG is a transitional fuel, 

where the market demand for fossil-based fuels is anticipated to gradually decrease with 

shifts to renewable resources.  

 

When considering a flexible production, this allows the producer to increase the capacity 

up to 7.8 MTPA when the market conditions are favorable, or to operate at 5 MTPA when 

the market conditions are low. A producer might consider dedicating 5 MTPA to LTCs 

and selling the remaining capacity on spot based on market conditions. A case-study of 

multi-demand level was analyzed to evaluate the influence on considering production 

flexibility and selling strategies diversification on the ENPV of the project. The multi-

demand scenario assumes that the process will only operate at 5 MTPA in the first 5 years 

of production, then the demand increases where the producers can expand the production 

capacity up to 7.8 MTPA and sell the remaining in the spot market. In this scenario, the 

Henry Hub natural gas spot prices mainly influence the returns from LNG sales in spot 

market and result in NPV distribution illustrated in Figure 3. When following this selling 

and operating strategy, an ENPV of $2.72 billion is resulted, which indicates the 

profitability of considering the presented strategy over dedicating the full capacity to spot 

selling.  A flexible LNG production system will give the producer the right to increase 
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the production capacity when the market is favorable, or to reduce the capacity subject to 

unfavorable market conditions.  

 

Figure 3: NPV distribution of flexible AP-X's with diversified selling strategy. 

4. Conclusion 

The last changes in the energy markets due to unexpected shocks, emergence of new 

suppliers and competitiveness with other renewable resources have influenced the natural 

gas and LNG markets. Moving from the pre-FID to the FID investment decision change 

has been challenging in new LNG projects. Consequently, this study proposes embedding 

flexibility in production with selling strategies diversification as a proactive mode of 

response to uncertainties. In fact, different combinations of selling strategies influence 

the ENPV of the project. Multiple demand and selling strategies scenarios can be studied 

in the early design stages of a mega project to understand possible future market behavior. 

Moreover, the concept of flexibility can be extended to multi-product value chains that 

consists of different products. For example, in a natural gas to multi-product value chain, 

the flexibility in producing different products, i.e., CNG, LNG, methanol, and hydrogen, 

could contribute to capturing market opportunities and/or avoiding risks based on the 

market performance.   
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Abstract 
This study addresses the modelling of the photo-Fenton processes, sensitivity analysis, 
and parameter fitting, focusing on the supply of hydrogen peroxide (H2O2) and aiming at 
the future exploitation in model-based optimization. A flexible H2O2 inlet flow (fed-
batch) reported in the literature (Audino et al. 2019) was adopted and computational 
experiments were performed to examine the behaviour of the model and to investigate 
the opportunities for reducing its complexity. The fitting of the kinetic and stoichiometric 
parameters was first undertaken using simulated data and focusing on the experimentally 
available information: H2O2, Total Organic Carbon (TOC), and dissolved oxygen (O2). 
Hence, sensitivity analysis was conducted to assess the influence of the parameters of the 
model and the exclusion of those that do not contribute to explaining the process. Finally, 
the modified model was shown to fit to experimental data. These results provide valuable 
insight into the planning of the subsequent experimental phase of this research aimed at 
providing a reliable model of the flexible dosage of H2O2 in photo-Fenton processes. 
 
Keywords: Photo-Fenton, H2O2 Dosage, Parameter Estimation, Sensitivity Analysis. 

1. Introduction 
Toxic and low biodegradable organic pollutants in wastewaters can be hardly removed 
through conventional biotreatment methods. An alternative to cope with such persistent 
contaminants is advanced oxidation processes (AOPs), based on the generation of highly 
oxidant hydroxyl radicals (·OH) which could easily degrade recalcitrant compounds. 
In particular, the photo-Fenton process is a photocatalytic process in which UV 
irradiation, Fe(II) salt, and H2O2 generate such hydroxyl radicals. However, it is well 
known that an excess of H2O2 in the photo Fenton process can lead to unproductive 
reactions that reduce process performance. Although the use of H2O2 is essential, 
oversupply can be counterproductive, which causes the need to model the flexible dosage 
of H2O2 and the challenge of optimizing its supply (Ortega-Gómez et al., 2012). Several 
studies have experimentally addressed the improvement of the photo-Fenton process 
performance by proposing a reasonable hydrogen peroxide supply (Yu et al., 2020, Zazo 
et al., 2009), but solutions are still incomplete and far from model-based approaches. 
Hence, this study is limited to the development of a flexible dosage model capable to be 
fit to experimental data that could be later used for model-based optimization purposes.  

2. Methodology  
The work addresses the simulation of the operation of the photo-Fenton reactor, its 
parameter estimation and sensitivity analysis, and the fitting to experimental data.  
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2.1. Mathematical Modelling  
The study adopts the kinetic model (Fig.1) first proposed by Cabrera Reina et al. (2012).  

 
Figure 1. Kinetic model of the photo-Fenton process (Cabrera Reina et al., 2012).  

The model takes into account the continuous production of hydroxyl radicals (R) from 
H2O2, iron and irradiation (I); the consumption of radicals in scavenging reactions; and 
the reduction of organic matter (M) to CO2 through some partially oxidized intermediates 
(MX1 and MX2), all of them leading to the lumped parameter measured (TOC = M +
MX1 + MX2). This model gives the set of ODEs listed in Table 1.  
Table 1. Equations of the mathematical model of the dosage of the photo-Fenton process. 

Reaction type Reaction rates Kinetic constants Eq. 
Efficient reactions 
(Production of radicals) 

𝑟𝑟1 = 𝑘𝑘1[𝐹𝐹𝐹𝐹2+][𝐻𝐻2𝑂𝑂2] 𝑘𝑘1 (1) 
𝑟𝑟2 = 𝑘𝑘2[𝐹𝐹𝐹𝐹3+][𝐼𝐼] 𝑘𝑘2 (2) 

Inefficient reactions 
(Decomposition of radicals) 

𝑟𝑟3 = 𝑘𝑘3[𝑅𝑅][𝐻𝐻2𝑂𝑂2] 𝑘𝑘3 (3) 
𝑟𝑟4 = 𝑘𝑘4[𝑅𝑅][𝑅𝑅] 𝑘𝑘4 (4) 

Degradation of parent 
compound and intermediates 

𝑟𝑟5 = 𝑘𝑘5[𝑀𝑀][𝑅𝑅][𝑂𝑂2] 𝑘𝑘5 (5) 
𝑟𝑟6 = 𝑘𝑘6[𝑀𝑀][𝑅𝑅] 𝑘𝑘6 (6) 
𝑟𝑟7 = 𝑘𝑘7[𝑀𝑀𝑀𝑀1][𝑅𝑅] 𝑘𝑘7 (7) 
𝑟𝑟8 = 𝑘𝑘8[𝑀𝑀𝑀𝑀1][𝑅𝑅] 𝑘𝑘8 (8) 
𝑟𝑟9 = 𝑘𝑘9[𝑀𝑀𝑀𝑀2][𝑅𝑅] 𝑘𝑘9 (9) 

Material balances:  
𝑑𝑑[𝐻𝐻2𝑂𝑂2] 𝑑𝑑𝑑𝑑⁄ = (𝐹𝐹 𝑉𝑉⁄ ) ∙ ([𝐻𝐻2𝑂𝑂2]𝑖𝑖𝑖𝑖-[𝐻𝐻2𝑂𝑂2])-𝑟𝑟1-𝑟𝑟3  (10) 
𝑑𝑑[𝑂𝑂2] ⁄ 𝑑𝑑𝑑𝑑 = (𝐹𝐹 𝑉𝑉⁄ )([𝑂𝑂2]𝑖𝑖𝑖𝑖-[𝑂𝑂2]) + 𝑔𝑔1𝑟𝑟3 + 𝑔𝑔2𝑟𝑟4-𝑐𝑐1𝑟𝑟5 + 𝐾𝐾𝐿𝐿𝑎𝑎([𝑂𝑂2]∗-[𝑂𝑂2])  (11) 
𝑑𝑑[𝑇𝑇𝑇𝑇𝑇𝑇] ⁄ 𝑑𝑑𝑑𝑑 = 𝑑𝑑[𝑀𝑀] 𝑑𝑑𝑑𝑑⁄ + 𝑑𝑑[𝑀𝑀𝑀𝑀1] 𝑑𝑑𝑑𝑑⁄ + 𝑑𝑑[𝑀𝑀𝑀𝑀2] 𝑑𝑑𝑑𝑑⁄   (12) 
being:  

𝑑𝑑[𝑀𝑀] 𝑑𝑑𝑑𝑑⁄ = (𝐹𝐹 𝑉𝑉⁄ ) ∙ ([𝑀𝑀]𝑖𝑖𝑖𝑖 − [𝑀𝑀]) − 𝑟𝑟5 − 𝑟𝑟6 (13) 
𝑑𝑑[𝑀𝑀𝑀𝑀1] 𝑑𝑑𝑑𝑑⁄ = (𝐹𝐹 𝑉𝑉⁄ ) ∙ ([𝑀𝑀𝑀𝑀1]𝑖𝑖𝑖𝑖 − [𝑀𝑀𝑀𝑀1]) + 𝑟𝑟5 + 𝑟𝑟6 − 𝑟𝑟7 − 𝑟𝑟8 (14) 
𝑑𝑑[𝑀𝑀𝑀𝑀2] 𝑑𝑑𝑑𝑑⁄ = (𝐹𝐹 𝑉𝑉⁄ ) ∙ ([𝑀𝑀𝑀𝑀2]𝑖𝑖𝑖𝑖 − [𝑀𝑀𝑀𝑀2]) + 𝑟𝑟7 − 𝑟𝑟9 (15) 

 
The model includes the overall gas-liquid mass transfer coefficient for O2 (KLa) and three 
stoichiometric coefficients describing the oxygen balance (c1, g1, and g2). Finally, the 
fed-batch model by Audino et al. (2019) extends the kinetic model by including an inlet 
flow (F) allowing the flexible supply of hydrogen peroxide ([𝐻𝐻2𝑂𝑂2]𝑖𝑖𝑖𝑖).  
2.2. Model fitting and parameter estimation 
The model has been implemented in Simulink®. The photo-Fenton process has been 
simulated and the estimation of the set of kinetic and stoichiometric parameters has been 
first studied through the fitting of the model to perfect data obtained by simulation for 
H2O2, TOC, and O2 profiles (the common experimentally measured information) using 
the parameter values reported by Cabrera Reina et al. (2012). This allows testing the 
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potential of the fitting procedure and provides a quantitative reference, given by the sum 
of the squared errors to be minimized (eq.1), and the root mean square error (RMSE), the 
normalized root-mean-square deviation (NRMSE), and the coefficient of variation of the 
RMSE, CV(RMSE) to quantify the goodness of fit. 

𝑚𝑚𝑚𝑚𝑚𝑚 𝑍𝑍 = ∑ �[𝑇𝑇𝑇𝑇𝑇𝑇]�
𝑖𝑖-[𝑇𝑇𝑇𝑇𝑇𝑇]𝑖𝑖�

2
𝑖𝑖 + ∑ �[𝐻𝐻2𝑂𝑂2]�

𝑗𝑗-[𝐻𝐻2𝑂𝑂2]𝑗𝑗�
2

𝑗𝑗 + ∑ �[𝑂𝑂2]�
𝑘𝑘-[𝑂𝑂2]𝑘𝑘�

2
𝑘𝑘   (16) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �( ∑ (𝑦𝑦�𝑛𝑛-𝑦𝑦𝑖𝑖)2𝑁𝑁
𝑛𝑛=1 𝑁𝑁⁄  )  (17) 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝑦𝑦�𝑚𝑚𝑚𝑚𝑚𝑚-𝑦𝑦�𝑚𝑚𝑚𝑚𝑚𝑚)⁄  (18) 

CV(RMSE)= 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  𝑦𝑦�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚⁄  (19) 

2.3. Sensitivity analysis  
Sensitivity analysis has been performed based on variances-based sensitivity analysis of 
model output using Simulink Design Optimization software. Sensitivity analysis was 
conducted to assess to which extent variations of the model parameters can affect each 
measured response (TOC, H2O2, and O2). Hence the model is discussed regarding its 
hypothesis and chances for reducing complexity. The Rank Partial Correlation method 
was used to analyze to which extent each model parameter affects the function output. 
The correlation coefficients vary from -1 to 1, and a zero value means no correlation at 
all. The correlation coefficient between two sets of variables 𝑋𝑋 and 𝑌𝑌, 𝑅𝑅𝑋𝑋𝑋𝑋, is given by:  

𝑅𝑅𝑋𝑋𝑋𝑋 = 𝐶𝐶𝑋𝑋𝑋𝑋 �𝐶𝐶𝑋𝑋𝑋𝑋𝐶𝐶𝑌𝑌𝑌𝑌⁄     𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏    𝐶𝐶𝑋𝑋𝑋𝑋 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋,𝑌𝑌) = 𝐸𝐸[(𝑋𝑋 − 𝜇𝜇𝑋𝑋)(𝑌𝑌 − 𝜇𝜇𝑌𝑌)] (20) 

One approach to sensitivity analysis is local sensitivity analysis, which is derivative-based 
(one-at-a-time technique). The term local refers to the fact that all derivatives are taken 
at a single point. However, this approach can be infeasible for complex models, where 
formulating the cost function (or the partial derivatives) is nontrivial. Also, they do not 
provide insight into how the interactions between parameters influence the cost function. 
Another approach to sensitivity analysis is global sensitivity analysis, often implemented 
using Monte Carlo techniques. This approach uses a representative (global) set of samples 
to explore the design space. 
Mathematically, the sensitivity of the cost function with respect to certain parameters is 
equal to the partial derivative of the cost function concerning those parameters. 
Accordingly, A sensitivity function was defined as the partial derivatives of Eq.16 with 
respect to each parameter. This function implies the matching of output signals (TOC, 
H2O2, and O2) to measured (perfect) data as the requirement.  
2.4. Fitting to experimental data 
The experimental data is from the work by Yu et al. (2020) that measured different 
hydrogen peroxide dosage profiles for Fenton and photo-Fenton processes. The parameter 
estimation procedure will be tested by fitting the model to some of the assays reported. 

3. Result and discussion  
3.1. Fitting of the photo Fenton model to No dosage & Dosage cases  
First, perfect data was obtained through the simulation of the model using the parameter 
values reported by Cabrera Reina et al. (2012). Figure 2 shows the profiles obtained for 
TOC, H2O2, and O2 during a 4h reaction time. Simulations with (b) and without (a) 
dosage are also shown. The H2O2 dosage profile (Fig. 2b) is given by an on-off profile 
set to be on from 0 to 15 min and from 45 to 60 min. 
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Figure 2. Profile of TOC, H2O2, and O2 : (left) No dosage, (right) Flexible dosage profile 

The fitting of these simulated data using the parameter estimator tool in Simulink® was 
checked setting different sets of initial kinetic parameter values obtained randomly in the 
range of ±50% of the true values. Results (Fig.3) showed a good agreement between 
perfect data and predicted data in no dosage mode with the lowest values of C.V.(RMSE) 
resulted in 0.52%, 0.61%, and 1.04% for TOC, H2O2, and O2, respectively. Similarly, the 
parameter search resulted in good agreement of the fitted data after parameter estimation 
with the lowest values of C.V.(RMSE) of 0.52%, 1.83%, and 1.01% for TOC, H2O2, and 
O2, respectively. The C.V.(RMSE) results, as represent the simulation errors, below than 
the detection limits of the measurements corresponding to the capability of the given 
model to “fit” the datasets. This provides a reliable model of the flexible dosage of H2O2 
in photo-Fenton processes for further experimental studies. 

Figure 3. Fitting to simulated data and residuals: No dosage (a, b); Dosage (c, d)  

3.2. Sensitivity analysis on the photo Fenton model 
Global sensitivity analysis was performed to explore which model parameters (assumed 
independent) most influence the goodness of fit. A set of 100 parameter samples was 
generated randomly by varying the value of each parameter for both no dosage and dosage 
cases. The corresponding correlation coefficients 𝑅𝑅𝑋𝑋𝑋𝑋 are plotted in Figure 4 in order of 
influence on the signal matching of the simulated data to the perfect data for TOC, H2O2, 
and O2  in the role of the sensitivity function. 
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a) b) 

c) d) 

   

  

  



   

Figure 4. Ranked influence of model parameters on the signal matching with respect to TOC, 
H2O2, and O2: Case without dosage (Left), Case with flexible dosage (Right). 

The different ranked series of kinetic parameters were obtained for the measured variables 
TOC, H2O2, and O2 considering no dosage and dosage cases. For a better interpretation 
of the sensitivity analysis plots, a threshold line (red dash line) was defined at R=±0.5. 𝑘𝑘1 
with respect to the criterion |R|≥0.5 indicated the most significant parameter in the 
ranking plots to H2O2, and O2. In the case of TOC, the order of parameters showed an 
almost similar magnitude of |R| value lower than 0.5, but again 𝑘𝑘1 was in the place of a 
significant parameter. 

 
Figure 5. Experimental data and simulated profiles in dosage mode: Considering all parameters 
for the estimation (solid line); excluding k6 from model (𝑘𝑘6 = 0) (dash line) 

Figure 5 shows the model profiles fitting the experimental data with and without 
considering 𝑘𝑘6. Likewise, similar fitting results were obtained with and without 
considering 𝑘𝑘6 through parameter estimation of experimental data by very close (±2%) 
C.V.(RMSE) values for TOC, H2O2 and O2. Whilst this real experimental insight 
adequately represented the unimportant effect of 𝑘𝑘6 on the model fitting, further studies 
using diverse H2O2 dosage profiles would be required to validate the efficient fitting of 
the model for flexible H2O2 profile. 
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4. Conclusions 
This work has developed a kinetic model for the dosage of hydrogen peroxide in photo-
Fenton processes to be fit to experimental data obtained from different dosage profiles. 
The model focuses on the process variables to be easily measured (TOC, H2O2, and O2). 
After verifying the model with the adjustment to simulated data a sensitivity analysis of 
the model fitting has been performed, which provided a valuable insight into the nature 
of the model. One of the reactions proposed in the literature has been found to have a 
scarce influence on the fitting of the model, for which it has been excluded. After 
checking the insignificant effect of this reaction on the fitting, the model has been shown 
to be able to adjust to a series of experimental data (C.V.(RMSE) of 2.68%, 17.68%, and 
17.92% for TOC, H2O2, and O2, respectively). Therefore, the model is ready to address 
further experimental data (dosage profiles) and hence attempt the model-based 
optimization of the dosage profile.  
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Abstract 

Today, Liquefied Petroleum Gas, Natural Gas Liquids Recovery, and Condensate 

Stabilisation have gained significant interest, given their increased selling prices and 

market demands. Nevertheless, many operational units do not meet the desired profits 

and lack proper optimisation initiatives. In this study, a case study from the operating 

condensate stabilisation unit within the liquefied natural gas process is considered, where 

a sensitivity analysis of key process operating parameters is applied to investigate process 

performance. The process is optimised to achieve the highest efficient performance, 

maximum productivity rate, and minimum energy consumption. Based on the available 

production data and operating conditions, an existing condensate stabilisation unit is 

simulated using the Aspen HYSYS V10 simulator, which is based on the Peng-Robinson 

equation of state. The most significant process variables and constraints that directly 

affect the performance, and production of condensation stabilisation units are highlighted 

to demonstrate the connection among process operating conditions and the influence on 

process objectives. The optimal process operating conditions are determined to achieve a 

stable column operation. The most effective process variables based on the sensitivity 

analysis are stabiliser column pressure, stabiliser feed temperature, the outlet temperature 

of process gas from the wellhead, and stabiliser bottom temperature. After collecting 

process data from the sensitivity analysis, MATLAB has been used to formulate and solve 

the multi-objective optimisation problem.  Beginning with a natural gas feed flow of 554 

MMSCFD, a condensate with 956.9 barrel/day standard liquid volume flow and a reboiler 

load of 0.86MW have been achieved. After performing the singular optimisation problem 

in MATLAB, the condensate standard liquid volume flow is increased to 1273 

barrels/day, and the reboiler load has decreased to 0.79MW. 
 

Keywords: Condensate stabilisation, optimisation, sensitivity analysis, LNG, simulation. 

1. Introduction 

Natural gas (NG) is one of the world's most common, promising and affordable fuels, 

with a wide range of uses. However, in the gaseous state, transportation presents a number 

of challenges. As a result, the method of transforming NG into intermediate liquid streams 

has been recommended and used for years to alleviate the difficulties posed by its gaseous 

composition (Bahmani et al., 2017). Liquefied petroleum gas (LPG) and natural gas 

liquids (NGLs) are the two main products sourced from all commercial gas refineries' NG 

stabilisation systems. Natural gas products to be fed into the pipeline for the gas 

distribution system or to be liquefied must meet the applicable minimum requirement for 

the pipeline's network or liquefaction unit to work effectively. As a result, natural gas 

extracted at the wellhead should be refined before it can be liquefied and securely 
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transported to the long-distance, high-pressure pipelines that transport the fuel to the 

consumer, as it mainly consists of contamination (non-hydrocarbon gases) and natural 

gas liquids. Gas condensate is a valuable liquid hydrocarbon mixture that is generated 

while delivery in raw gas collecting pipelines or naturally from a gas well, can be used as 

a dilution in oil products or turned to various oil products such as diesel and aviation fuel, 

amongst others (Uwitonze et al., 2017). To meet the appropriate requirements for 

transportation and storage, the raw condensate must be reduced in water, salt, and acid 

content (i.e., H2S, CO2, mercaptans, etc.) (Moradi Kazerooni et al., 2015). The aim of this 

condensate treatment process is to remove lighter hydrocarbons (methane, ethane, 

propane, etc.), including acidic components from liquid hydrocarbons in order to make 

them commercially viable (Zhu et al., 2016). Whereas distillation is the primary method 

that is widely applied to separate a mixture of components based on their boiling points 

by boiling the more volatile components out of the mixture preferentially. The degree of 

separation of a multi-component system depends on the properties of the feed mixture, 

operating conditions, and other process-imposed restriction. The aim of the unit is to 

reduce liquid condensate vapor pressure. In order to avoid vapor phase generation while 

flashes to the storage tank. This method, is structured to distinguish very light 

hydrocarbon gases, such as methane and ethane, from heavier hydrocarbon components 

(Adib et al., 2015). Light ends are processed for more commercialisation purposes such 

as liquefied natural gas (LNG) processing and natural gas liquid extraction while stable 

condensate is stored (Uwitonze et al., 2017). In the field of condensate stabilisation for 

natural gas, significant research has been conducted, and numerous papers have been 

developed. Tavan et al. (2019) investigated the energy and exergy of the condensate 

stabilisation system and discovered the best location for the water withdraw tray within 

the condensate stabiliser column. Furthermore, Moghadam et al. (2012) optimised the 

condensate stabilisation unit's process design and suggested that the design with the 

minimum operating pressure had the lowest fixed capital cost, and also required the least 

power due to the high separation performance and low energy demand. In this study, an 

LNG operating condensate stabilisation is has been selected, where sensitivity analyses 

are carried out by Aspen HYSYS for the key process parameters to determine their effect 

on the condensate product and stabiliser energy consumption. After which, the optimal 

process parameters are determined using the MATLAB software by solving the singular 

and multi objectives optimisation problems related to the minimisation of stabiliser 

reboiler duty and the maximisation of condensate flow. 

2. Methodology 

The sequential structure of methodology adapted in this study is depicted in Figure 1. 

Firstly, the condensate stabilisation process is developed in the steady-state mode using 

Aspen HYSYS V10. Subsequently, sensitivity analyses are carried for the key process 

parameters to allocate their effect on stabiliser reboiler duty and condensate flow. In this, 

one parameter is subjected to change at a time, while the others are kept constant in the 

simulation model so that it should not deviate from the actual operating situation. 

Eventually, these process parameters are optimised using MATLAB to maximise 

condensate production and minimise the sabiliser energy consumption. 

Figure 1: Schematic of methodological steps undertaken in this study. 
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3. Condensate stabilisation process 

The pre-separation units consists of three units, which are a three-phase separation, 

dehydration unit, and condensate stabilisation unit (Bahmani et al., 2017). Natural gas 

from different wells is gathered and enters the three-phase separator at nearly 80 bar 

pressure. In the three-phase separator condensate, water and gases are separated. After 

the three-phase separation process, the outlet condensate is sent to the condensate 

stabilisation facility, and water is sent for additional processing and gas as one 

mainstream sent to the gas dehydration. Raw condensate from the reservoirs has light 

hydrocarbons, which flash at high temperature and low pressure causing loss of valuable 

products and environmental pollution (Rahmanian et al., 2016). The separated natural gas 

condensate requires reduction in acid, water, and salt contents to meet expected standards. 

Subsequently, it is transformed into a transportable and distributable format that is 

commercially acceptable (Moradi Kazerooni et al., 2015). While the extracted condensate 

can be transported without further refining, it must be stabilised often in order to be 

blended into the crude oil. The aim of the condensate stabilisation process is to lower the 

vapor pressure of the condensate liquids such that no vapor phase is created when the 

liquid is flashed to atmospheric storage tanks (Uwitonze et al., 2017). It entails the number 

of intermediates (C3 to C5) and (C6+) components in condensate, while removing light 

hydrocarbons from liquid hydrocarbon. There are no precise product standards other than 

meeting process criteria or particular product specifications (Zhu et al., 2016). The 

primary objective towards stabilising natural gas condensate is to extract as much liquids 

condensate as possible while maintaining its Reid vapor pressure (RVP) within 10.5 psia. 

The condensate leaves the three-phase separator V101 where its pressure is dropped by a 

control valve at 27.5 bar, and the gases are recovered in a flash drum and sent for 

recompression. The condensate pressure is further dropped by vale V102 at 10 bar. 

Subsequently, the condensate is sent to the stripper where it is heated, and the light gases 

are recovered and sent for the recompression and recycle. The stabilised condensate 

which is obtained from the bottom of stripper is cooled down and sent to the storage tank. 

The process flow diagram is illustrated in  

Figure 2. 

 
Figure 2: Process Flow Diagram of Condensate stabilisation process. 

4. Sensitivity analyses 

The most critical process variables and constraints that directly affect the production and 

the performance of the plant are discussed in the following sections. 

4.1 Relationship of feed gas flow rate and stabiliser duty 

 

411

LNG Processes



 382 

The feed gas flow rate that is used in this study is 554 MMSCFD, while the feed gas 

composition is illustrated in Table 1. 

Table 1. Feed gas composition. 

Name Mole fraction % 

N2 0.0500 

H2S 0.0150 

CO2 0.0280 

C1 0.8093 

C2 0.0425 

C3 0.0179 

n-C4 0.0103 

n-C5 0.0257 

M-Mercaptan 0.0002 

Benzene 0.0005 

Toluene 0.004 

P-Xylene 0.0004 
Temperature 27 C 

Pressure 80 bar 

Mass flow Rate 554 MMSCFD 
 

The sensitivity analysis is carried out while RVP is kept constant. Figure 3a demonstrates 

the effect of gas flow rate change on the stabiliser duty. As the gas flowrate increases, the 

duty of the stabiliser increases steadily due to the increase energy requirement to remove 

light gases from the condensate. 
 

 
Figure 3: Trends of condensate flow and (a) stabiliser duty and (b) feed gas temperature. 

4.2 Relationship of feed gas temperature and condensate flow 

The normal temperature of the feed gas is 27 °C. This temperature is varied between 

15 and 35 °C while maintain the RVP constant. As illustrated in Figure 3b, condensate 

production gradually reduced from 2865 bbl/day to 176.1 bbl/day as the temperature of 

the feed gas increased. It implies that at low condensate temperature at the inlet of the 

stabiliser plant more condensate is produced. By increasing the temperature, light gases 

are flashed off which reduces condensate production. 

4.3 Relationship of feed gas temperature and energy consumption in the reboiler 

As illustrated in Figure 4a, as the temperature of feed gas decreases in the outlet of the 

wellhead, stabiliser duty increases because condensate productivity rate increase as a 

result of heavier hydrocarbon condensation. In addition, the total consumed energy 

increases considerably as a result of increasing reboiler heating duty. 

4.4 Relationship of stabiliser pressure and reboiler duty  
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The condensate stabiliser column pressure is directly controlled by the overhead column 

vapours. Figure 4b illustrates the relation between condensate stabiliser column pressure 

and the stabiliser duty. As the pressure of the column increases, the duty of the stabiliser 

also increases. Hence, the stabiliser feed pressure is directly proportional to the total 

energy consumed in the stabilisation column.  

 

 
Figure 4. Trends of stabiliser duty and (a) feed gas temperature and (b) stabiliser pressure. 

5. Optimisation problem 

The optimisation problem is considered for singular and multi objectives, where 

condensate flow is maximised and energy consumption in the stabiliser is minimised. For 

optimisation formulation, MATLAB’s genetic algorithm is used as it works for discrete 

as well as continuous functions. Base case and optimised case results for the singular 

optimisation problems are given in Table 2 and Table 3, while Figure 5 demonstrates the 

Pareto front of condensate flow and the stabiliser duty for the multi objective problem. 

 

Figure 5. Pareto front of condensate flow and stabiliser Duty. 

 

Table 2: Base case and optimised case results for first objective function. 
Optimisation problem \ Cases  Base case Optimised case 

Objective function:  Maximisation of condensate flow (bbl/day) 957 1273 

Function constrains: RVP      (psia) 9.4 10.15 

Function Primary variables: 
Stabiliser column pressure        bar 

 Feed gas Temperature             °C 

Stabiliser bottom temperature   °C 
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Table 3: Base case and Optimized case results for second objective function. 
Optimisation problem \ Cases  Base 

case 

Optimised case 

Objective Function: Minimisation of stabilizer column energy (MW) 
 

Function constrains: RVP (psai) 

 
Function primary variables: 

Stabiliser column pressure         bar 

 Feed gas Temperature              °C 
Stabiliser bottom temperature   °C 

0.86 
 

9.4 

 
 

10 

27 
137.4 

0.799 
 

10 

 
 

10 

27 
133.1 

 

6. Conclusion 

This study has provided a framework for investigating and improving the performance of 

an existing condensate stabilisation unit recovery plant. The condensate recovery plants 

in operation require continuous innovation and selection of suitable operating conditions 

such that it can increase their returns. The outcomes of this study demonstrate the 

importance of the optimal process operating variables as an essential role in improving 

condensate production, power consumption, and separation performance of the 

condensate column. This is demonstrated through the increase in the objective function 

of condensate production by 33% (316 bbl/d) from the original case with 4.78% increase 

in pentanes plus mole fraction in the condensate product. Moreover, regarding the second 

objective for the reduction of rebolier duty in the stabiliser column, the respective energy 

consumption is reduced by 6.1% (0.061 MW). 
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Abstract
Online and offline optimization of dynamic operation trajectories applied to real processes re-
mains a challenging task when models are hard to evaluate, or when their plant-model-mismatch
is unsatisfactory. These issues can be tackled by training data-driven models when sufficient
measurement data is available. Time dependencies in operation trajectories can be exploited by
recurrent neuronal networks (RNN). In this contribution, RNNs with LSTM cells without and
with series-parallel (teacher forcing) output regressor configurations were trained for their use as
surrogate models of an example first-principles batch distillation model simulated from start-up to
shutdown. For the offline optimization of a reference batch trajectory, a parallel configuration with
predicted output feedback is discussed as a better performing alternative to the classical simula-
tion approach. The prediction accuracies achieved by these configurations is compared and their
applicability to optimization of chemical processes is discussed.

Keywords: dynamic data-driven model, recurrent neuronal network, batch distillation

1. Introduction

In the context of process optimization for the reduction of costs and environmental impact in
the chemical industry, prediction of the process behaviour under different operating conditions is
required. Specifically, online and offline optimization of dynamic operation trajectories applied to
real processes remains a challenging task when models are hard to evaluate, or when their plant-
model-mismatch is unsatisfactory. These issues can be tackled by training data-driven models
when sufficient information through measurement data is available.

Processes with complex dynamics such as discrete changes in the manipulated variables and va-
nishing phases are no exception, rendering batch distillation a good example. There, simplifica-
tions such as neglecting the filling, preheating and shutdown batch phases are often made to obtain
simple, first-principles models (Wang et al. (2003)). The flexibility achieved by machine learn-
ing models opened new possibilities to avoid such simplifications (Venkatasubramanian (2019)).
Furthermore, time dependencies in operation trajectories can be exploited by recurrent neuronal
networks (RNN), with long short-term memory (LSTM) cells to tackle long-term dependencies
(Hochreiter and Schmidhuber (1997)). Successfully applied to fields such as natural language
processing and time series forecasting, these models seem promising for predicting operation tra-
jectories of complex chemical processes (Esche et al. (2022)).

RNNs with LSTM cells may be trained as surrogate models in three different configurations pre-
sented in section 2. When the goal of the trained models is to be used for offline optimization (as in
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the optimization of a reference batch trajectory to be tracked online), only the manipulated varia-
bles are known a priori. Typically, a configuration with only control regressors is used for this
purpose. Series-parallel configurations trained with teacher forcing (Williams and Zipser (1989)),
where past measurements are known, have the ability to model the prediction error while advanc-
ing in a moving horizon, but cannot be used in offline optimization tasks. A parallel configuration
might tackle both restrictions while sacrificing computation time.
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Figure 1: Flowsheet of the case study process: a batch
distillation column and its instrumentation

As an example for a chemical process
with complex dynamics, the proposed
configurations are applied to an example
batch distillation column for the separa-
tion of water-methanol mixtures shown in
Fig. 1, simulated based on a pressure-
driven model in Aspen Plus Dynamics
(see Brand-Rihm et al. (2021)) with the
scope of validation through real plant ex-
periments.

Complexities include vanishing phases
and discrete changes in some of the 12
manipulated variables detailed in Tab. 1.
As outputs, any variable can be cho-
sen from the flowsheet simulator. Here,
ny = 26 outputs are chosen as realis-
tic online measurements, including tem-
perature profiles, pressures, liquid levels,
mass flows, and mass fractions. For bet-
ter visibility, only the 15 main outputs are
listed in Tab. 1.

Table 1: Plant controls and main outputs
control description output description
xV N2 nitrogen valve position TCond

med,out cooling medium outlet temperature
PCSP pressure controller setpoint T1 temperature at the column top
xV F feed valve position T10 temperature at the bottom vessel
RRCSP reflux ratio controller setpoint T Reb

med,out heating medium outlet temperature
T med,in

Reb heating medium inlet temperature ṁD distillate mass flow
LCMODE

D level controller mode* ṁB bottoms mass flow
LCSP

D condenser level controller setpoint ṁNCG gas flow of non-condensable gases
LCOP

D condenser level controller output wMeOH
D methanol mass fraction in distillate

PCMODE pressure controller mode* wW
D water mass fraction in distillate

PCOP pressure controller output wN2
D nitrogen mass fraction in distillate

LCMODE
B sump level controller mode* pD condenser pressure

LCOP
B sump level controller output pB bottom vessel pressure

Q̇Cond condenser cooling duty
*()MODE ∈ {0 = auto,1 = manual} Q̇Reb reboiler heat duty

LB liquid level in bottom vessel

The achieved prediction accuracies of the proposed models are discussed in section 3.
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2. Methods

2.1. Prediction, simulation, and forecasting

Different definitions exist for prediction and forecasting. Nonetheless, their differences seem to be
clear in the field of data science when time plays a decisive role. Since this contribution considers
datasets provided by dynamic multiple input-multiple output (MIMO) processes in the form of
time series, the specific task of predicting future states is called forecasting.

In the field of system identification, a difference is made between a task focus where regressors
are constructed only for the controls xk at a discrete timestep k (simulation) in contrast to config-
urations that also include an autoregressive part with output regressors yk, called predictions.

Following notation can be used for regressor sets, where l and m are the past horizons for controls
and outputs, respectively: x(l)k = (xk−l ,xk−l+1, ...,xk), y(m)

k = (yk−m,yk−m+1, ...,yk).

When the goal is offline optimization based on data-driven models, an alternative to the simulation
configuration (Fig. 2 a) Sim) based on a series-parallel architecture trained with teacher forcing
(Fig. 2 b) S-P) can be used, which exploits the modelling of prediction errors while maintaining a
simulation focus due to its parallel predicted output regressor loop (Fig. 2 c) Par).

Figure 2: Configurations adopted in this contribution

The Par configuration predicts future states using the trained S-P model. Since here the regressor
set includes predicted outputs instead of real measured outputs, an accumulating prediction devi-
ation is expected. The prediction accuracy of Par might be less than in the S-P configuration, but
only controls are needed.

2.2. Sampling for simulated dataset generation

A simulated dataset consisting of batch runs sampled over an operation recipe to enhance the
feasibility ratio of the simulations was generated to train and test different data-driven models
according to Brand-Rihm et al. (2021). Here, ns = 645 of 1000 samples converged. A train/test
ratio of 3/4 is chosen, leaving ntest

s = 162 samples for testing. The generated dataset consists of an
array with size (samples ns, timesteps nt , channels nx +ny) = (645,401,12+26).
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3. Results and discussion
The prediction accuracies can be analysed comparing the mean squared errors (MSE) between
min-max scaled testing (ytest

stc ) and predicted (ŷstc) data for each sample s separately (MSEs) and
for each model (MSE), according to:

MSEs = (nt ·ny)
−1

nt

∑
t=1

ny

∑
c=1

(
ytest

stc − ŷstc
)2 MSE =

(
ntest

s
)−1

ntest
s

∑
s=1

MSEs

Since only configurations Sim and Par support offline optimization, their predictions can be com-
pared qualitatively. Fig. 3 shows the worst test trajectories (highest MSEs) predicted by Sim (top)
and Par (bottom). It is shown that even in the worst Par prediction the test trajectories show
correct trends. On the contrary, the worst Sim prediction misses the trends while the parallel
configuration performs to a satisfactory degree.

Figure 3: Worst predicted samples (in terms of MSE) for configurations a) Sim and c) Par

Table 2: Statistics of prediction accuracies for the three configurations
MSE ·103 elapsed times (s)

configuration mean P25 P50 P75 training prediction
a) Sim 4.06 1.91 3.01 5.12 1.47·103 5.14
b) S-P 1.66 1.43 1.67 1.86 1.54·103 6.02
c) Par 3.46 2.70 3.64 4.04 1.54·103 2.26·103

The prediction accuracies in terms of overall MSE among all samples, as well as elapsed training
and prediction times are shown in Tab. 2. The prediction error distributions with their mean,
median (P50), 25% and 75% percentiles (P25 and P75) are presented in Fig 4.
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Figure 4: Sample prediction error distributions of the
presented methods

It is shown that for the performed sam-
pling and its test data, among the con-
figurations capable of predicting opera-
tion trajectories based solely on given
controls (Sim and Par), the parallel ar-
chitecture outperforms qualitatively and
quantitatively (in terms of prediction er-
ror) the simulation architecture, although
the computation time of the prediction
is larger by three orders of magnitude.
This might be enhanced by optimizing
the code for the feedback loop. The
percentile statistics show a lower median
(P50) for Sim, but having a stronger vari-
ance with many test samples with insuffi-
cient prediction accuracy. Therefore, the
Par configuration might be more robust.

Absolute prediction errors for the sam-
ples with the best prediction accuracies
are shown in Fig. 5. Although no clear
advantage is visible for the Par over the
Sim configuration during the first half of
the time period, in almost all cases Par
outperforms Sim in the second half.

Figure 5: Errors of best predicted samples (in terms of MSE) for configuration c) Par

In the context of batch distillation, the second half of the predicted time period is often described
by distillate depletion, inertization and shutdown. The conditions in the column states that must
be met to proceed with inertization and shutdown strongly depend on the actions taken from the
beginning of the operation. These actions in the manipulated variables are bound to past measure-
ments according to an operation recipe. The Par configuration can be trained on those conditions
using past states, explaining its advantages over Sim.
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4. Conclusions

For the presented use case, RNN configurations with and without external output feedback loops
were tested. A proposed parallel configuration based on a model trained in series-parallel form
(teacher forcing) showed better overall prediction accuracy and lower variance in the mean squared
errors than a simulation configuration with only control regressors. This is due to the modelling
of the prediction error considering past testing timesteps. The qualitative behaviour of predicted
trends supports the choice of this architecture, although the computation time of the prediction
is three orders of magnitude higher. Training of the presented RNNs on large simulated datasets
provides data-driven models for trajectory optimization in chemical processes with complex dy-
namics. The trained models will be used for the optimization of batch distillation cycles in a real
batch distillation column.
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Abstract
In the pathway toward decarbonization, hydrogen is presented as a great option as it can be pro-
duced from a wide variety of feedstock using multiple production, storage and transportation op-
tions for diverse applications. Although H2 could provide flexibility and sector coupling to energy
systems, the design and management of the hydrogen supply chain (HSC) is also identified as
a challenging task. Until now, most of the HSC designs are treated as problems with single or
multiple objectives without any hierarchical conflict. This paper proposes a mixed-integer bi-level
programming (MIBLP) approach as a mathematical model of the Stackelberg game. The solution
strategy considers the MIBLP as a multi-parametric problem: if the feasible set of the lower level
optimization problem (LLP) of the bi-level programming problem (BLPP) is parametric in terms
of the optimization variables of the upper level problem (ULP), each level can be solved with a
different approach. Consequently, to handle continuous and discrete variables at both levels, we
propose a hybrid method involving Differential Evolution (DE) for the ULP and an Integer Linear
Programming Solver (ILPS) for the LLP. The developed hybrid evolutionary-deterministic strat-
egy evaluates the performance of two HSC study cases combining Steam Methane Reforming and
Electrolysis processes for H2 production: a classical Stackelberg game design vs. a Stackelberg
one leader - multi followers under Cournot competition. In both scenarios, the ULP objective is
to minimize the distribution cost while the LLP objective tries to minimize the production cost of
a given producer. The experimental results obtained show that the solution method is efficient and
promising for dealing with one-leader multi-objective / multi-follower single objective optimiza-
tion cases.

Keywords: bi-level programming, hydrogen supply chain, Stackelberg Games, Cournot Equilib-
rium, MIBLPP.

1. Introduction

Hydrogen (H2) can be obtained from a wide variety of renewable and non-renewable sources with
many different production, storage and transport modes, so that the development of an optimal Hy-
drogen Supply Chain (HSC) arises as a complex task. With the objective of a low or zero carbon
energy future, and with the faster growing research interest in this topic, as proposed in Lindorfer
et al. (2019); Borschette (2019), hydrogen can offer new pathways for the energy transition.
Until now, most of the HSC designs are treated as single level programming problems (SLPP) with
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single or multiple objectives without any hierarchical conflict. SLPPs can be seen as centralized
decision-making systems, where the highest level in the hierarchy has enough power to dictate the
decisions and have them executed by the lower levels without any chance of opinion. However, a
more realistic formulation would recognize the role of the lower levels as part of the decision pro-
cess. Therefore, the optimization of non-cooperative supply chains using bi-level programming
models has received increased scientific attention due to the natural representation of this kind of
hierarchical situations.
Bi-level programming problems (BLPP) constitute a class of nested optimization problems where
an optimization problem contains another optimization problem as part of the constraint defini-
tion. Main approaches used to tackle BLPP are commonly divided into two classes: deterministic
/ classical approaches and evolutionary approaches, for further detail refer to Sinha et al. (2018).
Mostly of the classical optimization literature is related with simple, single-objective problems
with linear constraints when it is possible to replace the lower level optimization problem with
its Karush-Kuhn-Tucker (KKT) conditions. Existing models usually can only handle linear or
quadratic problems in the follower level using classical approaches, like the transformation of the
bi-level problem into a single level problem using the KKT conditions, e.g. Dempe and Franke
(2019); Li et al. (2016); Yue and You (2014). On the evolutionary approach branch, studies on
computational techniques like evolutionary algorithms had proved the efficiency solving from
small to big size problem instances, e.g. Sinha et al. (2017); Bylling (2018).
This work attempts to solve a non-cooperative HSC in the presence of multiple followers (pro-
ducers) that compete in a shared market. In a previous work, we proposed a more realistic HSC
formulation that recognize the role and influence of each stakeholder as part of the whole decision
process, based on Flores-Perez et al. (2020) and represented as a non-cooperative supply chain in
the form of a single leader - single follower BLPP.
In Game Theory, the Cournot Competition Game is an economic model to describe how n rival
companies compete when they offer the same product in the same market and collusion is not pos-
sible or is forbidden. Ledvina and Sircar (2012) define that the Cournot Oligopoly Model occurs
when more than two firms (players) choose their individual production level qi and the market
price is determined by the total sum of outputs while each firm wants to maximize their profit .
Recent studies, e.g. Lu et al. (2021); Zhang et al. (2020), demonstrate the usefulness of this ap-
proach applied to energy markets, where the authors use a Cournot Game to model the interactions
and competition among strategic generators.
In this paper, we formulate the HSC as a BLPP where the leader is a monopolistic distribution
company and the Cournot Oligopoly Game model is adopted to formulate production competition
between different producers (followers). The rest of this paper is organized as follows. Section 2
defines the HSC model represented as a Mixed Integer Bi-level Programming Problem (MIBLPP),
including the shared market competition. Section 3 explains the functionality of the hybrid algo-
rithm to solve MIBLPP, the Cournot model definition and the expected interaction between levels.
Section 4 and 5 highlight the results obtained and conclusions, respectively.

2. Problem Definition

Due to the complex and non-general structure of the HSC, and to test the viability of the devel-
oped algorithm, we propose a modified numerical example of a Production-Distribution problem
adapted from literature, see Avraamidou and Pistikopoulos (2019). There are two main ways to
produce hydrogen. Today, around 99% of hydrogen comes from fossil fuels, primarily by reform-
ing natural gas into hydrogen and CO2. This hydrogen is often referred to as ”grey hydrogen”
if greenhouse gases are emitted into the atmosphere. The ”green” alternative refers to hydrogen
gas that is generated via electrolysis powered by renewable energy such as hydro, solar or wind
energy.
The resulting HSC planning activity can be modeled as MIBLPP with continuous and discrete
variables at both levels to represent production and distribution activities of a HSC, with the par-
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Sets and index

P, p Set of H2 producing plants, plant index
S,s Set of storage units, unit index
R,r Set of refueling stations, station index

Constants

PCapp Max production capacity of plant p (kg)
TCapprod Connection capacity at production level (kg)
TCapdist Connection capacity at distribution level(kg)
CCtrans

sr Transmission cost from storage s to station r ($/kg)
CCconv

ps Conversion cost at plant p for storage s ($/kg)
UTCps Transp. cost from plant p to storage s ($/kg)
UPCps Prod. cost of H2 at plant p for storage s ($/kg)
Dr Demand for refueling station r (kg)
cp Marginal production cost for producer p ($/kg)
a,bp Coefficients for the inverse demand function

Decision variables

Qsr H2 sent from storage s to station r (kg)
ysr Existence of route connecting storage s to station r
Qps H2 produced in plant p for storage s (kg)
xps Existence of route connecting plant p to storage s
q∗t Optimal quantity produced by producer t (kg)
Π∗t Total profit for producer t ($)
Q∗ Optimal quantity produced (kg)
P∗ Market price ($/kg)

Parameters

p = 1 p = 2
PCapp 13,500 10,000

r = 1 r = 2 r = 3
CCtrans

sr s = 1 1 1 1
s = 2 2 2 2

s = 1 s = 2
UTCps p = 1 0.7 0.7

p = 2 1 1
s = 1 s = 2

UPCps p = 1 2.3 2.3
p = 2 1.6 1.6

s = 1 s = 2
CCconv

ps p = 1 2.3 2.3
p = 2 1.6 1.6

TCapprod 10,000
TCapdist 3,500

a 6
p = 1 p = 2

bp 1.21e−4 3.2e−4

p = 1 p = 2
cp 2.3 1.6

r = 1 r = 2 r = 3
Dr 5,500 6,500 1,500

Table 1: Sets, index and parameters for HSC case study

ticularity of multiple followers competing for the production market. For the case study considered
here (see Figure 1), the HSC for mobility application is operated by two different companies, pro-
duction and distribution, described as follows:

Figure 1: Non-cooperative Hydrogen Supply
Chain.

The upper level problem (ULP) represents the
distribution company, the objective function
consists in minimizing the costs that arise of
getting the hydrogen from plants and then to
distribute it to the refueling stations, including
the cost associated to hydrogen storage in the
dedicated facilities. The lower level problem
(LLP) represents the decisions of the multiple
production companies, which have the inter-
est in minimizing the total operating cost asso-
ciated to production activities while maximiz-
ing their individual profit via a Cournot model,
more detail in Osborne (2002). The fixed cost
related to the decision of establishing a con-
nection between a production plant and stor-
age units corresponds to the cost of compres-
sion/liquefaction.
The resulting mathematical model is presented
by equations (1-17) using the nomenclature
and parameters of Table 1. The parameters as-
sociated with production, storage, distribution
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and conversion/transmission for the H2 supply chain are taken from Hydrogen Council and McK-
insey & Company (2021).

3. Hybrid MIBLPP Algorithm. The multi-follower case

The solution algorithm consists of two sections: the Upper Level (UL) problem and the Lower
Level (LL) problem. The UL problem solved by a Differential Algorithm approach describes the
general properties of the leader problem, including the Upper Level Variables (ULV), each itera-
tion includes a call to the LL problem to optimize the LL objective function, more detail of the
algorithm can be found in Flores-Perez et al. (2020). In other words, for each UL population mem-
ber with no constraint violation, the © IBM CPLEX Solver evaluates the LL problem taking into
account the production levels proposed by the general Cournot model. The result of the evaluation
returns to the UL as fixed values (parameters) so the algorithm can evaluate the UL objective func-
tion. Each UL iteration ends up with the Differential Evolution engine executed. Is possible to
define two tolerances for the stopping criteria: the number of generations or a predefined feasible
solution; a tolerance is a threshold which if crossed stops the iterations of a solver.

min
ysr ,Qps

∑
s∈S

∑
r∈R

CCtrans
sr ysr+∑

s∈S
∑
r∈R

UTCpsQps (1)

∑
s∈S

Qsr ≥ Dr, ∀r ∈ R (2)

Qsr ≤ TCapdist ysr, ∀s ∈ S,∀r ∈ R (3)

Qsr ≥ 0, ∀s ∈ S,∀r ∈ R (4)

C = ∑
p∈P

cp (5)

qp =
1
bp

(
a+C
n+1

− cp) (6)

Q∗ =
1
bp

(
an−C
n+1

) (7)

P∗ =
a+C
n+1

(8)

Π
∗
p =

1
bp

(
a+C
n+1

− cp)
2 (9)

min
xps,Qps

∑
p∈P

∑
s∈S

UPCpsQps +CCconv
ps xps (10)

s.t. ∑
s∈S

Qps ≤ PCapp, ∀p ∈ P (11)

∑
p∈P

Qps ≥ ∑
r∈R

Qsr, ∀s ∈ S (12)

∑
s∈S

Qps = qp, ∀p ∈ P (13)

Qps≤ TCapprod xps, ∀p∈P,∀s∈ S (14)

Qps ≥ 0, ∀p ∈ P,∀s ∈ S (15)

Qsr ∈ R,ysr ∈ 0,1 (16)

Qps ∈ R,xps ∈ 0,1 (17)

The aforementioned Cournot model is a general static linear oligopoly with multiple producers
with asymmetric production cost. Market price (Eq. 8) is the same for everyone in the market. We
assume there are n groups of H2 producers grouped by production technology p (1,2, . . . ,n), each
one with profit function (Eq. 9) where the total production (Eq. 7) is obtained from the optimal
individual production quantities (Eq. 6). Equations (5-9) are obtained via the diagonalization
solution method, for details see Ioan and Ioan (2015). For this specific example, arbitrary values
are assigned to a, that represents the intercept for the price equals to 0, and b, the slope of demand
curve, in order to obtain a similar demand as defined in the problem definition (13,500 kg). The
total marginal cost C correspond to the summation of unit production cost cp stablished for each
hydrogen producer as parameters (see Table 1).
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4. Results

This section compares the results obtained via our classical MIBLPP approach and the proposed
MIBLPP+Cournot Algorithm. Identical algorithmic parameters were chosen for both examples,
e.g. a population of 400 individuals and 2,500 generations.
In the classical version, the algorithm converges to a unique solution (see Figure 2) where the
levelized cost of H2 (do not confuse with market price from Cournot Model) is 4.21 USD/kg,
there is no overproduction but also there is no shared market since the production is managed
entirely by a unique company (monopoly) (see Table 2). Not surprisingly, the production company
decides to produce the entire demand in the SMR plant since it implies the lowest connection cost
(1 USD/kg) and thus a lower total cost.

Figure 2: Classic MIBLPP Solution Figure 3: MIBLPP + Cournot Solution

In the case of MIBLPP+Cournot, two different companies in competition, each one with different
production technologies and therefore different production costs, must supply the total production
of H2. In this case, there is a wide variety of feasible solutions, the solution with the lowest to-
tal cost of H2 (Solution 1) is 4.091 USD/kg but with a large overproduction of 2,532 kg of H2.
As shown in Table 2, a better feasible solution is obtained corresponding to a total cost of 4.30
USD/kg with a low surplus of 135.71 kg of H2 (Solution 2). The higher total cost, compared with
the classical approach, is the result of producing a large amount of H2 using a large size produc-
tion plant driven by Electrolysis even if that represents a higher connection cost (2 USD/kg), see
Figure 3.
The result obtained using the hybrid algorithm with producers under competition demonstrates
the impact of production levels for each producer in order to maximize the individual profit. The
results for the Cournot Model are: q1= 8,264.46 kg, q2=5,312.50 kg, Q= 13,576 kg, P= 3.3 USD,
π1 = 8,264.46 USD, π2 =9,031.25 USD*
It must be emphasized that even if the cost data used exhibit the order of magnitude observed in
the hydrogen roadmaps, the values obtained do not represent a real profit value.
Finally, Table 3 presents both optimal solutions found for comparison purpose between the classi-
cal MILPP and the MILPP + Cournot approach.

Approach
Production

cost
(USD/kg)

Distribution
cost

(USD/kg)

Total cost
(USD/kg)

H2
produced

(kg)

H2
distributed

(kg)

Overproduction
(kg)

UL objective
function (USD)

LL objective
function (USD)

Classic MIBLPP 2.0148 2.1926 4.2074 13,500 13,500.00 0.00 29,600.00 27,200.20
MIBLPP + Cournot (Sol. 1) 1.8911 2.1996 4.0907 13,592 16,123.99 2,531.99 25,703.80 35,466.06
MIBLPP + Cournot (Sol. 2) 1.8911 2.4086 4.2997 13,592 13,727.71 135.71 25,703.80 33,064.12

Table 2: General comparison of results

5. Conclusions

This paper proposes a Cournot Oligopoly Model in the new hydrogen energy market to formu-
late the competition among non-cooperative suppliers using SMR or electrolysis for hydrogen
production. A hybrid strategy to solve mixed-integer BLPP models including multiple players in
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Approach Qps yps Qsr xsr
p1 p2 p1 p2 s1 s2 s1 s2

s1 s2 s1 s2 s1 s2 s1 s2 r1 r2 r3 r1 r2 r3 r1 r2 r3 r1 r2 r3

Classic MIBLPP 8,000 5,500 0.00 0.00 1 1 0 0 3,500 3,000 1,500 2,000 3,500 1,186.61 1 1 1 1 1 0
MIBLPP+Cournot (Sol. 2) 5,652 0.00 0.00 7,940 1 0 0 1 2,652 3,000 135.71 2,921.06 3,500 1,518.94 1 1 1 1 1 1

Table 3: Optimal solution comparison

competition for the lower level problem is developed for the optimal management of a hydrogen
supply chain. This approach has the advantage to couple engineering and economic approaches.
The resulting algorithm was tested with a small HSC instance. Further work will now be devoted
to a robustness analysis with larger size instances and with the consideration of price elasticity of
demand.
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Abstract 

The improvement of water and energy use in the industrial sector is an important concern 

for decarbonisation of industries, as well as to improve the overall techno-economic 

performance of single plants. The improvement of water efficiency, in particular, is a 

potential approach in the context of its interdependencies to energy use, comprehended 

by the water-energy nexus. A practical application corresponds to the use of heat-driven 

water treatment units such as multi-effect distillation (MED). Such technology is 

commonly used for the desalination of seawater, as well as industrial waste saline water 

streams. This work presents a customised model for an industrial MED unit, namely its 

assembling using the object-oriented Modelica language, and also a brief economic 

assessment for the viability of such unit for industrial application. The model was 

validated with literature data by comparing the theoretical temperature profiles with the 

simulation results. A payback time of 7.1 years was estimated by excluding negligible 

parcels of operating expenses (OPEX) for the MED project, which may be considered 

reasonable in terms of economic feasibility. 

Keywords: water and energy integration; Multi-effect distillation; waste heat recovery; 

water efficiency; Modelica. 

1. Introduction 

Water and energy integration involve a set of methods, measures and practices to improve 

their usage in industry (Alnouri et al., 2014), corresponding to two of the most extensively 

used resources in an industrial plant. The interdependencies of water and energy 

resources, namely the understanding of the improvement of water use through the 

understanding of the use of energy, are studied in the scope of the water-energy nexus 

(Oliveira et al., 2019). Moreover, practices of Combined Water and Energy Integration 

corresponds to the simultaneous application of water recirculation and heat recovery 

principles. In practice, these may be implemented through the use of a water stream as a 

waste heat stream (Savulescu and Alva-Argaez, 2013). An alternative approach which 

makes use of the principle of heat recovery, relies on the waste heat potential from a waste 

stream to set the operation of a water treatment and recirculation system. 

In the alignment of the latter approach, this work studies a Multi-Effect Distillation 

(MED) technology, which may be used (among other applications) for industrial 

wastewater treatment, namely to desalinate saline water streams (Rahimi and Chua, 
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2017). This technology makes part of a set of heat-driven water treatment technologies, 

with the operation of such system needing the supply of a sensible heat source. The 

approach considered in this work, explores the MED technology, namely the 

development and validation of a numerical model using the Modelica language, followed 

by the analysis of its performance and a brief economic assessment in an industrial plant. 

2. Modelling of a Multi-Effect Distillation (MED) Unit 

The modelling and simulation procedure have been performed using the Modelica object-

oriented modelling language, namely using the open-source software OpenModelica 

1.18.1. The models for each one of the operational units as well as the whole model have 

been developed through the use and adaptation of the existing code presented in the 

ThermoPower Modelica Library (Politecnico di Milano, 2021). 

2.1. Theoretical Model 

The study performed by Rahimi and Chua (Rahimi and Chua, 2017) presents an overall 

model that describes the physical phenomena occurring in a MED unit. Following this 

work, a conventional MED configuration model is presented. The assembling of the MED 

model considered 3 main components: i) first effect, ii) second-to-last effects and iii) 

condenser sections. The physical phenomena model described by Rahimi and Chua 

(2017) is based on mass and energy balances, including an analysis of the heat transfer 

and fluid phenomena. The model enables a division of the temperature profiles of the 

effects by zones, which divide specific different sections with different trends for the 

respective temperature profiles of the hot and cold streams. The mass and energy balance 

equations for each section are presented in Table 1, while the temperature profiles for 

each section are represented in Fig. 1. 

 
Fig. 1. Temperature profiles for a) first effect section, b) second-to-last effects section without flashed feed 

stream, c) second to last effect section with flashed feed stream and d) condenser section (adapted from (Rahimi 

and Chua, 2017)) 
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Table 1. Mass and Energy balances for a conventional MED system 

Balance Zone Equation 

Mass 

Balance 

 

First 

effect  

𝑀𝐹,1 = 𝑀𝐵,1 +𝑀𝑉,1 (1) 
𝑀𝐹,1 • 𝑋𝐹,1 = 𝑀𝐵,1 • 𝑋𝐵,1 (2) 

Second-to-

last effects  

𝑀𝐹,𝑘 = 𝑀𝐵,𝑘 +𝑀𝑉,𝑘 (3) 
𝑀𝐻𝑆,𝑘 = 𝑀𝑉,𝑘−1 (4) 

𝑀𝐹,𝑘 • 𝑋𝐹,𝑘 = 𝑀𝐵,𝑘 • 𝑋𝐵,𝑘 (5) 

Condenser  𝑀𝐻𝑆,𝑐𝑜𝑛𝑑 = 𝑀𝑉,𝑛 (6) 

Enthalpy 

Balance 

First 

effect  
𝑀𝐹,1 • ℎ𝐹,1 +𝑀𝐻𝑆,1 • ℎ𝐻𝑆,1,𝑖𝑛 = 𝑀𝐵,1 • ℎ𝐵,1 +𝑀𝑉,1 • ℎ𝑉,1 + 𝑀𝐻𝑆,1 • ℎ𝐻𝑆,1,𝑜𝑢𝑡 (7) 

Second-to-

last effects 

𝑀𝐹,𝑘 • ℎ𝐹,𝑘 +𝑀𝐻𝑆,𝑘 • ℎ𝐻𝑆,𝑘,𝑖𝑛 = 𝑀𝐵,𝑘 • ℎ𝐵,𝑘 +𝑀𝑉,𝑘 • ℎ𝑉,𝑘 + 𝑀𝐻𝑆,𝑘 • ℎ𝐻𝑆,𝑘,𝑜𝑢𝑡 (8) 
ℎ𝐻𝑆,𝑘,𝑜𝑢𝑡 = ℎ𝑓𝑠𝑎𝑡

(𝑃𝑘) (9) 

Condenser  

𝑀𝐻𝑆,𝑐𝑜𝑛𝑑 • ℎ𝐻𝑆,𝑐𝑜𝑛𝑑,𝑖𝑛 +𝑀𝐶 • ℎ𝐶,𝑖𝑛 = 𝑀𝐻𝑆,𝑐𝑜𝑛𝑑 • ℎ𝐻𝑆,𝑐𝑜𝑛𝑑,𝑜𝑢𝑡 +𝑀𝐶 • ℎ𝐶,𝑜𝑢𝑡 (10) 
ℎ𝐻𝑆,𝑐𝑜𝑛𝑑,𝑖𝑛 = ℎ𝑉,𝑛𝑛 (11) 

ℎ𝐻𝑆,𝑐𝑜𝑛𝑑,𝑜𝑢𝑡 = ℎ𝑓𝑠𝑎𝑡
(𝑃𝑛) (12) 

2.2. Development of a MED Unit model in Modelica 

The procedure of this work involved the development of a model for each component of 

a MED unit: i) First effect, ii) Second-to-last effects and iii) Condenser. Each one of these 

models was assembled considering the mass and energy balances and the heat transfer 

along the effects and condenser. In order to build the computational models, it was 

necessary to adapt such equations, in order to simplify and enable the convergence of the 

simulation. For instance, the heat transfer equations were discretized using the finite 

volume method (FVM). The assembled model (considering a total of four MED effects) 

is represented in Fig. 2 (in which Effects 3 and 4 are ommited). The equations used to 

describe the heat transfer phenomena in a MED unit are presented in Table 2 and Table 

3. It is to note that, in the sets of equations, 𝑖 designates a node of the control volume of 

an effect or the condenser. 

 

Fig. 2. Assembling of the MED unit model in OpenModelica 

Table 2. Model equations for heat transfer associated to Effect 1 and its zones 

Section Zone Heat Transfer Equations 

Effect 1 

 

Zone 1 

 

𝑞(𝑖) = 𝑀𝐻𝑆,1 • 𝐶𝑃𝐻𝑆,1 • (𝑇𝐻𝑆,1(𝑖) − 𝑇𝐻𝑆,1(𝑖 + 1)) (13) 

𝑞(𝑖) = 𝑀𝐹,1 • 𝐶𝑃𝑤 • (𝑇𝐹,1(𝑖 + 1) − 𝑇𝐹,1(𝑖)) (14) 

𝑑𝑇(𝑖) = ((𝑇𝐻𝑆,1(𝑖) − 𝑇𝐹,1(𝑖)) + (𝑇𝐻𝑆,1(𝑖 + 1) − 𝑇𝐹,1(𝑖 + 1))) • 0.5 (15) 

𝑞(𝑖) = 𝑈1,1 • (𝐴(𝑖 + 1) − 𝐴(𝑖)) • 𝑑𝑇(𝑖) (16) 

Zone 2 

 

𝑞(𝑖) = 𝑀𝐻𝑆,1 • 𝐶𝑃𝐻𝑆,1 • (𝑇𝐻𝑆,1(𝑖) − 𝑇𝐻𝑆,1(𝑖 + 1)) (17) 

𝑑𝑇(𝑖) = ((𝑇𝐻𝑆,1(𝑖) − 𝑇𝐹,1𝑠𝑎𝑡) + (𝑇𝐻𝑆,1(𝑖 + 1) − 𝑇𝐹,1𝑠𝑎𝑡)) • 0.5 (18) 

𝑞(𝑖) = 𝑈1,2 • (𝐴(𝑖 + 1) − 𝐴(𝑖)) • 𝑑𝑇 (19) 

429

399 



 M. Castro Oliveira et al. 400 

Table 3. Model equations for heat transfer associated to Effect k, Condenser and it respective zones 

Section Zone Heat Transfer Equations Section 

Effect k 

 

Zone 2 

 

𝑞(𝑖) = 𝑀𝐻𝑆,𝑘 • (ℎ𝐻𝑆,𝑘(𝑖) − ℎ𝐻𝑆,𝑘(𝑖 + 1)) (20) 

𝑞(𝑖) = 𝑀𝐹,𝑘 • 𝐶𝑃𝑤 • (𝑇𝐹,𝑘(𝑖) − 𝑇𝐹,𝑘(𝑖 + 1)) (21) 

𝑑𝑇(𝑖) = ((𝑇𝐻𝑆,𝑘𝑠𝑎𝑡 − 𝑇𝐹,𝑘(𝑖)) + (𝑇𝐻𝑆,𝑘𝑠𝑎𝑡 − 𝑇𝐹,𝑘(𝑖 + 1))) • 0.5 (22) 

𝑞(𝑖) = 𝑈𝑘,2 • (𝐴(𝑖 + 1) − 𝐴(𝑖)) • 𝑑𝑇(𝑖) (23) 

Zone 3 

 

𝑞(𝑖) = 𝑀𝐻𝑆,𝑘 • (ℎ𝐻𝑆,𝑘(𝑖) − ℎ𝐻𝑆,𝑘(𝑖 + 1)) (24) 

𝑑𝑇(𝑖) = ((𝑇𝐻𝑆,𝑘𝑠𝑎𝑡 − 𝑇𝐹,𝑘𝑠𝑎𝑡) + (𝑇𝐻𝑆,𝑘𝑠𝑎𝑡 − 𝑇𝐹,𝑘𝑠𝑎𝑡)) • 0.5 (25) 

𝑞(𝑖) = 𝑈𝑘,3 • (𝐴(𝑖 + 1) − 𝐴(𝑖)) • 𝑑𝑇(𝑖) (26) 

Condenser Zone 2 

𝑞 = 𝑀𝐹,𝑐𝑜𝑛𝑑 • 𝐶𝑃𝑤 • (𝑇𝐹,𝑐𝑜𝑛𝑑(𝑖) − 𝑇𝐹,𝑐𝑜𝑛𝑑(𝑖 + 1)) (27) 

𝑑𝑇(𝑖) = ((𝑇𝐻𝑆,𝑛𝑠𝑎𝑡 − 𝑇𝐹,𝑐𝑜𝑛𝑑(𝑖)) + (𝑇𝐻𝑆,𝑘𝑠𝑎𝑡 − 𝑇𝐹,𝑐𝑜𝑛𝑑(𝑖 + 1))) • 0.5 (28) 

𝑞(𝑖) = 𝑈𝑐𝑜𝑛𝑑,2 • (𝐴(𝑖 + 1) − 𝐴(𝑖)) • 𝑑𝑇(𝑖) (29) 

The following modelling assumptions have been considered: steady-state simulation; 

constant and equal recovery ratio of the primary MED effects; negligible heat losses and 

pressure losses; constant temperature and salinity of the inlet feed water stream; null 

salinity of the outlet treated water stream; a temperature difference of 2.5 ºC between the 

condensed vapour and the outlet concentrate streams for primary MED effects. The heat 

source stream, which is the hot stream in Effect 1, is a liquid with a specific heat capacity 

of 6643 J/(ºC.kg), entering in Effect 1 at a temperature of 170.0 ºC and at pressure of 1.5 

bar. 

2.3. Simulation Results and Model Validation 

The model validation has been performed in order to assess its reliability and accuracy in 

comparison with the theoretical data (Rahimi and Chua, 2017). In this work, model 

validation has been performed by comparing the heat transfer phenomena occurring in 

each one of the sections, namely the temperature profiles. The temperature profiles 

achieved by the simulation of the model for each one of the components of the MED unit 

are represented in Fig. 3. 

 

Fig. 3. Obtained temperature profiles for a) Effect 1, b) Effect 2, c) Effect 3, d) Effect 4, e) Condenser 
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By comparing the theoretical temperature profiles reported in the literature with the 

simulated ones (respectively Fig. 1 and 3), it is observed that the simulated temperature 

profiles are overall consistent with the theoretical ones. The temperature profile of the 

cold fluid for the zone 2 of effects 2, 3 and 4 (second-to-last effects) presents a sharper 

variation compared to the linear variation shown in Fig. 1(c), which may be attributed to 

the use of FVM method for the computation of mean temperature difference, which 

produces relatively more accurate results. Considering these aspects, it is possible to 

conclude that the developed model is overall consistent on the prospect of the performed 

simulation being able to reproduce the real phenomena. 

3. Economic Assessment 

In addition to the development of a model for a MED unit, Rahimi and Chua (2017) 

expanded their analysis to a generalized method for the economic assessment of such 

desalination installations. The simplistic economic model included the capital cost and 

payback period associated to a MED project, as detailed in Table 4, while the economic 

savings and payback period estimations considering the water savings results obtained by 

the simulation are presented in Table 5. A water price of 1.1952 €/m3 was considered for 

the conversion of water production (assumed to be equal to potential freshwater savings) 

related to the economic savings. 

Table 4. Capital costs and associated payback period determination for a MED unit (Rahimi and Chua, 2017) 

Capital Cost 𝑇𝐶𝐶𝑀𝐸𝐷 = 2535 • 𝐷𝑡
0.9751 (30) 

Payback Period 𝑃𝐵 = 𝑇𝐶𝐶𝑀𝐸𝐷 (𝑆𝑎𝑣 − 𝐴𝐸𝐶)⁄  (31) 

Table 5. Determination of water production, economic savings and payback period 

Water Production (𝐃𝐭) (m
3/day) 843.28 

Water Production (𝐃𝐭) (dam3/year) 292.41 

Investment costs (𝐓𝐂𝐂𝐌𝐄𝐃) (k€) 1807.57 

Electricity costs (𝐀𝐄𝐂) (k€/year) 95.21 

Economic savings (𝐒𝐚𝐯) (k€/year) 349.49 

Payback Period (𝐏𝐁) (years) 7.1 

Considering the parameters listed in Table 5 and applying equations (30) and (31), a 

payback period of about 7.1 is obtained. Note that this analysis has not considered certain 

parcels of the OPEX, for instance, costs associated to chemicals (which includes the costs 

associated to the acquisition and use of the heat source stream), maintenance, spares, 

incomes and labour. These are assumed to be common to both MED and conventional 

wastewater treatment. In this case, these parcels are considered to have already been taken 

into account in the project of the industrial site in which the MED unit is installed. The 

payback lies within the acceptable economic viability interval 4 – 16 years of payback 

time (Baniasad Askari and Ameri, 2021), and therefore it is possible to say that this 

project is economically feasible. However, considering different studies for the techno-

economic assessment of thermal vapour compression MED units, in which payback times 

correspond to less than 5 years, it is concluded that the MED unit project considered in 

this work still requires further analysis in terms of potential improvements. 

4. Conclusions 

This work presents the study of a heat-driven water treatment system, in particular 

through the exploitation of the multi-effect distillation (MED) technology. This has been 

achieved by the development and assembling of numerical models describing a 

conventional MED unit, using the Modelica language. Literature data has been 
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considered as case-study enabling the modelling of MED unit.  The modelling results 

were validated by comparing the temperature profiles with the theoretical ones. The 

simulated temperature profiles were, in general, consistent with the theoretical ones, thus 

ensuring the validity of the model for the simulation of the real occurring phenomena. 

Furthermore, a brief economic assessment was performed to assess the viability of the 

MED plant project in an industrial plant. A payback period of 7.1 years was determined, 

suggesting that the desalination project may be considered economically viable 

(considering a reasonable payback time of 4 – 16 years), although this is still high when 

compared to payback periods of other MED unit projects. Further improvement measures 

(for instance, improved configurations of multi-effect distillation such as preheated MED, 

boosted MED and flash boosted MED units) will be analysed in the following studies. 

Nomenclature 

   Subscripts 

   𝐵 Concentrate/ Brine Stream 

   𝐶 Cooling Water Stream 

𝐴 Heat Transfer Area (m2)  
𝐶𝑜𝑙𝑑 Cold Stream 

𝐴𝐸𝐶 Cost of electricity (€/year)  

𝐷𝑡 
Daily quantity of water production 

(m3/day) 
 𝑐𝑜𝑛𝑑 Condenser 

ℎ Specific Enthalpy (J/kg)  𝐹 Feed Water Stream 

𝑀 Mass flow rate (kg/s)  𝐻𝑜𝑡 Hot stream 

𝑃 Pressure (Pa)  𝐻𝑆 Heat Source Stream 

𝑃𝐵 Payback Period (years)  
𝑖𝑛 Inlet 

𝑇𝐶𝐶 Capital Cost (€)  

𝑆𝑎𝑣 Economic Savings (€/year)  𝑘 Effect number designation 

𝑈 
Overall Heat Transfer Coefficient 
(W/(m2.ºC)) 

 𝑀𝐸𝐷 MED unit 

𝑋 Salt concentration (ppm)  𝑛 Total number of effects in a MED unit 

   𝑜𝑢𝑡 Outlet 

   𝑡𝑜𝑡𝑎𝑙 Total 

   𝑠𝑎𝑡 Saturation 

   𝑉 Vapour Stream 
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Abstract 
This paper focuses on continuous operation of a closed solar photobioreactor using a 
feedback linearizing control strategy, maximizing productivity, by acting on dilution rate. 
Lumostatic and turbidostatic operations were investigated in simulation, using a dynamic 
model from the literature. This model couples a radiative model describing light gradient 
into the culture bulk and a kinetic growth model for Chlorella vulgaris strain. Results on 
performances and system operation under different solar light profiles have been 
discussed in a comparative study considering practical implementation. The result is that 
the use of solar irradiance prediction led to significant productivity improvement over a 
year scenario, under turbidostatic operation. 
 
Keywords: Linearizing control, turbidostat, solar photobioreactor, microalgae, biomass 
production. 

1. Introduction 
Seeking an economic sustainability and reducing carbon emissions are two of the main 
current scientific challenges. Use of microalgae (unicellular photosynthetic micro-
organisms, living in saline or freshwater environments), can be an answer to both these 
challenges. Indeed, by performing a photosynthetic activity, these organisms convert CO2 
into O2 when exposed to light. The resulting microalgae biomass represent a source of 
renewable biofuels (hydrogen, biodiesel, bioethanol). Their operating at optimum 
productivity, in solar conditions (the sine qua non condition to make them profitable), is 
a real challenge, which process automation can meet. This is the subject of the work 
presented here, which aims to implement a feedback control strategy keeping biomass 
concentration into the culture medium at a predefined set point by acting on the dilution 
rate, in such a way to reject main disturbances in solar conditions, i.e. uncontrolled 
various light conditions. Linearizing control has been already studied on microalgae 
cultures under controlled lighted conditions (Tebbani et al., 2016). In this study, main 
idea is to go a step further investigating continuous operation with linearizing controller 
under solar conditions; constant and varying set points, optimizing growth have been 
investigated. The paper is organized as follows: process description, together with 
modelling and control problem, is presented in Section 2. The results of the simulation 
study, investigating control performances under various set points are presented in 
Section 3. Determination of set points on a daily or annual basis, with different 
optimization criteria, is discussed and the resulting dilution rates and resulting 
productivities are compared over a “virtual plant” application. Conclusions and 
Perspectives are presented in last section. 
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2. Process description and modelling 

2.1. Growth modelling 
A flat panel photobioreactor, exposed to solar light has been considered. The reactor is 
operated in continuous mode, the dilution rate being the manipulated variable. Algal 
concentration within the culture system, called 𝑋 (𝑔௑ . Lିଵ), has been controlled with a 
feedback linearizing controller. Its temporal evolution, in a homogenous culture medium, 
in a bioreactor operated at constant volume, is given by mass balance equation (Pruvost 
et al., 2011): 

ௗ௑(௧)

ௗ௧
 =  〈𝑟௑〉 − 𝐷(𝑡) ∙ 𝑋(𝑡)  (1) 

〈𝑟௑〉 represents the biomass growth rate at volume scale and  𝐷(𝑡) ∙ 𝑋(𝑡) term represents 
the biomass flowrate removed from the reactor. This term defines system productivity 
(𝑔௑ . 𝐿ିଵ. 𝑠ିଵ). 𝐷(𝑡), the dilution rate (𝑠ିଵ), represents the ratio of feeding flowrate over 
reactor volume, which effects culture density. Microalgal concentration can then be 
controlled by dilution, thanks to a pumping system.  

In this study, non-limiting growth conditions except light have been considered. 
In these conditions, biomass growth rate depends on available light into the culture bulk. 
By coupling a radiative model to a photosynthetic growth model for eukaryotic 
microalgae, the kinetic model links solar radiation to biomass population expansion inside 
PBR. The model used in this study has been extensively presented (Sebile-Meilleroux et 
al., 2020) for Chlorella vulgaris strain. 
 Under high lights conditions, biological phenomena leading to decreasing of 
biomass growth rate were considered by coupling a mathematical penalty to the kinetic 
model. Based on experimental results (Artu, 2016), 〈𝑟௑〉 decreases from a MRPA (Mean 
Rate of Photonic Absorption) value of 30 𝑚𝑚𝑜𝑙௛ఔ . 𝑘𝑔ିଵ. 𝑠ିଵ, until reaching a null value 
above 40 𝑚𝑚𝑜𝑙௛ఔ . 𝑘𝑔ିଵ. 𝑠ିଵ. 

2.2. Simulated light profiles 
In this study, solar radiation has been described as the total flux density 𝑞଴ 
(µ𝑚𝑜𝑙௛ఔ . 𝑚ିଶ. 𝑠ିଵ) with collimated and diffuse components 𝑞௖௢௟  and 𝑞ௗ௜௙: 

𝑞଴ =  𝑞௖௢௟ + 𝑞ௗ௜௙   (2) 

Four light flux density typical profiles have been defined in order to evaluate the impact 
of sky coverage (cloudy and sunny situations) and season (winter and summer) on the 
system productivity. For each profile, three parameters have been considered: maximum 
total flux density 𝑞଴,௠௔௫, sky coverage 𝑞௖௢௟/𝑞ௗ௜௙ , and sunshine duration 𝑡ௗ௔௬ (ℎ). 
Parameters values, synthetized in Table I, were taken from meteorological data of Nantes 
city, France, on the whole year of 2015, given by Meteonorm measurements. With ideal 
simulated light profiles, parameters were kept constant for a given situation, leading to a 
sinusoidal light profile. 
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Table I: Parameters of simulated light profiles 

Day 
Cloudy 
winter 

Sunny 
winter 

Cloudy 
summer 

Sunny 
summer 

q଴,୫ୟ୶ (µmol୦஝mିଶsିଵ) 150 450 450 1350 

qୡ୭୪/qୢ୧୤ 0.1 1.4 0.1 1.4 

tୢୟ୷(ℎ) 10 10 15 15 

2.3. Control strategy 
A feedback linearizing control law has been implemented to control the biomass 
concentration at a set point maximizing productivity. This supposes the biomass 
concentration can be measured online. In these conditions, the control law calculates the 
dilution (at each control step of 10 minutes), in such a way to keep biomass concentration 
as close as possible to the set point. In the case of linearizing controller, the control law 
is defined as follows (Tebbani et al., 2016) 

𝐷(𝑡) =
ଵ

௑(௧)
∙< 𝑟௑ > − 

ఒ

௑(௧)
∙ [𝑋௦௣ − 𝑋(𝑡)]  (3) 

where 𝜆 is a constant positive tuning parameter and 𝑋௦௣ (𝑔௑ . 𝐿ିଵ) is the biomass 
concentration set point. In this study 𝜆 was set at 6.0 ℎିଵ thanks to preliminary studies 
which looked for a successful set point tracking at different constant biomass 
concentration values, with Chlorella vulgaris and Chlamydomonas reinhardtii strains. 

3. Results 
Simulations have been performed using the dynamic model presented in Section 2 as a 
virtual plant, under simulated and real light profiles, in open and closed loop. The 
linearizing controller has been used for tracking constant and various set points, chosen 
with purpose to increase system productivity. Simulations were achieved on Matlab 
software (R2021a). Typical light profiles were repeated every 24 hours until the 
appearance of a steady-state on culture behaviour, defined by biomass concentration 
evolution.  

3.1. Study on typical daily light profiles 

3.1.1. Lumostatic operation 
A way for optimizing process operation is to impose light gradient into the bulk, to ensure 
optimization of light energy absorption. For microalgae, the maximum volumetric 
productivity was obtained when full-light attenuation occurs without a dark zone, 
meaning PBR illuminated fraction equals 1 (Takache et al., 2009). This condition defines 
the lumostatic mode, in which light absorption is maximized. To do so, optimal 
concentration 𝑋௦௣ has been updated every 10 minutes based on incident irradiance 
measurements, in such a way to keep lumostatic operating conditions 

Applying the linearizing controller (equation 3) to track this variable set point 
leads however to culture wash-out. This phenomenon was due to low incident lights 
occurring at the start and the end of the day, to which corresponds low optimal biomass 
concentration. Indeed, to reach such low concentrations, high dilution rates have to be 
applied. Then, due to low growth kinetics of microalgae species when compared with the 
incident irradiance increase over the day, it is not possible to reach next values of biomass 
concentration set point. In other words, the imposed set point is not achievable. Indeed, 
further investigations on several lumostatic regimes have shown that microalgae growth 
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kinetics should be increased by a factor of 20 to be able to track biomass concentration 
set points ensuring full-light attenuation without a dark zone. So, following a biomass 
concentration related to lumostatic mode in solar conditions was not realistic; this set 
point tracking strategy has been consequently rejected. 

3.1.2. Turbidostatic operation 
In the following, biomass concentration set point has been determined in such a way to 
optimize productivity on a daily or season basis. Constant biomass concentration set point 
maximizing daily productivity, for each light scenario (as reported in Table I), has been 
considered. To do so, 100 values between 0 and 2 𝑔௑ . 𝐿ିଵ for 𝑋௦௣ were simulated. 

Unlike setting an instantaneous light-dependent concentration set point, setting 
a constant value over the day is efficient to keep a stable culture, without any wash-out 
(Figure 1). As it can be seen, the control law applied dilution rates in such a way to track 
the defined set point. Indeed, due to lack of light during night, biomass concentration 
decreases even when no dilution is applied. The major effect is the absence of dilution 
operation in the morning, in order to allow biomass concentration increase. Thanks to 
photosynthesis achieved under light conditions of first hours of the day, culture densified 
until reaching the defined set point. Once set point attained, dilution rate given by 
linearizing controller followed a bell shape (with a flattened part around midday). This 
shape is similar to the light profile, in order to continuously keep the biomass 
concentration as long as received light amount is sufficient. In the following, a constant 
set point giving the highest daily productivity have been selected. Optimal set points and 
associated productivities applied on repeated daily light profiles were summarized in 
Table II. Optimal set point values appear to vary with light scenarios, meaning that they 
are highly light-dependent. 

Figure 1: Turbidostatic operation over 24 hours on a) sunny winter and b) sunny summer light 

 

Table II: Daily optimal set points and productivities 

Day 
Cloudy 
winter 

Sunny 
winter 

Cloudy 
summer 

Sunny 
summer 

Solar flux (𝑚𝑜𝑙௛ఔ . 𝑚ିଶ. 𝑑𝑎𝑦ିଵ) 2.70 8.10 12.2 36.4 

𝑋௦௣,௢௣௧ (𝑔௑ . 𝐿ିଵ) 0.26 0.56 0.58 1.66 

Productivity (𝑔௑. 𝑚ିଶ. 𝑑𝑎𝑦ିଵ) 2.22 6.02 8.47 17.6 
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3.2. Study on year scenario 

3.2.1. Closed-loop operation at constant set point over the year 
In the following, constant biomass concentration over a year, maximizing annual 
productivity has been investigated. In order to simulate light decrease from an unperfect 
light transmission of cover and presence of biofilm on irradiated surface, received light 
by microalgae was considered half of solar irradiance. A reference scenario has been used 
to define the constant set point, maximizing the overall productivity. This typical scenario 
profile represented the yearly light evolution averaged from 10 consecutive years of real 
data (2005 to 2014), for a given location. Maximal production on this typical profile is 
attained for 𝑋௦௣ at 0.50 𝑔௑ . 𝐿ିଵ for Nantes, France. When applying this set point on year 
2015 scenario for the same location, associated productivity hits 5.67 𝑔௑ . 𝑚ିଶ. 𝑑𝑎𝑦ିଵ. 
For a large-scale “virtual plant”, associated biomass production is 20.7 𝑡௑. ℎ𝑎ିଵ, meaning 
turbidostatic operation in solar conditions can satisfy industrial production expectations. 

3.2.2. Closed-loop operation at constant set point over the day 
As illustrated in previous sub-section, set point value on biomass concentration is highly 
light-dependent. In the following, a strategy where daily set point value has been adapted 
to daily light amount, has been investigated. This strategy requires perfect weather 
predictions over 24 hours to determine the next day total light amount q଴,୲୭୲ 
(𝑚𝑜𝑙௛ఔ . 𝑚ିଶ). Thanks to results on typical daily light profiles from Table II, daily optimal 
set point value appears to follow equation 4 (linear regression: 𝑅ଶ = 0.99). 

𝑋௦௣ = 0.042 ∙ 𝑞଴,௧௢௧ + 0.16  (4) 

The linearizing controller performed satisfactorily for tracking the biomass concentration 
set point given by equation 4, as illustrated in Figure 2. Figure 2(a) represents biomass 
concentration evolution and Figure 2(b) represents the applied dilution rates, over the 
second week of July of 2015. Adapted set point kept constant over each day (“daily set 
point” strategy), and set point kept constant over the year (“yearly set point” strategy) 
were studied. When applying “daily set point strategy”, associated productivity goes up 
to 6.58 𝑔௑ . 𝑚ିଶ. 𝑑𝑎𝑦ିଵ, meaning a total biomass production of 24.0 𝑡௑. ℎ𝑎ିଵ. 
Consequently, daily adaptation of biomass concentration set point improves production 
by 16 % when compared to an optimal set point kept constant over the year. 

Figure 2 : Daily and yearly strategies effects on a) biomass concentration and b) command law 

It can be noticed the efficiency of turbidostat operation using a linearizing 
control strategy in non-ideal solar conditions, either with a daily or a yearly set point 
strategy. Nonetheless, using a daily optimal set point can induce a sharp dilution peak, as 
seen on third day in Figure 2(b). Indeed, if daily set point value drops from previous day 
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(passing from a high to a lower sunny day), short dilution appears at the beginning of the 
day in order to quickly attain the new set point value. When diluting a real solar 
photobioreactor with this daily optimal strategy, this could cause issues with expected 
productivity, due to pumping limitations. Regarding yearly set point, it has been observed 
that dilution can be stopped around midday, contrary to daily set point which diluted 
continuously enduring the sunny hours of the day. Therefore, such a strategy working 
with a set point optimized at year-scale is not well-suited for high light summer light 
profiles, because it can induce light stress with negative impact on the productivity. These 
issues are under study in our ongoing research considering uncertainties on model 
parameters and saturation on applied dilution rates. 

4. Conclusions 
When cultivating microalgae in solar conditions, a way to optimize system productivity 
is to operate in closed-loop continuous mode, at predefined set point for biomass 
concentration control. The issue in solar condition is to choose a feasible set point, in such 
a way to optimize system productivity under uncontrolled, varying incident light 
conditions. In this study, different set point trajectories have been investigated in 
simulation, using a linearizing controller applied to a “virtual plant”. Working with such 
strategies requires a dynamic model describing main phenomena related to light 
influences on the microalgae growth. It has been noticed that the optimum set point 
ensuring lumostatic conditions wasn’t achievable, as demonstrated in simulation with the 
linearizing controller applied every 10 minutes. The feedback linearizing controller was 
able to maintain the biomass concentration at desired set point (constant over the year and 
piecewise constant over the day), determined in such a way to maximize productivity 
(turbidostatic operation). Optimizing biomass concentration set point on a daily basis, 
thanks to global solar irradiance perfect prediction over 24 hours, led to a 16 % 
improvement of microalgae yearly production, when compared to an optimal set point 
predefined on a yearly basis. More realistic simulations in the presence of uncertainties 
in the weather data are currently being studied. On the other hand, practical 
implementation is envisaged on a solar-scale experimental pilot. 
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Abstract 

Inherently safer design (ISD), which focuses on reducing the inherent hazards of a design 

before applying any safety controls, is one of the most effective and reliable tools for 

improving the safety of a process. However, while an intensified process may be 

inherently less hazardous, if the design restricts the controllability of the process, then the 

design may have a higher risk and be less safe overall. Therefore, considering both the 

inherent hazard contained within the process and the ease by which these hazards can be 

controlled is necessary for a more complete evaluation of the inherent safety of a system.  

The objective of this research is to implement a strategy to simultaneously design and 

control an inherently safer distillation column. The PARametric Optimization and 

Control (PAROC) framework is used as a basis for the simultaneous design and control 

of a distillation column. The Safety WEighted Hazard Index (SWEHI) is incorporated 

into the PAROC framework, and the distillation column is optimised for cost, while 

receding control horizon policies are implemented to ensure that the column is capable of 

controlling disturbances. The dynamic effects of different operating variables on safety 

are analysed and discussed. The integration of ISD with simultaneous design and control 

allows for a greater understanding of inherent safety during process design and 

substantially reduces operability issues that result from an uncontrollable process design 

and allow for greater tolerance and ease of control. 

Keywords: Dynamic Optimization, Distillation Column Design, Inherently Safer Design, 

Design and Control Integration. 

1. Introduction 

The design of industrial processes requires the consideration of a number of different 

characteristics, including profitability, safety, and sustainability. Traditionally, the focus 

of both academia and industry has been to optimize the early design of process systems 

primarily for profitability. Other considerations, such as safety and sustainability, are 

postponed until later stages of engineering design. In such an approach, the process of 

risk management typically only involves implementing prevention, mitigation, and 

response methods after the design is nearly finalized. However, such approaches are 

typically inefficient and result in unsafe designs [1]. Therefore, there has been a 

movement towards the use of inherent safety principles to improve the safety and 

profitability of industrial process designs [2]. 
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1.1. Inherently Safer Design 

Inherently Safer Design (ISD) is one of the most effective methods for assessing safety 

in the early stages of design [3]. Inherent Safety uses four main principles to determine 

the safety of a process. 

Intensification (or Minimization) involves reducing hazardous inventories in both process 

equipment and storage. Substitution means replacing hazardous chemicals with less 

hazardous chemicals. Attenuation (or Moderation) is using hazardous chemicals in 

conditions that would make them less hazardous (i.e. reducing the pressure or 

temperature). Limitation of Effects is to reduce consequences by using designs or reaction 

conditions rather than by adding protective equipment that may fail or be neglected 

Using these principles, inherent safety addresses potential hazards and risks that can 

potentially lead to the need for costly add-on safety later in the process lifecycle. 

Therefore, the earlier in the design that inherent safety is considered, the more 

opportunities there are for the application of inherently safety in the design [4]. One of 

the limitations of current inherent safety metrics is that they are typically do not consider 

dynamic disturbances that may impact the safety of the process. During start-up, 

shutdown, and even during regular operations, the safety of the process will fluctuate with 

changes in process parameters and variables. However, the fluctuation of safety is not 

accounted for in the early stages of design by current inherent safety metrics. 

It is difficult to determine the dynamics of a system in the early stages of design because 

most process systems are quite complex. The design of an industrial process influences 

the ability of its control systems to reject disturbances [5]. Due to the complexity of these 

processes, the control response is difficult to assess without designing the controller, a 

development that typically occurs at a later phase. However, without knowing the control 

response the dynamic inherent safety cannot be assessed.  

Recently, the PARametric Optimization and Control (PAROC) framework was proposed 

at a method to allow for the representation, modelling, and solution of simultaneous 

design and control problems [6]. PAROC allows for the simultaneous simulation of 

design and operating variables in the early design phase under optimal multi-parametric 

Model Predictive Control (mp-MPC). This allows for the measurement of the dynamic 

behavior of industrial processes in the early design phase. Thus, the incorporation of 

PAROC with inherent safety allows for a dynamic understanding of the interaction 

between safety and operability in the early stages of design. 

The aim of the present work is to demonstrate how PAROC can be used to dynamically 

measure and optimize the design of an industrial process with respect to its profitability, 

safety, and controllability. A distillation column is used as a case study. The Safety 

Weighted Hazard Index (SWeHI) is input as an extra variable into the high-fidelity model 

to quantify the inherent safety of the distillation column [7]. Disturbances are introduced 

into the process, and the dynamic change in the safety index is compared to the steady-

state index. Finally, the safety index is added as a constraint to the dynamic optimization 

of the process, allowing for a process that is optimized for cost, operability, and safety.  

2. Case Study – Binary Distillation  

2.1. Benzene-Toluene-Xylene Production 

In 2018, the US produced 11.3 billion lbs of benzene, 6.1 billion lbs of toluene, and 10.0 

billion lbs of mixed xylenes [1-3]. Benzene is used to make nylon, styrene, polycarbonate, 

and epoxy resins [4]. Toluene and xylene are used as solvents in paints, thinners, glues, 

and other household items [5]. Approximately 45% of the United States’ benzene is 
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produced by conversion of naphtha to benzene, toluene, and xylene via catalytic 

reforming and separations [6]. 

The Benzene-Toluene-Xylene (BTX) production process converts naphtha to benzene, 

toluene, and xylene by catalytically cracking naphtha and then using a series of 

separations processes to separate BTX from the resulting pyrolysis gas. The benzene-

toluene distillation unit of the BTX production process will be optimized in this work. 

2.2. Dynamic Challenges in Inherent Safety 

Luyben and Hendershot examined the BTX aromatics fractionation process from a 

control and safety perspective. In this study, they examined the control effects of 

decreasing molar holdups in the reboilers and the reflux drums and found that making the 

process inherently safer via intensification may make the column less operable, and thus 

dynamically less safe [8]. However, no attempt at optimizing the process was performed, 

and so the problem of determining an inherently safer, controllable, and cost-optimal 

design remains unsolved.  

3. Methodology 

3.1. Incorporating safety into the PAROC framework 

The basic principles of the PAROC framework in the context of simultaneous design, 

control, and safety optimisation are presented in Figure 1.   

 

Figure 1. The PAROC framework for simultaneous design, control, and safety. 

The first step of the PAROC framework is to create a “high fidelity” model to capture the 

dynamic behavior of the process, based on first principles modelling and data driven 

approaches. This includes mass/energy balances, driving force constraints, 

thermodynamic relations, sizing constraints, and numerous other empirical correlations. 

The primary basis of the model was that of Bansal et al [9]. The modelling was performed 

in gPROMS® and steady state accuracy was confirmed in ASPEN Plus [10, 11]. Since 
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safety may depend on the states, controlled variables, and design variables, the overall 

safety of the system is defined as a separate variable that is a function of each of these 

process variables. 

The next step is model approximation. While the high-fidelity model presents a highly 

accurate representation of the process, designing a controller for such a complex system 

is a difficult task. The MATLAB® System Identification toolbox was used to derive a set 

of linear state-space models that include design variables in the model expressions.  

Multiparametric programming is then performed using the Parametric Optimisation 

(POP) toolbox to define a set of critical regions where a multiparametric controller can 

act in order to keep the process within acceptable control limits [12].  

Next, the developed receding horizon control policy is tested against the high-fidelity 

model in-silico. Since the controller was created via a model approximation, this step is 

necessary to ensure the applicability of the controller to the original high-fidelity system.  

Finally, the controller is placed into the original model, and the entire model is 

dynamically optimised using gPROMS Modelbuilder as a Mixed Integer Dynamic 

Optimization (MIDO) problem to solve for the design variables.  

Continuous design variables that were considered were tray volume and reboiler and 

reflux drum size. Mixed integer design variables considered were number of trays, feed 

tray location. Safety was assessed via the Safety Weighted Hazard Index. SWeHI 

examines material properties such as flammability, reactivity, toxicity, and vapor 

pressure, as well as operating properties such as operating pressure, tray temperature, and 

molar flowrate. Molar composition of the distillate and the bottoms is controlled by 

changing the steam flowrate in the reboiler, and the reflux flowrate into the condenser. 

4. Results and Discussion 

A 10% sinusoidal disturbance was introduced into the feed composition with a period of 

80 seconds. A high-fidelity model and mpMPC was developed and optimized. The high-

fidelity model contained 1948 algebraic equations, 81 differential equations, and 2029 

unknown variables. 

Steam flowrate varied sinusoidally between 6.0 and 7.3 kmol/min, and reflux flowrate 

varied between 3.5 and 5.0 kmol/min. Figure 2 shows the corresponding output purity. 

The control response is within acceptable limits, and the output purity is constrained 

within the bounds. 

 

Figure 2. The output purity of the bottoms (left) and distillate (right) streams are 

constrained above 0.98 and below 0.06 respectively. 
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Table 1 compares the dynamic optimization performed in this study to the previous 

dynamically optimized model in literature. The previous model considered a feed flow 

disturbance that was not examined in this work, which is why its cost is higher. 

Table 1. A comparison of the current model optimization with optimized models in 

literature 

 Current Approach Bansal et al.[9] 

Condenser Area (m2) 121 83.33 

Reboiler Area (m2) 63.3 131.6 

Diameter of Column (m) 2.11 1.91 

# Trays 22 23 

Feed Tray 10 12 

Total Cost ($1k) 7.494 7.908 

 

A dynamic safety assessment was performed. Figure 3 shows the overall safety rating of 

the column. The total steady state value of the column is 1900. This rating varies from 

1888 to 1909, a negligible (1%) difference compared to the steady state value.  

Figure 4 shows the safety rating of the reboiler and the reflux drum, which varies from 

100 to 110 in the reboiler, and from 50.2 to 51 in the reflux drum. This equates to a 5 % 

difference in the reboiler, and a 1 % difference in the reflux drum. One important 

observation to note is that the oscillation in the SWeHI hazard rating in the lower trays 

and the reboiler are 180 degrees out of phase with those of the upper trays and the reflux 

drum. This produces destructive interference that muffles the overall change in safety 

index throughout the column. This oscillation also indicates a dynamic vertical transfer 

of hazard from one side of the column to the other as a response to a sinusoidal feed 

composition change. Although the distillation tower as a whole remains at a near constant 

hazard, the inherent hazard is being transferred up and down the column periodically with 

the disturbance. 

 

Figure 3: Dynamic SWeHI hazard rating of the overall column. 
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Figure 4: The SWeHI hazard ranking of the reboiler (left) and condenser (right). 

5. Conclusions 

A methodology for the dynamic optimization of design and safety with guaranteed control 

was presented. The methodology was applied to a distillation column case study. A 

dynamic safety assessment was conducted on the distillation column. 

An overall 1% difference between steady-state and maximum dynamic damage radius 

was observed within the process as a result of feed composition disturbance. A 5% 

difference was observed within the reboiler and a 1% difference was observed in the 

reflux drum, along with oscillations in safety along vertical sections of the column. A 

similar assessment and optimization could be performed on any process unit. 
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Abstract
The main objective of this work is to develop a one dimensional model to simulate the flow of
Non-Newtonian fluids under Modelica software. We built a new library of components that pro-
vide the simulation of Newtonian and Non-Newtonian fluids flows. Within the pipe model, a new
first order scheme of finite volume method to resolve Navier-Stokes equations for incompress-
ible fluids with varying density is implemented. To introduce pressure drops, a Bingham plastic
model is considered to represent the rheological behavior of the Non-Newtonian fluids. With the
new library components, we perform a first numerical simulations of water flow in a pipe network
of extended length. The computational cost of the performed simulation with the the Modelica

Standard Library components reduced by a significant orders of magnitude compared to the previ-
ous implementation, while the dynamic results are not affected. Then we simulate the flow of the
phosphate slurry through the real Pipeline network design and compare the results with industrial
data.

Keywords: Modelica, Bingham, finite volume, Non-Newtonian

1. Introduction

OCP Group a worldwide leader operating in the mining and marketing of the phosphate ore and
its derivatives. The industrial process involves transporting the ore from the deposits to the pro-
cessing plants. Since 2014, as part of the optimization strategy, it was decided to replace the rail
transport mode between the city of Khouribga and the Jorf Lasfar plant by a flow of phosphate
slurry through a network of pipes (Rusconi et al., 2016). the pipeline extends over 187 km of
terrain with varied topographies. However, the control parameters available for this system are the
density of the slurry, the prescribed inlet flow rate and the pressure at the network’s downstream.
Therefore, flow models are required to predict system behavior and ensure optimal control by
avoiding ore deposition, pressure drops, and the damages that can result from such events. Fully
three-dimensional flow models with water-particles fluid models are too complex to build and are
CPU time consuming to be exploitable in any real process control, optimization or design (Ghodke
and Apte, 2016). Alternatively, one may consider an averaged rheology for the mixture and in this
case the slurry can be characterized by a Non-Newtonian rheology. Given the complexity of the
non-Newtonian rheological behavior of the phosphates slurry, besides the length of the network, a
phenomenological model to simulate this flow is requested (Lima, 2020).

In the present work we developed a new fluid library under Modelica software, to simulate flows
through pipelines for both Newtonian and Non-Newtonian fluids. Indeed, we have developed
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a new numerical scheme to solve the Navier-stokes equations for incompressible fluids drained
into a circular pipe in one dimension. The new scheme is implemented within the pipe model.
Then, we integrated the frictional pressure drop calculation models for both types of fluid. For the
Non-Newtonian fluid, we adopt the Bingham model as it give a fair description of the rheological
behavior (Maazioui et al., 2021). To validate the new scheme model, we perform numerical sim-
ulations through different sizes of pipeline network (10, 100, and 200 pipes) using the new fluid
library and the Modelica Standard Library (MSL) components. We compare their results and the
computation time. Moreover, we simulate the flow of the phosphate slurry through the first part of
the pipeline network formed by 1293 pipes, and we compare the results with industrial data.

2. Methodology
The purpose of this work is to develop a one-dimensional model to simulate the flow of Non-
Newtonian fluids withing a pipe of length L, a circular section of diameter D, and inclined to the
horizontal by the angle θ . We define T the internal volume of the pipe and C its contour, Sin and
Sout are respectively the inlet and outlet sections of the pipe.

2.1. Mathematical model

Consider the conservation of mass and momentum equations for incompressible flow with suitable
boundary conditions{

∂ρ

∂ t +div(ρuuu) = 0,
∂ (ρuuu)

∂ t +div(ρuuu⊗uuu)+∇P = ρggg+µ∆uuu
, (1)

where ρ is the density, uuu the velocity vector, P the pressure, ggg the gravity acceleration vector, and
µ the fluid dynamic viscosity. The hypothesis of flow incompressibility rewrites the continuity
equation as

div(uuu) = 0. (2)

The boundary conditions are specified for the present model as follows. For the inlet, we consider
that the average density of the fluid and the mass flow through the inlet section (A = LyLz and
dσ = dydz) are given in input following{

ρin(t) = 1
A

∫
Sin

ρ(0,σ , t)dσ ,

qin(t) =
∫

Sin
ρ(0,σ , t)uuu(0,σ , t) · eeexxx dσ .

(3)

Then, we define the average input velocity

vin(t) = qin(t)/A ρin(t) (4)

At the pipe outlet, the pressure Pout is determined as 1
A

∫
Sout

P(Lx,σ , t)dσ = Pout(t). The boundary
condition at the wall is specified according to the no-slip conditions as u = 0 By integrating div(uuu)
we get∫

Sin

(uuu · eeexxx)(0,y,z, t)dydz =
∫

Sout
(uuu · eeexxx)(Lx,y,z, t)dydz (5)

2.2. Finite volume discretization

We discretize the pipe into N segments of equal length Lx/N where xi =
iLx
N , where i = 0, . . . ,N.

Integrating the mass conservation constraint in Eq. (2) over the volume of control Vi+ 1
2

to get{
mi+1/2 ≡

∫
Vi+1/2

ρ dτ, 0≤ i≤ N−1,

ϕmi ≡
∫

Si
ρvdσ , 0≤ i≤ N

(6)
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The equation of mass conservation is therefore expressed as follows

dmi+1/2

dt
= ϕmi −ϕmi+1 , 0≤ i≤ N−1, (7)

Similarly, integrating Eq. (4) over a control volume Vi+1/2 we find that

(ρv)Si ' ρSivin (8)

A first order approximation is hereafter retained, which allowd to obtain

m j+1/2 = A∆xρ j+1/2 (9)

from which, at first order, we get

ϕ
(1)
mi =

mi−1/2

A∆x
, 1≤ i≤ N (10)

then, Eq. (7) is expressed as follows

dmi+1/2

dt
=

vin

∆x
(mi−1/2−mi+1/2), 0≤ i≤ N−1, with m−1/2 = A∆xρin (11)

2.2.1. Momentum conservation integration

We integrate (4) over Vi+ 1
2
. First, we define Ii+1/2 ≡

∫
Vi+1/2

ρvdτ , we obtain

dIi+1/2

dt
= ϕIi−ϕIi+1 +A(Πi−Πi+1)+

∫
Vi+1/2

ρggg · eeexxxdτ +
∫

Vi+1/2

µ∆vdτ, (12)

where

ϕIi ≡
∫

Si

ρv2 dσ , 0≤ i≤ N , Πi ≡
1
A

∫
Si

Pdσ , 0≤ i≤ N. (13)

We note (∆P)i+1/2 the pressure loss due to friction over the control volume Vi+ 1
2
, therefore

(∆P)i+1/2 =
1
A

∫
Vi+1/2

µ∆vdτ, 0≤ i≤ N−1 (14)

Besides, since ggg · eeexxx is constant (equal to −|g|sin(θ))∫
Vi+1/2

ρggg · eeexxxdτ = (ggg · eeexxx)mi+1/2 (15)

From (8) we get

Ii+1/2 ≡
∫

Vi+1/2

ρvdτ = vVi+1/2mi+1/2 (16)

where vVi+1/2 is the density weighted average velocity over the volume Vi+1/2. Thus, we replace
vVi+1/2 with vin in (16) to get

Ii+1/2 = mi+1/2vin and ϕIi = vinϕmi, (17)

and eventually returning to (12) we get

(Πi−Πi+1) =
1
A

(
dvin

dt
+ |g|sin(θ)

)
mi+1/2− (∆P)i+1/2, 1≤ i≤ N−1, (18)

where ΠN = Pout
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2.3. Pressure Loss determination

The general Darcy-Weisbach equation expresses the pressure loss for an incompressible fluid, due
to friction along a given length of pipe at the average velocity of the fluid flow

∆P =
ρLv2 fD

2D
, (19)

where fD is the Darcy friction factor, which is a dimensionless quantity given for each fluid be-
havior and flow regime (laminar/turbulent) by specific formulas.

2.3.1. Darcy friction factor for Newtonian fluids

For a laminar flow, the friction factor value is given by Poiseuille’s law related to the Reynolds
number Re by fD = 64/Re, where Re = ρvD

µ
. In the turbulent regime (Re > 4000), the friction

factor is not only dependent on Reynolds number, but also on the relative roughness of the pipe
wall k/D. Haaland (1983) expressed this coefficient explicitly as

1√
fD

=−1.8log

[
6.9
Re

+

(
k

3.7D

)1.11
]

(20)

in transient regime, the friction factor is expressed by linear interpolation between the limit values
of the two regimes.

2.3.2. Darcy friction factor for Non-Newtonian fluids

Hedstrom (1952) introduces the following dimensionless numbers, to express the friction factor
for the laminar region for Bingham flows ReB = DV ρ

µB
, with He = τ0 D2 ρ

µ2
B

where ReB the Bingham
Reynolds number, and He the Hedstrom number. The laminar Darcy friction factor for Non-
Newtonian fluids was first published by Buckingham-Reiner in an implicit formulation. Later this
formula was approached by the explicit equation of Swamee and Aggarwal (2011)

fL =
64

ReB
+

64
ReB

(
He

6.2218×ReB

)0.958

(21)

Darby et al. (1992) proposed the semi-empirical equation presented above to give a friction factor
for turbulent flow fT = 10a Reb

B, where a = −1.47(1+ 0.146× e−2.9×10−5He) and b = −0.193,
Since the transition from laminar to turbulent is not sudden for Bingham slurries. Darby et al.
(1992) reviewed the previous work and proposed to combine the laminar and turbulent Darcy
friction factors into the following equation, which is valid for all flow regimes

fD = ( f m
L + f m

T )1/m, (22)

where m= 1.7+40000/ReB. Within the pipe model, we integrate the friction calculation equations
for Newtonian and non-Newtonian fluids into a package called Wallfriction. We extend them
into the flow model based on the equations Eq. (11) and Eq. (18). The choice of the friction model
used is set according to the value of a Boolean parameter set by the user.

3. Results and Discussions
3.1. Comparison with Modelica Dynamic Pipe

In this section, we will compare the results of our model implemented on Modelica, to the classical
pipe model available in the Fluid library of the MSL (Modelica.Fluid.Pipes.DynamicPipe),
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we compare therefore the computation time between both models. Beside the pipe model, we have
also developed two models for pressure and mass flow sources. We attached all these components
to the FluidPort connector that we developed in this way, to ensure the connections. We gather
them all in one new library.

Network description: To validate our model of dynamic pipe flow, we create a network consisting
of an upstream mass flow source (1106.5 kg/s), a pipe series, and a downstream pressure source
(10 bar) from the two libraries. We take the pipe geometry data from the OCP pipeline design
data. We use the Newtonian fluid model considering the carried fluid is water of density ρ = 995.5
Kg/m3 and dynamic viscosity of µ = 10−3 Pa·s. The models predict the pressure drops and then
the pressure at the inlet of the pipe. We calculate and plot the resulting piezometric lines from
each case to compare their values.

Results and discussion:

Figure 1: Piezometric lines versus Network
length

As shown in Fig. 1 and the RMSE column of Ta-
ble 1, the results given by the new model fit quite
closely to those given by the components provided
in the Fluid library of the Modelica MSL.

Moreover, by increasing the number of pipes, we
notice that the difference between the number of
solved equations and the simulation time becomes
more significant. With a network of two hundred
pipes, the new model is 7 times faster than the MSL
model. Which is more favorable in our case of
study where we will use a network containing more
than 5000 pipes. It is noteworthy to mention that
increasing further the maximum number of pipes
by two leads to an RMSE almost constant, which indicates that the solution achieves solution
convergence.

Pipes Number Number of equations Simulation time [s] RMSE
MSL Library New Library MSL Library New Library

10 1277 276 0.0909168 0.0213864 0.0054
100 12437 2706 1.12199 0.083706 0.038
200 24837 5406 2.27997 0.30165 0.082

Table 1: comparison of simulation time and piezometric results between MSL model and the New
model

3.2. Simulation of the Non-Newtonian slurry flow

As industrial data, we dispose of the phosphate slurry flow data during a period of 20 minutes along
the pipeline. The inlet flow rate as well as the outlet pressure are set by the operator. The fluid
density ρ = 1680.0 kg/m3. Besides the upstream and the downstream of the network, pressures
are captured at 5 points distributed along the pipeline: PMS1, Valve Station, PMS2, PMS3, and
PMS4. We calculate the friction pressure losses from the industrial data set and fit these values
in terms of the input velocities to determine the Bingham rheological parameters (µB & τ0) of
the transported fluid. We use the scipy.optimize.curve fit function included in the Scipy

python library to fit the function ∆P, given by Eq. (19) where we replace the Darcy friction factor
fD by Eq. (22)into industrial data. We obtain a plastic viscosity µB = 0.012 Pa·s, and a yield stress
of τ0 = 6.1 Pa. Exploiting the fitting parameters, we implement the slurry network between the
inlet and PSM1 with its real geometry, the network consists of 1293 pipes of internal diameter 0.85
m, its longitudinal profile is presented in Fig. 2a. We perform numerical simulations using the inlet
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mass flow rates and the PMS1 pressures from the industrial data set of OCP Slurry Pipeline. We
compare the inlet pressures obtained from these simulations with the measured values; see Fig. 2b.
The plot of the inlet pressures estimated by our model almost matches the curve of the pressures
measured in reality. The mean square error is 218.4, corresponding to a relative mean error of
6%. This error can occur due to different phenomena. The fluid characteristics can be changed
during the flow through a long distance. Indeed, it is often noticed at the OCP that the density
downstream of the network varies from that of entry. Also, the deposition of the slurry sediment
on the inner wall of the pipe can affect the flow. Further, the parameters of Bingham’s law that
we have used are not derived from a rheological study applied on the slurry mixture conveyed by
the pipeline. The total computation time is 3.6 minutes, which is quite satisfying considering the
network size considering the network size of 46.43 Km.

(a) (b)

Figure 2: (a) Network altitude versus length and (b) Inlet pressure Comparison

4. Conclusion
The objective of the present work is to build a model able to simulate the flow of phosphate slurry
through a pipeline of significant length. The model that has been developed presents a significant
gain in computational time compared to the model already available under the Modelica Standard
Library, while the flow results are not affected. Using the Bingham parameters from the industrial
data fitting, we obtained estimated pipe inlet pressures close to the real values, although a mean
relative error of 6% remains. This ongoing work intends to overcome this limitation by taking
into account the variation of the fluid characteristics along the network and using more accurate
rheology parameters to be obtained from lab measurement.
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Abstract 

The need of hydrogen as a clean fuel has grabbed a lot of global attention. Therefore, 

various processes have been developed for hydrogen production. Conversion of plastic 

wastes is one of the attractive option to produce H2 because of its hydrocarbon structure, 

higher heating value and availability. Polyethylene (PE) and polypropylene (PP) are 

considered in this study because of their massive worldwide availability in the category 

of waste plastics. In this study, the simulation of conversion of plastic wastes (PE and PP) 

to hydrogen fuel via steam gasification process is developed to perform the techno 

economic analysis. The composition of produced syngas from steam gasification unit was 

validated with the literature results followed by sensitivity studies to see the impact of 

various process parameters on the syngas composition. The syngas produced in the steam 

gasification unit is then treated in the water gas shift units followed by acid gas (H2S and 

CO2) removal to produce pure H2. To enhance the hydrogen production capacity and 

overall process efficiency, plastic gasification is further integrated with the steam 

methane reforming coincided with gasification to utilize the energy from the gasifier to 

provide heat to the natural gas reformer. It has been seen from results that the new 

integrated design containing both gasifier and reformer enhances the hydrogen mass 

production rate per mass feed rate by 5.6%. Furthermore, the process performance 

analysis showed that the efficiency of the new process is increased up to 1.82%, where 

the hydrogen production cost showed the reduction of 29% compared to the standalone 

gasification cases. In terms of carbon dioxide specific emission, the new design showed 

the reduction in CO2 emissions by 4.0%. Overall, the technical and economic analysis 

favored the new design over the standalone plastic gasification case. 
 

Keywords: Gasification: Reforming; Waste Plastic; H2 production; GHG Emissions. 

1. Introduction 

Globally from 1950-2018, 6.3 billion tons of plastics produced; only 9% had been 

recycled, where 12% had been burnt (Okunola A et al., 2019). Incinerating the plastics 

produces sever harmful pollutants, such as Dioxins, Furans, and Mercury, which are 

highly hazardous that negatively impact the creatures health, and cause climate changes .  

An essential, clean fuel can be produced from plastic wastes (i.e. hydrogen fuel) via 

gasification process. Hydrogen is more efficient than traditional fuel, because it burns 

easily with zero carbon emissions. Hence, a strategic way to produce hydrogen from non-

considered feedstock is to convert biomass, and plastic wastes into hydrogen. A study 

conducted by (AlNouss et al., 2020), on techno economic evaluation of biomass into 
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hydrogen. They used the thermal approach in converting the biomass to hydrogen, 

investigating the effect of the type of feedstock and the gasifier agent. The study 

demonstrated the dominancy of pure steam as a gasification agent than other agent. A 

study performed by (Chai et al., 2020) , on the production of hydrogen from plastic wastes 

using co-pyrolysis/gasification process. They tested Ni-CaO-C as a novel catalyst to 

facilitate H2 production. Their results revealed a high hydrogen production with a 

composition of 87.7 mole% with a minimal CO2 production. Therefore, the conversion 

of plastics into hydrogen is a feasible process proved experimentally and theoretically. 

Although, the catalytic gasification process is energetically preferable, however, it is 

more complex and needs more development. Hence, we will perform our work on purely 

thermal gasification using steam as a gasification agent as it was recommended by 

(Namioka et al., 2011). 

 

Our constituted objectives are to produce hydrogen with high purity from polyethylene 

and polypropylene via steam gasification controlling the greenhouse gases. We will 

design an alternative model that is anticipated to reduce the energy consumption and 

production cost. Hence, we will execute energy and economic analysis for the two models 

likewise to precisely compare the two models.  

2. Modelling and Simulation  

Aspen Plus (V11) had been used to develop the simulation models to produce hydrogen. 

The Peng Robinson was used as the effective thermodynamic package, where, 

polyethylene and polypropylene were defined based on proximate and ultimate analysis. 

To keep the consistent analysis, the RYiled, RGibbs and REquil reactor models are used 

to match the results with the literature and to achieve the required compositions. Table 1 

demonstrates the process conditions of the main units. The steam gasification process 

conditions were according to (Saebea et al., 2020)(Ahmed, 2021)(Khalafalla et al., 2020).  

Table 1: Design Assumptions taken for case 1 and case 2 

Equipment Aspen Model Assumption 

Plastic flowrate RYield Plastics = 100 kg/h  

H2O: Plastic = 1.25 

Gasifier  RYield, RGibbs 

reactors 
Entrained flow gasifier; temperature = 650 ℃ 

and 900 ℃ respectively; P = 1 atm 

Pre-reformer RStoic (Reactor) Heavier hydrocarbon hydrocracking 

Reformer RGibbs (Reactor) Temperature = 894.3 ℃, pressure = 1 bar, H2O: 

NG = 1.6; nickel-based catalyst  

Water Gas Shift 

(WGS) 

REquil (Reactor) Two Equil reactors  

H2O: Syngas = 1.09 and 0.73 respectively 

Acid Gas Removal 

(AGR) 

RadFrac and flash 

drums 
Rectisol process; temperature = - 30  ℃, P = 1 

bar  

CO2 Removal = 99%; Remaining H2S = 10 

ppm  

3. Process Description 

Two cases had been designed in Aspen Plus (V11). Figure 1 shows the case 1(i.e. base 

case design), where, plastics were used to produce synthesis gas, and then WGS was 

modeled to maximize the hydrogen production. Finally, we removed the acid gases (i.e. 

H2S and CO2) in acid gas removal unit (AGR).  
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Figure 1: Production of hydrogen from PE and PP through conventional process: Case 1 

 

Case 2 (the integrated design) is given in Figure 2. The SMR produced additional syngas 

with more hydrogen rich than the plastic gasification. The mixing of syngas from 

gasification and reforming units will yield higher hydrogen to CO ratio that can enhance 

the normalized hydrogen production.  

 
Figure 2: Production of H2 from PE and PP via an integrated process: Case 2 

4. Results and Discussion  

The steam gasification results in producing syngas from polyethylene and polypropylene 

was validated with experimental results (Wu & Williams, 2009) (Erkiaga et al., 2013). 

Additionally, the SMR syngas composition was validated with (Ghoneim et al., 2016). 

Our results and the referenced data for syngas composition were in good agreement. 

4.1 Syngas Composition at the Outlet of WGS and Overall Production Rates  

Case 1 and case 2 results were analyzed in terms of synthesis gas production, heating 

value, CO2 specific emissions, energy and economic analysis. The results revealed that, 

case 2 is superior to case 1 in production syngas with higher heating value. The LHV for 

case 1 and case 2 were 23.55 and 24.73 MJ/Kg, respectively. On the other hand, the 

synthesis gas HHV were 26.18 and 27.67 MJ/kg for the two cases correspondingly, which 

was higher in case 2 compared to case 1 by 5.7%. Additionally, the normalized hydrogen 

production per feed stock in mass basis was calculated as 50% and 52.8% for case 1 and 
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case 2, respectively. The integrated case showed higher production rate than the base case 

by 2.8%.  

4.2 Process performance analysis 

The overall process efficiency for both cases is calculated using the equation (Eq 1).  

Process Efficiency =
H2 thermal energy [MWth]

Feed stock thermal energy [MWth] + Energy consumed [MWth]
x 100%  (1) 

The feed stock energy for case 1 included only waste plastics (i.e. PE and PP), however, 

for case 2 it was combined feed of natural gas and plastics. The feedstock thermal energy 

for the two cases were 1198.61, and 1757.07 kW respectively. The total consumed energy 

in the whole design was calculated and deduced to be 3162.28 and 4641.99 kW 

respectively. Hence, the process efficiency was found to be 31.32% and 31.90% 

respectively. Figure 3 represents the overall process efficiency and hydrogen to carbon 

monoxide ratio. It was found that, the H2/CO ratio was 1.86 and 2.2 for case 1 and case 2 

respectively. Those results revealed the superiority of the integrated case than the base 

case. We also considered the CO2 specific emissions for the two models which were 0.26 

and 0.257. Hence, the carbon dioxide emissions was reduced in case 2 by 1.2%.  

 

Figure 3: Process efficiency and H2/CO ratio for case 1 and case 2 

5. Economic Analysis and Project Feasibility  

The economic analysis was performed for the two cases evaluating the capital 

expenditures and operating expenditures. The CAPEX mainly encompasses the 

equipment cost, piping and installation costs, civil work, instrumentation etc. On the other 

hand, the operating expenditures includes the utilities, maintenance, catalyst replacement, 

administration, and labor costs. The calculation for CAPEX was based on process costs 

from previous studies considering the capacity and CEPCI index. The value of x is taken 

as 0.6 in the Equation 2, where the current CEPCI is taken as 620. 

 CostNew = CostOld × (
CapacityNew

CapacityOld
)

x
×  

CEPCINew

CEPCIOld
    (2) 

For the comparative analysis, the equation 2 is well used in the literature as it can predict 

the class 3-4 type economic analysis .The economic analysis results revealed that, the 

total investment cost for case 1 and case 2 in terms M€ were 3.795 and 4.457 respectively. 

Case 2 required higher investment cost because it involved the SMR process. However, 
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the total investment cost per hydrogen production in tons (TIC) were 76.53 and 59.25 

M€/ton correspondingly. Case 2 reduced the TIC with respect to case 1 by 22.6%. We 

additionally, calculated the total OPEX per year, and found that, case 2 consumed higher 

operating expenditures than case 1  by 79.3 in €(10^3) / year. However, the operating 

expenditures per hydrogen production rate for case was lower than case 1 by 32.35%. The 

normalized hydrogen production rate; which represents the conversion of feed stocks to 

produce H2, was higher in case 1 which is attributed in reducing the total OPEX per 

hydrogen ton. Table 2 displays the main cost analysis parameters for case 1 and case 2.  

Table 2: Economic Analysis 
 Units Case 1 Case2 

Total Investment Cost €(10^3) 3795 4457 

TIC per ton of H2  M€/ton 76.53 

 

59.25 

 

Total OPEX/Year €(10^3) / Year 1390.0 1469.3 

Total OPEX/ton H₂ €(10^3) / ton 3.4 2.3 

Revenue  M€/year 4.804 

 

7.289 

 

Hydrogen Cost  

 

€/kg 3.675 

 

2.585 

 

The two cases were also evaluated in terms of cash flow diagram. The cash flow revealed 

that, case 2 is superior to case 1 and the profit is higher. The cash flow return on 

investment was higher in the integrated case than the conventional case by 52%. 

Additionally, NPV (the net present value) was larger than the base case by 78%, where 

PVR (the present value ratio) was higher by 45% compared to the base design. Therefore, 

the economic analysis proved that, case 2 is much feasible than case 1. It reduced the 

production cost and it is a promising design to produce hydrogen fuel from waste plastics.  

 

Figure 4: The cash flow diagram for case 1 and case 2 
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Conclusions 

The modeling of production of H2 from plastic wastes (polyethylene and polypropylene) 

has been done by developing two models. The energy and economic analysis for the two 

models conducted. The normalized hydrogen production per feedstock for case 2 was 

higher than case 1 by 5.6%. Additionally, the heating value, process efficiency, and 

H2/CO ratio at the inlet of WGS reactors were estimated. It has been analyzed that case 2 

outperformed the case 1 in all the technical and economic evaluations. Moreover, the 

comparison in terms of CO2 specific emissions has been conducted, and the results 

revealed an emission reduction by 1.0%. Additionally economic analysis revealed that 

the alternative case (2) has lower TIC and fuel production cost per kg of H2 produced 

compared to the case 1 by 23%, and 30% respectively. Overall, case 2 showed more 

promising results than case 1, and it may be experimentally tested in future. 
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Abstract 

Flexible post-combustion capture (PCC) of CO2 is crucial for reaching net-zero emissions 

targets. Within this paper, a process model for CO2 capture via vacuum-pressure swing 

adsorption (VPSA) is developed, validated, and scaled to process flue gas from a small-

scale modern gas turbine. The realistic load-following ‘Flexible’ scenario shows small 

differences in CO2 recovery rate, purity, and specific energy demand, compared to the 

‘Baseline’ scenario. This highlights VPSA is a suitable technology for Flexible- PCC. 

Keywords: CO2
 Adsorption, VPSA, PCC, Flexible Operation, Dynamic Modelling 

1. Introduction 

Electricity systems require balancing capacity to ensure security of supply and counter-

act imbalances due to intermittent renewables and inflexible nuclear (Rai, et al., 2022). 

Open-cycle gas turbines (OCGT) are quick-response dispatchable generators, that are 

expected to increase in capacity between 2020-2050 (Heuberger & Mac Dowell, 2018). 

Therefore, OCGTs that incorporate Carbon Capture, Utilization, and Storage (CCUS) 

may play a vital role in achieving net-zero by 2050.  

Dispatchable power generation by nature is highly transient, and any post-combustion 

capture (PCC) technology will also need to operate flexibly. The majority of Flexible-

PCC revolves around the benchmark MEA CO2 capture (Wilkes, et al., 2021a). However, 

adsorption technologies are attractive due to high CO2 recovery rates and purity, as well 

as lower specific energy demands compared to MEA (Ben-Mansour, et al., 2016).   

1.1. Aims and Objectives 

In this study we show how CO2 can be captured through vacuum-pressure swing 

adsorption (VPSA) in order to clean highly transient gas turbine exhaust. This study does 

not investigate the optimized design of the VPSA CO2 capture system. The aim of this 

paper is, instead, to highlight the effects transient flue gas production has on the process’s 

key performance indicators. The OCGT assumed flue gas flowrate is based on our 

previous paper (Wilkes, et al., 2021a). Hence, within this flexible-VPSA study: 

• A process model for VPSA is developed in gPROMS Process. 

• Model validation is carried out against pilot-scale data. 

• The process model scaled to handle exhaust flow from a small OCGT.  

• Baseline and Flexible results are shown for a typical 5-hour OCGT operation. 

This study only considers the operation of the capture plant, and not the design of the gas 

turbine or the CO2 conditioning system. For information on the effect of transient 

operation on the conditioning system see (Wilkes, et al., 2021b).  
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2.  Adsorption modelling 

Carbon capture by adsorption (CCA) is an inherently dynamic process considered as 

being in cyclic steady state. Each adsorption column requires a set of partial differential 

and algebraic equations (PDAEs) to calculate the quantity of CO2 adsorbed, whilst 

considering the conservation of mass, energy, and momentum (Kikkinides, et al., 2010).  

Li et al. (2018) provides an extensive review of CCA modelling. Within this study the 

following assumptions are made to model Flexible-VPSA: 

• One-dimensional axially dispersed plug flow regime. 

• No radial variation in temperature, pressure, or concentration. 

• Mass transfer described through the linear driving force model. 

• Adsorption amount described through the dual-site Langmuir isotherm model. 

• Pressure drop along the column is calculated through the Ergun equation. 

• Thermal-equilibrium heat transfer model. 

• Power demand for the pumps is described in (Nikolaidis, et al., 2017). 

As there are multiple CO2 capture technologies and various sorbents for CCA, it is 

important to quantify certain key performance indicators (KPI) to enable comparison to 

alternative processes. Important KPI’s for CCA technologies that are the commonly used 

in the literature include CO2 recovery rate (𝜂), specific energy demand (𝐸𝑇), and 

productivity (𝑃𝑟), calculated using Equation 1, 2, and 3, respectively. 

𝜂 [%] =
𝑀𝐶𝑂2

𝑖𝑛 − 𝑀𝐶𝑂2

𝑜𝑢𝑡

𝑀𝐶𝑂2

𝑖𝑛
 × 100 

 

1 

𝐸𝑇 [𝑘𝑊ℎ/𝑡𝐶𝑂2] =
𝑇𝑜𝑡𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦𝐷𝑒𝑚𝑎𝑛𝑑 [𝑘𝑊ℎ]

𝑀𝐶𝑂2

𝑖𝑛 − 𝑀𝐶𝑂2

𝑜𝑢𝑡 [𝑡𝑜𝑛]
 

2 

𝑃𝑟  [𝑡𝐶𝑂2/𝑚3𝐴𝑑𝑠𝑜𝑟𝑏𝑒𝑛𝑡/day] =
 𝑀𝐶𝑂2

𝑖𝑛 − 𝑀𝐶𝑂2

𝑜𝑢𝑡 [𝑡𝑜𝑛]

𝑉𝐴 [𝑚3] ×  𝑡𝑐 [𝑠] × 3600
 

3 

Where 𝑀𝐶𝑂2
is the mass of CO2 either entering (superscript ‘𝑖𝑛’) or exiting (superscript 

‘𝑜𝑢𝑡’) the process. The total energy demand is the sum of the power supplied to each of 

the blowers and vacuum pumps divided by the total amount of CO2 captured. The 

productivity is the quantity of CO2 captured by the adsorbent during a given time frame, 

where 𝑉𝐴 is the volume of adsorbent and 𝑡𝑐 is the total cycle operating time. 

2.1. Model validation 

Pilot-scale results from Krishnamurthy et al. (2014) are used to highlight the fidelity of 

the VPSA process model. The pilot experiment investigated CO2/N2 VPSA using Zeolite 

13X in a single adsorption column. The Skarstrom style four-step cycle includes: 

pressurization using the flue gas feed, adsorption of CO2 onto Zeolite 13x, forward 

blowdown to de-pressurize the column, and reverse evacuation to desorb and recover 

CO2. The step timings and pressure levels are highlighted in Figure 1. The inlet feed 

flowrate was 1000 SLPM and contained 85 mol.% N2 and 15 mol.% CO2. The column 

geometries, particle characteristics, isotherm data and heat transfer parameters can be 

found in (Krishnamurthy, et al., 2014) and (Haghpanah, et al., 2013).  

The KPI’s for the pilot experiment and simulation results are shown in Table 1. The 

simulation showed almost identical column pressure increase and flowrate profiles (not 

shown in this paper) compared to the pilot results. As the model is pressure driven, the 
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accuracy of the pressure profile is important in calculating the quantity of CO2 adsorbed. 

The simulation’s recovery rate (84.30%) is within the error of the pilot results (85.40% ± 

4.52). The purity (89.56%) is lower than expected (94.70% ± 1.05). It can be manipulated 

by the evacuation valve flow coefficient, but this is a set input parameter that cannot be 

altered specifically during the evacuation step. The lower purity also leads to an increased 

specific energy demand, as less CO2 is captured during the operation. Overall, the model 

is in good agreement with pilot results and the isotherm model accurately predicted the 

amount of CO2 adsorbed onto the zeolite surface. 

Table 1: Key performance indicators for the single column VPSA model and pilot experiment 

KPI Pilot Simulation Deviation (%) 

𝜂 (%) 85.40 ± 4.52 84.30 - 1.29 

Purity (%) 94.70 ± 1.05 89.56 - 5.14 

𝐸𝑇 (kWh/tCO2) 510.50 ± 25.5  569.68  + 11.70 

𝑃𝑟 (tCO2/m3 ads/day) 1.40 ± 0.07 1.18 - 15.00 

2.2. Scaled-VPSA design 

The single column model is scaled up to handle the flue gas flow from a small 10.4 MWe 

open-cycle gas turbine (OCGT). The flexible OCGT operation is described and analyzed 

in our previous study (Wilkes, et al., 2021a). The scaled system design is based on 

(Luberti, et al., 2017), where the flue gas source (FGS) is split (FGS1 and FGS2) and 

processed in two parallel VPSA units, to handle the large flue gas flowrate. The model 

assumes the flue gas is cooled and treated prior to CO2 capture. Each VPSA unit consists 

of two beds operating simultaneously for continuous flue gas processing. Table 2 shows 

the adsorption steps and timings used in the scaled-VPSA process model. 

Table 2: Scaled-VPSA adsorption steps and timings 

Step Time (Sec) Pressure (bar) 

Pressurization 80 1.5 

Adsorption 220 1.5 

Blowdown 80 0.07 

Evacuation 220 0.025 

 
  
  

 
 
 

 
 

  
  

  
  

      

   

  

        

  

  
  

              

                  

   

    
     

                               

Figure 1: Single column VPSA operation, step notation: "Press" is pressurization to 1.5 bar, "Ads" 

is adsorption at 1.5 bar, "Bd" is blowdown to 0.07 bar, and "Evac" is evacuation to 0.025 bar 

(Krishnamurthy, et al., 2014). 

459



 

 

 

430 

3. Results and discussion 

For the Baseline and Flexible scenarios, the flue gas input (FGS1 and FGS2) into each 

identical VPSA unit is 16.9 kg/s, shown in Figure 3A and Figure 3B. As the total cycle 

time is 600 seconds and the total operating period is 5 hours (18,000 seconds), the 

operation requires 30 complete cycles. During the Flexible scenario the start-up and 

shutdown operations are included, extending the operating period from 18,000 to 18,480 

seconds. Also included in the Flexible scenario is ramping to different OCGT power 

outputs. At 3,600 seconds the flue gas ramps to 70% load. At 10,800 seconds the flue gas 

ramps to 50% load. This assumes the flue gas and power output are directly proportional. 

The flowrate profiles for the CFG and CS streams are similar to the pilot results shown 

in (Krishnamurthy, et al., 2014), where there is an initial spike in flowrate due to the 

pressure draw, which then equalizes during each operating step. When one bed is 

pressurizing and adsorbing, the other bed is evacuating N2 and CO2 to allow for 

continuous operation. Due to computational limitations the simulations cannot calculate 

adsorption characteristics with zero flow. Therefore, during the start-up operation in the 

Flexible scenario the FGS1 and FGS2 flowrates ramp from 0.9 to 16.9 kg/s in 8 minutes 

(480 seconds), the inverse occurs during the shutdown operation.  

The adsorption bed pressure profiles (see Figure 4A and Figure 4B) also exhibit similar 

results as the pilot study. During the low-load points in the Flexible scenario, as less flow 

enters the columns, the bed pressure does not increase to the level shown in the Baseline 

scenario. As the process is pressure driven, the lower bed pressure should affect the 

quantity of CO2 adsorbed. However, the decrease in recovery rate between the Flexible 

and Baseline scenario (see Table 3) is only 0.04%. It is worth noting that, the scaled-

VPSA Baseline recovery rate is 97.07% and 13.66% higher than the pilot study. This 

increase in efficiency is related to the adsorption step timings, column sizing, valve 

operation and parameter scaling. This study does not focus on optimized process scaling, 

the aim is to assess the performance under transient flue gas conditions.   

At low load periods (70% and 50%) the blower and vacuum pumps require less energy 

(processing less fluid), however, the quantity of CO2 captured is smaller. Therefore, 

during the Flexible scenario the specific energy demand is 1274.04 kWh/tCO2, 6.91% 

higher than the Baseline scenario at 1191.72 kWh/tCO2. A possible solution is modifying 

the adsorption step timings and pressure levels specifically during low load operation, to 

minimize fluctuations in specific energy demand. 

Figure 2: Scaled-VPSA model topology and legend, including cycle steps and durations. 
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B 

Figure 3: Flue gas source (FGS), cleaned flue gas (CFG) and CO2 sink (CS) flowrate profiles 

during the Baseline (A) and Flexible (B) scenarios, for one of the parallel VPSA units.  

B 

A 

Figure 4: Column pressure for AB1 and AB2 during the Baseline (A) and Flexible (B) scenarios. 
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Table 3: Scaled-VPSA key performance indicators 

KPI Baseline Deviation a (%) Flexible Deviation b (%) 

𝜂 (%) 97.07 +13.66 97.03 -0.04 

Purity (%) 80.74 -14.74 79.54 -1.49 

𝐸𝑇 (kWh/tCO2) 1191.72 +133.67 1274.04 +6.91 

𝑃𝑟 (tCO2/m3 ads/day) 1.28 -9.02 1.07 -15.85 

a deviation between the baseline and pilot results, b deviation between Baseline and Flexible 

scaled-VPSA scenarios 

4. Conclusion 

To attain net-zero by 2050, small-scale dispatchable gas power generation will require 

CCUS. Current research in Flexible-PCC revolves around amine-based CO2 capture. This 

study considered VPSA as an alternative CO2 capture technology for modern and highly 

transient OCGT’s. The process model is found to have a high fidelity, with the validation 

study showing the predicted capture rate is within the error bounds stated in the pilot 

results. During Flexible-VPSA, the recovery rate and purity deviate <2% compared to the 

Baseline (no change in flue gas) scenario. The specific energy demand increased during 

periods at 70% and 50% load (+6.91% overall), as less CO2 is captured during the total 

operation. This is lower than Flexible-PCC using MEA (+18.53%) shown in our previous 

work (Wilkes, et al., 2021a), highlighting VPSA is a viable alternative technology for 

Flexible-PCC.  

5. References 

Ben-Mansour, R. et al., 2016. Carbon capture by physical adsorption: Materials, experimental investigations 

and numerical modeling and simulations – A review. Applied Energy, Volume 161, pp. 225-255. 
Haghpanah, R. et al., 2013. Multiobjective Optimization of a Four-Step Adsorption Process for Postcombustion 

CO2 Capture Via Finite Volume Simulation. Industrial & Engineering Chemistry Research, 52(11), p. 4249–

4265. 
Heuberger, C. F. & Mac Dowell, N., 2018. Real-World Challenges with a Rapid Transition to 100% Renewable 

Power System. Joule, 2(3), pp. 367-370. 

Kikkinides, E. S., Nikolic, D. & Georgiadis, M. C., 2010. Modeling of Pressure Swing Adsorption Processes. 
In: M. C. Georgiadis, J. R. Banga & E. N. Pistikopoulos, eds. Dynamic Process Modelling. Weinheim, 

Germany: Wiley‐VCH Verlag GmbH & Co. KGaA, pp. 137-172. 

Krishnamurthy, S. et al., 2014. CO2 Capture from Dry Flue Gas by Vacuum Swing Adsorption: A Pilot Plant 
Study. AIChE Journal, 60(5), pp. 1830-1842. 

Li, S. et al., 2018. Mathematical modeling and numerical investigation of carbon capture by adsorption: 

Literature review and case study. Applied Energy, Volume 221, pp. 437-449. 
Luberti, M., Oreggioni, G. D. & Ahn, H., 2017. Design of a rapid vacuum pressure swing adsorption (RVPSA) 

process for post-combustion CO2 capture from a biomass-fuelled CHP plant. Journal of Environmental 

Chemical Engineering, 5(4), pp. 3973-3982. 
Nikolaidis, G. N., Kikkinides, E. S. & Georgiadis, M. C., 2017. Modelling and Optimization of Pressure Swing 

Adsorption (PSA) Processes for Post‐combustion CO2 Capture from Flue Gas. In: A. I. Papadopoulos & P. 

Seferlis, eds. Process Systems and Materials for CO2 Capture. s.l.:John Wiley & Sons Ltd, pp. 343-369. 

Rai, U., Oluleye, G. & Hawkes, A., 2022. An optimisation model to determine the capacity of a distributed 

energy resource to contract with a balancing services aggregator. Applied Energy, 306(Part A), p. 117984. 

Wilkes, M. D., Mukherjee, S. & Brown, S., 2021a. Transient CO2 capture for open-cycle gas turbines in future 
energy systems. Energy, p. 119258. 

Wilkes, M. D., Mukherjee, S. & Brown, S., 2021b. Linking CO2 capture and pipeline transportation: sensitivity 

analysis and dynamic study of the compression train. International Journal of Greenhouse Gas Control, Volume 
111, p. 103449. 

 

462

M. D. Wilkes and S. Brown



PROCEEDINGS OF THE 32nd European Symposium on Computer Aided Process Engineering  

(ESCAPE32), June 12-15, 2022, Toulouse, France  

L. Montastruc, S. Negny (Editors) 

© 2022 Elsevier B.V. All rights reserved.  

Exergoeconomic assessment of the optimised 

vapour-recompression assisted column for palm-

based fatty acid fractionation 

Norul M. Sidek,a,b* Mohamad R. Othman,a,b 
aProcess Systems Engineering & Safety Research Group, Faculty of Chemical & 

Process Engineering Technology, Universiti Malaysia Pahang, 26300 Gambang, 

Pahang, Malaysia. 
bDepartment of Chemical Engineering, College of Engineering, Universiti Malaysia 

Pahang, 26300 Gambang, Pahang, Malaysia. 

Abstract 

In our preliminary study (Sidek and Othman, 2020), vapour recompression (VRC) proved 

to have a promising energy performance in the case of palm kernel oil (PKO) fatty acid 

fractionation. This paper extends the research by applying an exergy analysis as well as 

incorporating four vacuum fractionation columns to represent a real industry application. 

The study also included a two-step optimization approach based on response surface 

methodology. All configurations were evaluated for their exergetic and economic 

performances. Due to the high costs and low efficiency, the optimised VRC-assisted 

columns are not in favour of this study.  The standard VRC-assisted columns, though 

exhibit a higher CAPEX than the conventional columns, are more thermodynamically 

efficient and demonstrate a substantial reduction of 84-88% in OPEX. A thorough 

optimisation study is needed for future works. 
 

Keywords: vapour recompression, fatty acid fractionation, optimization, exergy. 

1. Introduction 

Since the pandemic, the oleochemical industry has witnessed greater product demand due 

to increased hygiene needs. Specific measures must be implemented to ensure a 

continuous supply of oleochemical products to consumers. The industry's primary 

separation units are distillation columns, which are used to separate oleochemical cuts. In 

practice, distillation columns are well-known as major energy consumers. In recent years, 

research on heat pump-assisted distillation has recently piqued the interest of many 

academics to reduce the associated energy consumption. However, no research has been 

devoted to heat pumping in oleochemical distillation. Besides, the majority of established 

oleochemical refineries in Malaysia still employ mature distillation technologies. In light 

of these circumstances, oleochemical distillation appears to be a prime focus for 

improvement. In a prior study, we discovered that vapour recompression (VRC), a 

popular heat pump scheme, showed promising energy performance in the case of palm 

kernel oil (PKO) fatty acid fractionation (Sidek and Othman, 2020). The research, 

although attempting to move towards a more sustainable approach, is still preliminary. 

The reason is that to facilitate convergence, only one fractionation column was considered 

to evaluate the feasibility of VRC. In an industrial operation, the PKO fatty acid 

fractionation involves four operational columns, which include a pre-fractionator for 

recovering C8-C10 products, a light-cut column for recovering C12, a middle-cut column 
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for separating C14 as a top product, and a still column for heavy-cut separation (C16-

C18) (Othman and Rangaiah, 2020). Another aspect that is yet unknown from the study 

is the effect of thermodynamic conditions on the simulated VRC-assisted column. Using 

an exergy analysis, Mangili (2020) presented that a VRC-assisted pressure swing column 

for di-n-propyl-ether and n-propanol processes has outperformed another direct heat-

integrated column in terms of exergetic efficiency. Intriguingly, a comprehensive study 

of a VRC-assisted vacuum membrane distillation for sulfuric acid waste treatment by Si 

et al. (2020) has shown a very low exergetic efficiency of only about 4%. Since the 

thermodynamic performance of each VRC-assisted column varies depending on the 

process and operating conditions, a thermodynamic analysis is, therefore, essential to 

evaluate how much of recovered heat is transformed into useable work. In this paper, the 

study continues to analyse all operational columns, exactly replicating the industrial 

operation, from the standpoints of exergetic and economic performance. All process 

simulations were carried out in Aspen PLUS V12.0 using UNIQUAC thermodynamic 

model, as recommended by Sidek and Othman (2019) for PKO fatty acid. In Design 

Expert, the simulated columns were optimised using the response surface methodology. 

2. Methodology 

2.1. Process Simulation 

The PKO fatty acid compositions were adopted from a Malaysian industrial oleochemical 

refinery, as shown in Othman and Rangaiah (2020). Unlike our previous studies (Sidek 

and Othman, 2020), this one utilised four (4) major units of fractionation column at a high 

vacuum pressure to represent the actual process. A process with a crude PKO fatty acid 

feed flow rate of 9167 kg/h was operated at 80 mbar in a pre-fractionator (V5001), 25 

mbar in a light-cut column (V5002), 13 mbar in a middle-cut column (V5003), and 10 

mbar in a heavy-cut column (V5004). To avoid chemical degradation, the vacuum 

application helped to regulate vapour pressure and ensure the working temperature was 

between 180 and 250 °C. To ensure a fair comparison, a VRC-assisted column 

configuration was simulated based on the same column conditions and desired product 

specifications as the CCs. The VRC-assisted column works by compressing the top 

vapour stream to make it hotter than the reboiler.  The elevated vapour temperature allows 

the utilisation of recovered latent heat for bottom liquid reboiling (Parhi et al., 2019). To 

achieve that, the vapour stream was first superheated before being introduced into a 

compressor to avoid partial condensation. A maximum practical compression ratio was 

taken to be 3.0. The compressed vapour will heat exchange with the bottom liquid stream 

through a heat exchanger. A minimum temperature approach was kept between 5-10 °C.  

2.2. Process Optimisation 

In this study, the experimental design based on response surface methodology (RSM) was 

carried out, which included two-level factorial analysis (TLFA) and central composite 

design (CCD). RSM develops both statistical and mathematical models to provide 

adequate predictions of a defined response. Prior to running the TLFA, the variables were 

first obtained from a sensitivity analysis in Aspen PLUS. For the optimisation part, CCD 

was primarily chosen to allow the estimation of all regression variables that were required 

to fit a second-order model to the response. An adequacy test for the developed model 

was observed in the analysis of variance (ANOVA), whereby the p-value must be less 

than 0.05 and the adequate precision value must be larger than 4. Meanwhile, for chemical 

processes, the R2 value must be larger than 0.9. The soundness of the model was 

determined through a surface contour plot. The optimal conditions must be validated in 

Aspen Plus to assure convergence. 
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2.3. Exergy Analysis  

Exergy analysis measures how much valuable energy is being neglected in a certain 

system. A more detailed explanation of exergy computation in the distillation column has 

been demonstrated by Nguyen and Demirel (2010). According to them, the exergy 

difference between the product and the feed stream indicates the minimum isothermal 

separation work which corresponds to Eq. (1).   

𝐸̇𝑥,𝑚𝑖𝑛 = ∑ 𝑛̇𝑒𝑥 −𝑜𝑢𝑡 ∑ 𝑛̇𝑒𝑥𝑖𝑛  Eq. (1) 

where ṅ is the mole flow and 𝑒𝑥 is the specific exergy of the streams. An exergy loss, 
Ėxloss, or irreversibility can be computed from Eq. (2). 

Ė𝑥𝑙𝑜𝑠𝑠 = ∑ (𝑛̇𝑆 +
𝑄𝑠𝑖𝑛𝑘

𝑇𝑠𝑖𝑛𝑘
)𝑖𝑛 − ∑ (𝑛̇𝑆 +

𝑄𝑠𝑜𝑢𝑟𝑐𝑒

𝑇𝑠𝑜𝑢𝑟𝑐𝑒
)𝑜𝑢𝑡  Eq. (2) 

Here, S represents the entropy of a stream and Q is the heat involved with the process.  

Meanwhile, the conversion of the supplied heat into separation work can be calculated by 

a thermodynamic efficiency, ƞ using Eq. (3).  

ƞ =
𝐸𝑥̇𝑚𝑖𝑛

𝐸𝑥̇𝑙𝑜𝑠𝑠+𝐸𝑥̇𝑚𝑖𝑛
        Eq. (3) 

2.4. Economic evaluation 

The economic performance of the VRC-assisted columns was evaluated using capital 

expenses (CAPEX) and operational expenses (OPEX). The plant was assumed to be in 

operation for approximately 10 years, with 8,000 hours of operation per year. The 

electricity tariff for the industry was $0.084/kWh, high-pressure (HP) steam was $17/t 

and cooling water was $0.06/t (Parhi et. al., 2019).  

3. Results and Discussions 

3.1. VRC-assisted fractionation columns 

A schematic representation of the proposed VRC-assisted fractionation process for PKO 

fatty acid is depicted in Fig. 1. In the studied configuration, two columns namely V5002 

and V5003 were determined to be the ideal candidates for integration with the VRC 

system. The V5001 and V5004 were unable to deliver at least 10% of heat duty for the 

evaporation of the bottom liquid streams even when a maximum practicable compression 

ratio (CR) of 3.0 was used in a two-stage compression. The proposed VRC system for 

both V5002 and V5003 exhibits two compression stages to a) comply with the maximum 

CR, b) fulfil the reboiler's entire heat requirement and c) ensure the outlet temperature is 

 

Fig. 1. VRC-assisted fractionation process for PKO fatty acid 
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sufficiently high for heat exchange. The overhead vapour stream of V5002 was 

superheated prior to being fed into the first compressor, C201. This procedure is crucial 

not only for preventing liquid rupture in the compressors but also for avoiding the use of 

higher CRs. Condensation of the C202 outlet vapour stream was accomplished by 

transferring heat to the heat exchanger, HX200. In contrast to our earlier work, the 

compressed vapour of the V5002 column effectively delivered the necessary heat to 

evaporate the bottom liquid stream, obviating the need for a trim reboiler. Furthermore, 

the resulting condensate from HX200 was used to superheat the overhead vapour in the 

SH200, thus, no auxiliary heating was required in this column. Following that, the stream 

was pressure reduced by the throttle valve, VA200, to the column operating pressure and 

separated into reflux and distillate sections. Meanwhile, the bottom liquid was routed to 

the flash drum, V200, whereby the vapour was returned to the column as a boil-up and 

the liquid was introduced to the V5003. The identical VRC configuration was simulated 

in the V5003, except that the two compressors, C301 and C302, had lower CRs and hence 

performed less mechanical work. 

3.2. Optimisation using sensitivity analysis and RSM 

Although the compressed overhead vapour could satisfy the heating requirements of the 

V5002 and V5003, there were some deviations in the heat exchanger's minimum 

temperature approach, ΔTmin. Technically, a small ΔTmin requires a larger heat exchanger 

to transfer heat. In the sensitivity analysis, the superheated temperature, CR, and 

exchanger duty were identified as the key factors in the VRC performance. These factors 

were then investigated as independent variables for their impacts on the ΔTmin in RSM 

optimisation alongside mechanical compression work. A 24 fractional factorial design 

with 16 runs was used to analyse all variables. However, only 12 of the 16 proposed runs 

showed convergence in the simulation. This resulted in a slight effect in the interaction 

prediction between the variables. The results for the V5002 and V5003 optimisations 

agree with all of the TLFA outputs necessary to demonstrate that the models were a good 

fit and significant. One solution for optimal conditions from the TLFA was selected for 

the centre points in the CCD. The two most contributing factors, namely superheated 

temperature and second stage CR, were used, while other variables were held fixed. Fig. 

2a and Fig. 2b illustrate the 3D surface contour plots for the V5002 and V5003.  

 
The form of the plot for V5002 shows some curvature, suggesting that the factors had a 

quadratic effect on the ΔTmin, thus the optimum conditions could be determined from the 

model.  The V5003 plot has a relatively flat surface but is still acceptable. For the V5002, 

the proposed optimal points are the superheated temperature of 204.5 °C, first stage CR 

of 2.29, second stage CR of 2.14 and exchanger duty of 690 kW. Whereas, the proposed 

optimal points for the V5003 are the superheated temperature of 216.72 °C, first stage 

CR of 2.10, second stage CR of 1.93 and exchanger duty of 340 kW. 

3.3. Energy and exergy performances 

The V5002 and V5003 utility requirements, as well as the findings of the exergy analysis 

of conventional columns, VRC-assisted columns, and optimised VRC-assisted columns, 

         

          Fig. 2a. 3D surface plot for V5002                        Fig. 2b. 3D surface plot for V5003 
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are summarised in Table 1. The table clearly indicates that the CC's energy requirements 

were excessive in contrast to the VRC-assisted columns. 

Table 1. Summary of utility requirements and exergy analysis. 

Configuration CC  VRC  Optimised-VRC 

 V5002 V5003  V5002 V5003  V5002 V5003 

Cold utility (kW) 924.87 413.53       

Hot utility (kW) 766.58 378.31     76.58 38.31 

Mech. work (kW)    79.14 27.27  84.20 31.66 

Total (kW) 1691.45 791.84  79.14 27.27  160.78 69.97 

Compression ratio 1    2.10 1.89  2.29 2.10 

Compression ratio 2    2.10 1.77  2.14 1.93 

Thermodynamic 

efficiency (%) 
78.55 97.66  93.93 98.34  92.90 97.01 

The VRC needed no cooling since the vapour condensed during heat exchange with the 

bottom liquid and in the superheater. Moreover, the compressed vapour successfully 

fulfilled the reboiler's total heating requirement. Because the optimized-VRC assisted 

columns were largely focused on the heat exchanger's ΔTmin, nearly 10% of external 

heating was necessary. The exchanger sizes were reduced at the expense of the overall 

energy required. This is also seen by the higher compression ratios of the optimised VRC 

columns. As mentioned before, only 12 TLFA proposed runs were converged, which 

consequently affected the optimisation results. In view of this, the variables selection, 

defined ranges and response objectives should be comprehensively reassessed in order to 

generate more sensible findings. Meanwhile, the exergy analysis shows that the VRC-

assisted V5002 and V5003 columns were more thermodynamically efficient. 

Remarkably, the VRC-assisted V5002 column outperforms the CC by around 20%. This 

indicates that more heat was converted into usable work. On the other hand, the 

optimised-VRC columns were somewhat less effective than the original VRC columns 

for V5002, and surprisingly, the optimised-VRC V5003 column has an even 

lower thermodynamic efficiency than the CC. 

3.4. Economic evaluations 

Table 2 summarises the economic evaluation results for conventional columns, VRC-

assisted columns, and optimized VRC-assisted columns. The Aspen Process Economic 

Analyzer was used to compute the CAPEX and OPEX. As opposed to the CC, both the 

VRC and optimized-VRC systems show greater CAPEX. This is to be anticipated since 

the VRC system for the studied process needs two stages of compression, despite the 

removal of the CC's condenser and reboiler. However, as the data shows, the optimised 

VRC columns exhibit a higher CAPEX than the ordinary VRC-assisted columns. While 

the cost of the exchanger has been greatly lowered, the V5002's first compressor cost has 

risen by 11% after the optimisation. Meanwhile, the average 15% increment of 

compressor costs was seen in V5003. The additional trim reboilers has also impacted the 

overall CAPEX for the optimised-VRC columns. Attention must be paid to the VRC’s 

excellent performance in OPEX, whereby the only source of energy needed is electricity 

to drive the compressors. As can be seen in the table, approximately 84% and 88% of 

energy savings can be achieved by integrating the V5002 and V5003 columns, 

respectively, with the VRC system. Taking a wider perspective, there is a good chance 

that over the course of ten years of the VRC-assisted column operation for the 

fractionation of PKO fatty acid, plant revenues may be boosted by the amount saved on 

utility usage. 
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Table 2. Summary of CAPEX and OPEX. 

Configuration CC  VRC  Optimised-VRC 

 V5002 V5003  V5002 V5003  V5002 V5003 

CAPEX (x105 $)         

Column tower 2.616 2.367  2.616 2.367  2.616 2.367 

Column condenser 0.113 0.096       

Column reboiler 0.397 0.255       

Superheater     0.107 0.111  0.096 0.106 

Heat exchanger    0.313 0.300  0.236 0.179 

Compressor 1    0.523 0.191  0.581 0.221 

Compressor 2    0.530 0.172  0.539 0.199 

Flash drum    0.334 0.324  0.334 0.324 

Trim reboiler       0.097 0.094 

Total 3.126 2.718  4.423 3.465  4.500 3.491 

OPEX (x105 $/y)         

Electricity 

High-pressure steam 

 

2.637 

 

1.301 

 0.583 0.200  0.620 

0.263 

0.233 

0.132 

Cooling water 0.924 0.413       

Total 3.561 1.714  0.583 0.200  0.883 0.365 

4. Conclusions 

The present study was designed to investigate the exergetic performance of the VRC-

assisted columns to fractionate out PKO fatty acid cuts in four operating columns. The 

optimized version of the VRC configurations showed a less promising performance than 

the ordinary one. Without a doubt, despite increased CAPEX at the start of the business, 

a considerable rise in profitability might be realised in the coming years. Although, a 

comprehensive optimisation is to be done for future works for more sensible data. Despite 

the PKO fatty acid feed's limited flexibility and familiarity, the positive results from this 

research serve as a baseline for future environmentally friendly and cost-effective 

oleochemical separation processes. 
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Abstract 

Shallow bubble column reactors are gas-liquid reactors which are intensively used in 

chemical industries because of their simple design and efficiency. They are characterized 

by a low height-to-diameter ratio when compared to traditional columns. In such 

equipment, the bubble size distribution is an important design parameter that defines the 

interfacial area which plays an important role in designing and scaling-up these reactors. 

In this contribution a new reduced population balance model is developed based on 

OPOSPM (One Primary One Secondary Particle Method) framework to predict the 

coupled bubble hydrodynamics and mass transfer in shallow bubble column reactors. The 

model is composed of four transport equations where two of which are used to describe 

the total number and volume bubble concentrations and the other two transport equations 
are devoted for chemical species balances. Other consecutive equations are used to model 

the bubble relative velocity, breakage, coalescence, interphase mass transfer, and 

reconstruction of bubble probability density. The model capability to predict the 

experimental data for the coupled hydrodynamics and mass transfer in the shallow bubble 

column reactor of Lau et al. (2012) is successfully demonstrated. In conclusion, the model 

is simple and still efficient for modelling such reactors with the essential phenomena from 

the detailed population balance equation (PBE) is captured.  
 

Keywords: OPOSPM, Population balance, Bubble columns, Mass transfer.
 

1. Introduction 

Bubble column reactors are widely used in the chemical, petrochemical and biochemical 

industries (Jakobsen, 2008). The design of these columns is characterized by a high L/D 

(height-to-diameter) ratio which is required to allow the bubble hydrodynamics to 

approach a fully developed state. On the contrary, shallow bubble columns are 

characterized by a low L/D ratio to make use of the high gas holdup due to small size 

population of bubbles produced above the distributor. This is required to estimate the 

specific interfacial area to provide a closure for the momentum and mass transport 

equations which are solved for each phase (Jakobsen, 2008). However, with limited 
available experimental studies on shallow bubble columns (Lau et al., 2012), the design 

and scale up of this equipment is still dependent on pilot scale experiments. As an 

approach for modelling of the bubble column reactors, the mixture model does not take 

into account the instantaneous discrete events of bubble breakup and coalescence. On the 
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other hand, multi-fluid models which include bubble-bubble interactions are expensive 

from computational point of view if detailed column geometry is needed. Along these 

lines, the emergence of the reduced population balance models as fast solvers of the PBE 

have gained considerable interest in reflecting the discrete flow and accommodate 

particle-particle interactions (Wu et al., 1998, Drumm et al., 2010, Shonibare and Wardle, 

2015, Attarakih and Bart, 2020, Santis et al., 2021). In this regard, Wu et al. (1998) 

derived the interfacial area transport equation from the particle number density transport 

equation followed by the derivation of bubble breakage and coalescence kernels which 
were improved by Ishii and Hibiki (2011). Drumm et al. (2010) introduced the coupled 

OPOSPM-CFD as a reduced population balance model, which is derived from the 

discrete PBE based on the Sectional Quadrature Method Of Moments (SQMOM) 

(Attarakih et al., 2009). Shonibare and Wardle (2015) used OPOSPM for the numerical 

investigation of vertical plunging jet using a hybrid multifluid CFD Solver which is 

implemented in OpenFoam version 2.2.1.  Santis et al. (2021) used OPOSPM in the 

GEneralized Multifluid Modelling Approach (GEMMA) which is used by the well-

known open-source CFD code OpenFOAM version 7.0. This modelling technique based 

on reduced population balances presents a valuable tool for understanding the 

hydrodynamics of annular centrifugal contactors. Motivated by these findings, we used 

the OPOSPM framework to model the coupled hydrodynamics and mass transfer of the 
bubbly flow in shallow bubble column reactors as a building block for detailed CFD 

models.  

2. Coupled bubble hydrodynamics and mass transfer using OPOSPM 

The model for the coupled bubble hydrodynamics and mass transfer is derived from the 

PBE. This equation transports the number concentration function in space-time 

coordinates and the particle property space through the number concentration function 

f(z,d,t) where z is the special domain, d and t are bubble size and time respectively. This 
function is assumed continuous, satisfies regulatory conditions and describes the number 

concentration of bubbles.  In this work we used the reduced population balance model 

based on the OPOSPM framework to describes the coupled hydrodynamics and mass 

transfer which is given by:  

𝜕(𝑁)

𝜕𝑡
+ 𝛻. (𝑁 〈〈𝑣𝑔〉〉) = 𝑆𝐵 − 𝑆𝐶  +  𝑁𝑖𝑛𝛿(𝑧 − 𝑧𝑖𝑛)                                                            (1) 

where N is the total bubble concentration, 〈〈𝑣𝑔〉〉 is the mean bubble velocity, SB and SC 

are the instantaneous rate of change of bubble number concentration due to bubble 

breakup and coalescence respectively which are described by the consecutive equations 

of Hibiki and Ishii (2000) in terms of mean bubble diameter (d).  

𝑆𝐵 = 𝐶𝑏

𝜀1 3⁄ (1 − 𝛼)

𝑑2 3⁄ (𝛼𝑚𝑎𝑥 − 𝛼)
 𝑒𝑥𝑝 (−𝐾𝑏

𝜎

𝜌𝑓𝑑5 3⁄ 𝜀2 3⁄ )  𝑁                                                          (2) 

 

𝑆𝐶 =
𝐶2𝑑7 3⁄ 𝜀1 3⁄

(𝛼𝑚𝑎𝑥 − 𝛼)
𝑒𝑥𝑝 (−𝐾 √

𝑑5𝜌𝐿
3𝜀2

𝜎3

6

) 𝑁2                                                                            (3) 

The values of the constants in Eqs. (2) and (3) have the same values that were given by 

Hibiki and Ishi (2000): Cb = 0.0037, C2 = 0.0014, Kb =1.37, K=1.29   and αmax  =  0.52. 
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The source terms are function of the physiochemical properties, gas phase holdup, mean 

bubble diameter and energy dissipation. The transport of the gas phase holdup (𝛼𝐺) 

presents the second OPOSPM transport equation which is given by: 

𝜕(𝛼𝐺𝜌𝐺)

𝜕𝑡
+

𝜕(𝛼𝐺𝜌𝐺 〈〈𝑣𝑔〉〉)

𝜕𝑧
= −𝑘𝐿𝑎 (

𝐶𝐺

𝐻
− 𝐶𝐿) 𝑀𝐺 + 𝜌𝐺

𝑖𝑛 𝑈𝐺
𝑖𝑛𝛿(𝑧 − 𝑧𝑖𝑛)                (4) 

where C refers to oxygen concentration, H is the dimensionless Henry’s constant, 𝑘𝐿𝑎 is 

the volumetric liquid phase mass transfer coefficient and MG is the solute (oxygen) 

molecular weight. The energy dissipation  (m2 s3⁄ ) is calculated using the correlations 

given by WU et al. (1998). Similarly, the solute transport equation in the gas phase reads 

𝜕(𝐶𝐺𝛼𝐺)

𝜕𝑡
+

𝜕(𝐶𝐺𝛼𝐺 〈〈𝑣𝑔〉〉)

𝜕𝑧
= −𝑘𝐿𝑎 (

𝐶𝐺

𝐻
− 𝐶𝐿) + 𝐶𝐺

𝑖𝑛 𝑈𝐺
𝑖𝑛𝛿(𝑧 − 𝑧𝑖𝑛)                        (5) 

 while the solute transport equation in the liquid phase is given by: 

𝜕(𝐶𝐿𝛼𝐿)

𝜕𝑡
+

𝜕(𝐶𝐿𝛼𝐿〈𝑣𝐿〉)

𝜕𝑧
= +𝑘𝐿𝑎 (

𝐶𝐺

𝐻
− 𝐶𝐿) + 𝐶𝐿

𝑖𝑛  𝑈𝐿
𝑖𝑛𝛿(𝑧 − 𝑧𝑖𝑛)                               (6) 

where the subscript L refers to the liquid phase and the mean gas velocity is given by: 

〈〈𝑣𝑔〉〉 = 〈𝑣𝐿〉/(1 − 𝛼𝐺) + 𝑣𝑔𝑟                                                                                                   (7) 

In the above equation the relative bubble velocity is calculated from the equation: 

 𝑣𝑔𝑟 = √𝑔𝑑30∆𝜌/(3𝐶𝐷𝜌𝐿)                                                                                               (8) 

where 𝐶𝐷 is the drag coefficient which is function of the mixture Reynolds number (Wu 

et al., 1998) and 𝑑30 is the bubble mean volume diameter which couples the bubble 

number and volume concentrations:  

𝑑30 = √
6𝛼𝐺

𝜋𝑁

3

                                                                                                                                 (9) 

In the OPOSPM framework, two low-order moments are conserved (𝛼𝐺 , N), and the 

secondary particle position (𝑑30) represents a Lagrangian fluid particle carrying 

information about the mean bubble size of the whole population through its low-order 

moments. On the other hand, the interfacial area concentration is calculated from an 

algebraic model based on the ratio between gas holdup and the bubble Sauter mean 

diameter: 

𝑎 =
6𝛼𝐺

𝑑32

                                                                                                                                       (10) 

The Sauter mean diameter is related to the mean volume diameter (d30) by the empirical 

relation 𝑑30 = (0.75 − 0.80)𝑑32 as recommended by Shonibare and Wardle (2015) and 

Santis et al. (2021). As the full bubble size distribution is concerned, the OPOSPM-

Weibull distribution, as a least biased probability number density estimator, can be used 

as derived and explained in our previous work (Attarakih and Bart, 2020). 

3. Numerical solution 

The model equations (1-9) represent a set of hyperbolic conservation laws which requires 

special attention during space-time discretization phase (Attarakih et al., 2013). This 
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system can be casted for a given spatial cell of index j and width z using the first order 

upwind scheme as follows: 

(
𝑑𝑈

𝑑𝑡
)

𝑗
+

1

∆𝑧
(𝐹𝑗 − 𝐹𝑗−1) = 𝑆𝑗  , 𝑗 = 1, 2, 3 … 𝑛                                                             (11) 

where U = [N  𝛼𝐺𝜌𝐺  𝐶𝐺𝛼𝐺  𝐶L𝛼L]T, F = U•[〈〈𝑣𝑔〉〉 〈〈𝑣𝑔〉〉 〈〈𝑣𝑔〉〉 〈𝑣L〉]T are the conserved 

variables and numerical flux vectors respectively and S is the source term of Eqs. (1-6). 

For the time discretization, the MATLAB ODE23 solver is used with the built-in default 

settings. The relative velocity which is given by Eq.(8) is solved iteratively and found to 

converge with 5 to 10 iterations. By assuming the liquid phase is stagnant and perfectly 

mixed and there are negligible changes in the oxygen concentration in the rising bubbles, 

Eq.(6) simplifies into an ODE which has an analytical solution (Lau et al., 2012).  

4. Results and discussion 

In this section, the numerical results from solving the semi-discrete OPOSPM model 

(Eqs.11) are compared to the experimental data of Lau’s et al. (2012) measured in a pilot 

scale shallow bubble column reactor of 14 cm diameter.  

 

  

Figure (1): Predicted steady state mean interfacial area concentration and volumetric mass 
transfer coefficient as compared to published experimental data at L/D = 7.2.  

The column is equipped with a perforated plate distributer having 211 orifices that are 3 

mm in diameter and configured in triangular pitch. Tap water is used as a stagnant phase, 

while air is used at 1.0 bar and 25 C as the gas phase and the gas velocity is varied from 

3.2 to 10.8 cm/s. The number of spatial cells (n) is set to 25 with further increase is found 

to have no effect on the numerical results. The initial conditions for the gas phase are set 

to small positive numbers close to the square root of the machine epsilon since the 

stagnant water phase is purged by nitrogen before presetting the air flow. In Lau’s et al. 

(2012) experiment, the steady state gas holdup and the interfacial area where measured, 

while in the mass transfer experiments, the dynamic oxygen concentration at L/D = 7.2 
of the column height is measured using an optical fiber oxygen probe. In addition to this, 

the mass volumetric mass transfer coefficient is calculated from the measured data. In our 

present model, the inlet mean bubble diameter (d32) is calculated using Wilkinson et al. 

(1994) correlation based on perforated gas distributer and corrected such that 𝑑30 =
(0.8)𝑑32 as recommended by Shonibare and Wardle (2015) and  Santis et al. (2021). The 

inlet area concentration is calculated from Hikita correlation, while the liquid side mass 
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transfer coefficient is calculated by the correlation of Akita and Yoshida which are 

reported in Shah et al. (1982). Note that the liquid side mass transfer coefficient is 

independent of the (ug) which is consistent with the experiments of Lau et al. (2012). 

Figure (2): Steady state mean gas holdup at L/D =  7.2  and the dynamic evolution of the oxygen 
concentration in a stagnant tap water column with filled and open circles are the Lau’s et al. 
(2012) experimental data.   

 The bubble column hydrodynamics coupled with mass transfer is simulated using the 

present OPOSPM model. A sample of results is shown in Fig.(1) which compares the 

predicted mean interfacial area concentration as function of the superficial gas velocity 

(ug) to the experimental data of Lau et al. (2012) in a shallow bubble column. The model 

equations were integrated with respect to time until steady state is achieved at 50 s. As 

can be noticed, the interfacial area concentration increases due to the shear-induced 

bubble breakup at the nozzle as ug increases. We used 100 (m-1) as fixed bandwidth for 

the error bar which covers the experimental fluctuations around the predicted values, 

where rigorous parameter estimation with confidence intervals is beyond the scope of this 

work. On the right hand side of Fig.(1) is the predicted liquid side volumetric mass 

transfer coefficient as compared to the published experimental data including those of 

Lau et al. (2012) with error bandwidth 0.03 (s-1). According to Lau et al. (2012), the 

large dispersion in the measured data is due to different designs of gas distributers, 

presence of impurities and the sensitivity of mass transfer to system temperature. 
Nonetheless, the model predicts most of the experimental data except those of Letzel et 

al. (1999) where slight under predictions is present in the gas velocity middle range (5 -

13 cm/s). On the left hand side of Fig.(2) is the predicted mean gas holdup (filled square) 

as compared to the experimental data of Lau et al. (2012) with error bandwidth equals to 

0.02. Compared to the interfacial area predictions (Fig.(1), Left), the error bandwidth is 

narrower which may be attributed to the higher measurement accuracy of the gas holdup 

compared to the interfacial area. By assuming that the liquid phase is perfectly mixed, 

Eq.(6) can be reduced to a first-order ODE and is solved at L/D = 7.2, while the gas phase 

is modelled as plug flow from the gas distributer.  In Fig.(2, right), the dynamic evolution 

of oxygen absorption in the stagnant water phase is compared to model prediction. It is 

obvious that the most accurate result of the model is that of mass transfer profile despite 

the complex coupling with the uncertainties induced by the bubble hydrodynamics. While 

bubble breakup and coalescence are calibrated based on the work of Hibiki and Ishii 
(2000), we did not adjust any model or correlation parameters to improve the model 

prediction. Therefore, we believe that building a database on experimental data and 
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calibrating individual population balance sub-models, will certainly improve and widen 

the window of model predictions.  

5. Summary and conclusions 

In this work, we used the OPOSPM framework as a reduced population balance model to 

derive the transport equations of coupled hydrodynamics and mass transfer in shallow 

bubble columns. The model consists of four transport equations with sub-population 

balance models and consecutive relations. No further sub-model calibration is used other 

than that in the published literature for those of breakup and coalescence for bubbly flow 

in vertical tubes. The predicted results by the present model are compared to the published 

experimental data with good and high accuracy for bubble hydrodynamics and mass 

transfer respectively. The 1D semidiscrete hyperbolic system is solved using MATLAB 

ODE23 solver with CPU time as fraction of second. We believe that the relative simplicity 

of the model offers the bubble column designers one-, two- and three-dimensional models 

that can be implemented in complex CFD codes. 
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Abstract 

The present paper deals with the development of a model of gypsum crystallization during 

the production of phosphoric acid. The objective is to predict the kinetics of formation of 

products and consumption of reagents, as well as the time-varying crystal size 

distribution. The population balance model involving primary and secondary nucleation 

and crystal growth rates is thus investigated using the method of moments, along with the 

Pitzer thermodynamic model. Both models involve unknown parameters to be identified 

from experimental data. Two databases are therefore used, (i) the first one which consists 

of equilibrium measurements is used to identify the unknown parameters of the Pitzer 

model, (ii) and the second one which contains temporal profiles of supersaturation ratio, 

is used to determine the nucleation and growth unknown parameters. The identified 

parameters are then used to compare the predictions of the developed models with the 

experimental measurements. The results are very promising, and the models can be used 

in the design and optimization of gypsum crystallization processes. 
 

Keywords: Crystallization, Population balance model, Pitzer model, Method of the 

moments. 

1. Introduction 

In the phosphate industry, phosphoric acid is a major component in the manufacture of 

fertilizers. It is mainly produced by the digestion of phosphate ore by a concentrated 

sulfuric acid solution. The products are phosphoric acid and solid gypsum, which are 

separated in a vacuum filtration unit downstream of the digestion tank (Becker, 1983). 

The optimization of the process performance is very challenging and aims mainly to: (i) 

extract the maximum amount of phosphate from the ore during the digestion, (ii) 

crystallize gypsum with optimum filterability and washing characteristics, (iii) and 

produce the most concentrated and purest phosphoric acid possible, at a lower cost and 

with little impact on the environment. In this work, we focus mainly on the modeling of 

the crystallization of gypsum which strongly influences the quality of the produced 

phosphoric acid, and the performance of the units downstream of the process, namely, the 

filtration units.  

 
The objective of this paper is to develop a crystallization model based on the population 

balance equations (PBEs) along with the Pitzer thermodynamic model (Pitzer, 2018). The 

latter enables to predict the supersaturation ratio which is involved in the driving force of 

the crystallization process.  
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The Pitzer model is first calibrated using equilibrium measurements, and the unknown 

parameters of the PBEs are identified from the kinetic measurements. The PBEs are then 

solved using the method of moments.  

2. Modeling framework 

2.1. Population balance model 
 

For a population of crystals whose size distribution evolves over time, the population 

balance allows to express its number density function (𝑛) as a function of time (𝑡) and of 

a characteristic size (𝑥).  Assuming that the crystallization is carried out in an isothermal 

perfectly mixed batch reactor with a volume of 50 𝑐𝑚3, and that the growth rate of crystals 

is size independent, the PBE writes (Hanhoun et al., 2013): 

∂𝑛(𝑡, 𝑥)

∂𝑡
= −𝐺(𝑡)

∂𝑛(𝑡, 𝑥)

∂𝑥
+ 𝑅𝑁(𝑡)𝛿(𝑥 − 𝑥0) 

 

(1) 

where 𝑅𝑁 is the sum of primary and secondary nucleation rates, 𝐺 is the crystal growth 

rate, and 𝛿 is the Dirac function. The nucleation and crystal growth rates are defined by 

(Hanhoun et al., 2013; Zhu et al. 2016): 

𝑅𝑁(𝑡) = 𝐴 × exp (
−𝐵

ln 𝑆(𝑡)2
) + 𝑘𝑠 × [ln 𝑆(𝑡)]𝑠 × 𝜇3(𝑡) 

 

(2) 

𝐺(𝑡) = 𝑘𝑔[ln 𝑆(𝑡)]𝑔 
(3) 

where 𝐴, 𝐵, 𝑘𝑠, 𝑠, 𝑘𝑔 and 𝑔 are unknown parameters to be identified from experiments, 𝑆 

is the supersaturation ratio which depends mainly on the speciation of the reacting 

medium, and 𝜇3 is the third order moment of the number density function (𝑛). 

2.2. Method of moments 
 

The method of moments is a model reduction technique used mainly to solve the 

population balance equation. It transforms the partial differential equation (1) into a 

dynamic system of ordinary differential equations (ODEs) with unknowns independent 

of the spatial variable (𝑥). It is based on the calculation of the 𝑘𝑡ℎ-order moment 𝜇𝑘 which 

is defined as follows: 

𝜇𝑘(𝑡) = ∫.
0

∞

  𝑥𝑘𝑛(𝑡, 𝑥)𝑑𝑥 
(4) 

Multiplying Eq. (1) by 𝑥𝑘  and integrating from zero to infinity, the following system of 

ODEs is obtained: 

 
𝑑𝜇0(𝑡)

𝑑𝑡
= 𝑅𝑁(𝑡) 

(5) 

𝑑𝜇𝑘(𝑡)

𝑑𝑡
= 𝑘 𝐺(𝑡) 𝜇𝑘−1(𝑡),  𝑘 ≥ 1 

(6) 

𝜇𝑘(0) = ∫.
0

∞

 𝑥𝑘𝑛0(𝑥)𝑑𝑥 
(7) 

where 𝑛0 is the crystal size distribution (CSD) at t=0.  
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2.3. Mass balance equations and supersaturation ratio 
 

In this work, we assume that gypsum crystals are formed as a result of direct attack of 

pure tricalcium phosphate with a concentrated sulfuric acid solution according to the 

following reaction: 

Ca3(PO4)2 + 3H2SO4 + 6𝐻2𝑂 →  2H3PO4 + 3CaSO4 ⋅ 2H2O ↓ 
(8) 

The use of the third moment of the CSD allows to calculate the amount of gypsum 

produced as follows (Hanhoun et al., 2013; Zhu et al., 2016): 

𝐶Δ𝑔𝑦𝑝(𝑡) =
𝑘𝑣𝜌𝑠

Mc

(𝜇3(𝑡) − 𝜇3(0)) 

 

(9) 

where 𝑘𝑣 is a volume shape factor, 𝜌𝑠 is the density and 𝑀𝑐 is the molecular weight of the 

formed crystals, respectively. The material balance in the batch reactor can be written as: 

𝐶𝑖(𝑡) = 𝐶𝑖
0 + 𝑣𝑖𝐶Δ𝑔𝑦𝑝(𝑡) 

(10) 

where 𝐶𝑖
0 and 𝑣𝑖 are the initial concentration and the stoichiometry coefficient of the 

component 𝑖 involved in the reaction (8), respectively. The resolution of the material 

balance allows then to calculate the supersaturation ratio expressed as: 

𝑆 = (
𝑎𝐶𝑎2+𝑎𝑆𝑂4

2−𝑎𝑤
2

𝐾𝑠𝑝

) ;  𝑎𝑖 = 𝑚𝑖 ⋅ 𝛾𝑖 
 

(11) 

where 𝑎𝑖 , 𝛾𝑖 , 𝑚𝑖 denote the activity, the activity coefficient, and the molality of the 

component 𝑖, respectively, 𝐾𝑠𝑝 is the solubility product of gypsum. The activity 

coefficients are predicted using the following Pitzer model: 

ln(𝛾𝑖) =
𝑧𝑖

2

2
𝑓 + 2 ∑ 𝑚𝑗𝜆𝑖,𝑗(𝐼)

𝑗

 + 𝑧𝑖
2 ∑ 𝑚𝑗𝑚𝑘𝜆𝑗,𝑘

′ (𝐼)

𝑗

+ 3 ∑ 𝑚𝑖𝑚𝑗𝑚𝑘𝜓𝑖,𝑗,𝑘

𝑗,𝑘

  
(12) 

where 𝑧𝑖 are the charges of component 𝑖, 𝑓 is the Debye-Huckel function, 𝐼 is the ionic 

strength, 𝜆𝑖,𝑗 and 𝜓𝑖,𝑗,𝑘 represent the short-distance binary and ternary interaction 

parameters, respectively. Their values are to be identified from experimental equilibrium 

measurements. 

The resulting crystallization model equations (2-3, 5-7, 9-12) are implemented and solved 

within MATLAB environment.  

3. Experimental measurements 
 

Several experimental measurements are carried out in our laboratory. They mainly consist 

of equilibrium measurements, namely the speciation of sulfuric and phosphoric acids, for 

a wide range of temperature and concentration conditions. In addition, measurement data 

of gypsum solubility and water activity are collected from the literature (Bouchkira et al. 

2021d). They are used for the identification of the unknown parameters of the Pitzer 

model. Moreover, experimental measurements of the kinetics of gypsum crystallization 

during the production of phosphoric acid are taken from the literature (Zhu et al., 2015). 

They consist of supersaturation ratio of gypsum and are used to identify the kinetic 

parameters of the PBE. 
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Figure 1:  Modeling results.  (A): Parity diagram for the identification of the Pitzer unknown 

parameters. (B): Parity diagram for the identification of the PBE unknown parameters from the 

supersaturation data.  (C): Gypsum and phosphoric acid production profiles.  (D): Tricalcium 

phosphate and sulfuric acid consumption profiles. 

 

 
 

Figure 2: Normalized CSD at different times. 
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Table 1: Variations of the average size of gypsum crystals with time.  

Time (min) 0 20 25 50 100 
𝒙̅ (𝝁m) 10 34.46 39.87 59.31 72.84 

 

4. Results and discussions 
 

Equilibrium measurements (i.e., gypsum solubility, water activity and speciation) are 

used to determine the optimal values of the unknown parameters of the Pitzer model, i.e., 

𝜆𝑖,𝑗 and 𝜓
𝑖,𝑗,𝑘

. Indeed, the optimization of these parameters has been widely investigated 

in our recent works (Bouchkira et al., 2021a, b, c, d, e). The comparison of the predictions 

of the identified Pitzer model with the experimental measurements (Fig.1(A)) shows a 

very good agreement. On the other hand, the data on supersaturation ratio are used to 

determine the unknown parameters of the PBE, i.e., 𝐴, 𝐵, 𝑘𝑠 , 𝑠, 𝐾𝑔 and 𝑔. The optimal 

values of these parameters are then used to compare the model predictions with the 

experiments. It can be seen that the model predictions are very accurate. It is noteworthy 

that the estimability of the unknown parameters from the available data was carried out 

using an estimability analysis method based on global sensitivities (Bouchkira et al., 

2021c). The most estimable thermodynamic parameters were identified by means of a 

branch-and-bound method (Sahinidis, 1996) using the Neos server (Czyzyk et al., 1998) 

hosted by machines at Arizona State University, whereas the kinetic parameters were 

identified based on a derivative-free method using a Dell Precision T7810 Bi-Xeon 12x 

Core 64 GB workstation. 

 

Fig.1(C) shows the predictions of phosphoric acid and gypsum production, and Fig.1(D) 

presents those of sulfuric acid and tricalcium phosphate consumption. The results are 

coherent since the amounts of phosphoric acid and gypsum increase over time as the 

reaction proceeds, while those of sulfuric acid and tricalcium phosphate decrease. 

Furthermore, as expected, Table 1 shows that the average size of gypsum crystals 

increases with time, meaning that the growth of the particles formed by nucleation takes 

place uniformly in the reactor. On the other hand, the parameters of the CSDs are 

computed using different centred moments of order 𝑘 (𝜇𝑘 ∗(𝑡) = 𝜇𝑘(𝑡) − 𝜇𝑘(0)) at 

different crystallization times. Thus, the standard deviation is deduced from the centred 

moment of order 2 as 𝜎 = √𝜇2 ∗ = 1.5 𝜇𝑚, the skweness is computed using the centred 

moment of order 3 as 𝛼 = 𝜇3 ∗/𝜇2 3/2∗ = 0, and the kurtosis is calculated from the 

centred moment of order 4 as 𝛽 = 𝜇4 ∗/𝜇2
2∗ = 3. It is worth noticing that the values of 

these parameters do not change over time and the last two values are typical of a normal 

distribution. Moreover, since the initial CSD is assumed to be normal, and only nucleation 

and growth kinetics are involved in the reactor, the parameters 𝜎, 𝛼 and 𝛽 remain 

unchanged as illustrated in Fig.2. 

The developed model shows that it is able to predict relevant variables to the design, 

optimization and control of gypsum crystallization processes. Moreover, it can be used to 

determine the optimal operating conditions that allow to extract the maximum amount of 

phosphate from the ore, and to better monetize the gypsum.   
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 5. Conclusions 
 

In this work, we considered the modeling of gypsum crystallization that occurs during the 

production of phosphoric acid. A PBE is developed and solved by means of the method 

of moments. The required gypsum supersaturation ratio and the activity coefficients of 

the components involved in the process are estimated by means of the Pitzer model. 

Although the results obtained are interesting and promising, the crystallization model 

developed is a one-dimensional model and does not allow to account for the influence of 

impurities present in the phosphate ore. It is a very important issue since the impurities 

have a strong influence on the type and shape of gypsum crystals and therefore on the 

performance of the digestion tank and of the units downstream.  Further work will deal 

with a multi-dimensional PBE in order to quantify the effects of impurities on gypsum 

crystal growth.  
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Abstract 
Whole-body physiologically-based pharmacokinetic (PBPK) models are complex 
mathematical models that consist of a large number of compartments and describe the 
anatomical structure of the organism. We present the development of a whole-body PBPK 
model for high-dose methotrexate by expanding a previously developed minimal PBPK 
model. We increase the number of body compartments described and introduce an a 
priori description of the fluid volumes, blood flows, and capillary exchanges in each 
tissue and organ, which do not increase the complexity and dimensionality of the 
identification procedure. The model is identified and validated with an experimental 
dataset and produces detailed simulations of concentration within the plasma, ISF, and 
ICF of each modeled tissue and organ. The original modeling approach demonstrated can 
be a reference for the development of other whole-body PBPK models. 

Keywords: Pharmacokinetics, PBPK, Whole-body, Methotrexate, HDMTX. 

1. Introduction 
Pharmacokinetic (PK) models describe the relationship between the dose administered to 
an individual and the resulting concentrations inside various body compartments. Several 
forms of PK models have been described, with profound differences in terms of structure, 
complexity, and effort required for the model development and application. PK models 
usually employ compartments (i.e. a defined volume within which concentration is 
assumed to be homogeneous) as their building blocks. Physiologically-based 
pharmacokinetic (PBPK) models are a class of compartmental PK models whose 
compartments are based on the anatomical structure of the organism (Nestorov, 2003). 
Whole-body PBPK models generally consist of a large number of compartments, 
representing the fluid volumes within several organs and tissues, and emulate the actual 
human anatomy and physiology. Each compartment is usually described by a differential 
equation representing the drug material balance. The equations feature drug-specific 
parameters that characterize the interactions and the physicochemical properties of the 
specific compound and system-specific parameters that describe physiological processes 
and human anatomy. While many parameters can be estimated and assigned a priori (e.g., 
drug-specific parameters that have been experimentally measured, or physiological 
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parameters that have been estimated in previous studies), there is usually a significant 
number of parameters that cannot be assigned a priori. 
These adaptive parameters are fitted through a nonlinear regression procedure by 
minimizing the distance (described by a suitable objective function) between model 
simulations and experimental concentration-time profiles. This approach may lead to 
numerical and identifiability issues. In this context, minimal PBPK models lump together 
similar compartments, thus reducing the complexity of the model and the identification 
procedure, while retaining their physiological foundations (Cao & Jusko, 2012). 
We present the development of a whole-body PBPK model for high-dose methotrexate 
(HDMTX, an intravenously administered antitumor drug), that expands a previously 
developed minimal PBPK model (Pesenti et al., 2021a) by increasing the number of 
described body compartments representing different organs and tissues. The additional 
parameters introduced to expand the previous model are assigned a priori, by combining 
a detailed characterization of anatomical fluid volumes, physiological blood flows, and a 
comprehensive description of the capillary exchange in each tissue. 

2. Methods 
The structure of the whole-body PBPK model is shown in Figure 1. The model describes 
14 tissues and organs and employs for each one a dedicated compartment for the plasma, 
interstitial fluid (ISF), and intracellular fluid (ICF). Four additional plasma compartments 
(i.e. large veins, large arteries, left and right heart chambers) represent the general blood 
circulation that connects all the plasma compartments. 
For each i-th tissue and organ, we estimate the weight using a recently developed 
repository of equations (Stader et al., 2019), and compute the overall volume ( totV ) with 
the specific tissue density (Valentin, 2002). The ISF and ICF volumes ( ISFV  and ICFV ) 
are evaluated as fractions of totV  (Schmitt, 2008), whereas the estimation of plasma 
volumes ( pV ) follows the approach presented in Pesenti et al. (2021b), based on the blood 
amount within each tissue (Valentin, 2002) and the patient’s hematocrit. 
Mathematically, the whole-body PBPK model describes each compartment with an 
ordinary differential equation, representing the drug material balance. While each 
material balance depends on the specific flows and connections that involve a 
compartment, consistently with Fig. 1, the following equations present the formulation of 
these balances in plasma, ISF, and ICF, for a representative tissue (e.g., adipose tissue, 
brain, muscle). 
 

,
, , , , , , , , .A Ap i u u

p i p i p large arteries p i p i p ISF cap i p i ISF p cap i ISF i

dc
V Q c Q c k c k c

dt       (1) 

,
, , , , ,

, ,
50 , 50 ,

50 , 50 ,

A A

                   

ISF i u u
ISF i p ISF cap i p i ISF p cap i ISF i

u u
ISF i ICF iu u

ISF ICF ICF i ICF ISF ICF iu u u u
ISF i ICF i

dc
V k c k c

dt

c c
k K V k K V

K c K c

 

 

  

 
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, , ,
, 50 , 50 ,

50 , 50 ,

u u
ICF i ISF i ICF iu u

ICF i ISF ICF ICF i ICF ISF ICF iu u u u
ISF i ICF i

dc c c
V k K V k K V

dt K c K c  
 

 (3) 
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Figure 1 – Structure of the whole-body PBPK model. The rectangles represent the compartments 
of plasma (dark orange), ISF (mustard), and ICF (cyan) volumes. Black arrows are the drug 
flows, i.e. administration, blood circulation, capillary and cellular exchanges, metabolism, and 
excretion. 

The drug is administered intravenously and enters the large veins plasma compartment, 
where it reversibly binds to plasma proteins. Plasma compartments are subject to the 
exchanges due to blood circulation, represented by the plasma flows pQ , which are 
estimated as described in Stader et al. (2019). Renal excretion is the main elimination 
pathway for HDMTX and is estimated as a function of the patient’s body weight, height, 
gender, age, and serum creatinine, as previously described in Pesenti et al. (2021a). Drug 
clearance due to hepatic metabolism is estimated as approximately 4% of renal excretion. 
The cellular exchanges, which affect the ISF and ICF compartments, are described with 
Michaelis-Menten kinetics (Pesenti et al. (2021a)). 
The capillary exchange takes place between plasma and ISF of tissues and organs, 
allowing the unbound drug fraction (denoted by superscript u ) to be exchanged with ISF 
through the gaps and openings of the capillary wall. We compile information from the 
literature describing capillary density capn  (Freitas, 1999) and the type of capillary in 
each tissue and organ, as reported in Table 1. For the geometrical modeling of capillaries, 
we assume average values of capillary length (0.75 mm) and diameter (6 µm) (Freitas, 
1999), attaining a geometrical surface capa  of about 0.014 mm2. For each capillary type, 
we obtain rough estimates of the average surface fraction openf  that is open to capillary 
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exchange according to available data (Bundgaard, 1988; Levick, 2004). Eq. 4 estimates 
the capillary surface capA  that is available for capillary exchange in each tissue. 

, , , ,cap i tot i cap i cap open iA V n a f  (4) 
 Table 1 – Characteristics of the capillaries in each tissue and organ described. 

Organ/tissue Capillary density 
,cap in  (mm-3) 

Capillary type Open surface 
fraction ,open if  (-) 

Muscle 300 Continuous 0.0005 
Adipose 100 Continuous 0.0005 
Skin 68 Continuous 0.0005 
Brain 2750 Continuous (tight junctions) 0 - 0.0005* 
Bone 100 Continuous 0.0005 
Gonad 300 Fenestrated 0.0062 
Thymus 300 Fenestrated 0.0062 
Heart 2750 Continuous 0.0005 
Lungs 2750 Continuous 0.0005 
Gut 300 Fenestrated 0.0062 
Spleen 2750 Discontinuous 0.07 
Pancreas 300 Fenestrated 0.0062 
Liver 2750 Discontinuous 0.07 
Kidneys 2750 Fenestrated 0.019 

The number of unassigned remaining parameters is four, i.e. the same as the minimal 
PBPK model. These four parameters, describing capillary exchange ( p ISFk   and ISF pk   
in cm/min) and cellular exchange ( ISF ICFk   and ICF ISFk   in min-1), are identified with a 
nonlinear regression using the fminsearch routine in MATLAB R2020b (The 
MathWorks, Natick, MA, US). The regression minimizes the objective function, defined 
as the mean squared logarithmic error, using an experimental dataset of 84 patients and 
657 methotrexate plasma concentrations (Pesenti et al., 2021a). 

3. Results and discussion 
The model is successfully identified and validated with two different subsets of the 
experimental dataset, which is split randomly, comprising respectively 56 and 28 patients. 
The objective function obtained with the identification procedure is 0.9831, which is 
comparable to the value obtained with the original minimal PBPK model (0.8568) 
(Pesenti et al., 2021a). Consistently, plasma predictions show a satisfactory agreement 
with experimental data and are similar to the results of the minimal PBPK model. Figure 
2 shows the simulated predictions of the whole-body PBPK model for a patient whose 
objective function (0.8190) represents the median value of the validation dataset. The 
investigated time frame covers the administration of three consecutive HDMTX infusions 
(Fig. 2a). Panel 2c presents the generally good agreement between experimental and 
predicted plasma concentrations (representing large veins, where experimental 

                                                           
* While the brain features continuous capillaries with tight junctions, in the treatment of brain 
tumor the blood-brain barrier is usually disrupted, and openf  is tentatively assumed equal that of 
continuous capillaries with loose junctions. 
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concentrations are measured), and includes the average predicted ISF and ICF 
concentrations. 
Panels 2c-f represent the phenomena of accumulation and exchange described by Eqs. 1-3 
in different organs and tissues. For the sake of space and clarity, we present the results 
for only a few relevant tissues and organs: muscle, adipose tissue, kidneys, skin, and 
brain. As expected, our results show that predicted plasma concentrations in different 
compartments are comparable, due to the rapid drug distribution determined by the 
systemic blood circulation. 

 
Figure 2 – Simulated curves for “630.3” patient: a) infusion rate, b) drug amounts in plasma, ISF, 
ICF, c) simulated and experimental concentrations in plasma, compared with the average ISF and 
ICF concentrations. Panels d-f compare the average concentration with the trends in a few tissues 
and organs (muscle, adipose tissue, kidneys, skin, and brain) related to d) plasma, e) ISF, f) ICF. 

Conversely, the predicted concentrations in ISF and ICF differ significantly from tissue 
to tissue, consistently with the wide range of capillary exchange features (Table 1). For 
example, the predicted ISF concentration in kidneys (Fig. 2e) closely resembles the 
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predicted plasma concentration, thanks to both high capillary density and large open 
fraction of fenestrated capillaries. On the contrary, muscle and skin reach lower ISF 
concentration values due to slower capillary exchanges. Interestingly, the predicted ISF 
concentrations of adipose tissue are slightly higher than the average, despite the capillary 
features similar to those of the skin (low capillary density and permeability), likely due 
to the significantly smaller ISF and ICF volumes. The paramount effect of capillary 
exchange on predicted concentrations is also reflected by ICF concentrations, which 
present trends that are analogous to those described in ISF. 

4. Conclusions 
We presented a whole-body PBPK model for HDMTX featuring 46 body compartments, 
which was successfully identified and validated with an experimental dataset of 657 
plasma concentrations. Plasma predictions showed a satisfactory agreement with 
experimental data and were comparable to the results of the minimal PBPK model. The 
detailed simulations of concentration within the plasma, ISF, and ICF of each modeled 
tissue and organ allowed straightforward physiological interpretations and better insights. 
The results allowed carrying out comprehensive analyses and defining improved 
therapeutical targets. 
This work demonstrates an original approach to the development of a whole-body PBPK 
based on the extension of a minimal PBPK model. By introducing an a priori description 
of the 46 fluid volumes, 16 blood flows, and 14 capillary exchanges in each tissue and 
organ, the resulting whole-body PBPK model increased the level of detail of the minimal 
PBPK model while maintaining equivalent predictive capabilities, without amplifying the 
complexity and dimensionality of the identification procedure. The proposed modeling 
approach can serve as a reference for the development of other whole-body PBPK models 
that can retain their strong physiological consistency while minimizing the number of 
adaptive parameters, which facilitates the development process. 
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Abstract
In this study, two one-dimensional first-principles models are developed to simulate an isothermal
process where ammonia is adsorbed on a doped activated carbon. A single-scale LDF model and
a multi-scale Fickian model. Both models are described by mass balance equations along with
thermodynamic and kinetic relations. The modeling methodology is based on experimental mea-
surements of ammonia adsorption isotherms and breakthrough fronts combined with a parameter
estimability analysis and an identification method. The models are implemented and solved within
COMSOL Multiphysicsr. The Kolmogorov-Smirnov non-parametric test is used to statistically
validate the predictions of the models. The results of the identified and validated multi-scale model
using the fitted parameters show very good agreement with the experimental measurements. This
is confirmed by the performance indices such as the Pearson correlation coefficient, the mean-
square error, the (modified) index of agreement and the chi-square error.

Keywords: Air purification boxes, Ammonia adsorption, Doped activated carbon, Experimental
measurements, Model validation.

1. Introduction

In chemical hazards, ammonia is a component that deserves careful study to protect the health of
exposed people. Indeed, when used in large quantities, for example in agro-chemistry, in building
and civil engineering, or in waste treatment and recycling, ammonia can be dangerous to the
respiratory tract. Its concentration in the air should therefore be minimized and controlled. One of
the most used processes to reduce the ammonia concentration in the air is adsorption.

In this work, an industrial ammonia adsorption process used in air purification, where ammonia
is adsorbed on a doped activated carbon, is considered. The activated carbon is stacked in a
parallelepipedic bed and placed in the centre of a box equipped with a feed and an outlet. The
box is designed so that air highly concentrated in ammonia is sucked through the fixed-bed of
activated carbon, and the purified air is recovered at the outlet. The fixed-bed is replaced once the
ammonia starts to breakthrough, and naturally, the idea is to reduce the frequency of the renewal
of activated carbon. To this end, different adsorption models are developed ranging from a simple
single-scale LDF (linear driving force) model to a complex multi-scale model (Cardenas, 2021;
Cardenas et al., 2021). All these models are identified and then tested with additional breakthrough
front measurements performed at three gas flow rates and two concentrations, different from those
used for parameter identification.
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In the present paper, the objective is to statistically validate these models and use them in order
to optimize the design and operation of air purification boxes. Many statistical tests are used to
validate the predictions of the models. They include the Student t-test, the Fisher-Snedecor F-
test, the chi-square test, etc. However, the use of these parametric statistical tests requires the
distributions of the model predictions and measurements to be normal which is very often not
the case. To overcome this problem, the Kolmogorov-Smirnov non-parametric test is used. In
addition, the performance of the models is evaluated using different criteria such as the Pearson
correlation coefficient, the root mean-squares error, the (modified) index of agreement, and the
chi-square error.

2. Ammonia adsorption process modeling
Different models are developed to describe the behavior of dynamic adsorption of ammonia on
doped activated carbon. They range from a single-scale model to more complex models involv-
ing multi-scales (Cardenas, 2021). The modeling is based on mass balance, momentum balance,
thermodynamic, hydrodynamic, and kinetic equations. These balances are established at both the
adsorption box scale and at the particle scale, and are based on the following assumptions: (i) the
gas mixture obeys the ideal gas law, (ii) the pressure drop in the box is neglected, (iii) ammonia
is the only adsorbed molecule, (iv) the resistance to the mass transfer through the boundary layer
surrounding the solid particles is characterized by a mass transfer coefficient, (v) the intra-particle
mass transport is due to the Fickian diffusion and is characterized by an effective diffusion coeffi-
cient in the macropores, (vi) the mass transport of ammonia in the crystal micropores is due to in-
tracrystalline diffusion, (vii) the Toth equation describes the equilibrium isotherm of the gas phase
with the adsorbent, (viii) the adsorbent particles are assumed to be spherical and homogeneous in
size and density, (ix) the temperature of the box and the physical properties of the adsorbent are
assumed to be constant, (x) only the axial dimension of the box is considered (mono-dimensional
model). On the other hand, for the lack of space reasons, only two models will be presented below:
the single-scale LDF model and the multi-scale model.

2.1. Single-scale LDF model

In this model, the mass balance of the gas phase ammonia in the box is described by a dynamic
equation involving diffusion, convection, and adsorption, given as:

∂c
∂ t
−Dax

∂ 2c
∂ z2 +

∂ (vc)
∂ z

=−1− εb

εb

∂ q̄
∂ t

(1)

where c and q̄ (mol.m−3) are the ammonia concentrations in the gas phase and in the adsorbed
phase respectively, v (m.s−1) is the interstitial velocity, Dax (m2.s−1) is the axial dispersion coeffi-
cient, and εb is the bed void fraction.

The kinetics of mass transfer is approximated by means of the LDF equation as:

∂ q̄
∂ t

= kLDF (q∗e− q̄) (2)

where q∗e (mol.m−3) is the concentration of ammonia in the solid phase at equilibrium, and kLDF
(s−1) is the overall mass transfer coefficient which accounts for the contributions of gas/solid mass
transfer, and macropore and intracrystalline diffusion.

The initial conditions of the variables are given as follows:
- For 0≤ z≤ L, at t = 0: c = 0, q̄ = 0,
and the boundary conditions are expressed as:
- For t > 0, at z = 0: −Dax

∂c
∂ z = v(c0− c), q̄ = 0 and at z = L: ∂c/∂ z = 0, where c0 (mol.m−3) is

the concentration of ammonia at the box inlet.
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2.2. Multi-scale model

This model takes into account the following three spatial scales: the bed, the particle, and the
crystal scales. The particle is divided into two phases: a solid phase for the crystal (micropores)
and a gas phase (macropores) and are coupled by continuity at outer surface of the crystal. The
model equations are detailed below.

(i) In the box, the ammonia mass balance equation in the gas phase is expressed as follows:

∂c
∂ t
−Dax

∂ 2c
∂ z2 +

∂ (vc)
∂ z

=−1− εb

εb

3
rpe

k f

(
c− cpe|rp=rpe

)
(3)

(ii) In the particle, assuming the absence of lateral and azimuthal variations of the concentration,
the mass balance in the radial direction can be written as:

εpe
∂cpe

∂ t
+(1− εpe)

∂ q̄
∂ t

=
De

rp2
∂

∂ rp

(
rp

2 ∂cpe

∂ rp

)
(4)

(iii) In the crystal, the ammonia mass balance equation is given as:

∂ q̄
∂ t

=
15Dµ

rc2 (q∗e− q̄) = k1 (q∗e− q̄) (5)

where c(z, t) and cpe(z,rp, t) (mol.m−3) are the concentrations of ammonia in the gas phase of
the box and in the particle respectively, rpe and rc (m) are the radii of the particle and the crystal
respectively, k f (m.s−1) is the external film mass transfer coefficient, cpe|rp=rpe

(mol.m−3) is the

ammonia concentration at the surface of the particle, q̄ (mol.m−3) is the average amount of am-
monia adsorbed on the crystal, De and Dµ (m2.s−1) are the effective and intracrystalline diffusion
coefficients respectively, and k1 (s−1) is the internal mass transfer coefficient.

The initial conditions of the variables are given as:
- For 0≤ z≤ L, at t = 0: c = 0, cpe = 0, q̄ = 0,
and the boundary conditions are expressed as:
- For t and rp > 0, at z = 0: −Dax

∂c
∂ z = v(c0− c), q̄ = 0 and at z = L: ∂c/∂ z = 0;

- For t and z > 0, at rp = 0: ∂cpe
∂ rp

= 0 and at rp = rpe: −De
∂cpe
∂ rp

= k f

(
c− cpe|rp=rpe

)
2.3. Implementation and simulation of the models

The external mass transfer coefficient is calculated using the following Wakao and Funazkri (1978)
correlation:

k f =
DmSh
2rpe

with Sh = cm1 + cm2Re0.6
p Sc1/3 and cm1 = 2 (6)

where Sh, Rep and Sc are the dimensionless Sherwood, Reynolds and Schmidt numbers respec-
tively, Dm (m2.s−1) is the molecular diffusion coefficient. For the axial dispersion coefficient, the
correlation of Rastegar and Gu (2017) is used:

Dax =
2rpev
Pe′

with
1

Pe′
=

0.7Dm

2rpev
+

εb

cm3 + cm4 (Rep)
0.59 (7)
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where Pe′ is the dimensionless Peclet number. The effective diffusion coefficient is linked to the
mixture diffusion by means of the following relation: De = ε

4/3
pe DM . It is important to point out

that Dax and k f increase with increasing gas flow rate. To keep this property, cm2, cm3 and cm4
are also considered as unknown parameters to be identified from the measurements. Hence, in the
LDF model three unknown parameters are to be estimated ,i.e., kLDF , cm3 and cm4, whereas in the
multi-scale model, five unknown parameters are to be determined, i.e., k1, DM , cm2, cm3 and cm4.
Comsol Multiphysicsr version 5.5 is used to implement and solve the set of partial differential
equations of the two models.

2.4. Parameter estimability analysis and identification

A preliminary step in the development of a reliable mathematical model, before the problem of
parameter identification, is to evaluate the structural identifiability and estimability of the model
parameters. The objective is to determine the most estimable parameters from the available mea-
surements. The estimability algorithm used in this work is the same as the one developed by Yao
et al. (2003) and used in Cardenas et al. (2020). Moreover, the choice of the estimability threshold
value which defines the limit between estimable and non-estimatable parameters, is still arbitrary
and depends on the studied process. In this work, it is set equal to 0.04 as in Yao et al. (2003) and
gives a good idea about the actual sensitivity of the adsorption models to the unknown parame-
ters. However, it should be noted that there are more advanced and sophisticated methods in the
literature (Bouchkira et al., 2021).

2.4.1. Parameter estimability analysis results

The estimability analysis algorithm using the orthogonalization algorithm described by Yao et al.
(2003) is applied to the ammonia adsorption process models and leads to the following estimability
order: kLDF > cm3 > cm4 for the LDF model, and k1 > DM > cm2 > cm3 > cm4 for the multi-scale
model. It should be noted that all parameters are estimable on the basis of available experimental
measurements.

2.4.2. Parameter identification

The experimental data used consist of breakthrough front measurements carried out at four differ-
ent concentrations of ammonia (0.066, 0.054, 0.041 and 0.029 mol.m−3) and three different gas
flow rates (13.8, 9.0 and 4.4 L.min−1), for a total of 12 experiments to identify the parameters,
using the Toth isotherm model. The results obtained show that the LDF model fits the adsorp-
tion process well with identified parameter values close to those in the literature (see figure 1).
However, this model does not allow to understand all the different mechanisms involved in the
adsorption box since all the mass transport resistances are lumped into a single global coefficient.
The multi-scale model which shows very good agreement between measurements and predictions
allows a better understanding the adsorption phenomena by considering the three scales: gas phase
in the box, gas phase and solid phase in the particle.

2.4.3. Model prediction performance

The prediction performance of the model is quantitatively assessed by means of criteria which
compares model predictions with the experimental measurements. In this study, it is evaluated
according to two different criteria: The root mean-square error function (RMSE) and the Pearson
correlation coefficient (r).
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3. Model validation

The identified models are then validated with five additional breakthrough front measurements
performed at three gas flow rates 17, 15 and 7 L.min−1 with an ammonia concentration of 0.041
mol.m−3; and at a gas flow rate of 13.8 L.min−1 with two ammonia concentrations of 0.021 and
0.012 mol.m−3, different from those are used for parameter identification. The optimized values
of the parameters previously estimated are used to simulate these fronts (Cardenas, 2021). Figure
1 shows the comparison between the time-varying predicted and measured fronts at different gas
flow rates and different ammonia concentrations.

Figure 1: Comparison between predicted and measured breakthrough fronts at three gas flow rates
17, 15 and 7 L.min−1 with an ammonia concentration of 0.041 mol.m−3; and at a gas flow rate of
13.8 L.min−1 with two ammonia concentrations of 0.021 and 0.012 mol.m−3

The high values obtained for the Pearson coefficient (close to unity, r≥ 0.996) and low RMSE val-
ues (at most 0.19) show excellent prediction performance of the developed models. Furthermore,
to validate these models, many statistical tests may be considered and can be parametric or non-
parametric. Parametric tests are based on assumed statistical distributions in the data. Therefore,
certain validity conditions must be verified for their results to be reliable. For example, the Stu-
dent t-test for independent samples is only reliable if the data associated with each sample follow
a normal distribution and if the variances of the samples are homogeneous. However, since the
validity conditions are not always met, which is the case in our data, the parametric tests can no
longer be used. Non-parametric tests which are not based on statistical distributions can therefore
be considered. More specifically, the Kolmogorov-Smirnov test is used and is based on the cal-
culation of the divergence (Dn) between two distributions. It is expressed as the maximum value
between the predicted (c) and measured (cmes) ammonia concentration values at each instant t, i.e.:

Dn = max
t
|c(t)− cmes

(t) | (8)

The null hypothesis (H0) is defined as: the predicted and measured breakthrough fronts have
the same distribution with the probability of 95%. Therefore, the alternative hypothesis (H1) is
that the predicted and measured breakthrough fronts do not have the same distribution with the
probability of 95%. On the other hand, the critical value of the divergence (D∗n) corresponding
to the number of experimental measurements minus one, and to the significance level of the test
(5%) is expressed by

(
D∗n =

1.36√
n

)
and is equal to 0.06. To pass the validity test, the divergence Dn

must be less or equal to the critical value D∗n. In table 1, bold values correspond to the calculated
divergence which is less than the critical value, meaning that the null hypothesis (H0) cannot be
rejected. We can therefore affirm that the predicted and measured breakthrough fronts have the
same distribution with a probability of 95%. In addition, the performance of the model is evaluated
by means of different criteria, i.e., the index of agreement (IA), the modified index of agreement
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(IAM), and the nonlinear chi-square error (χ2).These performance criteria are calculated and their
values are reported in table 1. It can be seen that the indices IA and IAM are close to unity and
the low values of chi-square confirm the excellent agreement between the model predictions and
measurements. The multi-scale model is therefore the most performing prediction model, as it has
successfully passed all the tests. On the other hand, despite the good performance indices of the
LDF model, its validation at the 5% significance level is not guaranteed.

Table 1: Performance criteria for adsorption models
LDF model Multi-scale model

Qv
L.min−1 17 15 7 13.8 17 15 7 13.8

c0
mol.m−3 0.041 0.021 0.012 0.041 0.021 0.012

Dn 0.076 0.149 0.128 0.127 0.076 0.048 0.052 0.047 0.038 0.040
χ2 0.001 0.032 0.009 0.004 0.007 0.001 0.020 0.003 0.002 0.002
IA 0.996 0.995 0.996 0.996 0.998 0.999 0.999 0.999 0.999 0.999

IAM 0.979 0.954 0.955 0.961 0.961 0.986 0.982 0.988 0.991 0.978

4. Conclusions

Among the developed models, the multi-scale model is the most effective since it exhibits higher
performance indices and successfully passes the validation tests considered. This model can now
be used as a tool to predict the breakthrough time in an ammonia adsorption box with doped acti-
vated carbon to protect operators working in an ammonia-contaminated environment. It can also
be used to study the effect of different operating conditions such as temperature, concentration,
flow rate, bed geometry, porosity, etc., and more generally in optimal design and operation of such
adsorption processes.
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chantier pour la protection des opérateurs contre les gaz et vapeurs. Ph.D. thesis, Université de Lorraine.
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Abstract
Due to increased ammonia emissions, there has been a growing interest in developing ammonia
removal technologies. Adsorption is one of the most widely used separation techniques to reduce
the concentration of ammonia in the air. This study aims to use CFD-based modeling to investigate
ammonia adsorption on a doped activated carbon in an industrial air purification box. An exper-
imental study is first carried out, then followed by detailed modeling of the processes that occur
in the box. The hydrodynamic and adsorption models are implemented and solved using COM-
SOL Multiphysics® software in the 5.6 version. Adsorption is modeled by means of a multi-scale
Fickian model, which demonstrated to be very efficient to predict the experimental data. The per-
formance of the predictions of the model is assessed using several statistical criteria such as the
mean-square error and the Pearson correlation coefficient.

Keywords: Air purification boxes, Ammonia adsorption, Doped activated carbon, Experimental
measurements, Modeling and simulation

1. Introduction
Ammonia is one of the most toxic pollutants, it causes massive burning by inducing an exother-
mic reaction in the respiratory system. Despite its harmful effects on humans, it is one of the
most widely used gases in the manufacture of fertilizer, polymers, and resins. Controlling pol-
lutant emissions at the source is the most effective way to reduce total air pollution and protect
human health. However, if this is not possible, pollutant concentrations should be targeted, with
preventative and abatement measures. Among different air purification techniques, adsorption of
pollutants on activated carbon is one of the most effective. Air purifiers are becoming increasingly
popular as a means of removing contaminants from ambient air. CFD is a powerful tool for mod-
eling and investigating mass transfer and diffusion mechanisms in fixed-bed adsorption boxes in
less time and at a lower cost than experiments, thereby improving the design and optimization of
processing equipement. This paper deals with a CFD modeling and simulation of an industrial
fixed-bed adsorption box where ammonia is removed from the air using a doped activated carbon.
The model predictions are compared to experimental measurements of breakthrough fronts carried
out at different gas flowrates.

2. Mathematical modeling
The air purification box used for the flow modeling is the Honeywell SP Défence Filagric K100.
Depending on the manufacturer, the air flowrate supplied can range from 40 to 100 m3.h−1. Thus,
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the modeling and simulation of the phenomena will concern the two extreme values of the flow
range.

2.1. Hydrodynamic model

The hydrodynamic model developed is based on the following assumptions: (i) negligible gravity
force, (ii) the flow is considered as uncompressible, (iii) the gas properties are those of air, (iv) the
temperature of the box and the physical properties of the adsorbent are constant, (v) the average
properties of the porous medium are isotropic. On the other hand, particular attention to the flow
regime is required for proper modeling of the problem. As shown in figure 1, the purification box
does not have a constant section. Hence, the Reynolds number is calculated in inlet, outlet and
bed sections. The values are all exceeding the critical Reynolds number found in the literature
(Reynolds, 1883; Hanks and Ruo, 1966), showing that the purification box operates in a turbulent
flow regime.

(a) (b) (c)

Figure 1: (a) Inlet section (b) Fixed bed section (c) Outlet section

The flow model is then described by the continuity and the Navier-Stokes equations along with
the Brinkman-Forchheimer equation for the porous medium domain. The continuity equation is
expressed as:

∇ ·u = 0 (1)

where u (m.s−1) is the average velocity vector. The momentum balance is given by Reynolds
averaged Navier-Stokes (RANS) equations as:

ρ f u∇ ·u+∇ ·ρ f (u′×u′) =−∇p+∇ · (µ f (∇u+(∇u)T ))+F (2)

where p (Pa) is the average pressure, ρ f (kg.m−3) is the fluid density, µ f (Pa.s) is the fluid dynamic
viscosity and F (N) is the vector representing all the external forces applied to the fluid. However,
because the activated carbon filter is a porous medium, the RANS alone cannot describe the fluid
flow inside the process. The following Brinkman equations are therefore used:

1
εb

ρ f u ·∇u
1
εb

=−∇p+∇ ·
(

µ f

εb
(∇u+(∇u)T )

)
−
(

µκ
−1 +βρ f |u|+

Qm

ε2
b

)
u+F (3)

where εb (m3
g.m−3

box) is the porosity of the bed, κ (m2) is the permeability, u (m.s−1) is the fluid
average velocity over the porous medium, which is related to the interstitial velocity v (m.s−1).
The Brinkman-Forchheimer drag term β (m−1) and the permeability κ (m2) are modeled using
Ergun equation. The corresponding boundary conditions are given as follows. At the inlet, the
velocity is determined by the volumetric flow rate Qv (m3.s−1) and the inlet section Ωin (m2) as:
u = −U0n and U0 = Qv

Ωin
, where n represents the boundary outward pointing normal. At the

outlet, the following pressure condition is defined:
(
− pI+(µ + µT )(∇u+(∇u)T )

)
n = −p0n,

where p0 (Pa) is the gauge pressure, set equal to 0 kPa, and I is the identity matrix. A crucial point
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is the correct modeling of the fluid flow in the vicinity of the wall, given the formation of a viscous
sub-layer and a buffer region. The behavior of the flow near the walls is therefore approximated,
since the RANS model is not suitable anymore to properly describe this area at low Reynolds
numbers. A non-slip condition is then considered on every wall, and this is written as: u = 0.
There is no need for an additional boundary condition since the turbulence model we used is
algebraic.

2.2. Adsorption model

The adsorption model developed takes into account three scales: the fixed-bed scale, the intra-
particle scale and the crystal scale. It is based on the following assumptions: (i) the gas mixture
obeys the ideal gas law, (ii) only ammonia is adsorbed, (iii) resistance to mass transfer across the
boundary layer surrounding the solid particles is characterised by an external film mass transfer
coefficient, (iv) intra-particle mass transport is due to Fickian diffusion, (iv) intra-crystalline mass
transport of ammonia in the crystal micropores is due to the intra-crystalline diffusion, (vii) the
adsorbent particles are assumed to be spherical and homogeneous in size and density, (viii) only
the axial dispersion in the bed is taken into account (one-dimensional model). The amount of
ammonia adsorbed on the doped activated carbon is described by the Toth adsorption isotherm,
better detailed by Cardenas (2021). The model equations are given below.
(i) The ammonia mass balance in the bed domain is expressed as:

∂c
∂ t

+∇ · (−Dax∇c)+ v ·∇c =− (1− εb)

εb

3
rpe

k f
(
c− cpe

∣∣
rp=rpe

)
(4)

where c and c pe|rp=rpe
(mol.m−3) are the concentrations of ammonia in the gas phase and on the

particle surface respectively, k f (m.s−1) is the external mass transfer coefficient, Dax (m2.s−1) is
the axial dispersion coefficient, and rpe (m) is the mean radius of the particle.
(ii) The intra-particle mass balance in the radial direction can be written as:

εpe
∂cpe

∂ t
+(1− εpe)

∂q
∂ t

=
De

rp2
∂

∂ rp

(
rp

2 ∂cpe

∂ rp

)
(5)

where εpe (m3
g.m−3

pe ) is the porosity of the particle, q (mol.m−3) is the amount of ammonia ad-
sorbed on the solid and De (m2.s−1) is the effective diffusion coefficient. The associated initial
and boundary conditions of equations (4-5) are:
— for t = 0: c = 0, cpe = 0,∀ rp and z; — for z = 0: ∂c

∂ z =
v

Dax
(c− c0),∀rp and z

— for z = H: ∂c
∂ z = 0,∀rp and t; — for rp = 0: ∂cpe

∂ rp

∣∣∣∣
rp=0

= 0,∀z and t

— for rp = rpe: −De
∂cpe
∂ rp

= k f (c− cpe
∣∣
rp=rpe

),∀zand t

where c0 (mol.m−3) is the concentration of ammonia at the box inlet.
(iii) The ammonia mass balance in the crystal is given as:

∂ q̄
∂ t

= k1
(
qe

∗− q̄
)

(6)

where q̄ (mol.m−3) is the average amount of ammonia adsorbed on the crystal, q∗e (mol.m−3) is the
amount of ammonia adsorbed at equilibrium, and k1 (s−1) is the internal mass transfer coefficient
in the crystal. The associated initial condition is given as: for t = 0: c= 0,cpe = 0, q̄= 0,∀rp and z.

3. Results and discussion
It is important to notice that since the geometry shown in figure 1 leads us to very high compu-
tational times, we decided to change the ventilator shape in order to take advantage of symmetry
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and therefore only implement one half of the domain.

3.1. Mesh quality

Accurate solution of CFD models requires mesh refinement to achieve a grid-independent solution.
The first mesh used for the discretization of the domain is a fine physics controlled mesh, and its
convergence is evaluated with respect to a user-controlled one. The first has 2.08 × 106 elements
and an average quality of 0.7, while the latter has a number of elements of 3.82 × 106 and a mean
quality of 0.74. Both meshes predicted the same velocity and pressure profiles; we concluded then
that our solution is grid independent.

3.2. Pressure and velocity fields

Figure 2 (a) shows the pressure profile in the activated carbon bed for an inlet flowrate of 100
m3.h−1. The pressure drop computed is about 113 Pa. It decreases to 38 Pa when the overall
inlet flowrate decreases to 40 m3.h−1. Figure 2 (b) shows a heterogeneous velocity distribution
throughout the bed with an average velocity of about 0.22 m.s−1. However, this is true only in the
gas inlet section. In fact, as soon as the flow encounters the activated carbon particles the velocity
distribution becomes more homogeneous.

(a) (b) (c)

Figure 2: Fixed bed hydrodynamics: (a) Pressure drop (b) Velocity distribution (c) Arrow plot

Figure 2 (c) shows that the velocity field in the fixed bed domain is homogeneous. It is therefore
clear that the z component is the only significant one, but in order to prove it, a volume average
evaluation group is used to determine the values of the three components of the velocity. The
evaluation showed us that the absolute value of the z component is very close to the velocity
magnitude in the fixed bed domain, while the x and y components have a magnitude of 10−6

m.s−1.

3.3. Residence time distribution

Numerical residence time distributions (RTDs) are computed in order to determine the time avail-
able for adsorption. Figure 3 shows a normalized RTD and the resulting mean risidence time. The
corresponding space-time is equal to 3.2 s. It can be seen that, the average residence time is higher
than the space-time, meaning that the molecules of ammonia remain on average longer than would
remain if the velocity distribution was homogeneous.
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Figure 3: Residence time distribution in the purification box

On the other hand, the RTD curve exhibits a long tail indicating the presence of dead zones which
degrade the air purification box performance.

3.4. Adsorption results

In order to solve the model equations, it is necessary to determine the unknown parameters such
as the internal mass transfer coefficient (k1), the axial dispersion coefficient (Dax), the effective
diffusion coefficient (De), and the external mass transfer coefficient (k f ). The latter is calculated
by means of the Wakao and Funazkri (1978) correlation as:

k f =
DmSh
2rpe

with Sh = cm1 + cm2Re0.6
p Sc1/3 and cm1 = 2 (7)

where Dm (m2.s−1) is the molecular diffusion coefficient. The axial dispersion coefficient is eval-
uated using the Rastegar and Gu (2017) correlation as:

Dax =
2rpev
Pe′

with
1

Pe′
=

0.7Dm

2rpev
+

εb

cm3 + cm4 (Rep)
0.59 (8)

The effective diffusion coefficient is linked to the mixture diffusivity by means of the following
relation : De = ε

4/3
pe DM . It is noteworthy that Dax and k f increase with increasing gas flowrate. To

keep this property, cm2, cm3 and cm4 are also considered as unknown parameters to be identified
from the experimental data. The most estimable parameters are determined from experimental
measurements of the breakthrough fronts at different gas flowrates and the non-estimable parame-
ters have their values fixed from the literature or from previous studies (see Cardenas et al. (2021)).
A total number of five estimable parameters is therefore identified, i.e. k1, DM , cm2, cm3 and cm4.

3.4.1. Parameter estimation

The COMSOL optimization module is used to estimate the optimal values for the model parame-
ters. More specifically, the Monte Carlo solver is employed. Table 1 shows the values as well as
their 95% confidence intervals (CI).

Table 1: Identified values of the Fickian Multi-scale model parameters.
Parameter Value CI (95 %)

k1 (s−1) 5.79 × 10−4 ± 1.26 × 10−5

cm2 0.10 ± 6.52 × 10−3

cm3 2.18 × 10−2 ± 4.97 × 10−3

cm4 7.75 × 10−3 ± 1.82 × 10−3

DM (m2.s−1) 6.53 × 10−5 ± 2.54 × 10−5
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As the CI values are lower than the parameter values, we can conclude that the parameters are
determined with good precision. The optimal values of the parameters are then used to simulate
ammonia breakthrough fronts at different gas flowrates and at a concentration of 0.041 mol.m−3,
shown in figure 4. It can be seen that the breakthrough occurs more rapidly as the flow rate
increases. A higher flowrate leads to a faster movement of the mass transfer zone. On the other
hand, a lower flowrate results in slower transport of ammonia molecules, which increases the
breakthrough time.

Figure 4: Comparison between predicted and measured breakthrough fronts

It should be noted that, based on the overall calculated RMSE (0.0013), the multi-scale model fits
the adsorption process very well. Moreover, the Pearson coefficient value (very close to 1) shows
that the model predictions are in excellent agreement with the experimental measurements.

4. Conclusions

After performing a hydrodynamic analysis of the air purification box, the CFD model was ex-
panded to include the ammonia adsorption breakthrough profile on the activated carbon filter.
Then, the COMSOL optimization tool allowed to determine the optimal values of the estimable
parameters and their confidence intervals. For various inlet gas flowrates, the Fickian multi-scale
model has proven to be the best suitable fit with experimental breakthrough profiles. However,
by modeling adsorption in 3D, there is still the possibility for model improvement. Furthermore,
the performance of the model predictions could be improved by working with different flowrates
and inlet ammonia concentrations. Despite this, the numerical model developed could be used to
further analyze and optimize the design and operation of industrial air purification boxes.
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Abstract 
Changes in the generation of crop residues are expected due to the introduction of 
cultivars adapted to climate change, and there is a need to promote polygeneration of 
crop-derived production processes in order to effectively utilize crop residues for 
sustainable development. A process flow model of a Japanese sugar mill was developed 
and was incorporated into the integrated modeling of agricultural-industrial process.  A 
boiler designed to maximize the power sold after 10 years from now cannot be operated 
in its current state because the heat transfer area of the bagasse boiler is too large to 
maintain the temperature of the final flue gas. A boiler designed to produce only the steam 
needed for sugar production after 10 years from now can make effective use of excess 
bagasse and can still be operated today.  

Keywords: Sugarcane bagasse, Bagasse boiler, Process modeling, Integrated modeling 

1. Introduction
In the context of sustainable developments, polygeneration of crop-derived production 
processes will have a significant role. For many crops, agricultural operations are 
followed by industrial processing, and the residues may be used as fuel for operations. 
Currently, as the polygeneration of sugarcane industry, technological options for energy 
systems such as selling surplus electricity (Palacio et al., 2018; Birru et al., 2019), 
producing ethanol (Ohara et al., 2019) and producing unused heat to vicinal area (Kikuchi 
et al.,2016; Fujii et al., 2019) are being explored to effectively use the residue, bagasse. 
However, many crops need to be adapted to local environmental changes (Ma et al., 2017), 
and as new cultivars such as high-yielding cultivars, are introduced and gradually diffused, 
the balance between product and residue yields will change dynamically. Therefore, 
factories that are considering expanding their functions hereafter need to plan their 
facilities replacements carefully, taking into account the balance between maintaining 
production yield and efficient production of by-products. This study focuses on 
polygeneration in the sugarcane industry and aims to support the planning of equipment 
replacement to functionalize new high-yielding cultivars and excess thermal energy using 
computer-aided process engineering. 

499

http://dx.doi.org/10.1016/B978-0-323-95879-0.50079-5 



S. Fujii et al.

2. Material and methodology
Figure 1(a) shows a schematic of a conventional sugar mill that is not connected to the 
regional power grid. As an example, the flow of a sugar mill in Japan (Kikuchi et al., 
2016) is shown. Sugarcane is supplied to the mill turbine first, then bagasse is transported 
to the bagasse boiler to be burned as fuel. Steam is generated by bagasse combustion, and 
1.95 MPa of steam is split to the mill and power turbine, respectively, then depressurized 
steam is provided to evaporating and crystalizing process of sugar. Thus, typical sugar 
mills can provide its own steam and electricity demand utilizing bagasse. A process flow 
model was developed to simulate the mass and heat balance around a bagasse boiler in 
the sugar mill. This process flow model was incorporated into the already developed 
integrated modeling of agricultural and industrial processes for sugarcane-derived 
products (Ouchida et al., 2017). The expected increase of sucrose and fiber calculated by 
the expected composition of the cultivars for the next decade are shown in Figure 2. The 
cultivars considered were NiF8, NiTn18, Ni22, and a new cultivar (KY10-1380) with 
high-yielding and high percentage of fiber content (Hattori et al., 2019). The introduction 

Figure 1 Schematic of sugar mill around bagasse boiler 
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Figure 2 Increased sucrose and fiber in sugarcane based on present time 

and expansion of new cultivar with high fiber content leads to further increase bagasse as 
biomass energy in the future. In order to make effective use of these surplus resources, 
this study examines the functionalization of new cultivars, using electricity sales as a case 
study. 
The mass and heat balance of the plant for each year were calculated for the three cases. 
Case 1 is the case where the existing boiler is used without replacement. In the current 
energy flow of the sugar mill, the flow rates of bagasse and intake air are unknown. The 
UA value of the existing bagasse boiler was calculated by adjusting these unquantified 
parameters until the target values of 310 °C for the boiler outlet temperature and 10% for 
the oxygen concentration in the final exhaust flue gas were reached. The energy balance 
in the heat exchanger was divided into the phase change part of the steam and the other 
part, and the phase change part was divided into 10 intervals, and UA was calculated in 
each interval by the logarithmic mean temperature difference method, and the UA value 
of the entire heat exchanger was calculated by summing these values according to the 
temperature and flow rate of each fluid. The mass flow rate of bagasse supplied to the 
bagasse boiler in each year was adjusted to maintain this quantified UA value. In the cases 
where surplus electricity is sold to the local power grid (Cases 2 and 3), as shown in 
Figure 1(b), the bagasse boiler generates steam at 7 MPa, a high-pressure power turbine 
is installed, and exhaust steam from the high-pressure power turbine is introduced into 
the mill turbine and the low-pressure power turbine. In Case 2, the UA value of the 
bagasse boiler was designed to maximize the amount of electricity sold to the local power 
grid after 10 years from now by consuming excess bagasse as much as possible, except 
for exporting excess bagasse as bedding for livestock. The mass flow rate of the generated 
steam in each year was adjusted to maintain the UA value. In Case 3, the UA value of the 
bagasse boiler was designed to generate high-pressure steam required only for sugar 
production after 10 years from now. The generated steam is assumed to be introduced 
into a high-pressure power turbine to generate surplus electricity that is sold. The UA 
value was maintained by adjusting the mass flow rate of bagasse in each year. 
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3. Result and discussion

3.1. Amount of excess bagasse after 10 years with the current boiler (Case 1) 
The UA value of the existing bagasse boiler was calculated by adjusting the volumetric 
flow of intake air and bagasse input to match the current operating data (temperature of 
the boiler outlet and oxygen concentration of the final exhaust flue gas). The UA value 
of the boiler was maintained by adjusting the amount of bagasse input to the bagasse 
boiler in each year, assuming that the existing boiler would not be replaced when a new 
high-yielding cultivar was introduced. Figure 3 shows the results of the bagasse 
production estimated by the integrated modeling of agricultural and industrial processes 
for sugarcane derived products, which incorporates the heat exchange process around the 
bagasse boiler in the sugar mill, and the change in bagasse input to the boiler adjusted by 
the energy flow model. About three years after the introduction of the new high-yielding 
cultivar, total sugar production increases with the spread of the new cultivar, and bagasse 
input to the bagasse boiler and required steam flow also increase. The new cultivar 
(KY10-1380) has a higher stem height and higher yield than other typical cultivar, but 
because of the high proportion of fibrous material within the cane, the amount of bagasse 
generated per unit of sugar produced increases as the new cultivar spreads, and the excess 
amount of bagasse increases. The current excess bagasse is exported as much as possible 
as bedding for livestock, but with the increase in bagasse production, it was expected that 
7500 tons/year of excess bagasse would be generated which would be difficult to store as 
shown in Figure 3. Since this excess bagasse could be used to supply additional biomass 
energy to the surrounding area, the introduction of the electricity selling process is 
discussed in the next section.  

3.2. Selling surplus electricity (Case 2 and 3)  
The process selling surplus electricity by increasing the main steam pressure of the 
bagasse boiler and by utilizing excess bagasse that is expected to increase with the 
introduction of new high-yielding cultivar was simulated. The results of the ratio of 
electricity sold to the local power grid and self-consumption in the sugar mill are shown 
in Figure 4(a) when the UA of the bagasse boiler is designed to maximize the amount of 
electricity sold after 10 years. The UA value of the bagasse boiler in this case was 1.3 
times higher than the current process. Although the internal power consumption of the 
sugar mill increases in accordance with the increase in total sugar production due to the 
spread of new high-yielding cultivar, the results show that 9.8 GWh of surplus power can 
be sold to the local power grid, mainly due to the increase in total power generation by 
the introduction of the high-pressure steam turbine. Figure 4(a) shows the temperature 
change of the final exhaust flue gas. Since the heat transfer area of the bagasse boiler 
designed to maximize the amount of electricity sold after 10 years is too large for the total 
heating value of bagasse that can be supplied to the bagasse boiler at present, the 
temperature of the final exhaust flue gas in this case at the present stage is below 140 °C, 
as shown in Figure 4(a).  In order to avoid the temperature of the final flue gas falling 
below the acid dew point, sugar mills empirically maintain the temperature above 150 °C. 
Therefore, in this case, the current process should be maintained until enough excess 
bagasse is generated to introduce the process of selling surplus electricity, and the boiler 
should be replaced after 3 to 4 years when sufficient bagasse amount is obtained and the 
final exhaust gas temperature exceeds 150 °C. 
Next, the case where the bagasse boiler generates only the steam required for sugar 
production in each year at high pressure was considered. The mass flow rate of bagasse 
was adjusted to generate the mass flow rate of steam required for sugar production after 
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10 years, and the UA value of bagasse was quantified. The quantified UA value was fixed, 
and the bagasse mass flow rate was adjusted annually to meet the sugar production 
demand. The results of the simulation of the ratio of electricity sold to the local power 
grid and self-consumption at the sugar mill and the temperature change of the final 
exhaust flue gas are shown in Figure 4(b). In this case, the UA value of the bagasse boiler 
was 1.2 times higher than that of the current process. The total amount of electricity sold 
after 10 years resulted in 8.0 GWh, which was about 20% lower than Case 2, but the 
temperature of the final exhaust flue gas was found to be able to be maintained at around 
180 °C, the same level as the current process, because the mass flow rate of bagasse was 
optimized in each year to generate only the steam required for sugar production. 
Although not all of the bagasse generated in this case can be effectively used after 10 
years, the excess amount can be reduced to less than half of that in Case 1, and 
furthermore, it is found that operation is possible even if the boiler is currently replaced. 

Figure 3 Change in bagasse amount in 10 years 

Figure 4 Change in balance between internal-use and selling electricity 
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4. Conclusion
In this study, a process flow model of a sugar mill was incorporated into an integrating 
model of agricultural-industrial process, and an electricity selling process using the excess 
thermal energy of sugarcane bagasse combustion associated with the introduction and 
diffusion of a new high-yielding cultivar was investigated. It was found that the bagasse, 
which is estimated to be unprocessable with the current facilities after 10 years from now, 
can be effectively utilized by introducing a high-pressure steam turbine and a process for 
selling electricity to the local community. In addition, by constructing a process flow 
model that takes into account the size of the heat transfer area of the boiler, it is possible 
to construct a strategy for the timing and scale of the replacement of the bagasse boiler 
based on the constraints of the flue gas temperature. 
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Abstract 
Solar cell manufacturing is based on solar grade silicon which can be obtained using 
Silane as precursor instead of Trichlorosilane in the well-known Siemen’s process. The 
silane production can be done in a reactive distillation (RD) column in which reaction 
and separation take place simultaneously. The typical RD column has one reactive 
section, but in a recent work (Zang et al., 2017) it has been shown that an RD column 
with multiple reactive sections can enhance the internal mass integration and/or energy 
interaction between the reactions and the separation of Silane. Therefore, this work aims 
to optimize an RD column for silane production with up to three reaction sections. The 
number and location of the reactive sections are found after solving a proposed global 
stochastic optimization framework based on a modified Simulated Annealing Algorithm. 
The results show that the increase in the number of reactive sections does not necessarily 
mean and reduction in the cost of the process. 
 
Keywords: Silane, Global stochastic optimization, Reactive Distillation, Process 
Intensification 

1. Introduction 
Silane is produced by three simultaneous disproportionation reactions of Trichlorosilane 
(SiHCl3). These reactions have a rather unfavorable reaction kinetics and a 
thermodynamic conversion close to zero. Therefore, this process can be intensified by 
means of a reactive distillation (RD) column where the reactions and the separation of 
Silane are carried out simultaneously.  
The most important process to obtain Solar-grade Silicon (SoG-Si) is the Siemens 
process, accounting for approximately 90% of worldwide polysilicon production (Bye 
and Ceccaroli, 2014) while the second most widely used commercial process, accounting 
for almost all non-Siemens technology-based production, utilizes the thermal 
decomposition of Silane (SiH4) through a pyrolysis reaction in fluidized bed reactors 
(FBR) (Yadav et al., 2017). 
The FBR method has the following advantages: 1) low production cost, 2) low energy 
consumption, and 3) high productivity. This method can reduce the energy consumption 
per unit mass of Silicon from the 40–60 kW h/kg (Mongstad et al., 2016) of the Siemens 
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process to 5–8 kW h/kg (Tejero-Ezpeleta et al., 2004) for the silane pyrolysis step. Thus, 
the energy-saving and pollutants discharge reduction may generate a tremendous social 
and economic benefit (Zhang et al., 2018). 
RD can overcome the chemical equilibrium limitation and separate Silane continuously. 
Thus, RD and intensified process for Silane production. The typical RD column feeds 
SiHCl3 as raw material and generates Silane as the top product and Tretachlorosilane 
(SiCl4) as the bottom byproduct (Huang et al., 2013). However, Zang et al. (2017) studied 
an RD column with multiple reaction sections. Their results showed that three reaction 
sections attained higher condenser and reboiler duty savings. Thus, they claimed that the 
use of multiple reaction sections is a better intensification alternative for the RD column. 
This work proposes a rigorous global stochastic optimization framework that uses a 
modified Simulated Annealing Algorithm (m-SAA) in which integer optimization 
variables (e.g., number of stages, number and location of reactive stages) are treated more 
effectively to avoid unnecessary continuous relaxations of variables. Moreover, the 
proposed framework can find the number and locations of reactive sections without any 
prespecified structural constraint. 

2. Methodology 
2.1. Case study 
An RD column for the production of Silane and Tretachlorosilane from a feed containing 
Trichlorosilane was studied as shown in Figure 1a. Intermediate components are 
Monochlorosilane (SiH3Cl) a Dichlorosilane (SiH2Cl2) respectively. The feed and 
product specifications are shown in Table 1. The kinetic parameters to model the 
disproportionation reactions in Eqs. 1 to 3 were taken from Huang et al. (2013). Also, the 
Peng Robinson model was used to estimate the vapor-liquid equilibrium relationships. 
The simulations were done in the Aspen Plus V11.0 simulation software, and the built-in 
block RADFRAC was used. Finally, the number of reactive sections ranges between one 
and three as previously considered by Zang et al. (2017) for the sake of comparison. 

 2 SiHCl3 D SiCl4 + SiH2Cl2 1 
  2 SiH2Cl2 D SiHCl3 + SiH3Cl 2 

2 SiH3Cl D SiH4 + SiH2Cl2 3 
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Figure 1. Reactive distillation column: (a) design variables, (b) sequential evaluations 

NT and NF are the number of total stages and feed stage, respectively. NR10, NR20, and NR30 
are the top stages for the first, second, and third reactive section, while NR1f, NR2f, and 
NR3f are those for the bottom stages, respectively. xS and xT are the SiH4 and SiCl4 purities 
at the RD column top and bottom, respectively. 

Table 1. Feed and product specifications for the RD column 

Variable Value 
SiHCl3 feed flow rate (kmol/h) 10 
Pressure (atm) 5.0 
Pressure drop (kPa) 0.5 
SiH4 purity (%mol) 99.3 
SiCl4 purity (% mol) 99.0 

2.2. Mathematical treatment 
The minimization of the total annual cost (TAC) was performed. The optimization 
variables are those related to NT and the locations of NF, NR10, NR20, NR30, NR1f, NR2f, and 
NR3f as shown in Eq.4. It is worth to mention that the operating variables such as reflux 
and reboiler duty were calculated by the build-in design specification and vary features 
of the module RADFRAC. Therefore, the optimization was solely done in terms of 
structural, integer variables. 

min(𝑇𝐴𝐶) = 𝑓(𝑁!, 𝑁", 𝑁#$%, 𝑁#$&, 𝑁#'%, 𝑁#'&, 𝑁#(%, 𝑁#(&) 4 

subject to Eq. 5 

𝑦⃗) ≥ 𝑥⃗) 5 

where 𝑦⃗) is the vector for the calculated purities for each component i and 𝑥⃗) is the purity 
assigned target. 
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The optimization was carried out by a modified Simulated Annealing Algorithm (m-
SAA) capable of handling integer variables in a more effective way than their typical 
continuous relaxation (Cabrera-Ruiz et al., 2021). The m-SAA was programmed in the 
Spyder platform (Spyder, 2021), which is a free and open-source scientific environment 
written in Python, mainly because it is free access and open-source software that has been 
gaining great interest by scientists and engineers in recent years. Also, it offers direct 
connectivity with the simulation software Aspen Plus. Thus, the optimization-simulation 
interface was done as shown in Figure 2.  

Figure 2. Optimization-simulation software interface 

This work considers that the bounds of optimization variables change dynamically as the 
problem is being solved to handle the number of reactive sections and their locations. 
Thus, the variable bounds are expressed in terms of optimization variables as shown in 
Table 2. It was possible to assign these bounds on the random variables in the m-SAA by 
performing a normalization of variables between 0 and 1 as shown in Eq. 6. The generated 
values by the m-SAA take a normalized value (𝑥*1 ) and the actual value can then be 
calculated since the upper bounds (𝑈𝐿)) and lower bounds (𝐿𝐿)) are known despite they 
change dynamically. Furthermore, the values of those bounds depend sequentially on the 
result of the previous variable as shown in Fig. 1b. This strategy also offers the advantage 
of avoiding the generation of infeasible design points and the redundancy in terms of 
iterations for the calculation of new points due to design constraints (Cabrera-Ruiz et al., 
2021). 

Table 2. Optimization variables 

Variable Optimization bounds 
𝑁! [20,50] 
𝑁" [2, 𝑁+ − 1] 
𝑁#$% [2, 𝑁+ − 3] 
𝑁#$& [𝑁#$%, 𝑁+ − 3] 
𝑁#'% [𝑁#$& + 1,𝑁+ − 2] 
𝑁#'& [𝑁#'%, 𝑁+ − 2] 
𝑁#(% [𝑁#'& + 1,𝑁+ − 1] 
𝑁#(& [𝑁#(%, 𝑁+ − 1] 

The solution procedure to find RD columns with multiple reaction sections is shown in 
Fig. 4a.  

𝑥*1 =
𝑈𝐿) − 𝑥)
𝑈𝐿) − 𝐿𝐿)

 6 

The TAC was calculated using the Guthrie method (Turton et al., 2018) with a payback 
time of 5 years using the CEPCI value corresponding to the one for 2019. The cost of 
utilities was taken from Seider et al. (2009). 
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3. Results and Discussion 
The solution of the m-SAA showed short computation time and few iterations compared 
to a traditional stochastic optimization in a software interface, proving that the 
normalization of variables offered an advantage not only in computational terms but also 
in the handling of dynamic bounds on optimization variables. 
Figure 4b shows the optimization results of several solutions. Different designs are shown 
because their TAC values are very similar. Equation 7 shows the TAC average value and 
its standard deviation. It becomes clear that it is possible to obtain different designs with 
a similar cost. 

𝑇𝐴𝐶====== = $144,481.56 ± 150.32 7 

It also can be observed that in terms of TAC, there is not a significant improvement 
towards the selection of three reactive zones because the second solution from left to right 
in Fig. 4b has only one reactive zone, the one in the middle has two reactive zones, while 
the rest have three reactive sections. Nevertheless, the solutions with three reactive 
sections have one or two stages between them. Therefore, it is not completely clear if the 
increase of reactive sections attains better solutions. The existence of one equilibrium 
stage between reactive sections can be due in part to the rounding of the continuous 
variables that is used in all stochastic algorithms (Cabrera-Ruiz et al., 2021). In general, 
the variables that remain almost the same in all solutions are 𝑁! and 𝑁#$% while 𝑁" tends 
to be located near the top of the column. 

Figure 4. (a) Solution procedure for a general RD column, (b) optimization results 

4. Conclusions 
In this work, a global stochastic optimization framework was proposed for the economic 
minimization of an RD column with the possibility of having up to three reactive sections. 
The selection of lower and upper bounds for the reactive sections was done dynamically 
through a normalization of the optimization variables. The proposed m-SAA performed 
satisfactorily showing great flexibility and capability for handling integer variables 
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dynamically. The results showed that there are multiple solutions with similar cost despite 
the number of reactive sections. It was observed that one to two reactive zones are favored 
sometimes. Therefore, the selection of three reactive sections was not remarkably 
superior. Therefore, it is imperative to perform further optimizations considering 
alternative objective functions. 
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Abstract
This paper proposes a nonlinear multiscale mathematical model for age-structured proliferating
and quiescent cell populations (PDEs) coupled with cell cycle protein dynamics (ODEs). The
model assumes a bidirectional transition between the proliferating and quiescent subpopulations.
The coupling between the two scales is introduced based on biological findings inherited from the
literature. Numerical simulations are performed using the finite volume method to examine the
impact of parameters on the nonlinear dynamics of the model. The main focus of this paper is to
investigate the balance between proliferating and quiescent cell populations, which play a crucial
role in maintaining homeostasis in a cell population.

Keywords: Multiscale model, Tumor growth, Population dynamics

1. Introduction

The cells subject to division can be categorized into two compartments, i.e., proliferating and qui-
escent cells. Proliferating cells undergo division by passing through various stages of cell division
cycle (G1,S,G2,M). However, quiescent cells neither grow nor divide but either transit to the
proliferative compartment or stay in the G0 phase until differentiation or death. The switching of
the cells between proliferating and quiescent phases thus plays a crucial role in maintaining tissue
homeostasis. In fact, any disturbance in the transitional balance between proliferating and quies-
cent phases results in an unconditional growth in tumoral tissue, van Velthoven and Rando (2019).
The switching mechanism, however, depends on cell signaling molecules representing growth or
anti-growth factors, Heldt et al. (2018). In this paper, we focus on modeling and analyzing the
dynamics of cell population distributed in proliferating and quiescent phases coupled with cell
cycle protein dynamics. The motivation stems from recent experimental outcomes, see Hartwell
and Kastan (1994), which state that the cyclins are the most determinant control molecules in cell
cycle phase transitions. Therefore, we couple the cell cycle protein dynamics to predict the tran-
sitional balance between proliferating and quiescent populations at macroscale, which is critical
to homeostasis. At microscale, various proteins are expressed but for the sake of simplicity, we
consider only four proteins (Cyclin D/CDK 4-6, E2F, p21 and Rb) which are mainly contribut-
ing in G1 to S phase transition. We further assume at microscale that the molecular interactions
are happening in a fast renewing cell population and not in an individual cell. Therefore, the
molecular concentrations of these proteins act only as averaged concentrations in a subpopulation
without accounting for cell-cell variability. The overall aim of this paper is to analyse the role of
Cyclin D/CDK 4-6 complex in the deregulation of transitional balance between proliferative and
quiescent cell compartments, which can eventually lead to an unlimited tumor growth.
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2. Mathematical model

We consider two predominant scales comprising of cell populations and subcellular protein dy-
namics. The macroscale is characterised by age-structured partial differential equations to model
cell population in quiescent and proliferating phases. Whereas, sub-cellular protein interactions
involved in cell cycle dynamics are modeled using ordinary differential equations. Here age refers
to biological clock of the cell in the cell cycle phases. The two scales are coupled via feedback in
both directions. The schematics of the model is shown in Figure 1.

Figure 1: Schematics of the model.

2.1. Physiologically structured model

The macroscale level comprising of quiescent Q(a, t) and proliferating P(a, t) cell populations
is described by transport type nonlinear hyperbolic partial differential equations (PDEs) which
describe the number densities of the cells with respect to their physiological age a and time t:

∂
∂ t

Q(a, t) = α(x1,a)P(a, t)− (γ(N)+µQ(a))Q(a, t),

∂
∂ t

P(a, t)+
∂

∂a
(g(a)P(a, t)) = γ(N)Q(a, t)− (β (a)+α(x1,a)+µP(a))P(a, t).

(1)

The first term on the right side of Eq. (1)a is the influx from the proliferative compartment by the
rate function α(x1,a) which is regulated by a microscale state, i.e., Cyclin D/CDK 4-6 complex
x1. The second term describes the decrement in cell density due to either transitioning back to
proliferating phase with the recruitment function γ(N) or by cell death due to the apoptosis (or
necrosis) with death rate µQ(a). In Eq. (1)b, g(a) denotes the evolution speed of age a with respect
to time t. The first term on the right side is the influx from the quiescent phase. The second term
represents the number of cells completing the cell division with rate function β (a), whereas the
cells transitioning from the proliferating phase to quiescent phase without undergoing division are
denoted by the third term. Finally, the death rate µP(a) represents the loss of cells in proliferating
phase. The function N(t), represents the total cell number in proliferating and quiescent phases, is
defined as N(t) =

∫ a∗
0 (P(a, t)+Q(a, t))da, where a∗ represents the maximum age of cells.

To complete the model, we define the initial conditions at t = 0 as Q(a,0) = Q0(a), P(a,0) =
P0(a), ∀a ≥ 0. The boundary condition for t > 0 takes the form: g(0)P(0, t) = 2

∫ a∗
0 β (a)P(a, t)da,

where the number 2 represents two newborn cells which start with age 0 in the proliferating phase.
The recruitment function γ(N) is described using a Hill function γ(N)= νθ κ

θ κ+Nκ , where κ is the Hill
coefficient, ν is the maximum transition rate and θ defines the total cell population achieving the
half maximum of the transition rate ν . The rate function β (a) is given as β (a)= ρ1aγ1/(ργ1

2 +aγ1),
where, ρ1 represents the maximum proliferation rate, ρ2 is the value of age achieving the half
maximum effect and γ1 is the Hill coefficient. Finally, the rate function α given as α(x1,a) = σ1 ·
σ γ2

2 /(σ γ2
2 + xγ2

1 ) ·σ γ3
3 /(σ γ3

3 +aγ3), determines the number of cells which cannot undergo division
due to anti-growth factors. Here, γ2 and γ3 are Hill coefficients, σ2 and σ3 are the switching values
of Cyclin D/CDK 4-6 complex and age a beyond which the rate function α becomes effectively
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zero, preventing escape to quiescence. This implies that at age equals to σ3, the cell population
is irreversibly committed to proceed into the proliferative phase. The value of σ2 is the threshold
of Cyclin D/CDK 4-6 complex determining the restriction point R. In the signaling mechanism
among the cells, the growth response is modulated by the cytokine proteins, the details are given
in Batool and Bajcinca (2021b,a). Thereby, the growth factors are defined as g f = 1/(1+ ktN).

2.2. Cell cycle model

We employ Michaelis-Menten kinetics to explain the series of enzymatic reactions in the form
of ODEs. The list of selected proteins and their description is given in the Table 1. Given the
evolution speed of age a with respect to time t as g := da/dt, the dynamics of the cell cycle
with respect to age a is then described by the following system, Gérard and Goldbeter (2012):



dx1

da
=

1
g(a)

(
k1s

(
g f

kg f +g f

)
− k14x4x1 − k1d

(
x1

k1 + x1

))
,

dx2

da
=

1
g(a)

(
k21

(
x2t − x2

k2 +(x2t − x2)

)
x1 − k32x2x3 − k2dx2

)
,

dx3

da
=

1
g(a)

(
k3s − k32x2x3 − k31

(
x3

k3 + x3

)
x1 − k3dx3

)
,

dx4

da
=

1
g(a)

(
k4s + k42

(
k34

k34 + x3

)
x2 − k41

(
x4

k4 + x4

)
x1 − k4dx4

)
.

(2)

Description State

Cyclin
D/CDK 4-6

x1

E2F x2
Rb x3
p21 x4

Table 1: Cell cycle
states at microscale.

Param. Description Value Unit

k1s Rate constant for synthesis of x1 induced by growth factors g f 0.175 h−1

kg f Michaelis constant for synthesis of the x1 induced by g f 0.1 µM
k14 Bimolecular rate constant for binding of cyclin D/CDK4-6 to p21 0.15 µM−1h−1

k1d Maximum degradation rate of cyclin D/CDK4-6 0.245 µMh−1

k1 Michaelis constant for the degradation of Cyclin D/CDK4-6 0.1 µM
k21 Rate constant for activation of E2F by cyclin D/CDK4-6 0.805 h−1

k2 Michaelis constant for E2F activation by cyclin D/CDK4-6 0.01 µM
x2t Total concentration of the transcription factor E2F 2 µM
k32 Bimolecular rate constant for binding of Rb to E2F 0.01 µM−1h−1

k2d Apparent first-order rate constant for non-specific E2F degradation 0.02 h−1

k3s Basal rate of synthesis of Rb 0.8 h−1

k31 Rate constant for phosphorylation of Rb by cyclin D/CDK4-6 2.2 h−1

k3 Michaelis constant for Rb phosphorylation by cyclin D/CDK4-6 0.1 µM
k3d Apparent first-order rate constant for Rb degradation 0.01 h−1

k4s Basal, E2F-independent rate of synthesis of p21 0.8 µMh−1

k42 Rate constant for synthesis of p21 induced by E2F 0.1 h−1

k34 Constant of inhibition by Rb of p21 synthesis 0.1 µM
k41 Rate constant for inactivation of p21 through phosphorylation by x1 50 h−1

k4 Michaelis constant for p21 phosphorylation by Cyclin D/CDK 4-6 0.5 µM
k4d Apparent first-order rate constant for non-specific p21 degradation 0.06 h−1

Table 2: Parameters of cell cycle model.

In Eq. (2)a, the first term on right hand side describes the synthesis of Cyclin D/CDK 4-6 complex
(x1) induced by the growth factors g f . The last two terms describe the binding of x1 with tumor
suppressor protein p21 and the degradation rate induced by other cell cycle proteins. In Eq. (2)b,
first term on right side describes the synthesis of transcription factors E2F (x2) induced by x1. The
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second term denotes the decrement of x2 due to inhibition by retinoblastoma protein Rb, while the
last term depicts a constant inactivation rate of x2. In Eq. (2)c, the first term on right side represents
the synthesis of free un-phosphorylated retinoblastoma protein Rb (x3). The second term denotes
the decline in Rb by making a complex with x2 to inhibit it. The third term refers to deactivation
of Rb by phosphorylation from x1 and the last one to the degradation of Rb. In Eq. (2)d, the first
and second term represent the synthesis of p21 (x4) by ATM/ATR, TGFβ pathways and by x2,
respectively. The third and fourth term represent the decrement in p21 due to inhibition of x1 and
the degradation of p21. The description of the involved parameters is given in Table 2.

3. Numerical solution

Figure 2: Computational mesh.

In this section, we present the numerical method
used to solve the system (1)-(2) in MATLAB. Finite
volume method (FVM) is implemented using cen-
tral upwind discretization scheme, Kuzmin (2010).
Hereby, we introduce the following notations: ∆a
is mesh size and ∆t is the time step, ∆a = a∗/Na,
where Na is a maximum number of age nodes given
by ai = i∆a, 0 ≤ i ≤ Na and time is discretized into
Nt steps with equidistant interval ∆t = tk+1 − tk.
The computational mesh is shown in the Figure 2,
where the domain is divided into many control vol-
umes (for instance, the one highlighted in green)
and we approximate the integral conservation law
on each control volume. The red arrows are point-
ing the flux through the boundary of the control
volume where the flux F is computed at each grid
point using central upwind scheme as schematically depicted with yellow boxes for k = 2 at i= 2,3
with the green arrows. In the sequel, we describe the discretized model and fluxes. The discretized
cell densities of quiescent cells associated with the ith spatial interval at time k reads

Pk
i =

1
∆a

∫ a
i+ 1

2

a
i− 1

2

P(a, tk)da, Qk
i =

1
∆a

∫ a
i+ 1

2

a
i− 1

2

Q(a, tk)da.

The necessary Courant-Friedrichs-Lewy (CFL) condition
for convergence of the solution requires

∆t
[
γk +max(µQ(ai))

]
∆t
[max(g(ai))

∆a
+max(α(xk

1,i,ai)+β (ai))
]
≤ 1.

The initial conditions for Q0
i and P0

i are defined below

Q0
i =

1
∆a

∫ a
i+ 1

2

a
i− 1

2

(a, t0)da, P0
i =

1
∆a

∫ a
i+ 1

2

a
i− 1

2

P(a, t0)da.

Next, the discretized form of the PDEs (1) are given as

Qk+1
i −Qk

i =∆tα(xk
1,i,ai)Pk

i −∆t
(

γk +µQ(ai)
)

Qk
i ,

Pk+1
i −Pk

i −
∆t
∆a

(
F k

i+1/2 −F k
i−1/2

)
= ∆tγkQk

i

−∆t
(

α(xk
1,i,ai)+β (ai)+µP(ai)

)
,

Algorithm 1: Numerical method
initialization;
forall time step k = 1,2, · · · ,Nt do

Compute Nk, g f
k;

Compute xk
1, xk

2, xk
3, xk

4 using
ode45;

forall age step i = 1,2, · · · ,Na
do

Compute β (ai);
Compute α(ai,xk

1,i);
Compute Γ(Nk);
Compute Qk+1

i and Pk+1
i ;

end
Compute CFL condition;
if CFL<1 then

continue;
else

break;
disp(‘CFL is not satisfied’)

end
end
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where γk = γ(Nk) and Nk = ∆a∑i
[
Qk

i +Pk
i
]
. The fluxes represented by F are defined using cen-

tral upwind scheme as F k
i+1/2 = g(ai+1/2)Pk

i−1. The cell division boundary condition at age a = 0

reads g(a0)Pk+1
0 = 2∆a∑

a∗
i=1 β (ai)Pk

i . Then, we define the growth factors as g f = 1/(1+ ktNk).
We have used ode45 function of MATLAB to solve cell cycle model at each time step k. The
resulting outcome of Cyclin D/CDK 4-6 complex xk

1,i is then used in the macroscale model.

4. Results and discussion
In this section, we present the numerical results of the model proposed in Section 2. The initial
states and the used parameters are given in Table 2 and 3. In all the simulations, we used the
spatial step size ∆a = 0.5 with a maximum age of cells a∗ = 50 and the time step ∆t = 0.02.

Param. Value

ν 0.6 day−1

θ 0.095×106

κ 1
ρ1 0.7
ρ2 0.35
γ1 5
σ1 0.01
σ2 0.35
σ3 14 h
γ2 7
γ3 7
kt 1.80×10−9

Table 3: Parameters used
in the simulations.

In the sequel, we will discuss two case studies. First, we investigate
the stability of the non-trivial steady-state solutions. Figure 3(a) and
(b) represent the cell density distribution of proliferating P(a, t) and
quiescent Q(a, t) cells, respectively. Both subpopulations show the
trends of achieving a steady-state with time. The growth factors influ-
ence the behavior of Cyclin D/CDK 4-6 complex as depicted in Fig-
ure 3(c). The total cell count is initially low (see Figure 4(a)) while
the growth factors are at their maximum (see Figure 4(b)), which re-
sults in the proper activation and degradation of cyclin D/CDK 4-6
complex along with the age of the cell. The latter depicts a complete
cell cycle or successful division of cells on average. However, as the
growth factors decline to a point where no (or fewer) new cells are
required, the average behavior of Cyclin D/CDK 4-6 complex in pro-
liferating cells also exhibit non-oscillatory dynamics, and it remains
at lower concentration throughout, which is a depiction of no cell
divisions, see Figure 4(c). In Figure 4(a), we plot the total cell pop-
ulation N(t) comprised of proliferating, and quiescent phases exhibit
an exponential increase in cell number and ultimately achieve a steady-state. On the other hand,
Figure 4(b) shows the growth factors influenced by total cell population are maximum initially due
to low cell count and gradually start declining until achieving an equilibrium. The transition rate
γ(N) from quiescent to proliferating phase is depicted in Figure 4(c). The increase in the total cell
population invokes a decrement in the transition from quiescent to proliferating phase.

(a) (b) (c)
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Figure 3: Density distribution of (a) proliferating cell population and (b) quiescent cell population
with respect to age a and time t. (c) Concentration of Cyclin D/CDK 4-6 complex x1.

Next, we investigate the instability of the solution in Figure 5. The dynamics of the proposed
model is very robust in general due to the feedback loops. However, the transition function α(a,x1)
is sensitive concerning noise in the cell cycle states. Here, to analyze a situation in which the cell
cycle behaves abnormally, we changed a parameter value, i.e., kg f = 0.0001, which depicts that
the influence of the growth factors on the production of Cyclin D/ CDK 4-6 complex is some-
how compromised, or in other words, we are inducing delays in completing a Cyclin D/ CDK 4-6
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complex oscillation. Resultantly, the cell number grows exponentially due to more cells in prolif-
erative compartment as compared to quiescent phase. All other parameters used in this case study
are similar to the first case of non-trivial steady-states. The total cell number is plotted in Figure 5
(a). It grows exponentially in the presence of a larger amount of growth factors, see Figure 5 (b).
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Figure 4: Steady state. (a) Total cell population N(t). (b) Growth factors g f . (c) Gamma function
γ representing the rate at which the cells move back to proliferation phase from quiescent phase.
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Figure 5: Exponential growth. (a) Total cell population. (b) Growth factors. (c) Gamma function.

5. Conclusion

This paper proposes a nonlinear, multiscale model of an age-structured population of proliferating
and quiescent cells coupled with an averaged cell cycle dynamics which plays a crucial role in the
cell’s commitment for irreversible cell division. There exists a bi-directional transition between
the two populations. The closed feedback loop couples the two scales and further aids in keeping
the overall growth of the cells in homeostasis. We investigated the role of the complex formed
by Cyclin D with its inhibitor CDK 4-6 in the bi-directional transition, and we concluded that an
imbalance in this transition could result in tumor initiation and progression.
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Abstract 
An optimization model for the food supply chain is presented. This model is formulated 
as a Mixed Integer Linear Programming (MILP) problem and optimizes the land 
distribution, the amount and types of food produced, imported and exported, the number 
of livestock, the greenhouse gas emissions, the nitrogen uptake, the amount of food waste, 
etc. The production technologies considered are conventional, organic, conservation 
agriculture and food production in greenhouses. The requirements of the European Green 
Agreement and the Farm-to-Fork Strategy are considered. The model was applied to 
optimize different scenarios in the food chain in Slovenia, such as population growth and 
changing dietary habits, and to optimize different objectives, such as food self-
sufficiency, greenhouse gas emissions, nitrogen balance, economic efficiency and a 
multicriteria objective. The results show that food supply could be improved through 
optimization even with the expected population growth. Greenhouse gas emissions and 
synthetic fertilizer use could be reduced. The results of the model can provide a guide for 
the development of agricultural policies for sustainable supply of locally produced food.  
Keywords: food chain, locally produced food, optimization, MILP, multi-objective. 

1. Introduction 
The food supply chain is a complex system that includes the production of agricultural 
crops and animals, their processing into food, the distribution and consumption of food, 
and the collection and processing of waste. The agricultural sector is one of the main 
sources of environmental impacts and is accompanied by a number of uncertainties 
(Zirngast et al., 2019). In rapidly developing countries, the negative impact of agriculture 
on the environment increases as the food security of the population improves (Qi et al., 
2018). The objectives of reducing greenhouse gas emissions, the use of artificial 
fertilizers, nitrogen inputs, the preservation of biodiversity, etc. must be taken into 
account (European Commission, 2019). Therefore, systematic methods need to be applied 
to optimize the efficient use of available agricultural land, as demonstrated in the case of 
Estonia (Põldaru et al., 2018) and in the case of the Milan metropolitan region, where 
changes in land use and dietary habits were assessed through linear programming (Sali et 
al., 2016). Optimization has also been applied to accurately determine nutritionally 
adequate meals, considering environmental impacts and economic aspects (Benvenuti et 
al., 2021).  
This paper presents a MILP model for optimizing food production of plant and animal 
origin on available arable land in Slovenia. The novelty of the model is that it considers 
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a balance between production, consumption, import and export of food, considers 
different technologies of food production and incorporates the requirements of European 
and national directives. The optimization is performed for several single objectives and 
as a multi-objective problem by combining the most important indicators. 

2. Mathematical model for food supply optimization 
The cultivation land for distribution is constrained by Eq. (1): 

, TOTi k
i k

A A≤∑∑   (1) 

where i is a set of food and feed of plant origin, k set of cultivation technologies (e.g. 
conventional, organic, conservation, greenhouses), A area (ha), ATOT total available arable 
land (ha). Production of food and feed of plant origin is defined as: 

, , ,i k i k i kmpp A yha=   (2) 
where mpp is a mass of plant food produced (t/y), yha hectare yield (t/(ha⋅y)). Balance 
for food and feed of plant origin is as follows: 

, ,i k i i i i k
k k

mpp mpi mpc mpe mpl+ = + +∑ ∑  (3) 

where mpi and mpe are masses of imported and exported plant food (t/y), mpc consumed 
plant food (t/y), mpl lost plant food (t/y). According to the statistical definition, the 
domestic production of food of animal origin is defined as: 

j j j j j j jmap NZS mcrcS NZE mcrcE NZI mcrcI= ⋅ + ⋅ − ⋅  (4) 
where j is a set of food of animal origin (e.g. beef, pork, poultry, milk, eggs), map a mass 
of domestically produced food of animal origin (t/y), NZS, NZE and NZI are numbers of 
livestock slaughtered domestically, exported or imported (y-1), mcrcS, mcrcE, mcrcI are 
carcass masses per slaughtered, exported and imported animal (t). For milk and eggs, NZS 
represents the number of dairy cows or laying hens, and mcrcS represents yearly milk or 
egg production per animal. For milk and eggs, mcrcE and mcrcI are equal to 0. 
Balance of food of animal origin is given by Eq. (5):  

j j j j j j
j

mac mae mal NZS mcrcS mai+ + = ⋅ +∑  (5) 

where mac is a total mass of consumed food of animal origin (t/y), mai, mae and mal 
imported, exported and lost food products of animal origin (t/y), respectively. 
Consumption of plant fodder for animals: 

,ia j ia j
j

mpc map fconv= ⋅∑  (6) 

where ia is a subset of plants used for animal fodder, fconv is a specific mass of consumed 
plant fodder in tons of plant fed per ton of carcass. Greenhouse gas emission is estimated 
as follows: 

, ,i k i k j j
i k j

mghg mpp fghg map fghg= ⋅ + ⋅∑∑ ∑   (7) 

where mghg mass of greenhouse gas emission (t CO2eq/y), fghg specific emission per mass 
of food (t CO2eq per ton of food). The amount of mineral fertilizers used is calculated: 

, ,i k i k
i k

mmf A mfer= ⋅∑∑  (8) 
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where mmf is total mass of mineral fertilizers used (t/y) and mfer mass of mineral 
fertilizers used (t/(ha⋅y)). Nitrogen balance is presented in Eq. 9: 

, ,j j i k i k
j i k

mnit map fnit mmf wnit A mnup= ⋅ + ⋅ − ⋅∑ ∑∑  (9) 

where mnit is a mass of nitrogen (t N/y), fnit specific nitrogen emission from livestock 
manure (t of N per ton of carcass), wnit mass fraction of nitrogen in synthetic fertilizers, 
mnup nitrogen uptake by plants (t N/(ha⋅y)). Economic added value (€/y) is defined as: 

( )

( )

, ,i i i k i k j j j j
i i k j j

i i j j j j i i
i j i

j j j j
j

value mpc ppd mpp cpd mac pad map cad

mpe ppe NZE mcrcE mae pae mpi ppi

NZI mcrcI mai pai

= ⋅ − ⋅ + ⋅ − ⋅ +

⋅ + ⋅ + ⋅ − ⋅ −

⋅ + ⋅

∑ ∑∑ ∑ ∑

∑ ∑ ∑

∑

 (10) 

where ppd and pad are prices of food of plant and animal origin at domestic market (€/t), 
ppe and pae prices of exported food (€/t), ppi and pai prices of imported food (€/t), cpd 
production cost of plant food/feed (€/t), cad production cost of food of animal origin (€/t). 
Self-sufficiency for food for human is calculated by Eq. (11): 

hum ,ih k j ih j
ih k j ih j

SS mpp map mpc mac
   

= + +   
   
∑∑ ∑ ∑ ∑   (11) 

where ih is a subset of plants used for human food. A set of logical relations is used for 
the exclusive choice between food import and export: 

1

1

1

i i i i j j

j j i i j j

j j j j j j

ypi ype mpi MB ypi mae MB yae
yai yae mpe MB ype NZI MB yNZI
yNZI yNZE mai MB yai NZE MB yNZE

+ ≤ ≤ ⋅ ≤ ⋅

+ ≤ ≤ ⋅ ≤ ⋅

+ ≤ ≤ ⋅ ≤ ⋅

 (12) 

where ypi and ype are binary variables for imported and exported plant food/feed, yai and 
yae binary variables for imported and exported food of animal origin, yNZI and yNZE for 
imported and exported livestock. MB is a large positive constant.  
The basic objective function is formulated as the total mass of food and fodder produced: 

,max i k j
i k j

Z mpp map
 

= + 
 
∑∑ ∑   (13) 

where Z (t/y) represents a domestic production of food of plant and animal origin. In 
addition, other objective functions can be optimized, namely maximizing economic 
value, minimizing greenhouse gas emissions, and minimizing excess nitrogen from 
mineral and organic fertilizers. A normalized multi-objective function was also 
formulated to account for multiple conflicting criteria. 

hum
multi 0 0 0 0

hum

max
SSvalue mghg mmfZ

value SS mghg mmf
 

= + − − 
 

  (14) 

where subscript 0 represents the current value of specific variable. The list of variables in 
the model is as follows: 

{ }
, , ,

hum

, , , , , , , , , , , , , ,

, , , 0; , , , , , 0,1
i k i k i i i i k j j j j j j j j

i i j j j j

A mpp mpc mpi mpe mpl NZD NZI NZE map mac mai mae mal

mghg mnit SS value ypi ype yai yae yNZI yNZE≥ ∈
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3. Slovenian case study 
The developed model was used to optimize the distribution of arable land in the Republic 
of Slovenia, which has about 2 million inhabitants and 460,000 ha at its disposal.  
3.1. Scenarios of various changes in food supply chain 
The first part of the experiments dealt with scenarios that considered projected population 
growth, legal directives, and health recommendations. 
Scenario 1. Population growth. It was estimated (Drofenik et al., 2021) that the population 
could increase by 9 % by 2050, which will affect food demand, so all further scenarios 
were also optimized for this forecast. 
Scenario 2. Reduction of fertilizer use. The European Farm-to-Fork Strategy foresees a 
reduction in fertilizer use of at least 20 % by 2030. Therefore, the upper limit for fertilizer 
use has been set at 80 % of current levels. 
Scenario 3. Proportion of land devoted to organic farming. The 2030 Agenda for 
Sustainable Development envisages an increase in the share of agricultural land used for 
organic farming to 25 %. In Slovenia, this share is currently 7.7 %. Therefore, the 
requirement to increase this share was included in the model. 
Scenario 4: Healthier diet. Per capita consumption of red meat in Slovenia is significantly 
higher than the European average. The consumption of red meat should be reduced. In 
this scenario it was assumed that the per capita consumption of beef and pork would 
decrease by 30 %.  
3.2. Optimization of the various objectives 
In the second part, optimizations of various single objective functions and a composite 
criterion for multi-objective optimization were performed. 
Scenario 5. Greenhouse Gas Emissions. Agriculture is an important source of GHG 
emissions. Therefore, the criterion in Eq. (7) was minimized to estimate the target 
potential for reducing emissions from the agricultural sector. 
Scenario 6. Surplus in the nitrogen balance. Nitrogen input from animal manure and 
synthetic fertilizers often exceeds the nitrogen uptake that plants take from the soil for 
growth, which is an environmental problem. Therefore, the criterion mnit defined in Eq. 
(9) was minimized to balance out the surplus of nitrogen. 
Scenario 7. Added economic value. Although the main objective is to ensure an adequate 
supply of quality food, the food supply chain is also an economically important system. 
The economic value defined in Eq. (10) has therefore been maximized. 
Scenario 8. Self-sufficiency. Maximizing food self-sufficiency as defined in Eq. (11) is 
the most important criterion for formulating national food policy. 
Scenario 9. Multi-objective optimization. Many important factors for the agricultural 
sector have conflicting effects on food supply chain optimization. Therefore, a multi-
objective optimization of the composite objective function of the four most important 
criteria defined in Eq. (14) was performed. 

4. Results 
The results of the first set of optimizations are shown in Table 1. All values of Zmulti are 
positive, indicating an improvement over the current situation. In scenario 1, self-
sufficiency increases despite a projected increase in population. This is the effect of an 
optimized distribution of land and food produced compared to the current situation, which 
is not optimized. The area devoted to human food production increases significantly. 
Vegetable production in greenhouses increases and is even exported.  
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Table 1: Results of scenarios 

 Unit Current Scenario 
1 

Scenario 
2 

Scenario 
3 

Scenario 
4 

Added value  M€/y 443.7 499.8 496.8 451.8 482.6 
GHG emission kt/y 1,464 1,493 1,456 1,180 1,342 
Nitrogen balance t/y 1,565 11,866 11,855 6,159 2,510 
Synthetic fertilizers t/y 87,613 107,349 70,091 67,359 98,570 
Total self-sufficiency % 86.1 101.9 99.8 96.7 103.1 
Self-sufficiency 
human % 80.9 102.9 96.6 94.8 111.4 

Area for human food ha 60,129 101,116 93,726 90,584 105,516 
Area for animal feed ha 402,877 361,890 369,280 372,422 357,490 
Area (conventional) ha 427,155 456,592 263,681 340,841 456,592 
Area (organic) ha 35,651 0 0 115,752 0 
Area (conservation) ha 0 0 192,911 0 0 
Area (greenhouses) ha 200 6,414 6,414 6,414 6,414 
Zmulti % 0.0 15.3 51.8 61.4 42.2 

A requirement for a 20 % reduction in fertilizer use (scenario 2) leads to the introduction 
of conservation agriculture with lower fertilizer use but almost the same yields per hectare 
as conventional production. The requirement of 25 % of the land dedicated to organic 
production (scenario 3) leads to a significant reduction in the economic criterion. The 
level of self-sufficiency decreases compared to the previous scenarios. Imports of plant 
and animal foods increase. A 30 % reduction in red meat consumption (scenario 4) would 
have several positive impacts, increasing self-sufficiency while decreasing emissions and 
excess nitrogen inputs. The production of plant foods for human consumption would 
increase significantly. Necessary imports of animals and meat products would decrease, 
and value added would increase. 
The results of the optimizations for different objectives are shown in Table 2. Minimizing 
GHG emissions (scenario 5) provides a solution in which GHG emissions are 33 % lower 
than at present, but the economy and self-sufficiency deteriorate. The lower emissions are 
achieved by switching a significant part of production from conventional to organic and 
conservation agriculture with lower fertilizer use.  
Table 2: Results of various objective functions 

 Unit Scenario 
5 

Scenario 
6 

Scenario 
7 

Scenario 
8 

Scenario 
9 

Added value  M€/y 431,2 448.1 511.4 472.5 451.4 
GHG emission kt/y 1,085 1,187 1,495 1,221 1,143 
Nitrogen balance t/y 5,163 0 17,832 6,894 6,587 
Synthetic fertilizers t/y 44,626 92,826 110,155 109,166 46,309 
Total self-sufficiency % 82.6 93.6 90.3 96.8 92.9 
Self-sufficiency 
human % 81.3 85.8 100.1 120.1 108.7 

Area for human food ha 125,727 88,277 90,584 144,954 131,840 
Area for animal feed ha 337,279 374,729 372,422 318,052 331,166 
Area (conventional) ha 179,285 459,265 456,592 456,003 179,285 
Area (organic) ha 129,942 0 0 0 76,593 
Area (conservation) ha 153,779 0 0 590 200,714 
Area (greenhouses) ha 0 3,741 6,414 6,414 6,414 
Zmulti % 72.7 18.9 11.1 46.9 105.2 
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Minimizing nitrogen surplus (scenario 6) offers a solution with an ideal balance between 
nitrogen supply and uptake, but also lower economic value added. A solution with 
maximum economic value (scenario 7) has high self-sufficiency, but also higher GHG 
emissions and excess nitrogen. Many animals and vegetables are produced, which are 
also exported. Maximizing self-sufficiency (scenario 8) achieves 120 % food self-
sufficiency for people, and excess food could be exported. Optimization with a composite 
objective function (scenario 9) yields a compromise solution in which 21 % of the land is 
devoted to organic agriculture. GHG emissions would be 25 % lower and fertilizer use 
53 % lower than at present, while food self-sufficiency would be over 100 %. 

5. Conclusions 
A MILP food supply chain optimization model was developed. The model determines the 
optimal distribution of arable land, crops, livestock and meat production. Besides, it 
considers the requirements of various European and national directives regarding the 
environmental and social impacts of agriculture, while the main motivation is to increase 
the food security through stable production of safe, quality and accessible food, and to 
shorten the supply chain taking into consideration CO2 emissions that could be avoided. 
The results point out the need to promote a shift from intensive meat production, 
especially cattle, to grass-based production, and to change people's diets from meat and 
meat products to a greater proportion of vegetables. Promoting organic farming and other 
unconventional forms of agriculture is another driver for reducing the environmental 
impact of agricultural production. The consideration of multiple criteria in the 
optimization suggests a favorable trade-off solution, confirming the need for multi-
objective decision-making in guiding national agricultural policy. The assumptions set in 
the strategies can have a strong impact on the results in the different scenarios. The 
sensitivity of these assumptions will be explored in future work, which will include 
options for food waste reduction and processing, and nutritional information about foods. 
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Abstract 

Carbon capture and storage (CCS) is one of the most efficient techniques for reducing 

carbon dioxide (CO2) emissions into the atmosphere. Combining CCS with enhanced oil 

recovery (EOR) processes is a very attractive method for carbon capture and utilisation 

(CCU). These operations enable CO2 emissions to be reduced through geological 

sequestration, whilst generating additional revenue from enhanced oil production due to 

CO2 re-injection via EOR. In practice, mass balance and temporal features of a given 

location are considered when planning EOR operations. When numerous oil reservoirs 

are involved, it is vital to allocate available CO2 supplies and schedule EOR operations 

for these reservoirs at suitable timings. As a result, CO2 allocation and scheduling are 

crucial for maximising the economic benefits of EOR operations. As such, this study 

introduces a resource trade scheme for CO2 integration and utilisation within the 

state Qatar, where a mixed integer linear programming (MILP) model is developed to 

address CO2 allocation and scheduling based on environmental and economic objectives. 

The model considers a single CO2 source (Qatar Gas) within an multi sink scenario which 

includes several sinks within an industrial setting (QAFCO, QAFAC, PEARL GTL, 

ORYX GTL, Dukhan Field Well (EOR)). Two scenarios are considered to allocate CO2 

to different sinks (including EOR) to obtain the optimal solution for each scenario. The 

outcome of scenario 1 demonstrates that the optimal solution is to utilize 13.5Mt/y of 

carbon dioxide, which results in an annual profit varying from 14.3 to 42.8 billion US 

dollars. The maximum CO2 utilisation occurs at Dukhan Field Well (EOR), which utilises 

up to 67%. Scenario 2 is implemented based on scenario 1 to further improve the model; 

where the profit increased annually, and the model became more sustainable.  

Keywords: Sustainability, CO2 utilisation, carbon capture and storage, EOR  

1. Introduction 

The allocation of carbon dioxide (CO2) emissions is critical in defining reduction 

responsibilities at the national level or emission permits at the company level. Different 

techniques for calculating CO2 emissions have been developed and applied throughout 

the last few decades. Various approaches could be used in order to reduce carbon dioxide 

emissions, among the most notable examples are increased energy efficiency by system 

integration, the adoption of energy saving technologies, carbon storage and sequestration, 

as well as fuel switching and renewable energy sources. Many studies have focused on 

the use of renewable and clean energy sources, carbon capture and storage (CCS), and 
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energy efficiency, yet minimal research has been published on methods for systematically 

investigating carbon utilisation approaches. Carbon dioxide can be converted chemically 

or biologically into fuel, food supplements, polymers, or other value-added products. 

(Mikkelsen et al., 2010). Furthermore, in the case of enhanced oil recovery (EOR), storing 

CO2 underground may provide financial incentives to reduce emissions (Hasan et al., 

2014). Injecting CO2 into reservoirs for EOR is the only commercially recognized carbon 

usage method that allows permanent large-scale storage for captured CO2 (Núñez-López 

et al.; Moskal et al. 2019). This study aims to design a framework allocation model 

between a single CO2 source and several sinks based in the State of Qatar and evaluating 

a network design for carbon capture, storage, utilisation and transportation. A multi-

period mathematical optimization is used that considers varying marketing prices of 

value-added products to determine the optimal solution in the model’s revenue and 

utilisation target.   

2. Literature Review 

In the context of increased oil recovery and storage sinks, steps and mechanisms related 

to the allocation of carbon have been previously investigated. Turk et al. (1987) was able 

to provide a framework of sources particularly improved oil recovery sites, power plants 

and sinks, while taking into account the injection and transportation costs by the use of a 

nonlinear mathematical model. In addition, Middleton and Bielicki (2009) studied the 

supply and allocation of carbon dioxide. The study used the MILP spatial model, which 

addresses carbon capture and storage facilities. Weihs and Wiley (2012) also investigated 

the cost-optimal for CO2. The transport of carbon dioxide in various phases  was studied 

by Knoope et al. (2013), while He et al. and Tan et al. (2013) investigated the storage of 

multiphase arbon. Tan et al. (2013) used the source and sink approach for carbon capture 

and storage, capacity and injection. He et al. (2013) used the addressed the uncertainties 

of source-to-sink matching, where elements of physical and time limitations were 

integrated in a MILP to address the allocation of CO2. The formulation focused mainly 

on the geological storage of sinks and attempted to optimise CO2 storage by one source 

connected to a sink, relying on the flow and storage capacity. Hasan et al. (2014) analysed 

the matching of enhanced oil recovery sinks at a national level considering a wide 

network of CO2 supply chains that selected the appropriate capture technology for various 

CO2 sources and used geographical sites and transportation of pipelines. Alhajaj et al. 

(2013) applied the same approach at a regional level in the UAE.  

3. Model Design and Optimisation 

3.1. Available data and assumptions 

The framework structure in this study consists of a single CO2 source, Qatar gas (QG), 

since it is the world's largest LNG producer, with an annual CO2 emissions of 35.8 

Mt/year approximately (Mohammed, 2016), and six application sinks: (a) Qatar Fertiliser 

Company (QAFCO) and Qatar Fuel Additives Company (QAFAC) located south 

of Qatar in Mesaieed industrial zone (approximately 100 km from QG), (b) Dukhan Field 

Well (EOR) located west of Qatar in Dukhan City (approximately 100 km from QG); and 
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(c) Pearl GTL and Oryx GTL plants located north of Qatar in the Ras Laffan industrial 

zone (approximately 5 km and 3 km from QG) (Al-Yaeeshi et al., 2020). 

 

 

 

 

 

 

 

Table 1 presents the products of each sink with their production rates when utilising 1 

tonne of CO2. Chemical absorption with amine solvents was anticipated to capture CO2 

at 100% efficiency, with an OPEX of $ 40/t CO2 (Al-Yaeeshi et al., 2020), while 

maintaining its stability as a CO2 source. In this model, a set amount of 15 Mt CO2/year 

is assumed to be captured and sent to sinks reliably. The CCU is estimated to invest $169 

million on CAPEX. Post combustion carbon capture technology (PCC) is utilised due to 

its high level of commercial availability and technology development. Therefore, in the 

case of Qatar, PCC technology is considered to be extremely viable for absorbing CO2 

from power plants and other industrial operations. It provides a highly reliable CO2 

source, despite its higher cost compared to alternative capture technologies. Furthermore, 

the CO2 composition of flue gas available in Qatar is less than 5%, which meets PCC 

technology standards (Herzog and Golomb, 2004). In this model, the PCC unit is placed 

in Qatar Gas LNG plant since it has the highest CO2 emissions in Qatar (35.8Mt/y) 

compared to other plants (Mohammed, 2016). 

Table 1: Production Rate of each sink for one tonne of CO2. 

 

 

 

 

 

3.2. Model Formulation 

The mixed integer linear programming (MILP) model is developed to address the optimal 

CO2 allocation from Qatar gas to QAFCO, Pearl GTL, ORYX GTL, QAFAC with H2, 

QAFAC with natural gas, and Dukhan Field Well for EOR. This model determines 

the allocation of CO2 as a function of commodity price variability which essentially 

directs the optimal CO2 allocation from the source to the sinks. The data is collected over 

a period of 15-year (Al-Yaeeshi et al., 2020). This time period is chosen since it is 

frequently symbolic of the life planning/cycle phase of a CO2 utilisation project, for which 

the model tries to identify allocations that optimize the network's long-term economic 

returns. Table 1 presents the products of each sink with their production rates when 

utilising 1 tonne of CO2. The objective is to identify a feasible design solution for 

allocating CO2 between the source and sinks that maximises the system's overall cost over 

multiple periods. Economic returns and technical capacities of sink applications are the 

main constraints addressed in the model. 

 

Model Formulation 

Maximise                                  ∑ [𝑅𝑗 − 𝐶𝑗]𝑥𝑗𝑄𝑡𝑜𝑡𝑎𝑙
𝑛
𝑗=1     

Figure 1: Framework design for CO2 allocation. 
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Subject to                                      ∑ 𝑥𝑗𝑄𝑡𝑜𝑡𝑎𝑙 ≤ 𝑄𝑗
𝑛
𝑗=1          

                                                        ∑ 𝑥𝑗 ≤ 1𝑛
𝑗=1  

 

Where;                             𝐶𝑗 = 𝐶𝑐𝑐 + ∑ (𝐶𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 + 𝐶𝑂𝑃𝐸𝑋 𝑗)  𝑛
𝑗=1     𝑛 = 1,2 … . ,6 

Rj= revenue 

Cj= cost for pcc, transport, opex 

Xj= fractional amount allocated to sink j 

Qtotal= total amount 15MT/year 

Qj= Sink j capacity 

n= number of sinks 

4. Results and Discussion 

The proposed methodology is used to implement the model's outcomes using the Excel 

LP optimisation solver. Two scenarios are implemented in this study: (1) a base case 

scenario for allocating CO2 from the source to the sinks depending on the sinks capacity; 

and (2) a scenario that focuses on testing different EOR features by reducing the amount 

of CO2 allocated in different years. Scenario 1 is a base case scenario which aims to 

determine the optimal solution for allocating 15MT/year of CO2 to all 6 sinks. The 

maximum CO2 utilization, number of sinks, and revenue are included in the solution. 

According to the findings, the market prices of the products are one of the key drivers of 

the techno-economic optimization. As a result, the CO2 utilisation findings in Table 2 

remained constant between years 2005 and 2018 for the optimized sinks. This is due to 

the price linkage between products, which causes them to shift together, except for wax, 

since the price remained constant from 2011 to 2018 (Al-Yaeeshi et al., 2020). 

Table 2: The profile for CCU system for period 2005 to 2018. 

 

The CO2 utilisation of the system is 13.5x106 tonne/year, which implies that the captured 

amount of CO2 from Qatar Gas (15x106 tonne/year) is not fully utilised by the sinks. The 

allocation throughout the years is relatively in the same range. Some changes or 

fluctuations in the results from one year to another may be due to product prices 

fluctuations each year. As shown in Figure 2, the optimal allocation solution is to allocate 

67% (9Mt/y) of CO2 to Dukhan Field Well, which is a very high percentage compared to 

other sinks. This could be due to the high commodity prices, high production rate, low 

transportation cost, or lower CAPEX and OPEX compared to other sinks which directly 

affects the economic measure of the system.  

 

 

 

 

 

 

 

 

Years 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 

Profit $ 

(x1010) 
1.76 2.43 2.19 3.47 1.87 2.87 3.64 4.15 4.28 4.07 2.08 1.43 2.25 2.47 

CO2 

Utlisation 

(x107) 
1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 

Figure 2: Average CO2 utilisation by the sinks. 
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In Scenario 2, a simulation using QASR Reservoir Simulator (Li and Abushaikha, 2021) 

is made to examine the natural drive production of oil and CO2 in Dukhan Field Well 

(without injecting CO2 into the reservoir) and the production after CO2 injection. The 

natural drive production normally produces a low percentage of the oil inside the reservoir 

(10 -15%). When CO2 gas is injected to the reservoir, this can improve the overall oil 

displacement efficiency it and drives it to the production wellbore, which results in the 

recovery of a higher percentage of the original oil in place (Massarweh and Abushaikha, 

2021). Therefore, different scenarios were conducted in order to examine the reservoirs 

production in the primary drivee production (no CO2 injection), when injecting 9Mt of 

CO2, and 15Mt of CO2. Based on this simulation, it is observed that more oil can be 

produced with CO2 injection as compared to natural drive production. Figure 3 and 4 

illustrates the oil and gas production rate when injecting different CO2 values. As 

illustrated in the figures, as the injection rate increases, more production is achieved. This 

is because the oil greatly inflated as it combined with CO2 gas, resulting in decreased 

interfacial tension and viscosity; which results in higher oil and gas recovery.  
 

 

 
 

 

 

 

 
 

 

 

 

Furthermore, since injecting CO2 results in producing more CO2, a sensitivity analysis 

was made in order to improve the overall system by reinjecting the CO2 recovered after 

injection (non-sequestered CO2) back into the reservoir. By doing so, the required CO2 

amount from Qatar gas each year decreases depending on the production rate in the 

previous injection (assuming the allocation for all other sinks stay the same). Therefore, 

in this scenario, it is assumed that Qatargas will allocate 100% of the capacity required 

for EOR for the first 5 years (9Mt/y) only. Subsequently, this rate will begin to decrease 

gradually depending on the amount of CO2 required in this reservoir (see figure 6). 

Overtime, the allocated CO2 keeps decreasing until Qatar gas stops allocating CO2 to 

EOR since Dukhan Field will have enough “recovered after injection CO2” from the 

previous allocations. This scenario improves the sustainability and profit of the system 

by reducing the amount of CO2 purchased from Qatar gas annually. As shown in Figure 

5, Qatar gas will stop allocating CO2 to Dukhan Field Well at almost year 21. When 

comparing the profit from scenario 1 and scenario 2 (Figure 6), it is observed that the 

profit is constant till year 2010, then, scenario 2’s profit increases further due to the 

decrease in CO2 amount allocated. 

 

 

 

Figure 5: CO2 utilisation scenario 2. Figure 6: Profit comparison Scenario 1 & 2. 

Figure 3:  Cumulative Gas Production Rate. Figure 4: Cumulative Oil Production Rate. 
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5. Conclusion 

The results obtained in this study for both scenarios aims to devise the most effective 

means for eliminating, reducing, and converting carbon dioxide emissions into a revenue-

generating stream. Mixed integer linear programming (MILP) model is used to address 

CO2 allocation. The model considers a single CO2 source (Qatargas) with multiple sinks 

that use CO2 as raw material for their production. Two scenarios are considered to 

allocate CO2 to different sinks (including EOR) to obtain the optimal solution for each 

scenario. The outcomes of scenario 1 illustrate that using 13.5 million tonnes of carbon 

dioxide per year is the best option, with annual profits ranging from 14.3 to 42.8 billion 

dollars. Dukhan Field Well (EOR) has the highest carbon dioxide utilisation rate, with up 

to 67 %. Scenario 2 was applied to develop the model further, with the profit increasing 

annually and the model becoming more sustainable. 
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Abstract
Titania nanoparticles are an important building block for materials with photocatalytic activity or
specific optical properties. The production via the hydrolysis of an alcoxide precursor involves
a distillation step which is needed to control the final particle size but is time consuming and
energy-intensive. The concern of this paper is the optimization of the production process by op-
timizing the trajectory of a batch evaporator with the goal of maximizing its energy efficiency
under predefined production constraints. Depending on the goals, significant reductions in energy
consumption are possible, while simultaneously reducing the total processing time. Furthermore,
in the situation where electricity from intermittent renewable sources is available, it is possible
to tailor the operation of the process to leverage this availability by adapting the input sequence,
such that the most energy-intensive phases of the process are performed in the window where en-
ergy is available from renewable sources, hence producing a positive economic and environmental
impact.

Keywords: trajectory optimization, batch evaporation, titanium dioxide nanoparticles

1. Introduction
Titania nanoparticles have gained attention due to their optical properties, which find application
in a very broad range of fields (Ijaz and Zafar (2021)), including photocatalytic materials. The
light absorbance properties of nanoparticles depend on the material as well as on their geometrical
parameters (Bohren and Huffman (1998)), thus making good control over the production process
necessary to fine-tune the photoactivity of the final product.

The synthesis considered here involves the hydrolysis of a titanium precursor (TP) in water (W) to
yield dissolved titanium dioxide (T) as well as an alcoholic byproduct (A). Following the hydrol-
ysis, α titanium dioxide units condense to form primary particles (P1):

TP+2W→ T+4A
αT→ P1 ↓

The nanoparticles population evolves due to aggregation and breakage towards an equilibrium
Particle Size Distribution (PSD). The particle size can be described in terms of the number of
primary units in a nanoparticle and in terms of the particle diameter. The first description is useful
to model the evolution of the system, the second is used to define measurable goals for the product
characteristics. The particle diameter is measured using Dynamic Light Scattering (DLS), which
measures the so called Z−Average Particle Size (ZAPS). The typical evolution of the ZAPS during
the process is shown in the first plot of figure 1.
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Figure 1: Evolution of the ZAPS and equilibrium
ZAPS during the distillation. The times when the
product constraints are met are marked with stars
in the plot.

Aggregation is a second order process that
is limited by the diffusion of the particles
through the liquid medium and by the inter-
particle repulsion (Bal and Bandyopadhyaya
(2018)). Alcohols decrease the interparticle
repulsion, hence increasing the particle size
obtained at equilibrium (Paradisi et al. (2021)).
Breakage on the other hand follows first or-
der kinetics and is mainly temperature-driven
(Vorkapic and Matsoukas (1999)).

To obtain small nanoparticles sizes, a distilla-
tion step is required. The distillation is per-
formed under vacuum, with the power sup-
plied to the system, Q̇ and the vacuum pres-
sure, P being the manipulated variables. The
setup is shown in figure 2. Heat is supplied
through an electric heater, while pressure is
controlled through a condenser (also operated
electrically). The process is terminated when
the particle population has reached the desired
size characteristics and the particle size that re-
sults at equilibrium after a ripening process is
sufficiently small. The goal of this work is to

find the optimal mode of operation of the batch evaporator that minimizes a measure of cost
(processing time, energy consumption or environmental/economic cost) while satisfying the final
product constraints. In the optimization, energy can have a time-varying price, e.g. because it is
sourced from intermittent renewables, and it is assumed that this availability can be forecasted.

2. Modelling

Figure 2: Setup of the plant

The state of the system is described by the number of moles of the
chemical species nA,nW ,nT (alcohol, water and titanium dioxide)
and the temperature of the liquid (T ). An additional state variable
s ∈ [0,1] is introduced to describe the normalized fraction of alco-
hol in the solvation layer of the nanoparticles. Quantities such as
the liquid volume V = (nAMA +nW MW +nT MT )/ρ , the alcohol
fraction in the liquid x = nA/(nA + nW ) and the mass fraction of
titania w = nT MT

ρV can be computed from the state of the system.

The evolution of the amount of the species is described by their
mole balances as shown in eq: 1, where ṅev is the molar evapora-
tion rate and y the mole fraction of alcohol in the vapor stream in
equilibrium with the liquid. The evolution of s, as shown in eq. 2
is a diffusion process driven by the difference between the alcohol
fraction in the solvation layer of the particles and the correspond-
ing equilibrium value Kcx. The temperature T results from an en-
ergy balance (eq. 3) as a function of the heat input Q̇ to the system
and the heat losses due to evaporation. Constant enthalpy of va-

porization Hv and molar heat capacity CP are used. The evaporation rate is written as a function of
the pressure difference between liquid and vapor ṅev = kev max(Pev−P;0), with kev a fitting param-
eter and Pev the equilibrium pressure of the liquid mixture computed using the extended Raoult’s
law (Wilson model). The heat to be removed by the condenser is Q̇c = ṅev (Hv +CP(T −Tc)).
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d
dt

(
nA nW nT

)T
=−ṅev

(
y 1− y 0

)T (1)

ds
dt

=−kc(s−Kcx) (2)

dT
dt

=
Q̇− ṅevHv

(nA +nW +nT )CP
(3)

The evolution of the population of the nanoparticles is described using a direct moment-based
method (Hulburt and Katz (1964)). The k−th moment of the PSD NP,m is defined as µk =

∑
∞
m=1 mkNP,m. The first moment is directly related to the total number of moles of T as µ1 =

NAnT
α

,
with NA Avogadro’s constant and α the number of T units per primary particle. The dynamics of
the k−th moment and the corresponding equilibrium values are given in equations 4-5, where ka
and kb are the aggregation and breakage rate constants (assumed to be independent of the particle
sizes), φk the k−th moment of the breakage distribution function and, with MX the molar mass of
X and ρ the density of the liquid.

dµk

dt
=

ka

V 2

(
1
2

k

∑
n=0

(
k
n

)
µkµk−n−µ0µk

)
+

kb

V
µk(φk−1) (4)

µk,eq

V
=

1
2

ka

kb

1
1−φk

k−1

∑
n=1

(
k
n

)
µn,ss

V
µk−n,ss

V
(5)

According to the theory of Brownian aggregation, the aggregation process depends linearly on
temperature (Lyklema (1991)). Furthermore, it depends on the electrostatic potential between
the approaching particles’ surfaces, which is strongly influenced by the fraction of alcohol in
their solvation layers (Vorkapic and Matsoukas (1998)). A semi-empirical model was used to
describe this dependency, with xa a parameter obtained by fitting steady state particle size-alcohol
fraction data. The breakage kinetic constant only depends on temperature with an Arrhenius-like
dependency. The choice of the reference temperature Tab in the denominator of (6) is arbitrary,
however by using the same temperature for both the aggregation and breakage kinetic constants,Tab
is the temperature where the ratio ka/kb is at its minimum for a given alcohol fraction. Tab will be
used in the optimization as a terminal constraint, as it results in the minimum ZAPS at equilibrium.

ka = ka,Tab

T
Tab

e(
s

Kcxa )
2

(6)

kb = kb,Tabe1− Tab
T (7)

The breakage distribution moments are expressed as a function of the parameter r ∈ (0,1) by
assuming that a particle of size 1 breaks into fragments of size nr and n(1− r) (Marchisio et al.
(2003)):

φk = rk +(1− r)k. (8)

The Z−average diameter of the particles as measured by a DLS instrument is expressed as Z =

Z0

(
µ4
µ3

) 1
γ

, with Z0 the measured diameter of a primary particle and γ ∼ 1.9 the fractal dimen-
sion of the particles. The third moment weighted average is used to approximate the weighting

behaviour of light scattering instruments (Stetefeld et al. (2016)). Zeq = Z0

(
µ4,eq
µ3,eq

) 1
γ

denotes the
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measurement obtained from the equilibrium PSD. An important observation is that the moments
of the equilibrium PSD in eq. 5 ultimately depend on w, x and T , therefore it is possible to write
Zeq = Zeq(x,w,T ). During the course of the distillation, the value of Zss initially decreases due to
the depletion of alcohol until a minimum is reached. Past this point, the increase in weight fraction
determines an increase in the obtainable particle size, as visible in the second plot of figure 1.

3. Optimization

The optimization problem is formulated in equations 9-18, with respect to the state vector x(t) =
(nA(t),nW (t),nT (t),s(t),T (t),µ0(t), . . . ,µ4(t))

T and the input vector u =
(
Q̇(t),P(t)

)T:

min
u(t)

Jn [u(t)] (9)

s.t. :
dx(t)

dt
= f (x(t),u(t)) ∀0≤ t ≤ tmax (10)

x(0) = x0 (11)

0≤ Q̇c(t)≤ Q̇c,max ∀0≤ t ≤ tmax (12)

0≤ Q̇(t)≤ Q̇max ∀0≤ t ≤ tmax (13)
Pmin ≤ P(t)≤ Pmax ∀0≤ t ≤ tmax (14)

Z (tmax)≤ Zgoal (15)
Zeq (tmax) = Zeq,goal (16)

T (tmax) = Tab (17)
J1 ≤ tmax. (18)

Three cost functions are defined: the duration of the process J1 , the total energy use J2 and the
energy cost J3:

J1[u(t)] = min t such that:
(
Z(t)≤ Zgoal

)
and (Zeq(t)≤ Zeq) and (T (t) = Tab) (19)

J2[u(t)] =
∫ tmax

0
Q̇(t)+

Q̇c(t)
COP

dt (20)

J3[u(t)] =
∫ tmax

0
p(t)

(
Q̇(t)+

Q̇c(t)
COP

)
dt. (21)

where the Boolean variable p(t) ∈ {0,1} denotes the energy price (economic or environmental,
e.g.: kgCO2

/kW) at time t and Q̇c(t)
COP the electrical power consumed by the condenser. This defi-

nition of the energy price is used to simplify the formulation of the problem. In reality, p(t) is a
real number varying between a minimum and a maximum. Therefore, the cost function J3 is more
accurately the cost incurred by not buying energy at the lowest price.

The function f (x(t),u(t)) is the vector of the right hand sides from equations 1-4. The initial con-
ditions of the system are fixed prior to the optimization from the product recipe and stoichiometry.
The particulate system is initialized as a point distribution with µk(0) = µ1 =

NAnT
α

, s(0) = 1 and
T (0) = 30◦C. The input variables and the heat removed by the condenser have minimum and max-
imum bounds. The terminal constraints are chosen such that the ZAPS at the end of the ripening
step after the process meets the product constraints with the final values of x and w (16), the PSD
at the end of the process is sufficiently close to the equilibrium PSD (15), and the temperature of
the system is the one for which the minimum ZAPS can be achieved, for given values of x and
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w (17). Unless the distillation proceeds significantly past the point where the minimum Zss is ob-
tained (hence failing to meet the constraint on Zss) and except for the initial phase of the process
where the nanoparticles grow to their maximum size, Z(t) is strictly decreasing and Z(t)≥ Zeq(t)
holds. For this reason, once the constraint on Z is met, it is guaranteed to be satisfied until the end
of the process. Furthermore, once T (t) = Tab is achieved, any variation would either determine
an increase in the duration of the process or the energy expense, making the solution sub-optimal.
Thus, during optimization, the terminal constraints can be checked at tmax only, while the duration
of the process is computed by equation 19. tmax can be used to further impose a constraint on the
productivity of the process.

To solve the problem, the states and inputs are discretized in time using orthogonal collocation on
finite elements (Cuthrell and Biegler (1987)). The time interval from 0 to 6 hours is subdivided in
12 subintervals, within which the inputs are assumed to have a given shape (Q̇ piecewise constant,
P piecewise linear). Each subinterval is further subdivided in 6 finite elements to control the
precision of the solution. The constraints are evaluated at the boundaries of each finite element.
Nc = 3 collocation points are placed on each finite element, where the states are approximated by
Lagrange interpolating polynomials. Continuity is enforced between interpolating polynomials at
the boundary of each two finite elements and with the initial conditions. A Radau scheme is chosen
for the collocation points for numerical stability. The model and optimization were implemented
in python using CasADi (Andersson et al. (2019)), with IPOPT as solver (Wächter and Biegler
(2005)).

4. Results

Figure 3: J1 and J2 for different optimization sce-
narios with Zeq,goal = 25 nm and Zgoal = 35 nm.
Different J2−optimal solutions were obtained by
setting tmax ∈ {4, 4.5, 5, 5.5} in eq. 18. The
J3−optimal solutions were obtained by varying
the position and size of the cheap energy price
window. For these, J1 reflects the position of
the window. The worst case scenarios were com-
puted by maximizing energy for the given prod-
uct constraints and tmax ∈ {5.5, 6}.

An overview of some results is given in figure
3. It was found that under stringent product
constraints and despite being the most energy-
intensive mode of operation, the J1−optimal
input can be up to 10% less energy demand-
ing than the least efficient input policy with
the same terminal constraints. The J2−optimal
operation requires more time to complete
the process, but reduces the total energy in-
put by an additional 10%, compared to the
J1−optimal solution. The trade-off between
the duration of the process and the energy ex-
pense in the J2−optimization can be controlled
by choosing tmax. For the J3−optimization,
several scenarios were tested where the energy
price (economic or environmental) was set to 0
in a time window between t1 and t2 and 1 out-
side. The J3−optimized processes adapts the
operation such that the energy input is maxi-
mized within the window as shown in figure
4. The total energy use in this scenario can
be very close to the optimal energy use if the
low price window is not close to the end of the
process. The J3−optimal operation is less ad-
vantageous and less energy-efficient if the window begins close to the end of the process. This is
visible in the second J3−optimal trajectory in figure 4 and illustrative in figure 3. For this reason
it is advisable to schedule the process such that cheap energy is available within the first half of
the batch run.
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Figure 4: Comparison of the power consumption and process stages in J2− and J3−optimal solu-
tions for Zgoal,eq = 25 nm, Zgoal,dyn = 35 nm for variable energy price p(t). Process stages: Idle
(I), Heating (H), Flashing (F), Distillation (D). The total energy use J2 is given for all scenarios

5. Conclusion and future work

The problem of finding the optimal operation of a batch evaporator was addressed and solved for
several objective functions. It was found that improvements in the performance indicators can be
obtained, and that using trajectory optimization yields a significant reduction in the total process-
ing time and total energy consumption, compared to the unoptimized operation. Furthermore, the
process was found to be flexible enough to efficiently make use of intermittent energy, making it a
promising candidate for the application of demand-side response.
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Abstract
This work focuses on the development of a mathematical model for the population growth of
banana red rust thrips (Chaetanaphothrips signipennis) based on a modified temperature-based
growth rate with the addition of climatic variables, such as relative humidity, wind speed and
rainfall rate. The aim is to enable better prediction of the pest incidence and improve decision
making, productivity, as well as quantifying the influence of these variables on the development
of red rust thrips. The developed model is then compared with current solutions for predicting
the pest incidence, showing improved accuracy (higher than 67%) versus experimental data, for
which the state-of-the-art models indicate extremely poor fits.

Keywords: Mathematical modelling; IoT sensors; Precision agriculture; Pests; Organic banana;
Red rust thrips.

1. Introduction

Banana is one of the most important food crops in the world, contributing to the food security of
billions of people by providing income and employment to rural communities (MINAGRI, 2014).
In the last ten years, Peru has joined the large community of organic banana exporting countries,
with the main production located on its northern coast, reaching around 223,298 tons of organic
bananas exported in 2019 (FAO, 2021). Since 2010, red rust thrips have become a serious issue on
local organic banana plantations, causing yield losses of 30%-40% if effective measures are not
applied (Lopez et al., 2020).

Currently there are several (organic) products that help to control this pest, but their efficacy de-
pends on the level of incidence present. If the plot is already infested, corrective measures need to
be applied with products that cost 7 to 8 times more than the solutions used preventively. Thus, a
total infestation of the banana plots is extremely detrimental to the crop and the farmers because,
in addition to losing part or all of the production, the cost of recovering from infestation will also
increase significantly.

For this reason, tools that help in the decision-making process and enable farmers to reduce as
much as possible the impact of these pests on the production are needed. Precision agriculture
offers technologies that can support this development. Among these, intelligent sensing, auto-
mated data collection, big data analysis and modeling approaches, have the potential to increase
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crop yields, detect diseases, pests or weeds early, as well as improve the control, maximize the
economic benefits and ensure resource conservation (Annosi et al., 2019).

This research is part of a project aimed at developing tools based on precision agriculture and
digitalisation technologies that can help improve the control of pests during the organic banana
production. To achieve this objective, an investigation of the pest behaviour is required, to better
understand what factors influence their growth throughout the year. In this contribution, the de-
velopment of a mathematical model for the prediction of the pest population, with application to
the banana red rust thrips (the pest that most affects the organic banana production), as a function
of the atmospheric variables recorded by IoT sensors located in an organic banana plot (1 ha area)
is presented. These models are based on bacterial growth models. By considering other climate
variables, such as environmental humidity, rainfall and wind speed, improvement over existing
pest incidence prediction models (e.g., the Campbell model (Donatelli et al., 2017)) is sought.

2. Methodology

2.1. Data acquisition

The input data used in the model is collected by a smart sensor network located in the district of
Buenos Aires, province of Morropon, department of Piura (Peru). Placed in an organic banana
plot, the network consists of two nodes and a weather station illustrated in Figure 1. The station
uploads data to the cloud every 15 minutes, so there are 96 data per day. The daily average values
are used further for the model.

Figure 1: Weather station (left) and a node (right).

To enable prediction of the pest incidence (the number of thrips on the plot), this parameter needs
to be quantified. This task is performed manually and recorded on a weekly basis. For this assess-
ment, the number of eight different types of pests, namely the red rust thrips - Chaetanaphothrips
signipennis, the mealybug - Pseudococcus elisae, the weevil - Cosmopolites sordidus, the red
spider mite -Tetranychus spp, the ceramid - Ceramidia sp, the aphid - Pentalonia nigronervosa
and the whitefly - Aleurodicus dispersus, is counted for 25 plants, and averaged to provide an idea
on the condition of the plot.

The behavior of the pests has been monitored for almost two years (from November 2019). During
this period, it has been observed that, during the summer season, when the maximum temperature
reaches values above 30°C, the thrips population increases significantly compared to the other
seasons of the year.
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2.2. The Campbell Model (CM) for predicting insect growth

Figure 2: The relationship between the rate
of insect development and temperature.

Previous work (Campbell et al., 1974) in the area of
parasite incidence prediction shows that the growth
rate of insects depends on the temperature to which
they are exposed (Figure 2). Over a range of tem-
peratures, the relationship between the growth rate
and the temperature can be represented by a straight
line which, when extended, cuts the x-axis at the
temperature threshold (T ). Looking at Figure 2,
one conclusion that can be drawn is that it is im-
practical to analyze the average growth rate in the
range A domain, due to the high mortality caused
by low temperatures. At high temperatures, char-
acteristic of the range C domain, the average rate
of development decreases with respect to the linear
growth observed in the range B domain. However, this growth rate reduction observed at high
temperatures occurs only if the temperature remains constant or fluctuates within a small range
for a long period of time, hence it is not normally experienced. Therefore, in practice the field
conditions are almost always in the linear section corresponding to the range B domain.

For practical purposes, the growth rate of insects can be approximated by a linear equation (Prasad
et al., 2021):

ρ = a+b ·T (1)

The parameters a and b are constants estimated from “experimental” data, with a the intercept of
the rate of development, and b the slope relating temperature to the rate of thrips growth, while T
is the temperature (°C).

2.3. The Modified Campbell Model (MCM)

In the CM, only the temperature is taken into account, while important climatic variables such as
rainfall, wind speed and relative humidity, which have an impact on the insect population growth
(Elbehri et al., 2015), are neglected. To this end, by considering these variables measured on the
plot, an improvement to the prediction of the CM is expected. Thus, the following equation is
considered for the rate of growth of insects:

ρ = a+b · T + c · H +d · W + e · R (2)

Where H is the relative humidity (%), W the wind speed (m/s), and R the rain rate (mm/h), while
a (1/day), b (1/day·°C), c (1/day·%), d (1/day·m/s), and e (1/day·mm/h).

2.4. Mathematical Modelling

To describe the population dynamics of insects, Murray’s exponential model of bacterial growth
can be used, an implementation considered in (Hernández and Rivera, 2018) to find the parameters
and determine the number of microorganisms. This particular case is used to approximate the
number of thrips (insects per plant) in an organic banana crop at any instant of time.

dPT

dt
= ρ · PT −ψ · PT = (ρ −ψ) · PT = r · PT (3)

Where PT represents the population of thrips per plant, ρ , the birth rate (1/day), ψ , the death rate
(1/day) and r describes the growth rate (1/day).

537

A model-based approach for the prediction of banana rust thrips
incidence from atmospheric variables

507 



C. A. Estrada et al.

Two types of pesticides are regularly used on the organic banana plot, and hence considered for
this model. The first one is exclusive for rust thrips and is used in a corrective way, being also
more aggressive. The second one is the most frequent type of pesticide used, and its application
is performed in a preventive fashion for pests such as red spider mites, white flies, thrips, etc.
Moreover, its effect is weaker compared to the one used for the rust thrips. For this reason,
pesticide spraying terms, F1 and F2, are considered in the model, and expressed based on the
degradation of antibiotics in bacteria (Romero Leiton et al., 2011):

F1 = e−ϕF1 ·τF1 (4)

F2 = e−ϕF2 ·τF2 (5)

Where F1 is the concentration of organic pesticide 1, F2 is the concentration of organic pesticide
2, ϕF1 is the degradation rate of pesticide 1, ϕF2 is the degradation rate of pesticide 2, τF1 is the
difference between the current day and the day pesticide 1 was sprayed (day), τF2 is the difference
between the current day and the day pesticide 2 was sprayed (day).

During the third nymphal stage, mature nymphs migrate from the plant to the soil or epidermis
and transform into prepupae. At this stage, cleaning of the plot is an influential factor in the thrips
population growth, since it directly interferes with their life cycle. If this activity is not carried out,
it would result in a significant increase of the number of insects. Therefore, the cleaning term is
described in a similar way to the spraying terms, as its impact on the insect population decreases
over time:

C = e−ϕc·τC (6)

Where C is the variable representing the cleanliness of the plot, ϕc is the degradation rate of the
cleanliness level, τC is the difference between the current day and the day on which the cleaning
was carried out (day).

Unlike the case of Equation 3, where the growth rate is constant, in the following the growth rate
is expressed as a function of the crop conditions, such as pesticide spraying and cleaning, which
directly affect the thrips population:

r = ρ −ψ −φ1 · F1 −φ2 · F2 − γ · C (7)

Where ρ is the rate of thrips development (1/day), ψ is the natural mortality rate (1/day), φ1 is
the mortality rate from spraying with chemical 1 (1/day), φ2 is the mortality rate from spraying
with chemical 2 (1/day), γ is the mortality rate from the cleaning (1/day).

Finally, the rate of change of thrips intensity with respect to time for the modified Cambell model
(MCM) is obtained based on the conditions in the crop field:

dPT

dt
= (ρ −ψ −φ1 ·F1 −φ2 ·F2 − γ ·C) · PT (8)

3. Results

In the following, the predictions for the red rust thrips incidence of the two models described
above, the MCM and the CM, are compared. For this purpose, 100 data sets are generated from
the experimental data gathered across a period of one and half years. For cross validation, each
set has been divided into training (75%) and validation (25%) data. The sets are then used for
parameter estimation, and the resulting models’ metrics are shown in Table 1.

For the training and validation sets, mean values of 0.78 and 0.66 were obtained for R-squared,
while 1.50 and 1.60 were obtained for RMSE, respectively. For the training and validation sets,
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average values of 0.80 and 0.70 were obtained for R-squared while for RMSE 1.45 and 1.55
respectively.

Table 1: Model metrics for the CM and MCM: Coefficient of determination (R2) adjusted and
Root mean square error (RMSE)

R2 adjusted RMSE
CM MCM CM MCM

Train 0.78 0.80 1.50 1.45
Test 0.66 0.70 1.60 1.55

Figure 3 shows the real data compared to the prediction of the two models. For the MCM, an R2 of
0.73 and and RMSE of 1.76 were obtained, while for CM these were 0.72 and 1.78, respectively.
As the same data is used in the cross-validation, there is not much difference in the results for
these metrics, although it seems that the MCM is slightly more accurate than the CM.

Figure 3: Comparison of model predictions with experimental data used for model development.

When the two models are used for prediction of new data (the validation set), corresponding to the
period from July 8 to October 19, 2021, the metrics shown in the Table 2 indicate that the MCM
has a better accuracy compared to the CM. Furthermore, can also be observed that the MCM
predictions are not so far away from the real values. At the same time, the CM results indicate a
very poor fit.

CM MCM
R2 -1.68 0.67

RMSE 4.00 1.40

Table 2: Metrics obtained for the model predictions for the validation set.

Figure 4 shows the response of the models for the data recorded in the plot during the 103 days
corresponding to the validation set. During this time interval, 10 pest evaluations were performed
and used to assess the accuracy of the models.
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Figure 4: Comparison of model predictions with experimental data used for validation.

4. Conclusions
Understanding the growth behavior of the rust thrips with respect to atmospheric variables enables
farmers to take better preventive control measures to avoid infestation as much as possible. In
this way, production losses as well as plot maintenance costs can be significantly reduced. This
contribution presents the development of a model for the predictions of the thrips incidence in
an organic banana plot based on climatic variables. The results show good agreement with the
experimental data, providing a solution that can be further implemented in decision-making tools
for the organic banana producers.

These can be used in the future work to define and improve the monitoring and control of the pest
incidence by defining better fumigation and cleaning schedules that will increase their efficiency
and benefit the quality of the final product.
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Abstract
The high consumption of fossil fuels is running out the petroleum sources, therefore it is ex-
tremely important to improve the efficiency or diversify the industry’s main route. To deal with
these new processes, the liquid-solid fluidized bed is one of the available technologies. Mastering
this complex industrial device requires a better understanding of the intrinsic multi-scale hydro-
dynamics couplings that play an important role between solid and liquid phases. For that reason,
the numerical simulation of multi-phase flow has become a useful tool for examining the parti-
cle behavior in fluidized beds. The fluidized bed simulation may be addressed using the Discrete
Element Method (DEM-CFD) approach, which is a model that requires a lot of computational
effort, because of the large scale of the equipment and the huge number of particles. Hence, for
industrial purpose, this approach becomes infeasible, and simulations are carried out in the frame
of Euler-Euler model such as implemented in the NEPTUNE CFD code. But such approach was
originally developed for gas-solid flows, then a specific model developments and validation stud-
ies are needed for liquid-solid fluidized bed (Gevrin et al., 2008). This is one of the main objec-
tives of the MUSCATS project (N°ANR-19-CE05-0010-02), which is carrying out an innovative
multi-scale modelling program for liquid-solid fluidized beds, based on complementary numer-
ical approaches and carefully designed experiments. In a first stage, 3D numerical simulations
were performed using the NEPTUNE CFD code on a laboratory configuration in order to assess
the model assumption and to compare the mean and fluctuating fluid and particle velocity predic-
tions with available experiment data from Aguilar-Corona (2008). Thus, some discrepancies on
fluid and particle kinetic fluctuating energy and areas of improvement are identified and proposed
in order to capture accurately the particle–fluid and inter-particle interactions in the liquid-solid
fluidized bed.

Keywords: CFD, Euler-Euler, Fluidized bed, Liquid-solid bed

1. Introduction

The fluidization phenomenon occurs when solid particles are suspend by a fluid, gas or liquid,
and they behave like a fluid-like state. The liquid fluidization is wide utilized in several processes
such as chemical, petrochemical, hydro-metallurgical, mining, biochemical, pharmaceutical and
water treatment (Wang et al., 2014; Nirmala and Muruganandam, 2019). As reported by Kunii
and Levenspiel (1994) the bed properties are heavily dependent of the fluid velocity and it plays
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an important role over the fluid-dynamics of the equipment, because the flow regime changes in
function of the fluidization velocity. For instance, when the fluid acquires enough kinetic energy
to support the particles, but without dragging them out, the regime changes from a fixed bed to a
fluidized bed with certain intermediate states. As it is a fluid transport equipment, the fluidized
bed can be dimensioned based on factors such as pressure loss, the fluid density and viscosity, the
particle density, diameter and shape, the fluid velocity and etc (Yates and Lettieri, 2016).

The Computational fluid dynamics (CFD) has been applied to simulate the liquid fluidized bed
system and according to Zhang et al. (2013) the models used to simulate the liquid-solid fluidized
bed can be divided into two major groups: At a macro-scale it is represented by the Two-Fluid
Models (TFM) approach and at meso-scale it is distinguished by the use of CFD coupled with the
discrete element method (DEM). The mass and the momentum equations are solved separately
for each phase taking into account the momentum transfer between liquid and solid. Hence, the
numerical results is strongly dependent on the drag force between the phases and the solid stress
(Ren et al., 2021). Many authors has studied the liquid-solid fluidized bed and they noted that
the existence of meso-scale structures play an important role over the hydrodynamics and it is not
well computed when coarse grid is employed. Beside that, they have investigated the influence
of many parameters such as density ratio, fluid viscosity, restitution coefficient, forces acting on
particles, turbulence model and etc. They concluded that fluidized bed hydrodynamics results are
considerably impacted by turbulence and the drag model (Ren et al., 2021; Khan et al., 2017).
In order to investigate the capability and development needs of mathematical modeling and the
lack of accurate prediction of fluid and particle agitation for various fluidization velocities, numer-
ical predictions from NEPTUNE CFD code are compared with laboratory measurements from
Aguilar-Corona (2008).

2. Experimental measurement from Aguilar-Corona (2008)

Aguilar-Corona (2008) performed many experiments using a solution of Potassium Thiocyanate
(KSCN) 64 % (w/w) and solid particles of Pyrex beads. She investigated many parameters exper-
imentally using a high-speed camera to capture the trajectory of the particles. The experimental
results performed by Aguilar-Corona (2008) were used to build the reference case, which is a
cylinder consisting of 80 mm in diameter and 500 mm in height. The fluid and particle properties
are provided in Tab. 1. For more details see Aguilar-Corona (2008).

Table 1: The fluid & particle properties.

Description Value
Fluid density 1400 kg/m3

Fluid viscosity 3.8E-3 Pa.s
Particle density 2230 kg/m3

Particle diameter 6 mm
Total solid mass 0.624 kg
Initial bed height 9.5 cm
Initial solid packing 0.585
Terminal velocity 0.226 m/s

3. Mathematical modeling and numerical parameters

Three-dimensional numerical simulations are carried out using NEPTUNE CFD. This Eulerian
n-fluid unstructured parallelized multiphase flow software is developed in the framework of the
NEPTUNE project financially supported by CEA (Commissariat a l’Energie Atomique), EDF
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(Electricité de France), IRSN (Institut de Radioprotection et de Sureté Nucléaire) and Framatome.
The modeling approach for fluid–particle flows is implemented by Institut de Mécanique des Flu-
ides de Toulouse (IMFT) (Neau et al., 2020). The Eulerian n-fluid approach used is a hybrid
approach where the transport equations are derived by phase ensemble averaging for the continu-
ous phase and by using kinetic theory of granular flows supplemented by fluid and turbulent effects
for the dispersed phase thanks to joint fluid–particle Probability Density Function (PDF) approach.
In the proposed modeling approach, transport equations (mass, momentum and fluctuating kinetic
energy) are solved for each phase and coupled through inter-phase transfer terms. The momentum
transfer between liquid and particle phases is modeled using the drag law of Wen and Yu limited
by Ergun equation for the dense flows (Gobin et al., 2003). The collisional particle stress tensor
is derived in the frame of the kinetic theory of granular media. The fluid turbulence modeling
is achieved by the two equations of κ − ε model extended to particle-laden flows accounting for
additional source terms due to the inter-phase interactions (Vermorel et al., 2003). For the dis-
persed phase a coupled transport equation system is solved on particle fluctuating kinetic energy
and fluid–particle fluctuating covariance (q2

p - q f p). The effects of the particle-particle contact
force in the very dense zone of the flow are taken into account in the particle stress tensor by the
additional frictional stress tensor. For more details about the model see (Hamidouche et al., 2018;
Gevrin et al., 2008).

The constructed mesh is composed of 510.000 cells in size ∆x = ∆y = 0.001 m and ∆z = 0.002
m. The inlet, outlet and wall boundaries were defined, respectively, as inlet velocity, free pressure
outlet and friction for both phases. We ran several simulations using the following fluidization
velocities: U f = 0.073, 0.09, 0.12, 0.15 and 0.17 m/s. The inlet velocity was assumed to be
homogeneous over the inlet surface. For these velocities tested, the Reynolds Number is ranging
from 82 to 378 and the Stokes Number is varying from 0.9 to 6.1. The coefficient of restitution
and maximum packing αp are, respectively, 0.9 and 0.64.

4. Fluidization law

In order to determine the fluidization law, many simulations was performed with different fluidiza-
tion velocity. Figure 1(a) illustrates, for different U f , the time average for solid volume fraction,
〈αp〉, at the center of the column. As overall trend, the bed height moves upward when fluidization
velocity increases, while 〈αp〉 drops. In other words, the fluidized bed becomes more diluted when
the fluidization velocity is increased. Figure 1(b) presents the mean value of the solid volume frac-
tion averaged over the entire bed height for different velocities. Below you can see the numerical
results, experimental value from Aguilar-Corona (2008) and Wen and Yu (1966), Tenneti et al.
(2011) & Richardson and Zaki (1954) correlations. The Richardson and Zaki (1954) equation is
showed in Eq. 1 and the parameters utilized to plot Fig. 1(b) are U0 = 0.226 m/s and n = 2.39.

Ut =U0(1−αp)
n (1)

Analysing Fig. 1(b) we can see that the numerical results are much more in agreement with
Tenneti et al. (2011) and Wen and Yu (1966) correlations, the last one is a correlation that takes
into account a homogeneous system without collision. The drag law utilized in our simulations is
based on Wen & Yu. Therefore, an investigation using different drag laws seems to be important,
as the numerical results were much closer to the correlation than the experimental results. As a
result, the findings differ from those obtained in the experiments and Richardson and Zaki (1954)
correlation, although for dense regime (〈αp〉> 0.3) the results present a good agreement with the
experimental and the correlations.
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(a) (b)

Figure 1: Numerical and experimental results where figure (a) shows 〈αp〉 profiles for different
fluidization velocities at a central line inside the cylinder and figure (b) shows the spatial average
value for 〈αp〉 in function of fluidization velocity U f .

5. Fluid and particle analysis of the total fluctuating kinetic energy

To calculate the fluctuating kinetic energy, some nomenclatures need to be clarified. Where Ψk is
an ordinary variable and Ψ̃k is the time average taking in account αk as represented in Eq. 2.

Ψ̃k,i =
∑αkΨk,i∆t

∑αk∆t
(2)

In order to calculate the fluctuating kinetic energy in each direction is necessary to compute the 3
terms shown in Eq. 3. Where the first term is the spatial variance of the mean velocity, the second
one is the spatial mean of the local temporal variance and the third one is the spatial mean of the
random fluctuation of q2

k .

αk,i = Ũ ′2
k,i + 〈̃u′2k,i〉+

˜〈2/3q2
k〉 (3)

For comparisons purposes, the fluid and particle velocity variances are being plotted side by side
(see Fig. 2). The 〈αp〉 value used to plot the numerical result is the same as the experimental, as
the value is being over predicted by the model. As can be seen, the vertical particle variance is
being overestimated much more than the others, it is about 3 times larger than the experimental
value for 〈αp〉= 0.12, however it is well estimated for 〈αp〉> 0.3. In contrast, the vertical and the
horizontal components for the fluid are being underestimated independently of 〈αp〉.

The total fluctuating kinetic energy can be calculated using Eq. 4, where it takes into account all
components (x, y, z) to figure out the energy. However, it is known that the horizontal components
(x, y) are similar, then, only the x contribution was used to estimate the kinetic energy.

Ek =
1
2
(
αk,x +αk,y +αk,z)

)
=

1
2
(
2∗αk,x +αk,z)

)
(4)

Using Eq. 4 and results from Aguilar-Corona (2008) we can plot energy for both phases. As it is
shown in Fig. 3, the energy prediction value for both phases is decreasing with increasing of 〈αp〉.
For dispersed phase, the energy is being overestimated until 〈αp〉 = 0.3, after that, the kinetic
energy is being underestimated. The fluid phase is being underestimated independently of 〈αp〉. It
is worth noticing that the kinetic energy predicted for both phases are approximately of the same
order of magnitude, which is not the case for the measured results from Aguilar-Corona (2008).
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(a) (b)

Figure 2: The horizontal and vertical contributions of the spatial mean of the velocity variance for
(a) particle and (b) fluid.

Therefore, we need to improve the mathematical modeling of the phase agitation coupling by a
modeling of the fluid turbulence production due to the particle motion. It is worth noticing that
the Euler-Euler approach used in this paper, the fluid turbulence modeling is made in the frame of
very small particles and small particle Reynolds numbers (Vermorel et al., 2003). Hence, the fluid
pseudo-turbulence production in the wakes of the particles is neglected but it need to be accounted
for the fluid-particle fluidized beds modelling.

Figure 3: Comparison between particle and fluid fluctuating kinetic energy.

6. Conclusion

Numerical simulations employing the Euler-Euler approach were performed in order to investigate
the bias and to understand better the model applied in a liquid-solid fluidized bed. We ran simula-
tions in a completely 3-D fluidized bed that Aguilar-Corona (2008) had examined experimentally.
Overall, the spatial mean of the velocity variance is being underestimated by the model, except
for vertical particle component, which is being over-predicted for dense regime. It is interesting to
note that the agitation of the two phases reduces as the solid concentration in the bed increases and
the model was able to catch the flow ansiotropy, reflecting the trend seen in the experiments. How-
ever, the estimation of the kinetic energy for both phase is roughly of the same order of magnitude,
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which is not the case for the measured values from Aguilar-Corona (2008). As a result, we should
propose a model capable to compute the pseudo-turbulence production, which ought to increase
the fluid velocity fluctuation prediction without causing any influence on the particle fluctuating
motion. In other words, the model may predict a higher value to fluid velocity fluctuation and
consequently approaching the experimental results.
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Abstract 

The pulp industry is a high consumer of water, and efforts to reduce water consumption 

have led to the build-up of non-process elements (NPE), mainly in the bleaching area. 

These species can jeopardize the plant operability and reduce the product quality. This 

work aimed to develop a simulation tool to describe the concentration of NPE in pulp 

suspensions reliably so that it can be used to optimize bleaching sequences. The simulator 

is based on the Donnan model with parameters estimated from adsorption equilibrium 

experiments. The model predictions were compared with experimental results, and a good 

predictive capacity of the model was proved. 
 

Keywords: pulp bleaching, non-process elements, adsorption, Donnan equilibrium. 

1. Introduction 

Over the last decades, the pulp and paper production industry has made a significant effort 

to reduce freshwater consumption in the process. Indeed, water consumption in pulp 

bleaching plants has decreased from 35-50 m3/t AD (air-dried) in the 1980s to ca. 25 m3/t 

AD in modern plants (Huber et al., 2014). However, further reductions have been 

explored to make pulp and paper production more sustainable, especially when the mills 

are located in water-scarce areas or if groundwater is used (Tewari et al., 2009). 

Bleaching is the set of operations that follow the pulp cooking process and precede paper 

production. Here, the residual lignin is oxidized and removed from the pulp along with 

some chromophore groups responsible for the brown colour of the pulp. In most cases, 

the chromophore groups are functional groups of the carboxylic type (-COOH) or of the 

phenolic type (-PhOH) (Bygrave, 1997). Depending on the pH in each stream, these 

functional groups can act as active sites for the adsorption of metallic elements in the pulp 

(Rudie and Hart, 2006). The bleaching section comprises several bleaching and washing 

stages. In the bleaching stages, the pulp reacts with different oxidizing agents to degrade 

the chromophore groups and then proceeds to one or more washing steps, in which the 

dissolved compounds (organic and inorganic) are removed. For this reason, this section 

turns out to be the pulp mill zone that requires the greatest amount of water, generating 

effluent with high pollutant loads (Tewari et al., 2009). 

The optimization of pulp bleaching has involved using reagents with lower environmental 

risks, but that guarantee high efficiency in removing chromophore groups, requiring 

547

http://dx.doi.org/10.1016/B978-0-323-95879-0.50087-4 



 A. M. Sousa et al. 

smaller water quantities to wash the pulp. In addition to these measures, the pulp washing 

is operated in countercurrent, limiting the amount of fresh water introduced into the 

process and consequently reducing the amount of effluent generated (Huber et al., 2014). 

This closure in the water circuits led to the build-up of some organic compounds 

(resulting from the removal of chromophore groups and lignin) and inorganic species. 

Most of the inorganic species accumulated in the process are denoted as non-process 

elements (NPE). These are metallic elements not directly involved in the pulp production 

process but rather introduced as wood constituents (Ulmgren, 1997). The main NPE are 

calcium, sodium, magnesium, and chlorine (Andrade et al., 2007). The increase in the 

concentration of chloride in the system, for example, can lead to corrosion problems in 

the equipment, limiting the possibility of burning the filtrates in the recovery boiler. On 

the other hand, the accumulation of the remaining metallic elements is associated with 

scaling problems, fouling, and loss of bleaching capacity (Stratton et al., 2004). 

Furthermore, metallic cations tend to adsorb on the fiber surface, binding to the functional 

groups in the pulp, degrading the fiber quality for downstream operations. 

WinGEMS 5.3 is a software developed to the pulp production processes. However, some 

limitations have been pointed out in terms of its ability to predict the sorption and scaling 

phenomena, generating results with large deviations from the industrial data. WinGEMS 

includes the Langmuir sorption model (Eq. 1, Langmuir, 1918), to predict the amount of 

sorbed components as a function of the concentration of the component in the solution 

phase (C, g/L), and the active sites in the pulp in an oven-dried (OD) basis (A, kg/t OD). 

The model also includes a parameter, B (L/g), that is specific for each NPE. 
 

 
𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑜𝑟𝑏𝑒𝑑 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 =

𝐴𝐵𝐶

1 + 𝐵𝐶
 (1) 

 

WinGEMS 5.3 contains only the A and B parameters for the Na+, Ca2+, and K+ ions and 

does not include its variation with pH, although the amount of active sites is clearly 

dependent on this variable. These assumptions limit and weaken the predictive capacity 

of the simulator. Due to the lack of accuracy in predicting the adsorption phenomenon 

and the inability to include very important elements such as magnesium, it is imperative 

to implement alternative models that solve these limitations, such as the Donnan 

equilibrium model. This work aimed to develop a computer simulation tool, in MATLAB, 

to be further integrated with WinGEMS to improve the predictive capacity of the 

software, allowing to optimize the amount of water introduced in the washing steps, while 

restricting the formation of precipitates and the adsorption on the fiber. 

2. Model development and implementation 

The Donnan equilibrium model was initially developed to govern the uneven distribution 

of ions between two sides of a membrane (Donnan and Harris, 1911) and later applied to 

pulp suspensions to simulate the adsorption equilibrium (Towers and Scallan, 1996). The 

pulp suspension is described as two compartmentalized phases called fiber and solution. 

The fiber phase (F) considers the fiber (including the functional groups) and the water of 

the internal solution with the dissolved ions bounded to the fiber. The solution phase (S) 

contains the external water and the ions dissolved in it. The Donnan model considers the 

existence of two types of functional groups in the fiber (𝐴𝐻 and 𝐵𝐻, in its protonated 

form). Table 1 lists all the equations of the model. Depending on the pH, these groups 

can dissociate, generating negative charges (𝐴− and 𝐵−, check Eq. 2a and 2b). The 

dissociation constants (𝐾𝐴𝐻  and 𝐾𝐵𝐻) of these functional groups are indicated according 

to Eq. 3a and 3b, considering the molalities (𝑚𝑖
𝐹) of the various species (𝑖) involved in 
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the reactions. To calculate the Donnan equilibrium, electroneutrality is assumed in each 

phase of the system, that is, the net ionic charge is zero. This results in Eq. 4 and 5, where 

𝑧 corresponds to the valence of the ion 𝑗 or the functional group 𝑘. Electroneutrality 

equations also take into account the ions resulting from the water dissociation in each 

phase, whose concentrations are calculated according to the dissociation constant (𝐾𝑊 =

10−14, at 25 ºC) (Eq. 6). The fiber phase is considered a homogeneous phase separated 

from the external solution. The presence of fixed ionic species, such as carboxylic and 

other functional groups in fibers induces Donnan equilibrium. Thus, the mobile metal ion 

concentrations inside and outside the fiber phase are not equal. The Donnan equilibrium 

expression is described by Eq. 7, where 𝑚𝑗
  corresponds to the molality of the ion 𝑗, 𝑧𝑗 the 

valence of the ion 𝑗, and λ the Donnan constant. It is necessary to guarantee the 

conservation of the functional groups, both in their protonated and deprotonated state, 

therefore mass balances (Eq. 8a and 8b) to the total amount of groups (𝑄𝐴 and 𝑄𝐵) are 

introduced, where 𝑀𝐹 relates to the mass of water in the internal solution, 𝑚𝐴𝐻
𝐹  and 𝑚𝐵𝐻

𝐹 , 

the molalities of the protonated groups, and 𝑚𝐴−
𝐹  and 𝑚𝐵−

𝐹 , the molalities of the 

deprotonated groups. Finally, it is necessary to close the mass balances for each ionic 

species in the whole system. Thus, Eq. 9 expresses the balance for each cationic species 

(𝐶𝑗) and Eq. 10 for each anionic species (𝐴𝑗). 𝑀𝑆 represents the mass of water in the 

external solution. Solving the system of Eqs. in Table 1, the λ parameter can be calculated 

as an implicit function of the solution pH. Commonly, as pH increases, λ also increases. 
 

Table 1. Equations used to simulate the Donnan equilibrium model in a fiber suspension. 

𝐴𝐻
 

⇔ 𝐴− + 𝐻+ (2a) 𝐾𝑊 = 𝑚𝐻+
𝐹 . 𝑚𝑂𝐻−

𝐹 = 𝑚𝐻+
𝑆 . 𝑚𝑂𝐻−

𝑆  (6) 

𝐵𝐻
 

⇔ 𝐵− + 𝐻+ (2b) (
𝑚𝑗

𝐹

𝑚𝑗
𝑆)

1
𝑧𝑗

= 𝜆 (7) 

𝐾𝐴𝐻

 
⇔ 

[𝐴−][𝐻+]

[𝐴𝐻]
=

(𝑚𝐴−
𝐹 )(𝑚𝐻+

𝐹 )

(𝑚𝐴𝐻
𝐹 )

 (3a) 
𝑄𝐴

𝑀𝐹
= 𝑚𝐴𝐻

𝐹 + 𝑚𝐴−
𝐹  (8a) 

𝐾𝐵𝐻

 
⇔ 

[𝐵−][𝐻+]

[𝐵𝐻]
=

(𝑚𝐵−
𝐹 )(𝑚𝐻+

𝐹 )

(𝑚𝐵𝐻
𝐹 )

 (3b) 
𝑄𝐵

𝑀𝐹
= 𝑚𝐵𝐻

𝐹 + 𝑚𝐵−
𝐹  (8b) 

∑ 𝑧𝑗

𝑗

𝑚𝑗
𝐹 + ∑ 𝑧𝑘

𝑘

𝑚𝑘
𝐹 = 0 (4) 𝐶𝑗 = 𝑀𝑆𝑚𝑗

𝑆 + 𝑀𝐹𝑚𝑗
𝐹 (9) 

∑ 𝑧𝑗

𝑗

𝑚𝑗
𝑆 = 0 (5) 𝐴𝑗 = 𝑀𝑆𝑚𝑗

𝑆 + 𝑀𝐹𝑚𝑗
𝐹 (10) 

3. Materials and methods 

Pulp samples were collected at two points on the bleaching line of a Portuguese pulp and 

paper mill: p-O2 (after oxygen delignification) and D2 (end of a bleaching sequence). 

The analysis followed TAPPI procedures. The pulps were acid washed (HCl, until pulp 

pH of 1.5-2) before analysis. The concentration of functional groups and their dissociation 

constants were determined by potentiometric titration. The quantification of NPE in the 

pulp was determined by flame atomic absorption spectrometry (AAS), after acid 

digestion. The sorption tests were conducted at 60 ºC, a pulp consistency of 5% wt., and 

varying the pH of the experiment using HCl or NaOH solutions. Single-component tests 

were carried out for Ca, Na, and Mg and multi-component tests were also carried out. The 

concentrations tested were close to 500, 1000, and 100 mg/kg OD for Ca, Na, and Mg, 

respectively, in single-component tests. For multi-component tests, the concentrations 

tested were close to 3000, 30000 and 500 mg/kg OD for Ca, Na, and Mg, respectively. 
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The Donnan equilibrium model was implemented in MATLAB. The adsorption for the 

p-O2 sample was simulated in WinGEMS in two different modes: (1) a pulp stream was 

simulated as the models are implemented in WinGEMS; (2) the Donnan equilibrium 

values were imported to WinGEMS and equations were solved to calculate the 

distribution of NPE between the pulp and the solution. 

4. Results and discussion 

The characterization of the pulps by titration allowed to determine the concentration of 

functional groups per unit of pulp mass (mmol/kg OD), as well as the dissociation 

constants of the two types of functional groups. The titrations curves (results not shown) 

did not reveal the presence of phenolic groups for the pulps p-O2 and D2. Thus, Eq. 2b, 

3b, and 8b in Table 1 were not considered in the simulations. These results are in line 

with what was documented by Zhang (2006), who refers only to the existence of 

carboxylic groups. The results are summarized in Table 2. The concentration of functional 

groups significantly decreased during the bleaching process. These values were used to 

parameterize the Donnan equilibrium simulator in MATLAB. 
 

Table 2. Pulp characterization in functional groups. 
Pulp 𝒌𝑨𝑯 𝒑𝒌𝑨 𝑸𝑨 (mmol/kg OD) 

p-O2 2.51x10-4 3.6 99 

D2 1.78x10-4 3.75 47 
 

For the single-component adsorption tests, it was found that generally, the Donnan model 

fits well with the experimental data for Ca and Mg elements (Fig. 1 a, b, e, and f). For 

Na, the fit quality is lower, which can be due to technical difficulties in the AAS 

determination of Na, but the results are also satisfactory (Fig. 1 c and d). For the elements 

Ca and Na, the prediction of the Langmuir model was calculated, using the constants 

initially in WinGEMS and the same concentrations used in the adsorption tests and the 

simulation of the Donnan equilibrium. For Ca, the values of constants A and B were 1.5 

kg/t OD and 4 L/g, respectively, which for the concentration of 500 mg/kg OD resulted 

in the adsorption of 136.4 mg/kg OD of calcium. Under typical industrial conditions, the 

p-O2 pulp has an alkaline pH value, so this prediction is not suitable, compared to the 

results presented in Fig. 1a, where all the calcium is sorbed into the pulp, for such pH 

values. The D2 pulp has a pH between 3.5 and 5, so the Langmuir equation is not adequate 

to simulate these conditions, as the experimental essays showed that sorbed calcium 

varies between 200 and 400 mg/kg OD for this pH range (Fig. 1b). For Na, the constants 

A and B took the values of 2.43 kg/t OD and 53 L/g, respectively, which for the 

concentration of 1000 mg/kg OD led to the adsorption of 1764.2 mg/kg OD. This value 

is wrong, since it considers the adsorption of a greater amount of sodium than available, 

which overestimates its concentration in the fiber. Analyzing Fig. c and d, it was found 

that, for the conditions tested, all the sodium was sorbed into the pulp. In the case of 

magnesium, WinGEMS does not include constants to calculate the adsorption 

equilibrium, but it was found that the Donnan model allowed a good approximation for 

this element in each of the pulps (Fig. 1e and f).  

The Donnan equilibrium simulation for the multi-component system also revealed a good 

predictive capacity of this model for both samples (Fig. 2). This result is significant since 

the pulp suspension has several NPE interacting with each other in real systems, 

influencing the adsorption process. It was observed a slight decrease in the sorbed amount 

for D2, since under these conditions, the functional groups of the pulp become saturated. 
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Fig. 1. Adsorption equilibrium for Ca (a and b), Na (c and d) and Mg (e and f), experimental and 

Donnan model for pulp p-O2 (a, c, and e) and D2 (b, d, and f). 

 

 

  
Fig. 2. Multi-component sorption essays and Donnan model: (a) – pulp p-O2 and (b) – pulp D2. 

a b 

c 

e 

d 

f 

a b 
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Finally, a stream containing p-O2 pulp was simulated in WinGEMS 5.3 for the 

experimentally tested conditions (for Ca and Na), considering a pH of 10 in two different 

modes. In mode (1), the simulation considered the adsorption models available in the 

software and the results showed that the introduced ions remained completely in the 

solution phase, demonstrating the limitations of the software. In mode (2), the simulation 

considered λ value (1.38 at pH 10) calculated in MATLAB script and Eq. 7 (Table 1) that 

establish the partition between the phases. In this case, the results showed that a certain 

fraction of these ions (Ca2+ and Na+) are effectively adsorbed in the pulp p-O2. The results 

in Table 3 are in good agreement with the experimental data showed in Fig. 2a, at pH 10. 
 

Table 3. WinGEMS simulations for p-O2 sample, at pH 10. 

 Without Donnan model – Mode (1) With Donnan model – Mode (2) 

 wt.% mg/kg OD wt.% mg/kg OD 

Ca2+ sorbed 0a 0 0.0715a 715 

Na+ sorbed 0a 0 0.3692a 3692 

Ca2+ solution 0.0205b 3895 0.01707b 3180 

Na+ solution 0.1513b 28740 0.1318b 25048 

a – % Suspended solids; b – % mass of liquor. 

5. Conclusions 

This work showed that the Langmuir model implemented in WinGEMS could not predict 

the adsorption phenomenon in the pulp mill, namely because the concentration of 

functional groups and pH varies in the different bleaching stages. The Donnan model 

allowed a good predictive capability for mono- and multi-component systems and it is 

easily implemented in WinGEMS. Implementing this model to simulate the bleaching 

line can be valuable for assisting in the optimization of bleaching sequences and 

configurations, allowing for a reduction in water consumption. 
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Abstract 

Heat treatment processes of liquid dairy products (pasteurisation, sterilisation) are energy, 

water and wastes intensive. They are normally conducted in an energy integrated system 

of 3 plate heat exchangers (PHEs), in batch mode heating-cleaning cycles. During 

cleaning, the whole process is interrupted, causing loss of production. A new semi-

continuous pasteurisation process is proposed here comprising a design modification (an 

additional plate heat exchanger and holding tube), the calculation of (time-varying) 

pasteurisation time and its use in a new logic for switching between heating and cleaning, 

and suitable scheduling of equipment in a rotation strategy. All schemes are studied using 

a detailed distributed dynamic model of the process. The simulation results for a typical 

high-temperature-short-time (HTST) case study show that the rotational scheduling of the 

PHEs and tubes results in a semi-continuous operation where milk production can be 

maintained indefinitely. Substantially higher productivity (+23% throughput), reduced 

energy, and total cost (-47%) are achieved relative to the traditional batch mode operation. 

 
Keywords: interaction between design and scheduling; dynamic modelling; food 

processes; heat treatment; fouling and cleaning 

1. Introduction and background 

The heat treatment of milk, and dairy fluid in general, is typically conducted in an energy 

integrated system of 3 plate heat exchangers (PHEs) and connecting pipework (Fig. 1a). 

Cold milk is fed to a preheater (Regeneration) PHE, then a main Heating PHE which uses 

steam or water utilities. A Holding Tube ensures milk is kept at a high temperature for a 

sufficiently long time, dictated by preservation requirements. For example, in the high-

temperature-short-time (HTST) treatment, milk must be held above 72-75°C for 15-20 s. 

From the holding tube, the hot milk returns to the preheater for energy recovery against 

the incoming cold milk, then on to the final Cooler PHE. Fouling requires stopping the 

process and carrying out a Cleaning in Place (CIP) of the entire system, according to the 

State Transition Network in Fig.1b. The process is conducted in batch mode, with no 

production during cleaning. Many studies have discussed the dynamic modelling, fouling 

deposition and CIP of single PHEs (e.g., Georgiadis et al 1998a, 1998b; Georgiadis & 

Macchietto, 2000; Manik et al, 2004; Jun & Puri, 2005; Guan & Macchietto, 2018; 

Sharma & Macchietto, 2021). Only some (e.g., Aguiar & Gut, 2014; Gutierrez et al, 2014; 

Zhu et al., 2020) integrated individual models into the dynamic simulation of a complete 

system. We are not aware of papers on the continuous operation of such systems in the 

presence of fouling. Here, a new process is proposed for continuous milk production, via 

a design modification (using an additional PHE and holding tube, Fig. 2), novel phase 

switching logic between heating and cleaning, the flexible use of PHEs and holding tubes 

in rotation, and suitable scheduling of all operations. For a high-temperature-short-time 
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(HTST) treatment, it is shown that this leads to higher production and reduced costs. A 

2D-distributed dynamic model of all units in the pasteuriser unit is used, as detailed by 

Zhu et al, 2020. Each PHE model includes fouling kinetics, heat transfer, and deposition 

on each side plate of each channel and in the tube using a moving boundary for the deposit 

(Fig. 3). Each point along each plate and tube is characterised by (time-varying) 

temperature, shear rate, heat transfer rate, fouling deposition, and deposit depth. All 

modelling and simulations were done using gPROMS 7.0.7 (Process Systems Enterprise). 

 

Figure 1. (a) Pasteuriser unit (Gutierrez et al, 2014; Zhu et al, 2020), TCH and TCR are 

connecting tubes. (b) State transition network - overall system (circles = unit states, lines = tasks). 

 

Figure 2. (a) Modified pasteuriser unit with an additional PHE (here being cleaned). Not shown 

are an additional holding tube and pipework for flexibly re-connecting units. (b) State transition 

network for individual PHEs 1-3 and holding tubes (circles = unit states, lines = tasks). 

 

Figure 3. (a) Schematic diagram of a single PHE channel subject to fouling. (b) Cross-sectional 

diagram of the moving boundary model for a tube (Zhu et al, 2020). 

2. New switching logic using pasteurisation time 

A typical process requirement for preservation is to hold the fluid above a certain 

temperature for a minimum time. In the HTST treatment of milk, this is 72-75°C for 15-

20 s. Such milk temperature may be reached in the end of the Regeneration PHE, Heating 

PHE, holding tube, and initial channels on return to the Regeneration PHE. Temperatures 

change due to fouling, and direct monitoring of the HTST constraint during heating is not 

straightforward. Following temperatures at various inlet/exit points gives a partial idea. 

An alternative is to estimate the amount of deposit on the plates, using simulations 

models. An often-used criterion (Georgiadis & Macchietto, 2000) is to switch from 
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heating to cleaning when a critical fouling (a deposit mass density of 16 g/m2) is reached 

on any plate in a PHE. These are all indirect indicators. A direct way of estimating the 

actual pasteurisation time is proposed as follows: First, at any given time the temperature 

profile of milk is established (from the simulation model) along its path from the entrance 

to the preheater, through the channels in the various PHEs, along the holding tube, to the 

exit from the cooler (points - in Fig. 2a). This is visualized in a novel diagram (Fig. 

4a). Such a diagram can be used to also depict the local distribution at a given time of 

other variables, such as deposition rates (Fig 4b), heat transfer rates, shear rates, etc. The 

pasteurisation time (i.e., residence time of milk above the minimum temperature) in each 

PHE channel, tube, and overall can be calculated from the diagram graphically, and in 

the model as follows. From Fig. 3a, the gap, 𝑒𝑥, and volume, 𝑉𝑐 , in each PHE channel are: 

𝑒𝑥(𝑥) =  𝑒𝑗 − 𝛿𝐿(𝑥) − 𝛿𝑅(𝑥)                                                                                              (1) 

𝑉𝑐 = ∫ 𝑊 ∙ 𝑒(𝑥) 𝑑𝑥
𝐿

0

                                                                                                              (2) 

where x is a length coordinate, 𝑒𝑗 is the channel gap under clean condition, 𝛿𝐿 and 𝛿𝑅 are 

the deposit thickness on left and right plates, respectively, and W is the channel width. 

The corresponding equations for the tube model (Fig. 3b) are: 

𝑅𝑓𝑙𝑜𝑤(𝑧) = 𝑅𝑖 − 𝛿(𝑧)                                                                                                            (3) 

𝑉𝑇𝐵 = ∫ 𝜋 ∙ 𝑅𝑓𝑙𝑜𝑤
2  𝑑𝑧

𝐿

0

                                                                                                           (4) 

where 𝑅𝑓𝑙𝑜𝑤 is the real radius of flowing fluid, 𝑅𝑖 is the inner radius of the tube, 𝛿 is the 

deposit thickness, and 𝑉𝑇𝐵 is the tube volume. The volume data are used to calculate the 

pasteurisation time in each PHE channel, 𝜏𝑐, and tube, 𝜏𝑇𝐵, given respectively by: 

𝜏𝑐 =
𝑉𝑐

𝑉̇
                                                                                                                                      (5) 

𝜏𝑇𝐵 =
𝑉𝑇𝐵

𝑉̇
                                                                                                                                (6) 

where 𝑉̇ is the volumetric flowrate of milk. Only those locations where the temperature 

in a channel or tube is higher than the minimum temperature (here, 72°C) are considered 

in the pasteurisation time calculations. The process fluid can be the hot fluid and/or cold 

fluid (in the heating PHE milk is the cold fluid, while in the regeneration PHE, milk is on 

both sides). The overall pasteurisation time, at any instant, is the sum of the pasteurisation 

times in all channels of all PHEs and in tube. In a clean system, it will start being longer 

than the minimum HTST requirement, but decreases over time due to fouling. A new 

termination condition is therefore defined, based on the time-varying pasteurisation time: 

TC1 (overall pasteurisation time < 15s). Here, both TC1, and the max fouling criterion, 

TC2 (critical deposit mass density on any PHE plate >16 g/m2) are used in a combined 

OR logic condition to decide when to switch from heating to cleaning.  

3. High-temperature-short-time (HTST) case studies 

A HTST pasteurisation treatment is considered, with milk temperature > 72°C for 15 s 

and initial configuration in Fig. 2a (TCH and TCR are connecting tubes). Milk is fed to 

PHE1 (used as regenerator), then goes to PHE2 (used as a heater), to holding Tube 1, 
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back to PHE1 for energy recovery and to PHE4, used as a cooler. Equipment, operation, 

and model parameters for this typical industrial system are in Zhu et al, 2020, based on 

Gutierrez et al, 2014. The new PHE and holding tube have the same geometry and 

configuration as the original ones. Each PHE has 12 plates with flow configuration as in 

Fig. 5d. Fouling is included in all models, including for TCH and TCR. Inlet flowrates 

and temperatures are given in Table 1 for two settings. Fig. 4 shows the temperature and 

deposition rate diagrams for both settings at time t = 3.8 h, after starting from a completely 

clean system. The x axis in the diagrams in Fig. 4 and Fig. 5 is the distance along the milk 

path in the pasteuriser unit (points - in Fig. 2). The ordinate shows the milk 

temperature (Fig. 4a) and deposition rate (Fig. 4b) at each point along this path. At the 

start time t=0 (clean conditions) the pasteurisation time for Setting 1 is 16.1 s, above the 

minimum HTST requirement. Due to fouling, after 3.8 h of operation, the pasteurisation 

time becomes 15s, thus triggering switching condition TC1. Significant fouling also 

occurs in the holding tube and at the higher temperature locations in PHE1 and PHE2. 

With Setting 2, a smaller hot utility flowrate results in a lower top milk temperature and 

milder fouling, however the pasteurisation time is only 8.8 s even at initial clean 

conditions, failing to meet the HTST requirement. A similar diagram of the heat flux from 

the processing fluid (negative values denoting heat transferred to the fluid) to the left-side 

and right-side plates in each PHE channel is shown in Fig. 5a and 5b, respectively, for 

Setting 1. Due to the alternance of co-current and counter-current flows in adjoining PHE 

channels (Fig. 5d), the two are different. A clear, strong relationship is evident between 

the relative flow directions on the two sides of a plate and heat flux pattern. In co-current 

flow plates, the heat flux shows a zigzag pattern, while in counter-current flow plates, it 

shows a piecewise continuous line. Adding up the heat flux on the left and right plates of 

each channel gives the total heat flux from the processing fluid flowing there (Fig. 5c, 

with adiabatic tubes). The heat transfer picture is clearly very complex. These strong 

interactions between equipment, operation and fouling make a detailed dynamic model 

essential to estimate the actual pasteurisation time and how it changes over time. 

Table 1. Inlet stream flowrates (F) and temperatures (T) for two settings (based on Aguiar & Gut, 

2014), and resulting pasteurisation times when all units are clean (at time t = 0).  

Setting 
𝐹𝑚𝑖𝑙𝑘 

(L/h) 

𝐹ℎ𝑒𝑎𝑡 

(L/h) 

𝐹𝑐𝑜𝑜𝑙 

(L/h) 

Inlet Milk 

temperature 

(°C) 

Inlet Hot 

utility 

temperature 

(°C) 

Inlet cool 

utility 

temperature 

(°C) 

Initial 

pasteurisation 

time (s) 

Highest milk 

temperature 

(°C) 

Severity 

of 

fouling 

1 20 60 60 19.4 90 10.1 16.1  84.9 severe 

2 20 20 20 19.4 90 10.1 8.8 76.1 mild 

4. Semi-continuous operation with the additional equipment 

In a traditional operation, upon detection of excessive fouling after a heating period, the 

whole unit is cleaned. Here, after the above initial Phase 1 of 3.8 h, only the main heating 

exchanger (PHE2) and holding tube (Tube 1), heavily fouled, are taken out for cleaning. 

The equipment is reconfigured in Phase 2 as follows: PHE3 (cleaned), is put in service as 

a Preheater; PHE1 (mildly fouled from preheater use) becomes the main Heater; The 

second (clean) tube (Tube 2) is used as holding tube; PHE4 continues its service as a 

Cooler. When PHE1 or Tube 2 violate the fouling or pasteurisation time conditions, Phase 

2 ends, they are cleaned, PHE2 becomes the Preheater and PHE3 the main Heater, with 

Tube 1 used again. The equipment is operated in a rotation sequence of these three Phases 

according to the schedule in Fig. 6a. The termination criterion used for CIP is TC3 

(residual deposit mass < 0.01 g) on each plate for PHEs, and overall, for tubes. In Phase 
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1, the CIP time for Tube 1 is 52.7 minutes, leaving negligible deposit, that for PHE2 is 

24.8 minutes, leaving a small residual deposit. As the heater, previously used as a 

regenerator, does not start clean, Phase 2 is shortened to 3.44 h. Phase 3 lasts 3.42 h before 

a termination condition is triggered (in all cases, TC1). PHEs 1-3 rotate between three 

tasks (preheating, heating, CIP) according to the STN in Fig. 2b, tubes switch between 

two tasks (holding, CIP). The three-phase cycle takes 10.7 hours with the schedule in Fig. 

6a. The deposit on each plate of each PHE during the full cycle is shown in Fig. 6b-d.  

 

Figure 4. (a) Overall temperature diagram and (b) Total deposition rate diagram for at t = 3.8h. 

Setting 1 denoted as the blue line; Setting 2 denoted as the orange line.       

 

Figure 5. Heat flux from processing fluid, at t = 3.8 h, to (a) left plate and (b) right plate; (c) Total 

heat flux - blue for Setting 1, orange for Setting 2 (d) Flow patterns in the PHE configuration. 

 

Figure 6. Setting 1 operation: (a) Schedule of 4 PHEs and 2 tubes in three phases; Deposit mass 

during the cycle on each plate of (b) PHE1 (c) PHE2 (d) PHE3. 
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After the first cycle, subsequent cycles remain stable and can be repeated indefinitely. 

The performance of this semi-continuous cycled operation is compared to that in batch 

mode, which alternates production (heating) and stoppage (cleaning) of the whole system, 

using the method and cost parameters in Sharma & Macchietto, 2021. For the batch 

operation, heating is terminated according to TC2 (deposit mass density on any PHE plate 

>16 g/m2) and CIP according to TC3 (residual deposit mass on each PHE plate < 0.01 g). 

The semi-continuous mode pasteurises milk continuously with a 23% higher daily 

throughput, 69% lower cleaning cost, and 47% lower total operating costs. 

5. Conclusions 

Calculating milk pasteurisation time and its decay due to fouling, based on a detailed 

dynamic model of the integrated heat treatment process, allows us to monitor directly the 

key process constraint, and to use it in a new logic for switching between heating and 

cleaning. The new diagram of key properties of the process fluid along its path offers 

great insights into the integrated operation dynamics. Adding an exchanger and holding 

tube to the traditional scheme, using them flexibly in rotation, and suitable scheduling of 

preheating, heating, and cleaning tasks in individual equipment give additional degrees 

of operational freedom. Exploiting the interactions between design, dynamics, and 

scheduling results in a semi-continuous, cyclic operation, with uninterrupted milk 

production. A case study for a typical HTST heat treatment of milk shows that this semi-

continuous mode delivers significantly higher throughput and lower cost than the 

traditional (batch) operation. As some new equipment is required, a full economic 

assessment depends on the trade-off between capital and operating cost for the new 

design. The optimisation of the semi-continuous operation, overall benefit and return on 

investment is beyond the scope of this paper and will be investigated in future work. 
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Abstract 

Artificial reefs are presented as a possible response to the shrinking biological resource in 

coastal strip. They are intended to protect, regenerate, concentrate and enhance populations 

of marine organisms (Miller et al., 2007). The fluid-structure interaction generates changes 

in the flow regime, resulting in the formation of basins around the reefs by vortices above the 

structure (Sumer et al., 2001). The mean velocity correlated with the turbulent kinetic energy 

allows to study the sediment transport process in turbulent flow (Mazzuoli et al., 2020). 

Modelling of fluid-structure seabed interaction (FSSI) was realized on the software Xflow 

2020. The evolution of the burial depth leads to an increase in the turbulent kinetic energy. 

This evolution correlates with the mean velocity and shows an evolution of the sediment 

transport in time. The dynamics of a saturated sand was supposed similar to a pseudo viscous 

fluid (Chávez-Modena et al., 2020; Ouda and Toorman, 2019; Zhou et al., 2014). A two 

phases flow modelling with a sand defined by the Herschel-Buckley viscous model was 

realized. The result showed the same transport processes explained by (Mazzuoli et al., 

2020). The innovation of this article is to highlight turbulence as the principal reason of reef 

burial. A predictive method to characterize structure burial during time was showed by 

multiphase modelling.  

Keywords: Fluid structure seabed interaction, Herschel Buckley, Lattice Boltzmann Method, 

Particle based tracking, Sediment transport. 

1. Introduction

Marine biodiversity is weakened due to climate change leading to an increase in extreme 

events. Between the years 1982 and 2016, heat waves doubled in frequency and became more 

intense and widespread (Abram et al., 2019). This type of event causes degradation and loss 

of habitat such as coral reefs (Ainsworth et al., 2020). Coastal areas are particularly affected 

by this fragilization due to human overexploitation, ocean acidification, increased salinity, 

and rising sea levels (Abram et al., 2019). Marine Protected Areas (MPAs) and artificial reefs 

have shown their usefulness in marine ecosystem recovery (Rees et al., 2020). In the last 3 

decades, a large number of artificial reefs have been immersed in coastal areas around the 

world, including Japan, America and Europe (Santos and Monteiro., 1997; Kim et al., 2001; 

Jorgensen et al., 2009). 

On another side, marine scour is an erosion phenomenon created by the formation of 

turbulence during fluid-structure interaction. These turbulences cause the displacement of 

sediments above the structure (Sumer et al., 2001). Several studies have identified different 

mechanisms and characteristics of scouring around wrecks, large rocks or artificial structures 

(Werner et al., 1980; McNinch et al., 2001; Quinn., 2006). Important factors influencing 

http://dx.doi.org/10.1016/B978-0-323-95879-0.50089-8 
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lifetime with numerical modelling. For this purpose, two types of Fluid Structure Seabed 

Interaction modelling (FSSI) have been performed: a modelling of FSSI of the seabed 

geomorphology modeled in 3D for the years 2019, 2020 and 2021 to determine the reasons 

of the changing geomorphology through computational fluid dynamics (CFD) and a second 

modelling to validate the prediction tool for FSSI modelling considering the behavior of the 

surface part of the saturated sand as a pseudo viscous fluid (Ouda and Toorman., 2019; 

Chávez-Modena et al., 2020; Zhou et al., 2014). 

2. Environment

Atlantic Land Reef is an association based in the South-West of France. This association is 

installed since 1999. Three different types of artificial reefs are implanted on the Landes 

coast. During the years 2019, 2020 and 2021, depth data around these reefs were collected 

by divers. With these data, a 3D model of 20x20 meters of the geomorphology around the 

reef was made (Figure 1). The burial modelling was done on two types of these reefs with 

different structures, named Babel and Typi. The modified geomorphology has a bowl shape 

that grows from 2019 to 2021 and had not the same shape for the 2 artificial reefs studied. 

All six bowls were modelled in 3D: one 3D modelling was done for each year and for each 

reef studied. In this paper the results are focus on the Babel reef illustrated in Figure 1. 

3. Simulation of the interaction fluid structure on the bow

The software Xflow®2020 was used for this study. It resolves the Lattice-Boltzmann Method 

(LBM) inspired from the Kinetic theory. The turbulence near wall was calculated by the wall 

function called Wall-Modeled Large Eddy Simulation (WMLES). The dynamics of 

sediments in turbulent environments were studied by (Mazzuoli et al., 2020). The results 

obtained from this study could not be analytically compared with the study of Mazzuoli et 

al. (2020) because the sands studied had not exactly the same composition but the physical 

characteristics of these sands were similar enough to compare the transport process. The 

threshold of sediment transport in the ocean environment was evaluated by the shield 

parameter (Li et al., 2020), and this parameter was compared with the turbulence intensity 

by Mazzuoli et al. (2020). The turbulence intensity at ground was displayed in percentage 

and was calculated using the equation (1): 

𝐼 =
√2

3
𝐾

𝑈

(1) 

Where U is the mean velocity and k is the turbulence kinetic energy. Numerical simulations 

performed on the bowls have shown strong turbulence intensity above reefs. The proportion 

of ground surface with a turbulence intensity of 40 % increased with time as the bowl gets 

larger (Figure 1 (a),(b),(c)). The maximum turbulence intensity also increased over time, 

representing 42 % in 2019 and 54 % in 2021. The turbulence intensity could be correlated 

with the water mean velocity at ground level. All the proportion of ground surface with a 

turbulence intensity higher than 40 % corresponded to a current speed of 0.03 m.s-1. The 

equation  of the turbulent intensity has shown that the maximum turbulence intensity,  in 

correlation with the mean velocity, indicated an increase of turbulent kinetic energy as the 

bowl was increasing. K went from 2.1 J for the 40 % intensity zones to 11 J for the maximum 

turbulence intensity. Mazzuoli et al. (2020) has shown that a high turbulent kinetic energy 

correlated with a very low velocity (< 0.05 m. s-1) creates a low sediment transport. Thus, 

sand grains roll and slide on the ground.  

scour processes include object structure and orientation, bathymetry, and seabed 

geomorphology (Quinn., 2006). However, these reefs get buried in the sand over time. Very 

few works were conducted on the characterization of artificial reef burial. However, many 

numerical models of pipeline burial have been studied, using different approaches such as 

the impermeable wall method (Fuhrman et al., 2014) as well as the study of soil liquefaction 

(Ye et al., 2013; Li et al., 2018). The purpose of this study is to determine if the main cause 

of the burial of artificial reefs is scouring and if it is possible to estimate artificial reefs 
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as represented in Figure 1 (a),(b),(c). The mean velocity was 0.07 m.s-1 for a turbulent kinetic 

energy of 9 J. This data was higher for regions away from the reef than near the reef which 

suggested a growing sediment transport in these areas. The transport process could explain a 

slow scouring above reefs which was occurring over several years. This modelling confirmed 

our hypothesis that turbulence is possibly responsible for the increase of the bowls and 

therefore probably plays a key role in for burial of artificial reefs.  

4. Multiphase modelling

A multiphase modelling was conducted to determine if the turbulence energy is responsible 

for burial of artificial reefs. Two types of multiphase modelling were done to validate the 

transport process observed in experimental measures. 

4. 1 Rheology of saturated sand defined as a viscous fluid

The rheology data was obtained from literature (Zhou et al., 2014) and defined the behavior 

of a saturated sand as a viscous fluid. This fluid follows the viscosity model of a power law. 

The rheological data was determined following a triaxial test which possessed a soil 

consolidation pressure of 100 kPa. These consolidation pressures values were chosen as the 

weight of the Babel reef is 11094 kg. Thus, the pressure applied by the reef on the sand 

corresponded to a force of 109 kPa. The rheological data could be calculated with equations 

(2) and (3).

𝜏 =
𝜎

2
 𝜖 =

𝜎

𝐸
(2) (3)

Figure 1: (a-c) Evolution of the turbulence intensity during the year 2019 to 2021, (d) 

Turbulence intensity at the ground, (e) Interaction turbulence with seabed

561

represented a non negligeable energy (Mazzuoli et al., 2020). The bowl was deepening over 

the years, resulting in an increasing slope in these areas. The increasing velocity for a 

turbulent kinetic energy of 6 J resulted in more sediment transport for 2019 but as the bowl 

increased, the scour reduced for the region. 

The regions away from the reef were concerned by a turbulence fluctuation considering space 

and time. For 2021 the turbulence intensity of regions away from the reef was constant and 

the geomorphology of these areas was deeper than 2020 which was deeper than 2019 as well 

The  20 % turbulent intensity zones near the reef  (Figure 1, green zone) were concerned by 

a 1 m.s-1 velocity. The turbulent kinetic energy for these areas was therefore 6 J, which 
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𝛾̇ = (
𝜇

𝑘
)

1
𝑛−1

 (7)

𝛾̇ is the shear rate velocity, n is the non-dimensional flow index and k is the consistency 

coefficient. For a consolidation pressure of 100 kPa, n is equal to -0.1 and k is equal to 10.3 

according to (Zhou et al., 2014). These parameters obtained by equations (2) to (7) were 

injected in a viscosity law. The viscosity model chosen was Herschel-Buckley, which is an 

extension of the power law (Kang and King., 2016), because this viscosity model defines the 

behavior of a non-Newtonian fluid at threshold. The model is defined by adding the threshold 

shear stress (𝜏0) and the threshold viscosity (𝜇0), as defined in the equations (8) and (9).

𝜏0 = 𝜏 − 𝑘𝛾̇𝑛          𝜇0 = 𝑘𝛾̇𝑛−1 + 𝜏0𝛾̇−1 (8) (9)

These parameters were used in the following multiphase modelling 

4.2 Multiphase simulations 

The modelling has shown similar results to the bowl Figure 1 (a). A zone of 40 % turbulence 

intensity was hightlighted near the reef. The water mean velocity near sand was 0.07 m.s-1 

but the turbulence energy generated by the fluid-structure interaction leds to a velocity 

reduction of 0.02 m.s-1. The turbulence kinetic energy is therefore 6 J, corresponding to the 

same transport process as observed in the bowl. The artificial reef was buried of 0.05 m 

during the first second of simulation and then stabilized. The saturated sand kept the same 

morphology indicating that no sediment transport occurred over such a short period. The 

burial corresponded to the stabilization of the structure in the sand. The immobile saturated 

sand results corresponded to the sediment transport results of the bowls modelling.  

4.3 Simulation with strong turbulences 

The Figure 1 (e) illustrates the sediment displacement and the eddy caused by turbulence 

energy. The mean velocity of the sand at 0.54s was of 0.11 m.s-1 for a turbulence intensity of 

49%, which corresponds to a turbulent kinetic energy of 44J. This high turbulent energy is 

explained by the maximum speed of the vorticity of 2.9 m.s-1. This very high velocity 

correlates with the turbulent kinetic energy, inducing sediments transport. A bowl is created 

from a depth of 0.12m at 0.54s. The transport of sediments with strong turbulence energy 

seemed to correspond withthe conclusions of (Mazzuoli et al., 2020). The reef shape induced 

a different eddy formation in space, creating a different scouring process according to the 

studied zone. The reef’s behavior was the same during multiphase modelling at normal 

conditions as with multiphase modelling with strong turbulence energy. 
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the equation (4) (Massarsch and Tekn., 2015). 

𝐸 =
(1 − ν)

(1 − 2ν)(1 + ν)17.11
(4) 

Where ν is Poisson ratio which is equal to 0.49 (Massarsch and Tekn., 2015; Zhou et al., 

2014), These data helpedto calculate the shear strain and the dynamic viscosity, defined by 

equations (5) and (6) 

𝛾 = (1 + ν )𝜀  𝜇 =
𝜏

𝛾
(5) (6)

Where γ is the shear strain and μ is the fluid viscosity. The shear rate velocity is obtained as 

defined by equation (7). 

Where τ is the shear stress, σ is the stress with σ = 42 kPa. ε is the strain which can be defined 

as modulus of elasticity better known as Young's modulus for granular models according to 
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7. Conclusions

The modelling of the fluid-structure interaction on the bowls allowed to highlight an 

evolution of the scouring according to the geomorphology. The interactions between water 

and reef led to an increase in the turbulent kinetic energy and a reduction of the mean velocity 

above the structure. These turbulence characteristics resulted in a slow sediment transport 

and caused bowls expansion encouraging the burial of artificial reefs. Multiphase modelling 

can predict the burial of artificial structure but the WMLES modelling requires too much 

calculation time with current technologies. In order to achieve the objective of simulating 

over several years a Reynolds-Averaged Navier-Stockes equations (RANS) modelling 

should be experienced at first. Machine learning is being developed in this area and could be 

implemented in this RANS simulation in order to drastically reduce the amount of 

computation while keeping a good accuracy on the turbulence modelling.  

reef:  application to burial effect

533 Xflow modelling for investigation of fluid structure interaction of artificial



564



PROCEEDINGS OF THE 32nd European Symposium on Computer Aided Process Engineering
(ESCAPE32), June 12-15, 2022, Toulouse, France
L. Montastruc, S. Negny (Editors)
© 2022 Elsevier B.V. All rights reserved.

Metamodeling of chemical engineering unit operations
using Kriging and prediction error estimation
Thibault Delagea, Sanaa Zannanea and Thibaut Neveuxa,*

aEDF R&D Chatou, 6 quai Watier, 78400 Chatou, France
thibaut.neveux@edf.fr

Abstract
Kriging is a metamodeling technique, consisting in interpolating between observations points, i.e.
simulations with the actual model, which is able to produce analytical expressions for both the
metamodel and the prediction error in the whole domain. The goal of this work is to illustrate, on
two emblematic categories of unit operations (molecular separator and exothermic reactor), how
to use this ability to sequentially build a metamodel, by adding new interpolating points in regions
where the error between meta- and actual models is high.

Keywords: Metamodeling, Kriging, separation, reactor

1. Motivation

Metamodeling, or surrogate modeling, refers to the production of a simplified model of an actual
model. Such techniques are widely used when the actual model is judged inapplicable or with
difficulty within a given context, such as: informatic complexity (e.g., communication standards);
issues in code coupling (e.g., different spatial or temporal scales); computing efficiency (e.g. op-
timization, real-time simulations); need to hide information/expertise during implementation etc.
In chemical engineering, process models are in general phenomenological ones, with phenomena
modelled from molecular scale to plant scale. Challenges arising are therefore to be able to mimic
the ’local’ behaviors such as stiff non-linearity and discontinuities due to the physicochemical
nature of modelled phenomena (activation processes, reactions, thermodynamics, transfer, phase
change etc.); while being appropriate in the whole physical domain.
Among metamodeling techniques, Kriging is an interpolation method between observations points,
i.e., simulation results with the actual model (Sacks et al., 1989). This method, also called Gaus-
sian process regression, is well-known in chemical engineering and applied to learn various models
such as thermodynamic (Zhang et al., 2013) or unit operations ones (Al et al., 2019) in specific
fields. As an interpolation method, the prediction error is zero at the observation points, i.e. data
sample used for fitting the Kriging metamodel, and increases between them. Therefore, the sam-
ple distribution directly impacts the prediction quality of the metamodel, which could lead to poor
prediction performances when using the metamodel. One of the main features of Kriging is the
ability to provide analytical expressions for both the metamodel (mean of Gaussian processes) and
the prediction error in the whole domain (using the variance of the Gaussian processes). It is there-
fore possible to perform adaptive sampling (see for instance Liu et al., 2017 or Boukouvala and
Ierapetritou, 2012) during the construction step of the metamodel, using the ‘local’ estimation of
the prediction error (e.g. a confidence level) in every point of the domain. Regions with behaviors
observed in chemical engineering unit operations (e.g. stiff non-linearities such as reaction fronts)
are thus detected with the local prediction error, allowing to efficiently explore the search space
by refining optimally the design of experiments.
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The goal here is to illustrate how to use the ability of Kriging to estimate the prediction error in
the whole domain to sequentially build a metamodel; and to evaluate how Kriging is a suitable
method to catch such behaviors using two different unit operations models.

2. Test-problems: chemical engineering models for unit operations

Two tests problems are chosen here, in order to cover two categories of unit operations encountered
in industrial processes: molecular separation by membrane and exothermic catalytic reactor.
These cases exhibit various physical behaviors (see Figure 1) and numbers of input and output
variables. Each case is summarized below, with the chosen parametrization of variables, and
expected difficulties from a metamodeling point of view.

Figure 1: Example of model outputs for the two unit operations

2.1. Case 1. Molecular separation: membrane gas permeation unit (binary mixture)

In this case, a simple gas permeation model is used, assuming crossflow operations, constant
permeabilities, and isothermal separation. The physical model requires 4 input variables: mole
fraction of the ‘fastest’ molecule in the feed stream x1, membrane selectivity α12 (ratio of per-
meabilities), pressure ratio applied between permeate and feed ψ , and design stage-cut θ (desired
ratio of flowrate at permeate over feed); and generates 2 output variables: separation efficiency
η , and a dimensionless surface A. For a complete discussion on gas permeation modeling and
dimensionless quantities, see Bounaceur et al., 2017).
With this model, phenomena are mostly linear in the majority of the domain but nonlinear, yet
monotonous, profiles occur in the domain boundaries (see for example Figure 1 (a) for high values
of stage-cut θ and pressure ratio ψ).
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(a) Membrane separation - separation
efficiency (for x1 = 0.21 and α12 = 4.54)

(b) Reactor - CO conversion (for V =
m3.s/mol, Pin = 20 bar, and dry inlet composi-
tion (27% CO, 24% H2, 16% CO2, 33% N2)

(c) Membrane separation - dimensionless
surface (for x1 = 0.21 and α12 = 4.54)

(d) Reactor - outlet temperature (for V =
m3.s/mol, Pin = 20 bar, and dry inlet composi-
tion (27% CO, 24% H2, 16% CO2, 33% N2)
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2.2. Case 2. Exothermic catalytic reactor: water-gas shift reaction

The reactor case uses an 1D exothermic catalytic model for water-gas shift reaction (CO + H2O
= CO2 + H2), using kinetic laws from Hla et al. (2011), under plug-flow and adiabatic operation.
The physical model requires 7 input variables: gas mole fractions y of CO, H2, H2O, CO2 (N2
deduced) in the inlet stream, inlet temperature Tin and pressure Pin, and reactor volume normalized
by the inlet flowrate V ; and generates 2 output variables from which all quantities can be retrieved:
CO conversion rate and outlet temperature.
In this case, there is a strong coupling between all input variables as the model considers both
kinetic effects (favored by temperature, stoichiometric reactant ratio and reactor volume) and ther-
modynamic equilibrium limitations (penalized by temperature and product/reactant ratios). It re-
sults in non-monotonous behaviors and very stiff thresholds for the CO conversion (see Figure 1
(b)) within the domain, whose location depends on all input variables.

3. Kriging for metamodeling
3.1. Gaussian processes

Let denote z(x) the output of the numerical model we look to metamodel, with x= (x1,x2, ...,xd)∈
T denoting the input variables, T being a subset of Rd (e.g. in case 1, z(x) would be η or A and the
input dimension is d = 4). Kriging framework relies on the assumption that z(x) is the realization
of a Gaussian process Z which is completely specified by its mean function m(x) = E[Z(x)] and
its covariance function: cov(Z(x),Z(x′)) = σ2r(x,x′).The correlation functions r we are using in

this work are the anisotropic 3
2 -Matérn kernel: r(x,x′;θ) = ∏

d
i=1

(
1+

√
3(xi−x′i)

θi

)
exp

(
−
√

3(xi−x′i)
θi

)
and the anisotropic squared exponential kernel: r(x,x′;θ) = ∏

d
i=1 exp

[
− 1

2

(
(xi−x′i)

θi

)2
]

. The mean

function m(x) of the Gaussian process is chosen here to be a constant function m(x) = c ∈ R.

3.2. The Kriging metamodel

Let denote D = (x1,x2, . . . ,xn) the design of experiments (i.e. some calculations performed
on the actual model) of size n used to train the metamodel, with the corresponding outputs
z = (z(x1), . . . ,z(xn)). Then, following previous assumptions, z is the realization of a Gaussian
process and the Kriging model writes:

z(x) = c+ ε(x)

with ε(x) a stationary Gaussian process with zero mean and variance σ2 and correlation function
r(x,x′;θ). Z(x) is a conditioned Gaussian N (ẑ(x),s2(x)), and its mean and variance can be
computed. The mean, hyperparameters θ and variance σ2 are estimated from the observations
D and z using the maximum likelihood estimator. The Kriging mean ẑ(x) is the surrogate model
that we use to approximate the numerical model z(x) and the Kriging variance s2(x) is used as a
representation of the model mean squared error. As Kriging is an interpolating metamodel, the
’local’ error is consequently equal to zero for the observations points and rises between points.

3.3. Adaptive design of experiments and validation

In order to train the Kriging metamodel, we use an adaptive strategy starting from an initial Latin
Hypercube Sample (LHS) optimized (through a simulated annealing routine) according to the L2-
discrepancy criterion (Damblin et al., 2013). Using this initial design, a first Kriging model is
constructed and, using a large validation sample Y = (y1, ...,ym) and its response by the actual
model z(Y) = (z(y1), ...,z(ym)), the quality of the metamodel is evaluated by the means of the ab-

solute relative error erel,i =| ẑ(yi)−z(yi)
z(yi)

| and the Q2 predictivity factor: Q2 = 1− ∑ i[ẑ(yi)− z(yi)]
2

∑ i[z(yi)− z̄]2
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with z̄ the statistical mean of the sample z(Y). The Q2 compares the residual variance with the total
variance. The closer it is to 1, the more accurate the model is. After the initial training, and if the
expected quality is not yet reached, new points are sequentially added to the design of experiments
using the prediction error of the metamodel given by its variance s2(x). Various criterion can be
used in order to iteratively add new points (e.g. Jones et al., 1998), here the criterion maximizes
the conditional variance s2(x) i.e. xn+1 = argmaxx s2(x) as we seek to control the maximum errors
as much as possible. It seeks to add the new points where the metamodel is supposed to perform
poorly in order to ensure that the prediction does not fail in some specific areas of the physical
space. Figure 2 illustrates this idea on a one-dimensional function (0.5x2 + sin(2.5x)).

Figure 2: Example of simulated trajectories between 4 sample points (left) and Kriging results
with 6 new sample points, sequentially added using prediction error (right)

3.4. Implementation

The Kriging implementation of OpenTURNS (www.openturns.org) is used here, an open-source
software for data analysis, metamodeling, and treatment of uncertainties (Baudin et al., 2016).

4. Assessment using the test-problems

In this part, we will present the results obtained on the two tests problems described in 2. The
Kriging metamodel is built using a squared exponential covariance for case 1 and a Matérn covari-
ance for case 2. We use an initial LHS of size N = 100 and perform M = 1000 iterations using the
criterion presented in 3.3.

4.1. Case 1: molecular separation

Figure 3 shows the initial design of experiments (blue) and the 300 first additional calculations
(orange). The criterion aims at choosing new points on the edges of the physical space and es-
pecially on its corner, since the conditional variance has the tendency to strongly increases in
these areas. Moreover, this quite classical behavior is reinforced by the fact that the model shows
non-linearities around these boundaries, as discussed in 2.1 and shown in figure 1.

After filling these voids, the algorithm tends to add calculation in the other hard-to-predict areas
of the physical space such as in the neighborhood of the stage-cut θ ∼ 0.8 and the membrane
selectivity α ∼ 5 for instance.
In order to assess the quality of the metamodel, we use a LHS test sample of size 1000. Figure
3 shows the evolution of the Q2 predictability factor according to the number of iteration and the
increasing quality of the metamodel.

As the Q2 only carries a global estimation of the quality of the metamodel, we also show the box
plots evolution of the relative errors according to the number of iterations of the adaptive sampling
algorithm for the two outputs of the model: dimensionless A and efficiency η in Figures 4. The

568

T. Delage et al.538



Metamodeling of chemical engineering unit operations using Kriging
and prediction error estimation

Figure 3: Incremental design of experiment (first 400 points) used to build the metamodel (left)
and evolution of Q2 for case 1 (right)

results are quite satisfactory as we reach, after 1000 iterations, a Q2 larger than 0.999 for η and
larger than 0.9999 for A as well as a relative error well-controlled (e.g. 75% of tested points falls
under a 3% and 4% relative error for A and η respectively) even if some specific areas still suffer
from a quite large error. This method has been benchmarked on a neural network constructed from
a sample of size 2200 and proved to outperform it from 600 iterations.

Figure 4: Evolution of the relative error for the separation efficiency η

4.2. Case 2. Exothermic catalytic reactor

Evolution of Q2 for case 2

This second test-case proves to be more challenging, as it involves
a larger number of input variables (7) and more complex physical
behavior (see 2.2). If the metamodel manages to approach the
outlet temperature quite well (Q2 > 0.98), it reveals to be way
less satisfactory to predict the CO conversion, which Q2 does not
exceed 0.8. Figure 5 shows the relative errors for both outputs and
if the error on the temperature is acceptable – 75% (resp. 95%) of
tested points falls under a 2% (resp. 5%) relative error – it is still
far from the accuracy required to justify most metamodel usage in
the case of the CO conversion.
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Figure 5: Evolution of the relative error for outlet temperature and CO conversion for case 2

5. Conclusion and perspectives

This work illustrates how to use the ability of Kriging to provide a prediction error in the whole
domain, to sequentially add new interpolation points where the metamodel exhibits high error,
aiming at reducing the size of the design of experiments (hence time/budget for the metamodel
building step), and discrepancies while using the metamodel as it is more refined in regions with
high non-linearities (usually difficult to catch by metamodels). This strategy performs remarkably
well in the case of molecular separation by gas permeation. The second, more complex, case
(exothermic reactor) highlights the limits of the methodology when facing the curse of dimen-
sionality and the increase of the boundaries of the domain, since the algorithm privileges these
before filling the areas with strong non-linearities. A coarse first solution is to increase the initial
training sample, Q2 > 0.995 for the outlet temperature can be reached with N = 500 and M = 600.
Another possible approach would be to investigate the performance of other criteria, such as the
IMSE (Integrated Mean Squared Error).
This first benchmark need to be tested with other criteria for the choice of new points, other types
of unit operations, and compared with other sampling strategies (driven or not by the error) and
metamodel type, to derive good metamodeling practices for chemical engineers.
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Abstract 
Muconic acid is a high value product which has gathered interest in applications in the 
manufacture of new resins, bio plastics, food additives, agrochemicals and 
pharmaceuticals. Lots of efforts have been made for an economically viable 
biotechnological strategy for muconic acid production but as of yet have been fruitless. 
Directed evolution and DBTL cycles hold important promises for the development of 
future catalysts with high efficiency and productivity. However, process engineering is 
typically disjointed from these cycles and more often than not the mismatch of kinetics 
presents a major challenge and a bottleneck in the scaling up of novel bioprocesses. 
The paper addresses the integration of metabolomics and experimental data using the 
optimization and risk analysis of complex living entities (ORACLE) platform combined 
with clustering and advanced analytics. The methodology consists of six steps. In the first 
step, the stoichiometry of the system is defined through biochemical data and 
experimental data are integrated into the model to further constrain it. In the second step, 
steady state fluxes and metabolite concentrations are calculated based on metabolomics 
analysis. In the third step, kinetic parameters for every reaction are sampled to fit in with 
the steady state fluxes based on mechanistic kinetics expressions. In the fourth step, 
consistency checks and pruning consider the stability of the system and the consistency 
with experimental data. In the fifth step, the flux control coefficients for the desired 
metabolite flux are calculated based on the well-established metabolic control analysis 
(MCA) framework. 

In this project, large-scale mechanistic kinetic models for a muconic acid producing 
S.Cerevisiae strain were developed using the aforementioned ORACLE platform. A total
of 23500 of potential kinetic models were generated out of which 366(1.58%) passed the
pruning step and 70(0.12%) models out of the 372 passed the stability check. Enzymes
such as glucose-6-phosphate isomerase (PGI), transketolase (TKT2) and enolase (ENO)
had large control coefficients on muconic acid flux.
Keywords: S.Cerevisiae; muconic acid; metabolomics; metabolic engineering ; large-
scale kinetics;
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1. Introduction 

Most strain design approaches make the assumption of the system being in steady state 
and fail to take into consideration the kinetic aspect. Although such techniques provide 
useful insights and are computationally cost efficient, sometimes they fail to predict 
potential bottlenecks or rate limiting reactions inside the metabolic network. The current 
thesis aims to develop large scale metabolic kinetic models for a muconic acid producing 
yeast using the Optimization and Risk Assessment of Complex Living Entities 
(ORACLE) workflow. The generated populations of kinetic models will be used as an 
input for the well-established MCA framework to identify enzymes closely affiliated to 
muconic acid flux and perform enzyme perturbations to quantify this effect. This way we 
will be able to develop metabolic strategies while taking into consideration stoichiometry, 
thermodynamics, kinetics and their interplay. 

2. Problem description and workflow outline 
2.1.1 Problem description 
The development of large-scale metabolic models is a challenging task. The lack of 
experimental data, the uncertainty of some kinetics parameters available in literature and 
databases, the uncertainty of the types of mechanisms for every reaction, the errors in 
metabolomics and fluxomics data are some of the problems (Stanford et al, 2013). 
Moreover, for every reaction in the system a rate expression along with values of kinetic 
parameters are required for a kinetic model. Errors also in the thermodynamic properties 
hinder the ascertainment of a unique steady-state profile for metabolic fluxes and 
metabolite concentrations. Taking all this into account it is impossible to find a unique 
kinetics model which describes the physiology but it is possible to produce a population 
of models that agree with the physiology and statistical analysis on these models can be 
used to analyse and predict the metabolic responses in the system (Tokic et al, 2020). 
 
The primary challenge will be to produce large-scale kinetic models that are 
physiologically relevant meaning that their dynamic behaviour is close to the 
experimentally observed one. The secondary challenge is to identify kinetic models that 
show “robust” behaviour. Finally, the population of the kinetics models will be used to 
target key enzymes and offer metabolic strategies for the increase of flux of the desired 
product. 
 
2.1.2 Workflow outline 
The proposed workflow outline is based on the Optimization and Risk Analysis of 
Complex Living Entities (ORACLE) methodology (Miskovic et al, 2010) (Wang et al, 
2004). The ORACLE methodology consists of 7 steps: 
1) In the first step, the stoichiometry of the system is defined either by biochemical data 

or genome reconstruction analysis. The genome scale model is reduced to the 
subsystems of interest. Then, the experimental data are integrated into the reduced 
model as flux bounds or metabolite concentrations bounds or reaction 
directionalities. Heterologous reactions are added to the reduced model and gene 
knockouts are expressed by setting both lower and upper bounds for the linked 
reaction to zero. 

2) In the second step, the solution space from Thermodynamic Flux Balance Analysis 
is sampled. If the thermodynamic properties of a reaction are unknown, we employ 
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a Monte Carlo method to predict the reaction ΔG value. Metabolite concentrations 
and reaction fluxes profiles, that agree with thermodynamics, are generated.  

3) In the third step, the kinetic parameters for every reaction in the reduced model are
sampled using a hit and run sampler. Mechanistic kinetic expressions such as
reversible Michaelis Menten are used to describe enzyme kinetics in our formulation.
The thermodynamic displacements are calculated during the TFA sampling step. In
order to efficiently sample the Km values, we sample the enzyme saturations. We

used simple enzyme saturations expressions in our formulation; 𝜎௲ =

ೄ

಼೘
ೄ

಼೘
ାଵ

. Lastly,

the vmax values are calculated to fit the sampled steady state flux.
4) In the fourth step, the produced kinetic models undergo pruning and stability checks.

Pruning reduces the models to those that are physiologically relevant and consistent
with the experimental data. The time constants for every metabolite mass balance
must be within some physiological bounds to ensure that metabolism is in a quasi-
steady state. Stability checks consist of sets of random perturbations to ensure that
the generated models show robust model behavior and return to their reference steady
state. The models are further screened out based on their stability score.

5) In the fifth step, the stable models are used to calculate flux control coefficients and
concentration control coefficients based on a well-established MCA framework. Flux
control coefficients 𝐶௣

௩ and concentration control coefficients 𝐶௣
௫ are defined as the

fractional change of metabolic fluxes and metabolite concentrations, respectively, in
response to a fractional change of system parameters.

6) In the sixth step, advanced statistical analysis and visualization is performed on the
produced populations of control coefficients.

3. Case study: Muconic acid production from S.Cerevisiae
3.1 Reduced model and experimental data integration 
The genome scale model for Saccharomyces Cerevisiae used in the current thesis was the 
yeast8 model64. The reduced model contains 5 subsystems that form our metabolic 
network; Glycolysis, Pentose Phosphate Pathway, TCA cycle, Oxidative 
Phosphorylation, Shikimate pathway (aromatic amino acids).  

The reduced yeast model has 226 metabolites, that makes a total of 226 mass balances. 
Out of those, 49 are extracellular metabolites. A total of 308 reactions describes the 
metabolic network out of which 121 are transport reactions, 183 are enzymatic and 1 
lumped biomass that describes biomass production and subsequently yeast growth. We 
added the heterologous reactions for the muconic acid production pathway. According to 
the experimental data (Wang et al, 2020) the pathway used was the shunting of the 
shikimate pathway. We assumed that the reactions added took place in the cytosol. 

3.2 Kinetic Models 
Having generated a big number of TFA samples we screened out 47 samples that 
produced physiologically relevant kinetic models. We followed through generating 500 
parameter sets for every TFA sample, thus resulting in 23500 kinetic models. Only 366 
models were within physiological bounds (1,58%). We then proceeded with the stability 
checks where we performed 200 sets of random perturbations on a short range 
൫0.8ൣ𝑋௥௘௙൧ ≤ [𝑋] ≤ 1.2ൣ𝑋௥௘௙൧൯ and on a wider range ൫0.5ൣ𝑋௥௘௙൧ ≤ [𝑋] ≤ 2ൣ𝑋௥௘௙൧൯. 
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Figure 1. Venn diagrams of models for various stability scores (80%, 90%, 95%) for both ranges 
of perturbations. 

We evaluated the models based on the times they returned to the reference steady state. 
The two other scenarios were either the models reaching a pathological state(escape) or 
another steady state. 
  
 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
3.3 MCA and enzyme perturbations results 
We selected 70 models with stability scores 90% and calculated the muconic flux control 
coefficients. Based on the enzymes, hinted by the MCA results, that seem to have the 
most influence on muconic flux we performed some enzyme perturbations and calculated 
the effect on muconic flux. 
 
We were able to identify the top 20 enzymes that affect muconic flux. Some attractive 
metabolic strategies that arisen were to increase flux to the Pentose Phosphate Pathway 
as to increase flux to e4p (PGI↓ ,TKT2↓,PGL↓) and to increase the dehydroshikimate flux 
(DHQTi↑). From the MCA results, we deducted that a bottleneck in muconic acid 
production is the deficiency of e4p in the cell. 
 
For the enzymes that had large control coefficients for the muconic flux we performed 
some perturbations to calculate the effect on muconic flux. Although, some enzymes that 
are connected to the Electron Transport Chain (ETC) and are infeasible to regulate, we 
calculated the effect on muconic flux just for comparison. The candidate enzymes (PGI, 
TKT2, PGL, DHQTi) showed an increase in muconic flux with varying results. PGI 
downregulation by 0.5 resulted in 12.5 times bigger than reference muconic flux whereas 
TKT2 and PGL downregulation by 0.5 resulted in 1.4 and 1.3 times accordingly bigger 
flux. DHQTi upregulation by 1.5 resulted in 1.8 times bigger than reference muconic flux. 
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We also tested upregulating the heterologous enzymes (PaAroz, KpAroy) of the muconic 
pathway but the increase in muconic flux was insignificant. 
 

 
Figure 2: Violin plots of enzyme upregulations and downregulations that lead to an increase in 
muconic flux. Middle bar corresponds to the mean value. Both extremas also included. 
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Figure 3: Bar plot of the top 20 enzymes with high muconic flux control coefficients 
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Abstract 
The present work has been devoted to the study, modelling and simulation of a pilot scale 
pyrolysis plant feed with residual agricultural residues located in Catania, Sicily. A global 
model representing the process flowsheet was created with Aspen Plus® software and was 
fed with actual experimental data obtained in the existing pilot plant. The aim has been 
to develop a flexible simulation model in which different types of local agricultural 
residues could be fed to the reactor and stablish the optimal conditions for each case. Raw 
materials’ characterization included ultimate and proximate analysis, and biochemical 
composition (cellulose, hemicelluloses, lignin, and inorganics contents). All these data 
were implemented in the simulation for the feedstock definition. The base scenario was 
established by feeding 35 kg/h of biomass under a pyrolysis temperature between 500 and 
900°C. The decomposition of the organic matter was defined as a two-stage process: a 
first decomposition of the organic fraction into a residual solid fraction (char) and a 
gaseous mixture, and a subsequent cooling of the mixture to separate the condensable part 
and to obtain the pyro-oil and the permanent gas stream. This latter stream of gas was 
used to generate thermal power that could be used to support the energy requirements of 
the pyrolysis process. To reproduce the degradation of biomass and the resulting 
evolution of chemical species, a mathematical model, based on the operative temperature 
and the reaction kinetics was developed. The simulations were designed in order to 
maximize the gas fraction and minimize the char one. The obtained results were discussed 
in terms of compound yields, and energetic content of the generated pyro-gas.  
Keywords: residual lignocellulosic biomass, simulation, pyrolysis. 

1. Introduction 
The global energy consumption is still based on the use of fossil resources, even if the 
need to move towards a sustainable energy market is evident and reflected in legislation 
and politic agendas worldwide. The increasing energy demand is expected, thus, to be 
sustained in a big percentage by renewable energies soon, and, among the renewable 
options, biomass is one of the main pillars (Pang et al., 2021). A wide variety of biomass 
types can be used for bioenergy generation, but a very interesting option is to get profit 
of agricultural or forestry residues that are generated in different activities. Cereal straw 
(Zanzi et al., 2002), olive stones (Benanti et al, 2011), fruit waste (Lam et al., 2016), nut 
shells (Jahirul et al., 2012) or pruning (Adrados et al., 2017) are some examples of 
biomass wastes with potential as raw material to produce bioenergy. Thermochemical 
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processes, such as gasification, combustion, torrefaction, hydrothermal liquefaction, 
hydrothermal carbonization or pyrolysis, allow the release of the energy stored in biomass 
(solar energy) in the form of chemical energy (Goyal et al., 2008). The main drawback of 
biomass as raw material for energy purposes is its low density, which entails the handling 
and transporting of huge quantities of material, decreasing profitability. Pyrolysis 
transform biomass in a solid (bio-char), a liquid (bio-oil) and a gaseous stream, through 
its degradation in the absence of oxygen. Bio-oil is typically transformed into fuels for 
transportation or for the synthesis of value-added chemicals while bio-char and the gas 
fraction can be used for heat and power generation (Brown et al., 2013). Pyrolysis is 
considered as the fundamental thermal conversion process, as it is a well stablished 
technology and a crucial step of the combustion or gasification processes (Wang et al., 
2017). Different mechanisms take place during pyrolysis, and the obtained products, 
specially bio-oil, present a complex composition that difficult the modelling of the 
process (Lam et al., 2019). Several approaches have been developed about the kinetics of 
the chemical reactions of biomass pyrolysis process (Ranzi et al., 2008; Ranzi et al., 2014; 
Di Blasi et al., 2008; Fedyukhin et al., 2017) and some researchers have implemented the 
kinetic parameters in models and simulations (Mabrouki et al., 2015), trying to relate 
initial feedstock composition, reaction mechanisms and products definition (Peters et al., 
2017) in order to define a simplified but accurate way of modelling the products’ yields 
and compositions (Agrifoglio et al, 2021). The process conditions (temperature, heating 
rate, residence time), strongly determine the distribution and yields of the obtained 
products (Wang et al., 2017), and a variety of studies cover the relationship between 
process conditions and products yields and compositions (Kan et al., 2016), for slow 
(Williams and Besler, 1996), fast (Bridgwater, 2012) and flash pyrolysis (Amutio et al., 
2012). Furthermore, recent contributions indicate that the products’ distribution and 
characteristics are heavily influenced as well by the original feedstock composition 
(cellulose, hemicelluloses and lignin), (Tang et al., 2020; Cheng et al., 2020; Pang et al., 
2021). The present work is based on a previous one (Agrifoglio et al, 2021), in which a 
simulation model for biomass pyrolysis was developed based on experimental data of a 
pyrolysis pilot plant. The aim was to predict the products’ yields and compositions and 
to estimate the potential of the pyro-gas stream to be used for energetic purposes. The 
paper proposed as further research the utilization of experimental data to relate these 
values with other working parameters, such as the heating rate, residence time or particle 
grind size, as well as to extract more information about the influence of biomass quality 
and types in the process. From this basis, different raw materials (other types of local 
biomass lignocellulosic wastes) have been tested and the generated data have been 
implemented in the model, in order to discuss the previously mentioned influence of the 
biomass type on the pyro-products distribution. The percentages and composition of the 
cellulose, hemicelluloses and lignin of the raw material (the predominant molecule in the 
hemicelluloses fraction or the functional groups in lignin structure), will define the 
decomposition profile of this specific biomass type with the heating rate and temperature. 
In particular, olive and peach stones and walnut and hazelnut shells were selected as raw 
materials and were defined as non-conventional products in the simulation model based 
on experimental values.  

2. Methodology 
2.1. Definition of the experimental data for the simulation model 
The chemical characterization of the tested biomass types (percentages of cellulose, 
hemicelluloses and lignin; proximate, ultimate analysis), as well as the calorific values, 

578

548



Modelling and simulation of a residual lignocellulosic biomass

were obtained experimentally. These parameters (Table 1) were used as input in the 
simulation model developed with Aspen Plus®, to define the biomass decomposition 
model, which included both primary (gas1, char) and secondary reactions (gas2, oil).  

Table 1. Proximate and ultimate analyses, chemical composition (dry basis, wt. %) and 
higher heating values (HHV) of the analysed biomass samples.  

Olive 
stones 

Peach 
stones 

Walnut 
shell 

Hazelnut 
shell 

Proximate 
analysis 
(wt. %) 

Fixed carbon 7.60 10.3 29.3 27.4 
Volatile matter 82.4 85.4 67.8 70.6 
Ash 3.30 0.30 1.20 2.50 
Moisture 7.01 4.01 9.51 9.02 

Ultimate analysis  
(wt. %, dry basis) 

Carbon 50.4 47.1 49.1 46.6 
Hydrogen 5.95 6.40 5.22 5.83 
Nitrogen 0.11 0.25 0.35 0.57 
Sulphur 0.08 0.15 0.09 0.75 
Oxygen 43.5 46.1 45.2 46.3 

Chemical composition 
(wt. %) 

Cellulose 19.1 28.2 23.8 20.4 
Hemicelluloses 36.6 23.9 29.6 26.2 
Lignin 43.0 43.3 40.3 48.7 

Heating value (MJ/kg) HHV 21.7 21.3 20.8 21.9 

The mass balances were adjusted according with the results of the thermochemical 
decomposition analysis performed. The evolution of the species involved during the 
pyrolysis was defined by the derivative of the conversion rate and the kinetic equation 
(Arrhenius type), as described in the initial work (Agrifoglio et al, 2021). The 
decomposition of cellulose was defined in two steps, starting with the intermediate “active 
cellulose” and continuing with the subsequent degradation of it and the formation of 
levoglucosan (Gorensek et al., 2019). Hemicelluloses degraded into two intermediate 
compounds from which different decomposition routes generated several minor 
compounds, among them, xylosan (Ranzi et al., 2014). The lignin decomposition 
generated different intermediates which further degrade into coumaryl, different alcohols 
and phenol, among other compounds (Ranzi et al., 2008).  

2.2. Design of the simulated process flowsheet 
Figure 1 presents the flowsheet of the simulated process with Aspen Plus®. 

Figure 1. Layout of the simulated process flowsheet. 
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The base scenario was established by feeding 35 kg/h of biomass under a pyrolysis 
temperature between 500 and 900°C. Block B1 is a dryer that adjusts the moisture content 
of the raw material and preheat it before feeding it to the yield reactor (B2), which was 
connected to a calculator block. The excel sheet coupled to the block include the 
coefficients to calculate the products yield distribution. The stream exiting from the 
reactor, S4 is introduced into a cyclone (B3) to separate the gas (S5) and solid (S6) 
streams. The gas stream is conditioned by cooling (B4) and washing (B5) with fresh water 
(S8).   

3. Results 

The yields of char, liquid and gaseous fractions at different temperatures in the range 500-
900 ºC are reported in Table 2. 

 
Table 2. Yields of char, oil and gas fractions at different temperatures for the studied 
biomass types.  

Products 
yield wt. % 

Temperature 
ºC 

Olive 
stones 

Peach 
stones 

Walnut 
shell 

Hazelnut 
shell 

Char 
 

500  34.7 32.1 28.9 30.1 
600  23.3 22.9 26.4 28.2 
700  16.5 16.2 24.2 25.9 
800  13.4 13.3 22.9 23.8 
900  12.1 11.7 21.7 21.4 

Oil 500  21.8 20.5 24.5 23.9 
600  18.8 18.0 22.7 21.0 
700  15.6 15.6 19.1 18.7 
800  12.8 12.2 16.3 16.3 
900  9.21 9.00 13.2 13.1 

Gas 500  43.5 47.4 46.6 46.0 
600  57.9 59.1 50.9 50.8 
700  67.9 68.2 56.7 55.4 
800  73.8 74.5 60.6 59.9 
900  78.6 79.3 65.1 65.5 

 
It can be seen how the generation of gas increased with temperature for all studied raw 
materials. The generated products percentages were quite similar for the stones, which 
reached a 78-79% of gas generation at 900ºC. The nut shells achieved about 65-66% of 
gas at 900 ºC. The yield of pyro-gas and char, as a function of the temperature, fitted a 
polynomial interpolation in all the cases, while the oil yield was described by a linear 
interpolation (Table 3).  
 
 Table 3. Derived analytical interpolations of the products yields. 

 Char Oil Gas 
Olive  
stones 

y = 0,0171x2 - 0,1581x + 0,4854 
R² = 0,9981 

y = -0,0312x + 0,25 
R² = 0,9987 

y = -0,0166x2 + 0,186x + 0,2686 
R² = 0,9985 

Peach 
stones 

y = 0,0136x2 - 0,1318x + 0,4386 
R² = 0,9987 

y = -0,0288x+ 0,237 
R² = 0,9982 

y = -0,0119x2 + 0,1503x + 0,3364 
R² = 0,9998 

Walnut 
shell 

y = 0,0034x2 - 0,0368x + 0,323 
R² = 0,9991 

y=-0,0288x+0,2784 
R² = 0,9947 

y = -0,0011x2 + 0,0531x + 0,4122 
R² = 0,9974 

Hazelnut 
shell 

y = -0,0006x2 - 0,0184x + 0,3202 
R² = 0,9996 

y=-0,0263x+0,2649 
R² = 0,9967 

y = 0,0011x2 + 0,0417x + 0,4184 
R² = 0,9992 
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The obtained coefficients of determination (R2) were close to one in all cases, indicating 
a very good prediction capability of the model for all the studied raw materials.  
 
As the goal has been to maximize the flow of the gas stream, the temperature of 800ºC 
was selected to evaluate the heating value of the clean gas stream (S9) in order to be 
combusted and fed to a combined heat and power (CHP) system. At 800 ºC, carbon 
dioxide CO2 was found to be the predominant component for all studied raw materials, 
reaching a fraction of 23-29%, followed by hydrogen H2 (19-26%), methane CH4 (7-11%) 
and carbon monoxide CO (6-9%). The water content of this stream was about 15% in all 
the cases. The values of the flow and HHV of the obtained gas stream are presented in 
Table 4.  
 
Table 4. Flows and energy content of the produced gas streams. 

Biomass type Pyro-gas 
Mass flow 
(kg/h) 

Volumetric flow 
(m3/h) 

Higher Heating Value 
HHV (MJ/kg) 

Olive stones 20.5 73.2 29.0 
Peach stones 21.7 72.9 28.2 
Walnut shell 16.4 60.7 16.1 
Hazelnut shell 15.9 58.8 17.8 

It can be seen that the stone-type raw materials generated a higher volume of gas with 
higher HHV so, for the purpose of generating electricity and thermal energy in a CHP 
system, these two raw materials would offer better performance. Nevertheless, the HHVs 
calculated for the shell-type raw materials were high enough to be considered as valid for 
the same purpose (Demirbas et al., 2006).  

4. Conclusions 

The simulation model for biomass pyrolysis created by (Agrifoglio et al, 2021) has been 
tested by using as input experimental data of four lignocellulosic wastes, two stone-type 
and two shell-type raw materials. The experimental data of the four tested raw materials 
were used as input in the simulation model and the results were accurate in all the cases 
with a good fit. The pyrolysis conditions were selected trying to maximize the gas stream 
and the obtained values indicated higher yields and HHV for the stone-type raw materials 
(about 20 kg/h and 28,5 MJ/kg, at 800 ºC) even if the shell-type ones were found to 
generate a gas suitable to be used as feed stream of a CHP unit (59 16 kg/h and 17 MJ/kg, 
at 800 ºC). 
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Abstract 

The urgency of reducing carbon emissions has been constantly reinforced by the scientific 

community. At the same time, there has been a constant growth in the global energy 

demand. In this sense, techno-economic-environmental studies are essential to assess the 

feasibility of new technologies, seeking a carbon neutral economy. The production of 

biodiesel through an enzymatic route has the potential to enable the manufacture of this 

biofuel, with a low environmental impact. The use of Crosslinked Enzymatic Aggregates 

(CLEAs) together with magnetic nanoparticles allows the reuse of the enzyme, possibly 

reducing operating costs. In this scenario, this work studied the production of ethylic 

biodiesel, by transesterification of soybean oil with bioethanol, catalysed by the enzyme 

Eversa® Transform 2.0, immobilized in the form of CLEAs. Two distinct purification 

processes were assessed: distillation and caustic polishing of biodiesel. Economic 

feasibility was assessed by the Net Present Value (NPV), with a rate of return of 11% per 

year, while environmental performance assessment was based on CML-IA midpoint 

indicators. As main results, the purification by distillation showed better techno-

economic-environmental performance, since the distillation process requires fewer 

separation steps and material inputs, compared to the caustic polishing  process. The 

global sensitivity analysis showed that all variables studied influence the environmental 

and economic indicator. The base case, with five reuses (value based on the literature), 

was insufficient to reach an economic performance superior to the current industrial 

process based on alkaline homogeneous catalysis. And the increase in the number of 

reuses is important to improve the environmental indicator as well. 

 

Keywords: Biodiesel, LCA, Techno-econimic analysis, eversa®transform. 

 

Introduction 

The growing global demand for energy, added to policies and legislation to regularize 

environmental issues, encourages the development of new bioenergy sources and 

processes (Tom, Sankaranarayanan, and Rodrigues 2019). Biodiesel is a biofuel that has 

many environmental and social advantages (Ajala et al. 2015). However, the production 

of biodiesel by chemical catalysis has problems related to the high cost of primary raw 

materials and many processes necessary for purification (Gebremariam and Marchetti, 
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2018). In this context, enzymes, which are biocatalysts, perform selective catalysis, which 

facilitates product purification and has lower energy consumption due to enzymatic 

reactions occurring under mild conditions of temperature and pressure. However, 

operational instability and difficulty in recovering free enzymes prevent the application 

of these biocatalysts in some industrial processes, despite all the advantages of their use 

(Garcia-Galan et al. 2011). One way around these barriers is to immobilize the enzyme. 

This technique results in greater chemical and thermochemical stability and contributes 

to protecting enzyme molecules from denaturation, in addition to enabling easy recovery 

and reuse of the biocatalyst (Santos, Puna, and Gomes 2020).  Crosslinked enzyme 

aggregates (CLEAs) is an immobilization technique, with low execution complexity and 

high activity recovery (Amaral-Fonseca et al. 2018). CLEAs have low mechanical 

stability, which makes enzyme recovery difficult. To overcome this problem, an option 

is to attach the CLEAs particles to magnetic iron oxide nanoparticles. In this way, the 

biocatalyst separation can be performed through the use of an external magnetic field, 

avoiding enzyme compaction, as occurs in other separation methods such as filtration and  

centrifugation (Kopp et al. 2015). 

Miranda et. al (2020) achieved satisfactory results in the production of biodiesel 

using Eversa® Transform 2.0 immobilized in CLEAs with magnetic nanoparticles in the 

transesterification of refined soybean oil. Using 12 Uest/g of oil enzyme load, 87.8 ± 0.7 

wt % of fat acid ethyl ester (FAEE) yield was achieved after 12 h of reaction, in addition 

to the biocatalyst maintaining 89.6% of the biodiesel yield produced in the first batch, 

after five reuses (Miranda et al. 2020). The main objective of this study is to investigate 

the economic feasibility and environmental impact of biodiesel production catalyzed by 

Eversa® Transform CLEA with magnetic nanoparticles and its purification by two 

different routes: biodiesel distillation and caustic polishing with subsequent washing with 

water. The study was based on a process simulation involving all the unit operations 

necessary for the product to met the international standards for biodiesel. A Sensitivity 

Analysis (SA) was also carried out to identify the process parameters that mainly 

influence the indicators of economic feasibility and environmental impact.  

1. Methodology 

1.1. Process Description 

The production process of ethylic biodiesel was simulated based on the work of Miranda 

et al. 2020. Refined soybean oil is fed into the reactor, with excess of hydrous ethanol 

(oil/ethanol molar ratio 1:6) and the lipase immobilized in the form of CLEA in a vortex 

flow reactor. The reaction proceeds at 40°C for 12 h. In this step, two reactions occurs 

transesterification and hydrolysis. Then, the enzyme is recovered through a plate that 

generates a magnetic field, which collects the CLEAs that are washed with tert-butanol 

and reused in 5 batches. The solvent used to wash the catalysts is sent to a distillation 

column for purification and returns to the process. The first step in biofuel purification is 

decanting, which separates the raw glycerol from the light phase (mainly biodiesel). Then, 

both streams leaving the decanter are sent to flash for ethanol recovery. After going 

through the flash, the glycerol reaches a purity of 96%, of double-distilled glycerin. The 

ethanol goes to a distillation column for purification and returns to the reactor. At this 

stage, biodiesel already present low concentrations of glycerol, ethanol and water, but 

still contains a high concentration of Free Fatty Acid (FFA). For the separation of FFA, 

two process possibilities are tested. The first considers a caustic polishing as proposed in 
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the work of Miranda et. al (2020). The FFA is neutralized with a 4% (w/v) NaOH solution, 

the acid reacts with the base and forms FFA salts. A centrifugation step is performed 

mainly to remove the water added to the NaOH solution. The biofuel is recovered, washed 

with hot distilled water, and centrifuged (this protocol was repeated three times) to 

remove any traces of glycerol, alcohol, acid, base or soap that are still present in the 

biofuel. Then, the removal of water still present is carried out in a flash. The second 

strategy for FFA removal is a vacuum distillation column in order to remove 

triacylglycerides, raw materials and other components  used in the separation steps (Al-

Zuhair et al. 2011; Gebremariam et al. 2019; Sotoft et al. 2010). 

The simulation of the process, as well as the calculation of economic feasibility and 

environmental assessment, were performed in the EMSO Software (Environment for 

Modeling, Simulation and Optimization). EMSO is an equation-oriented simulator, for 

academic, teaching and research that provides an environment for simulating and 

optimizing problems.  

1.2. Kriging meta-model 

To avoid convergence difficulties typical of steady-state simulations of rigorous 

phenomenological models of liquid-liquid equilibrium (Decantation) and Liquid-Vapor 

equilibrium (Distillation Column), metamodels were used to represent these stages  

(Carpio et al. 2018; Furlan et al. 2012). Therefore, the rigorous models of the distillation 

and decanter columns were simulated in Aspen Plus and were replaced by meta-models 

for simulation in EMSO. A universal Kring model was used, built using the "DACE" 

toolbox, code that adjusts and validates kriging models (Lophaven, Nuelsen, and 

Sondergaard 2002). 

1.3. Economic and Environmental Assessment 

The economic feasibility and life cycle assessment (LCA) equations were directly 

included in EMSO, integrated with the mass and energy balances of the process. Mass 

and energy balances were used to size the equipment, perform process cost calculations 

and calculate CO2 emissions for the production process. This integration between 

simulation, economic feasibility and LCA facilitates further studies of the process, such 

as sensitivity analysis. 

The data used in the evaluations carried out in this work was based on the Brazilian 

context in the year of 2020. The Plant was sized to process 17.6 ton/h of refined soybean 

oil. The metric for calculating economic viability was the Net Present Value (NPV), with 

a rate of return of 11% per year.  

The LCA of this study used the CML Baseline 2000 method. Global warming potential 

(GWP 100) measured in kg of CO2eq was the impact category chosen. Mass allocation 

was made between the two products of the process, biodiesel and glycerol.  

1.4. Sensitivity Analysis 

Sensitivity analysis can determine the parameters that have significant effects on the 

indicator of biodiesel production. Morris method was used with the following input 

variables: catalyst reuse number (5 - 30 reuse), transesterification yield (94.9 - 97.9%) 

and hydrolysis yield (0.87 - 1.41%). The output variables were the NPV and GWP. Yield 

intervals were selected according to experimental data and enzyme reuse was determined 
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extrapolating the range obtained experimentally. In the experimental planning, levels 

equal to 4 were applied and 400 calculations of elementary effects were performed. 

2. Results and discussion 

2.1. Economic viability 

Using the results from material and energy balance together with the prices of raw 

materials, utilities, labor, and equipment, the techno-economic-environmental 

performances of the two technology options have been evaluated and presented in Table 

1. The total cost of building the plant is US$ 29.99 million for the purification of biodiesel 

via distillation and US$ 30.13 million for caustic polishing. Other studies that use 

enzymatic catalysis point to an installation cost of 13.5 million for an annual production 

of 42 thousand tons (Gebremariam et al. 2019). For an annual production of 200 tons, 

Sotoft et al. (2010) reported an installation cost of 21 million for heterogeneous enzymatic 

catalysis and 30 million for homogeneous enzymatic catalysis. The values of the study 

presented were corrected by chemical engineering plant cost index (CEPCI) to the base 

year of the present work. 

Table1: Result of the evaluation techno-economic-environmental of the production of 

biodiesel catalyzed by CLEA, for different purification methods. 

 Purification Process 

Item Distillation  Caustic Polishing 

Annual Biodiesel Production (kg) 141, 796,609 139,862,404 

Annual Glycerol Production (kg) 13,265,238 13,280,848 

Total capital investment cost (US$) 28,503,448 33,750,667 

Total Input (US$) 914,427,719 915,003,449 

Energy (US$) 358,941 370,668 

Utility cost (US$) 11,210,988 11,758,530 

Total Product Cost (US$) 992,375,455 994,354,866 

Revenue (US$) 180,544,091 178,205,637 

Net Present Value at 11% (US$) -5,575,617,290 -5,610,014,123 

Biodiesel's GWP 100 (kg CO2 eq/kg) 2.68 3.73 

 

Caustic polishing is more expensive to implement and operate, resulting in a higher total 

capital investment cost and total product cost, compared to Distillation. Additionally, the 

distillation process has a better process yield, as it requires fewer steps to reach the desired 

standard of purity, which causes less product loss during product purification. However, 

both purification alternatives have negative profit and, therefore, negative NPV which 

indicates that the investment is not economically feasible. The high cost of the process is 

mainly due to the cost of inputs and 85 % of the raw material cost is for the CLEA 

production. Therefore, it is necessary to increase the number of enzyme reuses, so that 

this process can become viable. For the process to be economically feasible, at least 475 

reuses are required for the distillation and 956 for the caustic polishing process. 
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2.2. Environmental Assessment 

The base cases including transesterification process and two different purification 

processes have been analyzed with the CML Baseline 2000. The GWP 100 results are 

shown in Table 1. The enzymatic reaction takes place under mild operating conditions 

and the absence of soaps and other residues, which makes it possible to apply separation 

processes with less impact. Vacuum distillation, despite having a higher energy 

consumption, does not use water and chemicals in the purification step. Therefore, it 

shows a lower global warming potential.  

2.3. Sensitivity Analysis 

The standardized elementary effects (SEE) and their mean absolute values were used to 

select which variables have little effect on the model's outputs. Table 2 shows the mean 

values (µ) of the elementary effects, the absolute value (µ*), and the standard deviation 

(σ). When analyzing the values presented in Table 2, it is evident that the three selected 

variables have an influence on the NPV and only the hydrolysis conversion can be 

considered as a variable of low influence in the GWP 100 (for the caustic polishing). 

Table 2: Sensitivity analysis results, based on Morris sensitivity analysis.  

 

It is observed, for the caustic polishing process, that the absolute values of µ and µ* are 

equal, which indicates a monotonic behavior. Therefore, the sign of the effect of the input 

variables in the outputs remain the same in all space. This behavior is not observed in the 

distillation process, showing that the inputs have both positive and negative effects on the 

output variables. The values of sigma are similar in magnitude to µ and µ*, which 

indicates that the SEE values varies substantially. This shows that there will be cross 

interactions between variables and non-linear behavior. It is important to emphasize that 

the interpretation of the indices is essentially qualitative and must be used for essentially 

for factor fixing. To determine the relative importance of the factors, a global sensitivity 

analysis based on variance must be used (Sin and Gernaey 2009).  

3. Conclusions 

The replacement of fossil fuels by ethylic biodiesel produced by enzymatic route has great 

potential for success. However, there are still challenges to be overcome, such as the cost 
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 NPV GWP 100 

 µ*  µ σ µ*  µ σ 

Reuse Number 3.22e+8 1.71+7 8.53e+8 0.67 -0.032            1.712 

Transesterification Conv. 1.11e+9 1.30+8 1.70e+9 2.22 -0.253 3.40 

Hydrolysis Conv. 1.05e+9 -8.79e+8 1.66e+9 2.18 0.162 3.34 
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 NPV GWP 100 

 µ*  µ σ µ*  µ σ 

Reuse Number 1.79e+9 1.79e+9 1.17e+8 3.58 -3.58 2.33 

Transesterification Conv. 2.84e+8 2.84e+8 1.70e+4 0.13 -0.13 0.05 

Hydrolysis Conv. 1.60e+5 -1.60e+5 4.95e+3 0.001 -0.001 0.001 
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of enzymes. For the use of Eversa® Transform 2.0 lipase by crosslinked enzymatic 

aggregates (CLEAs) with magnetic nanoparticles to be viable, it is necessary to increase 

the number of reuses by 475 and 956 times, for distillation and caustic polishing 

respectively, or increase the specific catalytic activity of the biocatalyst. The separation 

of biodiesel produced by enzymatic route, due to the absence of soap and other 

contaminants, allows the use of different technologies, such as distillation, which proved 

to be more economical and environmentally friendly than the caustic polishing.  
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Abstract 

In this paper we analyzed the hydrodynamic in a bioreactor which was simulated three-

dimensionally applying the Computational Fluid Dynamics (CFD) using the Smoothed 

Particle Hydrodynamics (SPH) method. The developed model was validated through the 

comparison between the numerical and experimental data of the internal flow produced 

by a double Rushton stirred. The performance of the impellers analyzed in this work, 

named propeller, anchor and Rushton, were compared respect to the mixing time, fluid 

velocity profiles and mixing efficiency. In the SPH numerical simulations were 

considered the properties of the viscous fluid obtained in the xylitol production as density 

ρ = 1240 kg/m3 and viscosity η = 1.587x10-5 m/s2. This simulation was performed using 

the DualSPHysics code based in the Smoothed Particle Hydrodynamics (SPH) method. 

The numerical results obtained in the validation test shown that the SPH method is 

capable to reproducing hydrodynamics in stirred tank bioreactors. We compared the 

hydrodynamic performance of three impellers: anchor, propeller and Rushton, in which 

it was possible to predict stagnation zones and speed profiles that guarantee a more 

homogeneous mixing. The optimal impeller for a stirring speed of 200 and 600 rpm is 

anchor and Rushton for 400 rpm. 

 

Keywords: CFD, hydrodynamics bioreactor, SPH. 

1. Introduction 

The biotechnology industry has become very important in recent years, due to the high 

demand for products derived from biological systems. The bioreactor is the main unit 

process and its design must fulfill certain requirements that are needed to ensure the 

fermentation process efficiency, such as: the stirring speed, the aeration rate, the heating 

intensity or cooling rate, and the nutrients feeding rate. The homogeneity of dissolved 

oxygen and substrate concentration in the bioreactor is set by the impellers.  

 

Biotechnological process depends on the biological reactor in particular on the 

homogenization of the substrate, oxygen and biomass inside the tank. Therefore, it is 

important to analyze the hydrodynamics of biological reactors, especially the stirred tank 

reactors used traditionally in fermentation processes. 
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The Computational Fluid Dynamics (CFD), is a very useful tool to analyze in detail the 

hydrodynamics and mixing in bioreactors of stirred tank used in microbial fermentation 

processes (Gelves et al., 2013). The CFD allows the numerical solution of the transport 

equations by computational means. It can generate a huge amount of information that in 

practice could not be obtained experimentally, or they are totally inaccessible by the 

experimental route, also is an effective strategy to improve or ensure the performance of 

a process. This tool allows determining axial and longitudinal flow patterns, velocity 

profiles, mixing times, stagnation points or vortex formation. The CFD has been used for 

description of mixing in bioreactors by (Tajsoleiman et al., 2019; Delafosse et al., 2014) 

where they propose a compartment model where the flow rates between two adjacent 

compartments are easily computed from the velocity fields obtained by CFD. Moreover 

it has been reported studies of hydrodynamic shear stress generated by different impeller 

combinations in stirred bioreactors and hydrodynamic performance of coaxial mixers in 

the mixing of yield-pseudoplastic fluids (Kazemzadeh et al., 2016). The evaluations of 

gas–liquid mass transfer, oxygen uptake, and dynamic oxygen distribution were reported 

by (Stickel et al., 2018). 

The purpose of this paper is to know the distribution of nutrients within the fermentation 

process, as well as to determine homogeneity and velocity profiles in order to guarantee 

the hydrodynamics that promotes mass transfer in three different impellers traditionally 

biotechnology used anchor, propeller and Rushton.  

2. Methodology

The analysis has focused on the hydrodynamics of the tank by means of CFD using the 

SPH method to describe the flow patterns and velocity profiles inside the reactor with the 

objective of obtain data that help to decrease the mixing time and minimizing or 

eliminating stagnation zones. 

For this analysis we first performed the numerical validation of the SPH method by 

comparing the results with those obtained experimentally by De Lamotte et al., (2017). 

For validation, two Rushton turbines with 4 blades and a diameter of 0.1 m were used for 

agitation according to the dimensions reported by De Lamotte et al., (2017) in their 

experiment. The coupling of the momentum equation and the continuity equation was 

performed. Stirring speeds ω = 200rpm, fluid density ρ = 998 kg/m3, kinematic viscosity 

η = 1x10-6 m/s2 and a total of 1,250,000 particles making up the fluid, tank and agitator 

were considered. 

Subsequently, we chose 3 impellers: anchor, propeller, and Rushton with a stirring speeds 

(ω) 200, 400 and 600 rpm and then the hydrodynamic performance and mixing times for 

each impeller was analyzed. Finally, for each stirrer we determined the mixing time at the 

stirring speed that showed the highest homogeneity. For the simulations of the 

hydrodynamics of the stirred tank bioreactor, the following parameters were considered: 

density ρ = 1240 kg/m3, kinematic viscosity η = 1.587x10-5 m/s2, and a total of 500,000 

particles in a time of 15 seconds.  The height-diameter (h/D) scale ratio of the reactor is 

1.5 times. The sizing of the bioreactor and impellers was performed in SolidWorks®, the 

total volume of the tank is 5 L, with a height of 0.33m, a diameter of tank 0.16m and with 

4 baffles to reduce stagnation zones. The impellers have a height of 0.27m.  
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in a Bioreactor CSTR with SPH  

2.1. Impellers 

Stirring and mixing is an operation used to accelerate heat and mass transfer processes. 

This operation introduces energy into the volume of the fluid, i.e. the kinetic energy of 

the agitator is transferred to the fluid causing it to move. This operation involves systems 

that are in a single phase or in several liquid, solid and gaseous phases. For this purpose, 

agitators have been designed to generate parallel flows to the impeller axis, which are 

called axial flow impellers; and some that generate flows in radial-tangential direction, 

which are called radial flow impellers. 

 

The propeller is an axial flow agitator and is used for liquids that are not very viscous. 

The speed of these impeller varies depending on their size, between 400 and 800 rpm for 

large propellers and between 1150 and 1750 rpm for the small ones. One characteristic of 

the propeller is that its blades vigorously shear, or friction, the liquid (Ramirez, 2012). 

These agitators are used to homogenize, suspend fluids, as well as increase the heat 

exchange. The propeller agitator used in this study has a diameter d = 0.06m, and a height 

h = 0.27m (Figure 1a). 

 

The anchor is a radial agitator, composed of paddles rotating at low to moderate speeds 

in the center of the tank, impelling the liquid radially and tangentially, with no vertical 

movement with respect to the agitator, unless the paddles are inclined. The flows are 

directed towards the tank wall and then continue upward or downward. The anchor-type 

agitator in this study has a diameter d = 0.06 cm, a height h = 0.27m, and has a deflector 

plate at a 45° angle (Figure 1b). 

 

The Rushton impeller consist of a driving component with more than four blades, 

mounted on the same element and fixed to a rotating shaft. They are effective for a wide 

range of viscosities. When used in low viscous liquids, they produce strong flows, which 

spread throughout the tank and destroy stagnant liquid masses. The Rushton turbine is 

ideal for fermentation (Verdugo, 2013). Rushton propeller blades are flat and positioned 

vertically along the agitation axis, producing a unidirectional radial flow. Two Rushton 

4-blade turbines with a diameter of 0.1 m were used for agitation (Figure 1c). 

 

 

  
a) propeller b) anchor c) Rushton 

 

Figure 1. Design of impellers. 

 

2.2 The SPH method 

SPH is a Lagrangian, meshless method with applications in the field of Computational 

Fluid Dynamics. Originally invented for astrophysics in the 1970s (Monagan J, 1992) it 

has been applied in many different fields, including  fluid dynamics (Alvarado-Rodríguez 

C.E. et al., 2019) and wastewater treatment (Mokos et al., 2015). The method uses points 
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named particles to represent the continuum and these particles move according to the 

governing equations in the fluid dynamic. When simulating free-surface flows, no special 

surface treatment is necessary due to the Lagrangian nature of SPH, making this technique 

ideal for studying violent free-surface motion. Moreover, the movement of the boundaries 

can be set easily without the necessity of update the mesh as in the Eulerian methods.  

 

The SPH formalism used in the simulations is reported by (Dominguez et al., 2021) which 

is set in the DualSPHysics code, in this work only the continuity (Eq. 1), the momentum 

(Eq. 2) and equation of state (Eq. 3) in the SPH formalism are reported. 

 
𝑑𝑣𝑎

𝑑𝑡
= −∑𝑏 𝑚𝑏 (

𝑃𝑎+𝑃𝑏

𝜌𝑎𝜌𝑏
+ ∑𝑏 𝑚𝑏 (

4𝑣0𝑟𝑎𝑏∙𝛻𝑎𝑊𝑎𝑏

(𝜌𝑎+𝜌𝑏)(𝑟2
𝑎𝑏+𝜂2)

) 𝑣𝑎𝑏 + ∑𝑏 𝑚𝑏 (
𝜏⃗ 𝑎𝑏
𝑗

𝜌𝑏
2
+

𝜏⃗ 𝑎𝑏
𝑖

𝜌𝑎
2
)𝛻𝑎𝑊𝑎𝑏) 𝛻𝑎𝑊𝑎𝑏 + 𝑔 , 

 

(1) 

𝑑𝜌𝑎

𝑑𝑡
= −𝜌𝑎 ∑𝑏

𝑚𝑏

𝜌𝑏

(𝑣𝑏 − 𝑣𝑎) ∙ 𝛻𝑎𝑊𝑎𝑏 , 

 
(2) 

𝑃 = 𝐵 [(
𝜌

𝜌0
)
𝛾
− 1] , (3) 

 

where the subscripts a and b are denoted for the mean particle “a” and the neighbors 

particles “b”, v is the velocity, t is time, m is mass, P is pressure, ρ is density, υ0 is the 

kinematic viscosity, τ is the stress tensor, 𝐵 =  𝑐0
2𝜌0/𝛾, c0 is and artificial sound speed, 

and γ = 7, and W is the kernel function defined in the SPH method. 

3. Results 

3.1  Validation of SPH method 

The numerical results from the simulation were validated by comparing with the 

experimental results reported by De Lamotte et al., (2017). The Reynolds number, tank 

velocity fields and velocity variation were calculated for the case with a stirring speed ω 

= 300 rpm. The velocity profile obtained by the SPH method versus that obtained 

experimentally is shown in the Figure 2. The flow distribution is similar, forming two 

vortices inside the tank similar to the vortices obtained experimentally, likewise the 

velocity field is in the same range of velocity values (0-2 m/s). With this numerical results 

the SPH method is validated as a tool for the simulation of the hydrodynamics of stirred 

tanks. 

  
 

Figure 2. Sizing of the tank used for 

the simulations. 

 

Figure 3. Comparison of velocity profile and vortex 

formation experimental vs SPH simulation 
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 3.2 Impellers performance 

We study the hydrodynamic performance in each speed stirring and each impellers studies 

for to evaluate possible stagnation zones through of flow pattern impellers. We chose three 

specific zones within the reactor to evaluate fluid movement within the tank: top, bottom 

and middle of the biological reactor. The numerical results of the SPH method of 

propeller, anchor and Rushton impellers for stirring speed of 200 rpm are shown in the 

Figure 4. This analysis was also performed for speeds of 400 and 600rpm for all stirrers. 

 

In the propeller impeller according to the results obtained from the analysis of the flow 

stabilization as a function of time (selected points inside the biological reactor), the flow 

is not homogenized at 15 seconds using 200 rpm, while at 400 and 600 rpm it is stabilized 

in this time.  Addition, with 200 rpm there is no movement in the upper part of the reactor, 

which suggests a deficient mixing in the tank (see Figure 4a). The other speeds show a 

better homogenization of speed inside the tank. 

 

According results on the hydrodynamic performance of the anchor impeller, the 

circulation pattern manifests a radial recirculation behavior in liquid and a turbulent 

regime at all three speeds. No stagnation zones are shown in any of the stirring speeds 

studied. In the Figure 4b shown the pattern flow in anchor impeller at 200rpm. The 

analysis of the three points inside the reactor show flow stabilization time, obtained that 

for the stirring speeds at 200 and 400 rpm achieved stabilization in 9 and 11 seconds 

respectively, while the 600 rpm stirring speed needed more than 13 seconds.  

 

In the Rushton impeller the results of the three points of the homogeneity of speed as a 

function of time shown that the circulation pattern manifests a radial recirculation 

behavior in liquid and a turbulent regimen (see the top in the Figure 4c). The minimum 

flow stabilization time in the tank is observed at 400 rpm. For Rushton impeller, there are 

stagnation points around the blades at the three speeds analyzed.  

 

   

propeller b) anchor c) Rushton 

Figure 4.  Flow pattern impellers, ω=200rpm 

 

4. Conclusions 

This work presents the numerical validation of the SPH method and its application for the 

study of three different impellers used in the biotechnological industry: propel, anchor 

and Rushton at three different stirred speeds, 200, 400 and 600 rpm. The validation shows 

good agreement between the numerical and experimental results, so it is concluded that 

the SPH method is a powerful and versatile tool for the analysis and design of stirred tank 

bioreactors. According to the results, the best impeller was the Rushton at stirring speed 
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of 400 rpm, because it does not present vortices and its flow stabilization time is 10 

seconds. The propeller impeller shows a low flow stabilization time in the tank requiring 

more than 15 seconds for a speed of 200 rpm. The anchor impeller shows a similar 

performance to the Rushton, with flow stabilization time of 9, 11 and 13 seconds for 600, 

400 and 200 rpm respectively. In addition, with the analysis of the hydrodynamics of 

stirred tank bioreactors in SPH, it was possible to predict stagnation zones and velocity 

profiles that guarantee a more homogeneous mixing. 
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Abstract 

The paper explains a generic and systematic approach in the development of embedded 

models that could be further used for model reduction. The systems approach makes a 

structured and systematic use of data as they are produced at three distinct stages: 

simulation assignments by means of spatial differential equations, optimization runs that 

regress parameters for each simulation, and deep learning training that converts 

parameters into functions of system variables. Simulation models refer to steady-state 

operations of closed-circuit grinding models formulated as differential equations with 

parameters treated as degrees of freedom. Results from this implementation present a 

consistent accuracy improvement over the model used as basis. 

Keywords: Embedded Model, ANN, Deep Learning, Cement Grinding, Ball Mill 

1. Introduction 
Raw material and clinker grinding are energy intensive processes, consuming 70% of the 

electricity demand in a typical cement plant, which cumulatively amounts to 2% of global 

electricity consumption [1]. Due to energy costs, emission restrictions and tight product 

quality specifications the cement industry is challenged to perform at the highest possible 

standards; robust and reliable technology in optimization, control and sensor software are 

important enablers to secure high performance. Still, the industrial processes in the 

cement industry involve complex multi-phase flow dynamics modelled by breakage 

distribution function with the rate of breakage determined by probabilistic approach 

intended to match experimental measurements. The cement industries hold large records 

of data generated from long times of operation and service in their industrial processes. 

Deep learning models are already tested successfully to predict environmental 

performance, even in the absence of first principles [2]. However, one is further 

challenged to capitalize on the wide range of conventional, yet insightful, models as they 

are popular for grinding and thermal conversion processing. Model complexity is tackled 

by limiting assumptions that prevent such models from accuracy and restrict their use to 

simulation rather than to support decisions and/or assist in the re-engineering of the 

industrial process. A systematic and combined use of first-principles models with 

operational data holds a strong promise. In exploiting the underpinning engineering 

principles supported by the models, one is hopeful to achieve a better analysis of 

computations and a direct interpretation of their results. 
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The paper explores the systematic development of embedded models using a ball mill 

circuit grinding as a pilot. The analytical model is first presented for the ball mill circuit. 

A conventional approach would directly regress operational data to model parameters. 

Instead, the paper outlines a methodology where machine learning is applied to convert 

parameters as functions of process variables. Using a combined stream of model-based 

and of operational-based datasets, a deep learning model is trained and produced by 

means of an embedded model. The model capabilities include options to invert the model 

as well as options to expand it with decision parameters for process design and 

reengineering.  

2. Presentation of first-principle models and parameters 

The set of first principles models is presented first alongside parameters to train and 

connect with real-life data. The feed is considered to consist of a dry mix of clinker, 

pozzolan, gypsum, limestone and fly-ash, ingredients of common Portland cement.  The 

cement grinding circuit consists of a finishing ball mill that is connected to a SEPAX 

rotor classifier. The models for the ball mill and the classifier are presented next. 

 

 
Figure 1: Diagram of a ball mill grinding circuit. 

2.1 Ball Mill Model 

A first principles model has been presented by Boulvin, et al., 1999 [3]. The model 

considers cement behaviour inside the mill as solid flow of discretely sized particles. 

The modelling equations consist of a system of PDEs describing mass flow through 

convection and diffusion, and particle diameter reduction through breakage. The system 

of PDEs solve for linear density of cement particles, ui for each particle size interval, 

axially distributed over the length of the mill: 

 

−𝑣𝑖
𝜕𝑢𝑖

𝜕𝑧
+ 𝐷𝑖

𝜕2𝑢𝑖

𝜕𝑧2
+ ∑ 𝑏𝑖𝑗𝑠𝑗𝑓(𝑢𝑗) =

𝜕𝑢

𝜕𝑡

9
𝑗=1   𝑖 ∈ ℕ, 𝑖 ∈ [1,10] (1) 

 

Along with the appropriate boundary conditions: 
 

𝐷𝑖
𝜕𝑢𝑖

𝜕𝑧 𝑧=0
− 𝑣𝑖𝑢𝑖(𝑧 = 0) = −𝑞𝑓𝑤𝑓𝑖 − 𝑞𝑟𝑤𝑟,𝑖   (1a) 

𝜕𝑢𝑖

𝜕𝑧 𝑧=𝐿2
= 0                  (1b) 

Comminution is modelled using the Breakage and Selection function standard. Such 

models make use of empirical equations to determine the specific rate of breakage of 

each particle, si and the distribution of the diameters, di of produced particles, b.  
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𝑠𝑖 = 𝑎𝑑𝑖
𝑎         (2) 

A cut-off variation of the Broadbent and Callcott equation [4] is used as breakage 

function to keep regression parameters to a minimum: 

𝐵(𝑑𝑖) = 1 − (1 − 𝑑𝑖/𝑑1)
𝑐3   (3) 

𝑏𝑖(𝑑𝑖) = 𝐵𝑖(𝑑𝑖) − 𝐵𝑖+1(𝑑𝑖)   (3a) 

c3 expresses the grindability of the material mix. Harder materials tend to break in larger 

lumps of particles instead of shattering. Linear dependency between the content of the 

clinker and cement grindability are assumed following. 

𝑐3 = 𝑐1𝑚 + 𝑐4     (3b) 

The effectiveness reduction due to the impact energy cushioning effect of fine holdup 

accumulation is also accounted for, in the form of the following function. [5]  

𝑓(𝑢) = 𝑢(𝑧)𝑖𝑒
−𝑐𝑛∗𝐻(𝑧)    (4) 

H accounts for the total cement particles mass holdup (of all sizes). Blaine 

measurements assume cement particles of spherical shape and that Blaine is 

proportionate to their total surface area. Likewise, product density ρ, is considered 

constant and independent of the cement composition. 

       𝐵𝑙 =
6𝑐

𝜌
∑ 𝑑𝑖𝑤𝑖
10
𝑖=1           (5) 

qf, wf,i and qr, and wr,I respectively denote mass flow and weight fractions of i particle 

size interval in the feed and the recycle streams; they are linear expressions of ε(xi) that, 

in turn, is set by the classifier type . The recycle stream consists of classifier rejects 

following: 

𝑞𝑟𝑤𝑟,𝑖 = 𝜀(𝑥𝑖)𝑢𝑖     (6) 

2.2. Classifier Model 

The Tromp curve of a SEPAX rotor classifier has a distinct shape which is mostly 

independent of the operation variables. The classifier is commonly modelled using a 

Rosin-Rammler model fitted closely to experimental data in order to replicate the 

characteristic “fish-hook” curve of selectivity over particle diameters. A polynomial 

equation is fitted for each segment of the curve to match real-life performance. 

 
Figure 2: Classifier selectivity for fixed classifier speed and airflow. 

The rotor selectivity depends mainly on the feed-rate and the rotating speed. Higher 

rotating speed increases the classifier’s affinity to smaller sized particles. In essence, as 

the rotating speed of the classifier varies, the selectivity curve shifts horizontally in a 

linear manner. To replicate such a behaviour, an effective diameter, z, of the product 

particles is developed as follows:  

𝑧𝑖 = 𝑥𝑖 + 𝑐2(𝑣𝑠 − 𝑣𝑜)    (7) 

3. Outline of methodology 
Given are  
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(i). First principles models (Σ1 & Σ2) as described by (a) the Ball mill model, Σ1: Eq. 

(1-5); (b) the Classifier model, Σ2: Eq. (6-7) 

(ii). Sets of real-life data (DS1): This is a dataset of a cement plant ball mill circuit’s 

operation. The dataset originates from a log of hourly semi-steady state 

measurements for the whole of 2020. Of the log’s measurements, DS1 contains: (a) 

Ball mill dry feed-rate, qf ; (b) clinker content, m; (c) Separator speed vs; (d) Blaine 

specific surface, Bl  

(iii). Sets of model parameters (PS1 & PS2). They involve regression parameters within 

the model Σ1 & Σ2: PS1 ≡ {a,c1,c2,c3,c4,cn,c}; and a parameter to regress to single 

data points of DS1: PS2 ≡ {c1} 
The objective would be the development of an embedded model to convert parameter 𝑐1
as functions of {𝑞𝑓 , 𝑚, 𝑣𝑠}.

The proposed methodology involves the following stages: 

Stage 1: Model regression stage where regression parameters are fitted to in-site data. 

In this stage, parameters PS1 in integrated model Σ1&Σ2 are regressed to plant operation 

data DS1 by minimizing the objective function:  

𝛷 =
𝛮

2
ln(2𝜋) +

1

2
min
𝜃

{
 

 
∑ ∑ ∑ [ln(𝜎𝑖𝑗𝑘

2 ) +
(B𝑙𝑖𝑗𝑘−B𝑙̅𝑖𝑗𝑘)

2

𝜎𝑖𝑗𝑘
2 ]

𝑁𝑀𝑖𝑗
𝑘=1

𝑁𝑉𝑖
𝑗=1

𝑁𝐸
𝑖=1

}

(8) 

Stage 2: Data development stage where selected regression parameters are produced to 

train the model. In this stage, input-output data for machine learning are produced using 

(a) the set of data from the plant DS1; and (b) outputs from the integration of Σ1 and Σ2.

Dataset DS2 is produced as values of regressed parameters PS2 by minimizing objective

function (8).

Stage 3: Neural network training stage using real data inputs and regressed model

parameters. The selected parameters are turned to functions of input. In this stage,

parameters PS2 are converted to functions of the process input through an ANN trained

with (a) the physical input from DS1 and (b) the regressed parameters dataset DS2

produced in (1).  𝑃𝑆3 = 𝑓(𝐷𝑆1, 𝐷𝑆2)
Stage 4:  Embedded model validation and testing.

4. Implementation
Two identical models of the ball mill, Σ1 representing each compartment of the mill are 

integrated with classifier’s model Σ2. Simulations of the circuit model Σ1 & Σ2 are run 

for steady state operation on gPROMS Model Builder 6.0.4. Parameters PS1 of the model, 

are regressed to in-site dataset DS1 by minimizing the error of Blaine prediction Eq. (8). 

Parameters in PS2 of the regressed model (stage 1) are repetitively regressed to each of 

the individual data points of dataset DS1. A large number of regressions taking account 

of a wide range of the input values (𝑞𝑓 , 𝑚, 𝑣𝑠)  take place in this step. Both en masse

(stage 1) and individual point regression take place within gPROMS Model Builder 

Model’s Validation Module, which makes use of maximum likelihood estimation 

algorithm (MLE) for minimizing the objective function value Eq. (8). 

Input values (𝑞𝑓 , 𝑚, 𝑣𝑠) from DS1 and the complete DS2 dataset is used to train a

feedforward ANN in order to determine the function by which they correlate with each 

other, 𝑐1 = 𝑐1(𝑞𝑓 , 𝑚, 𝑣𝑠). The ANN DS1&DS2 are used to train, consists of two 140

neuron hidden layers and a “ReLu” activation function applied to both of them. The 

output layer instead has a linear activation function. Network training is coded on python 

using the Tensorflow module and the API Keras and done through “Adam”, a stochastic 

gradient descent optimizer, updating the parameters as follows: 
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𝜃𝑡 = 𝜃𝑡−1 − 𝑎
∇(𝜃𝑡−1)

√𝑣𝑡 + 𝜀
 

While mean squared error (MSE) is used as error function. Then, weights and biases of 

the trained neurons are acquired and used to replicate the neural model as functions in the 

gPROMS Model Builder environment. Function, 𝑐1(𝑞𝑓 , 𝑚, 𝑣𝑠) replaces the respective 

constant parameter c1 of the analytical model, thus forming an embedded one. The Blaine 

prediction accuracy of the embedded model as well as that of the analytical model with 

regressed parameters PS1 from stage (1) is tested. The testing of the models’ performance 

occurs in two stages, one for interpolation and one for extrapolation. The testing dataset 

used for interpolation is picked to match the range and standard deviation of inputs & 

output in DS1. The extrapolation testing dataset consists of inputs (𝑞𝑓 , 𝑚, 𝑣𝑠). Inputs 

(qf, vs)  in specific, are outside of the training dataset’s DS1 range, but within a 20% 

extension from it in either direction. In each testing scenario, the performance of the two 

models is compared to that of a pure ANN model directly trained to DS1. This ANN 

consists of 3 hidden layers, the first one containing 128 and the other two 256 neurons 

each. Both the pure and the integrated ANNs were trained with a low constant learning 

rate of 0.00001 and a batch size of the entire training sets as training time was not crucial. 

Both were trained with 2033 data points 20% of which were used for testing. The number 

of layers and their respective neurons, as well as the number of training cycles were tuned 

to the end of minimizing the training and testing sets’ mean average error without them 

significantly diverging from one another. 

 5. Results 

All Models’ Blaine Prediction Accuracy Comparison:  

 

Figure 3a,3b: Comparison of absolute error of measured Blaine of all models on both interpolation and 

extrapolation validation datasets. 

 

Table 1: Comparison of error metrics of all models on both interpolation and extrapolation validation datasets. 

 

While the embedded model outperforms the analytical model on both interpolation and 

extrapolation performance, it accounts for the largest deviations on both. 

Metric Pure ANN 

model/ 

Interpolatio

n Data 

Analytical 

Model/ 

Interpolation 

Data 

Embedded 

Model/ 

Interpolation 

Data 

 

Pure ANN 

model/ 

Extrapolation 

Data 

Analytical 

Model/ 

Extrapolation 

Data 

Embedded 

Model/ 

Extrapolation 

Data 

Mean Absolute 

Percentage Error 

2.31% 6.18% 5.57% 2.46% 6.91% 6.37% 
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Particle Size Distribution (PSD) comparison 

 

Figure 4a,4b: Comparison of simulated and experimental variability of cumulative passing along the second 

compartment of the mill. 

As no data are available of the conditions the circuit was operating in at the time of 

sampling, simulations were run using ordinary routine input values. Axial variability of 

the particle size distribution provided by the embedded model is in agreement with of 

axial sampling data of the mill, as seen at figure 4a, 4b. Coarse particle passthrough in 

the second compartment of the mill is estimated by the model to be 4.7% while 

measured value is 5%. The particle diameter where 50% of passing on mill exit occurs 

is at 14μm while the simulated one is estimated at 32 μm. This deviation may be a result 

of sparse discretization of particle sizes.  
6. Conclusions 

Embedded model is able to achieve higher prediction accuracy in both interpolation and 

extrapolation conditions while retaining its first principles virtues as the particle size 

distribution of cement both inside the mill and the product are in agreement with 

measured values. Further performance increase is expected with the use a larger “input 

– parameter” training dataset. This methodology is one that would benefit most 

analytical models fast enough to run enough regressions for the ANN training to be 

feasible. 
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Abstract 

Biomass processing is considered a strategy changer in the development of new pathways 

for green energy production, being the thermochemical processes as pyrolysis and 

gasification part of the main methods used to produce renewable fuels (Mohabeer et al., 

2019). The purpose of this work is to perform a simulation of the gasification process of 

biomass comparing the use of sand and biochar as bed material with the software Aspen 

Plus®. The simulation is supported and validated by experimental results collected on a 

pilot fluidized bed. The model includes a biomass pretreatment process and the 

gasification where the gasifier (a RYield reactor) is supported by a set of correlations 

obtained in function of the different gasification temperatures. This process allows a good 

reproduction of the pilot gasifier outlet. An analysis of the effect of the use of biochar as 

a bed material over the tar reduction on the producer gas is made, applying different 

gasification agents (H2O and CO2) and a temperature variation (600-900°C).  
 

Keywords: Biomass, Gasification, Aspen Plus, Biochar, Fluidized bed, Tar cracking, 

Simulation.  

1. Introduction 
 

The process of biomass gasification consists in the decomposition of organic material 

(solid or liquid) through the application of heat under the presence of a gasifying agent as 

CO2, O2, steam or a combination of them, which results in the production biochar and 

syngas, a mix of gases constituted principally by CO, H2, CH4, other light hydrocarbons 

(C≤3) and tars (Reyes Alonzo, 2020). Due to an incomplete process of gasification and 

because of the biomass composition, different undesirable products as tars are found in 

great proportion in the syngas. The tar is a dark, odorous and immensely viscous liquid 

that contains a diverse amount of aromatic species with one to five rings, oxygenated 

hydrocarbons and polycyclic hydrocarbons (Gao et al., 2020), they appear in different 

types depending on the molecular weight of the molecules (Table 1) (Molino et al., 2016). 

The undesirability of the presence of tar on the gasification process is due to the 

operational problems such as the reduction of the heating efficiency of the gas and 

clogging issues in the equipment, caused by the condensation of tar in the zones of low 

temperature, those issues raise the operational costs due to the application of cleaning 

devices downstream, being one of the reasons that has made difficult a wider 

commercialization of the gasification technology (Rakesh N & Dasappa, 2018). 

 

In order to reduce the tar concentration on the producer gas and favorize the production 

of the syngas, different catalytic bed materials are used for gasification. Bed materials as 

quartz, feldspar, limestone, etc., have been tested with the aim to find less expensive 

alternatives to the widely used olivine (Mauerhofer et al., 2018). In this work, the 

application of biochar as a catalytic bed material is evaluated, since it is considered an 

economic and accessible alternative in view of the fact that it is a gasification by-product,  
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and also the biochar has demonstrated to have a good catalytic activity to reduce the tar 

yield, increasing the syngas production (Abu El-Rub, 2008). 

 

Table 1. Classification of the different types of tar (Molino et al., 2016).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Aiming to describe the phenomena that take place during the biomass gasification, and 

the syngas composition after the process, different processes simulators are currently 

used. For this work,  we use the simulator Aspen Plus® as a tool to obtain mass and 

energy balances of the process (Abdelouahed et al., 2012). In literature the biomass is 

decomposed into its constituents (C, O2, H2, N2, H2O, S) on a RYield reactor before being 

feed in the gasifier which could be a combination of the RStoic and RGibbs reactors or a 

single reactor that transforms those gases into syngas. (Dattatray & Shilapuram, 2019; 

Zaman & Ghosh, 2021). A significant concern of the use of those models is the fact that 

they do not represent the actual gasification process which comes along with tars 

production, leaving aside a major operational problem that could be further observed 

parametrically using the software, therefore the approach considered is the used by other 

authors that have model the gasification using empirical correlations obtained from the 

experimental data gathered after processing the producer gas composition. This process 

might be convenient, however it cannot be easily extended to other installations 

(Abdelouahed et al., 2012; Francois et al., 2013).   

 

This article is focused on the modeling of a biomass gasification process through the 

application of the empirical correlations obtained from previous experiments (Reyes 

Alonzo, 2020) and the exhibition of the effects of the use of biochar as catalytic bed 

material over the use of inert material as sand. Also, a comparison of the performance of 

CO2 over the use of steam as gasifying agents will be made. Those elements of study have 

their particularity.  

 

The use of CO2 as gasifying agent has not been intensively exploited experimentally as 

the steam due to its energetic downsides, an external heat source is needed in order to 

maintain the process temperature which is caused by the absence of the partial combustion 

reaction of biomass that take place when oxidizing agents are used  (Sadhwani et al., 

2016). However, gasification using CO2 generates a producer gas with higher energetic 

values and more efficiency in the tar cracking process when compared with the use of 

steam (Reyes Alonzo, 2020).  

 

 

Tar type Name
Characteristic 

compound
Examples

1 GC undetectable
Too heavy and cannot be 

detected with a GC.
Gravimetric tar

2
Heterocyclic 

aromatics

Water-soluble compounds 

and tar molecules that 

contain heteroatoms.

Cresol, Pyridine, 

Quinoline, dibenzo 

phenol

3
Light aromatic         

(1 ring)

Hydrocarbons with single 

ring.

Xylene, Toluene, 

Styrene, Fluorene, 

anthracene

4
Light PAH’s                    

(2-3 rings)

Hydrocarbons with two 

and three rings, which 

condense at low 

temperature.

Naphthalene, Indene,    

Fluorene, 

Phenanthrene

5

Heavy PAH’s 

compound             

(4-7 rings)

Hydrocarbons with more 

than three rings, which 

condense at high 

temperature.

Pyrene, Coronene, 

Chrysene, Perylene
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Aspen Plus® modeling approach of beechwood gasification in a fluidized

  bed reactor using biochar as bed material 

2.  Aspen Plus® simulation  
 

The software Aspen Plus ® Version 10 was used in order to obtain a proper reproduction 

of the results of the composition of the syngas obtained during the process of gasification 

that was carried out using CO2 or steam as the gasifying agent.  Different units were used 

to represent the stages of the process (from biomass pre-treatment until solids separation). 

All the components involved were added on the properties section along with the non-

conventional solids: biomass and biochar, which were named as WOOD and CHAR 

respectively. For this model, the thermodynamic method of Peng-Robinson was selected 

and the stream class selected was MIXNCPSD for representing the secondary streams 

containing conventional component, sand and non-conventional solids. The models 

HCOALGEN and DCOALIGT were selected for enthalpy and density of non-

conventional solids were selected. The water was selected as a moisture component for 

the biomass using the Solid Characterization menu, where the particle size distribution 

(PSD) of biomass with an average size from 0.3 mm to 22 mm was considered.   
 

Table 2. Elemental analysis for beechwood pellets and beechwood biochar.  

 

2.1 Biomass pre-treatment 
 

For the feeding process, the data of the proximate and ultimate analysis of the beechwood 

was inserted into the stream BIOMASS (Table. 2). This stream goes through the block 

CRUSHER were the biomass or beechwood pellets (22 mm) are turned into powder with 

a particle size suitable for the fluidization parameters (~0.3mm). The crushed biomass 

stream goes through the block DRYER which will reduce the moisture content of the 

biomass. The configuration ‘Shortcut’ was selected as the operative mode of this block, 

therefore the amount of moisture contained on the biomass after the drying process was 

established beforehand.  

 

2.2 Gasification process simulation  
  

The experimental data and the characteristics of the operating conditions of the 

experimental setup can be found in previous work (Reyes et al., 2020). In the simulation, 

the pretreated biomass is mixed with the gasification agent (CO2 or steam) in the MIXER 

block before entering to the gasifier. The fluidization conditions are stablished with a flow 

rate of 1.5 L/min of gasifying agent. The gasifier is modeled using a RYield reactor 

customized with two calculators with their specific Fortran subroutines representing the  

Material Carbon (C) Hydrogen (H) Nitrogen (N) Oxygen (O) 
Moisture 

content

Volatile 

material

Fixed 

carbon

Ash 

content

Beechwoo

d pellets
49.35 6.25 <0.01 44.4 6.23 75.4 17.54 0.83

Beechwoo

d biochar
78.24 3.13 0 18.63 0 1.59 93.83 4.58

Elemental analysis (wt%) Proximate analysis (wt%)
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final composition of the gasification products and the incoming amount of biochar into 

the gasifier. Firstly, the yield of biochar is obtained from the GAS-Y block results and 

secondly, the block CHAR-Y is executed using this biochar yield as the calculation basis 

for the biochar entering though the CHARFEED stream as gasifier bed material (Fig. 1). 

The correlations used on the subroutine of the GAS-Y block represent the yields of each 

solid, liquid and gaseous specie produced during the gasification. Three sets of 

correlations were applied in order to represent the gasification with sand and CO2 and 

biochar with steam and CO2 (Table 3). 

Table 3. Parameters for the correlations of biomass gasification. 

3. Results and analysis

3.1. Effects of the biochar use with different gasifying agents 

The process was modeled in Aspen Plus® adjusting temperatures from 600°C to 900°C 

on the RYield reactor. As expected, the correlations have an approached agreement with 

the experimental results, which enables different parametric evaluations for this set of 

temperatures and its impact over the product’s yield with a sensitivity analysis. Fig. 2 

shows the tar concentration for different temperatures and bed material (sand or biochar). 

The use of char reduces noticeably the concentration of heavy molecules; this 

demonstrates its catalytic activity. The good agreement of the model with the 

experimental process allows the obtention of a proper mass and energy balance of the 

system (Fig. 3).  

Figure 2. Tar concentration for different temperatures and bed materials. 
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The material and energy balance for the whole system is easily obtained through the 

values of the stream and block results. Fig. 3 shows the mass and energy balance for the 

process using sand and biochar as bed materials. This global balance was made 

considering external streams and the equipment that consume significant amounts of 

energy (dryer, crusher, and RYield reactor). There is a slight difference on the amount of 

heat required for the gasifier when using biochar which corresponds to the need of heat 

for the type of reaction (endothermic) that are taking place during the process with 

biochar. There are basically no changes on the yield of syngas and biochar observed in 

both examples, which opens the question of whether the escalation was effective or 

whether it is necessary to include a correction.  

 
Figure 3. Mass and energy balance for gasification process using sand (a) and biochar 

(b) as bed materials. 

  

3.2. Effects of the biochar as bed material varying the gasifying agents 
 

The CO2 and the steam are known for their use as biochar activator (Molina-Sabio et al., 

1996), therefore during the experiments, both gasifying agents present a significant 

decrement of the tar concentration in comparison of the use of sand (Fig. 4). At lower 

temperatures the catalytic cracking effect over the final tar concentration is higher with 

the use steam. This can be explained due to the higher porosity of the steam-activated 

biochar, along with the possible steam reforming reaction that take place during steam 

gasification.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Effects of different gasifying agents along with biochar as bed material.   
 

For a temperature as high as 900°C it can be observed that the CO2 has a more suitable 

tar cracking behavior than steam, could be supposed that this temperature might be 

favorizing other reactions involving the CO2 itself, but a right conclusion of this 

phenomena is out of this case of study.    
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Conclusion 
 

The use of experimental correlations through Fortran subroutines in Aspen Plus® 

guarantees a good reproduction of experimental results. This modeling methodology 

allows the evaluation of different parameters such as temperature and energy spending 

for a specific installation, but since correlations are tailored to the process, their 

application in another installation would have limitations. The use of the biochar as 

catalytic bed material was evaluated and as expected, the catalytic activity of the biochar 

was higher than the activity of sand, this is due to the existence of active pores on the 

biochar that increase the interaction of the hydrocarbons which facilitates the conversion 

of tar into lighter molecules. When comparing the energy balance of both processes, a 

difference in the energy input for the gasifier is perceived and this can be interpreted as 

an effect of the befall of endothermic reactions that need more heat to be performed. The 

application of CO2 and steam as gasifying agents along with the use of biochar, reduces 

considerably the tar concentration contained on the syngas. The steam shows a better 

performance in comparison to the CO2, this is due to the fact that the biochar activated 

with steam has a higher porosity tan the biochar activated with CO2.  
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Abstract 

This article is devoted to the development of a new approach to modeling aggregation 

processes and swarming in poly-disperse systems. This approach takes into account 

multi-particle collisions, what is of fundamental importance at a high concentration of the 

dispersed phase.  Due to the complex hydrodynamic picture in industrial devices the 

aggregation process is accompanied by multiple collisions and swarming of particles, and 

it occurs according to various mechanisms. The presented method is an extension of the 

method previously developed by the authors for the case of a three-dimensional stochastic 

lattice. Namely, the discrete-event-simulation paradigm (DES) extends in this work to the 

case of three-dimensional lattices. A three-dimensional array is used for describing 

aggregation in the case of kinetics limited by the particle diffusion rate (DLA) with 

allowance to the swarming process. The article provides a description of the algorithm 

and the results of a computer experiment with comments. Computer simulation of 

swarming and aggregation in batch and flow reactors has been carried. 

Keywords: DLA aggregation, swarming, many-particle collisions, 3-D stochastic lattice. 

1. Introduction

The issues of calculating the kinetics and dynamic characteristics of reactors with the 

formation of a polydisperse solid phase in the working volume are relevant under 

calculation of various types of industrial apparatuses (Carranza and Coates, 2000).  Need 

in the reliable swarming and aggregation models covers the range from fine chemical 

technology and pharmaceuticals to environmental cleaning and industrial waste 

(Maningo et al., 2016).  

However, despite the long-standing interest of researchers and the existence of many 

works, the theoretical analysis of many problems remains poorly developed (Rimer and 

Ariel, 2017). In this paper, a new approach based on the DES discrete event modeling 

paradigm (Zeigler et al., 2000) applying to the case of three-dimensional lattices is 

presented.  

The novelty of this approach lies in the fact that it allows one to study the distribution of 

clusters of different orders over the volume of the reactor at different times, taking into 

account multi-particle collisions and swarming phenomenon (Carrillo et al., 2010). The 

contribution of the obtained results to practice lies in the fact that they expand the range 

of real application of the developed model for describing swarming and aggregation 

processes in the volume of industrial devices (Zhou et al., 2015, Schmidt et al., 2006). 

This makes it possible to take into account the peculiarities of the kinetics of aggregation 

in the apparatus volume (Mogilner and Edelstein-Keshet, 1999). Cases of batch and flow-

through tubular apparatus are considered. According to DES (Zeigler et al., 2000, Brener 
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et al., 2017), the region in which the diffusion and aggregation processes occur is covered 

by a fixed spatial lattice (Brener et al., 2017). In this paper, we consider a three-

dimensional array to describe aggregation and swarming in the case of kinetics limited 

by the rate of diffusion of particles (DLA). Thus, the characteristic time of aggregation 

was completely determined by the characteristic time of diffusion of particles, which was 

assumed to be equal to the time of drift of particles from one cell of the lattice to another. 

Hereinafter, the term "order of clusters" will mean the number of monomer particles in a 

given cluster (Wattis, 2006). 

2. Algorithm description

2.1. Algorithm for batch reactor 

Below, an algorithm is described that corresponds to that presented in (Brener et al., 

2017). Namely, at each moment of time, a random selection of the components of the 

particle drift in the horizontal and vertical directions is made from a given set of 

characteristic displacements. This set is formed taking into account the dependence of the 

mobility of a cluster of particles on its order (Naldi et al., 2010).  

For clusters of a higher order, the mobility decreases, which corresponds to the well-

known physics of random particle drift in the volume (Satyobroto Talukder, 2011).  In 

the model algorithm in this work, it was assumed that a random selection from the cell 

sequence (-3; -2; -1; 0; 1; 2; 3) for temporal drifts along each of the three spatial axes can 

be made for clusters of order 1 or 2, and for clusters with orders higher than two, the 

choice must be made from the sequence (-3; -2; -2; -1; -1; 0; 0; 1; 1; 2; 2; 3). Thus, an 

increase in the probability of higher-order clusters moving to nearer cells during a time 

step is simulated.  

The behavior of clusters near the walls can also be taken into account in the general case 

by changing the sequence of random selection of displacements. In a numerical 

experiment applied to a batch reactor, it was assumed that particles captured in the 

boundary cells do not move beyond the boundaries of the lattice under consideration 

(Brener  et al., 2017). A cluster of order 1 was initially placed in each cell.  

Then the process of random transition of particles from one cell to another cell was 

simulated at each time step. The aggregation of particles occurs at the moment they enter 

the common cell of the lattice without any delay (DLA case).  

In contrast to the planar case (Brener et al., 2017), two three-dimensional arrays were 

formed. The first array simulated the entire lattice with particles of different orders 

obtained in the process of displacement and aggregation at each time step. The second 

array shows the number of collisions of particles in each cell in each unit of time. 

2.2. Algorithm for a flow-through tubular reactor   

The algorithm is briefly described below in accordance with the work (Brener et al., 2017, 

Zeigler et al., 2000). During the calculation, four 3D arrays are generated.  

The first array simulates the entire lattice with clusters of different orders obtained in the 

process of displacement and aggregation in each unit of time.  

The second array simulates a similar lattice with clusters that enter the reactor with a fresh 

flow, which enters the reactor at a given average horizontal velocity.  

The third array simulates the situation at the end of the calculated time unit and generates 

the initial situation for the next unit. It is formed as the sum of the two previous arrays. 

The fourth array indicates the number of collisions of particles in each cell in each unit 

of time.  
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2.3. Algorithm for swarming description 

To adapt the stochastic lattice method to simulating swarming, especially taking into 

account the aggregation process and the influence of random drift, a special lattice 

enlargement algorithm was developed, which is presented in this work.  

Since it is this stage of modeling that is the principal contribution to the algorithm, some 

mathematical details are presented below. 

The main steps of this algorithm in the case of DLA are as follows. 

1. The entire volume of the reactor is dissected into longitudinal layers. Then the

following matrices are created: the main matrix of concentrations  JIC ,  and a coarse

matrix  YXCO ,  of the total number of clusters in blocks, where NM , are  the

dimensions of the matrix  JIC ,  and TR, are the dimensions of the matrix  YXCO , .

Here  bNTaMR /  ;/  ; and ba  ,   - the dimensions of the coarse lattice block in the

each layer (that is, the number of rows and columns of the matrix  JIC ,  captured in the

block to generate the matrix  YXCO ,  .

2. The block with specific coordinates  ss YX ,  in the coarse matrix  YXCO ,  is built

from the elements of the matrix  JIC ,  , which consists of rows numbered from (aXs-1

+1) to aXs  and columns numbered from (bYs-1 +1) to bYs.

3. The element of the matrix
SSYXco  must be calculated as the sum kld  of all the elements 

of the matrix  JIC ,  that fall into the block  ss YX ,  . Namely: 

 
  


s

s

s

s

ss

bY

bY

aX

aX
klYX dco

1 11 1

 .  (1) 

Here the elements kld   should be calculated according to the following algorithm called 

as A-algorithm: if 0
ssYXc  , then  1kld  , otherwise 0kld .  A coarse matrix 

 YXCO ,1  of the total number of orders of clusters in blocks should be calculated

similarly to the matrix  YXCO , . The only difference is that elements 
ssYXco1   are

calculated using the formula 

 
  


s

s

s

s

ss

bY

bY

aX

aX
klYX cco

1 11 1

1 .  (2) 

That is, it is not necessary to pre-calculate by algorithm (A). 

It can be noted that this algorithm is inspired by the ideology of the renormalization group 

in the modern theory of phase transitions (Kadanoff, 2000). We believe that a universal 

approach that considers the processes of swarming and aggregation in disperse systems 

from positions similar to those used in the modern theory of phase transitions to describe 

ordering in many-particle systems is quite promising.  

Of course, this issue is subject to further discussion, since the kinetic features of swarming 

and aggregation processes are not similar.  
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At the same time, these processes occur in a certain temporal hierarchy, since the 

swarming process contributes to the intensification of aggregation. This factor clearly 

manifested itself in computer simulations, what is shown in the next section of the article. 

3. Some results of the simulation 

Some results of the simulation are shown in Figures1, 2, 3. Different color intensities of 

different blocks of rough matrices correspond to different concentrations of clusters, both 

without taking into account their orders (cold colors) and different sums of orders of 

cluster aggregates (warm colors). The blocks were colored using the RGB code of the 

additive color model (Poynton, 2012). The step of change was 20 units both in the number 

of clusters and in the sum of their orders. The overall range observed during the 

simulation was from 0 to 200 units. The dimensions of the computational matrix were 

20x200; the dimensions of any block of the coarse matrix were 4x40. The volume of 

200x20 was divided into 40x5 horizontally and 4X5 vertically, it turned out a 5X5 coarse 

scheme.  

The calculations were performed for three different initial carrier flow velocity profiles: 

uniform flow (type 1), symmetric irregular flow (type 2), and asymmetric irregular flow 

(type 3). The conditional flow rates W for these three cases are equal: 1 - W = 2; 2- Ww 

= 2 at the walls, Wc = 6 on the central axis of the stream; 3- Ww  = 2 at the upper wall, 

Wc = 6 at the central axis of the flow, Ww  = 4 at the lower wall. Flow direction from left 

to right. The order of all particles introduced by the carrier flow into the circuit is taken 

to be 1. Then particles of different orders appear due to DLA aggregation (Brener et al., 

2017). The pictures presented on the figures correspond to the depth of 5 calculating 

blocks.  

 

 

Number of clusters                                                                         Sum of the clusters orders 

                                                                                   

Figure 1.  A typical picture with a uniform distribution for time intervals t = 24, 25 

according to the enlarged scheme 5X5.  W=2. 

t=25 

t=24 

t=25 

t=24 
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Number of clusters                                                                         Sum of the clusters orders 

 

Figure 2. Under the uneven distribution of type 2 for time intervals t = 24, 25 according 

to the enlarged scheme 5X5.  W1=2, W2=6 

 

      
             

       
   

Number of clusters                                             Sum of the clusters orders 

 

Figure 3. Under the uneven distribution of type 2 for time intervals t = 24, 25 according 

to the enlarged scheme 5X5.  W1=2, W2=6, W3=4 

 

As the result of visualizing the simulation results, it is possible to clearly distinguish two 

swarms of particles formed in a reactor with an uneven profile of the carrier flow velocity. 

It is clearly seen that the highest cluster orders are observed in the same areas, i.e.  the 

aggregation process is intensified. 

t=25 

t=24 

t=25 

t=24 
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4. Conclusion 

The results of numerical experiments showed that the change in the number of clusters in 

a batch reactor occurs at the initial stage of the aggregation process at a much higher rate 

than this phenomenon was described before by a numerical experiment on a flat lattice. 

The completion of the process with the formation of a big single cluster is also observed 

much faster. In a flow-through reactor, the cluster size distribution also changes in the 

initial section near the reactor entrance, but the length of the transition section is longer 

than the experiment on a planar grid shows.  

The results of numerical experiments demonstrate a clear correlation between the 

localization of high concentration regions, those swarming formation and regions of a 

higher total order of clusters of the dispersed phase. The methodology proposed in this 

paper opens up opportunities for a deeper study of the detected correlation. 
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Abstract
Neural networks (NN)s have been increasingly proposed as surrogates for approximation of sys-
tems with computationally expensive physics for rapid online evaluation or exploration. As these
surrogate models are integrated into larger optimization problems used for decision making, there
is a need to verify their behavior to ensure adequate performance over the desired parameter space.
We extend the ideas of optimization-based neural network verification to provide guarantees of
surrogate performance over the feasible optimization space. In doing so, we present formulations
to represent neural networks within decision-making problems, and we develop verification ap-
proaches that use model constraints to provide increasingly tight error estimates. We demonstrate
the capabilities on a simple steady-state reactor design problem.

Keywords: Neural Networks, Verification, Optimization, Surrogate Modeling

1. Introduction

Neural networks (NNs) have seen wide success across engineering disciplines. Their excellent ap-
proximation qualities (Hornik et al. (1989)) can reduce challenging problems into tractable com-
putational models and their training procedure can incorporate diverse data sets and expert domain
knowledge (Beck et al. (2016)). Successful engineering applications have harnessed NNs in plan-
ning, design, and control (Pistikopoulos et al. (2021)) with notable process-systems applications
that span: forecasting renewable energy generation (Lee et al. (2016)), predicting distillation dy-
namics (Sánchez-Ramı́rez et al. (2020)), and estimating reactor performance (Salah et al. (2016)).

Typical NN applications are concerned with making forward predictions (i.e., NNs are evaluated in
a forward-mode), but they are also advantageous in the context of optimization where they can take
on the form of algebraic surrogates. Such surrogate models can be used to reduce the complex-
ity of underlying equations by replacing them with more tractable formulations. Neural network
surrogates have seen successful application in optimizing chemical process operation (Fernandes
(2006)), performing process synthesis with super-structures (Henao and Maravelias (2010)), solv-
ing stochastic optimization problems to operate distillation columns (Gutiérrez-Antonio (2016)),
and representing contingency constraints in security-constrained optimal power flow (Kilwein
et al. (2021)).

The verification of neural networks is often concerned with finding adversarial inputs (Good-
fellow et al. (2015)) using techniques such as mixed-integer-linear-programming (MILP) (Tjeng
et al. (2017)), Satisfiability Modulo Theories (Scheibler et al. (2015)), and Lagrangian duality
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(Dvijotham et al. (2018)). This manuscript extends verification concepts and addresses the need
to verify NNs that are deployed as optimization-based surrogates. In contrast to methods that ver-
ify over a specified input space, we propose formulations that verify over constraints involving
both the inputs and outputs of the neural network. In doing so, we develop optimization prob-
lems that verify worst-case NN prediction error subject to known model physics and operational
constraints, and we show that incorporating known constraints leads to tighter error estimates than
simply verifying over the input space.

2. Optimization with Neural Network Surrogates

We consider the solution of an optimization problem given by, (1),

f ∗(p) = min
x,y,z

f (x,y,z, p) (1a)

s.t. y = h(x, p) (1b)
c(x,y,z, p) = 0 (1c)
g(x,y,z, p)≤ 0 (1d)

xL ≤ x≤ xU (1e)

where p represents system parameters which are known inputs for a particular optimization in-
stance, and x, y, and z represent optimization variables. We desire efficient solutions of this prob-
lem for different values of the parameters p (e.g., in an online context, or for multi-scenario anal-
ysis). For improved solution, we consider instead an approximate formulation where we replace
a portion of the model with a neural network surrogate. We assume that the NN surrogate brings
some benefit to the optimization problem by facilitating a more tractable computation. This could
entail the simplification of (1b) to support more rapid or reliable optimization in an online context,
or involve creating a piecewise linear approximation (e.g., using ReLU activation functions) of h
to facilitate global optimization approaches. We show the new optimization formulation below,
where we approximate h in (1b) with the neural network N in (2b). Here, ŷ represents the neural
network output, and is an approximation of the original variables y.

f ∗S (p) := min
x,ŷ,z

f (x, ŷ,z, p) (2a)

s.t. ŷ = N(x, p) (2b)
c(x, ŷ,z, p) = 0 (2c)
g(x, ŷ,z, p)≤ 0 (2d)

xL ≤ x≤ xU (2e)

This hybrid modeling approach is common in engineering applications. However, before “deploy-
ing” problem (2) in a decision-making application, we wish to verify the accuracy of the neural
network approximation. In the next section, we describe a verification formulation that explicitly
considers the feasible region of the constraints above and the range on the input parameters p.

3. Formulation of Neural Network Verification Problem

Typical verification approaches seek to determine the maximum error between y and ŷ over a pre-
defined input space in x and p. However, these approaches can produce errors that are larger than
necessary since they allow points in x and p that may not feasible with respect to the constraints in
formulations (1) and (2). Here, we are specifically interested in the accuracy of the neural network
over the feasible space of the optimization problem, and we formulate the verification problem (3)
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shown below:

max
x,p,y,ŷ,z

||y− ŷ||∞ (3a)

s.t. y = h(x, p) True Model (3b)
ŷ = N(x, p) NN Surrogate (3c)

xL ≤ x≤ xU Input Bounds (3d)

pL ≤ p≤ pU Parameter Bounds (3e)[
c(x,y,z, p) = 0
g(x,y,z, p)≤ 0

]
Y

[
c(x, ŷ,z, p) = 0
g(x, ŷ,z, p)≤ 0

]
Feasibility Constraints (3f)

Here, the objective function (3a) maximizes the infinity norm over the NN prediction errors. Max-
imizing other error measures such as mean-squared-error, mean-absolute-error, or individual pre-
diction errors is also possible. The constraints (3b) and (3c) are the same as (1b) and (2b), respec-
tively, which relate the NN inputs to the true model variables y and the neural network outputs ŷ.
As indicated above, a natural choice of verification constraints are limits on the input space of the
neural network (i.e., bounds over x and p). While a typical verification formulation would include
only (3a)-(3e), we seek to limit the verification to points in x and p that are feasible with respect
to the optimization problems (1) and (2).

Our target optimization problem (2) includes feasibility constraints over ŷ. However, including
only constraints (2c-2d) in the verification problem (rather than the disjunction in (3f)) is insuffi-
cient because of errors between y and ŷ. Constraints (2c-2d) alone may not sufficiently represent
the feasible region in problem (1). Indeed, if the NN accuracy is low, the feasible region for x and
p could be significantly underestimated or even empty. Therefore, we search for the maximum
error over both the constraints (1c-1d) and (2c-2d) as represented by the disjunction in (3f). With
this, problem (3) finds the maximum deviation between y and ŷ subject to the constraints of the
optimization problem applied conservatively to either y or ŷ.

For the case studies in this paper, we consider three formulations to analyze the verification ap-
proach. Formulation (V1) represents the typical verification formulation used in the literature
which considers only explicit constraints on the input space for x and p. In practice, while we
could solve the disjunctive problem (3) directly, it is convenient to solve with each disjunct sep-
arately where the solution of (3) is given by the maximum of the solutions from (V2) and (V3)
below.

max
x,p,y,ŷ,z

||y− ŷ||∞

s.t. (3b)− (3e)
(V1)

max
x,p,y,ŷ,z

||y− ŷ||∞

s.t. (3b)− (3e)
c(x,y,z, p) = 0
g(x,y,z, p)≤ 0

(V2)

max
x,p,y,ŷ,z

||y− ŷ||∞

s.t. (3b)− (3e)
c(x, ŷ,z, p) = 0
g(x, ŷ,z, p)≤ 0

(V3)

4. Illustrative Example: Reactor Optimization with Neural Network Surro-
gates

We provide an illustrative reactor optimization example where we use NNs (with ReLU activa-
tions) to replace nonlinear physics with piecewise-linear approximations. We demonstrate global
solution of the verification problem and compare with the input-only formulation given by (V1).

4.1. Reactor Optimization Problem

The problem of interest is a steady-state continuous-stirred-tank-reactor (CSTR) that converts feed
components A and B to produce D as depicted by Figure 1 where C is an intermediate and E is a
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Figure 1: Simple Steady-State CSTR

side product. The overall mass balance is given by (4) (or by (5) in terms of the neural network
outputs, ŷ).

Ci =Ci,0− τ
r
1 i ∈ {A,B} (4a)

CC =CC,0 + τ
r
1− τ

r
2 (4b)

Ci =Ci,0 + τ
r
2 i ∈ {D,E} (4c)

Ci =Ci,0− τ̂
r
1 i ∈ {A,B} (5a)

CC =CC,0 + τ̂
r
1− τ̂

r
2 (5b)

Ci =Ci,0 + τ̂
r
2 i ∈ {D,E} (5c)

We define variables τr
1 and τr

2 in (6) to represent the product of τ (the space-time) and the corre-
sponding reaction rate (r1 or r2). The reaction rate constants Ki are selected as the parameters p.
We also include operating constraints given by (7) which correspond to the minimum conversion
and yield the reactor must achieve with η1=0.9 and η2=0.2.

τ
r
1 = τr1 = τK1CACB (6a)

τ
r
2 = τr2 = τK2Cc (6b)

CD ≥ η1(CA,0−CA) (7a)
CD ≥ η2(CA +CB +Cc) (7b)

The true design problem as a function of p is then given by (8) where we seek to minimize the
space-time τ (i.e., maximize throughput) subject to physical balances and operating requirements.
Consequently, we train ReLU-based NNs to replace the associated nonlinear terms and formulate
the approximate design problem (9) as an MILP (Grimstad and Andersson (2019)).

min
τ

τ (8a)

s.t. τ
r
1 = τK1CACB (8b)

τ
r
2 = τK2Cc (8c)

(4), (7)

min
τ

τ (9a)

s.t. τ̂
r
1 = K1N1(CA,CB,τ) (9b)

τ̂
r
2 = K2N2(CC,τ) (9c)

(5), (7)

4.2. Verification Problem

The verification problem corresponding to (3) is given by (11) with the NN input and model
parameter bounds defined by (10) below.

CL
A ≤CA ≤CU

A , CL
B ≤CB ≤CU

B , CL
C ≤CC ≤CU

C ,

τ
L ≤ τ ≤ τ

U , KL
1 ≤ K1 ≤ KU

1 , KL
2 ≤ K2 ≤ KU

2
(10)

The valid range for the parameters K is given by K1=0.31051± 10% `
mol−s and K2=0.026650±

10% 1
s . For this example we seek to maximize the squared prediction error of both τr

1 and τr
2 (i.e.,

we solve verification problems for each output) but it is also possible to formulate mean-absolute
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error using integer variables.

max (τ̂r
j − τ

r
j )

2 j ∈ {1,2} (11a)

s.t. (8b), (8c) Original Model (11b)
(9b), (9c) NN (11c)
(10) Input Bounds and Parameter Bounds (11d)[

(4), (7)
]
Y
[
(5), (7)

]
Model Constraints OR NN Constraints (11e)

We apply each of the presented verification formulations to our reactor example. In particular,
we formulate (V1) with equations (11a-11d). We formulate (V2) and (V3) using these equations
along with each of the individual disjuncts in (11e).

4.3. Results

We use TensorFlow 2.3 to train the multi-layer neural network surrogates with increasing num-
bers of nodes using ReLU activation functions. We use Gurobi 9.1 to solve the non-convex
true design problem (8) and the verification problems. The results are presented in Figure 2 and
are summarized as follows: (i) (V1) provides the expected global worst-case error over the input
space, but we can obtain tighter error bounds using (V2) and (V3) which satisfy the known con-
straints, (ii) (V3) is tighter than (V2) with smaller networks where the accuracy is poor and the
feasible region is poorly approximated, and (iii) worst-case error improves for larger neural net-
works, but there are likely trade-offs with performance vs accuracy. We also compare the solution

(a) (b)

Figure 2: Results for test error (box plots) and verification (colored markers for V1, V2, and V3).
Observed errors for τr

1 (left) and τr
2 (right) for increasingly larger neural networks.

of (9) for each NN to the true problem (8) using Gurobi 9.1. Table 1 shows each NN prediction
and objective value τ which are consistent with the verification findings. Tighter worst-case error
estimates correspond with closer approximations of the true problem, but even NNs with consid-
erable error according to (V1) perform adequately as algebraic surrogates when considering the
feasible region and their usage within the optimization problem.

5. Conclusions
This manuscript explores verification approaches for neural network (NN) surrogates used within
optimization problems. We demonstrated how verification over known constraints produces tighter
worst-case NN violations. We presented an illustrative reactor design example to elucidate verifi-
cation concepts for NNs used as surrogates in an optimization setting.
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Table 1: Comparison of results for reactor optimization problem solution for increasingly larger
neural networks. Percentages correspond to percent difference from the true global solution.

Error (Relative Error %)
Variable True 45 Nodes 90 Nodes 135 Nodes 180 Nodes
τr

1 0.527 -3.9E-3 (-0.75%) 1.5E-3 (0.28%) -8.8E-4 (-0.17%) 5.6 E-4 (0.11%)
τr

2 0.474 -3.5E-3 (-0.75%) 1.3E-3 (0.28%) -7.9E-4 (-0.17%) 5.0 E-4 (0.11%)
τ 337.7 -14.5 (-4.29%) -10.7 (-3.17%) 3.3 (0.99%) 0.17 (0.05%)

6. Acknowledgements

Sandia National Laboratories is a multimission laboratory managed and operated by National
Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-NA0003525. This paper describes objective technical results and analysis. Any
subjective views or opinions that might be expressed in the paper do not necessarily represent the
views of the U.S. Department of Energy or the United States Government. This work was funded
in part by the Institute for the Design of Advanced Energy Systems (IDAES) with funding from the
Office of Fossil Energy, Cross-Cutting Research, U.S. Department of Energy. This work was also
funded by Sandia National Laboratories Laboratory Directed Research and Development (LDRD)
program.

References
D. A. C. Beck, J. M. Carothers, V. R. Subramanian, J. Pfaendtner, 2016. Data Science : Accelerating Innovation and

Discovery in Chemical Engineering 62 (5).
K. Dvijotham, R. Stanforth, S. Gowal, T. A. Mann, P. Kohli, 2018. A dual approach to scalable verification of deep net-

works. Proceedings of the Thirty-Fourth Conference Annual Conference on Uncertainty in Artificial Intelligence.
F. A. N. Fernandes, 2006. Optimization of fischer-tropsch synthesis using neural networks. Chemical Engineering &

Technology 29 (4), 449–453.
I. J. Goodfellow, J. Shlens, C. Szegedy, 2015. Explaining and harnessing adversarial examples. In: International Confer-

ence on Learning Representations.
B. Grimstad, H. Andersson, 2019. ReLU networks as surrogate models in mixed-integer linear programs. Computers

and Chemical Engineering 131, 106580.
C. Gutiérrez-Antonio, 01 2016. Multiobjective stochastic optimization of dividing-wall distillation columns using a

surrogate model based on neural networks. Chemical and Biochemical Engineering Quarterly 29, 491–504.
C. A. Henao, C. T. Maravelias, 2010. Surrogate-based process synthesis. Computer-aided chemical engineering 28.
K. Hornik, M. Stinchcombe, H. White, 1989. Multilayer feedforward networks are universal approximators. Neural

Networks 2 (5), 359–366.
Z. Kilwein, F. Boukouvala, C. Laird, A. Castillo, L. Blakely, M. Eydenberg, J. Jalving, L. Batsch-Smith, 01 2021. AC-

Optimal Power Flow Solutions with Security Constraints from Deep Neural Network Models. Vol. 50.
S. Lee, J.-H. Ryu, B.-M. Hodge, I.-B. Lee, 2016. Development of a neural network-based renewable energy forecasting

framework for process industries. In: Z. Kravanja, M. Bogataj (Eds.), 26th European Symposium on Computer
Aided Process Engineering. Vol. 38 of Computer Aided Chemical Engineering. Elsevier, pp. 1527–1532.

E. N. Pistikopoulos, A. Barbosa-povoa, J. H. Lee, R. Misener, A. Mitsos, G. V. Reklaitis, V. Venkatasubramanian, F. You,
R. Gani, 2021. Process systems engineering – The generation next ? Computers and Chemical Engineering 147.

A. Salah, L. Hanel, M. Beirow, G. Scheffknecht, 2016. Modelling ser biomass gasification using dynamic neural net-
works. In: Z. Kravanja, M. Bogataj (Eds.), 26th European Symposium on Computer Aided Process Engineering.
Vol. 38 of Computer Aided Chemical Engineering. Elsevier, pp. 19–24.

K. Scheibler, L. Winterer, R. Wimmer, B. Becker, 2015. Towards verification of artificial neural networks. In: MBMV.
E. Sánchez-Ramı́rez, J. G. Segovia-Hernández, E. A. Hernández-Vargas, 2020. Artificial neural network to capture the

dynamics of a dividing wall column. In: S. Pierucci, F. Manenti, G. L. Bozzano, D. Manca (Eds.), 30th European
Symposium on Computer Aided Process Engineering. Vol. 48 of Computer Aided Chemical Engineering. Elsevier.

V. Tjeng, K. Xiao, R. Tedrake, 2017. Evaluating robustness of neural networks with mixed integer programming. arXiv
preprint arXiv:1711.07356.

618

588



PROCEEDINGS OF THE 32nd European Symposium on Computer Aided Process Engineering  

(ESCAPE32), June 12-15, 2022, Toulouse, France  

L. Montastruc, S. Negny (Editors) 

© 2022 Elsevier B.V. All rights reserved.  

Sustainable Analysis of Recent Acid Gas Treatment 
Schemes for LNG production 
Ahmed AlNouss, Saad Al-Sobhi* 

Department of Chemical Engineering, College of Engineering, Qatar University. Doha, 
Qatar 
 
*Saad.al-sobhi@qu.edu.qa 

Abstract 
The worldwide growing demand for natural gas consumption increases the pressure on 

the depletion of natural resources, consequently the significance of natural gas treatment 

methods. Given the huge investment associated with gas processing plants, selecting 

optimum and fit-for-purpose treatment methods undergoes a rigorous selection process 

to allocate the most cost-effective and environmentally friendly treatment scheme to 

remove contaminants. This study analyzes the sustainability of recent acid gas treatment 

schemes associated with Liquefied Natural Gas (LNG) production using Aspen 

simulation techniques. The acid gas treatment process is crucial in LNG production to 

eliminate the presence of CO2 and H2S from the sour feed gases for safety and 

environmental concerns. The recent advancement in acid gases removal units (AGRU) 

demonstrates the addition of an enrichment step using a low-pressure pre-flash column 

of Amine solvent along with a tail gas treatment (TGT) unit. The full-integrated scheme 

includes low BTX AGRU, Acid Gas Enrichment, Sulfur Recovery Unit, TGT unit, and 

common regeneration. The techno-economic evaluation demonstrates the excellence of 

this technology advancement in providing higher efficiency of acid gases removal with 

some increase in the equipment cost and huge environmental benefits. 
 

Keywords: Acid gas treatment, LNG, Simulation, Sulfur recovery. 

1. Introduction 
The global energy demand continues to increase, putting more pressure on natural 

resources, specifically fossil fuels. The processing of these fossil fuels involves heavy 

treatment methods to eliminate acid gases, CO2, H2S, and BTX, avoiding their problems 

in processing lines. These gases are associated with serious negative environmental and 

health impacts due to the high toxicity of their combustion effluents, mainly SO2, CO2, 

and particulate matter. Environmental limits on emitting these gases into the atmosphere 

have been regulated by various environmental agencies and governments worldwide, 

emphasizing operation plants to improve the treatment methods of acid gases (Gupta et 

al., 2016). From another perspective, the variation of wellhead and gas processing 

conditions introduces a challenge for the production plants to treat the changes in acid gas 

content to achieve required product specifications. All of this places a huge challenge and 

burden on selecting the optimum scheme to meet environmental standards, respond 

flexibly to changes in feed gas quality, and ensure economic and technical targets of the 

different project circumstances. Given the huge investment associated with gas 

processing plants, selecting optimum and fit-for-purpose treatment methods undergoes a 

rigorous selection process to allocate the most cost-effective and environmentally friendly 
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treatment scheme to remove contaminants (Mokhatab and Poe, 2012; Korens et al., 2002). 

This study analyzes the sustainability of recent acid gas treatment schemes associated 

with Liquefied Natural Gas (LNG) production by utilizing Aspen simulation techniques. 

The acid gas treatment process is crucial in LNG production to eliminate the presence of 

CO2 and H2S from the sour feed gases for safety and environmental concerns. Evaluating 

the improvement in the acid gas treatment schemes depends mainly on the initial 

conditions of the sour feed gas, specifications of treated sweet gas, and environmental 

limitations. Performing a case-by-case optimization study is essential to achieve the 

optimum capital and operating costs and the largest window of operating parameters 

regarding sour feed gas quality. The most-effective treatment scheme must demonstrate 

economic effectiveness, accept different feeds, and achieve sulfur specifications in 

addition to the highest measures of reliability and quality performance. 

The subject of selecting the optimum alternative for acid gases treatment and removal has 

been studied intensively in the literature. Korens et al. (2002) analyzed the performance 

of different processes applicable for integrated gasification combined cycle while meeting 

U.S. emission standards. The processes include CO2 removal and sequestration, hot and 

warm gas cleanup, tail gas treating unit (TGTU), sulfur recovery unit (SRU), acid gas 

treatment unit (AGRU), acid gas injection, and mercury removal. They concluded that 

the current design of many processes would require improvement to meet the future more 

stringent environmental regulations. Similarly, Mokhatab and Poe (2012) studied the 

most commonly used processes in gas processing plants and their potential integration 

with expert process designs. The work attempted to establish different integration of gas 

processing steps to establish the optimum lineup of gas treatment while considering 

economics, operability, and flexibility. The processing steps included TGTU, SRU. 

AGRU, Mercaptans removal unit, and gas dehydration. Gupta et al. (2016) have 

conducted a recent comprehensive review of acid gas treatment and sulfur recovery 

designs. The review highlighted the advancement in Claus process design to handle 

increased amounts of sulfur and reduce the challenges in catalytic reactions and 

associated operational costs. Pellegrini et al. (2019) analyzed the energy and exergy 

performance of competing natural purification and liquefaction routes using Aspen 

HYSYS simulation based on net equivalent methane approach. Results demonstrated the 

excellence of the recent Dual Pressure Low-Temperature (DPLT) distillation technology 

over the conventional activated-MDEA technology for CO2 removal with higher exergy 

efficiency and lower consumptions. Recently, Zhu et al. (2021) analyzed the absorption 

of H2S and CO2 from multiple gas feeds through sensitivity analysis and orthogonal test 

method. The study aimed to optimize the concentration and temperature distribution in 

the sweeting absorber through allocation and multi-feeding operation of gas feeds. The 

simulation results of the Shandong refinery revealed a 2.55% increase in H2S purity in 

acid gas with a reduction in the overall exergy loss and energy consumption by 18.7% 

and 6.5%, respectively. 

The current study objective is to compare and analyze the recent advancement in acid gas 

treatment with enrichment step and TGTU against the base scheme of AGRU and SRU 

only. This work is a continuation of the sustainability assessment in the LNG process 

performed for the helium extraction unit (AlNouss and Al-Sobhi, 2020), boil-off gas 

utilization in the liquefaction unit (Al-Sobhi et al., 2021) natural gas liquids unit (AlNouss 

et al., 2018; Al-Sobhi and AlNouss, 2018). Aspen HYSYS is utilized to simulate the 

flowsheet models of the base and advance schemes while utilizing the economic and 

environmental assessment features to account for and compare the capital and operating 

costs along with gaseous emissions.  
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2. Methodology and process description 
The current commercial acid gas removal technologies include the physical solvent-

based, the chemical solvent-based, and the mixed chemical/physical solvent-based 

processes. The physical solvent-based processes are associated with high expenses 

compared to chemical solvent-based ones, despite their capability of meeting the Claus 

reaction requirement of sulfur cleanup. Utilization of a mixed chemical/physical solvent 

stabilizes the tradeoff between the degree of physical solubility of sulfur compounds and 

H2S selectivity; hence get benefits from the characteristics of both solvents. Employment 

of acid gas enrichment (AGE) stage enables higher efficiencies (~98%) in the Claus unit, 

the mainstay of SRU plant. Further, to enhance the SRU efficiency up to 99.9%, the 

TGTU is required to scrub out the H2S generated from the hydrogenation step. The 

utilization of the AGE and TGTU steps is necessary to be able to meet stringent 

environmental regulations. 

The base acid gas treatment scheme evaluated in this study is illustrated in Figure 1. The 

raw feed gas first enters the AGRU absorber and is contacted with the amine-based 

solvent. The solvent used in the study is Sulfinol consisting of Sulfolane (physical) and 

diisopropanolamine (DIPA) (chemical) mixture. This mixed solvent allows higher 

solubility of sulfur compounds relative to aqueous amines and better solvent loadings at 

higher acid gas partial pressures. The treated effluent gas from the absorber leaves from 

the top towards the dehydration process while the rich solvent recovered at the bottom 

enters a flash vessel to separate sour fuel gases. The rich solvent stream is further 

preheated by the lean solvent from the bottom of the regenerator column before entering 

the column. The acid gases are stripped from the regenerator top and sent to SRU while 

the lean solvent is recycled to the absorber column. Inside the SRU, the H2S is oxidized 

to SO2 before the Claus units where it is further converted to elemental sulfur and 

collected as a liquid through cooling. The leftover gas stream is sent to the stack. 

 
Figure 1: Base scheme of acid gas treatment facility. 

 
Figure 2: Advanced scheme of acid gas treatment facility. 

The recent advancement in the acid gas treatment as presented in Figure 2 demonstrate 

the addition of enrichment step prior to the SRU and regenerator column and TGTU post 
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SRU to maximize sulfur recovery. The rich solvent from the flash vessel is sent to a pre-

flash  column to remove the acid gases partially and send them to TGTU while the 

remaining part is sent to the AGRU regenerator. The TGTU receives the acid gases from 

the pre-flash column and the effluent of the SRU unit after hydrogenation and quenching 

for further acid gas treatment. 

The base and advanced schemes have been simulated using Aspen HYSYS software and 

further used to perform the economic and environmental assessment to account for and 

compare the capital and operating costs along with gaseous emissions. Despite the 

inclusion of the Sulsim tool inside Aspen HYSYS software, the SRU simulated as Sulsim 

sub-flowsheet can’t be linked with the built-in economic and environmental analysis tools 

within Aspen HYSYS. Therefore, the entire system has been simulated using legacy 

HYSYS tools to estimate the costs and environmental emissions. The feed gas properties 

are presented in Table 1. 
 

Table 1. Sour NG feed conditions and properties 

Property Value Element Composition (mol%) 

Price [$/T] (EIA, 2020) 211 CO2 4.95 

Temperature [°C] 40 H2S 26.73 

Pressure [kPa] 4500 Methane 58.42 

Molar Flow [kmole/h] 4185 Ethane 6.93 

Mass Flow [kg/h] 100000 Propane 1.98 

  Nitrogen 0.99 

 

The economic and environmental emission parameters have then been used to conduct 

the sustainability assessment based on the sustainability weighted return on investment 

metric (SWROIM) formulated by El-Halwagi (2017). The conventional return on 

investment (ROI) is first calculated by dividing annual net economic profit (AEP) by the 

total capital investment (TCI). Then the equation of SWROIM is utilized to contribute to 

the rest of the sustainability indicators using weighing factors defined as a ratio of the 

relative importance of each sustainability indicator to the AEP as presented in Eq.(1). The 

indicator target is defined in this study to be the highest value from all alternatives. The 

alternatives are then benchmarked based on ROI and SWROIM. 
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Eq. (1) 

3. Results and discussion 
The economic and environmental assessment results revealed an enhancement in the 

environmental performance of the AGRU with the addition of the TGTU and AGE units 

despite the increase in capital and operating costs. The recovery of H2S and CO2 from the 

AGRU has increased with the pre-flash enrichment column from 68 and 61% for the base 

scheme to 78 and 93% for the advanced scheme, respectively. This positive recovery 

increase is associated with a negative increase in the capital and operating costs from 412 

M$ and 30.5 M$/y to 433 M$ and 56.1 M$/y, respectively, as illustrated in Figure 3. 

The addition of the AGE unit has also increased the production of elemental sulfur from 

506.4 to 585.0 T/d given the higher recovery of H2S, which has demonstrated an increase 

in the product sales from 118.8 to 119.1 M$/y compared to the base scheme. The prices 
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of LNG and elemental sulfur used in the study are $35/MMBTU and $57/T (Company, 

2020; FRED, 2021). Moreover, the environmental impact assessment presented in Figure 

4 has demonstrated the excellence of TGTU addition in reducing the Sulfur dioxide and 

Carbon oxide emissions from 13.2x103 and 5.8x103 to 7.2 and 308 T/y, respectively. 

Whereas, the power consumption have increased from 2555.7 to 3671.4 GWh with the 

addition of AGE and TGTU steps.  

 
Figure 3: Economic and recovery results. 

Table 2. Indicator targets 

Property 
H2S 

recovery 

CO2 

recovery 

SO2 emission 

[T/y] 

CO emission 

[T/y] 
Power (GWh) 

Value  78% 93% 13.2x103 5.8x103 3671.4 

wi 0.25 0.25 -0.25 -0.25 -0.25 
 

 
Figure 4: Environmental impacts and energy results. 

These results have then been used to measure the SWROIM utilizing Eq.(1) with the 

indicator targets and weighting factors presented in Table 2. Implementing these 

weighting factors on the results obtained from the two schemes highlights the 

sustainability improvement in the acid gas treatment. The SWROIM results demonstrate 

the improvement in sustainability with the addition of the AGE and TGTU units. The 

conventional ROI indicated similar results from both schemes given the close capital 
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costs and product revenue. Whereas, taking into account the positive increase in H2S and 

CO2 recovery along with the positive decrease in SO2 and CO emissions and the negative 

increase in power consumption has revealed the increase in sustainability metric for the 

advanced scheme from 22.1% to 27.4%, while the sustainability metric for the base 

scheme has decreased from 22.3% to 15.8%. 

 

Table 1. Sustainability results 

Parameter AEP ROI (%) SWROIM (%) 

Advanced scheme 8.7399x107 22.1% 27.4% 

Base scheme 8.7412x107 22.3% 15.8% 

4. Conclusion 
Natural gas processing involves heavy treatment methods to eliminate acid gases, CO2, 

H2S, and BTX, avoiding their problems in processing lines. The current study compares 

the recent advancement in acid gas treatment with the addition of enrichment step and 

TGTU against the base scheme of AGRU and SRU only. The techno-economic evaluation 

demonstrated the excellence of this technology advancement in providing higher 

efficiency of acid gases removal with some increase in the equipment cost and huge 

environmental improvement. 
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Abstract 

A superstructure model for maximizing the profit of biodiesel production is presented in 

this work. The superstructure encompasses a wide range of feedstocks (e.g., waste 

cooking oil, tallow, rapeseed oil and algae), conventional reaction and separation 

equipment (e.g., continuous stirred tank reactor, decanter and vacuum distillation) and 

intensified operation units such as membrane reactor and reactive distillation column. The 

superstructure model is implemented in Advanced Interactive Multidimensional 

Modeling (AIMMS). The results present an optimal design of a biodiesel production 

process from waste cooking oil and tallow with a heterogeneous acid catalyst, a reactive 

distillation column and additional purification steps for producing pure glycerol which is 

40% higher in price than technical glycerol. The total annual profit of the biodiesel 

production from waste cooking oil is 828,697 USD and from tallow is 976,450 USD. The 

results show that the combination of feedstock selection and implementation of advanced 

processing technologies to improve biodiesel production can be achieved with the 

superstructure optimization method. 
 

Keywords: Superstructure, Optimization, Biodiesel, AIMMS, Design.
 

1. Introduction 

Global climate change becomes more severe every year because of the increasing 

greenhouse gas (GHG) emission. The transport sector which contributes 16.2% of the 

global GHG emission becomes one of the targets of the European Commission (EC) 

renewable energies directive (2018/2001/EU) known as “RED II” (Ritchie and Roser, 

2020). In RED II, the target for renewable energy in the transport sector is 14% with the 

share of advanced biofuel being 3,5% in 2030 (Observ'ER, 2020). However, the growth 

of biofuels has been slowing down recently with an increase of only 6.8% from 2018 to 

2019 comparing to 12.3% between 2017 and 2018 because of high production cost and 

the change for non-food feedstocks (Observ'ER, 2020). Biodiesel, which shared 80.6% 

of total biofuel consumption in the European Union (EU) transport sector in 2019, plays 

an important role in the EU strategy to reduce GHG (Observ'ER, 2020). Therefore, the 

reduction of biodiesel production cost becomes an attractive topic for researchers.  

Biodiesel is produced from renewable biobased feedstocks through chemical reactions. 

The selection of feedstocks is critical to the economic feasibility of biodiesel production 

because approximately 80% of biodiesel production cost comes from raw material costs 

(Zhang et al., 2003b). The biodiesel obtained from different feedstocks can be categorized 
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into three generation. The first generation biodiesel is derived from edible oil. The second 

generation biodiesel comes from non-edible oil, waste cooking oil and animal fat. The 

third generation is obtained from micro algae (Fazal et al., 2019). However, edible oils 

are generally expensive. Using edible oils to produce biodiesel leads to food-fuel debate 

over the concern of availability of food sources for people. Thus, the research of second- 

and third-generation biodiesel has become more important.  

Besides the feedstocks, taking advantages of process intensification technologies in 

production can reduce the biodiesel cost. For example, a catalytic reactive distillation 

process has many benefits for biodiesel production such as lower equipment and 

operating cost, high productivity and reduced waste (Kiss et al., 2007). Supercritical 

methods present alternative biodiesel production routes without using a catalyst. 

Supercritical methanol as a reactant is a popular method which requires few equipment 

and can use both clean and used oil as feedstock (Gomez-Castro et al., 2013).  

Superstructure optimization is a model-based computer-aided method of process systems 

engineering which can be used to optimize biofuel production process. A superstructure 

is a collection of numerous technical and feedstock alternatives that can form various 

possible process flowsheets. The superstructure can be formulated as a mathematical 

model by using variables, equations and constraints to describe its alternatives and 

flowsheets. The best flowsheet for predefined criteria and constraints can be identified by 

solving the model with optimization software tools (Tula et al., 2017).  

Superstructure optimization has been increasingly applied in the field of biofuel to 

optimize the production process. AlNouss et al. (2019) developed a superstructure model 

of multiple biomass feedstocks and multiple biochemical products which is used to 

determine the optimal production process in term of economic and environmentally 

friendly. Kenkel et al. (2021) presented an open-source generic superstructure 

optimization for modeling and optimizing of production process which is applied to 

design a cost optimal plant which produced methanol from captured CO2. 

However, most of published studies focused mainly on one aspect between finding 

inexpensive feedstocks and developing optimal processes for biodiesel production. A 

combined strategy of economic feedstock and innovative processes for biodiesel 

production has not been addressed adequately.  

Therefore, the work presents a superstructure model which connects appropriate 

feedstock selection with process synthesis. In addition to the biodiesel production, the 

superstructure model comprises glycerol treatment units to increase the value of the by-

product. With this superstructure model, an economic optimization is conducted for a 

production process from feedstock to biodiesel and glycerol. The results of this work will 

be compared to a conventional biodiesel production process (Zhang et al., 2003a). 

2. Superstructure for biodiesel production 

2.1. Problem statement 

Given are units of feedstocks and reactants with initial flowrates and compositions, and 

reaction and separation equipment with technical specifications for producing and 

purifying biodiesel and glycerol. Under conditions that 1) each unit is assigned a logical 

decision variable and the units are connected to form possible processing routes by logical 

constraints, 2) the input and output flowrates of each unit are calculated by mass balance 

constraints, 3) The utility consumption is estimated from the heating, cooling and 

electricity requirement of each unit which are calculated based on flowrates and technical 

specifications, 4) The economics of an unit including capital investment and operating 

costs is calculated from flowrate and utility consumption. Deciding the feedstock and the 
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processing route to produce biodiesel while complying with the constraints and biodiesel 

purity as required in EU biodiesel standards, EN 14214. Maximizing the total profit of 

biodiesel production including biodiesel and glycerol sales.

2 .2 . Superstructure description

The superstructure model has total 67 units for biodiesel production and glycerol 

treatment as presented in Figure 1 A) and B). For feedstocks, the superstructure includes 

three biodiesel generations such as rapeseed oil and canola oil (first generation), waste 

cooking oil, tallow and linseed oil (second generation), and algae oil (third generation). 

For reaction, continuous stirred tank reactor, reactive distillation column and membrane 

reactor with different catalysts are included. For separation, units are vacuum distillations, 

decanters, acid and base neutralization reactors, water washing columns and 

hydrocyclones. After purification, the product stream has 96.5 wt.% FAME. Depending 

on its initial purity, the glycerol separated from the biodiesel production can be disposed 

as a waste or purified further to sell as crude glycerol (~80 - 98 wt.%), technical glycerol 

(~98 - 99.5 wt.%) and pure glycerol (> 99.5 wt.%) (Bart et al., 2010). 

Figure 1: The superstructure for A) biodiesel production and B) glycerol treatment.

2 .3 . Mathematical model formulation

Each unit, j, of the superstructure has an infeed stream, F, and a reactant stream, R, which 

come in, and a product stream, P, and a waste stream, W, which come out, as shown in 

Figure 2.

Figure 2: The illustration of streams which come in and out of a unit in the superstructure.

Mass balances of a unit is described as Eq.(1) and Eq.(2).

𝑚𝑗,𝑘
𝑃 = (𝑚𝑗,𝑘

𝐹 + 𝑚𝑗,𝑘
𝑅 + 𝑀𝑘 ∙ 𝐸𝑅 ∙ 𝛼𝑘) ∙ 𝑆𝐹𝑗,𝑘 ∙ 𝑦𝑗 (1)

𝑚𝑗,𝑘
𝑊 = (𝑚𝑗,𝑘

𝐹 + 𝑚𝑗,𝑘
𝑅 + 𝑀𝑘 ∙ 𝐸𝑅 ∙ 𝛼𝑘) ∙ (1 − 𝑆𝐹𝑗,𝑘) ∙ 𝑦𝑗 (2)
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where k is a component of the streams (e.g., FAME, MeOH, glycerol, etc.), mF
j,k, mR

j,k, 

mP
j,k and mW

j,k are mass flow rates (kg/h) of component k in feed, reactant, product and 

waste streams, respectively. yj is the logical decision variable which takes the value of 1 

or 0 if the unit is selected or not. SFj,k is the split factor of component k based on how 

much k in the feed stream split into product stream. ER is the extend of reaction (kmol/h) 

calculated from the conversion of the main component of the feed stream into the main 

product of the product stream (e.g., from oil into biodiesel) as shown in Eq.(3).  

𝐸𝑅 =
𝜃𝐴∙(𝑚𝑗,𝐴

𝐹 +𝑚𝑗,𝐴
𝑅 )

(𝑀𝐴∙𝛼𝐴)
  (3) 

where θA is the percent of component A being converted into product and αA is the reaction 

stoichiometric number of A. From the extend of reaction, the conversion of another 

component can be calculated with the molar weight (kg/kmol), Mk, and the reaction 

stoichiometric number, αk, of that component. 

The product stream of a unit is the feed stream of the next one which directly connects to 

that unit on the same process route. 

The energy requirement (kWh), E, of a unit is calculated as shown in Eq.(4). 

𝐸𝑗
𝑢 = (𝑚𝑗

𝐹 +𝑚𝑗
𝑅) ∙ 𝜏𝑗

𝑢 ∙ 𝐻 ∙ 𝑦𝑗  (4) 

Where u is a type of utility such as heating, cooling and electricity, τu
j is the specific utility 

requirement (kW/kg) of the equipment, H is the total operating hours per year (h). 

The equipment cost (USD), ECj, of an unit is estimated based on the order of magnitude 

as presented in Eq.(5) (Seider et al., 2016). 

𝐸𝐶𝑗 = 𝐸𝐶𝑗
𝑅𝑒𝑓,𝑦𝑒𝑎𝑟

∙ (
𝑚𝑗
𝐹

𝑚
𝑗
𝐹,𝑅𝑒𝑓)

𝐸

∙ (
𝐶𝐸2020

𝐶𝐸𝑦𝑒𝑎𝑟
) ∙ 𝑦𝑗  (5) 

where ECRef,year
j is the equipment reference cost (USD), mF,Ref is the reference capacity 

(kg/h), CEyear and CE2020 are the Chemical Engineering Index of the reference year and 

2020, respectively.  

The total capital investment (USD), TCI, is calculated based on the overall factor method 

of Lang with the Lang factor for fluid processing plant being 5.93 and the delivery cost 

of equipment being 5% of total equipment cost (Seider et al., 2016). The total annualized 

capital investment (TACI) is calculated from the TCI with total project lifetime being 20 

years and interest rate being 0.1.  

The total annual operating cost (USD), TAOP, includes feedstock and reactant costs, 

operating and maintenance cost and total energy cost. The costs of feedstock and reactant 

are calculated by multiplying mass flow rate with cost per kg and operating hours per 

year. The operating and maintenance cost can be considered as 2% of the total annualized 

capital investment (Galanopoulos et al., 2019). The total energy cost is sum of energy 

costs of each equipment which is calculated from energy requirement, Eu
j, specific costs 

of electricity, heating and cooling and operating hours.  

Maximizing the total annualized profit (USD), TAP, is the objective function of the 

superstructure optimization as presented in Eq.(6). 

max𝑇𝐴𝑃 = 𝐵𝐷𝑆 + 𝐺𝐿𝑆 + 𝑀𝐸𝑆 − 𝑇𝐴𝐶𝐼 − 𝑇𝐴𝑂𝑃  (6) 

where the annual biodiesel sales (USD), BDS, is defined from the biodiesel price and the 

flow rate of product stream out of units: 45, 46, and 49-53. The annual glycerol sales 

(USD), GLS is defined from the glycerol grade and the mass flow rate of the glycerol 
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treatment. To simplify the mathematical model, the pure methanol coming out of 

separation unit is considered a by-product which reduces the requirement of fresh 

methanol. The annual methanol sales (USD), MES, is defined from the methanol stream 

separating from the biodiesel stream in reactive distillations and vacuum distillations. All 

the sales are calculated with the product market prices and the total operating hours of the 

refinery in a year. 

The superstructure optimization problem is solved with the AIMMS Outer 

Approximation Algorithm (AOA) (Duran and Grossmann, 1986, and Viswanathan and 

Grossmann,1990). The studies presented an algorithm to solve mixed-integer nonlinear 

programming (MINLP) problems which may be non-convex. The AOA is using CPLEX 

20.1 as MIP solver and CONOPT 4.1 as NLP solver. 

3. Results and discussion 

The superstructure model is applied for two case studies: For the first case, the feedstock 

is only waste cooking oil to verify the superstructure model, and for the second case, the 

feedstocks are from different generations of biodiesel to select the most cost-effective 

feedstock and processing route. The biorefinery has feedstock flow rate of 1000 kg/h, 

8000 operating hours per year and biodiesel output complied with EU standard, EN 

14214. All the prices and costs of feedstocks, reactants and equipment are calculated in 

the year 2020.  

In the first case study, the biodiesel is produced from the transesterification of the waste 

cooking oil (unit 7) by using reactive distillation with heterogeneous acid-based catalyst 

(unit 20) (Boon-anuwat et at., 2015). The products of the reactive distillation process are 

recycling methanol and biodiesel-rich stream which is going through a decanter (unit 31) 

to separate the glycerol. After separating the glycerol, the biodiesel product is purified to 

achieve purity standards by using a vacuum distillation column (unit 49). The separated 

glycerol is going through a vacuum distillation (unit 60) to become pure glycerol. The 

total annual profit of the biodiesel production in this case is 828,697 USD per year. 

When comparing with the conventional biodiesel production from waste cooking oil 

(Zhang et al., 2003b), the superstructure optimal process has higher total annual profit. 

There are two reasons: First, the application of the heterogenous acid reactive distillation 

process which can be used for feedstocks with high content of free fatty acids such as 

waste cooking oil and tallow and reduce the costs of addition separation steps for 

methanol and catalysts. Second, the glycerol is purified and sold as pure glycerol with 

higher price than in the conventional process. 

In the second case study with different feedstocks, the optimal result is the biodiesel 

produced from tallow (unit 8) with the same processing route as the waste cooking oil. 

The annual profit this process is 976,450 USD per year which is higher than the first case 

because the price of tallow is lower than waste cooking oil. 

4. Conclusion 

A superstructure optimization model for biodiesel production which encompasses 

different generation feedstocks, conventional and process intensification technologies has 

been developed. The results show that the combination of waste cooking oil and tallow 

with reactive distillation and heterogenous acid catalyst can open a promising future for 

biodiesel. The superstructure optimization is proven as a powerful tool of process systems 

engineering for biorefinery design by systematically and simultaneously solving multi-

constraint problems. For further research, the superstructure model of biodiesel 
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production will be extended by a heat integration function and the ability of processing 

multiple feedstocks at the same time for more flexible biorefinery operation. 
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Abstract
We present a systematic process-wide solvent selection tool based on computer-aided mixture/blend
design (CAMbD) (Gani, 2004) for the integrated synthesis, crystallisation and isolation of phar-
maceutical compounds. The method proposed simultaneously identifies the solvent and/or anti-
solvent mixture, mixture composition and process temperatures that optimise one or more key
performance indicators. Additionally, the method entails comprehensive design specifications for
the integrated process, such as the miscibility of the synthesis, crystallisation and wash solvents.
The design approach is illustrated by identifying solvent mixtures for the synthesis, crystallisation
and isolation of mefenamic acid. Furthermore, a multi-objective CAMbD problem is formulated
and shows that a mefenamic acid with purity of 98.8% can be achieved without significant loss of
process performance in terms of the solvent E-factor.

Keywords: Synthesis, crystallisation, isolation, CAMbD, mefenamic acid.

1. Introduction

Solvents are widely used in the chemical industry to enable a variety of processing tasks. In
particular, in the manufacturing of active pharmaceutical ingredients (APIs), a large number of
synthetic steps are involved, with several inter-stage isolation and purification units, which require
large consumption of solvents to facilitate these process operations (Ott et al., 2014). Recently, the
principles of green chemistry have been incorporated in molecular synthesis and process design
in order to promote sustainable practices in the chemical industry. In particular, solvent selection
has been identified as a key green chemistry research avenue given the strong influence of solvent
choice on process performance and product quality (Jiménez-González et al., 2011). One barrier
to choosing better solvents is that they have traditionally been selected based on heuristics or
time-consuming and expensive experiments. This prevents the practitioner from exploring all
possible design choices that optimise the manufacturing process, and highlights the need for more
systematic solvent selection tools (Mitrofanov et al., 2012; Brown et al., 2018).

Computer-aided mixture/blend design (CAMbD) is a promising approach for identifying sol-
vent mixtures that best achieve a specified performance objective, given a set of atom groups
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or molecules and a predefined set of target properties (Gani, 2004). CAMbD has been successful
in identifying optimal solvent mixtures for a wide range of applications, including API manufac-
turing. Jonuzaj et al. (2016; 2018) developed a CAMbD formulation to select optimal solvent
mixtures for separation processes, including crystallisation, in which the number, identity and
composition of mixture ingredients were simultaneously identified. Watson et al. (2019; 2021)
formulated a solvent mixture design problem to identify the optimal solvents, mixture compo-
sition and crystallisation temperatures for the hybrid cooling and anti-solvent crystallisation of
APIs. Jonuzaj et al. (2020) proposed a comprehensive mixture design formulation for the in-
tegrated crystallisation and isolation of APIs that includes mixture property constraints for both
purification stages. However, despite the ongoing efforts in developing integrated solvent selection
approaches, a tool that can identify optimal solvents for end-to-end processes is still lacking.

In this work, we present a novel integrated CAMbD formulation for the design of synthesis, crys-
tallisation and isolation processes. This formulation allows the simultaneous identification of sol-
vents or solvent mixtures, mixture composition and process temperatures that optimise one or
more key performance indicators (KPIs). While multiple phenomena need to be taken into ac-
count to quantify the effect of solvents on key performance indicators (Folić et al., 2008), we
focus on thermodynamic driving forces, i.e., species solubility, in order to obtain a shortlist of
solvent candidates that can then be tested through other considerations, such as kinetics, transport
properties and crystal shape. The design approach is applied to select solvents for mefenamic acid
production, with the aim of maximising process yield. Additionally, a multi-objective problem is
formulated to explore trade-offs between the solvent E-factor (SEF) and product purity.

2. Solvent selection approach for integrated synthesis, crystallisation and iso-
lation processes

2.1. Problem Definition

The proposed CAMbD problem can be used to identify optimal solvent mixtures and process
conditions for the integrated synthesis, crystallisation and isolation (filtration, washing and drying)
of pharmaceutical compounds. A generic end-to-end process with labelled streams is depicted
in Figure 1. This process configuration can represent both batch and continuous processes; for
batch processes, each stream would represent the starting or end point of the batch operation.
API crystallisation is considered through either pure cooling or hybrid cooling and anti-solvent
crystallisation. In order to develop the CAMbD formulation, a number of sets are defined: set
C comprises all components that may appear in any of the liquid streams, set CK comprises all
components that may crystallise throughout the process, set Q comprises all the solvents in the
process, set S comprises the solvent candidates from which the process solvents are selected, and
set T contains the process stream numbers shown in Figure 1.

Figure 1: The conceptual flowsheet for the solvent selection problem. For crystallisation, filtration
and washing, the labels Liquid and Solid refer to the liquid phase (solvents/dissolved solids) and
the solid phase (crystallised solutes) of the corresponding slurry or wet filter cake, respectively.

626

602



Model-based solvent selection for integrated synthesis, crystallisation and
isolation processes

2.2. MINLP formulation of the integrated CAMbD problem

The proposed CAMbD formulation is a mixed-integer nonlinear programming (MINLP) problem
derived from a Generalised Disjunctive Programming (GDP) problem using the big-M approach
(Jonuzaj et al., 2016). A multi-objective optimisation version is considered so that the overall
mathematical structure of the problem can be represented as follows:

min
x,y

f1 (x) , ..., fP (x)

s.t. h0(x) = 0
g0(x)≤ 0
gi,s(x)≤ Mi,s(1− yi,se), i ∈ {s1,s2};s ∈ S

Ay ≤ a

x ∈ [xL,xU ]⊂ Rn

y ∈ {0, 1}u

(1)

where each objective function fp(x), p = 1, . . . ,P represents a KPI that needs to be optimised, x
is an n-dimensional vector of continuous variables such as mixture mole fractions, and y is a u-
dimensional vector of binary variables denoting solvent identities. The vector of constraints h0(x)
describes the models of the reaction, crystallisation and isolation units, the vector of constraints
g0(x) describes design specifications, the vector of constraints gi,s(x) describes design and oper-
ating specifications that depend on the discrete choices, i.e., solvent identities, Mi,s is a matrix of
positive or negative big-M values, e is a unit vector, and A and a are a constant matrix and vector,
respectively, used to express the logical relations between the binary variables.

3. Case study: solvent selection for the integrated synthesis, crystallisation
and isolation of mefenamic acid

3.1. Problem Description

The synthesis of mefenamic acid (MA), a non-steroidal anti-inflammatory drug with analgesic
properties, from 2,3-dimethylaniline (DMA) and 2-chlorobenzoic acid (CBA) is used as a case
study. The reaction scheme is shown in Figure 2.

Figure 2: Reaction of 2,3-dimethylaniline (DMA) with 2-chlorobenzoic acid (CBA) to form mefe-
namic acid (MA)

The CAMbD formulation identifies solvent mixtures of at most 2 components that optimise se-
lected KPIs, while focusing on the thermodynamic aspects of the process. Two CAMbD problems
are formulated: in the first formulation the process yield is maximised while in the second formu-
lation the SEF is minimised and product purity is maximised. Both formulations include a set of
process model equations describing the material balances across the process units, as well as equi-
librium constraints describing species solubility, i.e., under-saturation of CBA and DMA during
synthesis, crystallisation and washing, under-saturation of MA during synthesis and that MA is at
solid-liquid equilibrium during crystallisation and washing. The formulations also include a set
of design specifications such as temperature constraints to ensure solvents are in the liquid phase
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during operation, miscibility constraints to ensure solvents do not undergo liquid-liquid separation
and constraints on the target values/ranges of the selected KPIs. In this case study, n-heptane is
used as the wash solvent due to the limited solubility of MA in this solvent (Jonuzaj et al., 2020).
Solvents are selected from a list of 43 compounds commonly used in the pharmaceutical industry,
constituting a design space of 43 pure solvents and 903 binary solvent mixtures. The main model
equations and design specifications are given in Table 1. All symbols are defined in Table 2. The
liquid-phase activity coefficients are computed using UNIFAC (Fredenslund et al., 1975).

Table 1: Main CAMbD model equations and design specifications of the MA case study
Constraint Equation KPI Range Units

(where applicable) (where required)

Solubility lnxi,t + lnγi,t =
∆Hm,i

Rg

[
1

Tm,i
− 1

Tt

]
– –

Miscibility
∂ lnγ

i, j
i,t

∂xi, j
i,t

+ 1
xi, j

i,t
≥ 0 – –

Solvent E-factor SEF =
∑i∈Q Mi,4+Mheptane,9

MMA,14
3.5-20 g Solvents/g API

Crystal Yield YC =
NMA,5
NMA,2

×100% 90-100 %

Process Yield YP =
NMA,14
NCBA,1

×100% 75-95 %

Product Purity PP =
MMA,14

∑i∈CS Mi,14
×100% 95-100 %

Isothermal reactor operation T1 = T2 – K
2:1 DMA:CBA Feed Ratio NDMA,1 = 2NCBA,1 – mol
Reaction conversion xc = 90 – %
Throughput MMA,5=80 – kg

Table 2: Nomenclature for the integrated CAMbD formulation
Symbol Description Units (where required)
xi,t Mole fraction of species i in stream t –
γi,t Liquid-phase activity coefficient of species i in stream t –
xi, j

i,t Mole fraction of species i in a binary mixture of i and j –
γ

i, j
i,t Liquid-phase activity coefficient of species i in a binary mixture of i and j –

∆Hm,i Molar enthalpy of fusion of species i J/mol
Rg Universal gas constant J/mol.K
Tm,i Melting point of species i K
Mi,t Mass of species i in stream t kg
Ni,t Moles of species i in stream t mol
SEF Solvent E-factor g Solvents/g API
YC Crystal Yield %
YP Process Yield %
PP Product Purity %
Tt Temperature of stream t K
xc Reaction conversion %

3.2. Results and discussion

The optimisation problems are solved using GAMS version 32.2.0 using the Simple Branch and
Bound (SBB) solver (Bussieck and Drud, 2001). Integer cuts are included in the MINLP formula-
tion to generate a ranked list of optimal solutions. For each solution, the following quantities are
reported: the identities of solvent components s1 and s2, the solvent E-factor, the process yield,
the product purity, the reaction temperature T2, the final crystallisation temperature T4, the compo-
sition of the solvent in the reactor, defined as the ratio of the mole fraction of solvent 1 to that of
solvent 2 in the reactor outlet (stream 2), the composition of the solvent in the crystalliser, defined
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as the ratio of the mole fraction of solvent 1 to that of solvent 2 in the crystalliser outlet (stream
4), and the total solvent mass used in the process, i.e., ∑i∈Q Mi,4 +Mheptane,9.

Maximising the process yield: The first CAMbD formulation involves maximising the process
yield. Three of the top ten solutions, ranked with respect to the process yield, are listed in Ta-
ble 3. The first two solutions correspond to cooling crystallisation as shown by the decrease in
temperature from T2 to T4 and the constant ratio of solvent mole fractions between synthesis and
crystallisation. On the other hand, the third solution corresponds to a hybrid cooling and anti-
solvent crystallisation process as shown by both the drop in temperature and decrease in the ratio
of solvent mole fractions. It can be seen that in all three solutions, the SEF is greater than the lower
bound of 3.5 g/g and the difference between T2 and T4 is large: T2 is close to its upper bound of
403 K in the first two solutions and T4 is at its lower bound in all solutions. This can be explained
by the demanding process requirements that favour process yield maximisation. An interesting
finding is that the product purity constraint is not active at these solutions, meaning that higher
product purity can be achieved in other solutions, albeit at the expense of higher SEF values.

Table 3: Three top solutions of the CAMbD problem with the objective of maximising YP

Solvents YP (%) SEF (g/g) PP (%) T2 (K) T4 (K) xs1,2
xs2,2

xs1,4
xs2,4

Total solvent use (kg)
s1: Nitrobenzene 88.10 5.58 98.56 389 290 2.08 2.08 446
s2: n-Butyl acetate
s1: Anisole 87.85 7.07 98.95 389 290 0.11 0.11 566
s2: n-Butyl acetate
s1: Acetic acid 83.94 9.24 99.30 362 290 6.50 4.13 739
s2: 2,2,4-Trimethylpentane

Minimising the SEF and maximising product purity: To explore in more depth the trade-offs be-
tween the KPIs, the second CAMbD formulation is a multi-objective optimisation (MOO) problem
that involves minimising the SEF and maximising product purity. The problem is solved using the
ε-constraint method (Haimes, 1971), in which the SEF is optimised while product purity is con-
strained by a given lower bound ε . The Pareto frontier representing the Pareto-optimal solutions
of this MOO problem is shown in Figure 3. It can be seen that a marginal increase in product
purity beyond 98.8% requires a significant increase in the SEF. Since the Pareto curve before PP =
98.8% is relatively flat, indicating a small increase in solvent consumption with increasing purity,
the solution corresponding to (SEF,PP) = (5.45,98.8) would be a good compromise solution.
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Figure 3: Pareto frontier of the MOO problem of minimising the SEF and maximising PP
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4. Conclusion

In this work, a systematic solvent selection approach for the integrated synthesis, crystallisation
and isolation of APIs was presented. The proposed CAMbD formulation identifies the solvent mix-
tures, mixture composition and process temperatures that optimise selected KPIs, while meeting
comprehensive design specifications. The approach was illustrated by identifying solvents for the
synthesis, crystallisation and isolation of mefenamic acid. Furthermore, a MOO CAMbD design
problem was formulated and generated different designs with varying SEF/PP values, showing that
a PP of 98.8% can be achieved without significantly deteriorating the SEF. The use of CAMbD to
guide experimental solvent screening and explore the synergies between KPIs can help accelerate
pharmaceutical process development.
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Abstract
A highly toxic compound, hydrogen cyanide (HCN), was discovered to result from the reaction
between Ethyl cyano(hydroxyimino)acetate (Oxyma) and diisopropylcarbodiimide (DIC), a pop-
ular reagent combination for amino acid activation. The reaction solvent has been found to influ-
ence the amount of HCN produced so that judicious solvent choice offers a route to suppressing
HCN formation. Given the safety implications and the time-demanding nature of experimental
solvent selection, we employ a methodology of quantum mechanical computer-aided molecular
design (QM-CAMD) to design a new reaction solvent in order to minimize the amount of HCN
formed. In this work, we improve on the original QM-CAMD approach with an enhanced surro-
gate model to predict the reaction rate constant from several solvent properties. A set of solvents
is selected for model regression using model-based design of experiments (MBDoE), where the
determinant of the information matrix of the design, known as D-criterion, is maximized. The
use of a model-based approach is especially beneficial here as it links the large discrete space
of solvent molecules to the reduced space of solvent properties. The resulting surrogate model
exhibits an improved adjusted coefficient of determination and leads to more accurate predicted
rate constants than the model generated without using MBDoE. The proposed DoE-QM-CAMD
algorithm reaches convergence in one iteration. In the future, the main reaction of amino acid
activation will be considered to design a solvent that maintains the rate of the main reaction while
minimizing HCN generation.

Keywords: computer-aided molecular design, design of experiments, solvent effects

1. Introduction

In the pharmaceutical industry, most reactions take place in the liquid phase, with a solvent used
to facilitate the reaction. It is desired not only to achieve a high reaction rate but also to achieve
high selectivity and avoid the generation of side products that become impurities, but it can be
difficult to achieve these objectives simultaneously. The idea of increasing selectivity by rationally
designing a solvent that decelerates the side reaction(s) offers a potentially powerful approach to
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address this challenge. However, the process of solvent selection often requires time and resource
consuming experiments. Aiming to accelerate the solvent screening process as well as to save
resources, quantum-mechanical computer-aided molecular design (QM-CAMD) has emerged as
a promising computational tool in recent years (Struebing et al., 2013; Zhou et al., 2015; Grant
et al., 2018; Gertig et al., 2019). It relies on the use of a surrogate model for quantum-mechanical
(QM) modelling to predict the rate constant of a reaction as a function of solvent properties.
This surrogate model is incorporated into an optimization problem to identify a list of promising
solvents for further experimental tests. Only a small number of QM rate constant data are used
in the training set and the solvents used to generate these data are typically chosen based on
qualitative arguments such as the diversity of functional groups. This often results in a surrogate
model with limited accuracy. Consequently, the QM-CAMD algorithm often requires several
iterations to converge, which increases the computational expense and may lead to a suboptimal
solution due to model uncertainty. In a case study of solvent design for a Menschutkin reaction,
the surrogate model predicted a rate constant that is 15 orders of magnitude larger than the QM
rate constant at the first iteration of the algorithm; it took five iterations for the surrogate model
to become accurate enough for the QM-CAMD algorithm to converge (Struebing et al., 2013). To
reduce the computational expense, an efficient method that enables the rapid construction of more
representative surrogate models is required.

Model-based design of experiments (MBDoE) is a statistical approach used to maximise the in-
formation content from a set of experiments by performing them at optimal conditions according
to a quantitative statistical criterion (Franceschini and Macchietto, 2008). In this work, MBDoE
is used to design an optimal set of computational experiments in which the reaction rates are ob-
tained from transition state theory (TST) by calculating activation free energies (Ho and Ertem,
2016) on a QM-derived free energy surface for the reaction system in different solvents. The only
experimental condition (factor) that needs to be determined is the solvent environment that is rep-
resented by a continuum solvation model (Marenich et al., 2009) used during the course of the QM
calculations. The rate constants are used to regress a multi-variable linear regression (MLR) model
as a surrogate for the QM method. Here the model-based approach links the large discrete space
of solvent molecules to the reduced space of solvent properties. We apply this MBDoE-enhanced
QM-CAMD algorithm in an industrial case study where amino acid activation is accompanied by
a side reaction in which hydrogen cyanide (HCN) is formed, with the aim to abate safety concerns
(McFarland et al., 2019) by taking the advantage of the effect of solvent choice on the amount of
HCN produced in this reaction (Erny et al., 2020).

2. Methodology

2.1. QM-CAMD

The workflows of the original and the enhanced versions of the QM-CAMD approach are shown
in Figure 1, which highlights the differences between the two versions. The enhanced QM-CAMD
(DoE-QM-CAMD) algorithm uses MBDoE for the selection of the initial solvents, rather than a
set of solvents based on intuition. Furthermore, they differ from each other in that the original
QM-CAMD includes a conditional operation that determines whether more iterations are required
for the algorithm to converge, whereas the enhanced version terminates after one iteration. In the
first step of DoE-QM-CAMD, the design objective and constraints of the solvent design problem
are defined; a set of initial solvents for surrogate model regression is selected using MBDoE.
In the second step, rate constants kL

s are calculated in the selected solvents s = 1, ...,Ns using
transition state theory (TST) and a model combining quantum mechanics (here M062X/6-31+g(d))
and a continuum solvation model to obtain ∆̸=G◦,L

s , the liquid-phase activation energy for the
reaction in a solvent s. ∆̸=G◦,L

s is calculated using the thermodynamic cycle (TC) approach (Ho
and Ertem, 2016). The rate constants calculated in the initial solvents are then used to regress the
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Test the best solvent 
experimentally

Calculate rate 
constants in the 
selected solvents by 
QM method

Regress the 
solvatochromic 
model

Identify the optimal 
solvent using 
CAMD

New solvent 
found?

Yes

No

Define the solvent 
design problem and 
select a set of 
solvents by MBDoE

Define the solvent 
design problem and 
select a set of 
solvents by intuition

DoE-QM-CAMD only Original QM-CAMD only Common to both methods

Figure 1: Workflow of QM-CAMD algorithm incorporating MBDoE

solvatochromic model Eq (1) that relates rate constants with the properties of reaction solvents
using the following MLR relationship, where the subscript s denotes the solvent:

lnkL
s = c0 + cAAs + cBBs + cSSs + cδ δs + cHδ

2
H,s (1)

where lnkL
s is the logarithm of the rate constant; As is hydrogen bond acidity; Bs is hydrogen bond

basicity; Ss is polarity; δs is a correction parameter denoting whether the molecule is halogenated
(δs = 0.5), aromatic (δs=1), neither (δs=0) or both (δs=1); δ 2

H,s is the squared Hildebrand solubility
parameter; c0, ca, cb, cs, cδ , c

δ 2
H

are the corresponding reaction-specific coefficients that need to
be estimated. In the fourth step, the solvatochromic model is incorporated into a mixed-integer
linear programming (MILP) problem, and an optimal reaction solvent is obtained by solving the
MILP problem. Because MBDoE is used, the generated solvatochromic model from the MBDoE-
selected solvents is expected to be adequately accurate so that the identified optimal solvent can
be directly tested in experiments. In the original QM-CAMD algorithm, several iterations through
steps 2-4 are often needed: newly found optimal solvents are added to the solvent set for model
regression so that the accuracy of the solvatochromic model can be improved.

2.2. Selection of solvents using the D-optimality criterion

MBDoE using the D-optimality criterion is applied to maximize the information content that can
be obtained from the QM calculations in the initial set of solvents. For a generic MLR model:

Yi = β0 +
n

∑
j=1

β jxi, j + εi i ∈ {1,2,3, ...,m} (2)

where xi, j are the j = 1, ...,n explanatory variables corresponding to the ith experiment; β0 is the
intercept; β j are the coefficients corresponding to each of the explanatory variables; Yi and εi are
the measured response variables and random errors at the ith experiment respectively; m is the total
number of experiments. In this work, the experiments are computational, so the noise is numerical
and depends on the convergence tolerances used. The so-called Fisher information matrix I can
be then constructed (Atkinson et al., 2007). The D-optimality criterion consists of maximizing
the determinant of the information matrix, det I, which is equivalent to minimizing the volume of
the ellipsoid representing the joint confidence region of the model coefficients βi, thus reducing a
measure of the error in the parameters.
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Figure 2: The reaction of Oxyma/DIC adduct 1 into a five-membered ring product 4 and hydrogen
cyanide, HCN. 2 is the transition state and 3 an intermediate

Table 1: Solvents generated by MBDoE and in Struebing et al.’s work (”Div”) and the correspond-
ing rate constants for the reaction in Figure 2, as computed by the QM method

MBDoE Div
No Solvent lnkL No Solvent lnkL

1 2,2,4-Trimethylpentane -11.7 1 Toluene -10.4
2 3-Fluorophenol -3.8 2 Chlorobenzene -6.4
3 1-Phenyl-1-propanol -3.9 3 Ethyl acetate -5.7
4 2-Methoxyethanol -1.6 4 Tetrahydrofuran -5.0
5 Adiponitrile -2.3 5 Acetone -2.9
6 Nitrobenzene -2.8 6 Acetonitrile -2.3
7 N-Methylformamide 0.0 7 Nitromethane -2.3

3. Results and discussion

3.1. A case study: the HCN generation in amino acid activation using Oxyma and DIC

The DoE-QM-CAMD approach is applied to an industrial case study in which the choice of sol-
vent greatly impacts on the safety of the reaction. It has been observed (McFarland et al., 2019)
that during amino acid activation using Ethyl cyano(hydroxyimino)acetate (Oxyma) and diiso-
propylcarbodiimide (DIC), a popular reagent combination, the generation of HCN occurs, raising
significant safety concerns when the reaction is scaled up to a manufacturing level. HCN formation
has been found to proceed according to the Scheme in Figure 2, resulting from the decomposition
of 1, an adduct of Oxyma and DIC (McFarland et al., 2019). In this reaction, the imine-type ni-
trogen first attacks the oxime carbon nucleophilically and forms a zwitterionic intermediate 3 via
the transition state 2, the formation of which is also identified as the rate-determining step (RDS)
of the whole reaction sequence. Species 3 further decomposes into 4 and HCN via the cleavage of
cyanide and a proton transfer. Given the undesirability of this side reaction, our design objective
is to minimize the rate constant of the RDS so that HCN generation can be effectively suppressed.

3.2. Solvatochromic model

A list of seven solvents, shown in Table 1, is generated by MBDoE using the D-optimality crite-
rion. The rate constants of the RDS are calculated using the QM method in the MBDoE solvents
as well as in the solvents used in Struebing et al.’s work for comparison. This latter set of solvents
was chosen on the qualitative basis of molecular diversity, and is referred to as Div. By using
the QM rate constants as the training data, a MBDoE solvatochromic model Eq (3) and a Div
solvatochromic model Eq (4) are obtained with adjusted R2 values of 0.83 and 0.26, respectively.

logkL
s =−13.99−2.96As +6.37Bs +0.12Ss +2.07δs +5.47δ

2
H,s (3)

logkL
s =−16.59−5.03As +7.62Bs +16.26Ss −0.55δs −1.81δ

2
H,s (4)

634

610



Computer-aided solvent design for suppressing HCN generation in amino acid
activation

-20.00

-15.00

-10.00

-5.00

0.00

5.00

10.00

15.00

20.00

ln
kL

Figure 3: The logarithm of rate constants of the RDS in 8 solvents calculated using the MBDoE
model Eq (3), hatched bars, the Div model Eq (4), solid bars and the QM model, empty bars

The larger adjusted R2 of the MBDoE solvatochromic model demonstrates its better correlation
between the fitted model and the input rate constants. Further, a validation set of 8 solvents is
used to test the accuracy of the MBDoE and Div solvatochromic models against the QM model.
As seen in Figure 3, for all the tested solvents except benzyl alcohol, the MBDoE model predicts
closer results to the QM model with a mean average deviation (MAD) of 2.48 log units while the
Div model yields a MAD of 8.23. In the case of benzyl alcohol, the predicted lnkL by both solva-
tochromic models (MBDoE: lnkL =−1.25, Div: lnkL =−3.01) are in relatively close proximity
to the QM model (lnkL =−2.36).

3.3. CAMD

The MBDoE and Div models are further incorporated into two CAMD problems denoted as MB-
DoE CAMD problem and Div CAMD problem, respectively. The CAMD problem formulation
of Grant et al. (2018), in which additional property constraints are imposed on the boiling points,
melting points, toxicities, octanol-water partition coefficients and flash points of designed solvents
assembled from 45 atomic groups. The resulting MILP problems are solved in the GAMS soft-
ware (https://www.gams.com/). The results are summarized in Table 2. The Div CAMD model
identifies 2,3-dimethylpentane as the optimal solvent. However, the predicted rate constant de-
viates from that of the QM model by three orders of magnitudes. In contrast, the DoE CAMD
model identifies 2,3,4-trimethyl-2-pentene as the optimal solvent and yields a rate constant which
is much closer to the value given by the QM model with a deviation of only one order of magnitude.
The observed contrast between the two CAMD models is consistent with the model validation re-
sults in Section 3.2 . In addition, according to the QM model, 2,3,4-trimethyl-2-pentene yields a
smaller rate constant than 2,3-dimethylpentane for the RDS of the side reaction that needs to be
suppressed. These findings reinforce the hypothesis that the DoE model can provide much more
reliable design results.
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Table 2: Design results of the MBDoE CAMD problem and Div CAMD problem
DoE CAMD Div CAMD

Optimal solvent name 2,3,4-trimethyl-2-pentene 2,3-dimethylpentane
Optimal solvent structure CH3 x 5 CH x 1 C=C x 1 CH3 x 4 CH2 x 1 CH x 2
kL Solvatochromic model 3.37×10-6 s-1 1.13×10-8 s-1

kL QM model 1.34×10-5 s-1 2.26×10-5 s-1

4. Conclusion

In conclusion, an enhanced QM-CAMD framework has been proposed by incorporating MB-
DoE at the stage of selecting initial solvents for surrogate model regression. The MBDoE solva-
tochromic model exhibits better correlation and accuracy when compared to the Div model when
using a validation solvent set. The MBDoE CAMD model also provides a better optimal solvent
and a more reliable prediction of the QM rate constant for the optimal solvent identified. In the
future, the case study will be further extended to the amino acid activation and amidation reaction
so that an optimal solvent can be designed and used in peptide synthesis. The proposed approach
has the potential to help choose solvents for many organic reactions, and to help improve reaction
selectivity with minimal experimental effort.
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Abstract 

The Carbon-Hydrogen-Oxygen symbiosis networks (CHOSYN) are a set of  hydrocarbon 

processing plants integrated, which pursue a proper use of mass and energy resources, 

this concept moves towards more sustainable designs for facing the current problem of 

environmental and climate change by meeting performance targets as environmental 

concerns and profitability enhancement. This work addresses CHOSYN synthesis using 

process intensification, which has been widely used for enhancing the performance of 

industrial processes in terms of economy, environment, and safety. The purpose is to 

analyze the impact that can be produced through the implementation of process 

intensification in CHOSYN’s performance targets focusing on the intensification of 

distillation sequences due to the intensive energy use of this separation process. A case 

study is proposed, the methodology is presented in three stages: intensification of selected 

flowsheets of the case study, integration of the plants into the CHOSYN, and analysis of 

results. Thermally coupled equivalent configurations for selected distillation sequences 

are determined and optimized through the dynamic method known as the moving section 

method, once obtained these sequences, the different configurations for the CHOSYN are 

built through a sequential integration method. The performance analysis of the 

conventional CHOSYN configuration and one intensified option are addressed by the 

metric known as Sustainability Weighted Return on Investment Metric (SWROIM), 

which integrates the conventional ROI and sustainability indicators. In this case, the 

performance targets used for the term of sustainability in the metric are thermal energy 

savings and CO2 emissions. In general, the resulting gap between SWROIM values for 

the conventional network and the intensified alternative measures the total positive 

impact by intensification over the cost and sustainability indicators of the CHOSYN.  

 

Keywords: process intensification, process integration, resources management  

 

1. Introduction 

Carbon-Hydrogen-Oxygen symbiosis networks (CHOSYN) have been recently 

introduced as a macro system with multi-plant integration among a set of processing 

plants that deals mainly with hydrocarbon compounds (Noureldin & El‐Halwagi, 2015). 

The integration is carried out through an interception network, where the exchangeable 
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streams are heated, cooled, pressurized, mixed, or divided as required to make feasible 

the exchange of streams, chemical conversions are used to obtain needed compounds 

which are more usable in the network. The main purpose of the integration in the 

CHOSYN is meeting a proper use of the different mass and energy resources available in 

the system, through the recycling of the exchangeable streams some sustainability 

performance targets of the network are improved, for example the reduction of fresh 

material flowrates, the amount of waste generation, water footprint and heat requirements, 

or the increase the production of value-added products and the profitability of the 

network. Nowadays, there is a special attention in the enhancement of all these targets in 

any process due to the ongoing problems related to the environment, and international 

agreements against climate change place special emphasis on the reduction of CO2 

emissions and energy efficiency, which force many countries to take action on this matter.  

In addition to the benefits of the integration to improve the performance targets of the 

CHOSYN, which have been widely studied and proved, this work proposes to use process 

intensification (PI) to further improve these sustainability targets. According to the 

definition of PI, which implies any chemical engineering development that leads to a 

substantially smaller, cleaner, safer, and more energy-efficient technology (Costello, 

2004), it is logical to think that using intensification methodologies can impact the design 

of the CHOSYN and help to improve these objectives, which is implemented in this work. 

This work is focused on the intensification of distillation sequences due to the intensive 

energy use of this separation process, and since thermodynamic efficiency ranges for 

conventional distillation is 5-20%, using thermally coupled configuration this work seeks 

important improvements in energy efficiency.  

The sustainability enhancement is measured by the SWROIM (Sustainability Weighted 

Return on Investment Metric), which involves simultaneously the conventional ROI and 

sustainability indicators (El-Halwagi, 2016), the value of this parameter is relative to the 

profit of the project and it is used to rank a set of projects according to the economic and 

environmental performance.  

2. Methodology  

This work aims to show the impact produced on the CHOSYN performance by applying 

PI in the distillation sequences of the different processes included in the network, the 

proposed methodology is divided into three stages: first the intensification of the 

flowsheets of the selected processes, then the coupled of the intensified processes to the 

network and finally the evaluation of the targets and the analysis of the results. 

2.1. Case study 

The case study proposed in this work has been taken from Juárez-García et al. (2021). It 

is the solution with the lowest cost for a CHOSYN configuration formed by five existing 

plants, four new plants, and the interception network (see Figure 1). Table 1 shows a 

summary of the plants and their process capacities. 
 

Table 1. Summary of the Case study 
Existing Plant Processing capacity (ton/day) Suitable for 

intesification 

ATR (auto thermal reforming of methane) 13400 (syngas)  

Ethylene (steam ethane cracking) 110 (ethylene) * 

PDH (propane dehydrogenation to propylene) 2200 (propylene)  

MTP (methanol to propylene) 300 (propylene) * 

VAM (monomer of vinyl acetate from HOAc) 150 (HOAc)  
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New plants Processing capacity (ton/day)  

Methanol from syngas 882 (MeOH)  

Methanol from CO2 2152 (MeOH)  

Carbonylation of MeOH 202 (HOAc)  

Steam methane reforming 253 (syngas)  

 

 
Figure 1. Case study  

2.2. Intensification 

The case study was simulated using Aspen plus, from the nine processes, two distillation 

sequences were suitable for intensification, first in the Ethylene production process and 

second in the methanol to propylene process (MTP). In Figure 2a, the conventional 

sequence for ethylene purification consists of three distillation columns, in the first 

column 1C-201 the methane and lighter traces are separated by the top stage, the liquid 

bottom stream goes to the second column 1C-202, where butenes and heavier 

hydrocarbons are separated by the bottom stage, on the top stage the light stream contains 

ethylene and ethane that are separated in the third column 1C-203, the light stream has a 

composition of 99.9% ethylene. The conventional distillation sequence for purification 

of propylene is shown in Figure 2b, in the first column C-401, butenes are eliminated in 

the bottom stream, and the top stream passes to the second column C-402, where the 

propylene reaches a composition of 99.9%. 

 

  

Figure 2a. Conventional sequence 

distillation of ethylene process 

Figure 2b. Conventional sequence 

distillation of MTP process. 

 

In both cases it was used the method proposed by Hernandez & Jimenez (1996) to obtain 

the intensified arrangements, according with the efficiency reported in the literature for 

similar sequences, for the ethylene purification sequence it was selected a arregement of 

three columns with two recycles with an energy saving of 20% in regard of the 
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convetional sequence. For the propylene separation in MTP process the literature  

indicates that Petluyk column has the best efficieny for similar sequences, despite this, in 

this case the side stripper arrangement presents a greater energy savings with 20%. The 

intensified sequences, and the optimization of the inter-connection flows are shown in 

Figures 3.

Figure 3. Intensification and optimization of the distillation sequence of ethylene process.

Figure 4. Intensification and optimization of the distillation sequence of MTP process.

2 .3 . SWROI evaluation

The Sustainability Weighted Return on Investment Metric (SWROIM) allows to measure 

the economic viability of a project through the conventional ROI (return on investment)

and also to include sustainability aspects through sustainability indicators. The 

conventional ROI can be determined by E.1, which involves the annual economic profit 

(AEP) and the total capital investment (TCI):
AEP

ROI
TCI

 E.1

The SWROI besides includes the term of sustainability as follows:

1

1
indicatorsN

i
i Target

i i

Indicator
AEP w

Indicator
SWROIM

TCI



  
  

  



E.2

Where Indicatori is the value of the ith sustainability indicator and the Indicatori
Taget is the 

target value for the indicator, it could be the maximum value determined by optimization 

or the largest value from all project options, wi is the weighting factor which represents

the relative importance for the indicator given by the company and it is a ratio to the 

economic profit. In particular, this work uses the reduction of CO2 emissions and the 

heating savings as sustainability indicators, the targets are set in 20% of heating savings 

of the conventional configuration since the intensification allows to reach this percentage,

and for the reduction of CO2 emissions 22% of the total emissions of the conventional 
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configuration taking into account the compromise that Mexico acquired under Paris 

agreement. The selection of weighting factor is a non-trivial task because it can skew the 

results, we propose first equal weighting factors for both indicators of 0.1 in scenario A, 

then give more weight to the emissions indicator with a factor of 0.25 in scenario B, and 

vice versa in scenario C, this will allow observing how much the decision of this value 

influences on the final value of the SWROIM. The summary of the sustainability targets 

and their relative importance is shown in Table 2. 

 

3. Results 
Once obtained the intensified options for the distillation sequences a new configuration 

of the CHOSYN is built using Aspen plus (see Figure 5). For the SWROIM evaluation, 

it is needed the value of the total capital investment and the annual economic profit. As 

the case study was described, the cost and the profit are only related to the new plants 

which represent the new project investment, these values are shown in Table 3. 
In this section are presented the resulting values for the SWROIM for the configuration 

of the CHOSYN when conventional arrangements of distillation columns are used and 

for the same configuration but using intensified distillation sequences. The value of the 

conventional ROI is shown in Table 3, the gap between both values is barely appreciated, 

which means that the investment cost does not greatly differ from one to another option, 

and the decision-maker could choose indifferently from one to another. When the 

sustainability targets of reduction of CO2 emissions and heating savings are included with 

equal relative importance of 0.1 in scenario A, the SWROIM of the conventional 

CHOSYN has a value of 67.14 % and this is kept for scenarios B and C because it has the 

largest values for both indicators, in this same scenario A the SWROIM for the intensified 

configuration grows to 68.4%. For scenario B where the reduction of emissions has the 

biggest weight of 0.25 in regards the profit, the SWROIM is 68.81%, with a relative 

difference of 1.2%. Meanwhile, the SWROIM of scenario C, where the heating savings 

has 0.25 relative importance, is 69.34% with a relative difference of 2.2%. 

 

Table 2. Targets of the sustainability indicators and their relative importance 
Sustainability 

Indicatori 

Target 

(Indicatori
Taget) 

Units Weighting 

factor (A) 

Weighting 

factor (B) 

Weighting 

factor (C) 

Heating savings 216918 kW 0.1 0.1 0.25 

CO2 emissions 

reduction 

35021 Ton of 

CO2/year 

0.1 0.25 0.1 

 

Table 3. Results summary for the CHOSYN configurations. 

 

 TCI   

(106 USD) 

AEP  

(106 USD/year) 

ROI SWROIM 

(A) 

SWROIM 

(B) 

SWROIM 

(C) 

Conventional 

configuration 

181.219 121.358 67.08% 67.14% 67.14% 67.14% 

Intensified 

configuration 

181.055 122.358 67.58% 68.4% 68.81% 69.34% 
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Figure 5. Aspen simulation of the CHOSYN configuration.  

 

Table 4. SWROIM values for the different scenarios and configurations.  

 

Despite the difference between both configurations in the different scenarios seems to be 

not too important, it is worth mentioning that a difference of 1.2% in the SWROIM only 

in economic terms represents 2.172 MMUSD and 2.2% 3.98 MMUSD what clearly 

shows what option is better. Whatever, the relative importance of the sustainability 

indicators can be changed according to the decision-maker and the company's goals in 

environmental concerns and provide a range of options suitable to this goals. 

4. Conclusions 

Process intensification has been implemented for the successful improvement of the 

sustainability performance targets of the CHOSYN. A case study was proposed to 

measure this improvement through the SWROIM which involves simultaneously 

economic conventional metric ROI and a sustainability term, for this work the reduction 

of the CO2 emissions and energy savings are the targets to be improved. Notwithstanding 

in the individual processes, the intensification of the distillation sequences means energy 

savings up to 20%, this impact is greatly reduced in the macroscopic point of view of the 

CHSOYN with relative differences of the SWROIM up to 2.2% wich still represents high 

economic savings mainly related with the operating cost, and an enhancement over  the 

environmental performance targets due the emissions reduction.  
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Abstract
This contribution describes a novel process design consisting of the implementation of a high
performance liquid chromatography (HPLC) system into an existing integrated biopharmaceutical
purification platform in order to extend the possibilities of analysis. This setup is controlled by a
custom-made set of software tools, namely the combination of Orbit along with a C# based pro-
gram called Satellite, which is used to link the HPLC system to Orbit. By using this process design,
automated analysis of the continuous process flow is made possible, generating full wavelength
spectra, and automated pool quality analysis. These spectra contain at least an order of magnitude
more data compared to a standard chromatogram, which can be utilized for further analysis, while
the pool quality analyses can be used for making decisions regarding how to proceed with a partic-
ular pool. The results of the study show the successful implementation of automated analytic tools
to the purification process, which also indicates that the process carries promise as a generalizable
platform for Orbit-controlled designs for different analysis purposes.

Keywords: novel process design, chromatographic purification, automated analysis, integrated
downstream processing

1. Introduction

We are currently seeing a great need for global accessibility and lower prices of a wide range
of vital biopharmaceuticals, e.g. monoclonal antibodies for cancer treatment. With upstream
processing having seen recent productivity improvements, the on-going paradigm shift towards
continuous and integrated downstream processes is therefore critical in order to make new, life-
saving pharmaceuticals more readily available at a global scale (Ötes et al., 2017). Concrete
examples of this paradigm shift is the process design for automated lab-scale production of a re-
combinant protein presented by Gomis-Fons et al. (2019), as well as the process data utilization
to improve data-driven modelling methods by Brestrich et al. (2015). However, while continu-
ous processes may offer many advantages, the optimal performance thereof demands high-speed
decision-making based on precise measurements and constantly updating data for real-time moni-
toring and control (Lee, 2017). Therefore, there is a critical need to implement automated analysis
capabilities in order to achieve autonomous production of biopharmaceuticals.

The purpose of the current work is to expand on the process presented by Gomis-Fons et al.
(2019), and satisfy the need for advanced analysis by presenting a novel process design, where an
HPLC with a diode-array detector was integrated with the aforementioned process and its control
software. This is achieved by means of physical integration of the flowpaths of the two machines,
as well as integrating the HPLC system control software into Orbit (Andersson et al., 2017) via a
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custom-made C# based program. The proposed process design provides two tools with different
capabilities: (i) one to analyze the individual eluting peaks from the chromatographic purification,
and (ii) one to analyze the continuous process flow over all available wavelengths utilizing the
diode-array detector. Thereby, the setup allows for automated quality analysis of specific pools or
entire system flows, generating large amounts of data to be used for e.g. data-driven modelling
and autonomous control. In order to highlight the advantages of the presented process design and
the capabilities of the two added analytical tools, two case studies similar to the one presented in
Gomis-Fons et al. (2019) were performed and the results thereof are presented and discussed.

2. Process design

This section describes the hardware configuration of the proposed design and the software setup
used to control the process. The work was carried out by connecting the flow-paths of an ÄKTA
pure 25 and an Agilent 1260 HPLC by utilizing the loop and injection valves, as well as a flow
splitter. In order to integrate the HPLC system and the ÄKTA system, ancillary software was
developed and used to link the HPLC hardware with the previously developed control software,
Orbit.

2.1. Hardware configuration

In the process described by Gomis-Fons et al. (2019), a recombinant protein is purified in four
steps using three bind-and-elute chromatographic columns and one flow-through chromatographic
membrane. The purification steps consist of a multimodal chromatography column (Column 1 in
Figure 1), a cation exchange column (Column 2), a salt-tolerant interaction chromatography anion
exchange membrane (Column 3; operated in flow-through mode) and an anion exchange column
(Column 4). The purpose of the loop (Column 5) is to collect fully representative samples of the
eluting pools; in order to keep the samples homogeneous, the loop also contains a magnetic stir
bar. It should be noted that the ultrafiltration-diafiltration step used by Gomis-Fons et al. (2019)
was omitted in the current work in order to reduce complexity.

The complete system of the current work consists of two separate liquid chromatography systems,
as presented in Figure 1; an ÄKTA pure 25 running an integrated protein purification process
(Gomis-Fons et al., 2019) and an Agilent 1260 HPLC for running online analytics using an ion
exchange column and a linear salt gradient. The Agilent HPLC (left dashed box) was connected
to the ÄKTA (right dashed box) in two ways. Firstly, the loop valve of the ÄKTA (‘LV’) and
the injection valve of the HPLC (‘HPLC InjV’) are connected in series, making it possible to
fill the HPLC injection loop (Blue ‘Inj Loop’) from the ÄKTA. The HPLC injection valve was
implemented using a two-position/six-way valve. Secondly, a splitter valve (Agilent G1968D
Active Splitter) was installed in the flow path of the ÄKTA directly after the UV, conductivity and
pH sensors. This splitter valve separates the flow in a ratio of approximately 1:1000, and small
off-stream of the splitter is sent to the HPLC sensors through its column valve. Furthermore, a
setup of two computers connected over LAN, each running an instance of Orbit, is used to control
the physical system and automate the process.

This setup allows for automated HPLC analysis of the peaks during the run, which provides in-
formation regarding e.g. in which steps of the purification impurities are removed, and to which
extent. Such information of the sample quality can then be used for purification process control.
Furthermore, the HPLC system was equipped with a diode-array detector. The purpose of adding a
diode-array detector to the process is to greatly increase the wavelength range for absorption mea-
surements. Compared to the standard single or triple wavelengths in an ÄKTA system, the diode
array detector in the Agilent 1260 system is capable of measuring every wavelength between 190
nm and 950 nm. This makes it possible to differentiate between species, provided they have dif-
ferent absorption spectra. If the spectra of all pure eluting components or known mixtures thereof
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Figure 1: A schematic of the physical system layout and the control software setup.

are known beforehand, it is possible to determine the individual concentrations in real time, sub-
sequently enabling dynamic decision-making regarding pooling (Brestrich et al., 2015), e.g. via
partial least square regression (PLS). It should be noted that due to the two analytical tools being
connected in series, continuous spectra cannot be taken while a peak analysis is being performed.

Through these two connections, the proposed process design thus provides two important ana-
lytical tools: online analytic chromatography on the HPLC, and the use of the HPLC sensors as
additional real-time sensors in the process. This hardware configuration thereby allows for auto-
mated online analysis of specific peaks as well as continuous multi-wavelength measurements to
be taken during a preparative chromatographic run. However, in order to control and/or automate
the process, particular software was needed.

2.2. Control software

The control software setup is used to automate peak analysis, in order to find information of
the species present in each pool, and diode-array detector measurements of the continuous process
flow, which can be used to reveal much more information regarding the contents thereof. The main
control software used to automate the process is a generic Python-based Process Analytical Tech-
nology (PAT) software interface (Holmqvist and Sellberg, 2016) called Orbit (Andersson et al.,
2017), which has been successfully applied in research and development of biopharmaceutical
downstream processing (e.g. Gomis-Fons et al. (2019, 2021)). Orbit provides an open-structure
framework based on a real-time core, providing opportunities to implement add-ons to be used for
process automation and to control a range of instruments. In order to integrate the HPLC-system
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into the Orbit framework, a program called Satellite was developed using the Agilent-developed
API known as Instrument Control Framework (ICF). Satellite was written in C# and based on a
software development kit provided by Agilent. The Satellite program functions as a link between
the HPLC hardware and the Orbit software, allowing Orbit to read sensor data and control the
functionality of the HPLC.

In order to assert full control of the setup, two separate instances of Orbit were used to run the pro-
cess. One instance was used to control the ÄKTA system, and the other to control the HPLC. Each
Orbit controller instance was defined by a script dictating the specific system behavior. However,
the two systems were not operating completely independently. For example, the ÄKTA system
needed status information from the HPLC, i.e. whether the HPLC was ready to receive a sample
in its sample loop, and the HPLC subsequently needed to know whether to begin an analysis run.
This synchronization of the two systems was carried out via a global flag variable, i.e. by writing
to and reading from the same variable to indicate whether a particular system is ready to perform
an action.

3. Results and discussion

The major results from the two cases are presented as the preparative chromatogram of the first
case followed by the analytic chromatograms of the peak quality, and the spectra generated by
the HPLC diode-array detector analyzing the continuous process flow during the second case.
This spectrum highlights the expected purification, and contains at least an order of magnitude
more data than a standard chromatogram, which can be utilized for further analysis, data-driven
modeling, and subsequent autonomous control.

In Figure 2, the preparative chromatogram of the first case study is presented, with the three
eluting peaks highlighted by shaded areas under the curve. The first peak (close to the 150 minute
mark) is from eluting the capture column (Column 1); the second peak is eluted from the second
column, flowing through the third column; and the third peak is from the fourth column. It should
be noted that the STIC (column 3) is run in flow-through mode, with the flow not passing by
the UV detector, which explains why there is no visible peak in the preparative chromatogram
corresponding to this column as with the others. However, due to the process design, it is still
possible to perform an analytic HPLC run of the sample leaving this column.

Figure 2: The chromatogram generated by the UV detector of the ÄKTA during the first case, with
eluting peaks close to 150 min, 200 min, and 300 min.
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The analytic chromatograms of the three peaks are presented alongside the analyses of the feed and
the pure product in Figure 3. As can be seen, each step performs a vital function in isolating the
product. Firstly, the capture column drastically reduces the impurities present in the feed, and the
subsequent columns can be seen to each perform polishing and finishing by further eliminating the
majority of the remaining impurities, leaving a single major peak after the AEX column (column
4) at the same eluting time as the pure product. The reason for the reduced peak height compared
to the previous is due to the wider final pool during the chromatographic purification, meaning
that the concentration in the analysed sample will be lower compared previous, narrower peaks.
These results show that the proposed process design is capable of providing the automated analysis
capabilities necessary to support continuous manufacturing.

Finally, the continuous spectra from the second case is presented in Figure 4, with the correspond-
ing 280 nm chromatogram highlighted with a bold line. This wavelength is the gold standard
for absorbance measurements, but proteins contain different peptide groups highly active in ab-
sorbance ranges of 180-230 nm (Carta and Jungbauer, 2010), which can be seen in Figure 4. By
measuring at not only a single wavelength, but a range of wavelengths between 210-310 nm, more
information can be retrieved regarding which species are present at different times, meaning that
the spectra can be used to continuously analyse e.g. mixture compositions. While the nuances are
difficult to see by the naked eye, the information existing in the continuous spectra remains for
mathematical analysis, e.g. as presented by Brestrich et al. (2014). Utilizing this technology in
the proposed process design thus enables automated monitoring of the product quality at a highly
detailed level, providing further opportunities to automate decisions in continuous manufacturing.
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Figure 3: The results from the automated HPLC analysis of the colored peaks in the chromatogram
along with the feed and the pure product, showing the performance of each step in the chromato-
graphic purification performed on the ÄKTA pure 25.
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Figure 4: Continuous spectra providing information regarding the composition of the process flow
at many more wavelengths than just at 280 nm, marked in bold to highlight the corresponding
chromatogram.

4. Conclusions
In conclusion, the study shows that the proposed process design is capable of providing quality
analysis information and large amounts of data in an automated fashion, which is a necessary step
towards autonomous biopharmaceutical production. Based on the results from the peak analysis,
an interesting next step would be to develop a rule-based decision-making algorithm to automate
also the decisions on how to proceed with a particular pool. Furthermore, the use of the diode-array
detector was shown to have potential in generating data that can also be used for e.g. identifying
different species, and data-driven modelling. However, challenges pertaining to having both anal-
ysis tools active simultaneously, as well as determining the next step towards autonomous control,
remain for the future. Finally, based on the presented results, the concept carries promise as a
generalizable platform where customized setups for different purposes can be fully automated and
controlled by Orbit.
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Abstract 

The use of municipal solid waste and sludge within the waste to power initiative is 

evaluated following a multiscale approach. At process level, a techno-economic analysis 

based on systematic process design is developed to determine the optimal operating 

conditions and to estimate the yield and investment cost of the facilities as a function of 

the processing capacity. The facility consists of the boiler, the flue gas treatment chain, 

the steam turbine, and the cooling tower that are modelled using an equation-based 

approach. Experimental data and first principles are used to model the boiler and the 

pollutant abatement techniques, while detailed thermodynamics and transport phenomena 

are used to model the turbine and the cooling tower. Next, at country level, an extended 

facility location problem is formulated to select the location of facilities for a given 

budget, aiming at an electricity production cost and water consumption, considering the 

economies of scale and social indexes to promote the development jobs in regions 

suffering from depopulation. To produce power at a competitive price, below 0.06 €/kWh, 

a facility has to process the waste generated at cities above 250 k habitants. For this 

critical size, the investment cost is beyond 25 M€. At country level, for the major cities 

in Spain (over 65 across the mainland) it would be possible to produce up to 235 MW 

from the waste generated with a production cost of 0.05 €/kWh. 

 

Keywords: Waste to energy, pollutants abatement, process design, multiscale  

1. Introduction 

Waste management is a major issue of our society due to the amount generated annually 

as well as the challenge its management represents. It is estimated that by 2021, 6.1 Mt/d 

of municipal solid waste (MSW) will be generated in urban areas (World bank, 2012). In 

addition to MSW, sludge that reaches a production of 13 Mt in 2020 (EU, 2008), can also 

be used as a resource. Both show a high potential to contribute to the energy transition. 

Incineration of MSW presents high potential for electricity generation using a Rankine 

cycle since the yield of thermal power plants can reach 40%. However, while most of the 

process studies focus on the thermodynamic yield, a facility that processes MSW requires 

a flue gas treatment to avoid emitting NOx, SO2 but above all heavy metals, dioxins and 

furans (Hubner et al 2000). Dried sludge can also be used as a resource.  The literature is 

detailed evaluating the power island to compute the energy produced from incineration. 

However, the flue gas treatment was included in the process in a simplified manner where 

the models for pollutants removal were based on simple removal rates (Fodor and 

Klemes, 2012), and no process optimization of such facilities has been addressed. Guerras 

and Martín developed detailed surrogate models to evaluate the performance of the flue 

gas treatment technologies for NOx, SO2 removal (Guerras and Martín, 2019). This work 
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focuses on the design of incineration facilities for MSW and sludge evaluating the effect 

of the scale. A mathematical optimization approach is used for the optimal operation of 

integrated facilities including waste furnace, gas treatment, the power island, and the 

cooling system. After a techno-economic analysis, the effect of the scale on the cost is 

evaluated, to formulate a facility location problem aiming at deciding where to install this 

kind of facilities at different cities across a country using the available sludge and MSW 

within range.  

2. Methodology 

 

The methodology comprises the analysis at two scale levels. At process level the techno 

economic evaluation of the transformation of waste, MSW and sludge, into power is 

analyzed. A scale up evaluation study is required to formulate a facility location problem 

where the results are required for the exploitation of the waste at country level.  

 

2.1. Process synthesis 

 

The process consists of four sections: the boiler, the flue gas treatment chain, the turbine, 

and the cooling. The boiler processes the mix of wastes, municipal solid wastes (MSW) 

with 50% moisture and sludge, 83% moisture, whose composition is found in Lin and Ma 

(2012), in a blend that can be managed by the boiler, below 10% sludge to avoid issues 

due to the concentration in water. The model of the boiler provides the energy generated 

as well as the composition of the flue gas, validated using literature data. The flue gas is 

processed to remove NOx, using selective catalytic reduction (R02), next, an electrostatic 

precipitator (PE01) removes particles followed by Lime Dry Spray process (LSD) for the 

removal of SO2. A filter (FM01) followed by an adsorbent bed to remove heavy metals 

complete the gas treatment chain. The steam generated in the boiler feeds a Rankine cycle 

with reheating and regeneration. A cooling tower cools down the water used in the 

condensation of the steam. Figure 1 shows the process flowsheet. 

The investment cost is computed using the factorial method based on the equipment cost 

(Sinnot and Towler, 2019) The estimation of the facility is performed by considering that 

piping, isolation, instrumentation, and utilities represent 20%, 15%, 20% and 10% of the 

units. Land and buildings cost is estimated to be 8 M€ (Martín and Martín, 2013). The 

fees represent 3% of the fixed cost, other administrative expenses and overheads and the 

plant layout represent 10% of the direct costs (fees plus fixed capital) and 5% of the fixed 

cost respectively. The plant start-up cost represents 15% of the investment.  

2.2. Scale up method 

 

Because of the properties of the factorial method to estimate the costs, the scale up or 

down as a function of the processing capacity, the cost of the units must be correlated as 

a function of a characteristic variable of its size or processing capacity (i.e. area, heat 

load, mass flow rate processed…) If the processing capacity is exceeded, additional units 

in parallel must be purchased (Sánchez and Martín, 2018)  

 

2.3. Macro-scale analysis 

 

A facility location problem is formulated to select the size and location of the incinerator 

plants towards the waste treatment and the social impact for a certain budget availability 
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and targeting a maximum electricity cost. The water consumption of the cooling tower is 

estimated from the correlations developed in previous work as a function the facility 

location (Guerras and Martín, 2020). 

 
Figure 1.-Process flowsheet 

3. Problem definition 
 

3.1. Process modelling and optimization 
 

The process is modeled unit by unit using a combination of mass and energy balances, 

thermodynamics, rules of thumb and experimental data. The boiler uses experimental data 

to determine the flue gas composition. To predict the effect of the processing variables 

on the removal yield of the flue gas treatment processes, such as NOx catalytic reduction, 

dioxins and furans removal, the electrostatic precipitator, the SO2 dry removal (Guerras 

and Martín, 2021), the filter, and the heavy metal packed tower, surrogate models are 

developed. In addition, the Rankine cycle is modeled units by unit the three turbines, high, 

medium and low pressure, where detailed thermodynamics is implemented using 

surrogate models for the enthalpy and entropy as a function of the pressure and 

temperature (Martín and Martín, 2013). The cooling tower model is based on evaluating 

the gas-liquid contact (Guerras and Martín, 2021).  

3.2. Macro analysis 
 
The selection of the location of the incinerator plants is a facility location problem 

(Grossmann, 2021). The aim is to produce power at a competitive price, using the 

opportunity to create wealth and jobs in regions that are suffering underpopulation issues 

or/and underdeveloped with respect to the neighbors. The social indexes relative 

population density, DH, relative unemployment, Ru, and development ratio, DR, of the 
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location are defined in Heras and Martín (2020) are used to build a composed objective 

function, eq. (1) where I is the investment.  

,max

1
· ·
2

i

i i i i

i i

Ru
OBJ Max Jobs DH DR I

Ru

  
 = + + 

  
  

     (1) 

4. Results 

This section summarizes the results related to process design and the allocation problem 

4.1. Process level 

4.1.1. Process yield 

 

The optimization of the process yields the ratios presented in Table 1 in terms of power 

ratio, turbine operation and cooling requirements. Note that water consumption is location 

dependent and is not as much as process driven beyond the total cooling load. 

 

Table 1.- Summary of performance values for the operation of the facilities. 

Variable Value Variable Value 

Boiler  Cooling cycle  

Flue-gas (kg/kg waste) 23.2 Cooling (kJ/kg) 1579 

Ashes (kg/kg waste) 0.10   

Power island 

W1/W2/W3 (kJ/kg) 620/178/538 Turbine Extraction 0.16 

P1/P2/P3/P4 (bar) 154/11/5.8/0.08 P(kJ/kg) 1335.3 

4.1.2. Economics 

The economics of the facilities are a function of the scale. Therefore, several cities across 

the territory are used examples such as Madrid (M), Barcelona (B), Santiago (Sa), 

Valencia (V), Seville (S), Gijon (Gi), Granada, (G), Pamplona (P), and Salamanca (Sal). 

Table 2 summarizes the results. We consider only the city and not the rest of the province, 

since waste collection since it is assumed that the recollection infrastructure is already in 

place and these facilities only change the end of use, from landfil to incineration.  

 

Table 2.-Summary of economic parameters of facilites in different places 
City M B V S Gi G P Sal Sa 

Habs (k) 3266 1637 794 689 270 232 201 144 96 

P(MW) 39.2 18.8 12.6 11.8 3.8 4.0 1.9 2.0 1.3 

I (M€) 67.3 46.6 39.0 37.9 27.1 26.9 23.7 24.0 22.8 

E 

(€/kWh) 

0.013 0.018 0.023 0.025 0.049 0.05 0.086 0.08 0.112 

Water 

(L/kWh) 

1.55 1.59 1.67 1.72 1.50 1.56 1.47 1.45 1.51 

Jobs 325 227 189 184 130 131 115 117 111 

 

The investment ranges from 23 M€ for a 100k habitants place to the 67 M€ of Madrid. 

Smaller facilites can create up to 111 jobs, including indirect ones, while larger ones can 

generated over 325 jobs. The production costs range within an order of magnitude from 

0.013 €/kWh to 0.11 €/kWh. The contribution of the cooling section increases as the 

facility is smaller, while that of the gas treatment or the boiler decreases. The contribution 

of the turbine is always within 15% 
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4.2. Distributed production 

 

Based on the previous study, it is possible to develop surrogates to estimate the production 

and investment costs of the facility as a function of the waste processed as well as the 

jobs generated and the water consumption as a function of the climate of the location. The 

facility location problem is formulated as in eq. (2). The results can be seen in Figure 2. 
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Figure 2a shows that for a budget of 250 M€ and an electricity cost of 0.06 €/kWh, most 

of the locations make full use of the waste, but the largest city selected, Seville, only 

processes 83% of the waste for a power production of 9.8 MW. There are places with just 

25% usage whose selection is more towards the social benefit of creating jobs, i.e. Toledo 

and Almería. The water consumption of the system is 1.673 L/kWh and the production 

capacity reaches 27 MW. For a budget of 500 M€, a larger number of locations was 

selected to the north, due to the depopulation suffered over the last years and the 

combination with lower GDP. Most of the same ones already chosen for the lower budget 

remain but the capacity of processing increases such as in the case of Seville, while 

Murcia and Cartagena were selected within the region of Murcia. The total power 

production reaches 55 MW while the water consumption decreases to 1.649 L/kWh 

5. Conclusions 
 

A multistage approach is presented for the valorization of urban waste. At process stage, 

a techno economic evaluation of a facility consisting of waste incineration, flue gas 

treatment to remove pollutants such as NOx, SO2, heavy metals and PDDFs, a steam 

turbine and a cooling tower to evaluate the water energy nexus. The units are modelled 

in detailed based on thermodynamics, first principles, industrial data and rules of thumb. 

Next, the investment and production costs are estimated.  

A 1.336 MW/kg of mixed waste can be produced. For the facility to produce power at a 

competitive price, it has to process the waste generated at cities above 200k habitants. At 

country level, a facility location problem is formulated using a combined social index to 

favor economic growth. For the major cities in Spain (over 65 across the mainland) it 

would be possible to produce 235 MW from the waste generated with a production cost 
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of 0.05€/kWh and a total investment of 1700 M€. While the average costs are competitive, 

at regional level, some regions would produce at a high cost and only the national strategy 

would justify the production of power from waste beyond a waste management 

technology. 
 

 
Figure 2- Facility location as a function of target cost of electricity and budget. a) I=250 M€;0.06 

€/kWh; b) 500 M€; 0.06 €/kWh 
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Abstract 

This work evaluates the integration of an innovative thermo-chemical energy storage 

system based on calcium-derived sorbents for flexible operation of decarbonized coal-

fueled super-critical power plant. The reactive gas-solid cycle is used for both power plant 

decarbonization as well as a time-flexible thermo-chemical energy storage system in 

conjunction to a 500 MW net power output plant with 90% carbon capture rate. Overall 

techno-economic and environmental implications of flexible decarbonized power plant 

with calcium-based thermo-chemical energy storage system were evaluated using process 

flow modeling and thermal integration. For comparison reason, similar decarbonized 

power plant operated in base-load conditions as well as a non-capture power plant were 

also considered. As the results show, the utilization of calcium looping cycle for time-

flexible thermo-chemical energy storage system in conjunction to a decarbonized fossil-

based power plant bring significant benefits in term of reducing the specific capital cost 

(down to about 8%), the electricity production cost (down to about 3.6%), the CO2 capture 

costs (down to about 3.5%), all compared to the base-load operation of similar 

decarbonized power plant. Although very promising in delivering better techno-economic 

performance indicators, the calcium looping technology still requires significant scale-up 

efforts from the current development level (up to 10 MW) to full industrial sizes. 
 

Keywords: Thermo-chemical energy storage, Calcium looping cycle, Decarbonized 

power plants, Flexible power plant operation, Techno-economic evaluation. 

1. Introduction 

The energy sector is facing fundamental challenges in the transition to a low carbon 

economy as well as in relation to the higher penetration of renewable energy sources. The 

need to reduce the carbon emissions can be done by various methods e.g., switch to 

renewables, improving energy efficiency along the whole chain from production to 

utilization and deployment of Carbon Capture, utilization and Storage (CCUS) 

technologies. Since fossil fuels are still the dominant energy source for key utility and 

industrial sectors (e.g., heat and power, metallurgy, construction materials etc.), the 

CCUS options have a great potential to significantly contribute to the reduction of 

greenhouse gas emissions to meet the global environmental targets.  

The renewable energy sources show a accelerate increase of their share but solar and wind 

applications are highly time-intermittent which put an additional operational burden to 

the back-up capacities most of them based on conventional fossil fuels. The energy 

storage technologies represent a very promising solution to accommodate the time-

variability of the renewable energy sources. Various energy storage methods are 

available, some of them being already commercial to large scale (e.g., pumped hydro 

power, compressed air) others being in research stage (e.g., thermo-chemical storage). 
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Thermo-chemical energy storage has a great potential for development due to 

significantly higher energy density and improved energy efficiency (Yan et al., 2020). 

This paper is assessing the techno-economic implications of the Calcium Looping (CaL) 

cycle as both an energy-efficient CO2 capture technology and a thermo-chemical energy 

storage option. As evaluated case study, a super-critical coal-based power plant operated 

in both base-load and load-following (flexible) conditions was considered. The key 

innovative elements of this paper in respect to the current state of the art are: evaluation 

of CaL technology for both decarbonization and thermo-chemical energy storage 

purposes and detailed techno-economic evaluation of 500 MW decarbonized power plant 

with thermo-chemical energy storage facility to improve its load following capabilities.  

2. Integration of calcium looping system for power plant decarbonization 

The calcium looping cycle for the post-combustion CO2 capture is based on the following 

reversible chemical reaction: 

𝐶𝑎𝑂 +  𝐶𝑂2  ↔  𝐶𝑎𝐶𝑂3             ∆𝐻298 = −178 𝑘𝐽/𝑚𝑜𝑙𝑒 (1) 

The conceptual layout of CaL cycle has two reactors: one carbonation reactor in which 

the flue gases coming from the power plant are decarbonized according to above reaction 

and one calcination reactor in which the calcium carbonate is decomposed back to 

calcium oxide (sorbent regeneration) releasing the captured CO2. Since the calcination 

reaction is endothermic, additional fuel has to be oxy-combusted to cover the reaction 

heat duty. Both reactors are operated in a Circulated Fluidized Bed (CFB) mode. The 

thermo-chemical energy storage based on CaL system uses the sorbent storage facilities 

in both regenerated and carbonated forms (Astolfi et al., 2019). The environmental impact 

of CaL cycle is minimal considering the usage of natural limestone as sorbent. 

The CaL cycle was integrated into a coal-based super-critical power plant. The non-

captured power plant concept (noted as Case 1) is based on current development stage. 

The design of decarbonized power plant integrating calcium looping cycle (noted as Case 

2) is presented in Figure 1. The decarbonized power plant was assessed in two distinct 

situations: Case 2.a - base-load condition (according to the design presented in Figure 1) 

and Case 2.b - flexible (load-following) condition in which two high-temperature storage 

facilities (located between the carbonator and calcination reactors) were introduced for 

regenerated (calcinated) and carbonated sorbent material (Cormos, 2020).  

 
Figure 1. Decarbonized super-critical power plant integrating the CaL cycle 
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The design assumptions are presented in Table 1 (Cormos, 2020). All evaluated concepts 

were simulated using process flow modelling software ChemCAD (version 7.1.8). The 

CaL model was validated by comparison against experimental data from Astolfi et al., 

2019 (see Figure 2 - left). For energy optimization, a detailed pinch thermal analysis was 

performed. Figure 2 - right presents the hot and cold composite curves for the CaL unit.

Table 1. Design assumptions of evaluated gasification-based poly-generation systems

Unit Design assumptions

Coal composition (dry) and its 

calorific value

72.30% C, 7.45% O, 1.69% N, 4.11% H, 0.56% S, 13.89% 

ash;  Moisture: 8%;  Calorific value: 25.35 MJ/kg

Super-critical steam cycle Steam temperature: 582oC / 580oC / 580oC

Steam pressure: 290 bar / 75 bar / 20 bar

Steam turbine efficiency: 88 - 90%

Final steam expansion pressure: 45 mbar

Flue gas desulphurization Wet (limestone slurry) desulphurization unit

Desulfurization efficiency: >98%

Calcium looping cycle for 

post-combustion CO2 capture

Carbonation reactor temperature: 500 - 600oC

Calcination reactor temperature: 800 - 950oC

Carbon capture rate: 90%

CO2 processing unit

(drying and compression)

Moisture removal unit: Tri-ethylene-glycol (TEG)

Final compressing pressure at plant gate: 120 bar

CO2 purity (vol.): min. 95%, max. 2000 ppm CO, max. 250 

ppm water, max. 4% non-condensable gases

Auxiliary units Energy consumption for coal handling: 0.5% of thermal input

Heat exchanger minimum temperature difference: 10 oC

Heat exchanger pressure drops: 1 – 3% inlet pressure

      

Figure 2. Validation of CaL unit (left);  Thermal integration of CaL unit (right)

3. Techno-economic assessment of decarbonized power plant concepts

The first investigated power plant operation scenario was based on base-load conditions. 

In this case, no sorbent storage is needed. The evaluation of techno-economic 

performances for both decarbonized and non-capture power plant concepts was based on 

integrated assessment methodology as presented in a separate paper (Cormos and Dinca, 

2021). Table 2 presents the main techno-economic performance indicators for base-load 

operation condition. It can be observed that introduction of decarbonization feature using 

CaL cycle implies an energy penalty for CO2 capture of about 6.1 net efficiency 

percentage points. This energy penalty for post-combustion CO2 capture is significantly 

reduced compared to other carbon capture technologies. For instance, the reactive gas-

liquid absorption using alkanolamines (benchmark method considered in the literature) 

has an energy penalty of about 10 net percentage points (Koronaki et al., 2015).   
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Table 2. Base-load operation: Key performance indicators 

Performance indicator UM Case 1 Case 2.a 

Coal flow rate t/h 165.00 200.01 

Coal lower heating value (LHV) MJ/kg 25.35 

Coal thermal energy MWth 1,161.87 1,408.46 

    

Gross power output MWe 529.10 596.50 

Fuel processing consumption  MWe 5.80 7.04 

CO2 capture and conditioning unit MWe - 47.21 

Power block consumption MWe 23.30 22.45 

Ancillary power consumption MWe 29.10 76.70 

    

Net power output MWe 500.00 519.80 

Net power efficiency % 43.03 36.90 

Carbon capture rate % 0.00 90.00 

Specific CO2 emissions kg/MWh 800.40 70.15 

Specific primary energy consumption for CO2 avoided MJ/kg CO2 - 1.95 

    

Capital cost M€ 747.25 1,237.26 

Specific capital investment cost €/kW 1,490.00 2.474.00 

Operational & maintenance cost €/MWh 28.70 35.12 

    

Levelized cost of electricity (LCOE) €/MWh 70.99 80.52 

CO2 removal cost €/t - 39.75 

CO2 avoided cost €/t - 46.98 

 

The economic penalty for decarbonization is also significant, all economic indicators 

showing increases e.g., the specific investment cost by about 66%, the operational & 

maintenance cost by about 22%, the levelized cost of electricity by about 14%. The CO2 

avoided cost is about 47 €/t which underline once more the attractiveness of CaL 

technology considering the current CO2 emission tax which is currently in the range of 

50 - 60 €/t (Ember, 2021). Following the evaluation of power plant base-load operation, 

a flexible load-following pattern was considered. The load-following is very important 

considering the integration of time-intermittent renewables. Table 3 shows the considered 

flexible operational cycle over one week. This operational cycle was chosen based on 

daily load-following patter which is common in Central Europe (Astolfi et al., 2019).     
 

Table 3. Weekly time operation cycle of decarbonized power plant  

Monday to Friday Saturday to Sunday 

6 AM to 1 PM 

7 PM to 9 PM 

10 PM to 5 AM 

2 PM to 6 PM 

0 AM to 12 PM (all day) 

100% 50% 50% 

 

To comply with this flexible operation scenario, the calcium looping cycle was modified 

by introduction of sorbent storage facilities in both regenerated and carbonated forms. 

Figure 3 presents the conceptual design of a flexible CaL cycle with high-temperature 

solid sorbent storage. Each sorbent storage has a storage temperature close to the reactor 

to which the solid is fed. Considering the weekly time operation cycle of decarbonized 

power plant as presented in Table 3, the flue gases flow to be treated for CO2 capture is 

about 73% for the Monday to Friday period, 50% for the weekend and about 66.5% on 

average for the whole week. For base-load operation, the flue gases flow generated by the 

power plant to be treated for decarbonization is about 2,000 t/h with 12.4 % vol. CO2.  
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Figure 3. Flexible operation of calcium looping cycle 

 

When the grid power demand is reduced, the power plant output as well as the flue gas to 

be treated for decarbonization are also reduced. For time-flexible operation, the same 

carbon capture rate (90%) was considered as in the case of base-load operation. To cope 

with power load-related variations, the calcium looping unit is to be operated in a flexible 

scenario considering the sorbent storage. The overall size of CaL unit as well as solid 

storage facilities were calculated based on the weekly operation cycle. The size of CaL 

unit for flexible operation was reduced to about 74% of the nominal base-load case 

leading to a significant capital cost reduction. A part of this capital cost reduction was 

used for the sorbent storage but considering the complexity of CaL design in comparison 

to the storage unit, there is an overall investment cost reduction for the flexible design.  

The time variations of power plant load and carbonated and regenerated solid storages 

are presented in Figure 4. As operation strategy, when the power plant operates at nominal 

load (100 %), the carbonated storage facility is gradually filling up with the correspondent 

discharge of the regenerated storage facility. At reduced power plant output (e.g., during 

the night or during the weekend), the process is reversed with accumulation of 

regenerated sorbent material for the next peak-time operation of the plant.   

     

 

Figure 4. Weekly variations of plant load and regenerated / carbonated solid storages 
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As explained above, the reduction of CaL size leads to an overall capital cost reduction 

(although some of this reduction is used for the sorbent storage facility) with positive 

economic results. The comparison of key techno-economic indicators for the base-load 

(Case 2.a) and flexible-load (Case 2.b) decarbonized power plant is presented in Table 4   

 

Table 4. Comparison of nominal and part-load operation of decarbonized power plant 

Performance indicator UM Case 2.a Case 2.b 

Calcium looping cycle size factor % 100.00 74.00 

Specific power plant investment cost €/kW 2.474.00 2,278.00 

Operational & maintenance cost €/MWh 35.12 34.85 

Levelized cost of electricity (LCOE) €/MWh 80.52 77.60 

CO2 avoided cost €/t 46.98 45.30 

 

As shown, the flexible operation of decarbonized power plant fitted with sorbent storage 

option has better performance than base-load operation e.g., reduced investment cost by 

about 8%, reduced electricity production cost by about 3.6% and reduced CO2 avoided 

cost by about 3.5%. However, it must be stated that further technological developments 

are needed for both calcium looping system as well as for high-temperature storage.  

4. Conclusions 

The present work assesses the potential techno-economic benefits of flexible thermo-

chemical energy storage system based on the calcium looping cycle applied for a 

decarbonized super-critical power plant. The solid sorbent storage feature was used to 

increase the load-following capability of the power plant. As the results show, the flexible 

power plant operation brings significant advantages in comparison to the base-load case 

(reduction of all assessed economic indicators).  
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Abstract 

In this study a superstructure of an algae biorefinery to produce added value products 

(pigments, omega-3, glycerol, biodiesel, biogas, and fertilizer) from microalgae is 

developed. From the superstructure optimization follows a cost optimal production 

pathway that consists of an open pond, sedimentation and flotation, flocculation/ 

centrifugation without a dryer, hydrothermal liquefaction, organic solvent pigment 

extraction, N-butanol lipid extraction, lipid production, and anaerobic digestion. The 

profits of the algae biorefinery depend on the types of wastewaters. 107 million Euros 

income can be earned annually using 0.2 million tons of influent wastewater.  The total 

profit of an algae biorefinery that uses influent wastewater as feedstock is approximately 

two times higher than the wastewater of wheat straw biorefinery. 63 million Euros income 

can be earned annually using 0.6 million tons of influent wastewater.  Furthermore, the 

total profits of algae biorefinery in each season are calculated by using real data of 

sunlight periods of the Netherlands. Summer is the best season with more than 36 and 22 

million Euros profits for algae biorefineries when using influent wastewater and 

wastewater of wheat straw biorefinery, respectively. Calculating total profits of algae 

biorefinery by considering fix value for durations of sunlight has more than 30% error.  

 

Keywords: Algae biorefinery, added-value products, superstructure, MINLP. 

1. Introduction 

Among various types of biomass, microalgae are considered valuable due to their high 

growth rate and photosynthesis efficiency (Fernández-Linares et al., 2017). Microalgae 

are oceanic microorganisms that grow in wastewater using carbon dioxide and sun or 

artificial light. The capability to capture carbon dioxide and treat wastewater makes this 

microorganism one alternative to solve environmental issues (Assis et al., 2019). In 

addition, algae have a high potential to serve as source for various added-value products. 

Despite microalgae's vast environmental and economic benefits, high-cost extraction 

process from them must be overcome to extend its industrial application. Two approaches 

(heuristics and superstructure optimization) are typically employed to design an added 

value production process. The heuristic method is founded on rules acquired from 

experience and comprehension of unit operations. Although, this method is very fast, it 

does not propose a certain route for evaluating different cases (Mencarelli et al., 2020). 

The superstructure method relies on optimization algorithms and mathematical models to 

determine a cost-effective production pathway of all alternatives (Tula et al., 2017). 

Rizwan et al. (2013) proposed an optimal production pathway of producing biodiesel 

from microalgae by optimizing superstructure. The goal of this study was to maximize 
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biodiesel yield/ operating margins with(out) minimizing waste. The feedstock was 

defined as one block of the superstructure (Rizwan et al., 2013). Galanopoulos et al. 

(2019) formulated a superstructure for an integrated algae biorefinery. The wastewater 

stream of a wheat straw biorefinery was linked to the superstructure to produce glycerol, 

biodiesel, bioethanol and levulinic acid (Galanopoulos et al., 2019). The duration of 

sunlight was assumed 12(h) per day.

The role of wastewater as an important feedstock for the algae biorefinery has not been 

considered sufficiently. Choosing an appropriate wastewater source will improve the 

chance of applying the algae biorefinery concept at an industrial scale. In this study, a 

superstructure is developed to optimize the pathway for producing added-value products 

from microalgae using two different types of wastewaters. The profits of the algae 

biorefinery for each wastewater composition are calculated. Total profits of algae 

biorefinery in each season are calculated based on actual duration sunlight data.

2. Superstructure optimization

2 .1 . Process description

First, carbon dioxide and wastewater with nutrients are fed to the cultivation interval to 

grow microalgae.Microalgae (Haematococcus Pluvialis (CO0.378H1.65N0.123P0.005S0.007)(Ba 

et al., 2016)) consume wastewater nutrients for regenerating and growing with the 

following molar reaction equation.

0.579𝐻2𝑂 + 𝐶𝑂2 + 0.123𝑁𝐻4
+ + 0.005𝑃𝑂4

3− + 0.007𝑆𝑂4
2− →

1.1245𝑂2 + 𝐴𝑙𝑔𝑎𝑒
(1)

Four options are available in this interval (open pond, flat plate photobioreactor, bubble 

column photobioreactor, turbo column photobioreactor). To separate water from 

microalgae, it should pass a harvesting (gravity sedimentation and filtration or flotation), 

a dewatering (filter press, centrifugation, flocculation), and a drying interval. Before 

going through pigment extraction (chemical solvent or supercritical fluid extraction), the 

microalgae cells are disrupted (by for example: hydrothermal liquefaction, high-pressure 

homogenization, bead beating, microwaving, sonication). Subsequently, the lipids of the 

microalgae are extracted by Hexane, n-butanol, or supercritical carbon dioxide extraction. 

The products of lipid extraction are then transferred to a lipid production interval to 

produce omega-3, biodiesel, and glycerol. At the remnant intervals biogas and fertilizers

are produced. To produce various bioproducts from microalgae, different technologies 

and processes can be selected. A mapping of all possible combinations of these 

technologies lead to a superstructure, as shown in figure 1. The superstructure can be

converted to a mathematical model by defining an objective function and various 

variables and constraints.

Figure 1: developed superstructure with chosen production pathway
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2.2. Problem statement 

Given are the composition of wastewater and products and the topology of the 

superstructure with all pathways. Furthermore, each interval's economic specifications, 

technical properties (split factors and yields), and utility requirements are given. Under 

conditions of logical constraints (only one technology option at each interval is selected) 

and where steady state mass and energy balances hold. The operating and investments 

costs are based on the flow rates. The decisions to be made are which technology options 

should be selected for each interval that maximize the revenues (profit minus costs).  

2.3. Mathematical model 

The developed superstructure consists of 9 intervals and 23 options (as described in 

process description section). A mixed-integer nonlinear programming (MINLP) was 

developed to optimize it. Steady state mass and energy balance and also economic scale 

and logical constraints are applied for each option of the superstructure.  

2.3.1. Mass balance 

Flows with a component (k) can enter or leave of each interval (j) as shown in figure 2. 

The 𝑚𝑘.𝑗
𝑈  , is the mass flow (t/h) that comes from previous interval or feedstock (for the 

first interval of biorefinery). This flow combines with reactant flow (𝑚𝑘.𝑗
𝑅 )(t/h), if 

solvents are needed, to produce input flow(𝑚𝑘.𝑗
𝐼𝑁 ) (t/h) (Eq.(2)). The reactant flow can be 

calculated with concentration factor 𝑥𝑘,𝑗as demonstrated in Eq.(3). This fraction factor is 

defined by amount of basic component in the upstream flow.   

𝑚𝑘,𝑗
𝐼𝑁 = 𝑚𝑘,𝑗

𝑈 + 𝑚𝑘,𝑗
𝑅   (2) 

𝑚𝑘,𝑗
𝑅 = 𝑥𝑘,𝑗 ∙ 𝑚𝑘,𝑗

𝑈    (3) 

 

,
R
k jm

,
P
k jm

,
D
k jm,

U
k jm

,
W
k jm

 

Figure 2. mass flows enter/leave the intervals (j) 

The flow after reacting and distribution (𝑚𝑘,𝑗
𝑂𝑈𝑇) (t/h) can be calculated by Eq.(4). In this 

equation, the 𝐶𝐹𝑘,𝑗 𝑆𝑘,𝑗 and 𝐷𝑘,𝑗 are conversion factor (yield), mass stoichiometric 

coefficient and distribution coefficients, respectively. If there is no reaction or distribution 

in the block, the sum of these two parameters becomes zero. Thus, the input mass flow 

equal to output mass flow.  

𝑚𝑘,𝑗
𝑂𝑈𝑇 = 𝑚𝑘,𝑗

𝐼𝑁 + 𝑚𝑘,𝑗
𝐼𝑁 . 𝐶𝐹𝑘,𝑗 . (𝑆𝑘,𝑗 + 𝐷𝑘,𝑗)  (4) 

After reacting or distributing, the output flow is divided to dowstream flow (𝑚𝑘,𝑗
𝐷 ) (t/h), 

waste flow (𝑚𝑘,𝑗)
𝑊 ) (t/h), and product flow (𝑚𝑘,𝑗

𝑃 ) (t/h) by defining split factor(SF)(as 

shown in Eq.(5)). 

𝑚𝑘,𝑗
𝑂𝑈𝑇 = 𝑆𝐹𝑘,𝑗

𝐷 ∙ 𝑚𝑘,𝑗
𝑂𝑈𝑇 + 𝑆𝐹𝑘,𝑗

𝑊 ∙ 𝑚𝑘,𝑗
𝑂𝑈𝑇 + 𝑆𝐹𝑘,𝑗

𝑃 ∙ 𝑚𝑘,𝑗
𝑂𝑈𝑇   (5) 
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2.3.2. Energy balance 

Electricity 𝑈𝑗
𝐸(kWh), heating 𝑈𝑗

𝐻(kWh), and cooling 𝑈𝑗
𝐶  (kWh)are considered as 

utilities this model. The required energy is calculated in a similar manner as with the mass 

balance. Eq.(6) shows energy balance, where 𝑆𝑈𝐶𝑗 is  an utility factor.  

𝑈𝑗 = ∑ 𝑚𝑘,𝑗
𝐼𝑁 ∙𝑘 𝑆𝑈𝐶𝑗  (6) 

2.3.3. Logical constraints 

The logical constraints are setup to ensure the selection of only one technology at each 

interval. A variable (yj) is defined and should be multiplied by each downstream flow. 

The summation of this variable for each stage of biorefinery should be an equal one. 

2.3.4. Economy of scale 

The annualized investment cost (𝐴𝐼𝐶)( 𝐸𝑢𝑟𝑜𝑠) is calculated by Eq. (7)-(9), where 𝑇𝐼𝑃𝐶, 

𝐿𝑇 , 𝐼𝑅 , 𝐾𝐸𝑁𝐺 , 𝐸𝐶𝑗
𝑟𝑒𝑓

, 𝑚𝑗
𝑟𝑒𝑓

, 𝐼𝐷𝑋𝑗
2020, 𝐼𝐷𝑋𝑗

𝑟𝑒𝑓
 are total interval installation 

cost( 𝐸𝑢𝑟𝑜𝑠), the lifetime, the interest rate, engineering coefficient, reference 

cost( 𝐸𝑢𝑟𝑜𝑠), reference mass flow, cost index in 2020, reference cost index, respectively. 

Furthermore, the 𝑃𝐿𝑎𝑛𝑑   ( 𝐸𝑢𝑟𝑜𝑠)is land price. 

𝐴𝐼𝐶 = 𝑇𝐼𝑃𝐶 ∙
𝐼𝑅∙(𝐼𝑅+1)𝐿𝑇

(𝐼𝑅+1)𝐿𝑇−1
  (7) 

𝑇𝐼𝑃𝐶 = 𝐾𝐸𝑁𝐺 ∙ ∑ 𝐸𝐶𝑗
𝑟𝑒𝑓

∙ (
∑ 𝑚𝑗,𝑘

𝐼𝑁
𝑘

𝑚
𝑗
𝑟𝑒𝑓 )

𝑓𝑗

∙ (
𝐼𝐷𝑋𝑗

2020

𝐼𝐷𝑋
𝑗
𝑟𝑒𝑓 ) 𝑗 + 𝐿𝐶𝑗  (8) 

𝐿𝐶𝑗 = 𝑃𝐿𝑎𝑛𝑑 ∙
𝑚𝐴𝑙𝑔𝑎𝑒,1−4

𝑂𝑈𝑇

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝐴𝑙𝑔𝑎𝑒,1−4
   (9) 

The operating cost is a summation of raw material, utility, operating and maintenance, 

and waste treatment costs. The selling value is calculated by multiplying the total product 

mass flow, the product prices, and the operating hours per year. The selling values are 

decreased from the summation of annualized investment and operating costs to obtain 

total profits. The objective of this study is to maximize the total profits. 

3. Results 

Durations of sunlight determine the growth of the microalgae and subsequently the 

quantities of extracted products. These values are not the same in different seasons. The 

average sunlight periods in the Netherlands are 12.5, 15, 11.5, 8.5 (h) for spring, summer, 

autumn, and winter, respectively (Slegers, 2014). These sunlight periods are used to 

calculate the total profits of algae biorefinery. Furthermore, two types of wastewaters are 

considered in this study. The average compositions of influent wastewater of Netherlands 

in 2018 and wastewater of a wheat straw biorefinery (Galanopoulos et al., 2019) can be 

found in Table1. 10% of mass flow of each type of wastewater are entered into the 

superstructure to consider the role of feedstocks on total profits and cost-effective 

production pathway. Approximately, 0.2 million tone influent wastewater and 0.6 

wastewater of wheat straw biorefinery’s are considered as the feedstocks of these 

biorefineries, annually.   
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Table1: composition of wastewater (Galanopoulos et al., 2019, stateline, 2021) 

Component Influent wastewater (t/h) Wastewater of wheat straw biorefinery(t/h) 

             𝐻2𝑂 224.59 824 

            𝑁𝐻4
+ 76.37 0.949 

            𝑃𝑂4
2− 11.88 0.988 

            𝑆𝑂4
2− - 1.166 

 

A mixed-integer non-linear programming (MINLP) model is implemented in the 

Advanced Interactive Multidimensional Modelling (AIMMS) software version 4.82.3.29 

64-bit. The Outer Approximation Algorithm (AOA) combines the CONOPT 4.1 solver 

for the non-linear part and the CPLEX 20.1 solver for the integer part.  

The cost-effective production pathways of producing added value products from 

microalgae using two types of wastewaters are shown in figure 1. The open pond, 

sedimentation and flotation, centrifugation without a dryer, hydrothermal liquefaction, 

organic solvent pigment extraction, N-butanol lipid extraction, lipid production, and 

anaerobic digestion are chosen when using influent wastewater. The mass percentage of 

water in wastewater of wheat straw biorefinery (824 t/h) is more than mass percentage of 

water in wastewater of influent wastewater biorefinery (224.59 (t/h)) . It is economically 

beneficial to choose flocculation for dewatering intervals when using wastewater of 

wheat straw. Thus, the cost-effective production pathway for producing added value 

products when using wheat straw biorefinery wastewater is the open pond, sedimentation 

and flotation, flocculation, hydrothermal liquefaction, and organic solvent pigment 

extraction, N-butanol lipid extraction, lipid production, and anaerobic digestion.   

The total profits of the algae biorefinery for each season when using each type of 

wastewaters are calculated (as shown in figure 3). Summer is the best season with the 

highest profit for both algae biorefineries due to long sunlight periods and a high amount 

of microalgae and extracted products. Using influent wastewater of Netherlands makes 

more profits for the algae biorefinery compared to another type of wastewater. The total 

profit of an algae biorefinery when using influent wastewater of Netherlands as 

feedstocks can be reached to 107 million Euros annually. The profit of this biorefinery is 

approximately two times higher than the algae biorefinery when using wastewater of 

wheat straw biorefinery as feedstock. Microalgae (Haematococcus Pluvialis) can be 

grown in typical Dutch influent wastewater more effectively than another type of 

wastewater due to the high ratio of nutrients. Furthermore, the low amount of water of 

influent wastewater is helped to have low investment and operating costs. 

 

 

 

(a) (b) 

Figure3: profits of algae biorefinery in each season when using a) wastewater of wheat straw 

biorefinery b) influent wastewater as a feedstock 
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It is more common to assume fix value for sunlight periods (12 (h)) when calculating the 

total profits of algae biorefinery (Galanopoulos et al., 2019). With this assumption, the 

total profits of algae biorefineries when using wastewater of wheat straw biorefinery and 

influent wastewater are 93 and 163 million Euros, respectively. By considering real data 

of sunlight periods, the total profits of algae biorefineries are estimated 63 and 107 million 

Euros when using wastewater of wheat straw biorefinery and influent wastewater, 

respectively. Approximately 30% error are made by considering fix value for sunlight 

duration. Thus, this parameter has an important role in calculating the total profit of algae 

biorefinery. 

4. Conclusion  

The pathway of open pond, sedimentation and flotation, flocculation/centrifugation 

without a dryer, hydrothermal liquefaction, organic solvent pigment extraction, N-butanol 

lipid extraction, lipid production, and anaerobic digestion is chosen as the cost-effective 

production process for added-value products from microalgae. Types of wastewaters 

determine the appropriate technology of dewatering interval (flocculation/ 

centrifugation). The incomes of 107 million Euros and 63 million Euros can be obtained 

annually using 0.2 million tons and 0.6 million tons of influent wastewater and wheat 

straw biorefinery’s wastewater, respectively. Total profits of algae bioenergy with real 

data of sunlight duration of different seasons and an assumption fixed value (12 h) of 

sunlight periods are compared. This common assumption increases the estimated value 

of the total profits of algae biorefinery with different feedstocks. 
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Abstract 

Biojet fuel is able to be produced from lignocellulosic biomass having ethanol as 

intermediate. However, the whole process faces challenges related to high production 

costs and environmental impact as well as the feedstock annual availability. In this paper, 

an intensified process for biojet fuel production is presented, which includes sugarcane 

bagasse and corn stover planning within a superstructure scheme with steam explosion 

and diluted acid pretreatments. By employing stochastic optimization, the total annual 

cost (TAC) and the ecoindicator-99 (EI99) were minimized to meet sustainability goals. 

The purification zone of ethanol was intensified and schemes of vapor side stream column 

(VSSC) and dividing wall column (DWC) were evaluated and compared against the 

conventional extractive distillation. TAC savings of 5.56% and 5.02% for VSSC and 

DWC schemes, respectively, were achieved. Also, EI99 reductions of 1.72% and 2.92% 

were recorded for VSSC and DWC schemes, respectively. As results of the planning, 

95.3% of annual feedstock is sugarcane bagasse, from which 54% is sent to acid 

pretreatment. Regarding to the corn stover, 72% is sent to acid pretreatment.  
 

Keywords: stochastic optimization, process intensification, biojet fuel, lignocellulosic 

biomass, ethanol.
 

1. Introduction 

In recent years, the production and consumption of fossil jet fuel have increased as a 

consequence of a rise in the number of passengers and goods transported by air. Despite 

the low demand caused by COVID-19 pandemic, a rise in the services offered by the 

sector is expected again. In an economic context still dependent on scarce oil, this 

represents a problem as well as the inherent environmental impact throughout the life 

cycle of this fuel. Given this, a promising solution is the use of biojet fuel as renewable 

aviation fuel. Previous research has widely explored the route of oils to obtain biojet 

(Rivas-Interian, 2021). However, the feedstock for the oil path, their water and land 

requirements, and maturation times have proven not to be entirely sustainable. In contrast, 

the route of alcohols offers an alternative since they can be produced from sugars present 

in the widely available lignocellulosic biomass. Thus, in a framework of circular 

economy, the use of lignocellulosic residues allows the production of alcohols necessary 

to obtain biojet fuel. Besides, the tools provided by process intensification make it 

possible to design a sustainable process with low environmental impact and capable to 

achieve energy savings. However, the use of biomass to produce biofuels is limited by 

the availability of the feedstock, which affects the supply chain. For this reason, an 
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adequate feedstock planning is necessary to take into account the time and frequency of 

the harvest. The goal of this work was to carry out the feedstock planning and the 

optimization of the entire biorefinery in terms of economic and environmental objectives. 

2. General description of the process 

The overall process of biojet production from lignocellulosic biomass requires the 

production of intermediate alcohols. The general scheme of alcohols production from 

lignocellulosic agro-waste involves steps of i) biomass pretreatment, ii) enzymatic 

hydrolysis, iii) fermentation of sugars, and iv) purification of the alcohols produced.  

Sugarcane 
bagasse

Corn stover

Steam 

explosion

Dilute acid

Hydrolysis Fermentation
Conventional 

extractive 

distillation 
Hydrolysis Fermentation

Hydrolysis Fermentation

Hydrolysis Fermentation

Ethanol
        wt

Vapor side 

stream column

Dividing wall 

column

DehydrationOligomerizationHydrogenationDistillation

Reforming

Light

Biojet fuel
Green diesel

Heavy oils

CH4

H2O

Microsoft Excel Aspen Plus

Aspen Plus

Biomass to 
Ethanol

Ethanol to 
Biojet fuel

 
Figure 1. Complete superstructure for biojet fuel production process (Rivas-Interian, 2021) 

 

Once the alcohols have been obtained, they are sent to the alcohol-to-jet (ATJ) process to 

be upgraded to biojet fuel through steps of v) dehydration to ethylene, vi) oligomerization 

to olefins, vii) hydrogenation to paraffins, and viii) distillation of hydrocarbon fractions 

where biojet is contained. Ethanol has recently been approved as raw material allowing 

the biojet fuel produced from it to be mixed with conventional jet fuel up to 50%. 
 

An area of opportunity concerns to the purification of ethanol. Extractive distillation has 

relatively high costs and, despite this, remains as the main choice for large-scale ethanol 

production. Its high costs and energy consumption have been widely demonstrated. For 

this reason, a first approach on the path to sustainability is its intensification. By 

intensifying this zone, economic and environmental improvements can be achieved and 

an energy-efficient, cheaper, and greener process can be obtained as reported (Kiss & 

Suszwalak, 2012). 

3. Case of study 

To create a feasible market of biojet fuel in Mexico, it is necessary to meet a demand of 

at least 5.5% conventional jet fuel with biojet fuel (SENER, 2017), which equals 258 

million liters. The production of biojet fuel from ethanol involves a series of steps that 

implicates the production of ethanol from lignocellulosic biomass. The availability of 

biomass limits the whole process, making it necessary to consider the temporality of the 

crops and, therefore, of their waste generated within the planning of the feedstock. To 

satisfy the demand of biojet fuel during a period, more than one feedstock has to be 

considered. Also, to leverage the number of available pretreatment technologies and their 

ability to break biomass, more than one pretreatment has to be evaluated regarding its 
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efficiency and profitability in order to find the most optimal route. The planning of the 

feedstock and the diverse combination of feedstocks and pretreatments make it possible 

to organize the process within a superstructure scheme. 

 

3.1. Feedstock and pretreatment selection 

Based on the information provided by the Mexican Agricultural and Fisheries 

Information Service, sugarcane bagasse and corn stover were selected as feedstocks, as 

they were the most abundant biomasses in Mexico during 2018. Additionally, they can 

be potential substrates for ethanol production since they have high sugar content and are 

renewable, cheap, and readily available feedstocks. On the other hand, steam explosion 

and dilute sulfuric acid were selected as pretreatments based on their low energy 

consumption per tonne of dry biomass and per gallon of bioethanol reported by Conde-

Mejía, et al. (2012). 

 

3.2. Process modeling 

According to a modular manufacturing scheme, the whole process was modeled 

separately in two parts: lignocellulosic biomass to ethanol, and ethanol to biojet fuel. This 

makes possible to locate the plant of ethanol near to harvest sites and the plant of biojet 

fuel near to the airports thus reducing supply chain costs, increasing the flexibility of the 

whole process, and allowing the production network to react to dynamic supply and 

demand developments (Finkbeiner, et al., 2020). 

 

The biomass-to-ethanol process was designed according to the superstructure scheme by 

combining the two feedstocks and pretreatments. To model the pretreatment, enzymatic 

hydrolysis, and fermentation of this module, kinetic data were obtained from literature 

and fitted to regression equations. This reaction train was modeled in MS Excel. For the 

fermentation, the S. cerevisiae strain was considered. The purification zone of ethanol as 

well as the module ethanol-to-biojet fuel were modeled in Aspen Plus V8.8, by employing 

the thermodynamic models of NRTL and ENRTL, respectively. Since the cost of 

separation represents a well-known area of opportunity, it was intensified by proposing a 

column sequence with vapor side stream and a column sequence of dividing wall (DWC) 

as intensified schemes.  

 

As could be seen, the previous superstructure, along with the ATJ process, was modeled 

with highly non-linear and potentially non-convex equations. Besides, the existence of 

degrees of freedom allows solving the design problem as an optimization problem. 

Finally, the superstructure to be optimized is shown in Figure 1. 

4. Process optimization 

The search of the design and operation parameters that maximize savings and minimize 

environmental impact implies an optimization work. Such objectives as well as the 

optimization technique are described below.  

 

4.1. Objective functions 

To assess the sustainability of the process, the total annual cost (TAC) and eco-indicator-

99 (EI99) were selected as objective functions. TAC allows quantifying the economic 

performance of a process based on its characteristics, while EI99 measures its 
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environmental impact in terms of human health, ecosystem quality and resource 

depletion. They were calculated with the Equations 1 and 2, respectively: 
 

𝑇𝐴𝐶 =

𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝑐𝑜𝑠𝑡

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑡𝑖𝑚𝑒
+𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡

𝐹𝑘
                                                   (1) 

𝐸𝐼99 =
∑ ∑ ∑ 𝛿𝑑𝜔𝑑𝛽𝑏𝛼𝑏,𝑘𝑘∈𝐾𝑑𝑏

𝐹𝑘
                                            (2) 

Where Fk is the reference mass flow, 𝛽𝑏 is the total amount of chemical b released per 

unit of reference flow due to direct emissions, 𝛼𝑏,𝑘 is the damage caused in category k per 

unit of chemical b released to the environment, 𝜔𝑑 is a weighting factor for damage in 

categories d, and 𝛿𝑑 is the normalization factor for damage of category d. The unit of 

measurement employed for EI99 is the ecopoint, which represents one-thousandth of the 

annual environmental load of an average European inhabitant. The capital cost was 

calculated by employing the Guthrie’s method. Likewise, for the production process of 

ethanol, the annual production of alcohol was included to satisfy a demand of 5.5% of 

conventional jet fuel in Mexico with biojet fuel (SENER, 2017). The objective function 

is stated as follow: 
 

𝐹𝑜𝑏𝑗(𝑋⃗) = {
𝑀𝑖𝑛(𝑇𝐴𝐶, 𝐸𝐼99)

𝑀𝑎𝑥(𝐸𝑡𝑂𝐻)
                                                          (3) 

Pressures, temperatures, acid/enzyme concentrations, residence times, reflux ratios, and 

solvent/feed ratios were considered as continuous decision variables. Also, total stages, 

feed/solvent/side stream stages were considered as discrete decision variables. In total, 

132 continuous and 21 discrete variables were counted for biomass-to-ethanol process. 

For ethanol-to-biojet process, 25 continuous and 5 discrete variables were also counted.  
 

4.2. Stochastic optimization 

To optimize the case of study, the Differential Evolution with Tabu List (DETL) (Srinivas 

& Rangaiah, 2007) stochastic method was employed. This is acknowledged for its ability 

to locate the global optimum regardless of the parameters of the problem, its small number 

of evaluations of the target function, and its efficiency in terms of computation times. 

This method was responsible for choosing the most suitable design parameters, operating 

conditions, and monthly feedstock to achieve an optimal design. It was implemented 

using a hybrid platform that incorporated MS Excel and Aspen Plus. There, a vector of 

decision variables is sent to MS Excel by using a dynamic data exchange with COM 

technology. Also knowing that a distributed configuration as lower cost than a centralized 

configuration (see Section 3.2), the process was optimized separately in two blocks: 

biomass-ethanol and ethanol-biojet. The following parameters were used: 120 

individuals, 1000 generations, tabu list of 50% of the total individuals, tabu radius of 

0.0001, and crossover and mutation probabilities of 0.9 and 0.3, respectively.  

5. Results 

5.1. Feedstock planning 

As a result of the optimization, to produce enough ethanol to reach the biojet demand,       

8 357 524 tons/year of sugarcane bagasse should be required of which 54% is sent to acid 

pretreatment; and 408 970 ton/year of corn stover, of which 72% is subjected to acid 

pretreatment. Only 15% and 0.85% of the bagasse and corn stover available in Mexico 

were employed. The most of the feedstock used annually is acid-pretreated sugarcane 
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bagasse (Figure 2) since the bagasse has a higher content of hexoses and it is the cheapest 

feedstock, so the optimization method tends to choose it as the most suitable. It is 

important to highlight that in some months one pretreatment is preferred over the other 

one. This is partially due to the randomness of the stochastic method to choose the best 

alternative. However, an additional objective would be necessary, either for security, 

occupational health or controllability for the results to show homogeneity.  

 

 
Figure 2. Annual feedstock planning 

 

5.2. Optimization of ethanol process 

The maximum ethanol production was achieved at 79 894 kg/h (679 100 ton/year) with a 

purity greater than 99.5% by weight, at a minimum TAC of 0.656 USD/kg ethanol and a 

minimum EI99 of 0.414 ecopoints/kg ethanol (Figure 3). In this case, more ethanol 

production is expected to demand larger equipment and more energy and feedstock, 

which becomes an increase in the total annual cost and in the ecoindicator. 

 

Figure 4 shows the Pareto front for optimal ethanol production with the separation 

sequence, according to Figure 3. For the three sequences, the high EI99 values result from 

the increasing steam required in the reboilers, while the high TAC values are related to 

large equipments and amounts of solvent. The point where these objective functions reach 

their minimum is discussed. It can be also observed that for the conventional sequence 

(A) a minimum TAC and EI99 of 1.295 USD/kg ethanol and 0.4716 ecopoints/kg ethanol 

were achieved, respectively. Taking the conventional extractive distillation as reference, 

the column sequence with vapor side stream (B) achieved reductions of 5.56% in the TAC 

and 1.72% in the ecoindicator while the dividing wall column sequence (C) achieved 

savings of 5.02% in the TAC and a decrease of 2.92% in the ecoindicator. It was also 

observed that the sequence B used less solvent than the sequence C. The amount of 

solvent contributed with about 75% to the TAC of the separation sequences.  

 
Figure 3. Pareto front for biomass - ethanol process 

(no separation sequence). 

 
Figure 4. Pareto front for biomass - ethanol process (with 

separation sequence). 
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5.3. Optimization of biojet process 

Figure 5 shows the Pareto front ethanol-to-biojet process optimization. The high EI99 

values are attributed to the greater environmental impact inherent of hydrocarbons in the 

process. Finally, the optimal design is capable of producing 224 206 ton/year (266 912 

m³/year) of biojet fuel, which meets a 5.72% demand for conventional jet fuel in Mexico. 

 

 
Figure 5. Pareto front for ethanol – biojet fuel process. 

 

To have an idea of how profitable the design is, the minimum selling price of biojet was 

calculated. Thus, at the optimal point it was equal to 1.653 USD/liter, while the sale price 

of conventional jet fuel in Mexico in 2020 was 0.414 USD/liter, which indicates that the 

entire process is still not profitable. 

6. Conclusions 

The sugarcane bagasse was the most promising feedstock due to its low price and high 

sugar content. Also, to separate the produced ethanol the intensified scheme of vapor side 

stream provided the major savings and ecoindicator reductions respect to the conventional 

sequence, which was attributed to the minor use of solvent. However, despite the efforts 

for reducing total annual cost, the biojet fuel is not capable of competing with 

conventional jet fuel in Mexico. To achieve this, the intensification of reaction zone in 

biomass-to-ethanol process, the cofermentation of glucose and xylose, and the 

intensification of ethanol-biojet process is suggested. Besides, with the intensification of 

the second process, a reduction in ecoindicator values would be achieved.  
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Abstract 
In a growing energy consumption world, energy efficiency has become mandatory. In 
this context, the design of heat exchanger networks (HEN) is of crucial importance, but 
most of the approaches to HEN design consider only shell and tube (S&T) heat 
exchangers with a perfect countercurrent heat transfer. However, the 1-2 heat exchanger, 
(one shell pass, and two tubes pass), is likely the most common in the chemical industry. 
In this work, we present a two steps sequential algorithm that allows the design of HEN 
to capture the main details of the heat exchangers (number of tubes pass, number of shells, 
logarithmic mean correction factors) that influence the cost estimation. The first stage is 
based on an extended transportation model. It uses the concept of temperature intervals 
and considers the possibility of heat transfer between the hot and cold streams inside those 
intervals. Then, it is possible the a priori calculation of the logarithmic mean temperature 
difference between matches, the efficiency factor, and the number of shells in series, 
maintaining the area linear in the model. The second step uses a superstructure with all 
the possible alternatives in which the heat exchangers predicted by the first stage model 
can exchange heat to design the final heat exchanger network. 
 
Keywords: HEN, Energy Integration, Shell and Tube heat exchangers. 

1. Introduction 
Due to the importance of the efficient use of energy and its economic and environmental 
implications heat integration has consolidated as a topic of great interest in process 
engineering. However, the optimal design of a HEN is a very difficult problem for at least 
two reasons: the models are highly non-linear and non-convex, and the number of 
possible matches grows exponentially with the number of process streams. Obtaining a 
globally optimal solution is very difficult with the actual computational capacity. Furman 
and Sahinidis, (2001) showed that this is an NP-hard problem in the worst sense. Of 
remarkable importance was the appearance of pinch analysis (Flower and Linnhoff, 
1980). Pinch analysis uses the first and second principles of thermodynamics to determine 
the minimum energy consumption without the necessity of specifying any HEN. Energy-
related targets were extended with area heat transfer estimations that could lead to an a 
priori annualized cost estimation of the network with a 5-10% accuracy (Linnhoff and 
Ahmad, 1990). Finally, heuristics rules were developed to synthesize a feasible network 
with the minimum utility consumption and try to approach the minimum number of heat 
exchangers. 
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The increase in computer processing capacity motivated the development of automated 
strategies for HEN design. Particularly, mathematical programming models were a 
success in getting better solutions than heuristic approaches, at least for small to medium 
size problems. Initially, optimization methods followed the steps of pinch analysis: 
Minimum energy consumption, determination of the minimum number of matches, and 
final HEN design (Biegler et al., 1997) 
A drawback of the sequential approaches is that decisions in a given stage cannot be 
modified in the following ones. To overcome that drawback, simultaneous approaches 
were proposed, in which the energy and the structure of the HEN are done in a single 
model. The more successful simultaneous model was developed by (Yee and Grossmann, 
1990). The model known as SYNHEAT is a stage-wise approach that sacrifices some 
alternatives to maintain the model robust. Since its appearance a good number of 
improvements have been proposed, for example, to include isothermal streams, multiple 
utilities (Ponce-Ortega et al., 2009), non-isothermal mixing (Huang et al., 2012), 
algorithms for reaching the global optimum (Chang et al., 2020) or a large number of 
works using metaheuristic (Pavão et al., 2018). Despite its success, the major limitation 
of SYNHEAT is that the superstructure does not contain some heat exchanger 
arrangements that could eventually form part of the optimal solution. 
Implicitly in most of the works on HEN, it is the assumption that all heat exchangers are 
shell and tube (S&T) heat exchangers with perfect countercurrent flow. While S&T are 
ubiquitous in the chemical process industry, most of them include multiple tube passes 
and eventually more than a single shell placed in series. The inclusion of detailed heat 
transfer parameters, pressure drops, and mechanical aspects like shell and tube bundle 
diameters, internal and external tube diameters, number of tubes, number of baffles, 
number of shells in series, tube arrangement, fluid locations, etc. are commonly not 
included, but they can have an important impact of the HEN performance and total cost. 
Some models that simultaneously design the HEN and the equipment details are, for 
example,(Ravagnani and Caballero, 2007) or the excellent work by Kazi et al., (2021) 
In this work, we present a two-stage sequential model inspired by the works by Nemet et 
al., (2018) and Caballero et al., (2021) that tries to capture the most important parameters 
of each heat exchanger into a HEN without performing a rigorous design of all the 
mechanical details to get a cost-optimal HEN. The first stage relies on the concept of 
temperature intervals and takes de form of an extended transportation model. With this 
approach is possible to calculate a priori the logarithmic mean temperature difference, its 
correction factor (Ft), and the number of shells in series for any combination of heat 
exchange between a set of intervals for a hot stream and another set of intervals for a cold 
stream. So, the area estimation is maintained linear in the model. In the second stage, we 
solve an NLP in which we postulate all the possible ways in which the matches predicted 
by the first model can exchange heat.  

2. Methodology 
The problem we are dealing with can be stated as follows: given is a set of hot and cold 
process streams for which the inlet and outlet temperatures, heat flows, and individual 
heat transfer coefficients are known and assumed constant. Given is also a set of hot and 
cold utilities for which the inlet and outlet temperatures; individual heat transfer 
coefficients; and unitary costs are also known. The objective is to design a practical heat 
exchanger network formed by 1-2 S&T heat exchangers with minimum total cost. 
The model consists of two sequential stages. In the first one, we determine the streams 
that are exchanging heat, including utilities, as well as a good estimation of inlet and 
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outlet temperatures, heat exchanged, number of shells in series, logarithmic mean 
temperature, and its correction factor for each heat exchanger. In the second stage, using 
as starting values the results from the first one, we determine the structure of the HEN. 
2.1. Stage 1: Extended transportation model overview. 
A comprehensive description of the model cannot be included here due to space 
restrictions. Instead, the main characteristics of the model are presented in Figure 1.  
 

 
Figure 1. Representation of the transportation model. Different possibilities of heat transport 
between a hot stream i and a hot utility m with a cold stream j and a cold utility n between 
intervals k and kk. 

Once the temperature intervals have been established, it is possible to calculate the 
amount of heat provided to each interval by all the hot process streams or demanded by 
the cold process streams. A hot stream can exchange (‘transport’) heat to any cold stream 
in intervals at lower temperatures (khot >= kcold). The transportation model is equivalent 
to performing energy balances in points 1, 2, 3, and 4 of Figure 1: 
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The minimum energy cost can be calculated by minimizing the cost of utilities in previous 
equations. If we assume pure countercurrent heat exchangers, the calculation of the area 
is straightforward, because it can be calculated as the summation of the areas of heat 
exchanged by two streams in the different temperature intervals (Caballero et al., 2021; 
Nemet et al., 2018). However, the efficiency factor Ft and the Number of shells in series 
for a 1-2 S&T heat exchanger, depend on the inlet and outlet temperatures of the hot and 
cold streams. To deal with this problem we introduce a variable , , 1, 2, 3, 4i j k k k kW  that takes 
the value of 1 if the hot stream i exchanges heat starting in interval k1 and finishing in 
interval k2 with cold stream j in the intervals k3 to k4. And zero otherwise. Dealing with a 
six-index binary variable makes the problems intractable except for small instances. 
Fortunately, it is not necessary to define the variable W as binary because it can be forced 
to take integer values using the binary variables YHi,j,k and YCi,j,k. that take value 1 if hot 
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stream i/(cold stream j) is exchanging heat with cold stream j/(hot stream i) in interval k, 
using a set of logical relationships. 
As we know the inlet and outlet temperatures of each one of the temperature intervals we 
can calculate a priori the logarithmic mean temperature ( 1, 2, 3, 4

P
k k k kLMTD ), its efficiency 

factor ( 1, 2, 3, 4
P
k k k kFt ), and the number of shells in series ( 1, 2, 3, 4k k k kNShells ) for each 

combination of feasible inlet and outlet temperature intervals, and each hot and cold 
stream. Now, the determination of those values for each heat exchange can be written as: 

1, 2 , 3, 4, , , 1, 2, 3, 4
1 2 3 4

P

k k k ki j i j k k k k
k k k k

LMTD LMTD W= ∑∑∑∑  (5) 

1, 2 , 3, 4, , , 1, 2, 3, 4
1 2 3 4

P

k k k ki j i j k k k k
k k k k

Ft Ft W= ∑∑∑∑  (6) 

1, 2 , 3, 4, , , 1, 2, 3, 4
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Then the area of a given heat exchanger can be calculated as: 
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The cost of a heat exchanger is calculated using the following expression.  
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To maintain the model linear the cost equation is substituted by a linear piecewise 
approximation. 
2.2. Stage 2. Superstructure optimization. 
The first stage calculates the matches between streams, but it does not provide 
information on the arrangement of streams (i.e. series, parallel, or any combination of 
them). See Figure 2. The resulting MINLP model is highly non-linear and non-convex, 
however, the initial values obtained from the first stage help to get an initial feasible 
solution from which to start the optimization. We cannot guarantee a globally optimal 
solution, but numerical tests have shown that usually high-quality solutions are obtained. 
 

 
Figure 2. Scheme of the superstructure in which a hot stream i can exchange heat with two cold 
streams j and jj. The superstructure can be extended to cold streams and any number of heat 
exchanges. 

,
Split
i jFH

,
Split
i jjFH

, In
i iFH TH

, ,,In InH
i j i jFH TH

, ,,Mix Mix
i j i jFH TH, ,,Out OutH

i j i jFH TH

, ,,In InH
i jj i jjFH TH , ,,Mix Mix

i jj i jjFH TH

, Out
i iFH TH

, ,
Int
i j jjFH

, ,
Int
i jj jFH

am jj

, ,,Out OutH
i jj i jjFH TH

 

676

J. A. Caballero et al.652



Heat exchanger networks with different shell and tube configurations 

3. Example 
To illustrate the model, we present the results of a well-known benchmark problem 
modified to deal with 1-2 S&T heat exchangers. The problem was proposed by Linnhoff 
and Ahmad, (1990) and is one of the most used benchmark problems in the HEN synthesis 
literature. Being a medium-scale problem, it has five cold and four hot streams, a hot oil 
as hot utility and water as a cold utility. All relevant data are presented in Table 1. 
Table 1. Data for the example. 

Stream id. Inlet T (°C) Outlet T (°C) CP (kW/°C) h (kW/m²K) Cost ($/kWy) 

H1 327 40 100 0.5  

H2 220 160 160 0.4  

H3 220 60 60 0.14  

H4 160 45 400 0.3  

C1 100 300 100 0.35  

C2 35 164 70 0.7  

C3 85 138 350 0.5  

C4 60 170 60 0.14  

C5 140 300 200 0.6  

HU1 330 250 - 0.5 60 

CU1 15 30 - 0.5 6 

HE cost =  NShells [Cf + Cv(Area/NShells)β] 
Cf Cv β 

2000 70 1.0 

 
Figure 3. Heat exchanger network obtained. Square brackets indicate the number of Shells. 

The models were implemented in GAMS (GAMS Development Corporation, 2021) using 
CPLEX  as MILP solver and BARON as MINLP solver on a PC machine working under 
windows (i7 2.90 GHz, 32.0 GB). The MILP problem was solved to global optimality 
within a 5% optimality gap. In the case of MINLP problems BARON is not able to close 
the optimality gap, however, it can find very good solutions in the first minutes of 
execution. We stopped the BARON execution after 3600 seconds of CPU time. The 
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optimal solution has a total annualized cost of 3085 k$/year. 1547.4 k$/year in hot 
utilities; 201.1 k$/year in cold utilities and 1336 k$/year in an annualized cost of capital 
expenditures. Figure 3 shows the final configuration of the HEN and the main results 
obtained after the optimization. 

Conclusions 
In this work, we have presented a model that explicitly includes the most relevant 
parameters to accurately estimate the cost of a HEN that includes 1-2 S&T heat 
exchangers. We use a two-stage algorithm, in the first stage, using the concept of 
temperature intervals, it is possible the a priori calculation of the logarithmic mean 
temperature difference between matches, the efficiency factor, and the number of shells 
in series. The second step uses a superstructure with all the possible alternatives in which 
the heat exchangers predicted by the first stage model can exchange heat to design the 
final heat exchanger network.  
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Abstract 

The growing contribution of aviation industry to climate change has led to the search of 

new energy sources in the short to medium term. Biofuels appear to be a potential 

alternative to the fossil fuels, also they are a promising solution to mitigate climate 

change. Nowadays, the agricultural residues (AR) are one of the most promising 

feedstocks to produce biofuels due to their high availability. However, their use at 

industrial scale requires overcoming some challenges such as their seasonal availability 

and their dispersed geographic distribution. In order to face these challenges, in this work 

has been proposed a multi-period supply chain (SC) to produce bio-jet fuel in Mexico 

through the alcohol to jet (ATJ) process using corn stover and sugarcane bagasse as raw 

materials. The supply chain considered implementing a centralized or decentralized 

configuration as a result of an optimization based on sustainability criteria, such as 

economic, environmental and social aspects, which are net profit, eco-indicator 99 (EI99) 

and jobs generation, respectively. The results show that it is possible to cover 5.5% of jet 

fuel consumption in Mexico, also an economic incentive of $115 million is required for 

the process to operate at break-even with an environmental impact of 7.48 billion 

ecopoints per year and 5,594 jobs generated. 

 

Key words: Supply chain, Bio-jet fuel, Agricultural residues, Biorefinery. 

1. Introduction 

Air transport is a cornerstone in current globalization, it supports about 4 billion 

passengers yearly, around 61 Mt of freight, which represents US$3.5 trillion in world 

economic activity, before the SARS-CoV-2. In the specific case of Mexico, the aviation 

industry represents 3.5% of country’s GDP, also in 2018 the air transport mobilized 

around 98 million passengers generating 1.4 million jobs. The International Air Transport 

Association (IATA) estimates that the air transport will double in the next 20 years, 

representing a considerable environmental impact, as global jet fuel consumption 

generates around 2-3% of carbon dioxide (CO2) emissions due to human activity. As a 

result, IATA has proposed to reduce CO2 emissions from air transport up to 50% by 2050, 

using 2005 as a baseline (Domínguez-García et al., 2017). In this sense, Bio-jet fuel 

represents a promising alternative to conventional jet fuel since its properties are very 

similar to those of the latter, which would allow taking advantage of the existing storage 
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and distribution infrastructure, also they are even currently used in aircraft up to 50% 

mixed with conventional jet fuel according to the norm ASTM D7566-11. 

The ATJ process appears to be a promising route to produce bio-jet fuel as the 

technologies involved are widely known in the fuel and chemical industry, this process 

transforms alcohol into jet fuel through several steps such as dehydration, 

oligomerization, and hydrogenation (Wang and Tao et al., 2016). Moreover, bioethanol 

is currently the most produced biofuel worldwide and cellulosic biomass, such as AR 

have gained great attention as a promising raw material in biofuel production due to its 

wide availability, do not compete with food needs and are low cost. Typically, one part 

of AR are used as fodder for livestock or to protect the soil from erosion while the other 

is burned, generating even more CO2 emissions than air transport. However, the high cost 

of transporting and storing biomass due to its heterogeneous geographic and temporal 

distribution, as well as its low energy density and high moisture content have greatly 

limited the incursion of biomass in large-scale biofuel production.  

Therefore, to overcome the inherent problems of using biomass, in this work was 

proposed a SC to cover between 5.5-50% of jet fuel consumption in Mexico using the 

most common lignocellulosic residues of the country. The SC considers the production 

of bio-jet fuel from the ATJ process considering the production of ethanol from corn 

stover and sugarcane bagasse available in the Mexican field. As well as sustainability 

criteria such as the economic, environmental, and social aspects via the maximization of 

net profit, the minimization of EI99 and the evaluation of job generated by the SC, 

respectively. 

2. Methodology 

Considering that in Mexico around 586 Mt of AR are generated per year, this work 

evaluated the potential of two of the most abundant residues to be used as raw materials 

to produces jet-fuel. These residues are corn and sugarcane bagasse. A centralized and a 

decentralized configuration were proposed for the design of the SC (see Figure 1). Firstly, 

the biomass is sent directly from the harvest sites to the biorefineries for processing, while 

in the second biomass is densified in pretreatment depots to reduce the transportation 

costs prior to final processing in a biorefinery. 

To consider the seasonal availability of AR, a multi-period inventory planning with an 

one year of time horizon was considered, which was divided into twelve time periods 

(t∈T) one for each month of the year. On the other hand, the geographic distribution of 

AR was considered through the production of corn and sugarcane in the 32 states of the 

Mexican Republic, taking a yield for residues of 110% and 34% per ton for grain corn 

and sugarcane, respectively (Muro Reyes et al., 2013). The 32 states of Mexico were 

considered as regions, in which the AR are available, also it is considered that in the 

centroid of each region is locate all the biomass of the region, at the same time in these 

regions lies the potential location for pretreatment depots and biorefineries at 10 and 20 

km from the centroid, respectively. 

The Rhumb line method was employed to compute the distances between centroids, 

pretreatment depots, biorefineries and markets, while the latitude and longitude required 

by the method were obtained from Google Maps. 

The supply chain design is considering the bio-jet fuel production by the ATJ process, in 

which biomass is first converted into ethanol and then into jet fuel. This process can be 

divided into four main stages: the pretreatment stage using mineral acids stage, which 

release the sugar contained in the biomass, the second stage includes the sugars 

fermentation and ethanol purification, the third stage includes the ethanol dehydration to 
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ethylene and finally the last stage consists of the oligomerization and hydrogenation of 

ethylene into bio-jet fuel, gasoline and diesel. The date for ATJ process was taken from 

(Rivas) This supply chain considers that this four stages can exist in a single facility called 

biorefinery, but at the same time it considers that the pretreatment stages can be located 

in a different place called pretermit facility.  The aim of pretreatment facilities is to 

convert biomass from nearby harvesting centers to sugars which are more energy dense 

products to reduce the transportation costs. Therefore, a decentralized scheme  could be 

a more efficient scheme than traditional biorefinery scheme. The bio-jet fuel, gasoline, 

diesel as well as the sales of ethanol as an oxygenate for gasoline haven been considered

the main products. The current markets of these products are also considered the potential 

markets of this supply chain, owing to they have existing infrastructure for oil derived 

products. Figure 1 shows the superstructure considered for this supply chain. 

Figure 1.Supply chain superstructure

In this work the maximization of the net profit and minimization of eco Indicator 99 

(EI99) have been considered as objective functions to evaluate the performance of the 

supply chain solutions.  The net profit was chosen to determine the economic feasibility 

of the supply chain, whereas the EI99 evaluates the environmental impact of supply chain.

Although there are other newer methodologies for assessing environmental impact, the 

EI99 is easy to implement and the data for this indicator are easy to obtain. A cradle-to-

grave assessment with hierarchical perspective for EI99 was considered, this perfective 

offers an offset between the effects at short and long term effects.  Additionally, other 

different parameter are presents and evaluated in order to have a broader and more 

sustainable perspective for the different supply chain solutions, this additional metrics are 

the CO2 emissions and the jobs generated by the supply chain.  The Jobs and Economic 

Development Impact (JEDI) method was used to calculate the jobs generated.

3. Mathematical model

The mathematical model for the supply chain consists of a multiperiod Mixed Integer 

Lineal Programming (MILP) model, which was implemented in the software Gams in 

order to solve it. 

The model considers the biomass storage at the harvest sites, which was modeled by a

mass balance as shown in the following equation:

𝐴𝑗,𝑖,𝑡
𝑅𝑀 = 𝐴𝑗,𝑖,𝑡−1

𝑅𝑀 (1 − 𝛾𝑖,𝑡
𝑅𝑀) + 𝐶𝑗,𝑖,𝑡

𝑅𝑀 − ∑ 𝐵𝐸𝑅𝑗,𝑖,𝑙,𝑡
𝑅𝑀

𝑙

− ∑ 𝐵𝐸𝐷𝑃𝑗,𝑖,𝑘,𝑡
𝑅𝑀

𝑘

𝑖 ∈ 𝐼𝑅𝑀, 𝑗, 𝑡 ( 1 )

Where 𝐴𝑗,𝑖,𝑡
𝑅𝑀 and 𝐴𝑗,𝑖,𝑡−1

𝑅𝑀 represent the inventory level of biomass at a harvest site for a 

specific time and a previous period, respectively. 𝛾𝑖,𝑡
𝑅𝑀 represents the loss factor coefficient 

by AR degradation, while 𝐵𝐸𝑅𝑗,𝑖,𝑙,𝑡
𝑅𝑀 and 𝐵𝐸𝐷𝑃𝑗,𝑖,𝑘,𝑡

𝑅𝑀 are the shipment of AR i from the 
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harvest site j to the biorefinery l and to pretreatment depot k, respectively. Finally, 𝐶𝑗,𝑖,𝑡
𝑅𝑀

is the AR consumption at the harvest site, which is restricted as follows:

𝐶𝑗,𝑖,𝑡
𝑅𝑀 ≤ 𝜑𝑗,𝑖,𝑡

𝑅𝑀 𝑖 ∈ 𝐼𝑅𝑀, 𝑗, 𝑡 ( 2 )

Where φj,i,t
RM is the availability of AR i in harvest site j in a period period t. The shipments 

of biomass to biorefineries are constrained as follows:

𝐵𝐸𝑅𝑗,𝑖,𝑙,𝑡
𝑅𝑀 ≤ 𝐷𝐵𝐶𝐶𝑗,𝑖,𝑡

𝑅𝑀 ∙ 𝑦1𝑗,𝑖,𝑙
𝑅𝑀 𝑖 ∈ 𝐼𝑅𝑀, 𝑗, 𝑙, 𝑡 ( 3 )

Here 𝐷𝐵𝐶𝐶𝑗,𝑖,𝑡
𝑅𝑀 is the sum of the AR stored level and the available AR at harvest site j at 

time t and 𝑦1𝑗,𝑖,𝑙
𝑅𝑀 is the binary variable to enable the shipment of AR across the arc j→l.

However, the product 𝐷𝐵𝐶𝐶𝑗,𝑖,𝑡
𝑅𝑀 ∙ 𝑦1𝑗,𝑖,𝑙

𝑅𝑀 represents a nonlinearity that was reformulated 

according to the following mathematical arrangement proposed by Floudas (1995): 

𝐵𝐸𝑅𝑗,𝑖,𝑙,𝑡
𝑅𝑀 ≤ ℎ1𝑗,𝑖,𝑙,𝑡

𝑅𝑀 𝑖 ∈ 𝐼𝑅𝑀, 𝑗, 𝑙, 𝑡 ( 4 )

𝐷𝐵𝐶𝐶𝑗,𝑖,𝑡
𝑅𝑀 − ∑ 𝜑𝑗,𝑖,𝑡

𝑅𝑀

𝑡

(1 − 𝑦1𝑗,𝑖,𝑙
𝑅𝑀 ) ≤ ℎ1𝑗,𝑖,𝑙,𝑡

𝑅𝑀 𝑖 ∈ 𝐼𝑅𝑀, 𝑗, 𝑙, 𝑡 ( 5 )

ℎ1𝑗,𝑖,𝑙,𝑡
𝑅𝑀 ≤ 𝐷𝐵𝐶𝐶𝑗,𝑖,𝑙,𝑡

𝑅𝑀 𝑖 ∈ 𝐼𝑅𝑀, 𝑗, 𝑙, 𝑡 ( 6 )

ℎ1𝑗,𝑖,𝑙,𝑡
𝑅𝑀 ≤ ∑ 𝜑𝑗,𝑖,𝑡

𝑅𝑀

𝑡

∙ 𝑦1𝑗,𝑖,𝑙
𝑅𝑀 𝑖 ∈ 𝐼𝑅𝑀, 𝑗, 𝑙, 𝑡 ( 7 )

Where h1𝑗,𝑖,l,𝑡
𝑅𝑀 is the bilinear product to maintain the linearity of the model. The mass 

balance at biorefineries and pretreatment depots was carried out in a similar way. In order 

to guarantee a constant supply a cyclic inventory planning was considered, which consists 

of that the storage level in the last period (t= T) is equal at the beginning period (t= 0 ), 

according to the following equation for AR:

𝐴𝑗,𝑖,𝑡=0
𝑅𝑀 = 𝐴𝑗,𝑖,𝑡=𝑇

𝑅𝑀 𝑖 ∈ 𝐼𝑅𝑀, 𝑗 ( 8 )

Finally, the objective functions were formulated as follows 
99

max

Netprofit EI

Z CAR TC PC EIAR EIT EIP
 
      
 
 

99NetprofitNetprofitNet EI 





Where CAR, TC, PC are the costs by biomass use, transportation cost and processing 

cost, respectively. On the order hand, EIARE, EIT and EIP represents the environmental 

impact by biomass uses, transportation and processing, respectively.  This multi-objective 

optimization problem was solved using the ε-constrained method to find a tradeoff 

between the objectives.

4. Results

The model proposed consists of 27,264 binary variables, 672,013 continuous variables 

and 1,313,649 constraints. It was solved in an average time of 51,173s using a computer

with a 3.00GHz i5-8500 processor with 4GB of RAM using CPLEX method with a 

relative gap of 1%. Figure 2 shows the Pareto front of SC optimization. In all cases, a 

5.5% demand for aviation fuel is covered, as this represents the lowest environmental 

impact and the lowest level of subsidy required or the highest netprofit. Therefore, the 

difference between the upper and lower bound in the Pareto front corresponds to the AR

transporting activities in each SC design. The upper region the SC design considered two 

biorefineries while in the lower region only one biorefinery is located, as shown in Figure 3. 
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Since Jalisco and Veracruz are the main producers of sugarcane, which is the most used 

biomass in the ATJ process, the biorefineries are installed near the harvest sites to reduce 

the transportation cost and the environmental impact. because the supply chain is not cost-

effective a decentralized scheme is not selected for the model in order to reduce the 

transportation costs. 

Figure 2. Pareto front for bio-jet fuel SC

It is important to mention, that for economically feasible supply chain,  this decentralized scheme 

has proved reduce the cost and environmental impact of the process.  Owing to the transportation 

activities increase in the upper region the environmental impact increase too, thus the benefit of the 

economy of scale is reduced because these two have a lower processing capacity than the 

biorefinery in the lower bound, which explains the behavior of the Pareto front. Moreover, the 

centralized configuration was preferred in the resulting SC designs because AR pretreatment and 

ethanol production, operations considered in the pretreatment depots, are the main drawbacks in 

the ATJ process, these steps represent 59% of the entire SC cost (see Figure 4a).

Figure 3. (Left) SC design lower bound (Right) SC design in upper bound.

The big dot in the lower region corresponds to the best SC solution. This solution

considers a centralized configuration where only one biorefinery is installed. This 

solution has 5,594 jobs generated and the EI99 is around 7.48 billion points per year. 

Additionally, tit requires subsidy of US$ 115 million to be profitable. On the other hand, 

the CO2 emissions per kilogram of product commercialized as well as the energy return 

on investment (EROI) are 2.38 kgCO2/kg and 1.14, respectively. 

Figure 4b shows the cyclic inventory of AR in the harvest sites, which shows that the AR 

available during the first half of the year is stored at the harvest sites for later processing 

during the months when it is not available, and storage finished products in the 

biorefinery. Finally, Figure 6 shows the flow of bio-jet fuel supplied in each month of the 

year continuously and stably, unlike the availability of feedstock that shows constant 

fluctuations, which do not have an impact on the production of the SC.
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Figure 4. a) SC cost distribution, b) Cyclic inventory of AR 

 

 

Figure 5. Monthly supply of bio-jet fuel and feedstock availability 

5. Conclusions 

Agricultural residues are a promising source of raw materials by biofuel production and 

through the design and optimizing of the SC associated with biofuel production is possible 

to overcome its geographical and stational dispersion. The proposed model had the 

purpose of identifying the areas of opportunity in the production of bio-jet fuel from the 

ATJ process as well as the level of coverage that is possible to achieve with the materials 

available in Mexican territory today. Based on the results obtained, it has been determined 

that the main process disadvantages are the first two stages of the process (pretreatment 

and ethanol production), although despite these disadvantages, the process has an EROI 

positive, so the improvement of the process will not only bring economic advantages, but 

also energy and environmental advantages. On the other hand, in this case a centralized 

configuration was preferred due to the processes carried out in the pretreatment depots 

are the costliest, and its separation from the other process stages result in a reduction of 

the effect of the economy of scale, which the transportation cost reduction could not 

compensate. 
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Abstract 
Integration of process flowsheet simulators and optimization algorithms is a prominent 
approach to address simultaneous design and optimization of processes, which is 
represented by a mixed integer nonlinear programming (MINLP) formulation. In this 
study, DWSIM, a free and rarely used simulator, is used as a black-box function for the 
evaluation in genetic algorithm in MATLAB. Proposed approach is implemented to a 
dimethyl ether process, calculating optimum processing conditions in addition to 
structural decision variables including the feedstock type, reactor, and separation unit 
selections. Results show that syngas has the major impact on the process economics and 
is significantly more economical feedstock although high number of additional 
processing units are required.  
 
Keywords: superstructure optimization; mixed integer nonlinear programming; process 
synthesis; dimethyl ether process; black-box optimization; DWSIM. 

1. Introduction 
Chemical processes include complex and integrated pathways combined by several unit 
operations in which conversion occurs from feedstocks to valuable products. Such a 
conversion, in general, can be obtained through high number of alternative paths, which 
hinders the process architecture and operating condition selection under economic 
considerations and tightly ensured process constraints. Thus, a superstructure 
optimization problem formulation addressing simultaneously the aforementioned issues 
has become an important research area over the past decades. 
A mixed-integer nonlinear problem (MINLP) is formulated, in general, to obtain a smaller 
architecture from a larger superstructure that is predefined and includes all alternative 
units, flows and many other considerations. The resulting MINLP formulation includes 
integer variables to account for sequences of events, alternative candidates, and the 
existence of units, whereas the continuous variables represent states. The MINLP 
problem is flexible and can include various user-defined considerations from economic 
and environmental aspects (Edgar et al., 2001). 
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Superstructure Optimization of Dimethyl Ether Process 

The proposed superstructure in this study is presented in Fig. 1. DME production might 
be obtained with dehydration of methanol and from various feedstocks, primarily from 
syngas, as an emerging trend to favor carbon management and biomass utilization. The 
conditions specified in the kinetic study of Nestler et al. (2020) were used for modelling 
methanol synthesis at three different catalyst density yields high to low conversion 
(Nestler et al., 2020). Sequential flash units separate syngas from methanol with minimal 
loss at different pressures. Next, DME is produced with preheated methanol in catalytic 
dehydration reactor with three conversion preferences. Pressurized and cooled reactor 
effluent consists of mainly water, methanol and DME, which is obtained using 30 bar 
distillation column at high purity. Next, unreacted methanol and side product water 
recovered with two different distillation column arrangements. Side products are 
marketable/recyclable as well. 

3. MINLP Formulation and Solution Method 
Superstructure of DME process optimized with MINLP problem formulated as: 
 

 𝑚𝑖𝑛
𝒎,𝒚,𝑻,%

										𝐼𝐶 + (𝑂𝐶− 𝑆 ∙ (1 − 𝑓)) ∙ 𝑡𝑓 

(1) 
 

𝑠. 𝑡.														𝑦# + 𝑦$ = 1 
																					𝑦% + 𝑦& + 𝑦' = 1 
																					𝑦( + 𝑦) + 𝑦* = 1 
																					𝑦+ + 𝑦#, = 1 
																					𝑚( = 𝑦( ∙ (𝑚#𝑦# +𝑚-$𝑦$) 
																					𝑚) = 𝑦) ∙ (𝑚#𝑦# +𝑚-$𝑦$) 
																					𝑚* = 𝑦* ∙ (𝑚#𝑦# +𝑚-$𝑦$) 
																					𝑚+ = 𝑦+ ∙ 𝑚.#,#,/ 
																					𝑚#, = 𝑦#, ∙ 𝑚.#,#,/ 
																					𝑦$ ∙ 𝑦% ∙ 6 ≤ 𝑚% ≤ 𝑦$ ∙ 𝑦% ∙ 10.5 
																					𝑦$ ∙ 𝑦& ∙ 6 ≤ 𝑚& ≤ 𝑦$ ∙ 𝑦& ∙ 12.5 
																					𝑦$ ∙ 𝑦' ∙ 6 ≤ 𝑚' ≤ 𝑦$ ∙ 𝑦' ∙ 15.5 
																					𝑦# ∙ 𝑚#,012 ≤ 𝑚# ≤ 𝑦# ∙ 𝑚#,034 
																					𝑦# ∙ 𝑚$,012 ≤ 𝑚$ ≤ 𝑦$ ∙ 𝑚$,034 
																					301 ≤ 𝑇# ≤ 308 
																					360 ≤ 𝑇$ ≤ 380 
																					46 ≤ 𝑃# ≤ 50 
																					𝑦5 ∈ {0, 1}	𝑗 = 1…10 

 
where tf is the project lifetime which is 20 years for this case; f is the tax rate; y1 and y2 
are binary variables for commercial methanol and syngas feedstock selection, 
respectively; y3, y4, and y5 represent the selection of syngas to methanol reactor with 
corresponding mass flow rates m3, m4 and m5; y6, y7, and y8 methanol dehydration reactor 
selection variables; mF2 is the flash unit effluent; mT101,B is the bottom product of DME 
distillation column; y9 and y10 are one column and sequential two-column distillation 
route selection binaries, respectively; S is the income from the products. Equality 
constraints which include binary variables solely ensure selection of a single path among 
many. Commercial methanol and syngas stream mass flow rates are represented with m1 
and m2. High to low DME reactor inlet stream mass flow rates are m6, m7 and m8, 
respectively. m9 is 30-stage column and m10 is sequential two 15-stage columns mass flow 
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rates. mF102,B is second flash unit bottom product stream that contains mainly produced 
methanol, mass flow rate. All produced or purchased methanol fed to DME reactor and 
this feed stream, mR2,in, expressed with fifth equality constraint. mT101,B is bottom product 
mass flow rate of DME recovery column which fed to selected separation route. T1, P1 
are temperature and pressure of flash unit, and T2 DME recovery column feed stream 
temperature, respectively. Inequality constraints limit syngas feed mass flow for prevent 
exceeding equipment sizes which assumed fixed for practical calculation of capital cost 
investments. The capital cost investment, IC, the operating cost, OC, is calculated from: 

 𝐼𝐶	 = 	𝐹6789 ∙ (F𝐶/:,1 ∙ 𝑦1
1

+F𝐶/:,;14<=,5
5

) (2) 

 𝑂𝐶	 = 	𝑚# ∙ 𝑦# ∙ 𝐶:<>? +𝑚$ ∙ 𝑦$ ∙ 𝐶@A2B3C +F𝑄5𝐶DE1F1EA,5
5

 (3) 

where FLANG is the correction for the liquid phase operations; CBM,i is the bare module cost 
of ith equipment which is related to the yi; CBM,j is the bare module cost of jth equipment 
which exist in the structure independent of the optimization problem; CMeOH and CSyngas 
are methanol and syngas prices, respectively; Qj and Cutility,j is the quantity and the unit 
cost of jth utility. Equipment purchases and operational cost calculations performed using 
(Bailie et al., 2018) and updated to current prices using CEPCI. The distillation column 
fixed cost provided from ChemSep. Process equipment sizing considers the dimensions 
that could meet the highest production capacity. For this reason, even if there is a high 
investment cost in low-capacity production preferences, meeting the upper limit 
production capacity is ensured. 
The MINLP problem in Eq. 1 is solved using Genetic Algorithm (GA) which treats the 
process flow sheet simulation as a black-box function which is evaluated in DWSIM. 
Python has a key role in the implementation of the MINLP problem as it provides the 
communication between DWSIM and MATLAB’s GA. A simplified information flow 
diagram is shown in Fig. 2. 
 

 
Figure 2. Superstructure optimization information flow diagram 

4. Results 
MINLP problem in Eq. 1 has been solved using MATLAB R2021a and DWSIM v6 on 
i5 9400 CPU 8 GB RAM Windows 10 x64 PC. In our case, the commercial methanol 
feedstock route results in an unprofitable process due to high purchase costs. The non-
zero results of the solution are presented in Table 1. 
In our case, syngas is selected as the primary raw material thanks to its low cost despite 
subsequent unit operations and associated operating costs. The resulting architecture 
proposes the highest conversion reactor for methanol production to favor the DME 
production and methanol which can be sold as a side product in our MINLP formulation. 
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Superstructure Optimization of Dimethyl Ether Process 

Table 1. Non-zero process variables and economic measures of optimal results of Eq. 1 
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Temperature and pressure of flash unit maximize methanol yield while removing 
unreacted syngas. Produced methanol fed to medium conversion dehydration reactor to 
balance the DME conversion and related IC and OC. Sequential two 15-stage columns 
ensure the removal of high latent heat components while benefiting from the installation 
of large and single distillation column operations with high costs. The temperature of the 
feed stream as well as the temperature of the reboiler and condenser affect the efficiency 
of the separation process. However, feed stream temperature manipulation allows us to 
tune DME recovery column performance and operational costs. Overall process operation 
is performed at a maximum raw material rate within the defined operating window. 

5. Conclusion 
Optimum process design and synthesis under economic and environmental consideration 
is one of the contemporary challenges of the process systems engineering field. The idea 
of combining the advantages of process flowsheet simulators to obtain predictions 
without undergoing a significant modelling approach is useful once it is used in the black-
box optimization algorithms which do not need first principal expressions explicitly. 
Integration of open source DWSIM simulation environment with black-box optimization 
solver enables us to simultaneously synthesis of process and optimization of conditions, 
unlike most studies which focus on commercially well-known and widely used software 
packages on a popular process for the architecture and processing condition calculation 
which accounts for feedstock selection, unit operation selection, catalysis selection, and 
related operating regimes. Such a sophisticated integration of high number of process 
equipment alternatives and feedstocks results in a nonconvex and significantly nonlinear 
mixed-integer nonlinear optimization problem. As a result, the global optimality of the 
proposed structure is beyond the scope. 
A major decision variable on the plant profitability is determined by the feedstock, which 
is economically syngas over a wide price spectrum under current economic specifications. 
Furthermore, the proposed process flow diagram is comprehensive as it enables the 
selection of different-size unit operations to address the capacity, installation, and 
operating costs to deliver a realistic evaluation to some extent. Note that, the actual 
process is more complex than Fig. 1 and requires a more advanced MINLP formulation 
which also takes uncertainties of plant variables and time-varying prices into 
consideration in addition to other economic considerations such as inflation and other 
realistic details including depreciation, land prices, and many other issues. A more 
detailed process synthesis and the including the impact of the price uncertainties which 
are characterized by logistic issues and market demands is beyond the scope. Thus, the 
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simulations are performed for a particular and acceptable price value under marketable 
feed and product compositions. The architecture is flexible to address those 
considerations and the impact of those variables on the ultimate plant design and 
operations conditions can also be calculated using the proposed scheme. 
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Abstract 

The performance of the COSMO-SAC-dsp model combining with the Peng-Robinson 

(PR) equation-of-state (EoS) via several mixing rules is assessed for vapor-liquid 

equilibrium (VLE) predictions of refrigerants. In particular, the original Huron-Vidal 

(HVO), the modified Huron-Vidal (MHV1) and the Wong-Sandler (WS) mixing rules are 

applied. Binary mixture combinations of 51 refrigerants with diverse molecule types are 

investigated. 447 valid experimental VLE datasets for 233 refrigerant pairs are collected 

from NIST and by an exhaustive literature search. The results show that the combination 

of the COSMO-SAC-dsp with the PR yields satisfied and comparable prediction accuracy 

on VLE in most cases comparing to that from two well established EOS-Gex methods 

VTPR and PSRK. However, large errors could appear between chlorinated hydrocarbons 

+ hydrocarbons and florinated hydrocarbons + chlorinated hydrocarbons. Moreover, 

errors become more significant and the VLE calculation cannot converge at all for NH3 

and CO2 including mixtures respectively. The performance of the mixing rules for the 

studied refrigerant VLE database follows the decreasing order MHV1 > HVO > WS.  
 

Keywords: refrigerant, mixing rule, COSMO-SAC, Peng-Robinson 

1. Introduction 

Phase behavior, especially vapor-liquid equilibria, is important in the refrigerant mixture 

design. Various mixing rules have been developed combining EoS with excess Gibbs 

free-energy models (i.e. EoS-Gex methods), which enable improved VLE predictions on 

nonideal mixtures1. The EoS-Gex methods offer greater extrapolation capability, 

flexibility and reliability of predictions than the conventional Van Der Waals one-fluid 

mixing rule and the direct use of Gex models. Because the former typically requires 

refrigerant pair dependent correction binary parameters and the latter usually fails to 

describe the phase behavior when approaching the critical region. 

 

Gex models based on group-contribution methods are the most widely used and have been 

successfully combined with EoS for VLE predictions. Two well-known examples on such 

group contribution EoS are the VTPR2 and PSRK3 methods from Gmehling and his 

coworkers. However, the Gex models based on group contribution may have limited 

applicability on refrigerants as 1) many group parameters are missing or only available 

from commercial sources; 2) group contribution inherently does not work well for small 

molecules. A more predictive alternative to the group contribution method, is the Gex 

model based on quantum mechanical conductor-like screening model (COSMO) 
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calculations. The COSMO models only contain a few universal parameters and do not 

require a prior knowledge on molecule group assignment. A comprehensive literature 

review on the development of the COSMO models and implementation details could be 

found by Bell et.al.4  

 

An evaluation on phase equilibria of refrigerant systems using COSMO models has 

recently been reported by Mambo-Lomba and Paricaud5. However, the VLE calculation 

is evaluated based on only 20 binary pairs and one mixing rule. A more systematic and 

dedicated evaluation using COSMO models on refrigerant VLE is carried out in this work 

to reach a better understanding on the reliability of predictions. In particular, the COSMO-

SAC-dsp model6, a state-of-art version of the COSMO models, is combined with the PR 

EoS as the EoS-Gex method for VLE predictions. As significant extensions to the previous 

work, 1) a much larger experimental VLE database is constructed and assessed; 2) 

different mixing rules are applied and discussed; 3) a comparison to the well-established 

group contribution EoS is added.  

 

2. Methods 

2.1 VLE data 

51 molecules covering typical types of commonly used refrigerants are selected, which 

are categorized in to 6 classes: “CH” for hydrocarbons; “Cl”, “F” and “Cl-F” for 

molecules containing purely Cl, F and both respectively; “Et” for ethers; “In” for 

inorganics (Table 1). Such classification is mainly based on the consideration that the 

parameterization in the COSMO-SAC-dsp model is atom type-based.  

 

Table 1. A classification of 51 refrigerant molecules selected in this work. 

Type Chemical Name 
Ashrae 

Number 
Type Chemical Name 

Ashrae 

Number 

CH 

methane R50 

F 

2,3,3,3-tetrafluoro-1-propene R1234yf 

ethane R170 1,1,1,3,3-pentafluoropropane R245fa 

propene (propylene) R1270 Hexafluoropropylene  R1216 

propane R290 cis 1,3,3,3-tetrafluoropropene R1234ze(Z)  

cyclopropane RC270 trans 1,3,3,3-tetrafluoropropene R1234ze(E)  

Butane R600 3,3,3-trifluoroprop-1-ene R1243zf 

Isobutane R600a 1,1,1,2,3,3-hexafluoropropane R236ea 

Cl 

dichloromethane R30 1,1,1,3,3-pentafluorobutane R365mfc 

chloromethane  R40 octafluorocyclobutane RC318 

1,2-dichloroethane R150 

Cl-F 

trichlorofluoromethane R11 

chloroethene R1140 dichlorodifluoromethane R12 

F 

tetrafluoromethane  R14 chlorotrifluoromethane R13 

trifluoromethane R23 dichlorofluoromethane R21 

difluoromethane R32 chlorodifluoromethane R22 

fluoromethane  R41 1,1,2-trichloro-1,2,2-trifluoroethane R113 

hexafluoroethane R116 1,2-dichloro-1,1,2,2-tetrafluoroethane R114 

pentafluoroethane R125 chloropentafluoroethane R115 

1,1,1,2-tetrafluoroethane R134a 2,2-dichloro-1,1,1-trifluoroethane R123 

1,1,1-trifluoroethane R143a 2-chloro-1,1,1,2-tetrafluoroethane R124 

1,1-difluoroethane R152a 1,1-dichloro-1-fluoroethane R141b 

fluoroethane R161  1-chloro-1,1-difluoroethane R142b 

1,1,2,2-Tetrafluoroethane R134 
Et 

Dimethyl Ether RE170 

1,1,2,2-Tetrafluoroethene R1114 Ethyl ether - 

octafluoropropane R218 
In 

ammonia R717 

1,1,1,2,3,3,3-heptafluoropropane R227ea carbon dioxide R744 

1,1,1,3,3,3-hexafluoropropane R236fa    

 

Valid experimental VLE data for 233 refrigerant binary pairs are collected from NIST 

and by an exhaustive literature search. Two P-x-y datasets at distinguished temperatures 
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are taken for each pair if available, which results in 447 datasets with 4387 data points in 

total. Experimental uncertainties are not considered for model evaluation.

2.2 EoS-Gex method

An overview of the VLE prediction method is illustrated by Figure 1. An improved PR 

EoS with the Twu 𝛼 function is adopted7. The volume translation is not considered, as it 

does not affect the VLE calculation. The COSMO-SAC-dsp model6 is used as the Gex

model, and it is combined with the PR EoS via mixing rules HVO, MHV1 and WS1. The 

three resulted EoS-Gex methods are named as PR-HVO-COSMO, PR-MHV1-COSMO 

and PR-WS-COSMO respectively. VTPR2 and PSRK3 methods are implemented as well 

for comparison. 

All group parameters are retrieved from the website “http://www.ddbst.com/” (accessed 

on 08/01). The molecule group assignment is performed using the online tool from the 

same website as well. Sigma profiles, area and volume parameters for 51 refrigerants are 

generated using Material Studio conjugated with Python following the steps provided by 

Bell et.al4. The VLE is calculated iteratively in MATLAB with fixed liquid composition 

and temperature (i.e. bubble-point pressure flash calculation). In case of convergence 

difficulties, GAMS is applied to solve the VLE in an equation-oriented manner.

Figure 1. A schematic illustration of the VLE prediction method.

3. Results

Figure 2 provides an overview on the prediction errors from different methods. The 

number in each block gives the average absolute deviation (AAD) on the pressure and the 

vapor composition for binary mixtures of corresponding classes, which is defined by Eq 

1.

𝐴𝐴𝐷 =
1

𝑁
∑

1

2𝐾𝑖
∑

|𝑃𝑘,𝑖
𝑐𝑎𝑙 − 𝑃𝑘,𝑖

𝑒𝑥𝑝
|

𝑃𝑘,𝑖
𝑒𝑥𝑝 +

|𝑦𝑘,𝑖
𝑐𝑎𝑙 − 𝑦𝑘,𝑖

𝑒𝑥𝑝
|

𝑦𝑘,𝑖
𝑒𝑥𝑝

𝐾𝑖

𝑘=1

𝑁

𝑖=1

× 100%

(1)

𝑖 is the index for the binary pair from 1 to 𝑁. The data point index of the binary pair 𝑖 is 

given by 𝑘 ranging from 1 to 𝐾𝑖. In addition, colors are associated to different ranges for 

better illustration. The number in the bracket is the number of refrigerant pairs used for 

error calculation. 
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Figure 2. An overview of the prediction errors applying different EoS-Gex methods.

3.1 A comparison between group contribution EoS

PSRK, VTPR and PR-WS-UNIFAC are implemented for the VLE prediction with 

relative satisfied accuracy (Figure 2). The PR-WS-UNIFAC method combines the PR

with the UNIFAC(Do) via the WS mixing rule. Only 26 out of 233 pairs could be 

calculated due the missing group parameters. Large deviations appear between classes 

“Cl”+“CH”, “F”+“CH” and “F”+“F”, with three typical examples illustrated in Figure 3. 

It is clear that azeotropes cannot be well predicted. The group parameters in the 

UNIFAC(Do) are mainly regressed from the activity information. Dedicated sets of group 

parameters are proposed later to better fit the EoS-Gex methods in the PSRK and VTPR. 

However, no significant improvement is achieved, at least on the tested refrigerant VLE 

database (Figure 2 and 3). The applicability of the group contribution EoS is still very 

limited due to undefined groups and missing parameters, in particular, on F containing

groups. Moreover, proposing groups assignment methods for small molecules like 

refrigerants to distinguish isomerism is still a challenging task.

Figure 3. P-x-y plots of a) R30+ R1270 at 333 K;  b) R290+ R143a at 283 K;  c) 

R116+ R143a at 273 K. The black dashed lines denote PR-WS-UNIFAC predictions. 

The red solid lines denote PSRK predictions. The square symbols denote experimental 

values.
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3.2 A comparison between mixing rules 

The values in Figure 2 indicate a decreasing order of the mixing rules on the prediction 

performance: MHV1>HVO>WS. Qualitative differences between three mixing rules 

cannot be clearly found from P-x-y plots, as exemplified by Figure 4b. The tested 

refrigerant pairs involving small molecules without association or highly asymmetricity, 

which may not strongly distinguish the weaknesses and strengths of each mixing rule. 

However, significant improvement on the VLE predictions can still be identified by 

viewing the AAD values, in particular, at diluted conditions (Figure 4a).  

 
Figure 4. VLE prediction results on the R150+R1140. a) AAD on the pressure (solid 

lines) and vapor composition (dashed lines) at 364 K (black: WS, red: HVO, blue: 

MHV1); b) P-x-y plots at 293 K and 364 K (symbols: experimental values, black 

dashed lines: WS, red solid lines: HVO, blue dotted lines: MHV1. 

 

 

3.3 A comparison between group contribution and COSMO methods 

 
Figure 5. VLE prediction results on the R600+R1140. a) AAD on the pressure (solid 

lines) and vapor composition (dashed lines) at 273 K (black: WS, red: HVO, blue: 

MHV1); b) P-x-y plots at 273 K (symbols: experimental values, black solid lines: WS, 

red dashed lines: HVO, blue dotted lines: MHV1. 
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The EoS-Gex methods based on the COSMO-SAC-dsp model outperform the group 

contribution EoS in terms of the extrapolation capability. The VLE of all pairs can be 

calculated using the COSMO-SAC-dsp, but the majority are not applicable for the group 

contribution EoS. This is attributed to the atom-based parameterization scheme in the 

COSMO models, which helps to avoid ambiguities in group assignment and to reduce the 

adjustable parameters. The COSMO-SAC-dsp model enables comparable prediction 

accuracy for most combinations of 6 molecule classes, or even better for some cases. 

However, large errors could appear for “Cl”+“CH”, “Cl”+“F”. Although the P-x-y shapes 

can be well approximated, significant errors can be found at diluted conditions (Figure 5). 

The large deviation around 𝑥 = 0.4 may due the experimental data error in Figure 5. 

Prediction errors above 20% are typically identified for pairs including NH3. Moreover, 

infeasible solutions always appear when CO2 is involved. Convergence on VLE 

calculations could be achieved only when the dispersion term of the CO2 is neglected.  

 

4. Conclusions and outlooks 

The COSMO-SAC-dsp model is combined with the PR EoS via several mixing rules for 

VLE predictions on 233 refrigerant pairs, the results show that: 

1. The performance of the mixing rules generally follows the order of MHV1>HVO>WS, 

but without a significant difference. 

2. The predictive performance using the COSMO-SAC-dsp model is comparable to that 

of group contribution EoS in most cases, but not for NH3 and CO2 involving mixtures. 

 

A revision on the dispersion parameters for atoms Cl, F, N and O would possibly improve 

the COSMO-SAC-dsp model performance on the VLE calculation, which is still in 

progress and would be published separately. 
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Abstract 
Renewable energy sources that involve the use of Concentrated Solar Power systems 
(CSP) are receiving increased attention due to many of the prominent features that it can 
provide. Most importantly, the simultaneous production of thermal and electrical energy 
that can be achieved via CSP systems is of great value and constitute many cogeneration 
processes. Moreover, CSPs have been proven to be an effective source of energy for 
industrial applications that require high amounts of clean energy, such as desalination. 
Hence, combining water production activities together with thermal and electrical energy 
production options via CSP technologies results in novel hybrid tri-generation systems. 
The possibility of locating such tri-generation systems on the eastern shore of the 
Mediterranean Sea is investigated in this paper. As such, several different design aspects 
such as the effect of direct normal irradiance (DNI) on the production freshwater via 
desalination has been studied. The daily and seasonal intermittency of sunlight, which 
consists a major challenge for CSP, necessitates the implementation of hybrid systems to 
ensure a continuous supply of energy for desalination purposes. This paper studies the 
design of a hybrid trigeneration system under different weather conditions, including four 
different seasons. The trigeneration system consists of a CSP plant as the main energy 
source. The system is usually coupled with a conventional fuel source, mainly natural 
gas, which serves as a backup energy source in the absence of solar energy. A desalination 
plant comprising of both thermal and membrane technology options for freshwater 
generation is also included. The design problem is translated into a Mixed Integer Non-
Linear Program (MINLP) that can be solved for the optimal network structure based on 
appropriately selected technologies for steam, power and freshwater production. The 
environmental aspect of the system has also been studied by quantifying the total amount 
of carbon dioxide emissions. As such, the integration of a carbon capture technology to 
regulate those emissions has been also studied, subject to an appropriate value for the 
overall net carbon reduction target of the tri-generation system. 
 
Keywords: Concentrated Solar Power, desalination, design, hybrid, trigeneration system 

1. Introduction 
The global energy sector is currently in a transitional phase towards achieving a higher 
energy share from renewable sources. Concentrated Solar Power (CSP) is one of the 
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renewable energy technologies with a high potential for deployment in many countries, 
especially those located in the MENA region, due to the high availability of direct normal 
irradiance (DNI). Therefore, studying the factors affecting its performance has been 
extensively addressed in literature (Klaimi et al., 2021). However, the incorporation of 
CSP in developing countries apparently faces many challenges, such as high capital 
investment costs, and the lack of supporting regulations. Moreover, any financial 
incentives are against the low cost of fossil fuels (Elmorsy et al., 2020). Therefore, the 
hybridization of CSP plants using conventional energy sources provides more flexibility 
and reliability by gearing it away from solar intermittency problems. Many have studied 
the integration of CSP into different industrial applications. For instance, Elmorsy et al. 
(2020) have worked on a novel natural gas-fired integrated solar-combined cycle power 
plant in Egypt, where the levelized cost of electricity (LCOE) was found to be 40 $/MWh. 
Rashid et al. (2020) have presented a dynamic simulation of a CSP plant incorporating 
both thermal energy storage and natural gas. The hybrid plant with storage resulted in a 
higher LCOE value (86.32 $/MWh) when compared to a single natural gas plant (74.92 
$/MWh). Abdelhay et al. (2020) have proposed a solar driven poly-generation system of 
CSP coupled with a backup natural gas heater for power, desalination and cooling. Their 
proposed system resulted in a relatively low unit water price of 1.247 $/m3. Hybrid energy 
systems are also associated with greenhouse gas (GHG) emissions which must be taken 
into consideration while studying the environmental impact of cogeneration and tri-
generation processes. Moreover, there exist very few studies that focus on hybrid tri-
generation systems. Therefore, this paper studies the effect of solar availability on the 
performance of a novel CSP-trigeneration system coupled with a natural gas boiler for 
the production of three different pressure levels of steam, power and freshwater. The 
novelty of this paper lies in the multiperiod approach presented to study the performance 
of the CSP-desalination system across different seasons, in addition to the incorporation 
of carbon capture option and imposing taxation on uncaptured CO2 which allows the 
estimation of associated environmental costs.   

2. Methodology 
The proposed CSP-natural gas hybrid tri-generation system is shown in Figure 1. First, a 
boiling feed water (BFW) stream is split into two streams: BFW-b that enters a utility 
boiler and BFW-sg entering a solar steam generator. A natural gas stream is fed into the 
utility boiler and undergoes combustion, which in turn results in heat transfer to the BFW-
b stream.  As a result, high pressure (HP) steam at 41 bars (S-b) is generated, in addition 
to a blowdown stream. On the other hand, the HP steam produced by the steam generator 
(S-sg) is due to the heat exchange between a molten salt stream circulating in the CSP 
plant and boiling feed water. A portion of the HP steam produced (S-ms) is utilized by 
the molten salt system to maintain a temperature above molten salt freezing point. The 
two HP streams are then mixed into one stream (S-d) that enters the shaft and electric 
power generation block which consists of several energy generation options (turbo-
generators, drivers and throttle valves). This results in the production of low pressure (LP) 
steam at 2 bars and electric power to be utilized for desalination, in addition to very low 
pressure (VLP) steam at 0.12 bar to be condensed, deaerated and pumped to HP steam 
pressure in order to obtain boiling feed water. Any excess in electricity can be exported 
to the grid. Two different desalination technologies are available in the system for the 
generation of freshwater, which is the main source of revenue. As for GHG emissions 
from natural gas combustion, a carbon capture unit with a specific efficiency is 
incorporated in the system, and the uncaptured CO2 will be released to the atmosphere.  
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Figure 1: Hybrid Tri-generation System Structure 

3. Mathematical Formulation 
The proposed hybrid tri-generation system has been converted into a Mixed Integer Non-
linear Problem (MINLP) that aims at minimizing the total cost of the system. The 
objective function is shown in Eq. (1) below, where CostCSP,energy and CostNG,energy  are the 
energy production costs from CSP and natural gas respectively, CostCO2  is the carbon 
related cost which includes carbon capture cost and taxes on the uncaptured CO2, CostDesal  

is the desalination cost and RevWater  is the total revenue earned from selling the freshwater 
produced.  

, , 2minimize  Cost Cos Cos Cos ReCSP energy NG energy CO Desal Watert t t v+ + + −         (1) 
 

Equality constraints have been added to the model to ensure the satisfaction of mass and 
energy balances around all the units in the system. Eq (2-5) represent the mass balances 
on the utility boiler and solar steam generator, where the variable G is the mass flowrate, 
and the subscripts S, b, sg, d and ms refer to steam, boiler, steam generator, desalination 
and molten salt respectively. The mass flowrate of steam required for the molten salt 
system GS-ms and the amount of CO2 emitted from the boiler GF-b can be calculated using 
Eq. (6) and (7), respectively, where ωST is the fraction of HP steam produced by the 
generator and allocated to the storage tanks heating system, and εNG is a parameter 
corresponding to the amount of CO2 emitted per unit mass of HP steam produced using 
natural gas. The energy balances around the boiler and steam generator are described in 
Eq. (8) and (9), respectively, where the variables H and Q are the specific enthalpy and 
thermal energy, respectively, while HV, ηb and ηsg  are the parameters corresponding to 
the calorific value of natural gas, boiler and steam generator efficiencies, respectively.  
 

GBFW BFW b BFW sgG G− −= +                                           (2) 

GBFW b S b blowdownG G− −= +                                           (3) 

GBFW sg S sgG− −=                                                   (4) 

GS d S b S sg S msG G G− − − −= + −                                          (5) 

GS ms ST S sgGω− −=                                                 (6) 
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                          GF b NG S bGε− −=                                                   (7) 

( )GBFW b BFW b NG NG b S b S b blowdown blowdownH G H G H G Hη− − − −+ = +                  (8) 

Qabsorbed sg releasedQη=                                             (9) 
 
The inequalities of the model, described in Eq. (10-13) below address the limitations on 
certain aspects of the system, such as the capacities of the embedded technologies, land 
and solar availability, in addition to the minimum production of HP steam. In these 
equations, b represents a binary variable, ASF,t and, ASF,max  are the required and available 
solar field areas in season t, DNIt  is the daily average direct normal irradiance in season 
t, and GS-dmin is the minimum required amount of HP steam to be produced depending on 
the amount of energy required to generate a specific flowrate of freshwater.   
 

min maxb ,i BFW i iG G b G i b sg−≤ ≤ ∀ ∈                               (10) 

, ,maxASF t SFA≤                                                   (11) 

( ) ,
24G

3600S sg S sg BFW sg t SF tH H DNI A− − −− ≤                            (12) 

                         minGS d S dG− −≤                                                (13) 
 

It should be noted that the nonlinearities of the model lie in the costing of some of the 
equipment incorporated within the system, the constraint preventing temperature cross-
over in solar steam generator and the utilization of energy generation ratios of CSP and 
natural gas in some of the equations. Moreover, although the equations of the proposed 
multiperiod problem seems simple, the actual model is large and complex, consisting of 
88 decision variables (80 continuous, 8 binaries) and more than 80 constraints.  

4. Case Study 
The proposed model was implemented on a tri-generation system located near the 
Mediterranean Sea in a region whose direct normal irradiance is similar to that of Beirut 
city in Lebanon. Since the aim of the model is to minimize the total cost of HP steam 
production that will be used for electricity and freshwater generation, the same selection 
of optimal technologies, in the shaft and electric power generation and desalination 
blocks, reported in the optimal case scenario in Klaimi et al. (2021) will be considered. 
This scenario corresponds to a large-scale desalination plant having a capacity of 100,000 
m3/d with an inlet seawater salinity of 35 g/L and HP steam requirement of 7,748 t/d. 
Thus, the decision variables are mainly the mass flowrates of inlet boiling feed water 
streams, natural gas, molten salt and the land area of CSP facility. Consequently, the costs 
associated with the power block and desalination in the objective function were kept 
constant. Moreover, the daily averaged DNI values for the four seasons, which in turn 
were divided into four different time periods, are 146.9, 101.2, 170.2 and 229.6 kWh/m2d 
for fall, winter, spring and summer, respectively (Solar Atlas), whereas the maximum 
solar field area available for the CSP facility has been set at 20,000 m2. The MINLP 
optimization problem has been implemented using “Whats’Best 17.0” LINDO Global 
Solver for MS-Excel 2016 via a laptop with Intel Core i5 Duo processor, 8 GB RAM and 
a 64 bit operating system. Figure 2 below shows the flowrates of HP steam produced from 
each source of energy, in addition to the amount of CO2 emissions resulting from the 
utilization of natural gas, by the optimal solutions attained. 
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Figure 2: HP steam and CO2 flowrates in different seasons 

The obtained results confirm that the amount of HP steam generated from each energy 
source is highly dependent on solar availability. The highest DNI in summer resulted in 
the highest deployment of CSP which generates 5,785 t/d of HP steam in this period with 
a generation of 1,895 t/d of steam from natural gas. As DNI decreases to 146.9 kWh/m2d 
in fall, a lower amount of energy could be generated per unit surface area, which explains 
the reduction in the amount of steam generated from CSP to 4,288 t/d and the increase in 
the amount of steam generated from natural gas to 3,332 t/d. Winter season witnesses the 
lowest DNI value among all seasons of the year, which necessitates a high requirement 
for natural gas, in order to compensate for the reduction in the capacity of the CSP facility. 
This resulted in the production of around 66.23% of the total required amount of steam 
from natural gas in winter compared to 24.67% in summer. However, the DNI value 
increased again in spring, which also increased the share of renewable energy in steam 
production. It was also very important to quantify the amount of carbon dioxide emissions 
that resulted from the utilization of natural gas. Since the highest and lowest consumption 
of natural gas occur in winter and summer, respectively, Figure 2 shows that carbon 
emissions are indeed the highest in winter (with a flowrate of 823 t/d). This amount 
decreased when a reduction in natural gas consumption was realized in subsequent 
seasons, achieving 313 t/d in summer. Although CSP is known for its high capital cost, it 
has been selected in all seasons, even in winter which has the lowest solar availability. 
Despite this, a continuous selection of CSP technology was attained throughout the year. 
In order to further explain this aspect, Figure 3 shows a breakdown of water production 
cost across the four different time periods.  

According to Figure 3, total water production cost from the hybrid system ranges from 
1.25 USD/m3 in summer to 1.47 USD/m3 in winter. Moreover, the fraction of steam 
generation cost from CSP is greater than that of natural gas in all seasons, except in winter 
when the contribution of natural gas for energy production is much higher than that of 
CSP. In fact, this was expected due to the high capital cost of CSP compared to the low 
cost of natural gas in developing countries. However, when serious regulations regarding 
the environmental impacts of energy production are implemented, such as the use of 
carbon capture and carbon taxation on CO2 emissions, the scenario will definitely change.  
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Figure 3: Water production cost breakdown 

When comparing the costs related to carbon capture and taxation in winter which has the 
highest CO2 emissions (0.28 USD/m3) to the cost of steam generation from CSP in 
summer (0.24 USD/m3), it was noted that the cheapest energy source is not always the 
best candidate, as the costs associated with its impacts might be higher than the cost of 
other options. In addition, the results showed that the available solar field area has been 
totally invested in all four cases, which means that when a higher area is available, the 
contribution of CSP could be higher, resulting in a lower total water production cost. 

5. Conclusion 
In this study, a mathematical model that minimizes water production cost of a hybrid tri-
generation system using different seasons has been presented. A minimum water cost of 
1.25 USD/m3 was attained in summer. Moreover, significant financial incentives for 
investing in CSP were realized. 
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Abstract
Reverse Osmosis is considered today as the best available technology at industrial scale for desali-
nation as an alternative process to conventional thermal technologies. Nevertheless, there is still
opportunity to evaluate and optimize other membrane technologies like membrane distillation.
Vacuum membrane distillation has been studied at pilot scale and it is a promising technology to
treat seawater in areas with un-expensive heat sources. This study presents a modified method of
superstructure optimization to evaluate key performance indicators of reverse osmosis and vacuum
membrane distillation. To achieve this objective, Computer aided process simulation is deployed;
mathematical model was coded in FORTRAN and added to a superstructure defined in a pro-
cess simulation software (ProSimPlus). Geometry and material parameters are set according to
the commercial module Dow SW30HR-380 data. Finally, superstructure’s operational conditions
(pressure and in-process temperature) and specific number of modules in series and parallel are
optimized within an ant colony algorithm (MIDACO).

Keywords: Process synthesis, optimization, desalination

1. Introduction
Desalination processes are important for different industries and for fresh water supply. Multi-
ple stage flash (MSF) is the most deployed thermal technology at industrial scale according to
Subramani and Jacangelo (2015). However, Reverse Osmosis (RO) has been implemented as an
alternative process to improve the energy performance (EP). Nevertheless, there is still opportu-
nity to evaluate and optimize other membrane technologies regarded as an alternative to MSF and
RO. Membrane distillation (MD) has not been tested at industrial scale yet. Pagliero et al. (2021)
identifies a growing interest on these technologies due to the capacity to treat high concentration
brines, but there are still some technical challenges related to the EP. Vacuum membrane distilla-
tion (VMD) has been tested at pilot scale for desalination. VMD research has been focused on new
membrane materials and geometries for contactors. Nevertheless, simulation tools to gather the
material characteristics, module geometries and operating conditions at industrial scale remains a
challenge.
This work presents a modified method of Zhao et al. (2018), to identify a membrane process
(VMD and RO) adapted to desalination based on process simulation, taking into account the mass
and thermal transfer modelled in previous researches. Besides, this method can be deployed as a
tool to evaluate membrane technologies giving an estimation of the energy and/or heat resources
needed to accomplish a production objective at industrial scale. A plot for key process indicators
of two membrane technologies is presented as a main result.
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2. Methodology

Computer-aided process simulation is the main tool used in the present work, based on the op-
timization of a superstructure following the methodology presented by Zhao et al. (2018). The
resultant method is composed of three blocks: a FORTRAN code to simulate each module, the
industrial scale process simulation and an optimization block.

2.1. RO and VMD Modelling

Modelling of mass transfer through the membrane is coded in FORTRAN according to previous
published works e.g Li et al. (2021), resolution of the mass balance for a module is based in the
calculation of differential equations over the membrane area. The FORTRAN subroutine solve the
differential equations system giving as a result the retentate and permeate composition, flowrate,
temperature and pressure.
Mass transfer through a membrane is modelled as a gradient in the chemical potential between two
homogenous phases at each side of the membrane (retentate and permeate). For RO, this driving
force is due to a pressure difference. In addition, pressure drop is included into the mathematical
model following the work of Lian et al. (2018).
For VMD, chemical potential difference is due to the vapour pressure at each side of the mem-
brane. Mathematical model is based on the work done by Mendez et al. (2019); it calculates a
water vapour flux through the membrane (hydrophobic membrane is assumed, thus there is not
liquid phase flux). Besides, temperature polarisation effects are evaluated following the thermal
balance proposed by Ibrahim and Alsalhy (2013) calculating the heat transfer through the mem-
brane.
For both technologies, concentration polarisation effect is calculated based on the fluid hydro-
dynamic. The commercial module simulated is spiral wound type used for brackish seawater
desalination. Boudinar et al. (1992) presents a mathematical model for a commercial spiral mod-
ule (Filmotec) validated in the range of flowrate, pressures and temperatures used in this work.
These effects have an effect on the mass transfer coefficient modelled according to Kim and Hoek
(2005), this model also allows to calculate the NaCl concentration at the wall side, then evaluate
risk of fouling. Physical and chemical properties are calculated using the commercial software
Simulis Thermodynamics. Vapour- liquid equilibrium (VLE) is modelled using an equation of
state approach corrected by NRTL model.

2.2. Process modelling

To achieve a comparison between membrane technologies at industrial scale, it has been set a
fresh water flowrate to be produced (constraint). Then, a superstructure is defined to simulate
different scenarios governed by design and operational variables. These variables affect directly
in the process synthesis, therefore, in the key process indicators. Table 1 present a summary of
inputs, variables and key indicators used for the optimization problem.
Superstructure conception and evaluation were done with the commercial process simulation soft-
ware (ProSimPlus). Heat exchangers, pumps, flash and mixers were taken directly from the library
(ProSimPlus). Logic switch units, to control the number of stages, were set according to Zhao et al.
(2018). VMD and RO FORTRAN subroutines were added as an external module (external DLL).
Product salinity is not set as a constraint, the importance of this parameter depends on the industry;
nevertheless, it is evaluated as a process indicator for RO, and it is reported as the ratio between
NaCl concentration at the product and the feed.
RO superstructure is an adaptation of the process presented by Alsarayreh et al. (2021). It simu-
lates a process structure containing up to four stages for RO and six stages for VMD. A process
stage includes a pump (for RO) or heat exchanger (for VMD) to set fluid’s conditions and a con-
figuration of modules in parallel. Then, the number of modules in parallel is evaluated in a wide
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Table 1: Summary inputs, variables and key indicators for optimisation problem. RO mate-
rial information from Alsarayreh et al. (2021), VMD material information from Mendez et al.
(2018). AA – Active area per module, WP – Water permeability, WS- salt permeability, PVDF-
Polyvinylidene fluoride, NMP – modules in parallel, NMS – stages

RO VMD

Inputs

Water production require-
ment

4500 m3/d

Feed water salinity 35 g/L NaCl

Membrane module
characteristics

Polyamide Thin-film com-
posite

PVDF thin-film Supported

AA: 35 m2

WP:2.69X10−12m3/m2.Pa.s WP: 1.27X10−7kg/m2.Pa.s
SP: 3.2X10−8m/s

Key variables

Feed and in-process tempera-
ture

50°C – 90°C

Number of modules in parallel
and stages

NMP: 60 – 2000 NMP: 40 – 1000
NMS: 1- 4 NMS: 1- 6

Vacuum pressure 0.1 bar
Feed pressure 20 – 80 bar

Key Process
indicators (KPI)

Electricity X X
Heat X
Membrane Area X X
Product salinity X

range for each step independently. Fig. 1 shows the superstructure to simulate RO and VMD
processes.

Superstructures contains three user scripts corresponding to the following calculation:
“Power”: Calculate total electricity in MW and heat in MW(thermic) resulting from the pumps
and heat exchangers requirements.
“Area”: Calculate the total membrane area (m2) according to each simulated scenario.
“Polarisation”: Verify risk of precipitation inside the modules due to the increase of the concentra-
tion above the solubility of NaCl in water. In case of exceeding the limit concentration, this script
acts as a constraint for the process, then the solution is excluded.
This superstructure allows the evaluation of different process configuration while changing the
key variables into the ranges defined in the table 1. The KPIs are calculated as a result of each
simulated scenario.
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Figure 1: Superstructure for RO and VMD processes. ST - Stage, CP - Centrifugal pump, T -
Temperature.

2.3. Process optimization

Optimization of the superstructure is deployed in two steps:

2.3.1. Sensitivity analysis

This analysis is evaluated using the “spec” module of ProSimPlus, which it generates an action
over the inlet pressure (RO) or the inlet temperature (VMD) to accomplish the production con-
straint. Simulated cases are defined by uniform experiment plan to evaluate different module
configurations.

2.3.2. Optimization

Parameters of superstructures are optimized using an ant colony algorithm (MIDACO). For this
optimization, a multi-objective problem is defined according to the results of the sensitivity anal-
ysis. Then, a front-Pareto is obtained in function of the KPI.

3. Results and discussion

Results from the sensitivity analysis are sorted by the value of the performance indicators for each
technology. Results for EP are plotted in function of the stages (x-axis) and the average modules in
parallel (y-axis) for RO and VMD. As seen in the figure 2, there are configurations for RO being
able to accomplish the required production in one or two stages; however, these configurations
require more electrical power due to high operational pressure requirements.
For VMD, result of the sensitivity analysis does not show an optimal structure to increase EP when
sorting the results by heat as presented in figure 2, however heat required increases at low number
of modules in parallel. Besides, to get the production constrain is needed at least a two stages
process.
This partial result validates ranges and limits defined in the optimization problem. In addition, it
shows a difficulty to identify a group of desired structures while having two objectives. Then the
figure 3 shows the resultant front-Pareto solutions for the multi-objective optimization.
For RO, it is obtained a front-Pareto covering a range of values for key process indicators that can
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be post-treated to balance the impact of each indicator and identify and optimal structure. Besides,
the output concentration is proportional to the area. For VMD, the resultant front-Pareto shows
the effect of the area over heat as EP, electricity consumption remains constant for all the cases
with lower consumption than RO.
This result can be an input for an economical model allowing the identification of process and
operating parameters according to the available sources (heat and electricity). VMD present a po-
tential over RO due to its low electricity requirement, VMD potential to treat seawater increases in
case of product salinity requirements and it can be capitalised if there is a source of heat available
at low cost.
Figure 3 provides a tool aimed to guide process synthesis by presenting the expected key param-
eter for each technology according to the salinity constraints. Besides, this methodology can be
deployed with other operating conditions limited to available resources. Associated results will
support the selection of one technology in particular.
As a perspective, this evaluation can provide a baseline for the technologies comparison at indus-
trial scale. The suggested post-treatment is the addition of prices for electricity, heat and mem-
brane area according to the industry; in this way, this work can be used as an aid to decision tool
providing a more detailed OPEX and CAPEX calculation.

4. Conclusion

The modified method for superstructure optimizations applied to membrane technologies links
phenomena models with process synthesis. This tool allows the user to have a deep understanding
of the KPI at industrial scale but taking into the account the local effects like concentration and
temperature polarization and material characteristics.
This work can be used as a tool for technical and economical evaluation adapted to real prices and
financial aspects to guide the process synthesis based in membrane technologies. Then, results
can support the potential of membrane distillation in certain industrial cases.
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Abstract
Various optimization-based process synthesis approaches exist to propose a process structure and
associated parameters, which have been applied on many applications. The goal of this work is to
provide a comparison of methods on a common process synthesis problem.
Three methods are compared on an identical test problem, they differ in the synthesis approach
(based on a superstructure or generative without predefined structures), process modelling (equation-
or simulator-based), optimization algorithms (global NLP, MINLP, evolutionary) and implemen-
tation (dedicated or commercial programs). Results especially highlight the importance of the
search space definition, and the need for accurate process models during the synthesis step.

Keywords: Process Synthesis, superstructure, generative approach, separation processes

1. Introduction
In the field of process synthesis, various methods have been proposed to select a set of equipment
with their operational conditions and interconnection in a process flowsheet. These methods may
vary from empirical approaches using expert judgment or heuristics to simulate a few configu-
rations, towards optimization-based approaches where the process synthesis problem is posed as
a mathematical problem, allowing to cover a wider search space than tedious manual iterations
with process simulators. In the literature, numerous algorithms and application fields are reported.
A common approach is to use a superstructure (Mencarelli et al., 2020), i.e. a postulated set of
flowsheet alternatives, and to perform optimization among structural and design variables. Other
approaches are generative, meaning that process structures are directly proposed from a set of
available unit operations, using evolutionary or machine/deep learning algorithms (Nabil et al.,
2022), instead of choosing among a predetermined set of structures.
This work is therefore a first attempt at comparing synthesis approaches on a common process
synthesis problem. Three approaches are used on an identical test problem. At this stage, perfor-
mance indicators are mainly: found process solutions, computational efficiency, and ease of use
for a process engineer.

2. Synthesis approaches and their comparison
Three approaches (denoted here A, B and C), developed by the paper’s authors, are selected for the
comparison, summarized here. Main highlights of each approach are also reported in the Table 1,
and will be discussed in §3 based on the case study.
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Method A (superstructure - GO ; Ramı́rez-Santos et al., 2018) is superstructure-based using
continuous splitter for flow alternatives. Modelling is equation-oriented, as all governing process
equations are posed as constraints in the optimization problem. The continuous global optimiza-
tion (GO) problem is solved with an algorithm combining multi-start strategy, monotonous Basin
Hopping and local search. Implementation is performed in AMPL language with KNITRO com-
mercial solver for local searches.
Method B (superstructure - MINLP ; Zhao et al., 2018) is also superstructure-based, using here
integer switches for flow alternatives. Modelling is simulator-based using a commercial simulator,
coupled to an optimization solver (feasible path or unfeasible path). The resulting Mixed Integer
NonLinear Programming (MINLP) problem is solved by an Ant Colony Optimization algorithm.
The graphical process simulator ProSimPlus is used, in communication with MIDACO solver.
Method C (ab-initio - EP ; Neveux, 2018) is a generative approach. Modelling is also simulator-
based using an in-house simulator. The optimization problem relies on a two-level decomposition
of the process synthesis problem, an upper level for designing the topology (i.e. the process
flowsheet) using Evolutionary Programming (EP) and a lower level for evaluating the flowsheet
(optimizing the degrees of freedom for a given structure). Implementation is performed in Fortran
2008, with calls to nonlinear optimization solvers for process evaluation (e.g. MIDACO, SLSQP).

While these methods do not represent the entirety of existing approaches, they cover various defi-
nitions of the search space (superstructure, generative), system modelling (equation- or simulator-
based), optimization algorithms (continuous global optimization, mixed integer) and associated
solvers, and software ergonomics (programming language, graphical interfaces).
The comparison procedure is summarized as follows: definition of the synthesis problem (common
to all approaches), problem formulation to fit each method’s requirements (approach-specific), op-
timization runs to isolate optimal solutions (approach-specific), validation of the solutions within
a common process simulator (all approaches). The results are then compared on the basis of
various criteria such as: found solutions and their exclusivity (process structure and parameters),
computational time, ease of use for a process engineer, etc.

3. Case study: production of N2 from air using membrane gas permeation

3.1. Definition of process synthesis problem

The production of N2 from air using membrane gas permeation is chosen due to the numerous
possible stages, recycling and design variables, with non-linear and non-convex economic objec-
tive and constraints. Industrial solutions are also known for commercial membrane materials, and
prospective solutions can be assessed with other materials. The comparison is done for 90%, 95%
and 99.9% N2 purity, for given materials using fixed permeability, as well as variable materials
using permeability as degrees of freedom. This case has already been treated using the method A,
refer to Bozorg et al. (2019) for results and process assumptions.
The synthesis problem can be summarized as follows (see Figure 1): produce enriched nitrogen
from air at the lowest levelized cost of production (objective function), with given N2 purity and
process outlet pressures (production constraints). Arising degrees of freedom occur at various
level: at structural level, the choice of unit operations (membrane stages, compressors, vacuum
pumps, mixers and splitters) and their connections (sequences, by-passes, recycling etc.); at unit
operation level, each design or operational parameter (e.g. pressures, membrane areas); at ’prod-
uct’ level, the membrane permeability which could be kept fixed to given known values (e.g.
commercial membranes) or be optimized within a known region for N2/O2 separation.
The basis for membrane calculation is the MEMSIC code (Bounaceur et al., 2017), a CAPE-OPEN
unit operation software for multicomponent membrane gas separations, validated against a large
set of chemical mixtures and membranes. All operations are assumed isothermal (i.e. cooling after
compression, and Joule-Thompson effect neglected in membrane) and without pressure drop.
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Figure 1: Overview of the process synthesis problem, and associated degrees of freedom

The following bounds are chosen for the design variables: vacuum levels (pressure on the permeate
side of membrane) between 0.2 and 1 bar; compression ratio between 1 and 20 for gas compressor;
membrane stage-cut (ratio of permeate to feed flowrates) between 0.05 and 0.95 (the required
membrane area is calculated by the MEMSIC code knowing this design specification, inlet stream,
membrane permeability and pressure ratio around the membrane).

3.2. Problem formulation: approach-specific implementation

Once the process synthesis problem is defined, it needs to be transposed for each approach to fit
the method’s requirements. We overview here the main particularities, please refer to the original
papers for implementation details.

In terms of search space, methods A and B both require a superstructure, taken from Bozorg et al.
(2019), allowing between 1 and 3 membrane stages, where all membrane stage outlets (retentate or
permeate side) could be mixed and fed to the inlet of a module upstream (by-pass) or downstream
(recycle) the current stage. In method C, only the process inlet (air) and outlets (enriched N2
and O2) are mandatory, the evolutionary algorithm can use unit operations from a given library
(compressor, vacuum pump, membrane stage, mixer, splitter) to construct flowsheets.

In terms of system modelling, methods B and C are simulator-based (feasible path), meaning
that the simulator is in charge of calling the membrane MEMSIC code and solving the flowsheet
(tear streams) to provide required information to the optimizer (current objective function and
process constraints, for the given set of action variables provided by the optimizer). Method A
being equation-based, all the process equations are posed as optimization constraints, including
flow conservation and unit operation equations. The membrane stage is therefore discretized into
a finite number of ’cells’ to get an algebraic system of equations from a differential one. This
introduces a difference in physical modelling, whose influence will be discussed in §3.4.

In terms of optimization, the type and size of the problem will depend on the method. For method
A, the size will depend on the discretization level. For a binary gas mixture (N2/O2) and 3 stages,
the number of process variables and nonlinear equality constraints is between 748 and 18028 (for,
respectively, 20 and 500 discretization cells per membrane stage), in addition to 17 continuous
decision variables (splitters, pressures and membrane areas). For methods B and C, only the three
production inequalities constraints are required (N2 purity ≥ target, and pressure of both outlets ≥
1 bar), as all process equations (governing unit operation equations and flowsheeting) are solved
by the process simulator. For method B, 7 continuous (one design variable per unit operation
with a degree of freedom) and 10 integer (switches for flow path) variables are required. For
method C, the size will be different for each process evaluation as the topology is designed by the
evolutionary algorithm, in this case 1 continuous variable per unit operation.
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3.3. Optimization results: found solutions

In this section, we discuss the results obtained by fixing the permeability to 200 GPU (gas per-
meation unit) for O2 and 44 GPU for N2, i.e. values for commercial poly(p-phenylene oxide)
membranes (PPO), in order to compare with industrial processes. Obtained results are presented
in Figure 2. For each case, the best process structure is drawn as well as main process parameters
(upstream and downstream pressure, Pup and Pdown for each membrane stage) and overall process
indicators (total membrane surface area Atot, and levelized cost of production).

Figure 2: Found solutions for PPO membranes - Xyy% denotes the solution of the process synthesis
approach X for the target of yy% N2 purity

First, results exhibit high similarities with known industrial practices (Prasad et al., 1994), such as:
an increasing number of membrane stages (and process complexity) with target N2 purity, from
one stage for 90% to three stages for 99.9%; an extraction of O2 at the first stage(s) permeate; a
recycling of other permeates at the ’N-1’ stage; and an economic preference for vacuum operation
when possible, without use of compressors up to 95% targeted purity.
More specifically, for 90% purity, all methods find the same simple solution (same flowsheet and
design parameters). For 95% purity, both superstructure-based methods provide also identical so-
lutions (A95% and B95%) with a two-stages flowsheet and very closed design parameters. However,
method C provides a better solution (C95%) with a three-stages flowsheet with same pressure lev-
els, leading to a 4% lower membrane area and 2% lower production cost. It is worth mentioning
that the flowsheet of solution (C95%) was indeed included in the superstructure of methods A and
B, but not found by the optimization algorithms. This result will be validated and discussed in the
validation section (§3.4).
For 99.9% purity, all methods propose three-stages flowsheets, with variations in flowsheets. So-
lution A99.9% recycles the second stage permeate at the process inlet, whereas B99.9% and C99.9%
mix with the O2 process outlet. The best solution (C99.9%) is found by method C that was not
included in the superstructure of methods A and B, with a flowsheet similar to solution B99.9%,
simply consisting in pressurizing the retentate between stage 1 and 2, instead of at the process
air inlet. This variant is comprehensible as no additional driving force (total pressure) may be
required where the driving force is already high (O2 partial pressure in retentate side). Putting the
compressor after the first stage therefore lower the energy cost, further superstructure should there-
fore consider retentate recompression as options between each stage. Finally, solution (A99.9%) is
significantly worse than B99.9% and C99.9%, it will also be validated and discussed in the validation
section (§3.4).
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3.4. Validation: highlighting the importance of model accuracy and search space definition

The purpose of the validation step is to verify that the found solutions are actually retrieved within
a common environment, different from the one used for optimization, here the COCO process
simulator using the CAPE-OPEN MEMSIC code for membrane calculations.
From the simulations, it appears that all solutions found with various approaches and problem
definition (N2 target purity and membrane material) are validated, except the solution A99.9% found
by method A since the targeted 99.9% purity is not achieved. This is due to low deviation between
rigorous and simplified models in the majority of the operating domain, but higher deviations in
small regions with high-purity. This point is verified in Figure 3, where optimization runs are
performed with increasing number of discretization cells for the simplified membrane model. As
the discretization is more precise, both flowsheet and prediction of cost evolve until stabilizing to
the same optimum as the one obtained with the rigorous membrane model.
For simplified models (e.g. physic, numeric, metamodel etc.), attention must therefore be placed
in the regions of interests in addition to the overall domain. It highlights the need for accurate unit
operation models, even for the exploration of the process structure (large) search space.

Figure 3: Effect of membrane discretization on synthesis results for method A (simplified model)
and validation with the rigorous model under COCO simulator

Regarding solutions found by the method C, the fact that solution C99.9% is validated confirms the
interest of generative methods as this solution was not included in the superstructure of methods A
and B. In addition, it is surprising to see that the solution C95% is validated and that it was included
in the superstructure, but was not found by any of the superstructure-based methods, despite var-
ious optimization approaches, system modelling and solvers. One possible explanation is on the
way the various approaches explore the search space. In a superstructure-based approach, the en-
tirety of the structural search space is explored at once as all foreseen alternatives are transposed
into an optimization problem. Generative approaches usually work in two-levels, with an upper
level being in charge of the flowhseet, and a lower level of the optimization of a (small) flowsheet.
Each sub-optimization problem is therefore smaller and easier to solve.

3.5. Overall comparison

The Table 1 attempts to summarizing found solutions, computational efficiency and ergonomics;
in addition to details of the methods previously mentioned.
Regarding the found solutions, superstructure-based approaches (methods A and B) provide iden-
tical flowsheets and similar design parameters, if a sufficient discretization level is used when
using the method A. The interest of the ab-initio method (generative) is highlighted as a better
structure is found, which were not included in the superstructure of the other two methods, with-
out the need to define a superstructure.
In terms of computational time, implementation differences makes it difficult to assess. It is here
estimated based on the number of process evaluations (averaged over 10 random seeds, including
constraint calculations for method A and flowsheet convergence for B and C) required to reach
the reported solutions in Figure 2 for 99.9%. Superstructure based methods naturally need fewer
evaluations than the ab-initio method, whose search space is wider.
Finally, in terms of ergonomics, implementations within commercial simulators allow chemical
engineers to use familiar tools (graphical process simulators) instead of programming languages,
which could promote acceptance of these methods.
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Table 1: Overall comparison of synthesis approaches for the case study
Method A Method B Method C

(superstructure - GO) (superstructure - MINLP) (ab-initio - EP)
Synthesis

approach /
search space

Superstructure-based
(choice among a postulated

set of alternatives)

Superstructure-based
(choice among a postulated

set of alternatives)

Generative
(available unit operations

without postulate)
System modelling Equation-oriented Simulator-based Simulator-based

Optimization Continuous Global
Optimization (Monotonic

Basin Hopping + local
NonLinear Programming)

Mixed Integer NonLinear
Programming (solved by Ant

Colony Optimization)

Evolutionary Programming
(structure generation) +

NonLinear Programming
(evaluation)

Software tools Programming
(AMPL + KNITRO solver)

Graphical
(commercial simulator

ProSim + MIDACO solver)

Programming
(in-house simulator +

MIDACO/SLSQP solvers)
Membrane model Simplified discretization of

MEMSIC equation
Rigorous

(direct call to MEMSIC)
Rigorous

(direct call to MEMSIC)
Found solutions +

(if adequate discretization in
membrane model)

+
(similar as method A)

++
(similar as methods A and B

+ new ones not in superstruc.)
Computation time ++ + ≃
(Nº of evaluations) (≃ 2×106) (≃ 3×106) (≃ 10×106)

Ergonomics ≃ (programming) + (graphical) ≃ (programming)

4. Conclusion
From this case study, it is observed the importance of accurate models for unit operations, as
simplified models lead to different optimal structures and associated parameters. By extension,
the use of surrogate models for process synthesis should be done carefully, with efforts put during
the validation of the surrogate in the whole operating domain.
Also, the definition of the structural search space is crucial, as postulating a superstructure restricts
the search space. Meaning that if the optimal solutions are not in the superstructure, the optimizer
cannot find it. Generative methods are therefore less biased and can explore a wider search space.
As each approach exhibits various advantages, future works could include hybrid methods, for
example using a generative approach for the definition of a restricted search space, then treated by
a superstructure-based approach. This comparison can also be extended beyond the present case
study to more constrained separation problems, meaning a smaller feasibility region, and more
complex systems (multicomponent mixtures, multi-products, reactions, heat integration etc.).
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Abstract
Granulation in fluidized beds is an important unit operation in chemical engineering, finding
widespread use in the production of food, fertilizer and pharmaceuticals in particulate form. The
main particle size-enlargement mechanisms during this process are layering growth and agglom-
eration. Regarding the former, the possible occurrence of self-sustained oscillations during contin-
uous operation with sieve-mill-cycle is well known. For agglomeration such phenomena have not
been observed yet. The goal of this contribution is to investigate process stability for simultane-
ous layering growth and agglomeration. Therefore in this contribution a population balance based
bifurcation analysis is conducted. It can be shown that for a wide range of process conditions an
increased partition of agglomeration has a stabilizing effect on the process dynamics.

Keywords: fluidized bed, granulation, agglomeration, layering growth, bifurcation analysis

1. Introduction

Figure 1: Schematic representation of
the layering growth process (top) with
continuous addition and drying of a liq-
uid solution and agglomeration process
(bottom) with solution addition, colli-
sion and drying.

Spray agglomeration and spray granulation (layering
growth) in fluidized beds are size-enlargement unit oper-
ations, which are applied frequently during the produc-
tion of goods in particulate form, e.g. in the chemical,
food or pharmaceutical industry. Due to high mass and
heat transfer rates in the fluidized bed both processes are
highly efficient. Furthermore desired product particle
properties can be influenced by multiple adjustable pro-
cess conditions (Strenzke et al., 2020; Neugebauer et al.,
2020). The mechanisms of size-enlargement are pre-
sented schematically in Fig. 1 for both processes, hav-
ing in common that a liquid solution is sprayed onto the
fluidized particle bed. During layering growth, the liq-
uid is deposited on the surface and dried by the fluidiza-
tion medium, resulting in continuous particle growth of
an onion-like particle structure (Fig. 2). During an ag-
glomeration process however the liquid solution on the
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particle, after collision with another particle and drying,
acts as a binder, permanently connecting both particles, resulting in a blueberry-like cluster.

Figure 2: A blueberry-like agglomerate
(left) and a spherical granule from lay-
ering growth (right).

In general both layering growth and agglomeration can
occur simultaneously in a spray fluidized bed, depend-
ing on the operation conditions. A variety of research
contributions aims at identifying the dominant size en-
largement mechanism under different process conditions
(Villa et al., 2016; Rieck et al., 2020), which is important
since the final particle properties depend on it. For ex-
ample agglomerates usually are more porous than gran-
ules obtained by layering growth and therefore possess
less mechanical strength. Besides of differences in the
product particle properties, the dynamical behavior of
the two processes differs drastically with respect to time constants and stability. From theoretical
investigations (Radichkov et al., 2006) which were confirmed experimentally (Neugebauer et al.,
2019) it is known that the particle size distribution in layering growth processes with sieve-mill-
cycle as presented in Fig. 3 can exhibit self-sustained oscillations under certain process conditions.
These oscillations are highly undesired from a production point of view and can be suppressed us-
ing suitable process control algorithms (Neugebauer et al., 2020; Palis and Kienle, 2014). To the
author’s best knowledge such behavior was not observed in agglomeration processes, a bifurcation
analysis for a generic process did not reveal unstable regions (Bück et al., 2016). This leads to the
question whether and under which circumstances oscillations can occur in a process where both
agglomeration and granulation occur simultaneously. Vesjolaja et al. (2020) presented a process
model for a drum granulation process, incorporating both growth mechanisms. They found os-
cillatory behavior, however a thorough bifurcation analysis was not conducted. This contribution
aims at shedding light on the question of stability for the fluidized bed process by conducting a
multi-parameter bifurcation analysis using a generic population balance process model containing
a layering growth and an agglomeration term.

2. Process Description and Model

In this contribution a generic, continuous fluidized bed spray process with external sieve-mill-cycle
as presented in Fig. 3 is considered. Particles are fed to and withdrawn from the fluidization cham-
ber, where the liquid solution is sprayed onto the particle surface and the size-enlargement occurs.
The outlet particles are separated into three fractions by sieving according to the desired product
size specifications. While the oversized particle fraction is ground up and recycled together with
the undersized fraction, the product fraction is removed from the process.

For describing the evolution of a particle size distribution, the population balance equation is
an established modeling framework (Ramkrishna, 2000). Here the evolution of a volume-based
number density distribution n(t,v) is described by the following partial differential equation

∂n(t,v)
∂ t

= ṅgrowth(t,v)+ ṅagg(t,v)+ ṅfeed(t,v)− ṅout(t,v)+ ṅmill(t,v)+ ṅfines(t,v) (1)

where the left-hand side describes the size-dependent accumulation of particles and the right-hand
side accounts for the respective number fluxes. Typically the agglomeration term ṅagg is given in
the following volume-based formulation (Hulburt and Katz, 1964)

ṅagg =
1
2

∫ v

0
β (t,u,v−u)n(t,u)n(t,v−u)du−

∫
∞

0
β (t,v,u)n(t,v)n(t,u)du . (2)
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The second-order agglomeration kinetics are described by the so-called agglomeration kernel
β (t,u,v) which describes the rate at which particles with volumes v and u collide and form a
new particle. In this contribution we separate the kernel into a size-independent particle collision
rate β0 and a size-dependent coalescence probability βc(u,v) with values between 0 and 1, i.e.
β (u,v) = β0βc(u,v). This kernel model is equally simple and flexible due to its generality. In a
fluidized bed process the coalescence probability is a function depending on a variety of process
and material specific conditions. To keep the model simple, we choose a generic two-parametric
function βc = (u+ v)a/(uv)b known as the Kapur kernel, which allows us to simulate different
types of coalescence by varying the parameters (Otto et al., 2021). In order to keep values of βc
between 0 and 1, the kernel is normalized.

In contrast to this the layering growth term is introduced depending on the particle diameter (Mörl
et al., 2007)

˙̃ngrowth(t,d) =−G
∂ ñ(t,d)

∂d
=−

ṁspray

ρAtot

∂ ñ(t,d)
∂d

. (3)

Here ñ(t,d) describes the diameter-dependent number density distribution. In this contribution we
assume that all particles are approximately spherical, i.e. v = π/6d3, so that all diameter-based
number density distributions ñ(t,d) can be transformed into volume-based distributions n(t,v) and
vice-versa using the conservation of particle number in an infinitesimal class n(t,v)dv= ñ(t,d)dd.

The layering growth kinetics are described by the growth rate G which depends on the total particle
surface Atot and the liquid spray rate ṁspray as well as the liquid density ρ .

Çminj
Çnprod

Çnover

Çnmill

Çnfeed

Çn® nes

Figure 3: Schematic representation of the flu-
idization chamber and the sieve-mill-cycle.

Previous studies have shown that the particle
mill and especially the size of milled particles
play a major role in the emergence of oscilla-
tions. Thus, the milling model is presented

ñmill(t,d) =
q̃0,mill(t,d)

µ3(q̃0,mill(t,d))
µ3(ñover(t,d)),

where q̃0,mill is the normalized number den-
sity distribution of particles after milling, ñover
is the oversized particle size distribution and
µ3 is the third moment which is proportional
to the total volume (Radichkov et al., 2006).
For simplicity q̃0,mill is assumed to normalized
Gaussian with the milling diameter µmill and
standard deviation σmill. It is assumed that the
milling diameter can be adjusted (Neugebauer
et al., 2019).

The terms in Eq. (1), that are not described un-
til now are part of the process model, they do
however not play a major role with respect to
this bifurcation analysis. Therefore we refrain from describing them explicitly in this contribution
and refer the reader to Neugebauer (2020) for detailed information including parameters. We want
to stress that the process model presented here is the same as presented in Neugebauer (2020)
with exception of the additional agglomeration term. The volume-based formulation here can be
transformed into the diameter-based formulation without any approximations and are therefore
equivalent. Therefore the results are indeed comparable.
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3. Bifurcation Analysis

In order to generate stability maps for the variation of two general process parameters a simple
prediction-correction scheme is used. To this end steady states are computed by optimization on a
fixed, equidistant parameter grid. At every grid node (i, j) the minimization problem

n(i, j)cor = arg min
n

∣∣∣∣
∣∣∣∣
∂n
∂ t

(
v,p(i, j)

)∣∣∣∣
∣∣∣∣
1

s.t. n(v)≥ 0
(4)

is solved (correction) using a steady state distribution from the adjacent grid point (i− 1, j) as
initial guess (prediction).

Initialize algorithm:
Set i = 0, initial parameters p(0)1

and p( j)
2 and compute initial

steady state distribution n(0, j)cor

Check termination criteria
i = N − 1?

Prediction step:
i = i + 1

n(i, j)pre = n(i−1, j)
cor

Correction step:

n(i, j)cor = argmin
n

∣∣∣∣
∣∣∣∣
∂n
∂ t

∣∣∣∣
∣∣∣∣
1

Figure 4: Parameter Continuation
Scheme for one parameter.

The initial distribution predictions at (0, j) in the sta-
ble area are generated by solving the PDE numerically
over a long time horizon. The local stability is ob-
tained by linearizing around the steady states and com-
puting eigenvalues. In order to compute the minimiza-
tion and for the numerical solution of the PDE the vol-
ume coordinate in the population balance is discretized
using a finite volume method on a geometric grid with
N = 200 classes. For the agglomeration term the dis-
cretization algorithm presented in Singh et al. (2015)
is applied. The discretization of the other terms in
Eq. 1 is straight forward. For the minimization of the
L1-residuals of the time-differential, the Matlab built-in
trust-region gradient-descent algorithm is utilized.

4. Results

Previous contributions (Radichkov et al., 2006; Neuge-
bauer et al., 2020) have identified the milling grade
µmill as primary influence on the stability of the lay-
ering growth process. Based on this we choose
µmill as the first bifurcation parameter. In order to investigate the influence of an in-
creased rate of agglomeration events, we choose β0 ∈ [10−14,10−12] as second bifurca-
tion parameter, where the lower interval bound accounts for a negligible amount of ag-
glomeration events compared to the growth by layering. Therefore the stability results
for β0 = 10−14 are the same as in Neugebauer (2020). The influence of additional pro-
cess parameters is investigated by conducting the parameter continuation for selected values.

Name Symbol Value Unit
Bed mass mbed 100 kg
Mill grade µmill [0.1,0.8] mm
Collision rate β0

[
10−14,10−12

]
s−1

Injection rate ṁspray 100 kgh−1

Kapur parameters a 0
b 0

Feed rate ṁenuc 72 kgh−1

Table 1: Nominal process parameters.

The influence of an increased amount
of injected solution ṁinj is investi-
gated, since it influences the growth
rate G proportionally. The re-
sults presented in Fig. 5 indi-
cate an increased region of instabil-
ity for larger values of ṁinj, which
is in qualitative accordance with
Radichkov et al. (2006). A change
of the coalescence kernel βc is mod-
eled by varying the kernel parameter
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Figure 5: Stability map for a variation of the binder injection rate. Left: ṁspray = 80kg/h, middle:
ṁspray = 150kg/h, right: ṁspray = 200kg/h. The region of instability is colored black.
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Figure 6: Stability map for a variation of kernel parameters: b = 0.1 (left), b = 0.2 (middle) and
b = 0.3 (right). The region of instability is colored black

b. Increasing it results in preferential coalescence of smaller particles compared to coalescence of
larger particles. As depicted in Fig. 6 increasing b from 0.1 to 0.2 to 0.3 reduces the region of
instability slightly. Furthermore, the influence of the external nuclei feed rate is investigated and
presented in Fig. 7. The region of instability is reduced significantly by increasing the feed rate,
which is again in accordance with Radichkov et al. (2006).

The transitions from white to black areas in Figs. 5-7 represent supercritical Hopf bifurcation
points, i.e. transition from a stable fixed point to a stable limit-cycle (Seydel, 1998).

5. Conclusion and Future Work

In this contribution a model based bifurcation analysis was presented for a fluidized bed spray
process with layering growth and particle agglomeration. The process stability was investigated
for different plant and kinetic parameters. The results generally indicate that self-sustained oscil-
lations in the particle size distribution are dampened with an increasing number of agglomeration
events taking place. This result is in agreement with previous observations on the stability of
agglomeration processes.

Future contributions will be concerned with a more detailed bifurcation analysis for an extended
process model including the thermal process conditions such as fluid temperature and moisture as
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Figure 7: Stability map for variations of the external feed rate: ṁenuc = 0kg/min (left), ṁenuc =
1.2kg/min (middle) and ṁenuc = 1.5kg/min (right). The region of instability is colored black

well as considering the particle porosity.
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Abstract 

Reverse Osmosis (RO) desalination capacity has been increasing steadily over the years. 

However, the necessity of developing more efficient designs has become more crucial 

due the increased demands for freshwater. This study shows the development of a 

conceptual design of an efficient energy medium-scale RO brackish water desalination 

plant of the Arab Potash Company (APC) located in Jordan. In this regard, a photovoltaic 

(PV) solar farm has been combined with the original RO process to generate electricity 

in a sustainable way and decrease the overall energy consumption. To obtain an accurate 

estimation of the process performance, this work shows the utilisation of an efficient 

process model for the spiral wound RO process. Also, an accurate model for the 

photovoltaic system was obtained from the literature to conduct preliminary calculations 

of the proposed new configuration. The simulation results of the proposed RO design are 

compared to the original ones of APC and showed a considerable energy saving. 
 

 

Keywords: Brackish water; Reverse osmosis; Photovoltaics; RO-PV system; energy 

consumption
. 

1. Introduction 

Reverse Osmosis (RO) membrane desalination systems are considered to be the most 

superior technology for desalinating brackish water and producing high-quality water 

with relatively low energy consumption (Alsarayreh et al., 2020). For medium sized RO 

desalination systems, the energy consumption is estimated to be about 3.5-4 kWh/m3 and 

19 kWh/m3 for larger scale desalination system (Abdelkareem et al., 2018). However, 

there is an increased interest to promote the overall performance of RO system with an 

alleviated energy consumption. In this regard, the utilisation of renewable energy, 

especially solar energy, to power RO system desalination has proved to be one of the 

most viable and economic options to mitigate the overall energy consumption. The 

integration of solar energy systems with RO system is mainly to drive the high-pressure 

pumps (Nayar et al., 2017). An integration of RO systems and photovoltaic (PV) is one 

of the most successful and cost-effective desalination hybrid systems (Filippini et al., 

2019). Several researchers have evaluated the feasibility of installing small and medium 

scales RO seawater and brackish water desalination systems powered by a PV system.  
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A small scale PV and brackish water two-stage configuration RO desalination system has 

been constructed by Alghoul et al. (2016). They concluded that RO system can produce 

5.1 m3 of freshwater during 10 hours a day at a specific energy consumption of 1.1 

kWh/m3. The viability of using PV solar energy for brackish water RO desalination 

process in Jordan valley has been studied by Alsarayreh et al. (2017). They confirmed 

that employing PV systems for brackish water desalination is cost-effective with 

reduction of more than 20% in the initial cost.  

While many renewable energy-powered RO units have been developed for seawater and 

brackish water desalination systems, only a few attempts have been made to investigate 

the feasibility of combining PV solar energy to an industrial medium scale- brackish water 

RO desalination system of multistage, multi pass configuration. Thus, it is feasible to test 

such integrated system and explore the maximum energy saving. Unarguably, this would 

introduce a reliable and cost-effective desalination system especially for coastal areas of 

intense sun radiation. Thus, this research focuses on installing PV solar farm to be 

integrated to the multistage multi-pass brackish water RO system of the Arab Potash 

Company (APC), located in Jordan.  

The assessment of the hybrid system will be carried out based on intensive simulation 

based models developed for RO (developed by the same authors) and PV (available in 

the literature) systems. In this regard, the total energy consumption of RO desalination 

system will be firstly determined as a base case and the required number of PV panels 

and associated energy saving will be investigated for three different selected PV types.  

2. Description of RO desalination plant powered by PV system 

The layout of a brackish water RO powered by solar energy for the APC plant with 

capacity 1200 m3/day is shown in Fig. 1. It comprises of two passes with permeate and 

retentate reprocessing designs. The 1st pass has two stages of pressure vessels organized 

in the following order: (4:2). The 2nd pass contains three stages of pressure vessels 

organized in the following order: (2:1:1). The 1st pass's permeate is sent into the second 

pass for additional polishing. The 1st pass's high-concentration stream is drained. The low-

concentration streams of the 2nd pass are gathered to make the high-quality water with 

salinity of 2 ppm. The 2nd pass's high-concentration stream is returned to the 1st pass's raw 

feed water. As shown in Fig. 1, a photovoltaic (PV) solar farm is integrated with a RO 

system to provide the necessary amount of power to drive the pumps.  

3. Design of PV system   

This study will determine the number of panels required to supply the RO system for each 

type of PV system with evaluating the generated power and associated construction area. 

The RO plant feed characteristics are 1098.62 ppm, 74 m3/h, 25 °C, and 9.22 atm of 

brackish water salinity, flow rate, temperature and pressure, respectively. 

According to the simulation-based model developed by Al-Obaidi et al. (2018) based on 

the above feed conditions, the total energy consumption of the original RO plant was 

0.837 kWh/m3 for a water productivity rate of 48.6 m3/h (1166.4 m3/day). In this study, 

three type of solar panels were selected to be integrated to the RO plant. The first type is 

made by Monocrystalline, Sun-Power 315-SOLAR PAN, with an efficiency of 19.3% 

and 315 W, as maximum power (Al-Najideen and Alrwashdeh (2017). The second type 

is made by the TopSun Energy Ltd with an efficiency of 17.2% (Filippini et al. (2019). 

The third type is made by the FSM-155 W- Mono-crystalline, with an efficiency of 16% 

(Abd Elbar and Hassan, 2020). The inverter type GermanPV TRIO-27.6-TL-OUTD-S2X 

manufactured by GermanPV Inc has been used in this study and has a high value of CEC 
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efficiency of about 98% (Al-Najideen and Alrwashdeh, 2017). Tables 1, and 2 show the 

characteristics of selected types of solar panel and inverter device, respectively. 

 

 
Fig. 1. A schematic representation of a PV-RO system of APC 

 

Table 1. Technical features of the photovoltaic solar panel (Al-Najideen and Alrwashdeh, 

2017, Filippini et al., 2019, Abd Elbar and Hassan, 2020) 

Properties of the PV module 
Sun power315-
SOLAR PAN 

TopSun Energy Ltd 
FSM-155 W-

Mono-crystalline  

Maximum power output (𝑃𝑚) 315 W 440 W 155 W 

Maximum system voltage 1000 V 1000 V 1000 V 

Module efficiency (η) 19.3% 17.2% 16% 

Rated current at maximum power 

(𝐼𝑚) 
5.76 A 8.86 A 8.15 A 

Rated voltage at maximum power 

(𝑉𝑚) 
54.7 V 49.67 V 30.7 V 

Module length (L) 1.559 m 1.960 m 1.482 m 

Module height (h) 1.046 m 1.308 m 0.676 m 

Module depth (d) 0.046 m 0.040 m 0.035 m 

solar radiation (G) at 25 ◦C 1000 W/m2 1000 W/m2 1000 W/m2 

 

Table 2. Inverter specifications (Al-Najideen and Alrwashdeh, 2017) 

Properties for Input DC Value 
Properties for Output AC Value 

Max. recommended PV power 30 kW 

Max. DC voltage 1000 V Maximum efficiency 98 % 

Rated MPPT voltage range 
252- 970 

V 
Nominal AC rated power 27.6 kW 

Nominal DC rated power 28.6 kW Maximum AC output power 30 kW 

Number of MPP tracker inputs 2 Nominal AC rated line voltage 400 V 

Max. input current / per MPP tracker input 
64 A / 32 

A 
AC voltage rang 

320–480 

V 

Number of DC input pairs (parallel 
connection) 

5 AC maximum output current 45 A 
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4. Modelling of RO-PV system of APC 

Al-Obaidi et al. (2018) developed a steady-state model for the APC medium-scale 

brackish water RO desalination system. The detailed model was validated against actual 

APC data before being used to study plant performance under variable operating 

conditions. For the convenience of the reader, it is recommended to revise Al-Obaidi et 

al. (2018) for the model’s details of the RO system. This model was recently upgraded by 

including a specific sub model to measure the power generated by the PV system. 

5. Modelling of Photovoltaic System 

The required energy power of RO desalination 𝐸𝑃𝑜𝑤𝑒𝑟 𝐷𝑒𝑠. is estimated using Eq. 1, 

(Filippini et al., 2019). 

𝐸𝑃𝑜𝑤𝑒𝑟 𝐷𝑒𝑠. = 𝑀𝑅𝑂 × 𝐸𝐶𝑜𝑛𝑠.  𝑅𝑂                                                                                                                (1) 

where 𝑀𝑅𝑂, and 𝐸𝐶𝑜𝑛𝑠.  𝑅𝑂, are the productivity of freshwater of RO process (m3/day), and 

energy requirement for RO (evaluated in kWh/m3), respectively. 

The on-grid type is the most basic PV installation system model in which the load is 

supplied by the user and the suggested inverter is simply equal to the nominal array 

power. However, the energy produced by the array equivalent to the energy available to 

the grid in MWh and can be calculated by the following equation 

𝐸𝑔𝑟𝑖𝑑 = 𝐸𝑃𝑜𝑤𝑒𝑟 𝐷𝑒𝑠. × η𝑖𝑛𝑣.                                                                                                (2)                                                  

where η𝑖𝑛𝑣 , is the inverter efficiency. 

Based on the grid configuration, the grid may not be able to absorb all the supplied energy. 

In this regard, the actual amount of energy delivered can be calculated using Eq. 3 (Al-

Najideen and Alrwashdeh, 2017). 

𝐸𝑎𝑐𝑡𝑢𝑎𝑙 =  𝐸𝑔𝑟𝑖𝑑 × η𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑                                                                                                                        (3) 

where η𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑 , is the efficiency grid absorption rate  

The energy power for PV module 𝐸𝑃𝑜𝑤𝑒𝑟 𝑀𝑜𝑑𝑢𝑙𝑒  , can be calculated using Eq. 4 

𝐸𝑃𝑜𝑤𝑒𝑟 𝑀𝑜𝑑𝑢𝑙𝑒 = η𝑀𝑜𝑑𝑢𝑙𝑒 × 𝐴Module × 𝐺                                                                                       (4) 

where η𝑀𝑜𝑑𝑢𝑙𝑒  , 𝐴Module, and 𝐺  are the solar panel module efficiency (%), the PV 

module area (m2) and the solar radiation in (kW/m2), respectively. 

The required number of PV panels is calculated as follows: 

NPV, Panels = 
𝐸𝑃𝑜𝑤𝑒𝑟 𝐷𝑒𝑠.

𝐸𝑃𝑜𝑤𝑒𝑟 𝑀𝑜𝑑𝑢𝑙𝑒
                                                                                                                  (5) 

Eq. 6 can also be used to calculate the hourly total power generated by the PV system, 

measured in kW and based on the value of the PV array (Mokheimer et al., 2013); 

PowerPV = NPV,Panels × 𝑉pv × 𝐼pv                                                                                                    (6) 

where NPV,Panels ,𝑉pv, and 𝐼pv are the number of the PV modules, the voltage of each PV 

module and current of each PV module, respectively.  

6. Evaluation of PV-RO system for various types of solar panels  

As stated in section 3, the required power of RO desalination 𝐸𝑃𝑜𝑤𝑒𝑟 𝐷𝑒𝑠. is estimated from 

Eq. 1 to be 976.28 kWh/day (40.67 kW), and annually about 356.34 MWh at the selected 

operating conditions. Using Eqs. 2 and 3, the annual energy available to the grid is 

estimated to be 349.2 MWh and the actual energy delivered annually is 345.7 MWh, with 

an inverter efficiency of 98% and grid absorption rate of 99%. The power of three PV 

modules, was estimated based on Eq. 4: (Sun power315-SOLAR PAN), (TopSun Energy 

Ltd), and (FSM-155 W-Mono-crystalline) and are 0.31 kW, 0.44 kW, 0.16 kW, 

respectively.                                                                         
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At standard test conditions for SOLAR PAN module, the rated voltage for each panel is 

54.7 V and the rated current is 5.76A, whereas the maximum system voltage is 1000 V, 

according to the solar panel data sheet and Table 1. Dividing the maximum system voltage 

by the panel rated voltage gives the number of panels in series orientation; that is 18.3 = 

18 panels in series. Therefore, 7 parallel lines are required each with 18 panels connected 

in series (5.67 kW, 984.6 V, 5.76A). According to the panel data sheet in Table 1, the 

panel area with its frame is 1.63 m2. Thus, the required area is 210.4 m2.  

For the TopSun Energy module, the rated voltage for each panel is 49.67 V and the rated 

current is 8.86 A, whereas the maximum system voltage is 1000 V. The number of panels 

in series orientation is 20.1=20 panels. Therefore, 4.5 parallel lines are required each with 

20 panels connected in series (8.8 kW, 993.4 V, 8.86 A). Thus, the panel area with its 

frame is 2.56 m2 with required area of 235.8 m2.   

For the W-Mono-crystalline module, the rated voltage for each panel is 30.7 V and the 

rated current is 8.15 A, whereas the maximum system voltage is 1000 V. The number of 

panels in series orientation is 32.6 =33 panels, and therefore, 7.7 parallel lines are required 

each with 30 panels connected in series (5.12 kW, 1013.1 V, 8.15 A). Finally, the panel 

area with its frame is 1.002 m2 and therefore 254.5 m2 is required to construct this type 

of solar panel.    

Using Eq. 5, the number of PV panels required for the Sun power315-SOLAR PAN, 

TopSun Energy Ltd and FSM-155 W-Mono-crystalline modules are 129, 92 and 254, 

respectively. 

Table 3 shows the calculations of total power generated by the three selected PV systems 

in kW and based on the value of the PV array. The calculations of the generated power 

are also based on 100% energy saving. For the convenience of the plant operator, Table 

3 shows the calculation of the power generated of three PV modules with 90%, 80%, 

70%, 60% and 50% of energy saving. Also, the required construction area and the number 

of panels are calculated for each option. Logically, the reduction of energy saving implies 

lesser required construction area and panels. Using Eq. 6, the PV power required based 

on the number of panels for three selected types of PV modules are 40.674 kW, 40.677 

kW, and 40.672 kW. 

 

Table 3. The energy saving and construction area of three types of PV of different number 

of panels 

Sun power315-SOLAR PAN  TopSun Energy Ltd Module type FSM-155 W-Mono-crystalline 
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129 40.67 100 210.4 92 40.67 100 236.5 163 
40.6

7 
100 163 

116 36.6 90 189.4 83 36.6 90 213 146 36.6 90 147 

103 32.5 80 168.3 74 32.5 80 189 130 32.5 80 130 

90 28.4 70 147.3 65 28.5 70 166 113 28.5 70 114 

77 24.4 60 126.2 55 24.4 60 142 98 24.4 60 98 

64 20.3 50 105.2 46 20.3 50 118 81 20 50 82 

 

Most importantly, the PV module type TopSun Energy Ltd is the most feasible and 

favorable option to generate the required power of RO desalination process with the least 

number of panels compared to the other tested modules (Table 3). However, the 
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construction area required to install the Sun power 315-SOLAR PAN Module type is the 

lowest one compared to the other tested ones.  

7. Conclusions 

This paper presents the integration system of PV and RO brackish water desalination 

plant of Arab Potash Company. The simulation of the proposed PV-RO system is carried 

out based on a developed model of subsystems. The simulation results confirm the 

possibility of gaining full energy saving for three types of PV modules. The calculations 

have determined the number of panels and construction area required for each PV system. 

More specifically, the PV module of TopSun Energy Ltd has been selected as the most 

feasible option. This study therefore lays the foundation for further improvement to 

lowering the overall freshwater production cost of the RO desalination plant of APC.    
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Abstract 

Global carbon emissions are continuously increasing, clean and sustainable technologies 

are needed to utilize fossil fuels. Methanol is a clean fuel that can enable a smooth 

transition between fossil fuels and renewables. This work explored the production of 

methanol through two different fossil fuels, i.e., natural gas (case I) and vacuum residue 

(case II). Aspen Plus has been utilized to simulate the two processes for the methanol 

production capacity of 90 t/h with 99.9 wt. % purity. The two methanol production 

processes are compared in terms of energy, environmental and economic factors. The 

important reactive sections of the two processes are validated with the design data to 

ascertain the accuracy of the results. The results show that case II has a process efficiency 

of 49.5 % which is 1.6 % higher compared to the case I. From an economics point of 

view, case II design can produce methanol at a unit cost of $317/t CH3OH, which is 14% 

less than the case I design. As a result of the environmental analysis, the case I design 

releases fewer carbon emissions than case II.  Despite this, the case II design offers CO2 

captured with high purity that can be used for another application which can further 

reduce the production cost of methanol. 

Keywords: vacuum residue gasification; carbon capture and utilization; methanol; 

process simulation  

1. Introduction 

The high emission of greenhouse gases (GHGs) is attributed to the increase in energy 

demand. Carbon dioxide is considered as one of the main contributors to carbon 

emissions. Therefore, several technologies have been developed to reduce CO2 emissions 

such as carbon capture, utilization and storage (CCUS) (Alibrahim et al., 2021). The 

utilization and conversion of CO2 to clean fuels or other added-value chemicals is one of 

the potential approaches to reduce carbon emission in the chemical industry. Therefore, 

the conversion of CO2 to methanol is one of the key routes. Methanol is also an important 

feedstock downstream to produce many valuable chemicals. Moreover, methanol 

blending with gasoline provides clean combustion characteristics. Besides, methanol has 

a wide-ranging of uses in painting, anti-freezing agents, production of biodiesel, and 

denitrification of wastewater (Khalafalla et al., 2020). Based on all these applications, 

methanol demand has rapidly increased in the global market. Currently, China is the 

largest consumer of methanol, accounting for around 58% of methanol usage. It is also 
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predicted to grow at a compound annual growth rate (CAGR) of 5.66 % from 2019 to 

2027 due to the methanol-to-olefin industry (Inkwood Research, 2020). Most of the 

methanol is produced via the catalytic reaction of the synthesis gas. Recently, methanol 

production technologies utilize CO2 as a feed source. Many studies have been conducted 

on CO2 direct hydrogenations to methanol. Battaglia et al. (Battaglia et al., 2021) studied 

the techno-economics parameters for methanol synthesis through direct hydrogenation of 

CO2 captured from power plants with hydrogen from water electrolysis. They also 

performed heat integration and utilization between different sections and reported savings 

of cooling and heating loads as high as 47% and 81% respectively. Ahmed (Ahmed, 2021) 

also performed a techno-economics analysis for the co-production of methanol and 

hydrogen. He reported an increase in efficiency compared to the standalone technologies. 

 
Gasification, another synthesis gas production technology, converts heavy carbon-based 

feeds to synthesis gas as an intermediate for many useful chemicals. Choi et al. (Choi et 

al., 2007) studied the composition of the synthesis gas produced through gasification of 

the vacuum residue. They concluded optimal operating conditions for the temperature 

and pressure are 1200 – 1250°C and around 1 bar respectively. Al-Attas et al. (Al‐Attas 

et al., 2021) studied operational parameters of co-gasification of vacuum residue and 

biomass. They stated that oxygen content in the biomass increases the activation energy 

for the gasification reaction. 

 

Saudi Arabia produces over 200,000 barrels per day (BPD) of vacuum residue used in 

asphalt production. Its massive production capacity rises environmental concerns in 

addition to environmental regulations of sulfur content in asphaltene (Al-Rowaili et al., 

2021). In this study, the conversion of vacuum residue through gasification is proposed 

to reduce its carbon emissions. Both conventional steam methane reforming to methanol 

and vacuum residue gasification to methanol processes have been simulated using Aspen 

Plus® V11. Moreover, comparative analysis has been performed based on equal 

production rate and the purity of the methanol. 

2. Process design 

2.1. Methanol production from natural gas (Case I) 

This process consists of five major units; sulfur removal unit, steam reforming, gas 

compression, methanol synthesis, and methanol purification unit. Toxic sulfur 

components harm the catalysts of both syngas reforming and methanol synthesis; thus, it 

is removed to a trace level less than 1 ppm. Natural gas (NG) is fed to the desulfurization 

unit which utilizes a fixed-bed reactor at high operation conditions of temperature and 

pressure, about 300 – 400°C and 30 – 130 bar respectively. The sweet NG stream is sent 

to the steam reforming unit where methane is converted to syngas as mentioned in Eq.1. 

The hot syngas is utilized to heat the feed of the reformer through a network of heat 

exchangers. The reactor effluent stream contains CO, CO2, H2, unreacted CH4, and some 

amount of water. 

𝐶𝐻4 + 𝐻2𝑂 ⇄ 𝐶𝑂 + 3 𝐻2                       ∆𝐻298𝐾 =  206.3 𝑘𝐽/𝑚𝑜𝑙             (1) 

The produced syngas is then compressed to operation conditions of the methanol 

synthesis block. Methanol synthesis is an exothermic process and happens in a 

commercial fixed-bed reactor operating at pressure and temperatures between 50 to 100 

bar and 230 to 270°C, respectively. The crude methanol produced from the synthesis 

reactor is sent to the purification unit which consists of two distillation units to produce 
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90 t/h of methanol with a purity of 99.9 wt.%. Figure 1 shows a simplified block flow 

diagram of the steam reforming process of natural gas to methanol.   This process has been 

simulated using Aspen Plus using the Peng-Robinson equation of state (PR-EOS). 

 

Hydro-
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Figure 1: Block diagram of methanol production from natural gas (Case I) 

2.2. Methanol production from vacuum residue (Case II) 

Vacuum residue (VR) is utilized for syngas production via gasification technology. The 

composition and heating value for the VR is adapted from the literature (Al-Rowaili et 

al., 2021). PR-EOS has been selected as a method for the thermodynamic models to 

predict the thermodynamic properties. The block flow diagram for the case II design is 

illustrated in figure 2. 
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Figure 2: Block diagram of methanol production from vacuum residue (Case II) – sweet shift 

The vacuum residue is assumed to be supplied from the refinery vacuum distillation unit 

(VDU). The vacuum residue along with oxygen and steam are fed to the gasifier. The raw 

syngas leaves the gasifier at 1300°C, which is utilized in the heat recovery steam 

generation unit (HRSG) to produce high-pressure steam and power. The raw syngas 

contains a mixture of gaseous products including CO, CO2, H2, H2O, H2S, and minor 

quantities of other gases. Methanol has been used as a physical solvent in the absorber 

for removing more than 99.9% of the sulfur components in the raw syngas. The sweet gas 

has a low syngas ratio that is not suitable for methanol production. Hence, 38% of the 

total syngas is sent to the water-gas shift reactor unit (WGS) where most of CO is 

converted to H2 by the reaction with steam as Eq. 2. This step is key to meeting the H2 

deficiency in the sweet syngas ratio which requires a stoichiometric number (SN) from 2 

as depicted in Eq. 3. Excess CO2 is produced due to the water gas shift reaction and it is 

captured by methanol absorption to fix the stoichiometric number. 

𝐶𝑂 + 𝐻2𝑂 ⇄ 𝐶𝑂2 +  𝐻2                       ∆𝐻298𝐾 =  −41 𝑘𝐽/𝑚𝑜𝑙                                                     (2) 

SN =  
[𝐻2]−[𝐶𝑂2]

[𝐶𝑂]+[𝐶𝑂2]
                  (3) 
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The mixed syngas is compressed and heated to 100 bar and 230°C respectively to meet 

the methanol synthesis reactor conditions as shown in figure 3. Methanol synthesis 

reactor is modelled as an adiabatic quenching reactor with five stages due to the 

exothermic nature of methanol synthesis as shown in Eq. 4 – Eq.6. 

𝐶𝑂 + 2𝐻2 ⇄ 𝐶𝐻3𝑂𝐻                            ∆𝐻298𝐾 = −90.77𝑘𝐽/𝑚𝑜𝑙            (4)  

𝐶𝑂2 + 𝐻2 ⇄ 𝐶𝑂 + 𝐻2𝑂                       ∆𝐻298𝐾 =  +41.21𝑘𝐽/𝑚𝑜𝑙                            (5) 

𝐶𝑂2 + 3𝐻2  ⇄ 𝐶𝐻3𝑂𝐻 + 𝐻2𝑂           ∆𝐻298𝐾 =  −49.16𝑘𝐽/𝑚𝑜𝑙                  (6)  

 

Figure 3: Process flow diagram for Methanol synthesis unit 

The crude methanol produced from the synthesis reactor is sent to the purification unit 

that consists of two distillation units to produce 90 t/h of methanol with 99.9 wt.% purity. 

3. Results 

3.1.  Model Validation 

The simulation results have been validated for the main units such as the gasifier and the 

steam reformer as shown in figure 4-a. The nature of the feedstock used to produce syngas 

directly affected the quality of the syngas and their composition. The raw syngas 

produced from steam reforming technology has a higher H2/CO ratio compared to VR 

gasification. Moreover, methanol synthesis is also validated with design data as illustrated 

in figure 4-b. The result shows well agreement between both the simulation results and 

design data. 

Figure 4: Model validation results: a) for reforming and gasification reactors respectively.            

b) for methanol reactor. 
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3 .2 . Techno-economic and Environmental Analysis

Energy analysis has been performed for both the proposed design and 

conventional steam reforming to estimate the energy consumption in these processes. 

Table 1 presents a summary of the energy consumption of various units in case I and case 

II designs.

Table 1: Energy consumption of various sections in case I and case II designs

Case I (MW) Case II (MW)

Steam reforming 208.9 VR Gasification 6.1

Compression 34.6 Cleaning unit 52.9

Methanol synthesis 225.4 WGS 190.8

Methanol Purification 149.9 Compression 31.1

Methanol synthesis 188.4

Methanol Purification 84.6

The findings illustrate that the case I process has a 14.9% higher total energy consumption 

compared to case II. Moreover, the energy efficiency has been calculated for the two processes and 

the result shows that the case I process has 47.9% which is 1.6% lower than the case II process. On 

the other hand, based on the environmental impact carbon emission has been calculated for both 

processes. Case I design is more environmentally sustainable compared to case II because it has a 

lower CO2 emission per unit of methanol produced. Furthermore, economic analysis has been 

studied for both scenarios. The unit cost of methanol product from the case II process is 

$ 317/tCH3OH which is 14% lower compared to the case I process as shown in figure 5.
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Figure 5: Techno-economic and environmental analysis.

4. Conclusion

In order to minimize the emissions of CO2, the conversion of heavy vacuum residue to 

green fuel is proposed. In this study, comparative analysis between conventional 
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methanol production from natural gas and vacuum residue feed has been studied to 

produce 90 t/h with 99.9 wt. % purity. The overall results show that the proposed case II 

process has a lower energy consumption as compared to the conventional case I design. 

Moreover, case II is more economical compared to the natural gas-based case I since it 

has a lower cost of production. On the other hand, the proposed design has a higher 

specific carbon emission compared to the conventional steam reforming process. 
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Abstract 

Process intensification has been widely researched in recent years because of its 

possibility of reducing process capital/operating cost and carbon emissions. It has been 

shown that implementing intensified/hybrid unit operations into the process industry can 

significantly improve the process performance. This work aims to develop an integrated 

process synthesis framework, which includes reaction synthesis for the reaction pathways 

selection and process intensification in the early stages of process synthesis-design. So, 

given the product one needs to produce, this framework could identify the optimal 

reaction pathway with its best separation route, which includes both traditional and 

hybrid/intensified equipment. The framework was applied to a dimethyl carbonate 

(DMC) production case study. Eight potential reaction pathways are identified, and three 

of them are further analyzed in separation synthesis.  
 

Keywords: process synthesis, intensification, reaction synthesis. 

1. Introduction 

Process intensification is defined as a set of innovative solutions, which aims to improve 

the whole process performance, such as lower capital/operating costs, minimizing waste, 

and carbon emissions. As a potential method for process improvement, identifying and 

applying process intensification will be critical. Lutze et al. (2013) proposed a 

phenomena-based methodology to identify and incorporate intensified equipment options 

into process synthesis. Tula et al. (2017) further integrated the phenomena-based 

methodology into a process synthesis framework to identify sustainable process 

flowsheets, including hybrid/intensified unit operations. Furthermore, researchers have 

evaluated different hybrid distillation configurations, and the results show potential 

energy savings up to 30% and capacity enhancement of 20%. Bhargava et al. (2019) 

indicated that the intensified equipment, e.g., dividing wall column, has 20-30% lower 

capital cost than conventional distillation systems. Applying intensification in the early 

stages of process design, e.g., separation synthesis, is one potential way to generate 

sustainable process flowsheets with higher energy efficiency and lower environmental 

impact. However, this method is usually applied for generating sustainable processes with 

a given reaction pathway without considering the possibilities of different raw materials. 

Generally, to produce a given target product, multiple reaction pathways are available, 

and each reaction pathway leads to different downstream processes. To identify the best 

process to produce the target product, not only process intensification but also different 

feasible reaction pathways should be considered. In this work, an integrated process 

synthesis framework including reaction synthesis and separation synthesis is proposed to 

identify the best processing route for chemical production.  
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2. Framework 

The three-stage integrated process synthesis framework is shown in Figure 1. In stage 1, 

reaction synthesis is applied to identify novel reaction pathways with potential lower 

environmental impact and separation cost. Here, the input is either raw materials or target 

products so that the forward synthesis or retrosynthesis model can be used to generate 

multiple novel reaction pathways. In stage 2, with different identified novel reaction 

pathways, the downstream separation synthesis is applied to find its corresponding 

optimal process flowsheets. In stage 3, the identified process is designed and verified 

using rigorous models. A detailed description of reaction synthesis and separation 

synthesis is provided in the following sections. 

 

Figure 1. Integrated framework for process synthesis problem 

2.1. Reaction Synthesis 

Reaction synthesis was initially developed to assist organic chemistry and pharmaceutical 

research. The task of reaction synthesis is to identify an optimal reaction path to produce 

a product (retrosynthesis) or utilize the raw material (forward synthesis). Given the target 

product, the retrosynthesis model can reversely identify different starting materials. 

Generally, reaction synthesis methods can be classified into logic-centered approach, 

direct associative approach (Nishida et al., 1981), and data-driven approach (Coley et al., 

2017). In this work, a data-driven approach-based reaction synthesis framework is used, 

which is shown in Figure 2. First, a specific target product or material is given to the 

reaction synthesis model. In step R1, a constructed retrosynthesis or forward synthesis 

tool is applied for reaction path prediction. The tool uses a neural network to find the 

reaction template where the product/reactant has the highest structural similarity to the 

input molecule. Then, these identified templates are used to predict the reaction pathways. 

In this way, multiple feasible reaction pathways, including the predicted and external 

literature pathways, are generated. In step R2, based on the identified reaction pathways, 

a rule-based screening method is applied to select the optimal reaction pathways. The 

screening method includes the following rules/conditions: 

1) Viable reactants that have a good production pipeline. 

2) Reactions that have lower absolute reaction enthalpy values are preferred. 

3) Toxicity for reaction i: 𝐿𝐶50𝑖 = 𝑚𝑖𝑛{𝐿𝐶50𝑖,𝑗}, j represents component j. Reactions 

that have higher LC50 are preferred. 

4) Separation driving force of reaction i: 𝐷𝐹𝑖 = ∏ 𝐷𝐹𝑖,𝑗𝑘𝑗,𝑘 , jk represent binary 

components j and k. Reactions with a higher DF value are preferred as they may be 

easier for separation. 

5) Economic viability. 

 

2.2. Separation Synthesis  

The separation synthesis framework utilizes the thermodynamic insight-based process 

synthesis method by Tula et al. (2015). It has six steps (Figure 3): problem definition, 

problem analysis, feasible separation techniques identification, process alternative 

generation, process ranking, and design/verification. In step 1, the raw materials, 
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products, inlet conditions, and product purity specifications are specified. In step 2, 

azeotropic/eutectic analysis is performed, and binary ratios of pure component properties 

are calculated. In step 3, based on the data from the analysis step and predefined selection 

rules, all feasible separation techniques are identified. Here, conventional unit operations 

and recently developed hybrid/intensified separation techniques, including distillation-

membrane, distillation-adsorption, distillation-crystallization, and membrane-

crystallization, dividing wall column, are considered in identifying the feasible separation 

techniques. In step 4, based on the identified superstructure of separation techniques, all 

the feasible process alternatives are generated. In step 5, a ranking algorithm is applied to 

evaluate all the process alternatives. Here, all the processes are ranked based on their 

process energy indices, which is the summation of the estimated energy consumption of 

each unit operation. For example, the energy consumption for distillation and hybrid 

distillation is estimated based on first principle-based models (Lange, 2017) as shown in 

Equations (1) and (2). Energy consumption for the other unit operations is based on 

enthalpy balances (Equation (3)). After the evaluation step, the processes with lower 

process energy indices are selected. Finally, these top processes are further evaluated 

using rigorous models. In this way, the method identifies the best process alternatives and 

their optimized design/operating conditions. 

 

Figure 2. Framework for reaction synthesis. 

𝑄𝑑 = 57 × ∑
𝑤𝑖

∆𝑇𝑖
𝑖

 (1) 

𝑄𝑑ℎ𝑠 = 𝜂 × 𝑄𝑑 (2) 

𝑄ℎ𝑠 = 𝐻𝑜𝑢𝑡𝑁𝑜𝑢𝑡 − 𝐻𝑖𝑛𝑁𝑖𝑛 (3) 

Where 𝑄𝑑 is the reboiler duty; 𝑤𝑖  is the inlet mass fraction of component 𝑖; ∆𝑇𝑖  is the 

atmosphere boiling point different between component 𝑖 and 𝑖 + 1 (ranked based on 

boiling point); 𝑄𝑑ℎ𝑠 is the reboiler duty for distillation hybrid separation techniques; 𝜂 is 

an constant coefficient; 𝑄ℎ𝑠 is the heat duty for the other separation techniques; 𝐻𝑜𝑢𝑡  and 

𝐻𝑖𝑛  are the enthalpy at outlet and inlet conditions; 𝑁𝑜𝑢𝑡 and 𝑁𝑖𝑛 are the outlet and inlet 

flowrates. 

3. Case Study 

The developed framework is applied to a DMC production case study. This case study 

aims to find the best reaction pathway and its separation route for DMC production. First, 

reaction synthesis (Section 3.1) is applied to generate and select the top reaction 
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pathways. Next, the selected top reaction routes are given to the separation synthesis 

(Section 3.2) step to determine the optimal separation flowsheet. 

 

Figure 3. Framework for separation synthesis. 

3.1. Reaction Synthesis 

In this step, the retrosynthesis tool ASKCOS is applied to generate different feasible 

reaction pathways (github.com/ASKCOS). To maintain good prediction accuracy, default 

settings are used to generate these potential reaction pathways. A total of eleven reactions 

are generated, including eight reactions from ASKCOS and three from literature 

(Kongpanna et al., 2015). After applying the rule-based approach, three of these reactions 

routes violate the first rule, which leads to eight reactions pathways for further screening. 

Table 1 shows the eight reactions and calculated/estimated reaction enthalpy, toxicity, 

and separation driving force. Based on the criteria in Section 2.1, the top three are reaction 

routes 3, 4, and 5, which are sent to separation synthesis for further analysis. 

Table 1. Potential feasible reactions for DMC production. 

No. Reactants Products ΔH LC50 DF 

1 CH3OH C2H3ClO2 C3H6O3 HCl 0.88 47.46 0 

2 CH3OH CH4N2O C3H6O3 NH3 109.99 129.51 0 
3 CH3OH CO2 C3H6O3 H2O -22.9 129.51 0 

4 CH3OH C3H4O3 C3H6O3 C2H6O2 -22.05 129.51 0 

5 CH3OH C3H6O3 C3H6O3 C3H8O2 26.67 129.51 0 
6 CH3OH CO,O2 C3H6O3 H2O -305.7 129.51 0 

7 CO CH3ONO C3H6O3 NO -189.6 63.67 1 

8 CH3OH CCl2O C3H6O3 HCl -70.75 128.14 0 

3.2. Separation Synthesis 

Separation synthesis is performed to produce 56.4 kmol/h of DMC using the identified 

three mechanisms. The raw materials requirements, inlet conditions, and product 

specifications are shown in Table 2. In the mixture analysis step, DMC/methanol and 
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DMC/water are identified as binary azeotropes. Based on pure component and mixture 

analysis, all feasible separation techniques are identified. Table 3 shows an example of 

all the feasible separation techniques for reaction 3.

Table 2. Inlet conditions for separation synthesis.

Reaction 3 Reaction 4 Reaction 5

CH3OH kmol/h 56.4 56.4 56.4

C3H6O3 kmol/h 46.8 56.4 56.4

H2O kmol/h 46.8 - -
C3H4O3 kmol/h - 18.2 -

C2H6O2 kmol/h - 46.8 -

C3H6O3 kmol/h - - 18.2

C3H8O2 kmol/h - - 46.8

Pressure bar 10

Purity specification mol% CH3OH, C3H6O3: 99.5 mol%

Table 3. Feasible separation techniques for methanol/DMC and DMC/water.

Binary Mixture Feasible Separation Techniques

Methanol/DMC Membrane, adsorption, distillation-membrane, 

distillation-adsorption, extractive distillation
DMC/water Azeotropic distillation, membrane, adsorption, 

distillation-membrane, distillation-adsorption

A total of 16, 127, and 166 process alternatives are generated for reactions 3, 4, and 5,

respectively. All the alternatives are ranked based on their process energy indices. For 

each reaction pathway, the top two process alternatives are selected for rigorous 

simulation. Figures 4 and 5 show the flowsheets of these top selected process alternatives.

Figure 6 compares the simulation results of all the top alternatives with respect to 

utility/capital cost and process environmental factors like carbon footprint and global 

warming potential (GWP). From Figure 6, the process alternative from reaction pathway 

4 has the lowest utility, capital cost, and environmental impact compared to the top 

alternatives from other pathways. Reaction pathway 3 has two azeotropes, which leads to 

higher separation cost and carbon emissions.

Figure 4. Top two separation configurations for reaction 3 (from left to right R3_ P1, R3_ P2).

4. Conclusions

An integrated process synthesis framework is developed to identify the best process 

flowsheet, including both reaction synthesis and separation synthesis. Given the product 

compound, the reaction synthesis generates multiple feasible reaction pathways, while

the separation synthesis identifies the best downstream separation flowsheet, including 

intensified/hybrid separation techniques. The framework was applied to a DMC 

production case study. The results show that the best pathway for DMC production is 

using propylene carbonate and methanol as reactants with distillation-membrane and 
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dividing wall column for separation, which has 20% lower operating cost than the 

conventional extractive distillation process. 

 

  

Figure 5. Top two separation configurations (from left to right R4(5)_P1, R4(5)_P2) for reaction 

4 and 5 (similar reactants and byproducts, which leads to the same top two separation flowsheets). 

 

Figure 6. Comparison of six process alternatives. 
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Abstract 
In this work, we address the simultaneous design of an integrated macroalgae-based 
biorefinery and its heat exchanger network for the production of alginates, high added- 
value chemicals and advanced biofuels. We apply a superstructure approach, which is 
formulated as a mixed integer nonlinear programming (MINLP) model. The resulting 
MINLP model has more than 53000 constraints and continuous variables and 14000 
discrete variables. Net present value is the objective function. Numerical results show that 
heat utility costs are reduced by 41 % due to heat integration, as compared to a base case, 
and the production of alginates and dimethyl-isosorbide (DMI) via sorbitol, as well as 
methane as biofuels are selected in the optimal scheme.  
 
Keywords: MINLP, Heat Exchanger Network, Macroalgae biorefinery. 

1. Introduction 
The use of macroalgae in the biorefinery concept is known to positively contribute to the 
environmentally friendly production of bioproducts (Zapata-Boada et al., 2021). Despite 
recent contributions (González-Gloria et al., 2021; Kostas et al., 2021), there is still a gap 
in the understanding of using macroalgae species to obtain chemical products industrially 
(Sudhakar et al., 2019).  
Alginates are a family of polysaccharides composed of mannuronic and guluronic which 
constitute the main commercial product from brown macroalgae with a wide range of 
applications in the food, cosmetical, pharmaceutical and nutraceutical industries. 
Currently, alginate is commercially produced in USA, Japan, China, France, and Norway 
(Gomez et al. 2009). The giant kelps Macrocystis pyrifera and Lessonia sp. 
(Laminariales, Phaeophyceae) are brown macroalgae widely distributed throughout the 
cold water of the Argentinean Patagonia, with great potential to be sustainable exploited 
(Zaixso and Boraso, 2015) for hydrocolloids, materials, chemicals and biofuels integrated 
production (Pedrozo et al., 2021; Ramos et al., 2021). 
In this work, we propose a mixed-integer nonlinear programming (MINLP) model for the 
simultaneous plant design and heat exchanger network synthesis of a macroalgae-based 
integrated biorefinery for alginate, chemicals and advanced biofuels. In previous work, 
we formulated a biorefinery model (Casoni et al., 2020) for the production of the platform 
molecule isosorbide, biogas and fertilizers from the brown macroalgae. Isosorbide is used 
to obtain several final products that include a flame retardant, a biopolymer, a biosolvent 
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(dimethyl isosorbide) and a drug for heart disease (isosorbide dinitrate). In the present 
work, the potential production of alginate and the sequential production of hydrogen and 
methane through two-stage anaerobic digestion is included, to enhance macroalgae 
biomass valorisation and advanced biofuels production. 

2. Process Description 
We consider an integrated biorefinery potentially based on two species of macroalgae, 
alternatively, on corn starch that can be raw materials for sorbitol production by acid 
hydrolysis. Also, sorbitol can be directly bought from the market. This compound is 
subsequently transformed into isosorbide, a platform molecule. This molecule may be 
converted into different products: a biopolymer, a flame retardant, a drug for heart disease 
and a biosolvent (further details can be found in Casoni et al., 2020). Alginate can also be 
produced from macroalgae biomass. Figure 1 shows a simplified scheme with the 
different process alternatives embedded within the superstructure presented in this paper.  
 

 
Figure 1. Simplified superstructure of process alternatives showing the five considered sections: 
Alginate Production, Sorbitol Production, Isosorbide Production, Isosorbide Conversion, and 
Biofuels and Fertilizers Production. Potential products of the integrated biorefinery are shown in 
bold. Chloride acid and methanol are byproducts. 
 
A detailed description of Alginate Production Section is described hereunder. As a first 
step, macroalgae are treated with formaldehyde (FAL) 0.1% wt. in a 0.086 algae-to-FAL 
ratio in a soaking reactor. Then, the mixture is filtered to recover macroalgae biomass, 
which is washed using HCl 0.38 % wt., in a 0.038 HCl-to-algae ratio and subsequently 
filtered. The pre-processed biomass is mixed in an extraction reactor with a hot alkali 
solution (80 °C) of Na2CO3 10 % wt. in a 0.91 algae-to-Na2CO3 ratio. A water stream is 
fed to this unit to dilute the solution to reach an 18.68 water-to-algae ratio. The stream 
containing sodium alginate (Na(alg)) is diluted in a reactor with water at 70 °C in a 141.15 
water-to-Na(alg) ratio. The outlet stream is filtered in a rotating vibrating filter using 
expanded lava as filter aid in a 0.94 perlite-to-Na(alg) ratio. The residual algae biomass 
is sent to the Biofuels and Fertilizers Production Section, while the process stream 
composed of Na(alg) and water is fed to a CaCl2 reactor. In this reactor, a solution of 
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CaCl2 10 % wt., is fed in a 1.81 Na(alg)-to-CaCl2 ratio to transform sodium alginate into 
calcium alginate (Ca(alg)). This stream is then filtered to separate NaCl with water and 
the Ca(alg) is fed into a bleaching reactor to bleach it using NaClO 5 % wt. in a 0.0076 
NaOCl-to-Ca(alg) ratio. Next, the stream is fed to an acid reactor where it is mixed with 
HCl 3.6 % wt. in a 0.195 HCl-to-Ca(alg) ratio. In this reactor, the calcium alginate is 
transformed into acid alginate (H(alg)), which is fed into a belt press unit to separate as 
much water as possible. The stream containing H(alg) and water is fed into a Na2CO3 
reactor where it is mixed with Na2CO3 10 % wt. in a 0.29 Na2CO3-to-H(alg) ratio. This 
treatment converts the H(alg) into Na(alg), which is dried at 50 °C and milled to obtain 
the final product: 90% sodium alginate. 

3. Mathematical Model 
We formulate a Mixed-Integer Nonlinear Programming (MINLP) model to address the 
simultaneous optimal design of the integrated macroalgal based biorefinery and its heat 
exchanger network through a superstructure representation as shown in Eqs. (1.1)-(1.2). 
The objective function is net present value maximization (NPV) (Eq. (1.1), to consider a 
detailed economic evaluation. Equation (1.2) is the set of linear equations corresponding 
to process design and includes mass balances of reactive and nonreactive units, power 
consumption of process units, and Big-M constraints to model conditional units. Equation 
(1.3) refers to the set of nonlinear constraints of process synthesis, for instance, equipment 
design calculations and capital cost correlations. In this work, we have also embedded the 
potential matches between process streams and utilities to synthetize the heat exchanger 
network within the proposed superstructure, following Yee and Grossmann (1990), to 
simultaneously address the optimal heat exchanger network (HEN) design within the 
biorefinery design problem. Equation (1.4) is the set of linear equations, which includes 
global overall heat balances for hot and cold streams, temperature assignments, and logic 
constraints for stream matches and temperature differences. Equation (1.5) represents 
HEN nonlinear equations, such as heat balances at temperature stages, and capital cost 
correlations. Finally, Eq. (1.6) is the set of connection equations to link process design 
variables with HEN variables. It should be noted that the HEN model requires process 
flowrates from which determines utility and capital costs of heat exchanger units.  

𝑚𝑎𝑥 𝑁𝑃𝑉 ൌ 𝑓ሺ𝑥ሻ  (1.1) 

𝐴ଵ𝑥 ൅ 𝐴ଶ𝑦 ൑ 𝑎  (1.2) 

𝑔ሺ𝑥, 𝑦ሻ ൑ 0  (1.3) 

𝐵ଵ𝑤 ൅ 𝐵ଶ𝑧 ൑ 𝑏  (1.4) 

ℎሺ𝑤ሻ ൑ 0  (1.5) 

 𝐶ଵ𝑥 ൌ 𝐶ଶ𝑤  (1.6) 

𝑥 ∈ ℝ௡,  𝑦 ∈ ሼ0,1ሽ௠ 

𝑤 ∈ ℝ௡ᇱ,  𝑧 ∈ ሼ0,1ሽ௠ᇱ 

Process design 

Heat exchanger 
network 

Connection eqns. 
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where 𝑥 and 𝑤 are continuous variables associated with process and heat exchanger 
network design, respectively; 𝑦 are binary variables related to the technology selection; 
and 𝑧 are binary variables to model heat exchanger matches. 

4. Numerical Results 
A fixed production of 920 t/y of sorbitol and 300 t/y of alginate has been considered, 
taking into account current market demand. The resulting MINLP model is formulated in 
GAMS 35.2 (McCarl et al., 2017). The mathematical model for the simultaneous process 
and heat exchanger network design includes 53423 constraints, 53554 continuous 
variables, 13988 discrete variables. As initialization procedure, we first solve mass 
balances, and then, a model that includes heat balances, temperature assignments, and 
logic equations for stream matches and temperature differences. It should be noted that 
these equations are already linear, then no linearization procedures are required. This 
framework provides a suitable initial guess, which allows solving the MINLP problem in 
26 seconds. We use DICOPT, with CONOPT and CPLEX as nonlinear and linear sub 
solvers, respectively (Grossmann et al., 2003). The optimal scheme includes the co-
production of dimethyl-isosorbide (DMI) via sorbitol and alginate from the macroalgae 
M. pyrifera. Table 1 shows the main economic indicators for the optimal solution, and a 
base case where DMI is produced as sole product (no alginate production). The NPV of 
the optimal solution is 52.24 MM$, representing an improvement of 17 %, with respect 
to the base case. Although the total capital cost increases by 57 % for the optimal design, 
it allows for producing alginates, improving the revenues by 28 %. These results show 
the benefits of co-producing alginates DMI and advanced biofuels. 
 
Table 1. Main economic indicators. 
  DMI and alginate DMI 

NPV (MM$)  52.239 44.575 

Investment (MM$)  22.375 14.252 

Revenues (MM$/y)  22.232 17.409 

Raw material cost (MM$/y)  3.241 2.698 

 
Regarding the heat exchanger network, numerical results indicate that utility costs are 
reduced by 41 % due to heat integration. The network includes 25 heat exchanger units. 
It is highlighted that the number of matches does not increase with respect to the case of 
using only utilities to satisfy energy requirements, and the optimal solution only requires 
cooling water as cooling utility. Furthermore, as the Alginate Production Section has a 
process stream that is fed to the Biofuels and Fertilizers Production Section, the energy 
production in this section increases in 133 %, with respect to the base case (no alginate 
production). 
Due to uncertainties in alginate market demand, we performed a sensitivity analysis on 
the optimal technological route to assess the influence of the alginate plant capacity over 
the biorefinery NPV. In this sense, we compare the value of the economic objective 
function for the integrated biorefinery (alginate and DMI co-production) to a base case 
scenario in which alginate production is not included. 
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Figure 2. Sensitivity analysis of the alginate plant capacity. 
 
As it can be seen in Fig. 2, alginate production is economically attractive if the alginate 
section capacity is higher than approximately 180 t/y due to the economies of scale 
(Roldán-San Antonio et al., 2021).  
 

5. Conclusion 
In the present work we propose an MINLP model for the sustainable production of 
alginates, chemicals and advanced biofuels based on macroalgae. The superstructure 
includes different process alternatives, as well as alternative process streams and utility 
streams matches for the simultaneous design of an integrated biorefinery and its heat 
exchanger network. The proposed model size increases more than two orders of 
magnitude with the inclusion of the design of its heat exchanger network and provides a 
decrease in energy consumption of 41% due to heat integration, with respect to a base 
case. The optimal configuration for NPV maximization includes alginates and DMI via 
sorbitol production, as well as energy production, which increases 133% due to the 
inclusion of the biofuels production section.  
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Abstract 
This work details the development of a five-step workflow for design space determination 
of mesenchymal stem cell (MSC) cultivation. The workflow employs mechanistic models 
to represent system dynamics of MSC cultivation processes while introducing stochastic 
simulations to capture uncertainties. The developed workflow was applied to an MSC 
cultivation case study where seeding density and medium change ratio were selected as 
critical process parameters (CPPs), while the number of cells cultivated was specified as 
the sole critical quality attribute (CQA). Monod kinetics based modelling and stochastic 
simulation were used to determine a dynamically evolving probabilistic design space. The 
results were then visualized on a 2D map with probability contours. In the presented 
calculations, the optimal batch termination time was identified as Day 10, given a 
probability preference of 90 %. The results illustrated the need to account for both raw 
material and process/operation uncertainties and dynamics in design space determination 
for MSC cultivation.  
 
Keywords: Cell therapy, stochastic simulation, quality by design, decision support.  

1. Introduction 
Mesenchymal stem cells (MSCs) are a promising cell therapy candidate due to their 
multipotency, self-renewability, and ethical compliance (Ullah et al., 2015). Today, 
MSCs are used in several cell therapies, creating a need to produce MSCs at scale while 
guaranteeing product quality. Despite ongoing research and developments into producing 
MSCs at scale, many challenges remain in ensuring the quality manufacturing of MSCs. 
In Lipsitz et al. (2016), managing the influence of raw material and process variability 
was identified as the key aspect in ensuring quality MSC manufacturing. Figure 1 
provides a schematic representation of MSC cultivation where dynamic cell expansion 
and metabolism are performed under raw material and process/operation uncertainties. 
One strategy that can be employed to ensure product quality at scale is the use of Quality 
by Design (QbD) framework (European Medical Agency, 2017). The core concept in the 
QbD framework is developing a systematic and science-based understanding of how 
materials and processes affect the final product quality. Once all relationships are 
established, an operation envelop can be identified where the product is guaranteed to be 
of acceptable quality. This operation envelope is also referred to as the design space 
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Design Space Determination of Mesenchymal Stem Cell Cultivation by Dynamic 
Modeling under Uncertainty 

2.2. STEP 2: Model development  
In this step, the identified CPPs and CQAs are connected using a mechanistic model. In 
the context of cell cultivation, a mechanistic model will consist of a set of ordinary 
differential equations (ODEs), where empirical relationships such as Monod cell growth 
kinetics are used to describe state key relationships.  
2.3. STEP 3: Decision gate 
Through parameter estimation, the model is fitted to the available process data. The 
parameter estimation is performed by minimizing the error between the model output and 
the process data. The calculated error is then compared to a user-specified accuracy 
criterion (𝜀). If the error is less than 𝜀, the workflow proceeds. Otherwise, the workflow 
reverts to Step 2. 
2.4. STEP 4: Dynamic and stochastic simulation 
Information required to determine a time-dependent probabilistic design space is 
produced in this step. First raw material and process/operation uncertainties are identified 
based on literature, experiments, or expert opinion. These uncertainties are then linked to 
specific parameters in the model developed in Step 2. Once the parameters are identified, 
the type of probability distribution they follow must be determined. This workflow 
assumes that all uncertain parameters follow a normal distribution, which is a typical 
assumption made in probabilistic design space determination (Ochoa et al., 2021). A 
stochastic simulation is then conducted by iteratively executing the model with the 
identified parameter sets. Each run will use a randomly sampled parameter set from the 
defined distribution, capturing the expected uncertainty. The time-dependent output 
generated by the stochastic simulations can then be compared against the CQAs to 
determine the probability that a given run satisfies all CQAs. Repeating this process for 
all combinations of CPPs enables the generation of time-dependent probability 
information required for design space determination. 
2.5. STEP 5: Design space determination 
The information from Step 4 is then used to determine and visualize a dynamic and 
probabilistic design space. If the number of CPPs is limited to two, then a contour map is 
used for design space visualization. In this case, the X-Y axes are the two given CPPs, 
and the contours represent the predicted probability that a given batch meets all CQAs. 
This visualization is performed for each day of cell cultivation. A decision-maker can 
make an informed decision about the ideal combination of CPPs and cultivation time 
based on their probability preference. If the number of CPPs is greater than two, 
geometric projection could be used to visualize the design space (García-Muñoz et al., 
2015). 

Figure 2. The applied workflow consisted of five steps to determine a design space and the 
optimal cultivation time. 

1. CPP and CQA 
specification

2. Model development

4. Dynamic and 
stochastic simulation

5. Design space
determination

3. Decision gate:
error < 𝜀

Yes

No
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3. Case Study 
The proposed workflow was applied to an MSC cultivation process described by Jossen 
et al. (2020). The source MSCs were derived from the abdomen of a healthy and post-
chemotherapy donor and cryopreserved, respectively. The frozen MSCs were thawed and 
precultured before carrying out the main culture. The main cultivation was performed on 
a T25-flask as a batch operation for 11 days. An initial culture media volume of 5 mL was 
used with two partial medium changes of 40 % and 60 % carried out on days 4 and 8, 
respectively. 
3.1. STEP 1: CPP and CQA specification 
Based on literature observations and expert opinion, the following CQAs and constraints 
were specified. The final viable cell number was specified as the sole CQA as this variable 
was linked to cell therapy product quality (Redaelli et al., 2012). The lower cell limit was 
specified as 1.4×106 cells to meet the product requirements, while the upper limit of 
1.7×106 cells was set to prevent genome instability due to excessive cell expansion 
(Redaelli et al., 2012). In addition, a maximum ammonia concentration of 2.0 mmol/L 
was specified as a constraint (Schop et al., 2009). MSC seeding density was specified as 
a CPP based on previous experimental observations (Kino-oka, 2000). Medium change 
ratio was identified as the other CPP as medium change both replenished nutrient (e.g., 
glucose) needed for cell growth and removed metabolic products (e.g., lactate, ammonia). 
3.2. STEP 2: Model development  
An ODE based mechanistic model was developed to represent the MSC cultivation 
process. The model described the cell growth based on the Monod equation, which was 
modified to consider growth inhibition due to excessive cell-cell contact. The overall 
ODEs were formulated as follows: 

𝜇 = 𝜇!"# ∙
𝐶$

𝐾$+𝐶$
∙

𝐾%
𝐾% + 𝐶%

∙
𝑋!"# − 𝑋&
𝑋!"#

 (1) 

𝑡'"( = 𝛽 ∙ ln.
𝑋)
𝑋)∗
/ + 𝛾 (2) 

𝑑𝑁&
𝑑𝑡 = 𝜇 ∙ 𝑁&			4𝑡 ≥ 𝑡'"(6 (3) 

𝑉
𝑑𝐶+
𝑑𝑡 =

𝑌+ $⁄

𝑌-.'' $⁄
∙ 𝜇 ∙ 𝑁& + 𝑝+ ∙ 𝑁/ (4) 

where 𝛽 and 𝛾, empirical parameters; 𝜇, specific growth rate; 𝜇!"#, maximum specific 
growth rate; 𝐶+ , metabolite concentration; 𝐾+ , Monod constant; 𝑁& , attached cell 
number; 𝑁/ , viable cell number; 𝑃 , metabolic product (i.e., lactate, ammonia); 𝑝+ , 
specific metabolite consumption/production rate; 𝑆, nutrient (i.e., glucose); 𝑡, time; 𝑡'"(, 
lag time; 𝑉 , working medium volume; 𝑋) , seeding density; 𝑋)∗ , 1 cell/cm2; 𝑋& , cell 
density on a bottom surface; 𝑋!"#, maximum cell density on the surface; 𝑌-.'' $⁄  and 𝑌+ $⁄ , 
nutrient consumption coefficients for cell mass production and metabolite 
consumption/production, respectively. 
3.3. STEP 3: Decision gate 
This step ensured the developed model adequately described cell number (i.e., CQA) and 
ammonia concentration (i.e., constraint). The model was fitted by parameter estimation, 
where the Nelder-Mead method was used to minimize the normalized root mean square 
error (NRMSE) between the predicted values and the literature observations (Jossen et 
al., 2020). The accuracy criterion (𝜀) was set as 10 % and 20 % for the cell number and 
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density and medium change ratio combinations resulted in batches exceeding 1.7×106 
cells, which was the upper bound of the CQA requirement. This effect was observed as 
an enlarging grey area on the top righthand side of the design space on Days 10 and 11. 
To this end, Day 10 was the ideal cultivation termination date where the broadest set of 
CPP combinations produced at least 90 % of the batches between the 1.4–1.7×106 cells. 
In this design space determination, the ammonia constraint was found to be non-bounding. 

4. Conclusions 
This work detailed the development and application of a workflow that determined a 
dynamic and probabilistic design space for MSC cultivation. In the case study, the 
proposed workflow captured the dynamics of the MSC cultivation process by a Monod 
kinetic based mechanistic model. Raw material and process/operation uncertainties were 
then incorporated into the model by linking these uncertainties to the model parameters 
(maximum specific growth rate and maximum cell density). A dynamically evolving 
probabilistic design space was then determined using the QbD framework. The design 
space was then visualized over days 8–11 of the cultivation with the aid of an X-Y contour 
map. The contour map was then used as an early-stage decision support tool to determine 
the optimal cultivation time. In the future, this workflow can be further expanded to 
incorporate more realistic probability estimations and be developed into a detailed 
methodology applicable to a more complex case study. 
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Abstract
This case study considers the deterministic global optimization of a multistage separation process
using melt crystallization. A detailed model of the crystal growth process is replaced by a compu-
tationally more efficient data-based surrogate trained on simulation data from the detailed model.
The resulting optimization problem is solved with the deterministic global solver MAiNGO using
a reduced space formulation. The results demonstrate that this is a feasible approach for identify-
ing globally optimal designs for this complex separation process.

Keywords: deterministic global optimization, layer melt crystallization, surrogate modeling, re-
duced space formulation, multistage crystallizer network

1. Introduction

Layer melt crystallization is a thermal separation process with very high theoretical selectivity in
case of eutectic mixtures, lower required energy for the phase change than e.g. distillation, and
the ability to treat heat sensitive substances (Ulrich et al., 1996). Crystal layers that grow on a
cooled surface incorporate impurities from the melt if the growth rate is not extremely small (Win-
termantel, 1986), which may necessitate additional recrystallization steps in a multistage process
to achieve a desired purity. The layer growth process determines the separation efficiency of each
stage and can be described by complex dynamic models. However, including differential equa-
tions in mathematical process optimization is computationally unfavorable, and using strongly
simplified correlations for the separation efficiency could lead to significant prediction errors and
suboptimal design decisions. Instead, an artificial neural network (ANN) that reproduces the sep-
aration efficiency accurately is used here as a surrogate for a dynamic model adapted from (Beier-
ling et al., 2014). The surrogate model is trained on simulation data from the dynamic model and
combined with mechanistic equations to create a hybrid overall process model that is used for the
optimization of multistage crystallizer networks. In order to obtain certified globally optimal de-
signs, the deterministic global solver MAiNGO (Bongartz et al., 2018) is used to solve a reduced
space formulation of the optimization problem, i.e. a formulation in which the dimensionality of
the problem is not increased by intermediate variables, in particular those appearing in ANNs.
The structure of the following sections is as follows: The original model, the surrogate approach,
and the optimization problem are presented in Section 2, results are summarized in Section 3, and
a conclusion is given in Section 4.

751

http://dx.doi.org/10.1016/B978-0-323-95879-0.50122-3 



C. Kunde et al.

2. Methods

2.1. Melt crystallization model

The layer melt crystallization model used here is adapted from the model presented in (Beierling
et al., 2014). Beierling et al. (2014) consider a falling film crystallization process. In this process,
the liquid mixture, i.e. the melt, continuously flows down the cooled inner surface of a tube and
is pumped back to the top. A crystal layer grows on the cooled inner surface of the tube until a
desired layer thickness is achieved and the remaining liquid is removed from the tube. In the next
step, the crystal layer is melted by increasing the temperature of the tube and collected separately.
Beierling et al. (2014) consider systems with eutectic solid-liquid equilibria, for which no impuri-
ties are embedded in the crystals themselves. However, if the growth rate is not extremely small,
the crystal layer will incorporate impurities from the melt through liquid inclusions.
In a mixture containing components A and B, where A is the crystallizing component, the distribu-
tion of component B between melt and crystal layer is described by the following set of equations
(Wellinghoff and Wintermantel, 1991; Beierling et al., 2014).

∂mcr
B

∂mcr = kdiffwm
B (1)

kdiff = eφ
f (2)

φ =
wm

B
1−wm

B

(
e

vρcr
βρm −1

)
(3)

Here, ∂mcr
B

∂mcr is the differential increase of mass of the impurity B in the crystal layer mcr
B per increase

of total mass of the crystal layer mcr, kdiff ∈ [0,1] is the differential distribution coefficient, and
wm

B is the mass fraction of B in the melt. For kdiff = 0 there are no liquid inclusions in the crystal
layer and for the theoretical limit case kdiff = 1, the crystal layer contains only liquid inclusions.
The dimensionless number φ is used to correlate the properties of the melt with the differential
distribution coefficent kdiff, using parameters e and f . The crystal growth rate is denoted by v, the
mass transport coefficient at the crystal surface by β , and the densities of the crystals and the melt
by ρcr and ρm, respectively.
Equation (2) is a heuristic expression introduced in (Beierling et al., 2014) and should only be
used in a range that is supported by experimental data. Otherwise, it may produce non-physical
values, e.g. values of kdiff larger than one for large values of φ and positive parameters e, f .
Using dimensionless variables Y m and Y m

B relating to the liquid phase

mm := Y mmm
0 , mm

B := Y m
B mm

B,0, (4)

with total initial melt mass mm
0 and mass of B in the initial melt mm

B,0, the model Equations (1)-(3)
are rewritten as

∂Y m
B

∂Y m = e
(

wm
B

1−wm
B

(
e

vρcr
βρm −1

)) f Y m
B

Y m , wm
B = wm

B,0
Y m

B
Y m , Y m

B (Y m=1) = 1, (5)

where wm
B,0 is the mass fraction of B in the initial melt. Note that the classical freezing rate is

obtained by Y cr := mcr

mm
0
= 1−Y m.

In the present study, an operating mode with constant crystal growth rates v is considered. Ad-
ditionally, the constant values for e, f , ρcr, ρm and β provided in (Beierling et al., 2014) for a
mixture of n-dodecanal/iso-dodecanal are used, see Table 1.
Instead of using the solution of Equation (5) directly as a melt crystallization model, we introduce
an effective differential distribution coefficient keff

diff with

Y m
B := (Y m)keff

diff , (6)
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Table 1: Parameter specifications for the crystal-
lizer model.

parameter value unit
ρcr 938.6a kgm−3

ρm 844.24a kgm−3

e 0.4903a 1
f 0.3493a 1
β 3.67·10−6 a ms−1

a(Beierling et al., 2014)

in analogy to layer melt crystallization with
a constant differential distribution coefficient.
The effective differential distribution coeffi-
cient is then a function keff

diff = f (Y m,wm
B,0,v)

of the final liquid yield, the initial mass frac-
tion of B, and the crystal growth speed. This
function is approximated by a data-based sur-
rogate keff

diff≈ f̂ (Y m,wm
B,0,v) as described in the

subsequent sections. This strategy removes the
differential equation (5) from the model in or-
der to be able to apply deterministic global optimization for a multi-stage separation process, at
the cost of introducing some approximation error.

2.2. Crystallizer network model

With the results from the previous section, the model for each melt crystallization stage n = 1, . . . ,N
reads

ṁm
n = Y m

n ṁm
0,n, ṁm

B,n = Y m
B,nṁm

B,0,n, ṁcr
n = ṁm

0,n− ṁm
n , ṁcr

B,n = ṁm
B,0,n− ṁm

B,n, (7)

Y m
B,n = (Y m

n )keff
diff,n , keff

diff,n = f̂

(
Y m

n ,
ṁm

B,0,n

ṁm
0,n

,vn

)
(8)

where ṁ-variables are time-averaged mass flows for the batch-operated stages. Each stage has
two output flows: one for the remaining melt after crystallization ṁm

n , ṁm
B,n and one for the melted

crystal layer ṁcr
n , ṁcr

B,n.
The feed mass flows ṁm

0,n, ṁm
B,0,n for each stage n = 1, . . . ,N are calculated as

Figure 1: Superstructure for
the crystallizer network for
N=3 stages.

ṁm
0,n = ṁ0β feed

n +
N

∑
l=1

ṁm
l β m

l,n +
N

∑
l=1

ṁcr
l β cr

l,n, (9)

ṁm
B,0,n = ṁB,0β feed

n +
N

∑
l=1

ṁm
B,lβ

m
l,n +

N

∑
l=1

ṁcr
B,lβ

cr
l,n, (10)

and the overall network product flows ṁm, ṁcr as

ṁm =
N

∑
n=1

ṁm
n β m,out

n , ṁcr =
N

∑
n=1

ṁcr
n β cr,out

n , (11)

ṁm
B =

N

∑
n=1

ṁm
B,nβ m,out

n , ṁcr
B =

N

∑
n=1

ṁcr
B,nβ cr,out

n . (12)

Here, βn, βl,n are binary parameters that determine mass flow con-
nections in the crystallizer network and ṁ0, ṁB,0 is the overall feed
of the network.
Individual crystallizer network configurations, i.e. parameter sets
for βn, βl,n, are selected from the superstructure depicted for N=3
stages in Figure 1. This results in 4 unique configurations for N=2 stages and 31 unique configu-
rations for N=3 stages.
The product specifications are given as lower and upper bounds of the mass fraction of B in each
product flow.

ṁm
B ≥ wm

B,loṁm (13)

ṁcr
B ≤ wcr

B,upṁcr (14)
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The crystallization model is valid only in a limited range for φ , i.e. in the range of measurement
data for the original model in (Beierling et al., 2014), and for the mass fraction of B in the melt,
i.e. for values sufficiently far away from the eutectic composition. These additional constraints
are added to the model for each stage n = 1, . . . ,N as

ṁm
B,n ≤ wm

B,upṁm
n (15)

ṁm
B,n

(
e

vnρcr
βρm −1

)
≤ φup (ṁm

n − ṁm
B,n), ṁm

B,n

(
e

vnρcr
βρm −1

)
≥ φlo (ṁm

n − ṁm
B,n) (16)

Addtionally, the crystal growth speeds on each stage n = 1, . . . ,N are limited by

vn ∈ [vlo,vup]. (17)

The objective function, taken from (Kunde et al., 2016), represents total annualized cost compris-
ing storage tanks for each crystallization stage, a heat exchanger as the actual crystallizer vessel,
as well as energy costs for cooling. Parameters are updated to the current case study and the objec-
tive function is adapted for mass flows and a variable crystal growth speed. The resulting objective
function can be written in a condensed form as

J =
(

a1J0.65
1 +a2NJ0.32

1 +a3J2

)
eyear−1, (18)

J1 =
N

∑
n=1

ṁcr
n v−1

n kg−1m, J2 =
N

∑
n=1

ṁcr
n kg−1s. (19)

The model parameters used in the following case study are listed in Table 2.

Table 2: Additional parameter and domain specifications for the case study, n = 1, . . . ,N.
parameter value unit variable domain unit
(ṁ0, ṁB,0) (0.3,0.0234) kgs−1 Y m

n [0.05,0.99] 1
(wcr

B,up,w
m
B,lo) (0.01,0.4) 1 ṁm

0,n, ṁ
cr
n [10−9,10] kgs−1

wm
B,up 0.90 1 ṁm

B,0,n, ṁ
cr
B,n [0,10] kgs−1

(φlo,φup) (0.01,0.45) 1 vn [0.01β ,0.5β ] ms−1

a1 1.030049·101 1
a2 4.744830·101 1
a3 1.273072·105 1

2.3. Data generation and surrogate training

The data required for the training of the surrogate model keff
diff ≈ f̂ (Y m,wm

B,0,v) is obtained by nu-
merical solution of Equation (5) using “ode45” in MATLAB 2019b and Equation (6). Data points
are calculated on a grid for Y m ∈ {0.01,0.012, ...,0.99,1}, v ∈ {0.005β ,0.01β , ...,0.5β ,0.501β},
and wm

B,0 ∈ {10−6,10−5,10−4,10−3,0.01,0.02, ...,0.99}. In the crystallization model, feasible in-
put values of f are constrained by bounds on wm

B , φ , and v, see also Equations (15)-(17). In order
to improve the data support on the boundary of this feasible region, an extended feasible region
is defined by relaxing the corresponding constraints by a small amount. All data points that lie
inside the extended feasible region are used for the surrogate training.
An ANN f̂ (Y m,wm

B,0,v) = b[2]+W [2]σ(b[1]+W [1](Y m,wm
B,0,v)

>) comprising a single hidden layer
with 20 neurons is used as a surrogate, where the activation function σ is the element-wise hy-
perbolic tangent. The surrogate is trained using the function “train” in MATLAB 2019b, with
Levenberg-Marquardt backpropagation mimimizing the mean squared error (MSE) and default
options except for the minimum gradient set to 10−16 and the regularization parameter set to 10−11.
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Figure 2: Regression results for the mass frac-

tion of B in the crystal layer wcr
B = 1−(Y m)

keff
diff

1−Y m wm
B,0.

The inlay shows a magnification of the value with
the largest relative error.

The final MSE for all data points inside the
feasible region is 2.0603 ·10−08. Addition-
ally, the corresponding regression results for
the mass fraction of B in the melted crystal
layer are shown in Figure 2. The relative er-
ror of predictions ŵcr

B for wcr
B using the trained

ANN is less than 1% for data points in the fea-
sible region, including for values close to zero.

2.4. Optimization

In order to minimize the cost J of the process
such that the model constraints Equations (7)-
(19) are fulfilled, the optimization problem is
solved as a reduced space formulation in the
deterministic global solver MAiNGO (Bon-
gartz et al., 2018). The general structure of the
optimization problem is

min
x∈X=[xlo,xup]

J(x,y)

s. t. h(x,y) = 0,
g(x,y)≤ 0,
y = hy(x),

(20)

where hy(x) are explicit functions or sequences of functions of the selected optimization variables
x that are used to substitute dependent variables y. The resulting optimization problem has a much
smaller dimension compared to a problem where y are included in the optimization variables. In
particular, this avoids introducing a large number of intermediate variables for the activations of
the neurons in an ANN. MAiNGO solves reduced space formulations using automated methods
for calculating relaxations for hy(x) in a branch-and-bound framework, as well as tailored relax-
ations for specific expressions such as the hyperbolic tangent appearing in ANNs (Schweidtmann
and Mitsos, 2019). The optimization variables and bounds that are used in this case study are
listed in Table 2. The optimization problem is solved as a non-linear program for each individual
configuration selected from the superstructure in Figure 1. The problem is solved in MAiNGO
v0.4.0 with subsolvers IPOPT and CLP with default options except for the absolute optimality
gap, which was reduced to 10−6 such that the algorithm terminates at the default relative optimal-
ity gap of 1%. Additionally, for all configurations with N=3 stages, the target lower bound is set
to the best known upper bound for configurations with N=2 stages rounded up to two significant
digits in order to save computation time, since the latter case is much faster to solve.

3. Results

The optimal crystallizer network configuration is shown in Figure 3. This configuration com-
prises a pre-treatment stage (n=2) that separates the mixture to below specification for the melted
crystal product and two purification stages (n=1,3) that are connected in series and separate the
remaining mixture to above product specification. By mixing both product flows, ṁcr is exactly at
specification. For the considered case study, the mixture has to be processed by at least two stages
in a countercurrent fashion to achieve the product specifications. By including the pre-treatment
stage, a smaller amount of the mixture has to be processed in that way, thereby reducing overall
cost. The optimal cost for the process is 1.22680 ·105eyear−1. This is compared to the optimal
cost of 1.26504 ·105eyear−1 when limiting possible configurations to countercurrent cascades of
crystallizers. Note that, in order to allow for comparability, the parameter values were chosen such
that constraints due to model validity (15)-(17) were not active and no variable was at their bound
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at both optimal solution points.

Figure 3: Optimal design for the con-
sidered case study for crystallizer net-
works with up to three stages. The
number pairs are total mass flow and
mass fraction of B at each location.

We observed computation times of up to 1300s for con-
figurations with three stages on a standard desktop com-
puter. The overall computation time for all configura-
tions with two or three stages was 6500s. The additional
effort for data generation and surrogate training was in
the order of 200s.

4. Conclusions

This case study demonstrates the applicability of deter-
ministic global optimization to multistage melt crystal-
lization processes by replacing the computationally ex-
pensive dynamic crystal growth model with a static sur-
rogate. The approach can be extended to more detailed
crystallization models provided sufficient input-output
data is available. This includes operating modes other
than constant crystal growth rates as long as the operat-
ing mode can be described by a limited number of pa-
rameters.
Local optimization approaches might also benefit from
surrogates for crystallizer models by trading some model
accuracy for computationally more efficient models.
The same optimal configuration as in the current case study was identified before for a simplified
crystallization model with constant differential distribution coefficient and equal crystal growth
rate on each stage in (Kunde et al., 2016), with cost reductions up to 25% compared to counter-
current cascades in a large parameter region. It was also found that countercurrent cascades are
optimal in most of the remaining parameter space. An analogous parameter study could show
whether those results can be transferred to the current model and how much improvement over the
countercurrent cascade can be achieved.
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Abstract
As demand for biopharmaceuticals rises, manufacturers are required to meet multiple competing
key performance indicators (KPIs) such as process sustainability, efficiency and product efficacy
and quality. Advanced process optimisation and control in biopharmaceutical manufacturing is
challenged by the lack of online Process Analytical Technologies (PAT). This results in processes
relying heavily on wet-lab experimentation, which may be costly and inefficient. In this work,
a novel methodology for evaluating process robustness and alternative operating strategies us-
ing design space identification is proposed to accelerate process design and optimisation. The
focus in this work is on the initial separation step for the purification of monoclonal antibodies
(mAbs) separating the majority of process impurities generated upstream using affinity (protein
A) chromatography. A high fidelity process model is used to computationally explore the multi-
dimensional design space. The performance and robustness of the process under three different
resin properties and a variety of input conditions are evaluated using the framework. Three sce-
narios for each of the resins are considered resulting in a total of nine design spaces. The results
indicate that using a higher column protein A density resin can increase operational flexibility.

Keywords: computing and systems engineering, process design and development, process opti-
misation, biopharmaceutical manufacturing

1. Introduction

Biopharmaceuticals is the fastest growing sector of the pharmaceutical industry (Walsh, 2018;
Philippidis, 2019). As demand for biopharmaceuticals rises and there is a drive towards sustain-
able processes, now manufacturing needs to meet multiple competing key performance indicators
(KPIs) (Nasr et al., 2017). The Quality by Design (QbD) initiative was started to address in-
efficient, out-of-date and wasteful practices to process development and manufacturing. QbD
encourages systematic decision making and deep understanding of pharmaceutical development
and manufacturing in contrast to the traditional statistical experimentation approach (Rathore and
Winkle, 2009). This initiative encourages manufacturers to design quality into the product from
the early phases of drug development instead of treating it as a secondary objective. Monoclonal
antibodies (mAbs) are the most popular biologics as they can be manufactured to target almost any
substance. However, the implementation of QbD for biopharmaceuticals, specifically therapeutic
proteins, faces three main challenges: product heterogeneity, limited measurements for process
monitoring and lack of online process control strategies due to lack of online Process Analytical
Technologies (PAT) (Papathanasiou and Kontoravdi, 2020). In this work, a novel methodology for
evaluating process robustness and process optimisation using model-based design space is pro-
posed to accelerate process design and optimisation. The methodology is intended to be applied
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during the process design phase within the QbD framework to act as a virtual experimentation
platform to reduce reliance on resource-intensive experimentation. The capture step of the mAb
production process is the main focus in the case study of this work.

2. The Framework

Evaluating robustness and performance of a process under different parameters and conditions is
vital for designing optimal and robust processes. In this section, the framework for model-based
design space identification is presented. A schematic of the framework is shown in Figure 1.

High Fidelity
Model

Problem
Formulation

Data
Sampling

Design Space
Identification

Figure 1: Model-based design space identification framework.

Step 1. High Fidelity Model. First, a high fidelity model is developed and validated using exper-
imental data to ensure accurate description of the system. The validity of the findings observed
from the framework is highly determined by the quality of the model. Therefore, ensuring that the
model is validated across the range of parameters which will be sampled from is important.

Step 2. Problem Formulation. Next, the problem is formulated starting with identifying what are
the objectives of this study. What are the key performance indicators (KPIs) of interest and what
are the parameters/variables (e.g., design variables, process parameters) that the design space need
to cover. It is also possible to introduce constraints to the problem such as target minimum yield.

Step 3. Data Sampling. The choice of the sampling method used can affect the computation time,
accuracy and the coverage of the space. In this work, the quasi-random Sobol sequence (Sobol and
Shukman, 1993) is used to sample the multi-dimensional design space with good coverage. For
application in process design and development within the QbD paradigm, it is crucial to ensure
good accuracy, hence, the high fidelity model is used directly for data sampling.

Step 4. Design Space Identification. Finally the design space is visualised and identified from the
collected computational data samples. The constraints are applied to find out which sample points
do not satisfy the desired performance constraints.

The multi-dimensional design space can be used to evaluate the robustness of the process by iden-
tifying acceptable disturbance ranges. This information can also be used to identify the optimal
design given a range of disturbance expected. The case study in the next section presents how the
framework can be applied to the capture process of mAb production.

3. Case Study: Monoclonal Antibody Capture Process

The capture process is the first step in downstream separation of mAbs. The objective of this
process is to concentrate the Harvest cell culture fluid (HCCF) from upstream reactor removing the
bulk impurities. In this process, the mAb concentration from upstream is treated as a disturbance
as there can be fluctuations. This variation in feed mAb concentration can impact the separation
performance of the process. Model-based design space identification (DSI) can be used to design
a process which is able to handle the variation in feed mAb concentration.

3.1. The System

For the purposes of this work, the two-column capture process model as presented in Steinebach
et al. (2016) is adapted. The two-column system consist of three major steps: A – interconnected
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loading, B – interconnected wash, and C – batch operation (washing, elution, and regeneration).
As shown in Figure 2, in the first step, column 1 is loaded beyond its dynamic binding capacity and
the breakthrough is fed onto column 2. In step B, column 1 is washed and the breakthrough which
may contain some mAb is mixed with the fresh feed and loaded onto column 2. In the last step the
operation is in batch mode, column 1 is washed further and then the products are eluted and the
column regenerated while column 2 is being loaded. Then the column positions are swapped, and
the process is repeated.

3.2. Problem Formulation & Data Sampling

1 2

Feed

Step A

1 2

Interconnected wash

Step B

Feed

1

Regenerate

Step C

Feed

2

Figure 2: Schematic of the two-column
capture process

The objective for the DSI study is to investigate the
performance and robustness of the process under dif-
ferent resin properties and conditions to find the op-
timum resin which satisfy the performance constraints
of Yield ≥ 99% and Productivity ≥ 15 mg mL−1 h−1.
Yield is the percentage of mAb recovered to the amount
fed, while Productivity is amount of mAb produced per
time taken per resin volume used. The constrains are
chosen based on the nominal performance reported by
Steinebach et al. (2016). The resins used in this study
are summarised in Table 1. The column protein A den-
sity is the density of protein A ligands per volume of the
column. It was calculated based on the reported values
of the protein A ligand density in the solid phase of the
resin and both the bed and particle porosity (Hahn et al.,
2005; Liu et al., 2015; Steinebach et al., 2016). Three scenarios of design spaces for each of the
three different resins are considered and summarised in Table 2.

Table 1: Column protein A density of resins.
Resin Column Protein A Resin Density (mg mL−1)
MabSelect SuRe 34.41
MabSelect SuRe LX 43.82
CaptivA PriMAB 31.25

Table 2: Design space problem scenarios.
Scenario Type Parameters Varied

1 Column Dimension Dc,HDc
2 Switching Time Tload ,TwashIC
3 Process Parameters c f eed ,Q f eed ,Tload ,TwashIC

In the first scenario, only the column diameter, Dc, and column height to diameter ratio, HDc, are
varied. The height to diameter ratio is varied to ensure the shape remains like a column. In this
scenario, the design space can be used to size the column for process design. In scenario two,
only the loading time, Tload , and the interconnected washing time, TwashIC, are varied (the times
combined together is the switching time of the column). The switching time is one of the most
important design variable which determines how long the column is loaded before the products are
eluted and collected. In this scenario, the design space can help to choose the appropriate switching
time which satisfies our production constraints. Finally, in the last scenario, the design space is a
four-dimensional design space where the feed mAb concentration, c f eed , feed volumetric flowrate,
Q f eed and the switching time parameters are varied simultaneously. The volumetric flowrate is
a control variable of the process. When a disturbance in the form of fluctuations in mAb feed
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concentration occurs, the volumetric flowrate can be adjusted to keep the mass flowrate of mAb
going into the column within the designed range. The design space in the last scenario can identify
ranges of c f eed and Q f eed which satisfies the performance constraints. Lastly, the quasi-random
Sobol sequence (Sobol and Shukman, 1993) was used to sample the parameter space directly on
the high fidelity model.

4. Results and Discussion

First, the design spaces of the resin MabSelect SuRe is shown and discussed in detail. The resin
MabSelect SuRe is the nominal resin used in the study by Steinebach et al. (2016).

4.1. MabSelect SuRe Design Space

The design space of all three scenarios for the MabSelect SuRe resin is shown in Figure 3. A total
of 128 samples are used to construct each design space.

Figure 3: Design space of all scenarios for the MabSelect SuRe resin. Scenario 1, 2, and 3 are
shown in (a), (b), and (c) respectively. Solid black circle markers indicate that the constraints are
satisfied and white square that they are violated.

The design space for the first scenario is shown in Figure 3 (a) plotted in 3D (diameter, height
to diameter ratio and productivity). A region of samples which satisfied both constraints can be
seen. This information can be used to design a column which is able to satisfy both performance
constraints. From Figure 3 (a), it can be seen that the majority of the samples satisfied the produc-
tivity constraint (≥ 15 mg mL−1 h−1), while only a subset of samples shown in solid black circles
satisfied both constraints. The yield constraint proves to be the limiting one for this design space.

Shown in Figure 3 (b) is the design space of scenario two. From Figure 3 (b) it can be seen that the
yield is again the limiting constraint as all of the sample were able to satisfy the productivity con-
straint. Furthermore, the design space here is very narrow with only two samples which satisfied
both constraints. This results aligns with the work by Steinebach et al. (2016) as the process was
optimised using the MabSelect SuRe resin. The results also indicate that at lower switching times,
higher productivity and yield is achieved. This is because when the switching time is reduced,
the column is prevented from becoming saturated with mAb. Therefore, by lowering the switch-
ing time, the driving force for separation can be maintained at a higher value. Although lower
switching time can give better performance in terms of yield and productivity, a lower loading
time can result in a higher buffer consumption. Therefore, there is a trade-off between economic
and environmental performance.

The four-dimensional design space from the last scenario is shown in Figure 3 (c). Looking at
the design space in Figure 3 (c) it is clear that there are samples, marked (i) and (iii), which
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violated one or more of the constraints despite the fact that it is very near to another sample,
marked (ii), which satisfied both constraints. This is due to the fact that the design space here is a
four-dimensional space represented in a two-dimensional space.

Table 3: Parameter and KPI values of samples (i), (ii), and (iii) in the design space of scenario
three.

Sample c f eed Q f eed Tload TwashIC Yield Productivity
(i) 0.32 1.25 62.50 35.50 98.84 18.58
(ii) 0.31 1.25 43.36 28.62 99.17 18.33
(iii) 0.39 1.05 56.23 30.40 98.51 19.37

The labelled samples from Figure 3 (c) are shown in detail in Table 3. The samples (i) and (iii)
did not satisfy the constraint due to violation in the yield constraint. On the other hand, sample
(ii) satisfied both constraints. From Table 3, it can be seen that the value of Tload for both violated
samples are significantly higher than that of sample (ii). From the design space in scenario two it
was found out that to achieve higher yield, lower switching time is preferable. It is further evident
here where samples (i) and (ii) are very close in the values of c f eed and Q f eed but having a larger
Tload resulting in violation of the yield constraint. Using a lower switching time can reduce loss of
products achieving higher yield. However, by doing so more buffer is consumed during washing,
elution and regeneration as they are performed more often. There is, therefore, a trade-off which
needs to be considered when designing the process.

4.2. Comparison of Resin Performance

Shown in Figure 4 is the design spaces of all three resins.

Figure 4: Comparison of the design spaces (as columns: scenarios 1, 2, and 3) for three different
resins (as rows: CaptivA PriMAB, MabSelect SuRe and MabSelect SuRe LX)

The CaptivA PriMAB resin has the lowest column protein A density out of the three resins. From
Figure 4 (c), it is shown that it does not have a single sample which satisfies both of the constraints.
The column protein A density is directly correlated with how much mAb can be adsorbed onto the
column. Hence, the lower the column protein A density the lower the yield is. From Section 4.1, it
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was shown that the yield constraint is harder to satisfy than the productivity constraint. This leads
to wider design spaces seen in resins with larger column protein A density shown in Figure 4.

Using the design spaces, the robustness of the process under different resin properties can be
evaluated. For example, given a case where it is known that the upstream process produces a
feed stream with mAb concentrations of between 0.35− 0.45 mg mL−1. Then, using the design
spaces from Figure 4 (c), (f), and (i) it is possible to figure out what value of Q f eed that can satisfy
the performance constraints. In this case, the CaptivA PriMAB resin can operate at between
0.85−0.90 mL min−1, the MabSelect SuRe resin can operate between 0.85−1.00 mL min−1, and
the MabSelect SuRe LX resin can operate between 0.55−1.30 mL min−1. This information can
also be used in the opposite way. For instance, if the process has a nominal volumetric flowrate of
1.00 mL min−1, the design spaces from Figure 4 (c), (f), and (i) shows that the CaptivA PriMAB
resin can process feed streams containing c f eed of about 0.32− 0.43 mg mL−1 satisfying both
constraints. On the other hand, the MabSelect SuRe and MabSelect SuRe LX resin can operate in
the range of 0.31−0.45 mL min−1 and 0.20−0.52 mL min−1 respectively. Therefore, using the
design spaces, an optimal resin that can satisfy the performance constraints and be robust against
disturbance from the upstream process can be selected.

5. Conclusion

In this work, the framework for DSI within the QbD paradigm has been presented and applied in a
case study. As shown in the case study, the proposed framework offers the opportunity to evaluate
process robustness which is crucial for manufacture of biopharmaceuticals with stringent quality
standards. Model-based DSI can be used to identify the range of operation conditions which sat-
isfies a set of constraints. The case study has shown how model-based DSI can evaluate process
robustness of protein A affinity chromatography for mAb capture under different resin properties
and identify the optimum resin for a robust process. It was found out that resin with higher column
protein A density has greater operational flexibility. This information is also important for process
integration where it is vital to ensure compatibility between units to design a robust and optimal
process. The approach can be transferred to other types of process operations (e.g., tangential flow
filtration, bioreactor). It can be tailored to meet different types of study objectives (e.g., glyco-
sylation in mAbs, buffer consumption) and to address other parameters (e.g., temperature, pH).
Current and future work is focused on combining more advanced modelling techniques such as
multi-parametric programming (mp-P) and data driven/hybrid models to accelerate data sampling
in an effort to increase the framework’s capabilities for online use.
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Sustainable Energy Systems Design with Heat 
Pump Technologies for Meeting Peak Heating 
Demand 
Xueyu Tian,a Fengqi Youa 
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Abstract 
This study tackles the sustainable design of carbon-neutral energy systems with 
electrified peak heating systems, namely heat pump technologies for meeting electricity, 
heat, and cooling demand. We first propose a superstructure of the carbon-neutral energy 
systems for electricity, heat, and cooling generation. A multi-period optimization model 
with a predefined time horizon and temporal resolution is developed based on the 
proposed superstructure for total annualized cost minimization. The objective is to 
determine the optimal design of the carbon-neutral energy systems in the investigated 
region, seasonal operations, energy mix, and corresponding capacity of each technology 
while meeting the electricity, heat, and cooling demand. The applicability of the proposed 
modeling framework is illustrated through a case study using Cornell University as the 
living laboratory, explicitly considering the electrification of the peak heating systems. 
 
Keywords: carbon neutrality; energy systems; decarbonization; electrification; mixed-
integer nonlinear programming. 

1. Introduction 
The Paris Agreement sets a goal to curb global greenhouse gas (GHG) emissions, driving 
vast penetration of renewable energy worldwide. Extensive research on deep 
decarbonization of energy systems is conducted at the community-level (Tian et al., 
2019), city-level (Wiryadinata et al., 2019), state-level (Zhao and You, 2020,), and 
country-level (Vaillancourt et al., 2017). Electrification of heat and cooling generation 
and decarbonization of electricity generation is identified as a promising lever to address 
the ambitious climate goals (de Chalendar et al., 2019). However, heat and cooling 
generation stand a chance to affect the stability of the power system due to the surge in 
electric load involved (Sun et al., 2021), if they are electrified in an uncontrolled way. 
Therefore, it seems to be a reliable and promising decarbonization option by exploring 
renewable heat and cooling generation technologies rather than simply using electrified 
counterparts (Sánchez-Bautista et al., 2017). Among the vast array of renewable heat and 
cooling generation technologies (Gong et al., 2015), geothermal energy and deep water 
source cooling system show great potentials for the decarbonization transition of energy 
systems (Lee et al., 2019). Recent research efforts have also identified the values of green 
hydrogen (Dodds et al., 2015), large-scale heat pumps (Bach et al., 2016), biomass and 
biogas (Kassem et al., 2020), and thermal energy storage (Ochs et al., 2020) for 
decarbonizing the heating system. There is a lack of studies addressing the sustainable 
design of energy systems toward carbon neutrality by simultaneously exploring 
renewable electricity, heat and cooling generation, and electrified heating and cooling 
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options in the region with a humid continental climate, such as New York State (NYS) 
(Zhao and You, 2021). To bridge the knowledge gap, this paper aims to develop a 
modeling and optimization framework to handle the optimal design of carbon-neutral 
energy systems. In this paper, a multi-period optimization model, given a time horizon 
and a temporal resolution for total annualized cost (TAC) minimization, is built. The aim 
is to determine the optimal design of the carbon-neutral energy systems in the investigated 
region, seasonal operations, energy mix, and corresponding capacity of each base-load 
and peak-load technology involved. A tailored global optimization algorithm is applied 
to circumvent the computational challenges induced by separable concave terms in the 
objective function. The applicability of the proposed modeling framework is illustrated 
through a case study developed using the real data from the main campus of Cornell 
University, located in Ithaca, NYS.  

2. Problem Statement and Model Summary 
We are given a superstructure of carbon-neutral energy systems, including a set of 
renewable electricity generation technologies and a set of renewable and electrified 
heating and cooling options, as shown in Figure 1. To capture the optimal design, seasonal 
operations, energy mix, and corresponding capacity of each base-load and peak-load 
technology in the carbon-neutral energy systems, a time horizon and a set of time periods 
are specified to improve the temporal resolution of the model. The multi-period 
optimization problem of the proposed carbon-neutral energy system with earth source 
heat, lake source cooling (LSC), on-site electricity generation, and peak heating options 
for the total annualized cost minimization is formally defined in this section. The aim is 
to determine the optimal design of the carbon-neutral energy systems in the target region, 
seasonal operations, energy mix, and the corresponding capacity of each base-load and 
peak-load technology involved while fulfilling the seasonal demand for electricity, heat, 
and cooling. 
 

 
Figure 1. Overview of the superstructure of the proposed carbon-neutral energy systems with earth 
source heat, lake source cooling, on-site electricity generation, and peak heating technologies. 

The general multi-period optimization model is subjected to the mass balance and 
configuration constraints, energy balance constraints, logic constraints, and techno-
economic evaluation constraints (Gong and You, 2018). The integer decision variables 
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represent the selection of technologies. The number of geothermal well-pairs is an integer 
decision variable. Other essential decision variables such as the mass flow rates, energy 
flows, and capacities are continuous variables. The objective function, total annualized 
cost, includes integer variables such as the numbers of production wells and injection 
wells and thus is a mixed-integer function. The nonlinear terms mainly come from the 
separable concave terms induced by the economy of scale. Therefore, the resulting 
problem is a mixed-integer nonlinear programming (MINLP) problem. The general form 
of this MINLP problem is summarized as follows. 
 
min TAC AIC AOC RE= + +                            (1) 
s.t.   mass balance and configuration constraints; 
        energy balance constraints; 
        logic constraints; 
        techno-economic evaluation constraints; 
 
where AIC, AOC, and RE refer to the annualized investment cost, annual operating cost, 
and replacement cost, respectively. 

The resulting MINLP problem includes integer and continuous variables embedded in 
nonlinear functions. For the global optimization of this problem, general-purpose global 
optimization solvers could be intractable. A global optimization strategy is developed to 
solve this non-convex MINLP problem. Specifically, we substitute the separable concave 
functions for capital cost model with successive piecewise linear functions for a 
relexation of the original MINLP. The resulting MINLP problem is solved iteratively 
following the branch-and-refine algorithm (You and Grossmann, 2011).  

3. Application to Sustainable Design of Campus Energy Systems  
The proposed multi-period optimization modeling framework for energy systems 
decarbonization is applied to address the optimal design of the carbon-neutral energy 
systems using the main campus of Cornell University located in Ithaca as the living 
laboratory. Based on the optimization results, the optimal configuration of the carbon-
neutral energy system in the target region, seasonal operations, energy mix, and 
corresponding capacity of each base-load and peak-load technology involved are 
determined while accommodating the seasonal demand for electricity, heat, and cooling 
across the main campus of Cornell University located in Ithaca, NYS. The case study 
aims to obtain the global optimal solution of the multi-period optimization problem with 
a monthly model resolution for the proposed carbon-neutral energy system with earth 
source heat, LSC, on-site electricity generation, and peak heating options, namely heat 
pump technologies. The maximum monthly average demand for cooling and heating are 
46.7 MW and 68.0 MW, respectively. In 2020, there are 23,094 students, 9,907 non-
faculty staffs, and 1,530 faculties on campus. 
3.1. Systems Configuration 
Herein, we demonstrate the peak heating options with different base-load capacities, 
where only ground source heat pumps are employed with no thermal energy storage. 
Specifically, 2,037, 1,265, and 493 ground source heat pumps with a typical capacity of 
19 kW for each (Tian et al., 2020) in the North American region are deployed to handle 
the peak-load heat demand for the cases with two, three, and four base-load earth source 
heat pumps, respectively. We note that deploying thousands of geothermal heat pumps 
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across the campus could be a significant challenge in practice. This result helps inform 
the technology limitations and practice needs. 
 
The selection of cooling technologies, peak heating systems, and the corresponding 
operating levels vary from month to month. The block flow diagram in Figure 3 reflects 
the technology selection in cold winter days when the heat demand is large and exceeds 
the capacity of base-load earth source heat systems. The column chart shows the 
breakdowns of electricity used to accommodate the building demand across the campus 
and drive all the electrical appliances for cooling and heating purposes, including the 
LSC, auxiliary chiller, air source heat pump, and ground source heat pump. The ground 
source heat pump provides extra heat as the peak heating option on cold winter days when 
the base-load earth source heat cannot fulfill all the heat demand. On the contrary, the 
base-load LSC occasionally fails to satisfy the peak cooling load on hot summer days. 
Thus mechanical chillers are utilized to generate additional chilled water during the night, 
which is warmed by the campus cooling load during the day, as shown in Figure 4. 
 

 
Figure 3. Technology/process configuration on cold winter days. 

 
Figure 4. Technology/process configuration on hot summer days. 

3.2. Techno-economic analysis 
For a better understanding of the optimal design from an economic perspective, the 
breakdowns of the total annualized cost are given in Figure 6. The total annualized cost 
sums up the annualized investment cost and annual operating cost, calculated with a 15-
year project lifetime (from 2021 to 2035) and a 5% discount rate. Because the capacity 
of base-load earth source heat systems has significant impacts on the selection of peak-
load technologies and the corresponding capacity, the sensitivity of the base-load capacity 
is systematically analyzed. The number of geothermal well-pairs is chosen as the 
investigated input parameter, ranging from two to five. This case study considers at most 
five geothermal well-pairs because five well-pairs are sufficient to satisfy base-load heat 
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demand for the main campus of Cornell University located in Ithaca. We note that as the 
number of geothermal well-pairs increases from two to five, the annualized investment 
cost increases from $93.62 MM/yr to $95.64 MM/yr, while the annual operating cost 
decreases from $31.56 MM/yr to $28.20 MM/yr. In terms of capital investment, solar 
panels (58%-59%), wind turbines (23%), and hydroelectric power plant (8%-9%) are the 
major contributors. When the base-load earth source heat capacity is low, the operating 
cost associated with the ground source heat pump is more pronounced. The remaining 
annual operating cost is mainly sourced from the operations of solar and wind farms. We 
find that the number of base-load geothermal well-pairs shows little impact on the total 
annualized cost.  

We note that all the techno-economic analysis results are obtained based on the current 
electricity price, which is volatile in the future. We perform breakeven analysis to gain 
insights and justify the need for earth source heat over the heat pumps. For the earth 
source heat-based systems, we consider five well-pairs based on the optimization results, 
and we consider all the electricity driving the heat pumps is sourced from the local grid. 
The results show that if the electricity price is higher than $0.0202/kWh, the earth source 
heat system outperforms the ground source heat pumps from an economic perspective.
3.3. Energy Flow
The Sankey chart in Figure 5 shows the annual energy flow profile for the case with only 
two geothermal well-pairs as the base-load heat supplier. We find that 65.3% of the total 
electricity is sourced from the local grid, with an annual consumption of 160,812 MWh 
during the on-peak time and 393 MWh during off-peak hours. 0.13% of the total 
electricity is consumed to drive the geothermal pumping systems, the ground source heat 
pump utilizes 19%, and 3% are attributed to LSC assisted by mechanical chillers. It is 
also found that the ground source heat pumps provide approximately one-third of the 
building heat demand across the campus, and the base-load geothermal well-pairs fulfill 
the remaining heat demand. Finally, 99% of the cooling is provided by the LSC (with 
COP of around 30) and only 1% from the mechanical chiller.

Figure 5. Annual energy flow profile with two base-load geothermal well-pairs (unit: MWh/yr).

4. Conclusion
A multi-period optimization model, given a time horizon and a temporal resolution for 
total annualized cost minimization, was built. The aim was to simultaneously determine 

COP of around 30) and only 1% from the mechanical chiller.
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the optimal design of the carbon-neutral energy systems in the investigated region, 
seasonal operations, energy mix, and corresponding capacity of each base-load and peak-
load technology involved while fulfilling the seasonal demand for electricity, heat, and 
cooling. The applicability of the proposed modeling framework was illustrated through a 
case study considering electrified peak heating options, namely heat pump technologies, 
which was developed by leveraging the real-world data from the main campus of Cornell 
University, located in Ithaca, New York. 
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Abstract 
This work has been performed in the framework of the development of the bio-based 
fermentation process to produce IBE (isopropanol/ n-butanol/ ethanol). The so-called IBE 
fermentation is indeed an interesting sustainable alternative to produce fossil-based 
products. However, product inhibition in fermentation leads to dilute fermentation broths 
in water (15-25 g IBE/L) which implies high energy demand for products/water 
separation. In the present study focus has been put on ready-to-industrialize downstream 
processes for Isopropanol/ n-Butanol/ Ethanol separation from dilute fermentation broth, 
using conventional distillation and shell-and-tube heat-exchanger technologies. A 
reference process scheme, using 5 distillation columns, as well as an IFPEN patented 
distillation sequence with 3 columns only were optimized using an in-house tool. The tool 
allows to simultaneously optimize the heat exchanger network configuration and the 
distillation columns’ operating pressures for a given material balance, using Mixed 
Integer Linear Programming (MILP) optimization techniques. When comparing to the 
reference process, the optimized heat exchanger network leads to significant vapor 
consumption reduction and to also significant total separation cost reduction, when both 
investments and utilities costs are considered. The IFPEN patented scheme even without 
optimization is found to be more interesting than the reference scheme and is shown to 
be even more interesting after optimization. The tool can be applied to any distillation 
process, leading to significant cost savings.  
 
Keywords: Isopropanol/ n-Butanol/ Ethanol fermentation, Distillation, Optimization, 
Mixed Integer Linear Programming 

1. Introduction 
N-butanol is used as a solvent and could be used as a fuel. It reached 4.1 million tons 
consumption in 2015. Isopropanol, a 1.9 million tons market in 2015, can also be used as 
a solvent and has also shown its interest as an additive in fuels. Finally, isopropanol can 
also be transformed into propylene, a major chemical intermediate today. 
N-butanol and isopropanol are currently produced by petrochemical routes, but new 
technological routes are under development including bio-based technologies. Their 
production can be carried out by fermentation, e.g. ABE production (acetone, n-butanol, 
and ethanol) or IBE production (isopropanol, n-butanol, ethanol). The ABE process using 
Clostridium-type bacteria was one of the first large-scale industrial microbial process for 
chemical production, as well as the largest fermentation process under sterile conditions 
(Ni, 2009; Köpke, 2011). Initially, acetone was the main compound of interest for its use 
in the production of cordite during World War I and its use in the production of other 
chemicals. Nowadays, acetone is sometimes considered as an undesirable by-product due 
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to its low properties as a biofuel or chemical. The reduction of acetone into isopropanol 
is possible using different bacteria belonging to the genus Clostridium. The production 
process of IBE is therefore based on the ABE fermentation process and uses strains of the 
genus Clostridium capable of fermenting simple sugars and reducing a large part of the 
acetone into isopropanol. However, a small part of acetone is still produced during IBE 
fermentations.  
N-butanol production by Clostridium-type strains, for both ABE and IBE fermentations, 
is limited by its impact towards microbial growth, typically when its concentration is 
between 7 and 15 g/L. This greatly limits the final alcohol concentration of the 
fermentation broth, to approximately 10 to 30 IBE g/L. Let’s note at this point that some 
aspects of ABE process can easily be used for IBE process: for example, n-butanol 
inhibition in fermentation leads to the same issues of diluted broth separation.  
Such low concentrations imply high energy demand for products/water separation and 
therefore high separation costs. Several solutions have been reviewed in literature to 
achieve cost reduction (Kujawska, 2015; Vane, 2008). A part of them concerns the 
downstream process, i.e. alcohol/water and alcohol/alcohol separations. Hybrid 
distillation/liquid-liquid extraction processes using solvents have been proposed, 
mesitylene has been considered by Kraemer (2010, 2011) –, and ethylene glycol by Zhang 
(2020). Mesitylene appears to be an interesting solution as far as energy demand is 
concerned, but capital cost investment is not given. Moreover, after alcohol separation, 
the vinasses are meant to be recycled to the fermenter, and the residual mesitylene’s 
toxicity to micro-organisms must be investigated. For ethylene glycol, the authors use n-
butanol in higher concentration of about 4.46 wt %, which further implies low energy 
demand for separation but is hard to achieve with ABE/ IBE fermentation. Another way 
to achieve separation cost reduction is to increase alcohol concentration in broth. In order 
to limit n-butanol inhibition on bacteria, In Situ Product Recovery Techniques (ISPR), 
consisting in removing n-butanol from the fermenter during its production, have been 
considered (Outram, 2016). A part of these techniques, such as perstraction, are at 
research level and would need significant development before industrial level. Gas 
stripping (Xue, 2012) or two-phase fermentation (González-Peñas, 2020) in the presence 
of a biocompatible solvent in the fermenter are two types of techniques nearer to industrial 
scale. However, those techniques are relatively expensive and there is no evidence that 
the cost of ISPR techniques is offset by the decrease in separation costs as several 
parameters must be considered. It would then be important to properly estimate the 
cost/benefit ratio of ISPR techniques.  
In the present study focus has been put on ready-to-industrialize downstream processes 
for isopropanol/ n-butanol/ ethanol separation from dilute fermentation broth, using 
conventional distillation and shell-and-tube heat-exchanger technologies. The originality 
of the work consists here in a thorough process study including both process flow scheme 
optimization and an associated techno-economic estimation. 

2. Methods 
As aforementioned, the IBE process is close to the ABE process. For the downstream 
separation part, the main difference is that, unlike acetone, isopropanol forms an 
azeotrope with water which makes infeasible the complete dehydration of isopropanol by 
conventional distillation: for example, at atmospheric pressure, the isopropanol-water 
azeotrope contains 12 wt % of water. . Moreover, that little amount (approx. 0.2 - 0.6 g/L) 
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of acetone is still being produced, which represents an undesirable impurity to be 
eliminated from the main products.  

2.1. Process description. 5 columns distillation process – reference case.  
The reference distillation process was adapted from the ABE literature (van der Merwe, 
2013) and is shown in Fig. 1. It involves five distillation columns to perform the 
separation of the various components. The Beer column recovers IBE at the top and 
eliminates 98.7 % of water at the bottom. The Acetone column allows the elimination of 
undesired acetone. With the IPA column, it is possible to separate the isopropanol/ water 
azeotrope and the small amount of ethanol at the top. The Water and Butanol columns are 
the last two columns used to break the water/n-butanol heterogenous azeotrope and 
recover the n-butanol at the bottom of the Butanol column. 

2.2. Process description. 3 columns distillation process – base case 
Another way to achieve the required separation is to use the sequence adapted from an 
IFPEN patent (Mikitenko, 1983) discussed by Pucci (1986) and shown in Fig. 2. This 
sequence consists only of a Beer column and a second column to separate the butanol 
from the other components. These are finally sent to a third column which separates 
isopropanol/water azeotrope and ethanol from the undesired acetone. The particularity of 
this scheme is in the second column. This column provides a three-phase area (two liquid 
and one vapor) on some trays. The aqueous phase is subtracted from the three-phase zone 
and is recycled and mixed with the feed of the first column. 

  

   
2.3. Flowsheet simulation 
The flowsheets were simulated using SIMSCI’s PRO/II v 10.2 software. The base 
thermodynamic method used was SRK-Simsci (SRKS). The unary and binary, both for 
vapor/liquid and liquid/liquid equilibria, were adjusted based on literature and in-house 
experimental data.  

2.4. Process optimization using Mixed Integer Linear Programming (MILP) techniques 
To achieve separation cost reduction, including both investments and utilities, the two 
process schemes were optimized with an in-house optimization tool, based on Mixed 
Integer Linear Programming (MILP) techniques. Fig 3. shows the general optimization 
procedure.  
The global material balances, as shown in Fig. 1. and 2. are kept constant for the whole 
study. First, data are generated using PRO/II v 10.2 process simulation software. A linear 
equation set, including temperature vs. enthalpy curves for process streams at different 
pressures, energy consumption vs pressure with different number of trays for columns 
and utility consumption is coded into GAMS Studio V 25.1.2 after equation parameter 
fitting using Microsoft Excel. The novelties of the model stay in the fact that on the one 

Fig 1. Flowsheet of the 5 columns 
reference case 

Fig 2. Flowsheet of the 3 columns 
base case 
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hand streams can either give or receive heat, i.e. they are not mandatorily defined as hot 
or cold streams, and on the other hand the column’s operating pressures are 
simultaneously optimized  with the heat exchanger network, i.e., the pressures of some of 
them are adapted in order to allow reboiler/condenser integration between columns. Some 
extra features, such as steam and electricity generation are also enabled by the model but 
not used in the current study. The goal is to maximize process/process energy integration, 
thus minimizing utility consumption while considering penalties for extra investment 
costs due extra heat exchangers or extra number of trays for columns. The objective 
function thus corresponds to a global optimum expressed in €/h, taking into account 
operational and capital expenditures. Calculations are based on an IFPEN internal data 
base with utility and investments costs, 2019 being the reference year. The objective 
function is then minimized using CPLEX 12.10 solver provided by GAMS Studio V 
25.1.2. As a result, we get an optimized heat exchanger network and column’s operating 
pressures and an idea of optimum number of trays. To end with, the resulting heat 
exchanger network is integrated in the flowsheet and used to determine real utility 
consumption, equipment are sized, and investment cost determined to end up with total 
separation cost, in €/t of IBE.  

 

 

3. Results and discussion 

3.1. Optimized process with 5 distillation columns. Energy demand.  
The resulting flowsheet is shown in Fig. 4. The optimized scheme consists in an 
integration between IPA and Butanol columns. The operating pressure of the first is raised 
to 5.5 bars, further increasing the condenser temperature, and allowing its heat of 
condensation to be recovered for the Butanol column’s reboiler. Moreover, liquid-liquid 
demixing is no longer present at this level of pressure in the IPA column, leading to 
cheaper column internals and easier operation.  
Optimization mainly impacts the pre-heating of the fermentation broth and the Beer 
column’s reboiler duty. Indeed, heat can be recovered not only from the bottom effluent 
of the column (the so-called vinasses), but also from the top, requiring two additional 

Fig 3. Optimization procedure 

772

748



 

exchangers. The broth is divided into two streams, one stream recovers heat from the 
vinasses and the other from the top stream. After mixing those two streams, extra 1.9 MW 
can be recovered from the top. In the reference case a total of 23.4 MW of low-pressure 
steam was necessary to achieve the required separation (10.9 MW and 12.5 MW 
respectively for the HX 2- pre-heater and the Beer column reboiler, as shown in Fig.1). 
In the optimized case 13.9 MW are sufficient. The Beer column operating pressure was 
slightly increased compared to the reference case to compensate extra pressure drop from 
the extra heat exchangers.  

3.2. Optimized process with 3 distillation columns. Energy demand.  
The resulting flowsheet is shown in Fig. 5. The main idea is roughly the same than for 
the 5 columns process. Extra heat can be recovered from the top of the Beer Column. The 
vinasses transfer heat to the broth in two heat exchangers (HX 6 and HX 1) and recover 
heat from the top in heat-exchanger HX7. Low-pressure steam consumption falls from 
18.3 MW down to 15.4 MW, requiring two extra heat exchangers. 
 

 

  
3.3. Total separation cost 
For both distillation sequences, hot utility demand remarkably decreases when optimized. 
The total separation cost, including total utilities consumption and investment costs has 
further been calculated. The results, given in normalized to 100 base are shown in Fig 6. 
The 3 columns optimized process ends up being 34% cheaper than the reference case. 
Because of the liquid-liquid demixtion zone in the Butanol column of this process, it may 
however be hard to operate. In that view, the more classical, optimized 5 columns process, 
with 28 % lower separation cost compared to the reference case can be considered as the 
best solution. 

3.4. Alternative solutions 
Vapor recompression of the Beer column’s top stream to provide heat to the bottom could 
be an option, considering the 10 °C temperature difference between the top and bottom 
tray temperatures. Nevertheless, after total separation cost calculation, even if this 
solution is interesting from utility consumption point of view, the investment cost of the 
compressor appears to be too high, as it is shown in Fig. 6. 
To end with, aforementioned ISPR processes could lead to broth concentrations above 25 
g IBE /L. Fig 7. shows that the relative gain on separation tends to decrease in this 
concentration region.    

4. Conclusions 
The IFPEN process optimization tool allowed to identify process flow scheme with heat 
exchanger integration with significant decrease in the IBE fermentation downstream 

Fig 4. Optimized 5 columns flowsheet Fig 5. Optimized 3 columns flowsheet 
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process cost. It is shown here that up to 30% reduction in production cost can be achieved. 
Such approach and tool can be applied to any distillation process to lead to economically 
interesting distillation processes which is especially of great importance for bio-based 
processes. 
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Abstract 

Solvent-based separation processes, such as liquid-liquid extraction are important options 

for the separation of aqueous mixtures with low relative volatilities, tangent pinches or 

azeotropes, for which distillation is either infeasible or energy intensive. As the choice of 

solvent is of utmost importance, various methods for solvent screening have been 

proposed, focusing either on properties like solubility and capacity, or the minimum 

solvent requirement. While some do evaluate the energy for solvent recovery, they 

assume a fixed process structure, based on the integration of an extraction and a 

distillation column. Therefore, additional constraints restrict feasible solvents to those 

that do not form azeotropes and show specific boiling points. While such constraints are 

oftentimes reasonable, overcoming this limitation requires the identification of solvent-

specific process configurations, which is a complex task usually performed by graphical 

analysis or trial and error. For this purpose, the current work introduces a novel 

algorithmic synthesis approach and illustrates its application for the separation of a 

ternary mixture of acetone, acetic acid and water using chloroform as solvent. 

 

Keywords: process synthesis, azeotropic multi-component mixtures, extraction-

distillation hybrid processes. 

1. Introduction 

The separation of aqueous non-ideal mixtures continuously gains importance, while low 

relative volatilities or azeotropes limit a direct and energy-efficient application of 

distillation for these systems. Solvent-based separation processes, such as liquid-liquid 

extraction are of special interest, as the addition of a suitable mass separating agent 

(MSA) that introduces immiscibility in the system, allow for the separation of the target 

product even from complex mixtures. Thereby, depending on the choice of a suitable 

MSA, liquid-liquid extraction can be a very efficient means of separation with very little 

energy requirements, which primarily result from the recovery of the MSA. For this 

reason, various methods for solvent screening and computer-aided molecular design have 

been proposed (Gertig et al., 2020). 

Solvent recovery is required to keep the solvent in the loop. Although regeneration 

strategies such as back-extraction are of interest for non-volatile solvents, this is usually 

accomplished using distillation or simply stripping and accounts for the major energy 

requirement in the process (Sprakel & Schuur, 2019). While many studies screen solvents 
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based on distribution coefficients (at infinite dilution) or the minimum required solvent 

flowrate, which correlates with the energy required to regenerate it, the latter also depends 

on the complexity of the individual separation. Solvent screening is therefore usually 

focusing on the selection of a suitable solvent for a specific process configuration, usually 

limited to homogeneous distillation, posing constraints on the solvent (e.g. Gertig et al., 

2020). Such constraints can only be dropped if process synthesis is performed, and for 

each solvent the most promising flowsheet is selected. This is especially necessary for the 

separation of multi-component mixtures, where multiple separation steps are required to 

recover the solvent and constituent components from the extract and raffinate phases. 

Kraemer et al. (2011) have demonstrated the combined approach of solvent screening and 

process synthesis for the separation of butanol from fermentation broth, whereas each 

process configuration was manually designed. Kaul et al. (2018) also combined solvent 

screening and flowsheet synthesis, building on expert knowledge for the generation of 

process variants. For a systematic approach, it is necessary to automate the synthesis 

method. Expert systems developed in the 90s such as SPLIT by Wahnschafft et al. (1992) 

and PROSYN by Schembecker & Simmrock (1997) demonstrated the synthesis of 

separation processes including extraction and distillation. The former is a blackboard-

based synthesis method where the separation problem is divided into so called binary 

separation tasks, which effectively oversee the non-idealities in the multi-component 

space, the latter is a combined heuristic-numeric approach where the separation process 

is designed using heuristic rules and the physical properties are estimated numerically. 

While such expert systems can systematically guide process synthesis, they require 

subsequent simulation to validate the feasibility of the developed process configurations 

and cannot easily be automated for an effective evaluation of different solvent candidates. 

To overcome this limitation, the current approach proposes a thermodynamically-sound 

method for an algorithmic process synthesis of hybrid extraction-distillation processes. 

The method generates process alternatives solely based on a thermodynamic model of the 

chemical system. It extends our previously developed algorithmic framework, for the 

synthesis of homogeneous and heterogeneous distillation processes (Sasi & Skiborowski 

2020a, Sasi et al. 2020b) introducing liquid-liquid extraction as an alternative unit 

operation that is evaluated by means of the pinch-based shortcut method of Redepenning 

et al. (2017), which determines the minimum required solvent flowrate for a pre-defined 

recovery. The synthesis approach can be applied to azeotropic mixtures as well, thereby 

allowing the use of azeotrope-forming solvents for extraction, which require a more 

complex process configuration for solvent recovery. The subsequent sections summarize 

the extended synthesis method and illustrate the application of the method for the 

separation of a ternary mixture of acetone, acetic acid and water using chloroform as 

solvent. 

2. Methodology 

The overall process synthesis framework extends our previously presented algorithmic 

framework (Sasi & Skiborowski 2020a, Sasi et al. 2020b), which can broadly be divided 

in the three consecutive steps shown in Figure 1. The method builds on the topological 

analysis of the mixture to identify the distillation regions and compartments as well as 

miscibility gaps. Based on this initial knowledge potential process sequences are 

generated in a tree structure before they are finally converted to process configurations 

with closed recycles. The application of the method only requires the specification of a 

thermodynamic model for VLE and LLE computations, as well as a problem definition 
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with feed composition and flowrate, desired products and the definition of a potential 

solvent. The method is implemented in MATLAB, whereas property data can be extracted 

from literature or directly from the property database of a process simulator, such as 

Aspen Plus. 

2.1. Mixture topology 

In order to evaluate the feasibility of individual splits by means of distillation, first the 

topology of the mixture, which includes the determination of homogeneous and/or 

heterogeneous azeotropes (Skiborowski et al. 2016) and the identification of distillation 

regions and compartments (Rooks et al. 1998) is performed. For liquid-liquid extraction, 

a necessary phase separation is evaluated by means of the homotopy continuation method 

of Bausa & Marquardt. (2000). 

 

 

Figure 1: Illustration of the framework of the synthesis methodology 

2.2. Generation of process sequences in a tree structure 

Process sequences are generated through the evaluation of individual splits, creating a 

tree structure. The process starts from the initial feed mixture and adds feasible splits as 

new branches of the tree. Each node is further split until all desired products are reached. 

For each node, distillation, decantation and extraction are considered, with a potential 

subcooling to a predefined operating temperature being considered for the latter options. 

In case the product specification cannot be reached immediately, the program evaluates 

if recycling of individual products can improve the recovery or shift a feed stream to a 

different distillation region.  

2.2.1.  Feasibility test for distillation 

For a separation by means of distillation the maximum recovery of individual splits is 

determined by means of a general feasibility criteria, which evaluates if both product 

compositions are located in the same distillation region. This is achieved by evaluating 

the terminals of product residue curves and pinch lines with respect to the topological 

distillation regions. Thus, if a sharp split is not feasible due to the intersection of the mass 

balance line with a distillation boundary, the highest possible purity of the limiting 

product is determined by means of a simple bisection. Through application of the 

rectification body method (Bausa et al. 1998) it is furthermore checked if both products 

are located in the same compartment, furthermore providing an estimate of the minimum 

energy demand (MED) for the specific separation. Thus, this combined procedure 

evaluates split feasibility without an explicit computation of the distillation boundaries, 

considers potential boundary crossing for finite reflux distillation and provides an 

estimate of the MED. 
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2.2.2. Feasibility test for extraction 

For the evaluation of a separation by means of extraction, a pinch-based shortcut method 

for an isothermal counter-current liquid-liquid extraction column (Redepenning et al. 

2017) is applied to determine the feasibility of extraction and the minimum solvent 

flowrate for the separation of a given feed composition. For the application the solvent 

composition and the desired purity of the key component in the raffinate phase must be 

defined a-priori. The shortcut method builds on the identification of the saddle-node pinch 

that governs the minimum solvent operation. The computations build on a rigorous 

thermodynamic model for LLE computation and exploit continuation methods for a 

robust and computationally efficient evaluation of the minimum solvent flowrate. 

2.3. Generation of variants including recycle 

While potential recycle streams are already introduced during the generation of the tree 

structure, the recycle streams are not closed in this initial synthesis phase. In case such 

recycle streams are used the recycles are closed in a subsequent step. Furthermore, 

individual nodes that are not desired products or pure components are also recycled to 

suitable destinations. If the recycle cannot be converged due to topological restrictions, 

an additional pure component stream is introduced with the recycle. 

3. Case Study 

For illustration of the 

methodology the separation 

of a ternary mixture of 

acetone, acetic acid and water 

using chloroform as solvent is 

considered. Although the 

ternary mixture is zeotropic at 

ambient pressure, separation 

by means of distillation is 

energy-intensive due to a 

rather low relative volatility 

of acetic acid and water and a 

tangent pinch near pure 

water. Acetone and water also 

exhibit low relative volatility 

at high acetone purity. 

Previous studies have shown 

the use of chloroform as a 

suitable solvent for liquid-

liquid extraction (Minotti et 

al. 1996, Caballero & Grossmann 2009, Redepenning et al. 2013). Figure 2 illustrates the 

topology of the quaternary mixture, including chloroform, which introduces two binary 

and a ternary azeotrope at 1 atm pressure, and a miscibility gap between water and 

chloroform, which extends into the quaternary region. The thermodynamic model builds 

on the UNIQUAC parameters obtained from Aspen Plus. The azeotropes induce a 

distillation boundary, which divides the quaternary composition space into two 

distillation regions with acetone and chloroform being the unstable nodes of the 

individual distillation regions. Note that the ternary sub-space of acetone-chloroform-

water is even more complex, with four individual distillation regions. 

Figure 2: Topology of the quaternary mixture of acetone, 

acetic acid, water and chloroform at 1 atm including the 

miscibility gap at 25°C 
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Figure 3: Process variants for the separation of a ternary mixture of acetone (A), acetic acid (AA) 

and water (W) using chloroform (C). 

For process synthesis a feed stream of 10 mol/s with 70 mol-% water and 15 mol-% each 

of acetone and acetic acid is to be separated in the individual components. For decantation 

and extraction an operating temperature of 25°C is assumed. Application of the 

methodology results in overall six feasible process variants, including the direct split (DS) 

and indirect split (IS) sequence for the separation of the initially zeotropic ternary 

mixture. The computations for the generation of these variants take less than 5 min of 

computational time on a desktop PC. Figure 3 illustrates the four variants that utilize 

chloroform as a solvent and incorporate an extraction column with a closed solvent 

recycle. Due to the azeotropes formed with chloroform, solvent recovery is more 

complex. Variants 1-3 first remove acetone from the feed in a distillation column, 

followed by extraction of the binary acetic acid-water mixture using chloroform. 

Variant 4 starts with liquid-liquid extraction and requires the most unit operations. The 

MED of all process variants is illustrated in Figure 4. For streams leaving an extraction 

column or decanter at subcooled conditions, additional heating duty is accounted for in 

the MED if such streams are further processed using distillation. Compared with the DS 

and IS sequences only variant 1 and 2 offer the potential for energy savings. These process 

variants require 22% and 26% less energy than the DS sequence respectively. Variant 2 

offers the lowest MED and requires one distillation column less than variant 1. The two 

streams from the decanter have a purity of 99.4 mol-% chloroform and 99.88 mol-% 

water respectively. Based on the comparison of variant 2 and 3 it becomes apparent that 

the chloroform water separation is much more efficient by decantation than distillation. 

Variant 4 does not only require the most number of equipment, but also the highest MED, 

which is also caused by a large water recycle stream that needs to be mixed with the 

acetone-chloroform azeotrope prior to recycling to the extraction column. 

4. Conclusion 

Given the selection of a suitable solvent, hybrid extraction-distillation processes present 

an important option for the energy-efficient separation of complex non-ideal mixtures. 

Yet, depending on the choice of solvent a more complex process design may be required, 

which so far had to be manually designed. In order to overcome this limitation and allow 
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for an algorithmic generation of integrated process flowsheets the algorithmic framework 

for the synthesis of homogeneous and heterogeneous azeotropic distillation processes has 

been extended to include liquid-liquid extraction. The application of the extended 

methodology to the separation of acetone, acetic acid and water with chloroform 

illustrates the capability of the method to synthesize hybrid 

separation processes for a solvent that introduces additional 

azeotropes and distillation boundaries. The results further 

illustrate the potential energy savings of such solvent-based 

processes, even for close-boiling systems that do not 

experience azeotropes. The extended synthesis method 

provides the basis for a solvent screening that considers 

tailored process configurations for each individual solvent. 

Such evaluations will be the focus of future work, which 

will also consider processes with alternative unit operations 

such as heteroazeotropic distillation and extractive 

distillation. 
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Abstract 

The modern design of chemical processes should involve holistic objective functions as 

well as the consideration of uncertainty sources. This work presents an optimization 

framework for flexible design combining stochastic programing with metaheuristic 

algorithm as solver, the 4E analysis as objective functions, and the integration of a 

decision-making criterion based on statistical fundamentals, applied in optimal 

distribution designs under uncertainty (80 % value of cumulative distribution functions 

(CFD)). The framework was applied to a separation and purification scheme (SPS) based 

on hybrid configurations and evaluating four extracting agents to separate an ABE 

mixture. The results show that the use of 80 % value of CFD is an adequate indicator for 

decision-making in multi-objective optimization under uncertainty. The similarities of the 

final designs using different extracting agents allows to conclude that a unique flexible 

and adaptable SPS design can be selected.  

 

Keywords: Optimization under uncertainty, MOGA, Flexible design, 4E analysis. 

1. Introduction  

In the past decades, the objectives for optimal designs were focused on simple targets, 

because the standard metrics for chemical plants consisted of the assessment of the 

operational aspects and comparison of their performance through common targets (e.g. 

economy, heat duty, CO2 emissions, etc.). These optimal designs are strictly related to 

steady-state operating conditions, and therefore, they are not naturally capable to respond 

to external perturbations and internal unexpected behaviors. In this sense, the introduction 

of the flexibility concept and multi-objective optimization are some of the principal and 

attractive challenges in Process System Engineering (Pretoro et al., 2019).  

Particularly, the design of chemical processes that involves multiple conflicting 

objectives and uncertainties, are identified as relevant and interesting optimization 

challenges, where the combination of two mathematical and solution strategies can be 

applied to tackle those issues: multi-objective optimization and optimization under 

uncertainty. Both strategies allow to obtain a final reliable and robust design (Zhang & 

Taflanidis, 2019). Regarding to flexible design, this generally involves system oversizing 

with respect to the nominal design, which represents major investment and operational 

costs, as well as better energy manipulation to compensate the variability and keep the 

final product specifications (Pretoro et al., 2021).  
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Based on the actual state of the art, the metrics of modern process design must gradually 

adapt and consider internal and external perturbations, besides the fast-changing market 

demand, and the resources availability, without neglecting sustainability aspects and 

optimal operating conditions. Therefore, the objective of this work is to develop and 

implement a conceptual framework for optimal and flexible schemes design, associated 

to uncertainty sources using a computational platform based on the use of statistical 

indicators as decision-making criteria for the selection of the final design.  

2. Case study  

The production of biofuels and bio-bulk commodities is still an attractive path to satisfy 

a partial global market demand, in this sense, the acetone-butanol-ethanol production via 

Clostridia microorganism is an interesting bioprocess to contribute to this goal, which 

naturally has diverse sources of uncertainties; but due to the nonidealities in the mixture, 

high dilution ratio, multiple products and variable yields, the design of ABE separation 

and purification schemes (SPS) is a complex system to model and optimize (Grisales & 

Olivar, 2017). In previous works, liquid-liquid extraction (LLE) and conventional 

distillation were employed as separation and purification techniques for the ABE mixture, 

getting satisfactory energy results, and showing the relevance of suitable selection of 

extracting agents (EA) through computer-aided molecular design (Sanchez-Ramírez et 

al., 2018). Based on the previous statements, the framework was evaluated using the 

hybrid SPS for ABE mixture.  

3. Methodology  

The framework for optimal and flexible schemes design under uncertainty & sustainable 

aspects involves the main idea to combine the stochastic programing fundamentals (wait-

and-see strategy) but replaces the conventional solvers by a metaheuristic algorithm to 

solve the problem statement. This framework includes four steps illustrated in Figure 1 

and are described below.  

 

Figure 1. Framework for optimal and flexible design under uncertainty & sustainable aspects. 

3.1. Conceptual design: Thermodynamic description  

Aspen plus was employed for the conceptual design of the SPS (illustrated in Figure 2), 

including one LLE column (C-101) to remove ABE from the aqueous phase, evaluating 

four EA:  heptyl acetate (HEP), hexyl acetate (HEX), heptyl-hexyl acetate mixture (HEP-
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HEX), and 2-ethyl-1-hexanol (2-ETH-1-OL). Four conventional distillation columns (D-

101, D-102, D-103, and D-104) were used to recover and purify the extracting agent, 

acetone, ethanol, and butanol, respectively. Phase equilibria was calculated employing 

the NRTL thermodynamic model and the equation of state Hayden-O’Connell (Ponce 

Rocha, 2021). 

 

Figure 2. Case study employed to evaluate the MOOUU framework. 

3.2. Stochastic modelling: MOOUU 

The multi-objective optimization under uncertainty (MOOUU) employed in this work 

was formulated as following (1):  

 
𝑀𝑖𝑛 

𝑥
 𝑍 = [ 𝑍𝑘(𝑥, 𝜃∗)] 𝑠. 𝑡.   𝒉(𝑥, 𝜃∗) = 0 𝒈(𝑥, 𝜃∗) ≤ 0 𝑥 ∈ 𝑿, 𝜃∗ ∈ 𝜣∗ (1) 

Where 𝑍, describes the vector of k objective functions under uncertainty (Exergy, energy, 

economy, and environment), 𝑥 represents the vector of n-dimensional states associated 

with structural and operational specifications (FMAEX: extracting agent mass flowrate, 

NS:  number of stages, FS: feed location, RR: reflux ratio, DF: distillate flowrate, or BF: 

bottom flowrate), 𝜃∗ is the vector of s-dimensional uncertainties present in the selected 

variables. h & g represent the vectors of equality and inequality constraints associated 

with operational and structural limitations. 

3.2.1 Objective function definition: 4E-analysis  

The combination of energetic, exergetic, economic, and environmental analysis (4E 

analysis) has been reported as a useful tool to design and optimize energetic intensive 

processes (Ponce Rocha, 2021). In the present work, this 4E functions are calculated as 

follows:  

a) Exergetic analysis 

The exergy losses (𝜎𝑇0) can be obtained as illustrated in Equation (2), where 𝛥𝐸̇𝑥𝐼𝑛 

represents the exergy input, and 𝛥𝐸̇𝑥𝑂𝑢𝑡  is the exergy output, of each stream in the 

analyzed system, which includes the heating, cooling, and concentration changes effects.    

𝜎𝑇0 = 𝛥𝐸̇𝑥𝐼𝑛 − 𝛥𝐸̇𝑥𝑂𝑢𝑡   [𝑘𝑊]  (2) 

b) Energetic analysis  

A common metric to validate the feasibility of biofuels separation is the ratio of the energy 

requirements and product throughout, as illustrated in equation (3).    

𝐸𝑅 =
𝐸𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛  [𝑀𝐽]

𝑃𝑟𝑜𝑑𝑢𝑐𝑡 [𝑘𝑔]
 (3) 

783

uncertainty & sustainable aspects

759 



  J. D. Ponce-Rocha et al.  

c) Economic analysis  

The total annual cost (TAC) is one of the more important indicators that includes the 

capital cost, operating cost, and the payback period (4). 

 

𝑇𝐴𝐶 =
𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝑐𝑜𝑠𝑡

𝑃𝑎𝑦𝑏𝑎𝑐𝑘 𝑝𝑒𝑟𝑖𝑜𝑑 
+ 𝑈𝑡𝑖𝑙𝑖𝑡𝑖𝑒𝑠 (4) 

d) Environmental analysis  

A simple metric to evaluate the environmental impact is the use of the E factor, this 

indicator is the ratio between waste and products generated in the process. 

 

𝐸𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑊𝑎𝑠𝑡𝑒  [𝑘𝑔]

𝑃𝑟𝑜𝑑𝑢𝑐𝑡 [𝑘𝑔]
 (5) 

3.2.2 Uncertainty identification and propagation 

The feed flow stream (100) was identified as one of the principal uncertainties sources in 

the system since this is coming from the fermentation section. Therefore, the propagation 

of the uncertainty in the feed composition was generated using the following values: 

acetone (A) 2,275±112 kg/h, butanol (B) 5,931±276 kg/h, ethanol (E) 1,592±135 kg/h, 

water (W) 10,479±498 kg/h, carbon dioxide (CO2) 82±5 kg/h. The Latin hypercube 

sampling (LSH) method was used for the generation of seventy-five random scenarios 

using a uniform distribution function.  

3.3 Metaheuristic algorithm: simulation-optimization approach 

In this section, a computational interface (COM) was used to integrate Aspen Plus and 

Maltlab. This interface involves three main steps: 1) Matlab generates random vector 

values using the LSH, 2) The vector values are used by Aspen Plus to evaluate each 

scenario under uncertainty, 3) The optimal operating and design results are returned to 

matlab to calculate the objective function values. This step is performed according to the 

hyperparameters definition. The optimal values are saved to be used in the next step for 

graphical, statistical and feasibility analysis. The Matlab suite: gamultiobj, a multi-

objective genetic algorithm (MOGA) and a variant of NSGA-II were used for 

metaheuristic optimization. Each optimization employed the following hyperparameters: 

50 generations, 200 individuals, and a crossover fraction of 0.8 and an adaptative feasible 

mutation function. The mass purity (P) and mass recovery (R) constraints are specified 

for equations (6) and (7). 

[𝑃𝐻𝐸𝑃 , 𝑃𝐴 , 𝑃𝐵 , 𝑃𝐸] ≥ [0.999, 0.950, 0.995, 0.900] 
[𝑅𝐻𝐸𝑃 , 𝑅𝐴, 𝑅𝐵, 𝑅𝐸] ≥ [0.999, 0.995, 0.000,0.992] 

(6) 

(7) 

3.4 Optimal distribution designs: decision making for flexible design     

After the evaluation of each uncertain scenario employing the evaluated EA, a set of 

optimal designs was obtained, which can be analyzed employing statistical indicators as 

tool for establishing a robust and reliable design in uncertainty scenarios. Three criteria 

were evaluated: mean, mode, and the 80 % of the cumulative distribution function (CDF).   

4. Results 

Figure 3 shows the distribution designs for each EA, using the mean (blue dot), mode (red 

dot) and 80 % of CFD (green dot). Then, the minimum, average, and maximum flowrate 

vectors were evaluated in the final optimal design obtained for each statistical indicator 

for each extracting agent. In this sense, the 80 % of CFD indicator showed better results 
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assuring the robustness of the design through the convergence analysis of the average 

value and the lower and upper boundaries of the feed flowrate vectors.   

 
a) HEP 

 
b) HEX

 
c) HEP-HEX 

 
d) 2-ETH-1-OL 

 

Figure 3. CFD for optimal distribution structural designs for each EA. FMAEX: extracting agent 

mass flowrate, NS:  number of stages, FS: feed location. 

Table 1 illustrates the optimal design results summary obtained for the 80 % of CFD 

indicator, employing the evaluated EA. In Table 1 is possible to observe similar structural 

designs specification such as, number of stages and feed locations for each equipment. 

Table 1. Comparative structural designs for each design and operating variables.  

Variable 
NS 

C101 

FMAEX 

kg/h 

NS 

D101 

NF 

D101 

NS 

D102 

NF 

D102 

NS 

D103 

NF 

D103 

NS 

D104 

NF 

D104 

HEP  47 68,080 37 17 40 20 46 20 49 14 

HEX 44 77,292 41 23 43 21 46 18 45 16 

HEP-HEX 45 
24,753- 

50,418 
41 20 42 18 44 17 46 15 

2-ETH-1-OL 45 25,000 36 16 39 21 46 20 46 15 
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Table 2 shows the average results and standard deviations of the objective functions 

values for each extracting agent, employing the average values and the lower and upper 

boundaries of the uncertain values of the feed flowrate vectors. The use of HEP as EA 

gives the best results in three criteria (exergy, energy and environmental). The second 

option was the use of the HEP-HEX mixture as EA, followed by 2-ETH-1-OL and HEX. 

Table 2. 4E objective functions values 

 
𝝈𝑻𝟎 

[MW] 

ER 

[MJ/kg ABE] 

TAC 

[MUSD/year] 
Efactor 

HEP  2.00±0.06 12.19±0.42 8.34±0.22 0.24±0.01 

HEX 2.28±0.09 17.33±0.35 10.96±0.29 0.44±0.01 

HEP-HEX 2.29±0.07 14.88±0.49 9.86±0.33 0.32±0.02 

2-ETH-1-OL 2.03±0.07 16.50±0.45 7.87±0.29 0.80±0.02 

5. Conclusions  

In this framework, a novel strategy to optimize under uncertainty a complex SPS was 

applied. The implementation of 4E analysis and MOGA showed satisfactory results in 

the stochastic problem solution. The 80 % of the CFD indicator was validated as a 

satisfactory indicator to select reliable and robust designs. Due to the identical targets in 

separation and purification tasks, each optimal final design for each EA has similar 

structural specifications, in this sense, a single design can be proposed and identified with 

adaptable and flexible characteristic, where EA flowrate is variable due to their 

physicochemical properties. Regarding to the EA, HEP showed the best performance 

results, but the idea of a flexible and adaptable design would allow to use other EA 

considering market availability.  
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Abstract 

Carbon capture and utilization for fuel production is one of the attractive and effective 

solutions addressing climate change and energy security. In which captured CO2 is 

considered as raw materials for high-energy-density products (e.g., methanol, dimethyl 

ether, Fischer-Tropsch fuel, gasoline) via different technologies (catalytic conversion, 

thermochemical energizing, electrochemical reduction). This study developed an 

optimization-based framework to analyze and assess CO2 utilization strategies for fuel 

products regarding technical, economic, and environmental performance. To achieve this 

goal, we first generated a superstructure involving a series of technologies (carbon 

conversion and separation) to produce value-added fuels from captured CO2 as a 

feedstock. We then simulated all the involved processes and estimated the technical and 

economic parameters (mass and energy flow, and sizing and costing data) that were 

further adopted into the optimization model. The optimization models were developed to 

identify the optimal CO2 utilization strategies with different criteria: energy efficiency, 

production cost, profit, and CO2 reduction. As a result, we can determine the best CO2 

utilization strategy over various technological pathways to produce different targeted 

fuels, which makes CO2-based fuels economically and/or environmentally viable
. 

 

Keywords: Process design; CO2 utilization superstructure; Optimization. 

1. Introduction 

Carbon capture and utilization is one of the attractive and effective solutions addressing 

global warming and energy security. This action supports reducing CO2 emission by 

capturing and utilizing CO2 as a raw material for high-value fuels and chemicals such as 

methanol (MeOH), dimethyl ether (DME), Fischer-Tropsch fuel (FT fuel), and gasoline. 

Besides mitigating emission, the CO2-based fuels can share the burden on fossil fuels by 

replacing (e.g., FT fuels, gasoline) or blending (e.g., MeOH, DME) with conventional 

fuels.  

Recently, the literature has found much research on CO2 utilization technologies such as 

catalytic conversion, electrochemical reduction, and thermochemical energizing (Kim et 

al, 2012, and Mevawala et al., 2017). While some work on the high performed catalyst or 

thermochemical/electrochemical materials, others study process design and optimization, 

techno-economic and environmental analysis of CO2 utilization to fuels (Do et al., 2019 

and 2020). Also, many studies conduct a technological superstructure and optimization-

based framework for fuels and chemicals from various feedstock materials. Kim et al. 
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developed a superstructure of fuels from biomass and assessed the conversion strategies 

with different evaluation criteria, the uncertainty, and sensitivity analysis (Kim et al., 

2013). Han et al. developed an assessment framework for optimal strategies to utilize 

industrial residue gas (Han et al., 2019).  

This study developed an optimization-based assessment framework to analyze and assess 

CO2-to-fuel utilization strategies with different evaluation criteria: energy efficiency, 

economic, and environmental friendliness. The problem statement and methodology are 

presented in Section 2. The generation of the technological superstructure, including 

various carbon conversion and separation technologies, which aim to produce CO2-based 

fuels: MeOH, DME, FT fuels, and gasoline, are discussed in Section 3. Then, the process 

simulation of possible CO2-to-fuels pathways among the superstructure was developed 

and the techno-economic parameters (e.g., mass and energy flow, and sizing and costing 

data) were further obtained and presented in Section 4. In section 5, the optimization 

models were developed to identify the optimal CO2 utilization strategies with different 

criteria: energy efficiency, production cost, and CO2 reduction. Finally, the best CO2

utilization strategy over various technological pathways for different targeted fuels is

discussed in Section 6. 

2. Methodology 

This study aims to propose and develop an optimization-based assessment framework of 

CO2 utilization to fuels, which supports identifying the optimal strategies for specific 

CO2-based fuels, as shown in Figure 1. We first define the problem by selecting captured 

CO2 as the main feedstock, selecting final products and technologies, and developing the 

superstructure by integrated technologies to convert CO2 forward to final products. The 

process simulation of all possible production pathways is then developed and the 

technical (mass and energy flow), and economic data (sizing and costing data) are 

obtained. The optimization model is developed based on the generated superstructure 

framework and the associated techno-economic data. The model identifies the optimal 

CO2-to-fuel strategy for a given problem and given final products, such as: maximizing 

energy efficiency (EEF), minimum unit production cost (UPC), and net CO2 emission 

(NCE). 

CO2 Fuels

<Optimal strategy>

Mass & energy balance
Sizing & costing data

<Simulation & Data estimation>

<Optimization model development>

,
/   

 :

  ,    

( , ) 0, ( , ) 0= 

 

x y

n n

h

Minimize Maximize Z

Subject to

x R y

y x y

R

x g

Production and Process Selection for: 

• Max Energy Efficiency

• Min Unit Production Cost

• Min Net CO2eq emission

Feedstock

Technology

Product

CO2 Fuels

<Superstructure generation>

<Problem setup>

<Superstructure>

Figure 1. Methodology for the assessment of CO2 utilization strategy for liquid fuels 

3. Superstructure  

In this study, the compounds were classified into three groups: feedstock (i.e., captured 

CO2), intermediates (e.g., syngas, raw fuels), and final products (e.g., MeOH, FT fuel, 

DME, and gasoline). The technologies including reaction/conversion technology (e.g., 
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Optimization-based assessment framework for CO2

direct CO2 hydrogenation, reverse water-gas shift, thermochemical CO2 energizing, 

electrochemical CO2 reduction, methanol/DME/FT synthesis from syngas, methanol-to-

gasoline, methanol dehydration) component separation (e.g., CO2 absorption, CO 

adsorption), and product purification (e.g., flash drum, distillation). Note that a single 

technology includes various operating equipment.

The CO2 utilization superstructure was developed by connecting compounds and multiple 

techniques for targeted products, as presented in Figure 2. Here, there are many 

production pathways for a specific product. For example, FT fuels can be produced via 

direct CO2 hydrogenation or FT synthesis from syngas (indirect pathway), in which, the 

intermediate syngas can be converted through reverse water-gas shift or thermochemical 

splitting, or electrochemical reduction. 

DHCO2

RWGS

CR5

Electro.

SEP MS

FTS

DMES

MeOH

DME

FT fuel

Gasoline

Dehydrat.

MTG

CO2 Syngas
MeOH

Sep/Purif.

Sep/Purif.

Sep/Purif.

Sep/Purif.

Sep/Purif.

Feedstock CO2

Intermediate

Products

Catalytic conversion

Thermochemical energizing

Electrochemical reduction

Component separation/Purification

<Technology> <Compounds> <Abbreviation>

DHCO2: Direct hydrogenation

RWGS: Reverse water-gas shift

CR5: Counter-Rotating-Ring 

Receiver/Reactor/Recuperator

Electro.: Electrolyzer

MS: methanol synthesis

FTS: Fischer-Tropsch synthesis

DMES: Dimethyl ether synthesis

MTG: methanol-to-gasoline

Dehydrat.: Methanol dehydration

Figure 2. Superstructure of CO2 utilization to fuels

4. Simulation and parameter estimation

In this study, CO2 feedstock is assumed to be captured from the flue gas of coal-powered 

electric utility (500 MW), which is about 3.1 million ton of captured CO2 per year. Each 

process was simulated using Aspen Plus V.11. More detailed process simulation and

modeling could be found in the literature (Do et al., 2022). The mass flow, energy flow, 

sizing and costing data were then obtained for further model input and analysis. Table 1 

summarizes major technical and economic parameters. 

Table 1. Technical and economic parameters of the CO2-to-fuels.

No. Technological pathway Production
Input 

(ton/h)

Output

(ton /h)
Yielda TCIb

(M$ )

TOCc

(M$ /y)

ERd

(MW)

DCEe

(ton 

CO2eq/h)

EOf

(103

GGE/h)

1 RWGS-MS-SEP MeOH_ 1 437.9 249.9 0.57 664 2,093 759 36.7 47.4

2 CR5-MS-SEP MeOH_ 2 433.3 253.5 0.59 10,934 1,875 679 32.8 48.1

3 ELECZ-MS-SEP MeOH_ 3 431.7 255.5 0.59 3,243 1,900 990 30.4 48.4

4 RWGS-COSEP-MS-SEP MeOH_ 4 439.1 260.0 0.59 3,639 2,462 708 26.5 49.2

5 CR5-COSEP-MS-SEP MeOH_ 5 425.3 257.2 0.60 35,241 2,156 567 29.2 48.6

6 ELECZ-COSEP-MS-SEP MeOH_ 6 426.2 264.6 0.62 7,291 2,091 1,169 18.8 50.1

7 RWGS-CO2SEP-MS-SEP MeOH_ 7 437.2 253.1 0.58 692 2,204 1,699 33.8 48.0

8 CR5-CO2SEP-MS-SEP MeOH_ 8 424.2 256.6 0.60 31,874 1,677 1,322 29.2 48.7

9 ELECZ-CO2SEP-MS-SEP MeOH_ 9 425.6 263.9 0.62 5,430 1,953 1,873 18.9 50.0

10 DHCO2MEOH-SEP MeOH_ 10 440.1 270.4 0.61 734 2,068 383 14.6 51.3

11 RWGS-COSEP-FTS-SEP FT_ fuel_ 1 443.5 82.5 0.19 4,048 2,805 1,217 6.3 30.9

12 CR5-COSEP-FTS-SEP FT_ fuel_ 2 429.5 81.9 0.19 35,644 2,486 1,032 7.5 30.6

13 ELECZ-COSEP-FTS-SEP FT_ fuel_ 3 429.6 83.7 0.19 7,701 2,399 1,691 4.5 31.4

14 RWGS-CO2SEP-FTS-SEP FT_ fuel_ 4 442.2 79.9 0.18 1,016 2,561 2,146 9.8 30.0
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15 CR5-CO2SEP-FTS-SEP FT_fuel_5 428.4 81.7 0.19 32,229 2,000 1,776 7.5 30.6  

16 ELECZ-CO2SEP-FTS-SEP FT_fuel_6 429.0 83.6 0.19 5,798 2,248 2,364 4.5 31.4  

17 DHCO2FT-SEP FT_fuel_7 442.8 119.2 0.27 880 2,203 438 145.9 44.7  

18 RWGS-MS-DEH.-SEP DME_1 437.9 179.5 0.41 1,250 2,149 992 36.7 46.9  

19 CR5-MS-DEH.-SEP DME_2 433.3 182.1 0.42 11,526 1,932 915 32.8 47.6  

20 ELECZ-MS-DEH.-SEP DME_3 431.7 183.6 0.43 3,837 1,957 1,228 30.4 48.0  

21 RWGS-COSEP-MS-DEH.-SEP DME_4 439.1 186.8 0.43 4,240 2,520 949 26.5 48.7  

22 CR5-COSEP-MS-DEH.-SEP DME_5 425.3 184.7 0.43 35,837 2,213 805 29.2 48.2  

23 ELECZ-COSEP-MS-DEH.-SEP DME_6 426.2 190.1 0.45 7,899 2,151 1,415 18.8 49.6  

24 RWGS-CO2SEP-MS-DEH.-SEP DME_7 437.2 181.9 0.42 1,283 2,261 1,935 33.8 47.5  

25 CR5-CO2SEP-MS-DEH.-SEP DME_8 424.2 184.3 0.43 32,470 1,734 1,561 29.2 48.2  

26 ELECZ-CO2SEP-MS-DEH.-SEP DME_9 425.6 189.6 0.45 6,038 2,012 2,118 18.9 49.5  

27 DHCO2MEOH-DEH.-SEP DME_10 440.1 194.3 0.44 1,351 2,129 635 14.6 50.8  

28 RWGS-COSEP-DMES-SEP DME_11 417.6 179.9 0.43 3,573 1,679 511 182.2 46.9  

29 CR5-COSEP-DMES-SEP DME_12 402.2 95.9 0.24 35,170 1,307 315 183.7 25.0  

30 ELECZ-COSEP-DMES-SEP DME_13 407.0 114.0 0.28 7,250 1,405 1,041 159.1 29.7  

31 RWGS-CO2SEP-DMES-SEP DME_14 410.4 80.5 0.20 434 1,200 1,355 215.9 21.0  

32 CR5-CO2SEP-DMES-SEP DME_15 401.1 95.7 0.24 31,770 813 1,049 195.7 25.0  

33 ELECZ-CO2SEP-DMES-SEP DME_16 406.3 113.9 0.28 5,348 1,253 1,713 159.1 29.8  

34 RWGS-MS-MTG-SEP Gasoline_1 437.9 120.0 0.27 1,520 2,054 527 11.4 45.9  

35 CR5-MS-MTG-SEP Gasoline_2 433.3 125.8 0.29 11,814 1,834 435 6.4 48.1  

36 ELECZ-MS-MTG-SEP Gasoline_3 431.7 113.7 0.26 4,064 1,863 769 4.7 43.5  

37 RWGS-COSEP-MS-MTG-SEP Gasoline_4 438.1 97.5 0.22 4,381 2,045 537 5.4 37.3  

38 CR5-COSEP-MS-MTG-SEP Gasoline_5 424.1 99.7 0.23 35,993 1,673 363 6.7 38.1  

39 ELECZ-COSEP-MS-MTG-SEP Gasoline_6 425.6 93.9 0.22 8,016 1,819 1,019 2.9 35.9  

40 RWGS-CO2SEP-MS-MTG-SEP Gasoline_7 437.2 104.7 0.24 1,453 2,165 1,464 9.7 40.1  

41 CR5-CO2SEP-MS-MTG-SEP Gasoline_8 424.2 99.7 0.24 32,627 1,642 1,119 6.7 38.1  

42 ELECZ-CO2SEP-MS-MTG-SEP Gasoline_9 425.6 94.0 0.22 6,157 1,933 1,754 2.9 35.9  

43 DHCO2MEOH-MTG-SEP Gasoline_10 440.1 139.9 0.32 1,701 2,034 176 6.0 53.5  
a Yield: calculated based on the material input and production output. 
b TCI (M$): total capital investment cost. 
c TOC (M$/y): total annual operating cost  
d ER (MWh): energy requirement for process. 
e DCE (ton/h): direct CO2eq emission (vent-out gas, purge gas) from process. 
f EO (103 GGE/h): Energy flow of products. 

Abbreviations: RWGS: Reverse water-gas shift, DH: Direct CO2 hydrogenation, CR5: Counter-Rotating-Ring 

Receiver/Reactor/ Recuperator, ELECZ: Electrochemical reduction, MS: Methanol synthesis, FTS: Fischer–Tropsch 

synthesis, DMES: dimethylether synthesis, DEH..: Methanol dehydration, MTG: methanol-to-gasoline, COSEP: CO 

separation by adsorption, CO2SEP: CO2 separation by absorption, SEP: separation and purification. 

5. Optimization model 

To identify the optimal strategy for CO2 utilization to fuels, we develop optimization 

models using a mixed-integer linear programming (MILP) technique to identifies the 

optimal CO2-to-fuel pathway for each CO2-based fuel type. Eq. (1) uses to identify the 

maximum energy efficiency strategy, which is maximum energy stored in product with a 

certain input energy to process. Eq. (2) seeks for the most economic strategy, which is 

minimum unit production cost for a fixed amount of product. Other, minimum net CO2 

emission strategy is identified vis Eq. (3), which emits as producing a certain amount of 

product.  

=s i ij

j

MaxEEF P   
(1) 

 

= + + +   
F U

s j j i ij i ij

j j i I i I

MinUPC F U      
(2) 

 

= + −  
F F

s j i ij i ij

j i I i I

MinNCE U F     
(3) 

 

Where 
i  is the heating value of final  product  Pi I . 

ijF , 
ijU , 

ijP ,is the the amount 

of feestock  Fi I , utilities  Ui I  and product of pathway j , respectively. 
j  is the 
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total capital investment cost of pathway j , 
j is the fixed operating cost factor of 

pathway j . 
i and 

i are the unit costs for utilities  Ui I and feedstock  Fi I , 

respectively.
j is the amount of CO2 directly emitted by technology j .

i is the amount 

of indirect CO2 emission by using utility  Ui I , and 
i is the CO2 inventory for feedstock

 Fi I .

The optimization model was constrained by the demand satisfaction and feed availability 

and minimum feed purchase, as expressed in Eqs. (4) – (5).

i iP  (4)

 i i iF  (5)

Where 
i is the demand of product.

i and
i are the minimum purchase and feed’s 

availability, respectively.

6. Results and discussion

With the proposed models, we can identify the optimal strategy to utilize CO2 to different 

fuels objecting to max EEF, min UPC and min NCE. Figure 3 presented the optimal 

strategies, including CO2-to-fuel technological pathways and three main evaluated 

criteria for the production of MeOH, FT fuel, DME and gasoline. 

Target Fuels Problem Optimal Strategy Description

Methanol

(MeOH)

(a) Max EEF

• EEF: 82.7%

• UPC: 18.13 $/GGE

• NCE: -0.93 kgCO2/GGE

(c) Min UPC
• EEF: 71.2%

• UPC: 3.60 $/GGE

• NCE: -1.01 kgCO2/GGE
(d) Min NCE

Fischer-

Tropsch

(FT fuel)

(a) Max EEF

• EEF: 58.2%

• UPC: 4.46 $/GGE

• NCE: 3.22 kgCO2/GGE

(c) Min UPC

(d) Min NCE

Dimethyl 

ether

(DME)

(a) Max EEF

• EEF: 93.9%

• UPC:  32.56 $/GGE

• NCE: 2.47 kgCO2/GGE

(c) Min UPC
• EEF: 58.4%

• UPC:  4.01 $/GGE

• NCE: 0.18 kgCO2/GGE
(d) Min NCE

Gasoline

(a) Max EEF
• EEF: 81.3%

• UPC:  3.71 $/GGE

• NCE: -1.86 kgCO2/GGE
(c) Min UPC

(d) Min NCE

• EEF: 72.3%

• UPC:  21.92 $/GGE

• NCE: -2.78 kgCO2/GGE

CR5 SEP MS MeOHCO2 Sep/Purif.

DHCO2 MeOHCO2 Sep/Purif.

DHCO2 MeOHCO2 Sep/Purif.

DHCO2 FT fuelCO2 Sep/Purif.

DHCO2 FT fuelCO2 Sep/Purif.

DHCO2 FT fuelCO2 Sep/Purif.

CR5 SEP DMES DMECO2 Sep/Purif.

DHCO2 DMECO2 Sep/Purif.Dehydrat.

DHCO2 DMECO2 Sep/Purif.Dehydrat.

DHCO2 GasolineCO2 Sep/Purif.MTG

DHCO2 GasolineCO2 Sep/Purif.MTG

CR5 SEP MS GasolineCO2 MTG

Figure 3. Optimal strategy for CO2-based fuel production using different criteria

791

Optimization-based assessment framework for CO2

utilization to fuels strategies

767 



 

The optimal strategy with the highest process energy efficiency for MeOH is through 

thermochemical CO2 energizing subsequent methanol synthesis, at 82.7%. However, it is 

challenged with extremely high production cost at 18.13 $/GGE (GGE – gallon gasoline 

equivalent). The direct CO2 hydrogenation to MeOH is the most economic and eco-

friendly pathway at 3.6 $/GGE and reduces 1.01 kgCO2/GGE (NCE<0), respectively.  

For production of FT fuel, the direct hydrogenation of CO2 is also the optimal strategy 

over other pathways and over three examined problems. Compared to MeOH, FT fuels is 

less energy efficient (58.2 %), higher cost (4.46 $/GGE), and emit 3.22 kgCO2/GGE 

(NCE>0). Here, FT is indicated as an unfavorable choice for eco-hydrocarbon synthesis. 

Similar to MeOH, the CO2-to-DME pathway of thermochemical CO2 energizing 

subsequent DME synthesis is the optimal strategy for maximum EEF. The optimal 

strategy for cost and environmental problems is through direct CO2 hydrogenation to 

MeOH subsequent MeOH dehydration to DME, which results in 4.01 $/GGE and 0.18 

kgCO2/GGE emission.  

The direct CO2 hydrogenation to MeOH followed methanol-to-gasoline is the optimal 

gasoline production strategy regarding max EEF (81.3%) and min UPC (3.71 $/GGE). 

This strategy also performs good environmental performance, which reduces CO2eq at 

NCE of -1.86 kgCO2/GGE. However, the optimal eco-friendly strategy is through 

thermochemical energizing technology for methanol synthesis subsequent methanol-to-

gasoline, at -2.78 kg CO2/GGE with the trade-off of extremely high production cost.  

7. Conclusion 

In this study, we proposed and developed an optimization-based assessment framework 

for CO2 utilization to fuels strategies. The framework is based on the CO2-to-fuels 

superstructure includes a number of conversion and separation technologies for desired 

fuel production. Then, the optimization model enables us to assess CO2 utilization 

strategies with evaluation criteria regarding energy efficiency, unit production cost, and 

process eco-friendliness. Thereby, the framework determines the best CO2 utilization 

strategy over various technological pathways to produce different targeted fuels, which 

makes CO2-based fuels economically and/or environmentally viable. It can also support 

the policymaker or company identify a suite of strategic solutions to utilize captured CO2 

for fuels.  
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Abstract 

This contribution introduces a combined liquid chromatography purification designed for 

a continuous and resource-efficient process, integrating the rotating columns and the 

simulated bed principles. The approach is demonstrated and validated based on bisabolol 

oxides A and B, which are effective ingredients with anti-inflammatory and spasmolytic 

effects, prepared from chamomile essential oil. The results show superior efficiency to 

the traditional selective methods for isolating ingredients from multicomponent mixtures, 

as well as reduction in resources and costs. 

 

Keywords: Essential oil; Preparative chromatography; Simulated moving bed (SMB). 

1. Introduction 

Bioactive ingredients from plant extracts are the basis of many innovative products in the 

food, cosmetics, or the pharmaceutical industries. However, at present, mainly diluted 

products are extracted as complex mixtures, as a large amount of by-products accumulates 

as waste at the end of the process, and can only be recovered with increased effort. 

Essential oils are complex volatile substances composed of many ingredients with broad 

spectrum of bioactivity and, therefore, subject to extensive research (Chouhan et al. 

2017). Various processes have been used to extract these ingredients: harvesting as plant 

materials, washing, extraction of phytonutrients, or purification of the components of 

interest (Belwal et al. 2020). Traditional techniques consist of liquid-liquid extraction, 

solid-liquid extraction, or solid phase micro-extraction. Modern techniques include 

ultrasound-assisted extraction, pressurised liquid extraction, supercritical fluid extraction, 

microwave-assisted extraction, or instant controlled pressure drop extraction (Yahya et 

al. 2018). Often, for the same plant, extraction conditions may vary in terms of extraction 

time or amount of solvent used. Conventional methods suffer from some serious 

disadvantages, such as excessive solvent, time and energy requirements, which demand 

the development of new techniques that are more efficient, less expensive and least 

hazardous (Abbas et al. 2021). Modern techniques show significant improvement over 

the traditional ones in terms of less extraction time, greater extraction yield and lower 

solvent consumption, but depend on parameters such as solvent composition, amount of 

solvent, and plant material loading (Bagade et al. 2021). Moreover, green extraction 

technologies come with their own shortcomings: high capital investment, high running 
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cost, complex configuration, training, maintenance cost, which limit their large scale 

application (Picot-Allain et al. 2021). 

Using the example of bisabolol oxides A and B (BOA, BOB), effective ingredients with 

anti-inflammatory and spasmolytic effects, prepared from the essential oil of a bisabolol 

oxide-rich chamomile (Schilcher et al. 1987), a combined liquid chromatographic 

purification is designed and implemented in the following sections up to their complete 

separation. 

2. Materials and methods 

The developed procedure is implemented using a system for continuous liquid 

chromatography (Wissenschaftliche Gerätebau Dr.-Ing. Knauer GmbH, Berlin; Type: 

CSEP®9116) with a 64-port multifunction valve (100 bar pressure-resistant). Up to 16 

separation units (columns) can be combined in parallel or in series. In the present work, 

(semi-)preparative columns (C18H, 10µm 8x120mm) are used. The active ingredients 

were detected using a photo diode array (PDA) detector (Knauer Smartline S2800). 

 
2.1. Materials 

The chamomile oil produced by steam distillation is separated from the paraffins (long-

chain, branched and unbranched n-alkanes) contained in it using a simple crystallization 

method. Subsequently, the oil could be prepared by distillation in such a way that the low-

volatility components (β-farnesene, germacrene D, elemene) are largely depleted and 

only present in traces (remaninng low-volatility compounds < 2 wt. %). The concentration 

of the valuable active ingredients increases during this step, and a pre-fractionated oil is 

produced with the composition presented in Table 1. 

Table 1: Chamomile oil content 

To avoid policy hurdles during a possible 

product development, the process design is 

limited to a solvent mixture of ethanol/water 

(mobile phase – MP), which is 

pharmacologically harmless. 

 

The modular structure of the simulation toolbox offers flexibility in adding new modules 

for improved representation of the internal geometries as well as of the different 

phenomena (e.g., holdup, fluid flow, kinetics, etc.) taking place inside the TBR, as well 

as expansion to energy balance to move away from the isothermal assumptions. 

 

2.2. Analysis 

Gas chromatography systems are used to analyse the starting, intermediate, and end 

products. Their structure is elucidated and identified using a GC-MS system (Shimadzu 

QP2010S), and then transferred to a GC-FID system for quantification (Shimadzu 

2010Plus).  
 

2.3. The rotating columns principle 

Bauer et al. (1996) introduced a continuous chromatographic process based on a rotating 

multifunctional valve in which individual fractions can be separated spatially from a 

multifunctional mixture. In principle, the process can be compared with annular 

chromatography (Brozio et al. 2004), whereas the annular gap built up with the stationary 

phase (SP) is divided into discrete units and, thus, replaced by traditional (semi-) 

Ingredient Mass fraction 
β-farnesene 1.68 wt.% 
Bisabolol oxide A 45.52 wt.% 
Bisabolol oxide B 28.51 wt.% 
Chamazulene 9.55 wt.% 
Rest 14.74 wt.% 
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preparative chromatography columns. The columns connected in parallel are filled with 

the MP in the direction of the flow, whereby the feed is introduced at a fixed point. A 

significant disadvantage of the process is the mandatory isocratic loading of the MP 

across all pillar positions. In the case of a heterogeneous feed consisting of components 

with different adsorption-desorption mechanisms, this leads to long processes, high cycle 

frequency and high consumption. To overcome this, in the first stage of the extraction 

process, the task of the MP is divided into position segments, which allow the gradient 

elution and ultimately a cleaning of difficult-to-elute components with equilibration of 

the columns for the subsequent cycle. The two components considered, BOA and BOB, 

are difficult to separate by liquid chromatography using the ethanol-water combination, 

and sometimes elute at the same time under the desired high feed concentrations. To 

circumvent this problem, the two eluents are first fractionated together. 

 

 

Figure 1: Fractionation system for BOA and BOB 

 

Figure 1 shows the schematic interconnection of the system for the continuous 

fractionation of the bisabolol oxides as a binary mixture. 

 

2.4. The simulated moving bed (SMB) 

Counter current chromatography also offers the possibility of a continuous process 

management and is characterised by high efficiency compared to other alternatives, but 

it is limited to binary mixture. For the procedure developed here, both the SP and MP are 

moved in counter current to one another. The structure of the SMB used in the separation 

considers a four-zone configuration. A true moving bed (TMB) model (Charton & 

Nicoud, 1995) is used to define the parameters for the SMB. The residence time of the 

compounds in a chromatographic system results from the distribution equilibrium. The 

distribution coefficient is determined as the concentration quotient between the MP and 

the SP and is to be established via the retention time (𝑡𝑅), taking into account the dead 

time (𝑡0) and the porosity (ε) of the packed column, based on the following equation:  

 

𝐾𝑖 =
𝑡𝑅−𝑡0

𝑡0
1−𝜀

𝜀

        (1) 

 

C C

Cycle 1 Cycle 2

Injection 
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The selectivity between substances is defined as: 

 

𝛼 =
𝑡𝑅(𝐴)−𝑡0

𝑡𝑅(𝐵)−𝑡0
        (2) 

 

The triangular theory developed by Ruthven & Ching (1989) for linear adsorption 

isotherms are used for the design of the simple SMB process. A system of equations is 

set up for the respective volume flows in each of the zones as follows: 

 

𝑉̇𝑀𝑃(𝐼)   = 𝑉̇𝐸𝑙𝑢 + 𝑉̇𝑀𝑃(𝐼𝑉)         (3) 

𝑉̇𝑀𝑃(𝐼𝐼)  = 𝑉̇𝑀𝑃(𝐼) − 𝑉̇𝐸𝑥               (4) 

𝑉̇𝑀𝑃(𝐼𝐼𝐼) = 𝑉̇𝑀𝑃(𝐼𝐼) + 𝑉̇𝐹        = 𝑉̇𝑀𝑃(𝐼) − 𝑉̇𝐸𝑥 + 𝑉̇𝐹      (5) 

𝑉̇𝑀𝑃(𝐼𝑉)  = 𝑉̇𝑀𝑃(𝐼𝐼𝐼) − 𝑉̇𝑅𝑎    = 𝑉̇𝑀𝑃(𝐼) − 𝑉̇𝐸𝑥 + 𝑉̇𝐹 − 𝑉̇𝑅𝑎    (6) 

 

Where 𝑉̇ is the volume flow, in ml/min. 
 

 

Figure 2: Retention times for the bisabolol oxides 

 

The substance-specific retention times for the bisabolol oxides to be separated using the 

SMB method are determined in an optimized batch method. For this purpose, the most 

efficient separation of the components, with the lowest possible MP consumption is 

implemented. Due to the ethanol-water mixture used as MP, a relatively low maximum 

selectivity is set. Figure 2 shows the underlying chromatogram for the determination of 

the retention times as the basis for establishing the operating point for the TMB model. 

The following user-specified constraints are defined further: 

 

a) The permissible minimum flowrate ratio in Zone I must be increased by 

approximately 25% to ensure complete elution in the extract. Furthermore, if the 

flowrate increase, the eluent consumption increases as well 

Retention time 
BOA

7.14 min

Retention time 
BOB

8.88 min
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b) The permissible maximum flowrate ratio in Zone IV must be reduced by 

approximately 25% in order to prevent carryover into Zone I. However, too great 

reduction is equivalent with an inefficient utilization of the SP 

c) For Zones I and II, an operating point within the range from Points 1 and 2 must 

be fixed (𝑚𝐼𝐼 ≤ 𝑚𝐼𝐼𝐼) 

For the operating conditions of the TMB model, the flowrate rations in Zones I and IV 

were thus fixed, whereby the separation area for a practical operating point is spanned 

(triangle). From this, the flowrate for Zones II and III can be determined.  

Table 2: Parameters for the SMB stage 

The parameters determined for 

the SMB are summarised in 

Table 2. When assessing the test 

with a fixed operating point from 

this table, the concentration of 

the extract (BOB) at the 

extraction point is assessed as too 

low. The MP flowrate in Zone I 

should therefore be corrected 

downwards to 1.3 ml/min 

(instead of the value of 1.5 

ml/min resulted from the 

modelling) in order to cause a shift in the concentration profile of this component in the 

direction of Zones I and II (increase in the concentration at the extraction point). The 

eluent flowrate is consequently reduced to 0.492 ml/min, while the extract flow is only 

0.216 ml/min. 

3. Results and discussion 

The rotating column stage is compared with a discontinuous batch application. According 

to the GC-FID analysis, BOA is detected to 91.3 wt. %, while BOB to 93.8 wt. % in their 

respective fractions. The losses are carried out via the respective column Positions 2 and 

10 (BOA) and 4 and 12 (BOB) via the waste (W). 

    

The SMB-method for the 

subsequent separation of the 

binary fraction is developed 

based on linear adsorption 

isotherms. Figure 3 shows the 

concentration profile (GC-FID) 

after the iterative optimisation at 

steady state (Cycle 7). The 

subsequent SP overloading and 

the system approaching the 

efficiency limits took place by 

continuously increasing the feed 

concentration. The decrease in 

the raffinate (BOA) purity due to increasing contamination by BOB is used for the 

evaluation of the process. Under an essential oil feed of 5µl/ml∙cycle, a purity of 98.1% 

is achieved for BOA, and > 99.0% for BOB, according to the GC-FID analysis. 

Stationary phase (SP) 
Flowrate 0.1944 ml/min 
Cycle rate 14.26 min 
Mobile phase (MP) zone flow rates 
MP Zone I (Fixed) 1.500 ml/min 
MP Zone II 1.084 ml/min 
MP Zone III 1.162 ml/min 
MP Zone IV 0.808 ml/min 
Input and Output flows 
Eluent flow (Zone I – Zone IV) 0.692 ml/min 
Feed flow (Zone III-Zone II) 0.078 ml/min 
Extract flow (Zone I – Zone II) 0.416 ml/min 
Raffinate flow (Zone III – Zone IV) 0.354 ml/min 

Column position

P
e

ak
 a

re
a

Figure 3: Profile concentration of the SMB application 

for the bisabolol oxides separation 
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Figure 4: GC-FID of: a) Feed; b) Raffinate as BOA; c) Extract as BOB 

The GC-FID for determining the fractions’ purity also show that the impurities contained 

in the feed fraction are almost completely separated via the Raffinate, whereas the Extract 

almost exclusively contains the target component (Figure 4). 

4. Conclusions 

In the present work, a coupled method strategy for the isolation of valuable active 

ingredients is developed based on the example of an essential oil as a starting mixture. 

The approach integrates the rotating columns and the simulated moving bed principles. 

During the first stage (the rotating column stage), a binary mixture target (bisabolol A 

and B oxides) are fractionated at the same time. The oxides are then separated in the 

second stage (the SMB stage). The combination of the two processes shows superior 

results in terms of efficiency to the traditional selective methods for isolating different 

ingredients from multicomponent mixtures (e.g., batch chromatography), with the 

additional reduction in resources and costs. 

The proposed procedure is intended to provide practical solutions for the continuous 

chromatographic extraction of ingredients from heterogeneous multicomponent mixtures. 

Through subsequent processing steps, possible co-elutions of valuable active ingredients 

can be achieved, which have to be further purified. 
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Abstract 
This work investigates the digital design of a continuous pharmaceutical plant comprising a 
continuous three stage reaction, liquid-liquid extraction, multistage cooling and antisolvent 
crystallization, and wash-filtration. Firstly, the mathematical models were developed and 
validated in conjunction with the available experimental data obtained from the literature and 
research partners. The resulting digital twin was used for steady state optimization to deliver 
optimal options for plant design and operation, including process capacities and number of 
crystallization stages. After the identification of the optimal design and optimal steady state 
operation, the digital twin was used to perform uncertainty propagation and global sensitivity 
analysis to identify the Critical Process Parameters (CPP) and Critical Material Attributes 
(CMA) and deliver robust and cost-effective methods for a systematic implementation of 
Quality-by-Design (QbD).  This approach is aimed at demonstrating that the plant can be 
operated within the robust quality bounds which provide a built-in quality assurance for the 
final product. Several Critical Quality Attributes (CQA) which impact drug safety and efficacy 
were considered which includes the average crystal size, crystal size distribution, coefficient 
of variation and product purity were considered as the CQA. 
Keywords: Integrated continuous pharmaceutical plant, Continuous multistage crystallization, 
Global Sensitivity Analysis, Uncertainty Analysis, Digital Twin, Quality-by-Design. 

1. Introduction  
Continuous manufacturing has been identified as a pivotal technology in overcoming the 
inherent limitations of current batch manufacturing methods used within the pharmaceutical 
sphere. New research in process analytical technologies and real-time control strategies have 
made continuous pharmaceutical manufacturing (CPM) feasible for wider use alongside its 
capacity to surpass quality compliance of former batch processing methods (Mascia et al., 
2013). Despite the progress in research, technical hurdles remain before the wider adoption of 
CPM. One such hurdle is developing systematic and economic methods to design, optimize 
and operate integrated continuous pharmaceutical processes (ICPP) due to the complexity of 
integrating the synthesis and purification steps to produce the active pharmaceutical ingredient 
(API), formulations and final dosage forms (Benyahia, 2018). The advent of digital 
transformation opened new opportunities for computer aided optimal design, operation and 
decision making using digital twins (Ramin et al., 2018). However, successful use of digital 
twins requires the development of more robust mathematical models and systematic 
methodologies to understand and quantify the impact of the process and design parameters, 
material attributes and technology selection on drug product safety and efficacy. Besides the 
traditional objectives above, an effective digital twin should allow reliable identification of the 
critical process parameters (CPP) and critical material attributes (CMA) which influence the 
critical quality attributes (CQA) of the drug product. The last decade has seen a wider adoption 
of a range of process simulators in the pharmaceutical sector, including high fidelity models, 
surrogate models, flow sheet models, and plant-wide dynamic models (Benyahia et al., 2012; 
Maloney et al. 2020).  There is clear evidence of the benefits of these process models and 
digital twins in the development and optimal operation and control of the world’s first ICPP 
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and the kilogram scale continuous upstream plant for Prexasertib Monolactate Monohydrate
(Mascia et al., 2013; Cole et al., 2017; Lakerveld et al., 2015). More recently, dynamic models 
of ICPPs were used for the design of a carfilzomib process (Maloney et al. 2020) and optimize 
steady state and dynamic performance such as start-up and shut down (Liu and Benyahia, 
2021). The impact of recycles have not yet been investigated along with the impact of 
uncertainties that these present. A significant challenge in the implementation of Quality-by-
Design (QbD) is the identification of the CPP and CMA which are commonly addressed by 
combining human expertise and expensive designs of experiments (e.g., Factorial DoE). The 
development of predictable and reliable mathematical models or digital twins may provide a 
systematic tool to understand the influence of the different factors and design parameters on 
the CQA’s of the final product. In this paper, a dynamic simulator of an integrated upstream 
process comprising reactions, liquid liquid extraction, crystallization and wash-filtration was 
developed and used to optimally design and operate an ICPP. The digital twin was then used
to perform uncertainty propagation and global sensitivity analysis (Fysikopoulos et al., 2019) 
to help identify more reliably the CPPs and CMAs which are essential in the subsequent 
implementation of QbD. This approach is aimed at demonstrating that the plant can operate 
with a built-in quality and safety assurance for the final product. The average crystal size, 
crystal size distribution, coefficient of variation and purity were considered as the CQA’s, and 
all simulations were performed using gPROMS formulated products 2.0.1 which specializes in 
process simulation and optimization.

2. Methodology 
2.1. Process description
The digital twin of the upstream continuous pharmaceutical process for the synthesis and 
purification of ibuprofen was created in gPROMs 2.0.1 and consisted of a sequence of three
tubular reactors, a continuous liquid-liquid extractor, a three-stage continuous crystallization
and finally a filtration step (Figure 1). The parameter estimation of the mathematical model of 
the reaction step was based on a continuous flow synthesis performed by Bogdan (Bogdan, 
2009) which consists of three plug flow reactors where a sequence of three reactions takes 
place: a Freidel-Crafts acylation, a mediated aryl migration and a saponification reaction which 
finally produces ibuprofen as a potassium salt. The reaction is followed by a liquid liquid 
extraction (LLE) used as a preliminary purification step followed by a three-stage continuous 
crystallization process. The solubility and kinetic data of growth and nucleation for the 
antisolvent crystallization of ibuprofen were obtained from the literature (Afrose. 2017). In 
addition, a combined wash and wash-filtration step was considered to separate the crystals from 
the mother liquor and reduce the impurities and residual solvents in the final product. The 
intensified plant was designed for a productivity of 6.58 g/hr at an assumed efficiency of 70%.

Figure 1. Process flow diagram of the continuous upstream processing of Ibuprofen. Isobutyl benzene
(IBB), Propanoic acid (PPA), triflic acid (TFA), Iodobenzene diacetate (IBDA), Trimethyl orthoformate 

(TMOF), Methanol (MeOH), Potassium Hydroxide (KOH), Heptane (HEPT).
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2.2. Optimization 
The objective is to optimize the design features and operating conditions to maximize 
productivity of the final product at steady state, here the crystals obtained after wash-filtration, 
under a set of quality and efficiency constraints (e.g., Mean Crystal Size, purity, yields) and 
operation constraints (e.g., Maximum process capacity, maximum flow rates etc.). The 
mathematical formulation of the optimization problem is described below.  

 𝑀𝑀𝑀𝑀𝑀𝑀
𝐹𝐹𝑎𝑎𝑎𝑎,𝑖𝑖 ,𝑇𝑇𝑖𝑖,𝑉𝑉𝑖𝑖,𝜏𝜏𝑖𝑖,𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜,𝑉𝑉𝐿𝐿𝐿𝐿𝐿𝐿,𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  

𝑃𝑃𝑃𝑃 

s.t.   
 𝑥̇𝑥 = 𝑓𝑓(𝑥𝑥, 𝑦𝑦,𝑢𝑢, 𝑝𝑝, 𝑡𝑡)  
 0 = 𝑔𝑔(𝑥𝑥, 𝑦𝑦,𝑢𝑢,𝑝𝑝, 𝑡𝑡)  

𝑑̅𝑑 ≥ 200 𝜇𝜇𝜇𝜇 
𝑤𝑤𝑇𝑇,𝑇𝑇𝑇𝑇 ≤ 0.01 kg/kg 
𝑤𝑤𝑇𝑇,𝐾𝐾𝐾𝐾𝐾𝐾 ≤ 0.01 kg/kg 

 

 0 ≤ 𝐹𝐹𝐴𝐴𝐴𝐴,𝑖𝑖 ≤ 200 𝑚𝑚𝑚𝑚 ℎ−1  
 283 𝐾𝐾 ≤ 𝑇𝑇𝑖𝑖 ≤ 313 𝐾𝐾  
 20 𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝜏𝜏𝑖𝑖 ≤ 100 𝑚𝑚𝑚𝑚𝑚𝑚  
 0 𝑚𝑚𝑚𝑚 ℎ−1 ≤ 𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜 ≤ 100 𝑚𝑚𝑚𝑚 ℎ−1  
 0.5 𝐵𝐵𝐵𝐵𝐵𝐵 ≤ 𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ≤ 2.0 𝐵𝐵𝐵𝐵𝐵𝐵  
 𝑆𝑆𝑖𝑖 ≥ 1 

𝑖𝑖 = 1,2,3 
 

Where 𝑑̅𝑑 is the average crystal size (D [4,3]),  𝑤𝑤𝑇𝑇,𝑇𝑇𝑇𝑇 and 𝑤𝑤𝑇𝑇,𝐾𝐾𝐾𝐾𝐾𝐾 are the residual mass fraction 
of triflic acid and potassium hydroxide impurities in the product, left after the wash-filtration 
stage. 𝐹𝐹𝐴𝐴𝐴𝐴,𝑖𝑖 is the flowrate of the anti-solvent fed to each mixed suspension mixed product 
removal crystallizer (MSMPR), 𝑇𝑇𝑖𝑖 , 𝜏𝜏𝑖𝑖 , 𝑆𝑆𝑖𝑖 are respectively the temperature, the residence time 
and the relative supersaturation in each MSMPR, 𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜 is the flowrate of the organic solvent to 
the LLE stage, and 𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  is the pressure of the filter. The optimization problems were solved 
using a Control Vector Parameterization (CVP) technique which converts the dynamic 
optimization problems into nonlinear programming problems solved using an efficient SQP 
(Successive Quadratic Programming) solver built into gPROMS.  
2.3. Global Sensitivity Analysis 
Upon completion of the optimization, the optimal results were used as nominal values to 
develop global system analysis which included a variance based global sensitivity analysis, 
using a quasi-random (Sobol) sampling technique. The objective is to identify the most 
influential CPPs and CMAs. The CQAs, used here as the outputs or responses were the mean 
crystal size, crystal purity or total mass fraction of the impurities and productivity. Process and 
material parameters include the reactant flowrates, the operating temperatures of the MSMPRs, 
the antisolvent streams for the MSMPRs, the residence times of the MSMPRs, and the wash 
flowrate. 

3. Results and discussion  
3.1.  Optimization 
The optimization results correspond to the set of optimal decision variables including the 
operating conditions and design options along with their upper and lower bounds and are 
summarised in table 1. Two scenarios are considered, the base case with no recycle and the 
second with a 50% recycle after the filtration stage. Table 1 shows that the organic solvent 
flowrate remains the same because the LLE is prior to the crystallization where the recycle 
stream is being fed. However, the steady state crystallization temperatures dropped at each 
crystallizer to help address the dilution effect inherent to the recycle stream which contains 
significant amounts of solvent and antisolvent. The optimal residence times associated with the 
scenario at 50% recycle has also significantly increased as shown in table 1 which suggests 
that larger capacities are required to achieve effective crystallization under the recycle 
conditions. The key performance indicators of each case are summarized in table 2 including 
the attainable maximum production mass flow rates in both scenarios, considered here as the 
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objective functions, as well as the CQAs and key performance indicators. Overall, the scenario 
considered in presence of 50% recycle shows improved productivity and yields. Both cases 
met the required impurity contents however the recycle scenario exhibits as expected a slightly 
higher impurity content due the accumulation of the impurities in the system. To better control 
the level of impurities our future work will consider the recycle ratio as a decision variable. 
The dynamic simulations of the integrated process using the optimal steady state conditions 
are presented in Figure 2.
Table 1. The optimal values of the input factors from the optimization simulation for both non-recycle 
and the 50% recycle case.

Units Base case 50% Recycle
Mass flowrate g/hr 7.41 8.4
Overall Process yield % 65% 73%
Impurity content- Triflic acid kg/kg 0.0025 0.0032
Impurity content- KOH kg/kg 0.0036 0.0046

Variables Units
Optimal values Lower 

Bound
Upper 
BoundBase case 50% Recycle

Organic Solvent flowrate mL/h 95.96 95.96 0 400
MSMPR 1 temperature K 309 305.330 283 313
MSMPR 2 Temperature K 304 309.088 283 313
MSMPR 3 Temperature K 305 283.615 283 313
Anti-solvent flowrate MSMPR 1 mL/h 170.4 188.0 0 100
Anti-solvent flowrate MSMPR 2 mL/h 11.2 5.0 0 150
Anti-solvent flowrate MSMPR 2 mL/h 3.6 6.0 0 200
Mean residence time MSMPR 1 Min 16.0 76.4 0 100
Mean residence time MSMPR 2 Min 35.5 120 0 120
Mean residence time MSMPR 3 Min 19.7 120 0 120
Pressure filter flowrate set point kg/hr 0.0078 0.0088 0 1
Pressure drop filter bar 1.6 1.7 0.5 2.0

Table 2. CQA and key performance indicators for the base case and the recycle scenario. 

Figure 2. (a) Mass fraction of Ibuprofen (API) in the final PFR showing the conversion of 
intermediate 3 to Ibuprofen. (b) Dynamic profile of the average particle size in each MSMPR. (c) 

Coefficient of variation in each of the MSMPRs. (d) Mass fraction of impurities in the final crystal 
product after filtration then after the wash-filtration.
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Table 3. The global sensitivity analysis total order factor sensitivities table of the CQA’s and CPP’s.  
 Mass Flowrate 

Crystal 
Average Particle 
size D43 

Coefficient 
of variation 

Impurity 
Triflic acid KOH 

R
ea

ct
an

t M
as

s 
flo

w
ra

te
 

Prop acid 0.007 0.008 0.008 0.000 0.000 
IBB 0.007 0.009 0.009 0.000 0.000 
IBD 0.007 0.008 0.007 0.001 0.000 
KOH 0.027 0.022 0.021 0.006 0.913 
TMOF 0.003 0.003 0.003 0.001 0.000 

R
D

T
 

MSMPR_1 0.000 0.000 0.000 0.000 0.000 
MSMPR_2 0.000 0.000 0.000 0.000 0.000 
MSMPR_3 0.000 0.000 0.000 0.000 0.000 

T
em

p 

MSMPR_1 0.000 0.047 0.047 0.000 0.000 
MSMPR_2 0.010 0.121 0.124 0.001 0.000 
MSMPR_3 0.199 0.050 0.051 0.008 0.001 

A
nt

i-
So

lv
en

t MSMPR_1 0.647 0.573 0.571 1.112 0.109 
MSMPR_2 0.000 0.000 0.000 0.001 0.000 
MSMPR_3 0.000 0.000 0.000 0.001 0.000 

Flowrate Wash 0.000 0.000 0.000 0.000 0.000 
 
At the optimal production, the final production rate of the reaction step is 9.39 g/hr. After the 
first purification step which occurs in the LLE, a three-stage crystallization process is used to 
purify the API and recover ibuprofen as a crystalline form. The manipulation of temperature 
and anti-solvent flowrate help achieve the required supersaturation levels across the three 
MSMPRs which results in increased mean crystal size from one stage to the other.  
As shown in Figure 2b, the final mean crystal size obtained in the last MSMPR stage is 325μm. 
The coefficient of variation has a sharp increase in all MSMPRs due to the higher initial rates 
of nucleation. When steady state is reached, all coefficients of variation stabilize. The slurry 
leaving the final crystallization stage, goes through a filtration then a wash-filtration step to 
reduce the residual solvent and impurities content in the final crystal product. The wash stage 
reduces the mass fraction of the main impurities, triflic acid and potassium hydroxide, to below 
0.005g/g as indicated in Figure 2d. The dynamic simulations of the integrated process using 
the optimal steady state conditions are presented in Figure 2. At the optimal production, the 
final production rate of the reaction step is 9.39g/hr. After the first purification step which 
occurs in the LLE, a three-stage crystallization process is used to purify the API and recover 
ibuprofen as a crystalline form. The manipulation of temperature and anti-solvent flowrate help 
achieve the required supersaturation levels across the three MSMPRs which results in 
increased mean crystal size from one stage to the other. As shown in Figure 2b, the final mean 
crystal size obtained in the last MSMPR stage is 325μm. The coefficient of variation has a 
sharp increase in all MSMPRs due to the higher initial rates of nucleation. When steady state 
is reached, all coefficients of variation stabilize. The slurry leaving the final crystallization 
stage, goes through a filtration then a wash-filtration step to reduce the residual solvent and 
impurities content in the final crystal product. The wash stage reduces the mass fraction of the 
main impurities, triflic acid and potassium hydroxide, to below 0.005g/g as indicated in Figure 
2d.  
3.2. Global Sensitivity Analysis 
The results of the global sensitivity analysis are used to identify the hierarchy of CPPs for the 
integrated process. This is a critical step in the implementation of QbD for process operation. 
The total order sensitivities factors can be seen in table 3. The most influential three parameters 
of each CQA are highlighted in grey with the most influential being the darkest. The crystal 
quality was most influenced by the antisolvent flowrate into MSMPR 1, temperature of 
MSMPR 3 and the mass flowrate of the reactant potassium hydroxide. The Anti-solvent 
flowrate into MSMPR 1 had a dominating effect on the solubility curve in the following 
crystallizers. Of the three antisolvent streams it is over 10 times the amount of the other factors 
thus the comparative impact is respective of this. Regarding the triflic acid impurity in the 
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residue on the crystals, the antisolvent stream again had the highest impact due to its diluting 
effect reducing the overall amount within the residue of the intermediate from the filtration 
stage. With respect to the KOH impurity, the reactant mass flowrate is the most influential 
factor as unreacted KOH will remain in the liquid phase. More unreacted KOH will result in a 
higher proportion left in the residue. Further investigation is required on the wash phase as this 
has zero effect on any of the impurity factors. This could be due to the low comparative impact 
to the other CPPs or other unknown factors.  

4. Conclusions  
A dynamic mathematical model of a continuous pharmaceutical plant comprising a continuous 
three stage reaction, liquid-liquid extraction, multistage cooling and antisolvent crystallization, 
and wash-filtration was developed using data from the literature. This resulting process 
simulator used a digital twin for steady state optimization to deliver optimal options for plant 
design and operation and maximize productivity. To enhance cost- efficiency and 
environmental performance of the plant, an additional optimization scenario was conducted 
under 50% recycle of the mother liquor obtained from the filtration stage without further 
purification. The results showed that the scenario associated with 50% recycle increases the 
startup time and impurity content, which in turn required reoptimized crystallization and wash-
filtration conditions. However, the 50% recycle was also shown to improve the overall 
productivity of the process. The GSA identified that the antisolvent flowrate into MSMPR 1, 
the temperature of MSMPR 3 and the mass flowrate of the reactant KOH had the most impact 
on the CPP’s. The future work will be focused on the optimization of recycle to purge ratio 
and the incorporation of downstream processes in the design and optimization.  
This work was conducted as part of the EPSRC CMAC HUB (EPSRC EP/P006965/1). The 
authors would like to thank PSE Enterprise for their support and for providing the licenses for 
gPROMs Formulated Products. 
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Abstract 

A multi-objective optimization framework is proposed to design single-mixed refrigerant 

natural gas liquefaction processes considering the conflicting goals of minimizing both 

power consumption and heat transfer area utilization. In the present approach, the black-

box process simulation is embedded into a nonlinear programming (NLP) problem via 

kriging surrogate model. To deal with the conflicting objectives, the 𝜀-constraint 

methodology is applied. The surrogate NLP problems with fixed 𝜀 are solved in GAMS 

using CONOPT to determine a non-dominated solution candidate of the original multi-

objective problem. The Pareto Front achieved with the present framework dominates 

recent single-objective result from the literature. The non-dominated solutions have 

power consumption that ranges from 0.2800 to 0.4060 kW/(kg NG) and heat transfer area 

utilization multiplied by overall heat transfer coefficient varying from 0.0699 to 0.1852 

kW/°C. A trade-off solution can be achieved by increasing 5.29 % of power consumption 

to save 31.8 % of heat transfer area. 

Keywords: Multi-objective optimization, Kriging surrogate model, Natural gas 

liquefaction, Simulation optimization, Process simulation. 

1. Introduction 

The natural gas liquefaction process design presents a clear trade-off between energy 

consumption and equipment size (Khan et al., 2016). The concern of achieving high 

energy efficiency and diminished equipment size is further emphasized in offshore 

processes, where the plant site size is significantly restricted. These liquefaction processes 

consist of cryogenic refrigeration cycles to cool down the natural gas to about -160 °C to 

liquefy, store, transport, and commercialize it safely as liquefied natural gas (LNG). 

Optimization has been successfully used to determine refrigerant composition and 

thermodynamic cycle conditions in natural gas liquefaction processes to improve power 

consumption, exergy efficiency, or total annual cost (Austbø et al., 2014). Despite the 

vast literature on single-objective optimization, the evaluation of the natural gas 

liquefaction processes optimal trade-offs has been timidly addressed in the literature. 

Khan et al. (2016) investigated the optimization of the dual-mixed refrigerant LNG 

process under cold and warm ambient conditions. The authors used NSGA-II algorithm 

to trade-off between the minimization of specific compression energy and the area of heat 

exchangers in terms of overall heat transfer coefficient times the area (UA). Ghorbani et 
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al. (2016) used Genetic Algorithms (GA) for single and multiple objectives to optimize 

the propane-precooled mixed-refrigerant LNG process. The considered goals were to 

maximize exergy efficiency, minimize total product cost, and both objectives 

simultaneously. Song et al. (2017) optimized the nitrogen expansion LNG process with 

carbon dioxide expansion precooling. The authors used NSGA-II to increase the 

liquefaction rate from 0.77 to 0.81, while diminishing the energy consumption in 10.1 % 

compared to a base case. Nguyen et al. (2018) compared the single-mixed refrigerant 

(SMR), single-expander, and dual-expander LNG processes with respect to the trade-off 

between power consumption and UA using a multi-objective GA. Mofid et al. (2019) 

optimized the parallel nitrogen expansion LNG process using a multi-objective particle 

swarm optimization algorithm in design and operation stages.  

Previous works on multi-objective optimization of natural gas liquefaction processes 

relied on meta-heuristics, mainly GAs. However, recent papers have shown that 

surrogate-based approaches can be more efficient than meta-heuristics to these simulation 

optimization problems (Santos et al., 2022), which can lead to further improvement to the 

LNG processes. The objective of the present paper is to propose a multi-objective 

optimization framework to the SMR natural gas liquefaction process design based on 

kriging surrogate models that replace the process-simulator-dependent, black-box 

objectives and constraints functions and introduce explicit algebraic formulation to the 

optimization problem. The 𝜀-constraint method is used to handle the competing 

objectives. The surrogate optimization subproblems, which have explicit algebraic form, 

are embedded into a nonlinear programming (NLP) problem and solved with multi-start 

approach with CONOPT local solver in General Algebraic Modeling System (GAMS). 

The framework is applied to power consumption and heat transfer area as objectives. The 

Pareto Front determined by the present approach is compared with literature results. 

2. Natural gas liquefaction process 

The processes flow diagram of the SMR natural gas liquefaction is illustrated in Figure 

1. This SMR process is based on Qyyum et al. (2020), who studied the potential energy-

savings of using two stages of expansion to the PRICO process. This process is rigorously 

simulated in Aspen HYSYS V9 using Peng-Robinson equation of state and Lee Kesler 

for enthalpy and entropy calculations. The process specifications, constraints, and 

considerations are inspired in the work of Qyyum et al. (2020). The natural gas stream 

NG is considered to be at 5,500 kPa and 25.0 °C, and its composition in mole fraction is 

0.0022 of nitrogen, 0.9133 of methane, 0.0536 of ethane, 0.0214 of propane, 0.0046 of i-

butane, 0.0047 of n-butane, 0.0001 of i-pentane, and 0.0001 of n-pentane. A basis of 

calculation of 1 kg/h for the natural gas mass flow rate is used. The considered decision 

variables in the present paper are mixed-refrigerant component mass flow rate of nitrogen 

(𝑚𝑁), methane (𝑚𝐶1), ethane (𝑚𝐶2), propane (𝑚𝐶3), i-butane (𝑚𝑖𝐶4), and i-pentane 

(𝑚𝑖𝐶5), suction and discharge pressure (𝑃𝑠𝑢𝑐  and 𝑃𝑑𝑖𝑠), illustrated in Figure 1.  

 

Figure 1: Process flow diagram of SMR with two expansion stages based on Qyyum et al. (2020). 
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The final pre-refrigeration temperature is considered to be -24.0 °C. The pressure drop in 

the multi-stream heat exchangers (MSHEs) is 100 kPa for hot streams, 10 kPa for cold 

streams, and 50 kPa for water inter-stage coolers. The intermediate pressures are 

determined to guarantee a constant compression ratio in all four compressors, and the 

intermediate cooling temperature is 30 °C. The temperature of hot streams leaving the 

MSHEs is considered to be the same, -24.0 °C for the first and -157.2 °C for the second 

to achieve the desired LNG condition of -160.0 °C, 110 kPa, and 3.7 % of vapor fraction. 

The process design problem is formulated as a multi-objective optimization model, 

considering the minimization of specific power consumption and UA. The process 

constraint is that a minimum temperature approach of 3 °C must be assured throughout 

the MSHEs. To overcome the issue of this constraint not being smooth for kriging 

modelling (Santos, 2021), Santos et al. (2022) proposed to discretize the MSHEs 1 and 2 

in 𝐾 sections. The optimal process design can be formulated as the following multi-

objective optimization problem 

 

min
𝒙∈𝒟

𝒇(𝑥) = [ ∑
𝑊𝑝(𝒙)

𝑚̇𝑁𝐺
𝑝∈𝑃𝑀

; ∑ 𝑈𝐴𝑒𝑥(𝒙)

𝑒𝑥∈𝐻𝐸

]

𝑠. 𝑡.  𝒈𝜅(𝒙) = 1 −
min
k∈Ωκ

{𝑇ℎ𝜅,𝑘(𝒙) − 𝑇𝑐𝜅,𝑘(𝒙) }

3
≤ 0, 𝜅 = 1, … , (2𝐾)

 (1) 

In Eq. (1) 𝑊𝑝(𝒙) is the work consumption of the pressure manipulator unit 𝑝 in the set of 

compressors and pumps 𝑃𝑀, and 𝑈𝐴𝑒𝑥(𝒙) is the global heat transfer coefficient 

multiplied by the area of the heat exchanger ex in the set of all heat exchangers HE. 

𝑇ℎ𝜅,𝑘(𝒙) and 𝑇𝑐𝜅,𝑘(𝒙) are the temperature of hot and cold composite curves in the κ 

section of the MSHEs, and Ωκ is the set of the 𝑘 points from composite curves 

calculations that belongs to section κ (Santos et al., 2022). 𝒟 = [𝒙𝑙𝑏 , 𝒙𝑢𝑏] is a box 

constraint for the decision variables bounded by 𝒙𝑙𝑏  and 𝒙𝑢𝑏 as proposed in Qyyum et al. 

(2020), and 𝑚̇𝑁𝐺  is the mass flow rate of the natural gas stream. 

3. Kriging-based multi-objective optimization 

To solve the multi-objective simulation optimization problems as in Eq. (1), the proposed 

framework is presented in Algorithm 1. The computer code to compute 𝒇 and 𝒈 at given 

𝒙 ∈ 𝒟 is a function written in MATLAB connected to the process simulator Aspen 

HYSYS. First, 𝑚0 samples of 𝑿 is generated by a Latin Hypercube algorithm to maximize 

the minimum distance between points in the search space 𝒟. The value of 𝒇 and 𝒈 are 

calculated in the simulation for each 𝒙 ∈ 𝑿. The initial data is defined as 𝐷0 = [𝑿 𝒀]. 
Given 𝐷0, 𝑚𝑓, and 𝐷, the single-objective optimization for each 𝒇𝑖 objective is solved 

using the framework for constrained black-box optimization proposed in Santos et al. 

(2022). In the case of Eq. (1), the objective function 𝒇1 is the specific power consumption 

and 𝒇2 is the overall UA. The above-mentioned approach consists of using the data in 𝐷0 

to fit kriging models for the objectives and constraints. These models are implemented in 

an NLP problem and solved in GAMS with multi-start local optimization with CONOPT 

local solver. The solution, which is promising a minimizer candidate, is evaluated in the 

simulation and the values are appended to the data. This process is repeated until 

convergence or simulation evaluation budget 𝑚𝑓. The values of 𝒇1 at each single-

objective solution, 𝒇1(𝒙1
∗ ) to 𝒇1(𝒙2

∗ ), bound the 𝜀 vector. The 𝜀-constraint vector is 

defined as the equally distributed 𝑛𝜀-vector from 𝒇1(𝒙1
∗) to 𝒇1(𝒙2

∗ ). The single-objective 

solutions are appended to the data, D2. For the other entries of 𝜀, the 𝜀-constrained single-

objective optimization is solved using the same framework for constrained black-box 
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optimization proposed in Santos et al. (2022). Each optimization solution is appended to 

the data so that 𝐷𝑖𝑡𝑒 = 𝐷𝑖𝑡𝑒−1 ∪ [𝒙𝑖𝑡𝑒
∗ , 𝒇(𝒙𝑖𝑡𝑒

∗ ), 𝒈(𝒙𝑖𝑡𝑒
∗ )]. The last step of the proposed 

framework is to eliminate dominated and infeasible solutions from 𝐷𝑛𝜀  to form the set of 

Pareto solution, P, found by the algorithm. 

 

4. Results 

The proposed multi-objective, kriging-based optimization framework is applied to the 

design of SMR natural gas liquefaction processes considering power consumption and 

heat exchanger area utilization objectives. The considered parameters of the optimization 

approach are initial sample size 𝑚0 = 10𝑛, function evaluation budget 𝑚𝑓 = 20𝑛, 

number of decision variables 𝑛 = 8, number of sections into which each MSHE is divided 

𝐾 = 10, and number of non-dominated solution 𝑛𝜀 = 18. 

Figure 2 presents the Pareto Front determined by the non-dominated solutions of the 

present approach. It also includes the best result from the literature to this liquefaction 

process with the given specifications (Qyyum et al., 2020). This figure shows that the 

present approach was able to determine an energy-optimal solution that is better than the 

literature, with energy saving of 1.51 %, from 0.2843 to 0.2800 kW/kg of natural gas. 

Also, given the present Pareto Front, the literature solution is a dominated one. It means 

that, for the same specific power consumption, the present approach would design a 

liquefaction process with reduced UA. The proposed Pareto Front ranges from 0.2800 to 

0.4046 kW/(kg NG) for power consumption and 0.0699 to 0.1852 kW/°C for UA. The 

shape of this Pareto curve shows that the increase in heat exchanger area is more 

pronounced as the power consumption approaches low values. Based on this insight, one 

can choose non-dominated solutions that better balances high energy efficiency and heat 

exchanger area utilization as the solutions that presents the smallest ℓ2 and ℓ1 norm. 

These solutions are highlighted in Figure 2 in the blue square and magenta hexagram, 

respectively. The best trade-off based on the ℓ2 norm presents an increase in power 

consumption of 5.29 % and 31.80 % UA decrease compared to the energetically-optimum 

solution. The ℓ1 norm-based solution presents an increase in power consumption of 10.61 

% and 44.65 % UA decrease compared to the energy-optimum solution. 
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Figure 2: Pareto Front and comparison with Qyyum et al. (2020). 

Table 1 presents the values of the decision variables and objective functions for the base 

case (Qyyum et al., 2020), energy-optimum, UA-optimum, ℓ2-norm trade-off, and ℓ1-

norm trade-off solutions. The energy-optimum result presents a refrigerant composition 

that is reduced in propane and i-pentane in comparison with the literature result. The UA-

optimum result shows that for reducing the heat exchangers area utilization high 

compression ratio and refrigerant with more contents of light-components are preferred. 

Differently from what one would expect, the trade-off solutions are complex and unique, 

i.e., not mere interpolations of the single-objective ones. Therefore, the use of multi-

objective optimization approach is justified as a means to derive complex solutions that 

trades-off optimally between conflicting objectives to the process design. 

The computational time is dominated by simulation evaluation, which takes around 4.7 s. 

The mean elapsed time for the multi-objective optimization algorithm was 143 min. The 

advantage of the present approach over the well-stablished population-based meta-

heuristics is the reduced budget of time-consuming simulation calculation, in the present 

case 10𝑛 × 𝑛𝜀 = 1440. The circumstances that the present approach would no longer be 

efficient is when the surrogate models do not capture the true functions behavior. That is 

often the case for high-dimensional problems or stiff functions. 

Table 1: Multi-objective optimization results for SMR natural gas liquefaction processes 

Optimization Results Qyyum et 

al. (2020) 

Energy-

optimum 

UA-

optimum 

ℓ2-norm 

trade-off 

ℓ1-norm 

trade-off 

𝑚𝑁 [kg/h] 0.2210 0.2426 0.2620 0.1871 0.1500 

𝑚𝐶1 [kg/h] 0.4525 0.4344 0.5500 0.4132 0.4244 

𝑚𝐶2 [kg/h] 0.9420 0.9504 0.9976 0.8878 0.8090 

𝑚𝐶3 [kg/h] 0.9600 0.8000 0.8322 0.8001 0.8904 

𝑚𝑖𝐶4 [kg/h] 0.6525 0.6450 0.8000 0.6235 0.5775 

𝑚𝑖𝐶5 [kg/h] 0.8250 0.7108 0.6585 0.6838 0.6871 

𝑃𝑠𝑢𝑐 [kPa] 237.0 263.0 150.0 205.8 172.1 

𝑃𝑑𝑖𝑠 [kPa]  4080 5047 5500 5486 5500 

Net work consumption 

[kW/(kg NG)] 

0.2840 0.2800 0.4064 0.2948 0.3097 

UA [kW/°C] 0.1759 0.1852 0.0699 0.1263 0.1025 
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5. Conclusions 

This paper presented a multi-objective optimization framework to the SMR natural gas 

liquefaction process design problem, considering the trade-off between energy efficiency 

and heat exchanger area utilization. Kriging surrogate model, 𝜀-constraint methodology, 

and gradient-based solver in GAMS are used in the proposed approach to determine 

candidates of non-dominated solutions of the original black-box optimization problem. 

The Pareto Front determined by the present approach shows that the recent literature 

result of energy-efficient SMR process is a dominated solution. The objective functions 

of non-dominated solutions range from 0.2800 and 0.4046 kW/(kg NG) for power 

consumption and 0.0699 and 0.1852 kW/°C for UA. Two trade-off solutions were 

analyzed and the results showed that 5.29 % and 10.61 % increase in the power 

consumption can lead to 31.80 % and 44.65 % heat exchanger area decrease, respectively. 

The trade-off solutions are complex process configurations instead of interpolations of 

the single-objective optima, which justifies the use of multi-objective optimization 

approach to tackle competing objectives. 
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Abstract 

To address the urgent need to transform the current economic paradigm towards a more 

circular one, this contribution proposes a framework for assisting the selection of the most 

promising waste-to-resource alternatives. An ontology-based approach is used to manage 

and centralize the knowledge across the different stages of this methodology. Feasible 

combinations of operations lead to processing routes connecting waste with products and 

the paths are assessed to pre-select the most suitable ones. Then, the network is optimized, 

and a set of configurations are obtained in order to maximize economic profit and 

minimize environmental impact. The performance of the proposed framework is 

illustrated through a case study for the treatment of mixed plastic waste. Results show 

how pyrolysis-based treatments lead to suitable options according to some specified 

objectives but also reveal the main drawbacks and conditions that these treatments should 

improve. The work also demonstrates how to efficiently assess a large number of options, 

and discusses how to build and improve new processing networks. 

Keywords: circular economy, pyrolysis, plastic waste, integrated modeling, sustainable 

development 

1. Introduction 

Numerous processes/product design strategies are being proposed towards the new 

circular economy paradigm. Among them, it should be emphasized the line based on 

improved design of products to reduce waste generation and maintain resources within 

the material cycles as long as possible, as well as promoting the use of renewable or 

better-performing resources to reduce environmental impacts as much as possible (Ellen 

MacArthur Foundation, 2015) and improve overall sustainability. 

A considerable number of technologies are now being developed to achieve such 

objectives. Consequently, the number of available alternatives is set to grow 

exponentially. Decision-makers need to assess these alternatives and select the best ones 

for each kind of waste or material cycle and optimize them attending to all three main 

pillars of sustainability: maximizing economic performance, minimizing environmental 

impacts, and promoting social benefits (Sillanpää and Ncibi, 2019). However, traditional 

optimization methods are very complex and not efficient enough when the number of 

structural alternatives is very large (Yang et al., 2013). 

To address this challenge, this contribution proposes a way to integrate several models 

and procedures to generate, assess, and optimize the most promising alternatives for the 

treatment and revalorization of a generic waste stream, providing a systematic and fully 
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integrated tool to support decision-making towards the circular economy. The resulting 

framework (Figure 1) encompasses interoperable modules, which exchange the necessary 

information to perform a comprehensive route generation and assessment, as well as the 

optimization of a waste-to-resource network considering the best options. 

1 .1 . Problem Statement

 Given an ontology filled with relevant information of processes suitable to treat a 

specific waste source.

 Obtain a set of promising treatment pathways and an optimized process network 

attending to environmental and economic objectives.

Figure 1. Schematic representation of the proposed framework.

2. Methodology

The proposed framework is structured into four main stages:

 The first one corresponds to knowledge management, where many single process 

steps are characterized as specific instances, including all the corresponding attributes 

that hold specifications such as properties, process parameters, and relationships with 

other instances such as process states and other process steps. Such information is 

managed through an ontology-based system. Ontologies have proven to be an efficient 

repository of information that allows establishing versatile relationships between 

different entities and storing parameters flexibly.

 The second one uses the information from the ontology to implicitly generate all the 

feasible routes (e.g. using short-path algorithms). Different criteria may be used to 

limit this generation based on usual branch and cut procedures. Once the routes are 

generated, they are sorted according to a proposed Global Performance Indicator 

(GPI) and the most promising ones are selected (Pacheco-Ló pez et al., 2021).

 The third one starts with this pre-selection of alternatives, where a more extensive 

process screening is performed. To do so, a superstructure with the most promising 

alternatives is assessed and optimized to select the most suitable processing networks 

based on different objectives, such as maximizing economic profit and minimizing 

the three endpoint life cycle assessment indicators (Somoza-Tornos et al., 2021).

 The fourth stage corresponds with the design and simulation of the process steps that 

are introduced in the ontology to be used by the other modules. It can be used as a 

preliminary step to fill up the ontology with new alternatives or afterward to further 

optimize selected alternatives and therefore enrich the ontology.

Ontology

Preselected 
alternatives

Screening
Network 

optimization

Processing 
network

Detailed
Design
Rigorous 

simulation & 
optimization

Optimal 
design

Pre-screening
Routing and pre-
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3. Case Study 

The integrated decision-making framework performance is illustrated through a case 

study that consists of mixed plastic waste (MPW) treatment to obtain valuable products 

and reduce its environmental footprint. The chosen feedstock corresponds to a simulated 

MPW sample from sorting plants where packaging plastic is separated from municipal 

solid waste. It is composed of 40% of polyethylene (PE), 35% of polypropylene (PP), 

18% of polystyrene (PS), 4% of polyethylene terephthalate (PET), and 3% of polyvinyl 

chloride (PVC) as proposed by Adrados et al., 2012.  

The used ontology is an extended version from the one proposed previously (Pacheco-

López et al., 2021), which was adapted from OntoCAPE (Marquardt et al., 2010) and 

filled with extra processes found in the literature to increase the number of alternatives 

available. For the pre-screening stage, all estimations were made and unified as presented 

in previous works, such as monetization of environmental impacts, maturity evaluation, 

and unitary costs calculation. The separation steps were simulated to split the gas and oil 

phases into all their components as commercial grade products. Pyrolyses were simulated 

and validated with experimental data from different studies. Market prices were updated 

to 2019 from the Prodcom database (Eurostat - European Commission and Eurostat, 

2021). For the screening stage, all the estimations and assumptions for the needed 

parameters are as presented by Somoza-Tornos et al., 2021, such as the gate-to-gate 

approach for the life cycle assessments. The volume of plastic waste to treat is the amount 

collected in the EU28 (9.4 MT; PlasticsEurope, 2020) and escalated to a city of around 3 

million inhabitants such as the Metropolitan Area of Barcelona, leading to a throughput 

of 5.72 tons of MPW per hour. Specific products demand satisfaction has been obviated 

in this case and all obtained products are assumed to be potentially sold at market price. 

For simplicity, only a deterministic model is used, although a stochastic model can be 

implemented in future developments to deal with cost estimation uncertainties.  

4. Results and Discussion 

Once the ontology is filled with the corresponding process steps and state specifications, 

the algorithm is run selecting the chosen starting material as mentioned above. The results 

for the pre-screening and screening stages are then obtained systematically. Figure 2 

shows the graph obtained as a previous step to the route generation and assessment in the 

pre-screening stage, where all possible connections among the processes available in the 

ontology are shown. When the routing is implicitly performed, a total of 45 tentative 

processes are considered and 136 alternative paths are generated, assessed, and sorted 

according to their GPI. For simplicity, Table 1 shows a partial list of the sorted paths 

where it can be appreciated that the pyrolysis at 500ºC with and without catalysts appear 

as the most promising, as opposed to landfilling and incineration. Once a representative 

set of the most promising processes are selected, the network optimization is performed 

in the screening stage, where a multi-objective optimization is performed using the -

constraint method. By doing so, different configurations and results are obtained 

depending on the objectives trade-off. Figure 3 shows the optimal configuration when the 

objective is to maximize profit. Applying the -constraint for each one of the three 

environmental endpoint indicators, the corresponding Pareto optimal solution curves are 

obtained, as illustrated in Figure 5. The points in these plots are color-coded according to 

the different configurations, which are shown in Figure 4. 

As envisaged in the previous stage, pyrolysis reactors that operate at 500ºC with and 

without catalysts appear as the most profitable options from economic and environmental 

points of view in the screening stage as well. Involving these processes, the procedure 
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obtained four different configurations. The gray configuration (Figure 3) is obtained for 

the maximized economic performance and the green one when the objective is to 

minimize the impacts on the three endpoints. The first configuration consists of the 

pyrolysis at 500ºC without catalyst and separation of the liquid and gas phase into their 

pure components to be sold. When minimizing environmental impacts, the configuration 

consists only of the pyrolysis using zeolite as catalyst (green configuration) and selling 

the pyrolytic gas and oil fractions for other uses (fuels for instance). In between the two-

abovementioned anchor points, two more configurations could serve as a trade-off 

between the four objectives, blue and orange, which entail several pyrolyses with and 

without catalysts along with separation of some of their products (see Figure 4). As 

observed in Figure 5, the more separations are included in the configurations, the higher 

the environmental impact on all categories, and the higher the profit. This can be 

explained by the higher added value of the products when separated against the separation 

cost, which is the opposite case for environmental indicators due to energy requirements. 

Table 1. Sorted paths obtained in the pre-screening stage according to the proposed GPI. 

Nº Path composition GPI 

1 Pyrolysis MPW 500ºC + Separation 779 

2 Pyrolysis MPW 500ºC /red mud/ + Separation 707 

3 Pyrolysis MPW 500ºC /ZSM5/ + Separation 509 

7 Sorting + Pyrolysis PE 740ºC + Separation 158 

… … … 

132 Sorting + Pyrolysis PS 425ºC + Separation 28 

134 Sorting + Pyrolysis PE 450ºC 19 

135 Incineration 0 

136 Landfill 0 

 

Figure 2. Implicitly generated graph in the pre-screening stage with tentative connections. 
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Figure 3. Configuration obtained for maximized profit. Color-coded as gray in Figure 5.

Figure 4. All possible configurations are color-named to ease their identification in the Pareto 

fronts in Figure 5.

Figure 5. Pareto points for the trade-off between profit and the three environmental endpoint 

indicators. The points are color-coded to represent different configurations, as shown in Figure 4.
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5. Conclusions 

This work presents an integrated and systematic tool to generate feasible processing 

routes using short-path algorithms and assess them with different performance indicators, 

including a newly proposed one, that simultaneously accounts for economic, 

environmental, and maturity objectives. The best routes obtained at this stage are then 

stored back and enriched through their integration in an ontology and passed forward to 

a third stage where a network multi-objective optimization is performed and different 

network configurations are obtained and classified according to their performance, 

attending to different Pareto fronts. The presented case study illustrates the identification 

and assessment of opportunities in the recycling of plastic wastes. These opportunities 

are shown to be potentially profitable not only environmentally but also from the 

economic point of view. Additional developments should entail a more in-depth design 

of the selected configuration, along with energy integration, and optimization of 

equipment parameters (e.g. sizing, operating conditions…), including results, feedback 

to enrich the ontology. Future work will focus on this part as well as on further integrating 

other useful tools, such as automated information extraction and flowsheet development. 
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Abstract 

The optimal synthesis of work and heat exchange networks (WHENs) is deeply important 

to achieve simultaneously high energy efficiency and low costs in chemical processes via 

work and heat integration of process streams. This paper presents an efficient MINLP 

model for optimal WHENs synthesis derived from a superstructure that considers 

unclassified streams. The derived model is solved using BARON global optimization 

solver. The superstructure considers multi-staged heat integration with isothermal 

mixing, temperature adjustment with hot or cold utility, and work exchange network for 

streams that are not classified a priori. The leading advantage of the present optimization 

model is the capability of defining the temperature and pressure route, i.e. heating up, 

cooling down, expanding, or compressing, of a process stream entirely during 

optimization while still being eligible for global optimization. The present approach is 

tested to a small-scale WHEN problem and the result surpassed the ones from the 

literature. 

 
Keywords: Work and heat exchange networks, Mixed-integer nonlinear programming, 

Unclassified streams, Process synthesis, Global optimization. 

1. Introduction 

Recovering work and heat in chemical processes is fundamental for achieving high 

energy efficiencies, and it can be performed through the optimal synthesis of work and 

heat exchange networks (WHENs). This synthesis problem can be approached with 

superstructure-derived mixed-integer nonlinear programming (MINLP). The main 

challenge of WHENs synthesis is the lack of predefined pressure and temperature change 

routes of process streams, which hampers a priori stream classification. In other words, 

differently from heat integration and because of temperature variation in compression and 

expansion, a stream may change its thermal identity from hot to cold or vice-versa, 

making it difficult to target energy demands. The resulting MINLP models are 

intrinsically difficult to solve due to nonconvexity and combinatorial complexity that 

scales up quickly with the size of the problem, i.e. with the number of streams and 

superstructure stages (Santos et al., 2020b). 

This problem has been addressed via either thermodynamic analysis (pinch variations to 

account for work and heat) or mathematical programming. The latter approach has shown 

promising results in the literature. Wechsung et al. (2011) proposed a superstructure with 

fixed thermodynamic routes for process streams that were classified as hot or cold, and 
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with fixed or variable pressure. To further simplify the MINLP problem, heuristics were 

considered for the appropriate placement of pressure manipulators. The optimization 

problem aimed to minimize the WHEN irreversibility. 

Onishi et al. (2014a) proposed a WHEN superstructure based on Wechsung et al. (2011), 

except that the well-known heat exchanger network (HEN) superstructure from Yee and 

Grossmann (1990) was introduced for heat integration, and mathematical programming 

was used for placing the pressure manipulators. The MINLP formulation was developed 

to minimize the network total annualized cost (TAC). Onishi et al. (2014b) elaborated a 

multi-stage superstructure considering high-pressure streams as cold streams and low-

pressure as hot streams. Huang and Karimi (2016) presented some modifications to the 

work of Onishi et al. (2014b), like the decision of the final device to adjust stream 

temperature based on the stream need instead of its identity.  

Onishi et al. (2018) developed an innovative WHEN superstructure to deal with streams 

that are not classified a priori. Generalized disjunctive programming (GDP) was used to 

deal with the pressure manipulator selection and the  classification of the stream. The 

problem had an MINLP formulation that was a convex hull reformulation of the GDP. It 

was incorporated with a Pinch-based optimization model for heat integration to minimize 

the TAC. Nair et al. (2018) added to the model of Onishi et al. (2018) the possibility of 

phase change, variable heat capacity, as well as compression and expansion of streams 

with no net pressure change (cycles).  

Differently from previous authors that relied on mathematical programming,  some 

interesting results used meta-heuristics to deal with the WHEN synthesis problem. Pavão 

et al. (2019) proposed a new approach to WHEN synthesis considering non-isothermal 

mixing and utilities in every HEN stage in parallel with the other heat transfer devices. 

The solution approach comprised Simulated Annealing (SA) for the combinatorial level 

and Rocket Fireworks Optimization for the continuous one. Santos et al. (2020a) 

proposed a new superstructure-derived MINLP model with a reduced number of decision 

variables. Change of variables and inner-level optimization were considered to diminish 

the combinatorial size of the optimization problem. The solution approach consisted of a 

two-level meta-heuristic optimization, using SA in the combinatorial problem and 

Particle Swarm Optimization in the nonlinear problem. Lin et al. (2021) proposed a two-

piece WHEN synthesis framework composed of a targeting phase followed by the 

detailed HEN synthesis. The former was performed by optimizing a model of 

thermodynamic paths of process streams using hybridization of genetic algorithm and 

golden section method. The latter was performed using mathematical programming to 

minimize TAC. 

A major challenge in this synthesis problem is dealing with streams classification. Some 

authors considered energy targeting or fixed temperature and pressure routes based on 

thermodynamic insights. Other authors included the  classification of the stream as binary 

decision variables in the optimization problem. The objective of this paper is to present a 

WHEN superstructure and a derived MINLP model that deals with streams classification 

without binary decision variables or thermodynamic heuristics. That is achieved by 

introducing the novel reciprocal heat exchangers in the heat integration superstructure. 

2. WHEN model 

2.1. Problem definition 

The WHEN synthesis problem can be defined as determining a set of electric turbines 

and compressors, single-shaft turbine-compressors, helper motors, electric generators, 

heat exchangers, heaters, and coolers that perform the required temperature and pressure 
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changes of process streams with minimum operating and capital costs. Therefore, for the 

set of S streams (𝑠 = 1, … , 𝑆), it is given their initial and final states (𝑇𝑖𝑛, 𝑃𝑖𝑛, 𝑇𝑜𝑢𝑡, and 

𝑃𝑜𝑢𝑡), heat capacity flow rates (𝐶𝑃) and heat exchange coefficients (ℎ). Hot and cold 

utilities are available with known inlet and outlet temperatures (𝑇𝑆𝑖𝑛, 𝑇𝑊𝑖𝑛, 𝑇𝑆𝑜𝑢𝑡, and 

𝑇𝑊𝑜𝑢𝑡), individual heat exchange coefficients (ℎ𝑠 and ℎ𝑤) and costs (𝐶𝐻𝑈 and 𝐶𝐶𝑈). 

The prices of purchase and selling electricity (𝐶𝐸 and 𝑃𝐸) are given as well as economic 

capital cost equations (𝑐𝑎𝑝𝐶, 𝑐𝑎𝑝𝑇, and 𝑐𝑎𝑝𝐴), polytropic coefficient (𝜅); and 

compression and expansion efficiencies (𝜂𝑐 and 𝜂𝑒). 

2.2. Superstructure 

The superstructure is based on Santos et al. (2020a), but without a classification section 

(Figure 1). The proposed superstructure has three sections: heat integration, temperature 

adjustment, and work exchange network. The heat integration section is based on Yee 

and Grossmann (1990), updated to deal with unclassified streams with reciprocal heat 

exchangers. This superstructure artifice consists of using the notation of 𝑠, 𝑛, 𝑠𝑠, 𝑛𝑛, 𝑘 for 

a heat exchanger between hot stream (s, n) and cold stream (ss, nn) in heat integration 

stage k for the hot stream and 𝐾 − 𝑘 − 1 for the cold one, where s is the stream number, 

n is the WHEN superstructure stage and 𝐾 is the total number of heat integration stages. 

The temperature adjustment section allows using a hot or cold utility to achieve the 

desired cooling or heating task. The work exchange network section is based on Onishi 

et al. (2018), which uses convex hull reformulation of a GDP model to deal with the 

selection of compressors and turbines.  

 

Figure 1. Proposed WHEN superstructure. 

2.2.1. MINLP Model 

In the heat integration section, Eqs. (1) – (6), the binary variable 𝑦𝑠,𝑛,𝑠𝑠,𝑛𝑛,𝑘 stands for the 

existence (1) or inexistence (0) of a heat exchanger between hot stream (s, n) and cold 

stream (ss, nn) in heat integration stage k for the hot stream and 𝐾 − 𝑘 − 1 for the cold 

one. In addition, 𝑄, 𝑇, 𝑑𝑇ℎ, 𝑑𝑇𝑐, and 𝐴 are the heat load, temperature, temperature 

difference at the hot and cold end, and area of a heat exchanger, respectively, considering 

their subscript index. 𝐶𝑃, ℎ, and the upper and lower limits of temperature (𝑇𝑢𝑝 and 𝑇𝑙𝑜) 

are parameters given by the problem statement. Note that to deal with pre-classified 

streams one might just fix to zero the heat load and binary variable of the heat exchangers 

that regard streams with opposite thermal identity. 

∀𝑠, 𝑛, 𝑠𝑠, 𝑛𝑛, 𝑘 < 𝐾 − 2:  

𝑇𝑠,𝑛,𝑘+1 = 𝑇𝑠,𝑛,𝑘 − ∑
𝑄𝑠,𝑛,𝑠𝑠,𝑛𝑛,𝑘

𝐶𝑃𝑠
𝑠𝑠,𝑛𝑛∈ℎ𝑒

+ ∑
𝑄𝑠𝑠,𝑛𝑛,𝑠,𝑛,𝐾−𝑘−1

𝐶𝑃𝑠
𝑠𝑠,𝑛𝑛∈ℎ𝑒

 (1) 

𝑄𝑠,𝑛,𝑠𝑠,𝑛𝑛,𝑘 ≤ 𝑦𝑠,𝑛,𝑠𝑠,𝑛𝑛,𝑘𝑄𝑢𝑝 (2) 
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𝑑𝑇ℎ𝑠,𝑛,𝑠𝑠,𝑛𝑛,𝑘 ≤ 𝑇𝑠,𝑛,𝑘 − 𝑇𝑠𝑠,𝑛𝑛,𝐾−𝑘 + (𝑇𝑢𝑝 − 𝑇𝑙𝑜)(1 − 𝑦𝑠,𝑛,𝑠𝑠,𝑛𝑛,𝑘) (3) 

𝑑𝑇𝑐𝑠,𝑛,𝑠𝑠,𝑛𝑛,𝑘 ≤ 𝑇𝑠,𝑛,𝑘+1 − 𝑇𝑠𝑠,𝑛𝑛,𝐾−𝑘−1 + (𝑇𝑢𝑝 − 𝑇𝑙𝑜)(1 − 𝑦𝑠,𝑛,𝑠𝑠,𝑛𝑛,𝑘) (4) 

𝑦𝑠,𝑛,𝑠𝑠,𝑛𝑛,𝑘 + 𝑦𝑠𝑠,𝑛𝑛,𝑠,𝑛,𝐾−𝑘−1 ≤ 1 (5) 

𝐴𝑠,𝑛,𝑠𝑠,𝑛𝑛,𝑘 (𝑑𝑇ℎ𝑠,𝑛,𝑠𝑠,𝑛𝑛,𝑘𝑑𝑇𝑐𝑠,𝑛,𝑠𝑠,𝑛𝑛,𝑘

𝑑𝑇ℎ𝑠,𝑛,𝑠𝑠,𝑛𝑛,𝑘 + 𝑑𝑇𝑐𝑠,𝑛,𝑠𝑠,𝑛𝑛,𝑘

2
)

1
3

≥ 𝑄𝑠,𝑛,𝑠𝑠,𝑛𝑛,𝑘

ℎ𝑠 + ℎ𝑠𝑠

ℎ𝑠 ℎ𝑠𝑠

 

(6) 

In the temperature adjustment section, Eqs. (7) – (16), it is possible to place a heater 

(𝑦𝑠𝑠,𝑛 = 1), a cooler (𝑦𝑤𝑠,𝑛 = 1), or none (𝑦𝑤𝑠,𝑛 + 𝑦𝑠𝑠,𝑛 = 0) at stream s in stage n. 𝑄𝑠, 

𝑄𝑤, 𝑑𝑇𝑠ℎ, 𝑑𝑇𝑠𝑐, 𝑑𝑇𝑤ℎ, 𝑑𝑇𝑤𝑐, 𝐴𝑠, and 𝐴𝑤 are the heat load of the heater and cooler, 

temperature difference at the hot and cold end for the heater and cooler, and heat exchange 

area of the heater and cooler, respectively, considering the subscript index referred to 

streams and stages. The upper limit of heat load (𝑄𝑢𝑝), 𝑇𝑆𝑜𝑢𝑡, 𝑇𝑆𝑖𝑛, 𝑇𝑊𝑜𝑢𝑡, 𝑇𝑤𝑖𝑛, ℎ𝑠, 

and ℎ𝑤 are parameters given by the problem statement. 

∀𝑠, 𝑛, 𝑘 = 𝐾 − 2:  

𝑇𝑠,𝑛,𝑘+1  =  𝑇𝑠,𝑛,𝑘  +  𝑄𝑠𝑠,𝑛/𝐶𝑃𝑠  −  𝑄𝑤𝑠,𝑛/𝐶𝑃𝑠 (7) 

𝑄𝑠𝑠,𝑛 ≤  𝑦𝑠𝑠,𝑛𝑄𝑢𝑝 (8) 

𝑄𝑤𝑠,𝑛 ≤ 𝑦𝑤𝑠,𝑛𝑄𝑢𝑝 (9) 

𝑦𝑤𝑠,𝑛 + 𝑦𝑠𝑠,𝑛 ≤ 1 (10) 

𝑑𝑇𝑠ℎ𝑠,𝑛 ≤ 𝑇𝑆𝑜𝑢𝑡 − 𝑇𝑠,𝑛,𝑘 + (𝑇𝑆𝑖𝑛 − 𝑇𝑙𝑜)(1 − 𝑦𝑠𝑠,𝑛) (11) 

𝑑𝑇𝑠𝑐𝑠,𝑛 ≤ 𝑇𝑆𝑖𝑛 − 𝑇𝑠,𝑛,𝑘+1 + (𝑇𝑆𝑖𝑛 − 𝑇𝑙𝑜)(1 − 𝑦𝑠𝑠,𝑛) (12) 

𝑑𝑇𝑤ℎ𝑠,𝑛 ≤ 𝑇𝑠,𝑛,𝑘 − 𝑇𝑊𝑜𝑢𝑡 + (𝑇𝑢𝑝 − 𝑇𝑊𝑖𝑛)(1 − 𝑦𝑤𝑠,𝑛) (13) 

𝑑𝑇𝑤𝑐𝑠,𝑛 ≤ 𝑇𝑠,𝑛,𝑘+1 − 𝑇𝑊𝑖𝑛 + (𝑇𝑢𝑝 − 𝑇𝑊𝑖𝑛)(1 − 𝑦𝑤𝑠,𝑛) (14) 

𝐴𝑠𝑠,𝑛 (( 𝑑𝑇𝑠ℎ𝑠,𝑛𝑑𝑇𝑠𝑐𝑠,𝑛

 𝑑𝑇𝑠ℎ𝑠,𝑛 + 𝑑𝑇𝑠𝑐𝑠,𝑛

2
)

1
3

) ≥ 𝑄𝑠𝑠,𝑛

ℎ𝑠 + ℎ𝑠

ℎ𝑠 ℎ𝑠
 (15) 

𝐴𝑤𝑠,𝑛 (( 𝑑𝑇𝑤ℎ𝑠,𝑛𝑑𝑇𝑤𝑐𝑠,𝑛

 𝑑𝑇𝑤ℎ𝑠,𝑛 + 𝑑𝑇𝑤𝑐𝑠,𝑛

2
)

1
3

) ≥ 𝑄𝑤𝑠,𝑛

ℎ𝑠 + ℎ𝑤

ℎ𝑠  ℎ𝑤
 (16) 

The work exchange network (WEN) section is based on Onishi et al. (2018). The cost 

calculation is based on Santos et al. (2020a), in which the TAC is the sum of operating 

and capital costs of WEN and HEN. The resulting MINLP model is implemented in 

GAMS 37.1.0 and solved with the global optimization solver BARON 21.1.13 

(Tawarmalani & Sahinidis, 2005) to minimize the TAC.  

3. Case study 

This two-stream problem was proposed by Onishi et al. (2014a) and later approached by 

Lin et al. (2021). Table 1 and Table 2 present the stream and cost data, in which 𝑊𝑐, 𝑊𝑡, 

𝑄𝑠, and 𝑄𝑤 are given in kW, and 𝐴 is given in m2. Notice that the problem statement 

contains several considerations to simplify mathematically the synthesis task. Some other 

parameters from the problem statement include 𝑇𝑙𝑜 and 𝑇𝑢𝑝 of 350 and 750 K, minimum 

temperature approach (𝑑𝑇𝑚𝑖𝑛) of 5 K, polytropic coefficient of 1.352, compressor and 

turbine efficiencies of 100 %, and annualization factor of 0.18. Notice that 𝑑𝑇𝑚𝑖𝑛 is the 

lower limit of all 𝑑𝑇 variables. For this case study, the authors disregarded the use of 

single-shaft turbine-compressors. The model size for this small-scale case study was 397 

equations, 397 variables (80 discrete ones), and the best solution is found in about 5 s. 

820

796



 

The results of solving this WHEN synthesis problem with the proposed MINLP model 

are illustrated in Figure 2. 

Table 1. Stream data for the case study. 

Stream 𝑇𝑖𝑛 

[K] 

𝑇𝑜𝑢𝑡 

[K] 

𝑃𝑖𝑛 

[MPa] 

𝑃𝑜𝑢𝑡 

[MPa] 

𝐶𝑃 

[kW/K] 

ℎ 

[kW/m2K] 

𝑠1  650 370 0.1 0.5 3.0 0.1 

𝑠2  410 650 0.5 0.1 2.0 0.1 

HU 680 680    1.0 

CU 300 300    1.0 

Table 2. Cost data for the case study. 

Operation Capital cost  Unit Operating cost Unit 

Compressors 𝑐𝑎𝑝𝐶 = 30.317(𝑊𝑐)0.62  (k$) 𝐶𝐸 = 0.45504  (k$/kWy) 

Turbines 𝑐𝑎𝑝𝑇 = 1.5338(𝑊𝑡)0.81  (k$) 𝑃𝐸 = 0.0  (k$/kWy) 

Heat 

exchangers 

𝑐𝑎𝑝𝐴 = 21.778 +
3.4467(𝐴)  

(k$) 
𝑈𝑇
= 0.377𝑄𝑠 + 0.1𝑄𝑤 

(k$/y) 

 

The TAC of this solution is 834.7 k$/year, a value that surpassed the literature results of 

1207 in Onishi et al. (2014a) and 837 k$/year in Lin et al. (2021). This shows that 

strategies of energy targeting and fixing thermodynamic routes can simplify big-size 

WHEN problem at the price of potentially disregarding the global optimum. 

 

 

Figure 2. WHEN result for the case study. 

Compared to the result of Lin et al. (2021), the proposed solution for this small-scale 

WHEN synthesis problem has one less heat exchanger recovers 2.2 kW more heat, 

consumes 2.1 kW less net work, and consumes 2.2 kW less cold utility. The main 

advantages of the present WHEN are achieving a higher inlet temperature to the second 

turbine, producing more work, and the increased heat integration, which saved utility. 

For future work, one might consider using the idea of reciprocal heat exchangers and the 

present MINLP model for medium or big-sized WHEN problems. For solving such 

problems efficiently with global optimization solver, such as BARON, improving the 

model to provide tighter bounds might be required.  
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4. Conclusions 

An efficient MINLP model for optimal WHENs synthesis was proposed from a 

superstructure that considers unclassified streams via reciprocal heat exchangers. A 

small-scale WHEN case study from the literature was used to test the developed model. 

It was solved using the BARON global optimization solver in GAMS. The leading 

advantage of the present optimization model is the capability of defining the temperature 

and pressure route of a process stream entirely during optimization, instead of relying on 

energy targeting or fixed thermodynamic routes. Results surpassed the ones from the 

literature from 837.0 to 834.7 k$/year of total annualized cost. For future work, the 

present MINLP model should be tested to medium or big-sized WHEN problems and be 

modified to tighten the bounds for global optimization. 
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Abstract 
Carbon capture and utilization (CCU) has attracted growing interest to potentially curb 
CO2 emissions while generating valuable chemicals. These emerging technologies will 
coexist with their fossil analogs soon, creating opportunities to combine both. In this 
context, flue gas valorization from power plants can play a role in this transition. The 
success of CCU technologies will ultimately depend on its environmental sustainability, 
which should be evaluated based on global indicators such as the Planetary Boundaries 
(PBs). Here we assessed the absolute sustainability level of an integrated facility 
producing ammonia (NH3) and synthetic natural gas (SNG) using hydrogen (H2) from 
water electrolysis, and nitrogen (N2) and CO2 from flue gas from a combined-cycle 
natural gas power plant. The LCA-PBs assessment showed that the alternative 
technologies could contribute to operating the Planet safely by significantly reducing the 
impact on the climate change and ocean acidification Earth-system processes, compared 
to the fossil Haber-Bosch (HB) and conventional steam reforming processes. Overall, the 
investigated process could smoothen the transition towards low-carbon technologies. 
More broadly, the application of the PBs to quantify the environmental performance of 
the integrated system opens up new avenues for the absolute sustainability assessment of 
emerging low-carbon technologies within the chemical sector and beyond. 
 
Keywords: flue gas valorization, planetary boundaries, life cycle assessment, circular 
economy 

1. Introduction 
The phasing out of fossil fuels for power generation is a key step in the sustainable 
transition of the energy and chemical sectors. However, during this transition, greenhouse 
gases (GHG) emissions from power plants still under operation will have to be reduced, 
possibly following a circular economy approach. This could be accomplished by using 
natural resources more efficiently and combining them with the valorization of side 
outputs into valuable materials that can re-enter the economy. In this context, carbon 
capture and utilization (CCU) is gaining increasing traction (Kätelhön et al., 2019). 
Recent work by Castellani et al. (2018) proposed an integrated process that separates flue 
gas from power plants into its main components: carbon dioxide (CO2) and nitrogen (N2). 
These streams are then upgraded into synthetic natural gas (SNG) and ammonia (NH3) 
through the Sabatier and the Haber-Bosch (HB) process, respectively, using electrolytic 
hydrogen (H2). This concept shows several advantages. First, what was originally a waste 
stream could be upgraded into promising low-carbon energy vectors. Second, the 
produced SNG could reduce the consumption of natural gas power plants, in line with 
circular thinking. Third, by producing H2 from intermittent energy sources such as wind 
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or solar power, part of the excess electricity during peak power generation times could be 
absorbed, avoiding curtailment (Staffell et al., 2019). 
The environmental impact of these emerging technologies has been estimated through 
life cycle assessment (LCA), evaluating their sustainability along the whole supply chain. 
Several works applied LCA on NH3 and SNG production through many alternative 
pathways to the business as usual (BAU) (Castellani et al., 2018). However, these studies 
often focus on carbon footprint solely while neglecting other impact categories.  
In recent times, absolute sustainability assessments gained broad interest. Among these, 
the recently proposed planetary boundaries (PBs) concept (Rockström et al., 2009) 
establishes a set of critical thresholds on key Earth-system processes that enable 
comprehensive absolute sustainability assessments. Transgressing the PBs could shift the 
Planet's current state, challenging the Earth’s resilience. These limits, all together, define 
a safe operating space (SOS) within which anthropogenic activities should lie. Despite 
their relevance in sustainable development, studies incorporating the PBs in chemicals 
and fuels assessments are scarce.  
In this work, we apply an PB-LCA methodology to evaluate valorization pathways of flue 
gas from a natural gas power plant to produce NH3 and SNG using renewable H2. In 
particular, we quantify the transgression levels relative to the SOS, focusing on a plant 
located in Germany and comparing the results with the fossil-based analogs. To the best 
of the authors’ knowledge, this is the first time that such a novel methodology of 
environmental assessment is applied to the proposed process. 

2. Methodology 

2.1. Process description 
The block flow diagram of the process is presented in Figure 1. It encompasses four main 
stages: membrane separation, water electrolysis, the Sabatier process, and the HB 
process. The plant is designed to use 10% of the electricity produced by wind in Germany 
for electrolytic H2 production. Given an annual wind energy production of 131.7 TWh in 
2020 (Burger, 2021) and an annual plant operating time of 8000 h, this represents an 
average consumption of 1.65 GW, corresponding to about 136 kt h−1 of flue gas (see also 
Table 1). Flue gas was assumed to contain exclusively N2 (80 mol%) and CO2 (20 mol%), 
approximating the average flue gas composition for a combined-cycle natural gas power 
plant (Al Hashmi et al., 2018; Castellani et al., 2018). 
H2 production is modeled in Aspen Custom Modeler® using the proton exchange 
membrane (PEM) technology (Ni et al., 2006) since it is currently considered the most 
suitable for intermittent operation (Staffell et al., 2019).  

Figure 1. Block diagram of the case study. See Table 1 for the corresponding streams table. 
The electricity consumption, per kg flue gas, is shown below each process step. 
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Table 1. Selection of streams from the studied process. All the values are mass flows, in kt h−1. 
The values denoted with a * correspond to water that is assumed to be immediately flashed. 

Comp.\Stream S1 S2 S3 S4 S6 S7 S8 S10 S12 S14 

N2 97.67 1.16 96.52 0 0 0 0 96.52 1.16 0 

CO2 38.36 34.53 3.84 0 0 0 0 0 0.19 0 

H2 0 0 0 0 0.07 6.63 21.07 0 0.33 0 

CH4 0 0 0 0 0 0 0 1.40 12.52 1.40 

NH3 0 0 0 0 0 0 0 0 0 115.77 

H2O 0 0 0 248.12 0 0 0 3.14* 28.11* 0 

 
The flue gas (S1 in Figure 1) is fed to a two-stage membrane separation, which provides 
a CO2-rich stream (S2) and a N2-rich stream (S3). A CO2 recovery of 90% and a CO2 
purity of 95 mol% can be achieved in S2 (Castellani et al., 2018). The Sabatier process is 
tolerant to N2 impurities, since N2 behaves as an inert gas. In contrast, it is not possible to 
feed CO2 impurities to the HB process. Consequently, as for the industrial standard, a 
small purification step that converts all the CO2 to methane in the N2-rich stream through 
methanation is assumed (D'Angelo et al., 2021). Accordingly, H2 is fed in stoichiometric 
ratio to CO2 to consume it entirely. 
For the Sabatier reaction step (S11 to S12 in Figure 1), the process was modeled here 
assuming a CO2 conversion of 99.5% (Castellani et al., 2018). To reach industrial grade, 
the SNG needs to be further purified from the N2 impurity, which can be easily performed 
with a pressure swing adsorption unit using zeolites, for instance, at a low energy expense 
(Jayaraman et al., 2004). In the current study, this step was omitted for simplicity. 
Furthermore, the water generated from the N2 purification and Sabatier reaction (streams 
S10 and S12) is assumed to be separated using a flash at ambient conditions. 
Finally, for NH3 (S13 to S14 in Figure 1), a detailed model in Aspen HYSYS® was 
designed, based on D'Angelo et al. (2021) and considering an N2 conversion of 98.6%. 

2.2. Environmental Assessment 
The LCA was performed following the ISO 14040 (ISO, 2014). 
Three different scenarios were considered differing in the electricity source. All three 
scenarios assume that electricity powering the membrane separation, N2 purification, 
Sabatier process, and HB process must be non-intermittent to ensure a smooth operation 
of the compressors. Accordingly, these steps are powered by the German 2020 power grid 
mix (Burger, 2021). At the same time, the first scenario (Sc1) assumes that PEM 
electrolysis is powered by the same mix, while the second (Sc2) uses offshore wind 
energy for the water-splitting step, and the last (Sc3) onshore wind instead. 
A cradle-to-gate study was adopted to quantify the absolute sustainability level of three 
alternative flue gas valorization routes and an equivalent functional unit for the BAU. 
Further conversion of the products SNG and NH3 is considered out of the work’s scope. 
The selected functional unit was 1 kg of flue gas valorized for the three alternative 
scenarios. For the BAU, a system expansion approach was used. Notably, we considered 
the direct emissions from venting the flue gas, plus the impact of the BAU (fossil analogs) 
associated with the equivalent amount of natural gas and NH3 produced from flue gas 
valorization. An attributional approach was selected.  
In the second LCA phase, the life cycle inventories (LCIs) are modeled. The foreground 
system includes all the subprocesses depicted in Figure 1 and Table 1. At the same time, 
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the underlying energy and raw materials suppliers belong to the background system, here 
modeled with Ecoinvent v3.5, accessed through SimaPro v9.2. All the inventories, 
wherever possible, were regionalized for the German or European (RER) region. The H2 
inventory was obtained by combining results from Aspen Custom Modeler® with 
literature data, assuming H2 storage in salt caverns (D'Angelo et al., 2021). The oxygen 
by-product obtained from water splitting was considered vented. 
In the third phase, we used the characterization factors proposed by Ryberg et al. (2018) 
to estimate the impact on the control variables of the PBs. Nine Earth-system processes 
characterized by 11 control variables were considered, but two of them, atmospheric 
aerosol loading and novel entities, are yet to be quantified so they were omitted from this 
analysis. Since any of the PBs, if trespassed, could lead to catastrophic events, their joint 
ensemble defines the SOS for human anthropogenic activities. The same methodology 
described in D'Angelo et al. (2021) was used to quantify the levels of transgression (LTs). 
However, a different downscaling method was applied. Notably, the SOS was scaled 
down to the German market using a non-egalitarian approach involving the share of 
global GDP in 2019 covered by Germany. At the same time, the production plant was 
scaled up to cover the valorization of all the flue gas produced from natural gas power 
plants in the country (BEDW, 2020). 
Finally, in step 4 of the LCA methodology, the results are interpreted, and potential 
recommendations are drawn. Here, we analyzed the impacts of the indicators exceeding 
the SOS to identify the main hotspots. 

3. Results 
The results of the selected scenarios (Sc1, Sc2, Sc3, and BAU) are shown in Figure 2.  

Figure 2. Impacts on the PBs control variables, and breakdown, for the four scenarios 
considered, quantified in terms of share of the SOS. Only the impacts exceeding the 
limit of 100% SOS are here shown. 

 
Only the indicators exceeding the full SOS in at least one scenario are here presented, 
namely, climate change – CO2 concentration (CC-CO2), climate change – energy 
imbalance (CC-EI), and ocean acidification (OA). This is not surprising since these three 
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indicators are strictly associated with GHG concentration in different Earth 
compartments, i.e., the atmosphere for the first two and marine waters for OA. 
The first key result is that the sustainability ranking witnesses Sc2 dominating for all the 
three selected control variables (29.7%-92.8% among the three indicators in focus), 
followed by Sc3 (35.5%-110.9%), BAU (59.6%-186.4%), and finally Sc1 (148.5%-
464.4%). Sc2 is the only scenario that does not transgress any PB. 
Moreover, the performance of the three valorization scenarios is strictly linked to the 
sustainability of the electricity employed for H2 production. In fact, H2 causes most of the 
impact in Sc1, with around 85.6% of the total contribution for all three indicators. 
Conversely, the H2 contribution to the total impact shrinks down to around 28.1-28.2% 
for Sc2, where the electricity from the grid powering the rest of the facility plays the 
greatest role (49.6-49.9%). This fact is due to the remarkably high electricity consumption 
of water splitting (see also Figure 1) and the carbon intensity of the German power grid. 
In fact, more than a third (36.5%) of this energy mix relies on coal and natural gas power 
plants (Burger, 2021). Moreover, H2 consumption explains the different magnitude of the 
impact of the various sub-processes in the valorization scenarios. The dominating role of 
the NH3 production section is clearly highlighted, with a contribution to the overall 
alternative scenarios' impacts in the range of 52.76%-71.28%. Continuing along with the 
ranking, the second-highest contribution to the total impacts is SNG production, with a 
share of 27.9%-44.0% of the total impact.  
On the contrary, the impacts associated with the very energy-efficient membrane 
separation are negligible. As anticipated, the power consumption associated with each 
part of the process dictates the overall performance. As highlighted in Table 1, the HB 
process requires the highest amount of H2, almost 3.2 times as much as for SNG 
production. This is due to the fact that the N2 feed to the HB process is much larger than 
the CO2 feed that is meant to react through the Sabatier reaction. However, the latter needs 
more direct electric energy input, excluding H2, than the HB process (see Figure 1), and 
a higher stoichiometric ratio H2-to-substrate is required to convert CO2 (4) with respect 
to N2 (3). Finally, shifting the focus on the BAU, NH3 production dominates the impact 
with about 83.0% of the share, followed by the emissions from venting the flue gas 
(15.4%-15.5%) and natural gas extraction and transport (about 1.6%). The lower 
relevance of the natural gas extraction compared to the SNG production can be explained 
by the much higher energy intensity of the Sabatier reaction and the very optimized 
extraction and transport of natural gas. 

4. Conclusions 
This work assessed an integrated process valorizing flue gas from natural gas power 
plants into NH3 and SNG through using electrolytic H2. The absolute environmental 
impact exerted on the Earth's biophysical limits was quantified through the PBs 
framework. For the first time, this novel LCA methodology is applied to such a process, 
to the best of the author's knowledge. 
We found that the proposed process could perform more sustainably than the current 
fossil analog when using H2 from renewable power sources such as wind. This fact can 
be true even in a country with energy mixes yet to be decarbonized, such as Germany, 
which still relies heavily on fossil coal and natural gas. However, the final feasibility of 
the proposed process will be strongly dependent on its economic affordability, which in 
the long run should be favored by the energy transition to renewables and lower capital 
costs for the electrolyzers. 
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For future studies, a comparison with an approach using the same membrane module to 
separate CO2 from the flue gas, but assuming at a later stage the use of carbon capture 
and storage, could shed further light on the competitiveness of such a process relative to 
other environmentally promising approaches. 
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Abstract 

The Middle East and North Africa region (MENA) is the largest global producer of dates, 

with an annual production of more than 8 million tonnes. The date palm has been an 

iconic part of this region’s culture since 3000 BC and played a key role in its development 

over the centuries. Incidentally, date pits account for approximately 10% of the fruit, 

representing a vital biomass resource due to its high carbon and low ash contents. Several 

studies investigated the valorisation of date pits into biochar via pyrolysis and the product 

applications as solid fuel, adsorbents, or soil enhancers. However, few have evaluated the 

economics of pyrolysis using date pits as feedstock. As such, this study presents a techno-

economic assessment of biochar production from date pits. Proximate and elemental 

analyses of date pits samples are conducted in the laboratory, while a 500 tonne/day 

biorefinery is designed and evaluated using adapted pyrolysis prediction models. In 

addition, the process is evaluated in two modes: slow pyrolysis at 250 °C and fast 

pyrolysis at 400 °C. The obtained results are promising, where slow pyrolysis yielded 50 

wt.% of biochar with 62 % elemental carbon content. Besides, it achieved a return on 

investment of 19% and a 5-year payback period. Whereas fast pyrolysis yielded 24 wt.% 

of biochar with 77 % elemental carbon content, while the return on investment is 17% 

with a 6-year payback period. Both modes of pyrolysis using date pits proved to be 

feasible in the MENA region for the production of high-quality biochar. 
 

Keywords: Date pits, Pyrolysis, Biochar, Biocrude, MENA. 

1. Introduction 

The date palm (Phoenix dactylifera) is a tropical tree that has been cultivated in the 

MENA region for over 7000 years (Sarraf et al., 2021). Nearly 8 million tonnes of date 

fruits were produced in the MENA region in 2019 (Dates, Crops and livestock products., 

2021). The date fruit is very rich in carbohydrates, salts, minerals, dietary fibers, vitamins, 

fatty acids, amino acids, and proteins. The fruit contains a large seed known as date pit 

which is generally used as animal feeds and soil conditioners. It is also used as a 

functional food and an adsorbent for removing pollutants from water. However, the usage 

of date pits for the aforementioned applications is little considering its massive 

availability in the MENA region, which is approximately 800,000 tonnes. It is mostly 

treated as a waste material. As both landfilling and burning of date pits, cause serious 

environmental problem, an environmentally benign route of valorising the date pits need 

to be explored. The valorisation of date pits for the production of biochar and bio-oil 

through pyrolysis has been found as a potential and sustainable solution for the date pits 
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accumulation issue by many researchers. Hence, in this study, the pyrolysis method of 

valorising date pits is considered. 

Pyrolysis prediction models are commonly used to forecast pyrolysis product distribution. 

The models are based on the reactions that take place during the pyrolysis process. Many 

pyrolysis regulating parameters, such as heating rate and pyrolysis temperature, are 

considered during the simulation. In this way, several models have been developed by 

researchers to predict the pyrolysis process (Neves et al., 2011; Sharma et al., 2006). The 

pyrolytic kinetics model proposed by Song (Song, 2016) has been adapted in this study 

to predict the yields of bio-oil, biochar, and syngas yields. The model uses empirical 

equations to satisfy the mass and energy balances, and empirical relationships to represent 

the overall patterns of product distribution as a function of temperature. 

The objective of the current prediction model is to predict product composition of date 

pits by two pyrolysis modes: slow and fast pyrolysis. Besides, the study investigates the 

economic feasibility of the two process’ modes to produce a cost-effective biochar from 

date pits.  

2. Materials and methods 

2.1. Date pits preparation 

The date pits are obtained from a local syrup producer and rinsed twice in water to 

eliminate dirt and impurities. The moist stones are then dried for around 24 hours at 

323.15 K. The date pits are then crushed into powder in a blender and stored in an airtight 

container for subsequent analyses. An SDT-650 Thermogravimetry analyser is used for 

the proximate analysis, while a Euro-vector Euro EA 3000 CHN elemental analyser is 

used for the ultimate analysis. The proximate and ultimate analyses are carried out using 

ASTM D7582-12 and ASTM D 3176–8 standards, respectively. 

2.2. Model development 

A simplified process flow diagram of date pits pyrolysis is illustrated in Figure 1. The 

following assumptions guide the development of the prediction model. Date pit samples 

are pyrolysed in an isothermal reactor with a nitrogen inert environment. The drying of 

samples occurs at the start of the reaction, and the samples are pyrolysed and converted 

into water, bio-oil, ash, biochar, and volatile gases such as CO2, CO, CH4, and H2 in the 

first stage of pyrolysis, as specified in equations 1, 2, and 3 (Swagathnath et al., 2019). 

The bio-oil is further cracked into volatiles again in the second step, which occurs as the 

temperature rises. Depending on the biomass composition, the generated gas products 

split into different gaseous substances during this phase. 

𝑇𝑜𝑡𝑎𝑙 𝑙𝑖𝑞𝑢𝑖𝑑 𝑦𝑖𝑒𝑙𝑑 = 𝑌𝑏𝑖𝑜−𝑜𝑖𝑙,𝐹 + 𝑌𝐻2𝑂,𝐹 + 𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 (1) 

𝑇𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑒 𝑔𝑎𝑠 𝑦𝑖𝑒𝑙𝑑 = 𝑌𝐻2,𝐹 + 𝑌𝐶𝑂,𝐹 + 𝑌𝐶𝐻4,𝐹 +  𝑌𝐶𝑂2,𝐹  (2) 

𝑇𝑜𝑡𝑎𝑙 𝑐ℎ𝑎𝑟 𝑦𝑖𝑒𝑙𝑑 = 0.106 +  2.43 ∗ exp(−0.66 ∗ 𝑇 ∗ 10−2) (3) 

The composition of carbon, hydrogen, and oxygen in biochar is calculated using the 

following equations. 

𝐶𝑎𝑟𝑏𝑜𝑛 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 = 0.93 − 0.92 ∗ exp(−0.42 ∗ 𝑇 ∗ 10−2) (4) 

𝐻𝑦𝑑𝑟𝑜𝑔𝑒𝑛 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 = (−0.41 ∗ 10−2
) + (0.10 ∗ exp(−0.24 ∗ 𝑇 ∗ 10−2)) (5) 

𝑂𝑥𝑦𝑔𝑒𝑛 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 = 0.07 + 0.85 ∗ exp(−0.48 ∗ 𝑇 ∗ 10−2) (6) 
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Figure 1: A simplified process flow diagram of date pits’ pyrolysis. 
 

2.3. Techno-economic assessment 

The economic feasibility of date pits pyrolysis is conducted for a plant feed capacity of 20 tonne/hr 

and the assumptions highlighted in Table 1. The key pyrolysis equipment costs and labour 

requirement are adapted from earlier technical reports (Humbird et al., 2011; Wright et 

al., 2010). All prices are scaled up and inflated to the year 2019 using the Chemical 

Engineering Pant Cost Index (CEPCI). 

 

Table 1: Assumptions for the techno-economic analysis. 

Parameters Values 

Location of the proposed plant Qatar 
Analysis year 2019 
Plant lifespan (years) 25 
Discount rate (%) 20 

Plant capacity (t/h) 20 

Annual operating hours (h/y) 8000 

Biomass price ($/t) 100 

3. Results and discussion 

3.1. Date pits attributes 

The proximate and ultimate attributes of the date pit samples are presented in Table 2. 
 

Table 2: Proximate and ultimate analyses result of the date pit samples (this study). 

Analysis Composition (wt. %) 

Proximate analysis (adb.%): 

Moisture 7.73 

Volatile matter 68.11 

Fixed carbond 20.41 

Ash 3.75 

Ultimate analysis (daf.%): 

Carbon 46.30 

Hydrogen 6.70 

Nitrogen 0.83 

Oxygend 46.17 

Sulphur 0.00 

Chlorine 0.00 
*adb.- air dried basis; *d-calculated by difference; *daf- dry and ash-free basis 
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The date pit samples have a relatively high volatile content (68%) and a very low ash 

content (4%), indicating that the date pit could be an ideal feedstock for the pyrolysis 

process. Because of the low levels of nitrogen (~1%), and sulphur (~0%), NOx and SOx 

emissions from date pit pyrolysis are unlikely to exert any significant environmental 

burden. 

3.2. Effect of pyrolysis type on pyrolysis products distribution 

The effect of pyrolysis type on the pyrolysis products distribution of date pit samples is 

illustrated in Figure 2. Whereby, the slow pyrolysis produced a bio-oil yield of 19.6% 

while the fast pyrolysis generated a bio-oil yield of 37.7%. With respect to biochar yield, 

the slow and fast pyrolysis produced 50.2% and 24.6% yield, respectively. Both processes 

produced low syngas yields of 1.0% and 6.7%, respectively. The increased production of 

bio-oil and syngas in fast pyrolysis is due to its high temperature and heating rate as high 

temperatures and heating rates promotes secondary cracking of products leading towards 

more bio-oil and syngas production. A higher yield of biochar in slow pyrolysis is due to 

the process’ low temperature, during which a significant amount of the biomass’ volatile 

matter remains in solid state. Encinar et al. (Encinar et al., 2000) and Karaosmanoğlu et 

al. (Karaosmanoglu et al., 1999) also noted a similar trend of products distribution, 

whereby, an increased biochar production at low temperatures and increased bio-oil and 

syngas generation at higher temperatures have been reported. 

 
Figure 2: Slow and fast pyrolysis’ product distribution of date pit samples 

 

3.3. Effect of pyrolysis type on the biochar composition 

The effect of pyrolysis type on the biochar composition of date pit samples is presented 

in Figure 3.  

With the increase in temperature, an increase in the carbon content and at the same time 

a decrease in the hydrogen and oxygen contents can be observed. The increase in the 

carbon content is due to carbonisation or enrichment of char which is favoured at high 

temperatures. The decrease in the hydrogen and oxygen contents of char is attributed to 

the devolatilisation reactions which are dominant at temperatures between 350 and 

600°C. The effect of temperature on the composition of biochar was also studied by 

Duman et al. (2011) and Bonelli et al. (2003). The aforementioned studies also indicated 

a similar increase in the carbon content and a decrease in the hydrogen and oxygen 

contents of char with the increase of operating temperature.  

0.0% 10.0% 20.0% 30.0% 40.0% 50.0% 60.0%

Bio-oil

Biochar

Syngas

Moisture

Ash
Fast pyrolysis (400°C)

Slow pyrolysis (250°C)
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A techno-economic assessment of biochar production from date pits  

 

Figure 3: The effect of pyrolysis type on the biochar composition of date pit samples. 

 

3.4. Techno-economic assessment 

A summary of the technoeconomic assessment of both pyrolysis processes is presented 

in Table 3. Capital expenses (CAPEX) of fast pyrolysis is higher due to the need for bio-

oil and syngas handling equipment (i.e. condensor, liquid and gas separator, liquid and 

gas filters, etc.), as fast pyrolysis produces higher quantities of bio-oil and syngas. 

Similarly, the operating expenses (OPEX) of fast pyrolysis is also higher, which is due to 

higher utility, labour, and maintenance cost associated with the handling of bio-oil and 

syngas. With respect to biochar production, slow pyrolysis offers a return on investment 

(ROI) of 17% as compared to an ROI of 16% for fast pyrolysis. In addition, the slow 

pyrolysis is offering a payback period of 5.3 years, whereas fast pyrolysis is offering 5.8 

years to payback the capital investment. 
 

Table 3: Summary of technoeconomic assessment of slow and fast pyrolysis. 

Economic parameter Slow pyrolysis (250°C) Fast pyrolysis (400°C) 

CAPEX (M US $) 41.66 65.06 

OPEX (M US $/year) 21.09 21.67 

Annual sales (M US $/year) 29.00 32.86 

Annual profit (M US $/year) 7.91  11.19  

Return on investment (%) 19% 17% 

Payback period (Years) 5.3 5.8 

Bio-oil LCOF (US $/kg) 0.416 0.432 

Biochar LCOF (US $/kg) 0.206 0.249 

Syngas LCOF (US $/kg) 0.365 0.238 

Conclusion 

The availability of date pits in the Middle East and North Africa region (MENA) is 

enormous. The current study employed a prediction model to study the feasibility of 

pyrolysis of date pits considering the MENA scenario. The study considered two 

pyrolysis modes; slow (at 250°C) and fast (at 400°C) and investigated the effect of 

temperature on the product distribution of both pyrolysis processes. Besides, this study 

presented a techno-economic assessment of the two processes. The outcome of the study 

61.7%
5.2% 33.1%

76.8%
3.5% 19.7%

C A R B O N H Y D R O G E N O X Y G E N

Slow pyrolysis (250°C) Fast pyrolysis (400°C)
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is encouraging, indicating that pyrolysis of date pits is quite feasible in the MENA region. 

The techno-economic analysis indicates that slow pyrolysis is more ideal as far as biochar 

production is concerned, where it offers 19% return on investment and a 5-year payback 

period while the fast pyrolysis is offering 17% return on investment with a 6-year payback 

period. The outcome of this study provides an insight for the planning, design, and 

commercialisation of date pits-based pyrolysis plants in the MENA region. 
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Abstract 
Global warming is one of the main environmental problems affecting the world. The 

continuous emissions of Carbon Dioxide (CO2) released into the atmosphere have 

generated a critical environmental situation worldwide. It is reported that 70% of CO2 

emissions are related to electricity production. For this reason, if there is an increase in 

energy demand therefore it is expected to increase CO2 emissions. Globally, different 

alternatives have been sought to reduce the environmental footprint related to CO2 

emissions, highlighting the implementation of capture and storage plants as a promising 

alternative. In this work it is presented the multiobjective optimization for the simulation 

of a CO2 capture plant coupled to a power plant considering a stochastic optimization 

having as objective function the minimization of the environmental implications 

(Ecoindicator 99), the control properties (Condition Number), as well maximize the 

economic indicator (Return on investment). The analysis considered the most used fuels 

in the power plant. From the results, the design with the best overall performance is when 

natural gas is burned. Presenting the lower environmental impact with 

22549.43kEcopoints and a return on investment of 73.24%. This results in a sustainable 

process with less environmental impact. 
 

Keywords: CO2 Capture Plant, biogas, coal, natural gas, associated gas. 

1. Introduction 
Electricity production from the burning of fossil fuels, is one of the main sources of CO2 

emissions. Moreover, it is projected the growth of electricity demand. With this scenario, 

it is necessary to develop sustainable alternatives for power generation, as well as 

alternatives to mitigate CO2 emissions. Due to global environmental problems, it is 

imperative to seek industrial processes in accordance with the United Nations 

Organization sustainable development goals for green chemistry and sustainability. An 

alternative to convert electricity production into a sustainable process is the 

implementation of CO2 capture and storage plants (CCS). Studies on post-combustion 

capture technologies focus mainly on chemical absorption using aqueous mono-

ethanolamine (MEA) solution. MEA is considered as a good choice of solvent due to its 

great capacity to capture CO2 (Nagy, T. et al., 2013) and also because its properties are well 
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known which facilitates modeling studies (Wagner et al., 2013). Despite its high 

efficiency, MEA is considered highly toxic so that its implementation entails a high 

environmental impact. Moreover, no studies report a full design considering 

environmental impact and the process economies as a sustainable indicator.  

In this work aims to present a novel proposal for the simulation of a CO2 capture plant 

coupled to a power plant. In which it is presented the optimum design from a sustainable 

point of view, considering a stochastic optimization having as objective function the 

minimization of the environmental implications of capture plants using MEA as solvent 

(Ecoindicator 99), the minimization of Condition Number (CN) as an indicator of the 

control properties of the system, as well maximize the return on investment (ROI) as an 

economic indicator. The analysis considered the most used fuels in the power plant: 

biogas, coal, natural gas, and associated gas. All the cases were standardized to recover 

at least 95% of the CO2 produced. The results indicate that for a fuel feed flow of 1000 

kmol/h it was necessary to vary the air ratio to achieve the CO2 recovery objective.  

2. Study Case and Methodology 
The study case presents a power plant coupled to a post-combustion CO2 capture process 

(see Figure 1) considering the most used fuels for electricity production. The simulation 

was carried out in the software ASPEN PLUS. For the power plant it was considered a 

single-stage air compressor system as a simplified model for electricity production. 

According to Luyben (2013) it is possible to represent the electricity production in this 

simplified model considering the operating parameters as compression ratio, etc. As well, 

it is considered a fuel feed flow of 1000 kmol/h and a molar ratio of fuel and air of 1:30 

to achieve the total combustion for all the fuels used in this study (Luyben, 2013). To 

describe the thermodynamic properties involved in the combustion, the Peng-Robinson 

method was used (Hasan, M. et al., 2012).  For the CO2 capture plant, a chemical absorption 

using an aqueous solution of Monoethanolamine (MEA) at 30% by weight as solvent was 

considered (Nagy, T. et al., 2013). The proportion of 30 wt% it is important to take in 

consider because MEA is strongly corrosive in high concentrations. As well, the viscosity 

also increases affecting the efficient of capture (Kohl, 1985).   

 

 

 

 

 

 

 

 

 
Figure 1. Scheme of a power plant coupled to a post-combustion CO2 capture process 

using MEA 30wt% as solvent. 
 

The capture process includes two columns, the absorption and desorption units. In the 

absorption the flue gases enter at the bottom of the column and the MEA at the top. 

Therefore, there is an interaction between the liquid and gas phases, driving the CO2 to 

the liquid phase at the bottom of the absorber column. In the desorber column it is 

important to regenerate the solvent and make the desorption of the CO2, which strongly 

depends on the reboiler duty. The capture process, is complex because the chemical 

absorption includes several dissociation reactions (Wagner et al., 2013). In order to model 
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this electrolyte behavior, it is important to consider all the kinetics as well as the binary 

interaction parameters. Likewise, the thermodynamic model Electrolyte Non-Random 

Two Liquids was implemented to consider the dissociation of ionic species. For the 

combustion process, the main design aspects are related to finding the amount of air to be 

fed and the optimum combustor pressure because of the trade-off between compressor 

work and turbine power (Luyben, 2013). The amount of air used to complete the 

combustion is very important. This factor directly influences the capture, as it is stated 

that the capture efficiency depends on the composition of flue gases. To ensure high 

capture efficiency, flue gases must be high in CO2. For the capture process, some design 

aspects related to the process configuration and operational conditions should be taken 

into consideration to reduce the energy consumption and use of MEA. For the desorber 

column, in order to capture the maximum amount of CO2 from the flue gas obtained from 

the power plant, it is necessary to manipulate the distillate flow and the reflux ratio. All 

the cases were standardized to a purity of 99 mol% CO2 and at least 95% recovery of the 

CO2 produced during the combustion. This directly affects the energy requirements of the 

process and therefore directly influences environmental and cost indicators.  

The proposed model, has a significant number of variables to be optimized to have an 

optimal design and operation conditions, by aiming a maximum capture of CO2, the best 

control criteria, maximum   return on investment and lowest environmental impact. In 

this context, due to the electrolytic behaviour present in the liquid phase, the CO2 capture 

process represents a highly non-linear model. With a certain number of discrete and 

continuous variables, the CO2 capture model is suitable for optimizing. The design 

variables and the operation range, where chosen trough a sensibility analysis of the 

process. The design variables for the study case are shown in Table 1. 

Table 1. Design variables for the multi-objective optimization 

Process Variables Type of of 
Variable Symbol Range Units 

Combustion 

Air Flow Continue Air 10 000-35 000 kmol/h 

Pressure 

Ratio 

Compressor  

Continue Pcom1 1 – 8 --- 

Combustion 

Reactor 

Pressure 

Continue Preact 4.5 – 9 atm 

Turbine 

Pressure 
Continue Pturbine 1 - 8 atm 

Absorber 

Number of 

stages 
Discrete Nabs 4-99 --- 

Fed Stage Discrete NFabs 4-99 --- 

Diameter Continue Dabs 0.5 – 3.5 m 

Solvent 

Flow 
Continue MEA 43000 – 44 000 kmol/h 

Desorber 

Number of 

stages 
Discrete Ndes 4-99 --- 

Fed Stage Discrete NFdes 4-99 --- 

Diameter Continue Ddes 0.5 – 3.5 m 

Reflux Ratio Continue RR 0.1 - 75 --- 
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Reboiler 

Duty 
Continue Q 0.03 – 151. 38 GJ/h 

2.1. Optimization Methodology 
For the multi-objective optimization, it was employed the method of Differential 

Evolution with Tabu List (DETL) proposed by Srinivas and Rangaiah (2003). This 

technique works as a combined system between the biological evolution from Differential 

Evolution technique and the random search method from the Tabu search technique. The 

objective function involves three important axes to analyze: Return on Investment (ROI) 

as an indicator of the economy of the process by calculating return on investment due to 

the coupling of a capture plant to an existing power plant. Condition Number (γ*) as an 

indicator of the dynamic behavior of the process considering low condition number for 

systems with good controllability and Eco-indicator 99 (EI99) to quantify the 

environmental impact derived from the coupling of the capture process, use of MEA as a 

solvent. According to Jiménez-González et al. (2011), these axes are needed in the 

optimization of a process to evaluate green chemistry. It is hoped that the analysis 

framework developed in this paper can contribute to the use of indices that can assess 

more than one aspect of green chemistry, in order to be easily integrated into a green 

process-based optimization. Similar works have been reported by Sánchez-Ramírez et. 

al. (2017) and Contreras-Zarazúa et al. (2019) applying these indexes for distillation 

columns. The objective function is expressed in function of the variables described in 

Table 1 as is shown in Eq. (1).  

  

Min[-ROI, γ*,EI99]=f(Air, Pcom1, Preact, Pturbine, Ni,j, NFi,j, Di,j, MEA, RR, Q)              (1) 

Subject to:    

yi,f  ≥ xi.f      (2) 

wi,f ≥ ui,f 

 

The objective function is restricted to satisfy the recuperation of at least 95% of the CO2 

produced during the combustion and also to achieve a purity of 99% mol of CO2. Where 

yi,f represents the CO2 recovered in the desorber column and xi.f represents the 95% of the 

CO2 produced during the combustion. As well wi,f  represents the purity achieved at the 

desorber column and ui,f represents the purity expected of at least 99% mol of CO2. The 

optimization process was done through a visual basic hybrid platform in a Microsoft 

Excel macro. Where initially the values of the input vector are chosen randomly and sent 

to ASPEN PLUS. Where it is performed the simulation of the process and register that 

data as initial value in Excel. Then, the output vector data is sent to Matlab where, 

according to the methodology presented by Skogestad (2007), the value of the condition 

number is obtained. After that, the data is sent to Excel to obtain the ROI and EI99. 

Finally, the results are stored and it is generated a new vector. The values of parameters 

required by DETL method are: Population size: 120 individuals, Generation number: 

1000, Tabu list size: 60, Tabu radius: 0.0001, Crossover fractions: 0.9, Mutation fractions: 

0.3.  

3. Results 
In this section are presented the result obtained from the optimization. In order to analyze 

the operating conditions for each design it is important to highlight the composition of 

the flue gases obtained for each fuel used for the simulation. With a CO2 molar fraction 

for Biogas, Coal, Natural Gas and Associated Gas of: 0.054, 0.124, 0.050 and 0.042 
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respectively. It is possible to observe that the flue gasses with the highest concentration 

of CO2, is the one that is obtained from burning Coal, Biogas and Natural Gas. This 

concentration directly affects the parameters related to operational conditions as: solvent 

requirement and reboiler duty, which impact on economic and environmental indexes. 

Table 2 shows, the impact of some design parameters on the process performance. For 

the absorption, when the CO2 concentration is low, the efficiency in the capture is 

affected. In order to capture a bigger amount of CO2, the solvent requirement increases. 

Moreover, the reflux ratio is directly related to the energy requirements. As higher is the 

reflux ratio the energy requirements for the capture will increase. 
 

Table 2. Design parameters for the best scenario of CO2 capture for each fuel 

Process Variables Biogas Coal Natural Gas Associated Gas 

Combustion 

Air [kmol/h] 17133.95 20519.78 19602.76 24221.83 

Pcom1 [atm] 3.72 3.9 3.64 4.60 

Preact [atm] 5.13 6.46 7.46 6.79 

Pturbine [atm] 4.8 2.73 6.89 5.53 

Absorber 

Nabs 39 34 29 33 

NFabs 3 3 3 3 

Dabs 3.2 1.18 2.59 2.76 

MEA [kmol/h] 43681 43258.06 43504.63 43509.26 

Desorber 

Ndes 33 24 24 22 

NFdes 3 3 3 3 

Ddes [m] 2.36 1.33 2.04 1.45 

RR 3.53 2.24 2.32 3.67 

Q[GJ/h] 470. 08 210. 50 364.45 491. 86 

CO2 recovered [ton/h] 67.57 32.72 65.84 70.40 

Q/ CO2[GJ/ton] 6.9 6.4 5.5 6.9 

CO2 Purity [%mol] 0.99 0.99 0.99 0.99 

Objetive 

Function 

ROI [%] 64.25 40.86 73.24 77.83 

γ* 20.17 2.39 6.7 34.82 

EI99 [kEcopoints] 28920.05 22615.53 22549.43 30369.51 
 

For the analysis of the sustainability indexes, it can be observed that the better return on 

investment when implementing a capture process is when associated gas and natural gas 

are used as fuels, this trend is related to the topology of the process. For these two fuels, 

the process configuration is smaller impacting directly on construction costs. Also, as the 

flue gasses for those fuel have a bigger concentration in CO2, the solvent requirements 

will be less in comparison with the other two fuels. It is possible to see that the least 

environmental impact occurs when natural gas is used as a fuel. This can be explained 

due to several factors, first of all it is the process the highest recovery of CO2 decreasing 

the environmental food print related to CO2 emissions. Likewise, the reduction in 

environmental impact can be explained because it is the process that has the lowest energy 

requirements and uses of solvents; these factors have a significant impact on the 

environmental weighting. On the other hand, it can be observed that the process where 

coal is used has an environmental score approximate to that obtained with natural gas. 

However, it is the process with the highest use of solvent, due to the low concentration of 

CO2 in its flue gases. As well as the process in which there is a lower recovery of CO2. 

About the control properties, it can be seen that the processes where coal and natural gas 

are used, are those that present best control properties by presenting lower condition 
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numbers. However, through the optimization process it is possible to obtain the best 

combination of design variables generating the design that meets the lowest 

environmental impact, highest return on investment and the best control properties for 

each fuel studied. The results obtained show that the process in which natural gas is used 

globally presents a balance in the three objectives of costs, environmental and control 

properties. 

Conclusions 
Implementing the CO2 capture process in power plants has been considered the most 

mature technology to reduce flue gas emissions associated with electricity production. 

Although capture plants help to reduce the environmental footprint of CO2. It is important 

to consider the type of fuel that is used for electricity production. Due to the CO2 

concentration contained in the flue gasses there will be variations on the design 

specifications of the capture process. However, before implementation, it is necessary to 

analyze the environmental implications that arise from the implementation, use of 

solvents and energy consumption. From the results obtained it can be concluded that the 

type of fuel is a high weight variable during the capture process, impacting directly on 

solvent and energy requirements. As the CO2 concentration decreases; CO2 recovery and 

capture efficiency decreases, but solvent and energy requirements are increased. There is 

also a huge area of opportunity in the study of new solvents; such as ionic liquids and 

deep eutectic solvents, to improve the efficiency of CO2 capture, to replace the use of 

MEA as the main solvent for CO2 capture and minimize the environmental impact that 

entails the use of such a toxic solvent. 
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Abstract
A two-level MINLP model is used for water network optimisation of large sites, composed of
several independent plants. At the lowest level, the water consumption within a given plant is first
minimised, considering feasible connections between the units of this plant, using a predefined set
of interplant connections and capacities. During the second step, the water needs and wastewater
emissions of each plant are coordinated, to minimise the network costs for the entire complex.

This strategy was applied to the water network of the Petrogal Sines refinery, with significant
reductions in the network operating cost and freshwater consumption, using a mixture of local and
global numerical solvers available in the GAMS system.

Keywords: Water networks, Process synthesis, Process design, Total site integration

1. Introduction

Water is of utmost importance in several sectors of the society, and industry consumption accounts
for a substantial fraction of this resource’s usage. Substantial work has therefore been conducted
towards rationalising the design and operation of industrial water networks. Takama et al. (1980)
introduced non-linear programming to achieve the optimal design of an oil refinery’s total water
network. More recent examples are Karuppiah and Grossmann (2006); Ahmetović and Grossmann
(2011), introducing nonlinear and mixed-integer nonlinear programming formulations, to account
for several particularities of these problems. Interplant designs were also proposed by Chew et al.
(2008); Lv et al. (2018); Rubio-Castro et al. (2012); Azmi et al. (2020).

2. Problem statement

The problem of a multi-site industrial water network optimisation can be described by a set of
freshwater sources (a ∈ AS), contaminants (c ∈ CS), plants ( f ∈ FS), operations (p ∈ PS) and
treatment units (t ∈ TS), and a set of discharge effluents (e∈ ES). A typical design problem consists
of devising a network which minimises the total or operational costs involved, considering all
interconnections, flow rates and contaminant concentrations. Typical industrial networks include
a large number of such units and specifications, and may result in computationally challenging
problems. Using a common site arrangement as a set of multiple plants, the existing operations
can be further classified as belonging to individual plants or common to the industrial complex.
The proposed strategy divides the problem in two instances: first the optimal water network of each
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plant is achieved separately (P1), and then the total site network is later optimised, to minimise the
network costs for the entire complex (P2).

3. Mathematical formulation
3.1. Model P1 — individual plant network

Model P1 is the optimisation block for each individual plant, described by Eqs.(1–6) and ilustrated
in Figure 1. The objective function Eq. (1) in P1 is comprised by the expenses related with the util-
isation of water from the different sources (costFWa — cost of freshwater from source a, and FFW

a
— total freshwater flow from source a). Eqs. (2–4) correspond to the plant’s units total flow (units
inlet f inp and outlet f outp ), from source a (FW

a,p), reused from unit p′ (FRP
p′,p), unit discharge (FD

p )
and contaminant mass balances (inlet and outlet concentrations: Cin

p,c, Cout
p,c ), with the possibility

of water use from all sources and from the same plant’s units outlet, although recycle to-and-from
the same unit is not allowed (p′ �= p). Nonlinearities will arise in these equations, as flows (con-
tinuous variables) are multiplied by concentrations (continuous variables). In Eq. (5) operations
are modelled as having a contaminant mass discharge, the possibility of an indissociable treatment
section (process units’ contaminant removal (rrp,c), and an upper limit in the inlet concentration
— Eq. (6). In the present formulation, f inp and f outp are fixed parameters; however, they can also
be treated as variables, as there may be water consumption or formation during the operations.
The solution of P1 for each individual plant provides updated inlet flow water needs for the total
site problem considered by model P2.

Plant kFreshwater
Sources

Figure 1: Superstructure of model P1.

min costFWa FFW
a (1)

s.t. ∑
a

FW
a,p + ∑

p′|p′ �=p
FRP

p′,p = f inp , ∀p ∈ PS (2)

f outp = ∑
p′|p′ �=p

FRP
p,p′ +FD

p , ∀p ∈ PS (3)

∑
a

FW
a,pCW

a,c + ∑
p′|p′ �=p

FRP
p′,pCout

p′,c = f inp Cin
p,c, ∀p ∈ PS, ∀c ∈ CS (4)

f inp Cin
p,c(1−rrp,c)+ lp = f outp Cout

p,c , ∀p ∈ PS, ∀c ∈ CS (5)

Cin
p,c ≤Cin,max

p,c , ∀p ∈ PS, ∀c ∈ CS (6)

3.2. Model P2 — total site network

Model P2 considers the entire complex, with plants, individual operations not belonging to plants,
treatment units and multiple discharge effluents. The plants residual needs and wastewater speci-
fications result from the solution of P1. Figure 2 represents the problem superstructure, and all the
possible connections. This second model also reuses some equations from model P1.

Eqs. (7–9) correspond to the processes’ total flow (from and to treatment units, FTP
t,p and FPT

p,t ), and
flow to the final discharge (FPD

p,e) and contaminant mass balances (here Cout
t,c is the outlet concentra-

tion from treatment t). Note that reutilising water from the same unit, plant, as well as water from
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Figure 2: Superstructure of model P2.

the discharges, is not permitted. A new set MP contains the allowed process matches, accordingly
to the plant arrangement. As in P1, nonlinearities are present in the contaminant mass balances,
as flows are multiplied by concentrations.

∑
a

FW
a,p + ∑

p′|(p,p′)∈MP
FRP

p′,p +∑
t

FTP
t,p = f inp , ∀p ∈ PS (7)

∑
a

FW
a,pCW

a,c + ∑
p′|(p,p′)∈MP

FRP
p′,pCout

p′,c +∑
t

FTP
t,pCout

t,c = f inp Cin
p,c, ∀p ∈ PS, ∀c ∈ CS (8)

f outp = ∑
p′ |(p,p′)∈MP

FRP
p,p′ +∑

t
FPT

p,t +∑
e

FPD
p,e, ∀p ∈ PS (9)

Operations are modelled as having a contaminant mass discharge and an embedded treatment
section, as in model P1, in Eqs. (5–6).

Similar to process units, Eqs. (10–12) formulate the flows of the treatment units (flow from treat-
ment to discharge, FTD

t,e ) and mass balances (inlet concentration in treatment, Cin
t,c). Reutilisation

from and to the same treatment is restricted (t �= t ′). Contaminant removal (rrt,c), in the treatment
units, is achieved through the units’ inlet concentration and the units’ removal rate — Eq. (13).
Effluent flow (FD

e ) and mass balances are inserted for each discharge e in Eqs. (14–15), and the
resulting concentration CD

e,c is limited to an upper bound CD,max
e,c .

∑
a

FW
a,t +∑

t ′
FRT

t ′,t +∑
p

FPT
p,t = Ft , ∀t ∈ TS (10)

Ft = ∑
t ′

FRT
t,t ′ +∑

t
FTP

t,p +∑
e

FTD
t,e , ∀t ∈ TS (11)

∑
a

FW
a,tC

W
a,c +∑

t ′
FRT

t ′,tC
out
t ′,c +∑

p
FPT

p,t C
out
p,c = FtCin

t,c, ∀t ∈ TS, ∀c ∈ CS (12)

Cin
t,c(1−rrt,c) =Cout

t,c , ∀t ∈ TS, ∀c ∈ CS (13)

∑
p

FPD
p,eC

out
p,c +∑

t
FTD

t,e CTD
t,c = FD

e , ∀e ∈ ES (14)

∑
p

FPD
p,eC

out
p,c +∑

t
FTD

t,e Cout
t,c = FD

e CD
e,c, ∀e ∈ ES, ∀c ∈ CS (15)

CD
e,c ≤CD,max

e,c , ∀e ∈ ES, ∀c ∈ CS (16)

Effluent costs can be defined accordingly to the discharge concentrations, partitioned into several
class intervals (δ cls

e,c,k), with k ∈ KS, and tariffed accordingly to the highest activated concentration.
That instance is modelled by defining a subset, corresponding to the special effluent SES ∈ ES —
Eq. (17). The highest activated class is multiplied by the discharged flow, resulting in that effluent
cost coste, in Eq. (18). To avoid nonlinearities, Eq. (18) is further reformulated and linearised.
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Eq. (19) computes the network costs, to be minimised similarly to Eq. (1).

CD
e,c − (CD,max

e,c + ε)δ cls
e,c,k ≤Cmax

e,c,k, ∀e ∈ SES, ∀c ∈ CS, ∀k ∈ KS (17)

coste ≥ costkδ
cls
e,c,kFD

e , ∀e ∈ SES, ∀c ∈ CS, ∀k ∈ KS (18)

costnet = ∑
a
costFWa FFW

a +∑
t
costtFt + ∑

e|e/∈SES
costwFD

e + ∑
e|e∈SES

coste (19)

4. Initialisation
A good initial guess is frequently of major importance for local optimisation of nonlinear problems
(NLP) and mixed integer non-linear problems (MINLP), To initialise the full network problem P2,
two distinct procedures were tested: solving a simpler NLP for the entire network or a linear
programming (LP) sequence strategy, where each section of the problem is analysed separately
(Figure 3).

WUN 

INITIALISATION


DISCHARGE
ALLOCATION


WTN
INITIALISATION


Figure 3: LP sequence initialisation strategy.

4.1. NLP initialisation strategy

This technique considers a simpler NLP, by removing the constraint inequalities from the original
formulation and replacing the objective with a new function — Eq. (20), minimising the network
infeasibilities resulting from a crude network initialisation. Eq. (20) can then be reformulated
using suitable smoothing approximations (e.g., based on complementarity analysis (Gopal and
Biegler, 1999)). The solution reached is then used as an initial solution for the original MINLP.

min ∑
c,p

max{0,Cin
p,c −Cin,max

p,c }+∑
e,c

max{0,CD
e,c −CD,max

e,c } (20)

s.t. eqs. (5,7–15) (21)

Note that during the application of this strategy, local NLP solvers may not reach an objective
value of zero, even when the original problem is feasible. In either case, the solution obtained is
considered as the initialisation for the subsequent MINLP solvers.

4.2. LP sequence initialisation strategy

The proposed strategy implies solving each of the following subproblems with LP models.

4.2.1. Water Usage Network (WUN) initialisation

Teles et al. (2008) suggest a combinatorial LP approach to initialise WUN problems. Each op-
eration is dealt individually within an LP block, considering information from the previous units.
Zhao et al. (2016) use this methodology, but instead of a combinatorial arrangement they consider
the concentration potentials concept (CPDs) (Liu et al., 2009), to select the LP blocks sequence
(Figure 4).

4.2.2. Discharge allocation

In order to initialise the water treatment network (WTN) section of P2, the strategy of Castro et al.
(2009) was employed.
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Discharge 
Allocation

... Mk BlockM1 Block

Increasing CPDs

Process
Water Sources

Freshwater
Sources

Figure 4: WUN initialisation strategy, based on Zhao et al. (2016).

This method has a limited capacity of dealing with multiple discharges and respective constraints.
A LP was designed to allocate wastewater sources (s ∈ WWS) resulting from the WUN initialisation
to the effluent e, accordingly to the discharge constraints and costs, in Eq. (22). The routine has the
possibility of diluting the effluents with freshwater (FWD

a,e) to eliminate infeasibilities — Eq. (23).
Eq. (24) ensures that the wastewater sources allocated to the effluents (FWW

s,e ). Eq. (25) ensures that
the discharge is within the allowed constraints. This equation is particularly relevant as T ∈ ES,
requiring a previous match of the treatments (t ∈ TS) with each effluent (e ∈ ES).

min ∑
e
costeFD

e + ∑
(a,e)

FWD
a,e (22)

s.t. f WWs = ∑
e

FWW
s,e , ∀s ∈ WWS (23)

∑
s

FWW
s,e +∑

a
FWD

a,e = FD
e , ∀e ∈ ES (24)

∑
a

FWD
a,eC

W
a,c +∑

s
FWW

s,eCWW
s,c ∏

t
(1−rrt,c)≤ FD

e Cenv
e,c , ∀e ∈ ES, ∀c ∈ CS (25)

4.2.3. Water Treatment Network (WTN) initialisation

Castro et al. (2009) employ a sequence of LP blocks, each one handling a different treatment unit,
and utilising information relative to the previous LPs and the subsequent ones; that strategy can
be used to initialise WTN problems. All operations sequences are tested (using a combinatorial
procedure), and the arrangement with the minimum objective value is selected. This method
becomes prohibitive for medium-large problems. Instead, as recommended by Fan et al. (2019),
for WTN problems, units were sorted by decreasing treatment cost, and the resulting sequence
was inserted into the method of Castro et al. (2009). This strategy was applied independently for
each effluent e, considering the treatment units allocated to that effluent line.

5. Application example

The Galp Sines refinery is an industrial complex located in the south of Portugal, with a produc-
tion cap of 220 kbpd, accounting for approximately 70% of the country’s refining capacity. The
existing water network was optimised, employing several initialisation methods: using a reference
refinery network configuration, and the previous sections techniques (Table 1). The version of the
problem considered used 5 classes of contaminants, 3 individual plants involving 21 operations,
one source of raw fresh water, and 2 discharge lines, with dynamic tariffs. The local MINLP solver
SBB, and the global MINLP solver ANTIGONE were used with GAMS 33.2, in a AMD Ryzen 7
4800H computer with 16 GB of RAM, considering a maximum limit of 3600 s of CPU time.
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MINLP global
Method Fixed initialisation MINLP local solver solver solution Optimality

solution (eh−1) solution (eh−1) (eh−1) gap (%)

No initialisation — Infeasible

800.2

11.4
Reference network 950.9 812.8 4.9
NLP initialisation 1591.1 1151.3 11.7

LP sequence initialisation 916.7 800.2 4.7

Table 1: Application results to the Sines refinery network.

The procedure resulted in reductions of 15.8% and 7% in cost and freshwater consumption respec-
tively, increasing the environmental sustainability of the complex. Due to the extra effort incurred
during the initialisation phase, the LP sequence initialisation displayed one of the lower gaps in
the final solutions reached among the techniques utilised.

6. Conclusion
The application of methodology developed provided an efficient method for the optimisation of the
industrial example considered. Within this problem, the impact of the initial solution considered is
noticeable in the final results, both from the local MINLP solver and in the final global optimality
gap. These results stress the importance of the availability of good initialisation techniques for the
efficient solution of similar problems of comparable complexity.
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E. Rubio-Castro, J. Ponce-Ortega, M. Serna-González, M. El-Halwagi, 2012. Optimal reconfiguration of multi-plant
water networks into an eco-industrial park. Computers & Chemical Engineering 44, 58–83.

N. Takama, T. Kuriyama, K. Shiroko, T. Umeda, 1980. Optimal water allocation in a petroleum refinery. Computers &
Chemical Engineering 4 (4), 251–258.

J. Teles, P. Castro, A. Novais, 2008. Lp-based solution strategies for the optimal design of industrial water networks with
multiple contaminants. Chemical Engineering Science 63 (2), 376–394.

H.-P. Zhao, Z.-F. Wang, T.-C. Chan, Z.-Y. Liu, 2016. Design of regeneration recycling water networks by means of
concentration potentials and a linear programming method. Journal of Cleaner Production 112 (5), 4667–4673.

846

ı́nio et al.F. J. G. Patroc822



PROCEEDINGS OF THE 32nd European Symposium on Computer Aided Process Engineering  
(ESCAPE32), June 12-15, 2022, Toulouse, France  
L. Montastruc, S. Negny (Editors) 
© 2022 Elsevier B.V. All rights reserved.  

Optimal design of solar-aided hydrogen production 
process using molten salt with CO2 utilization for 
polypropylene carbonate production 
Wanrong Wang, Nan Zhang, and Jie Li* 
Centre for Process Integration, Department of Chemical Engineering and Analytical 
Science, The University of Manchester, Manchester M13 9PL, UK  
Abstract 
In this work, optimal design for solar steam methane reforming using molten salt (SSMR-
MS) with CO2 capture and utilisation is investigated by employing a machine-learning 
based optimisation framework. The results obtained show that a 65.77 % reduction can 
be obtained compared with the existing SSMR-MS. The optimal Levelised Cost of 
Hydrogen Production (LCHP) is 1.26 $ kg-1 which represents about half of the LCHP in 
the existing SSMR-MS. The captured CO2 can produce around 485.73 kt polypropylene 
carbonate annually.  
 
Keywords: Hydrogen production; solar energy; CO2 utilization; Machine learning; 
Optimization 

1. Introduction 
Global warming has been considered as the biggest environmental problem in this fast 
developing world. Anthropogenic CO2 emission by using fossil fuel plays a key role in 
the global temperature rise as seen today. Therefore, it is urgent to shift to low-carbon 
technologies. To achieve this target, using renewable energies, clean fuels such as 
hydrogen are considered as longer-term solutions and carbon capture, utilization and 
storage is considered as short- to mid-term solution. Among all these solutions, hydrogen 
shows off excellent potentials as a commercial clean fuel. Furthermore, it is also an 
essential feedstock in many chemicals such as ammonia (Ohs et al., 2019). In 2020, the 
European Commission have stated that hydrogen economy is an important part for the 
economy recovery after COVID-19. However, conventional hydrogen production 
primarily utilizes natural gas and oil-based feedstock for steam reforming which 
contributes to large amount of CO2 emissions. To reduce CO2 emission, using renewable 
energy and carbon capture and utilisation in hydrogen production process should be 
investigated significantly (Alper et al., 2017).  

Among the renewables, solar hydrogen production has received great attention in recent 
years due to its high capability to fulfill global energy demands (Koumi Ngoh et al., 2012). 
Wang et al. has studied the optimisation of solar steam methane reforming using molten 
salt (SSMR-MS) to reduce TAC and CO2 emissions (Wang et al., 2021). In their work, it 
is shown that the optimal LCHP is still higher than the conventional methane steam 
reforming. What’s more, the CO2 removal model is designed at a constant separation 
efficiency, which could lead to inaccurate cost and utility calculation for this unit. 
Considering the coke formation in process, the lower bound of steam to methane ratio 
should also be adjusted. Therefore, an integrated rate-based CO2 removal model in 

847

http://dx.doi.org/10.1016/B978-0-323-95879-0.50138-7 



 W. Wang et al.  

SSMR-MS along with CO2 utilization for polypropylene carbonate production is 
investigated in this work. This is the main novelty of this work. 

In this work, the employment of machine learning in process optimisation from (Wang et 
al., 2021) is extended for optimal design of SSMR-MS with integration of CO2 capture 
and utilization. The artificial neural network (ANN) is used to address this problem by 
obtaining functions that approximates the deterministic functions of TAC, hydrogen 
production rate, molten salt duty and gas flowrate from CO2 capture unit with process 
variables in SSMR-MS. Then the problem is solved using a hybrid optimisation technique. 
The solution is then validated in Aspen Plus V8.8 and SAM. The most striking result is 
that there is a significant reduction in TAC by 65.77 % and CO2 emissions by 68.97 % 
compared to the existing SSMR-MS process. With 485.73 kt polypropylene carbonate 
annually, the profit is considerable. The Levelised Cost of Hydrogen Production (LCHP) 
reduces from 1.26 $ kg-1 to 2.40 $ kg-1 compared to the optimal case in Wang et al. (2021). 

2. Problem description 
As shown in Figure 1, the SSMR-MS integrated with rate-based CO2 capture model and 
polypropylene carbonate production process is developed in this work. There is a detailed 
description of SSMR-MS can be found in Wang et al. (2021). The pre-reforming process 
is non-adiabatic with a co-current flow mode. Solar energy is delivered using molten salt 
as media to the hydrogen production process. Methyl diethanolamine (MDEA) is used 
for CO2 capture as the solution. CO2 absorption and solution regeneration has the same 
equations as those in Moioli et al. (2016). Polypropylene carbonate is produced using the 
captured CO2. 

The objective is to minimize total annualized cost (TAC) of the integrated system. 

 
Figure 1: Block diagram of the integrated system (revision from Wang et al., 2021) 

3. Mathematical formulation 
The integrated system using rigorous models is modelled in Aspen Plus V8.8. However, 
the evaluation of the objective in this model as well as constraints is computationally 
expensive. To reduce complexity, surrogate model is applied to obtain a function 𝑓"(𝑋) 
that approximates the function 𝑓. ANN is employed as surrogate model for optimisation. 
ANN is particularly effective for modelling high-dimensional and highly non-linear 
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problems, because of its ability to learn and its usefulness in nonlinear processing 
compared with other techniques (Ibrahim et al., 2018).  

In this work, a rigorous rate-based CO2 removal model for CO2 capture is firstly 
developed in Aspen Plus V8.8. To integrate the CO2 removal model to SSMR-MS process, 
a surrogate model using ANN is constructed because of the difficulty in convergence in 
CO2 removal model. To construct the ANN surrogate model, input variables and output 
variables should be selected to describe the rigorous CO2 removal process precisely. The 
input variables include stream component flowrate of for CH4, H2O, CO, CO2, H2 which 
are denoted as 𝐹!",$%!,&'() , 𝐹!",%"*,&'() , 𝐹!",$*,&'() , 𝐹!",$*",&'()  and 𝐹!",%",&'() , 
respectively and stream temperature (𝑇!",&'() ). The input variables are organised as 
below,  

𝒛 = [𝐹!",$%!,&'(), 𝐹!",%"*,&'(), 𝐹!",$*,&'(), 𝐹!",$*",&'(), 𝐹!",%",&'(), 𝑇!",&'()]
+. 

The output variables include the outlet stream flowrates of CH4, H2O, CO, CO2 and H2 in 
the CO2 removal process which are predicted using individual ANN surrogate models, as 
shown in Eqs. 1-5. 

𝐹,-.,$%/,&'() = 𝐴𝑁𝑁0(𝒛)  (1) 

𝐹,-.,%1*,&'() = 𝐴𝑁𝑁1(𝒛)  (2) 

𝐹,-.,$*,&'() = 𝐴𝑁𝑁2(𝒛)  (3) 

𝐹,-.,$*1,&'() = 𝐴𝑁𝑁/(𝒛)  (4) 

𝐹,-.,%1,&'() =	𝐴𝑁𝑁3(𝒛)  (5) 

These constructed ANN surrogate models are implemented in the rigorous SSMR-MS 
process by using the user model in Aspen Plus through Excel Link (Fontalvo, 2014). Then, 
this new SSMR-MS process is used to construct a new surrogate model for optimisation 
through extending the optimisation framework of Wang et al. (2021). Latin hypercube 
sampling method is used for sample generation. 

In the integrated system, the independent input variables including molar flowrate of 
natural gas into pre-reformer 𝐹45, steam to methane ratio 𝛾6/$, operating temperature of 
reformer 𝑇8, high-temperature water gas shift (HWGS) reactor 𝑇%956, low-temperature 
water gas shift (LWGS) reactor 𝑇:956 , tube length of pre-reformer 𝐿;8 , reformer 𝐿8 , 
HWGS reactor 𝐿%956  and LWGS reactor 𝐿:956 , tube number in pre-reformer 𝑁;8 , 
reformer 𝑁8, HWGS reactor 𝑁%956 and LWGS reactor 𝑁:956 vary between lower and 
upper bounds. The input variables are organised as a vector 𝐱 as below,  

𝒙 = [𝐹45 , 𝛾6 $⁄ , 𝑇8 , 𝑇%956, 𝑇:956, 𝐿;8 , 𝐿8 , 𝐿%956, 𝐿:956, 𝑁;8 , 𝑁8 , 𝑁%956, 𝑁:956]+.  

𝒙: ≤ 𝒙 ≤ 𝒙= (6) 

The objective function TAC can be calculated as follows, 

𝑇𝐴𝐶 = 		𝐶𝑐𝑎𝑝𝑖𝑡𝑎𝑙 ∙ 𝐴𝐶𝐶𝑅 + 𝐶𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 (7) 

where 𝐶𝑐𝑎𝑝𝑖𝑡𝑎𝑙  is total capital investment. 𝐴𝐶𝐶𝑅  is annual capital charge ratio. 
𝐶𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 is the total production cost per year.  

The optimization problem using the surrogate models is stated as follows, 

(PS)       Min          𝑇𝐴𝐶 = 𝑇𝐴𝐶0 + 𝑇𝐴𝐶>,?@A 
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              s.t.              𝑇𝐴𝐶0 = 𝐴𝑁𝑁B(𝒙) + 𝐴𝑁𝑁C(𝒙)	

               																					 𝑇𝐴𝐶>,?@A = 𝑓(𝑄&6)		

	 QDE = ANNF(𝐱)	  

	 𝐹%" = 𝐴𝑁𝑁G(𝒙) ≥ 𝐹%"
+)		

 Eq. (6) 

where 𝑇𝐴𝐶0 is non-solar related cost, 𝑇𝐴𝐶>,?@A is the solar related cost. 𝐴𝑁𝑁B(𝒙) is CO2 
removal process related cost. 𝐴𝑁𝑁C is the non-solar related cost excluding MDEA unit. 
	𝐱	is the set of independent variables in hydrogen production process, 𝑄&6 is molten salt 
duty. The relationship of solar-related equipment cost, and molten salt duty is described 
using an algebraic linear function 𝑓(𝑄&6). The surrogate model comprises 4 artificial 
neural networks as indicated above in the optimization problem and a linear regression 
model 𝑓(𝑄&6). 𝐹%" denotes the predicated flowrate	of hydrogen. 

4. Solution algorithm 
As illustrated in Figure 2, a hybrid optimisation algorithm is employed to solve the 
optimisation problem PS (Wang et al., 2021). Three platforms are employed in this work 
to reduce the computational complexity. During sample generation process, Matlab is 
used to generate the sample points and import the sample points to Aspen Plus. The output 
variables are collected from Aspen Plus simulation results. For each sample generation, 
the new SSMR-MS process in Aspen Plus would call Visual Basic Application (VBA) in 
Excel (Fontalvo, 2014) to transfer data from the ANN surrogate model constructed for 
CO2 removal model. The hybrid solution algorithm is implemented in MatLab R2019a. 

 
Figure 2: Flowchart of the extended design methodology 
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5. Computational studies 
The results obtained using the extended optimisation framework are shown in Table 1. 
The required hydrogen production rate is 2,577 kmol h–1 with 99.9 vol% hydrogen purity. 
Other data can be referred to Wang et al. (2021). It can be observed that the optimal TAC 
is 166.52 M$ y-1. The optimal steam to methane ratio is 2.7. 
Table 1: Optimization results from the surrogate models 

Item Optimal value 

𝛾!/# 2.7 

𝑇$ (oC) 963.0 

𝑇%&'! (oC) 379.1 

𝑇(&'! (oC) 199.1 

𝐿)$ (m) 11.1 

𝐿$ (m) 11.9 

𝐿%&'! (m) 4.6 

𝐿(&'! (m) 4.5 

𝑁)$ 4,021 

𝑁$ 50 

𝑁%&'! 2159 

𝑁(&'! 2036 

𝐹*' 	(kmol h–1) 786.6 

𝑄+! (MW) 14.61 

𝐹%! 	(kmol h–1) 2,577 

TAC (M$ y–1) 166.52 

 
The optimal results of the independent variables from surrogate models are used as inputs 
in Aspen Plus V8.8 to calculate all dependent variables for validation. The validated 
results for 𝑄&6 , 𝐹%"  and TAC are 14.37 MW, 2577.6 kmol h–1, 165.46 M$ y–1 
respectively. After comparison, it shows that the largest difference between validation 
results and predicted results from surrogate models is within 1 %. That means the ANN 
surrogate model has high accuracy for prediction.  

Heat integration is conducted for heat recovery in hydrogen production process. The final 
results are provided in Table 2. After heat integration, a 6.7 % reduction on TAC (155.33 
M$ y–1) is obtained. With integration of poly production, TAC is further significantly 
reduced to 41.86 M$ y–1 because of the high profit of poly production.  

As shown in Table 2, a comparison is also made between optimal results in this work and 
the best results from Wang et al. (2021) and the conventional steam methane reforming 
(SMR). Without poly production, TAC in this work is 33.03 M$ y–1 higher than that from 
Wang et al. (2021). The reason is that with the integration of rate-based CO2 removal 
model, the cost related to the CO2 capture unit is increasing. However, with poly 
production, the TAC decreases 65.77 % which is significantly lower than that in Wang et 
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al. (2021). As a consequence, LCHP reduces 47.50 % along with the reduction on TAC. 
CO2 emission drops from 423.90 kt y–1 to 131.53 kt y–1 and the captured CO2 can produce 
485.73 kt polypropylene carbonate annually.  

What is the most striking is that the LCHP in this work is 37.00 % lower than the 
conventional SMR and CO2 emissions decreases from 502.90 kt y–1 to 131.53 kt y–1. 
Through integrating solar energy and CO2 utilisation into the hydrogen production 
process, it indicates that the hydrogen can be used in a renewable, sustainable and 
economical manner.   
Table 2: Comparative optimization results 

Item Optimal Case Wang et al. (2021)  Conventional SMR 

𝑄+! (MW) 14.37 10.20 20.00 

𝐹%! 	(kmol h–1) 2,577.6 2577.30 2,577.0 

TAC without poly production (M$ y–1) 155.33 122.30 90.90 

TAC with poly production (M$ y–1) 41.86 - - 

LCHP ($ kg-1) 1.26 2.40 2.00 

CO2 emission (kt y–1) 131.53 423.90 502.90 

Polypropylene carbonate (kt y–1) 485.73 0.00 0.00 

6. Conclusion 
In this paper, the optimisation-based framework using machine learning techniques is 
extended for optimal design of SSMR-MS integrated with CO2 capture and utilization for 
large-scale hydrogen production. The computational results demonstrate a significant 
reduction in TAC by around 65.77 % can be achieved compared with the existing SSMR-
MS (Wang et al., 2021). Captured CO2 can produce around 485.73 kt yr–1 polypropylene 
carbonate. The LCHP is 37.00% lower than the conventional SMR. In the future, more 
process options for different pre-reformer operating conditions are expected to evaluate. 
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Abstract 

Chemical recycling allows upcycling of polymers into their monomers and/or other 

valuable chemicals and contributes to a resource-efficient future. This demands selective 

depolymerization of a particular fraction from a mixed waste stream and thereby, 

necessitates the use of appropriate solvents. The solvent not only governs the effective 

depolymerization of the polymer but also influences the sustainability of the process. 

Conventionally, the tendency of the solvent to dissolve the polymer is considered as the 

only selection criterion. However, careful consideration should also be given to its 

interaction with other process reagents and its sustainability. This research proposes a 

systematic approach to identify potential solvents suitable for a particular recycling 

strategy. The hierarchical approach begins with identifying potential solvents using 

computer-aided molecular design based on the Hansen Solubility Parameters (HSPs) of 

the target polymer. Further, their interactions with other process reagents are also 

considered. Subsequently, they are screened for their sustainability through a 

comprehensive life-cycle assessment and some short-listed systems are further evaluated 

using process simulation. The application of this methodology for developing a recycling 

strategy for PLA is illustrated. 

 

Keywords: chemical recycling, solvent selection, sustainability 

1. Introduction 

Fossil-based plastics have gained immense importance because of their durable 

performance and versatile properties. However, based on their production and subsequent 

waste management, it is estimated that 12000 Mt of plastic waste will be disposed in 

landfills and/or oceans by 2050 (Meys et al., 2020). About 50% of this waste originates 

from the packaging sector (Meys et al., 2020).  According to the EU Directive 2019/852 

on Packaging and Packaging Waste, the targeted recycling rate is ca. 55% by 2030. While 

both mechanical and chemical recycling contributes towards a circular economy, the 

latter represents an infinite strategy as it can effectively depolymerize different grades of 

polymers from varied value chains. Possible routes for chemical recycling include 

gasification, pyrolysis and solvolysis. Gasification involves combustion of plastic waste 

in the presence of oxygen to produce syngas. During pyrolysis, plastic waste is combusted 
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in the absence of oxygen to produce basic platform chemicals such as benzene, toluene 

and xylene. These strategies can handle heavily contaminated, mixed waste streams. 

Solvolysis results in the production of constituent monomers and/or other valuable 

chemicals. It is suitable for different addition and condensation polymers such as 

polycarbonate (PC), polyethylene terephthalate (PET), poly-lactic acid (PLA), etc. and 

has a potential to further reduce the greenhouse gas (GHG) emissions in comparison to 

other waste-management strategies (Meys et al., 2020).

Though circularity is commonly implemented in process engineering through recovery 

of excess reagents and/or heat integration, the use of process systems engineering in 

transforming a linear economy into a sustainable circular economy is quite rare

(Avraamidou et al., 2020). Further, research directed towards chemical recycling is 

primarily focused on optimizing its economy and lack a systematic guideline to 

incorporate sustainability (Glavič et al., 2021). For instance, previous efforts directed 

towards solvolysis considered the ability of the solvent to dissolve the polymer as the 

only criterion for solvent selection (Sherwood, 2020). However, careful consideration 

should also be given to its sustainability and the energy required for its recovery (Vollmer 

et al., 2020). Different computer-aided molecular design (CAMD) methods based on 

thermodynamic predictions are proposed for appropriate solvent selection in several

applications (Austin et al., 2016). Recent efforts directed towards integrating CAMD in 

conventional process development incorporate different scales, ranging from molecular

design to process optimization (Gertig, et al., 2020). In addition, integration of predictive 

life-cycle assessment (LCA) tools in a single multi-scale system has also been strongly 

advocated (Fleitmann et al., 2021; Gertig et al., 2020; Glavič et al., 2021). With a similar 

objective, the current work proposes a hierarchical approach for solvent selection in 

efforts directed towards chemical recycling (solvolysis), involving successive refinement 

through incorporation of multiple criteria.

2. Methodology

The proposed hierarchical approach involves three steps. Firstly, an appropriate CAMD 

method is used to identify potential solvents, which are further screened for their 

interaction with other process reagents. The sustainability of promising candidates is 

assessed by a comprehensive LCA in accordance to the principles of green chemistry. 

Further, the performance of some potential candidates is evaluated by process simulation.

Figure 1: Proposed Hierarchical Approach for Solvent Selection in Circular Economy

2 .1 . Solvent Screening based on Hansen Solubility Parameters ( Step One)

CAMD is an analytical tool aimed at guiding solvent selection for target applications such 

as liquid-liquid extraction and/or refrigerant and polymer design (Austin et al., 2016). In 

this approach, the preliminary solvent screening was performed in ProCAMD v1.41 from 
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PSE for SPEED1 with the help of a well-established method ("generate-and-test") based 

on group-contribution methods (Harper & Gani, 2000). During this screening, different 

alcohols, aldehydes, amines, esters, ethers, ketones and molecules containing chlorine 

with a boiling point higher than and a melting point lower than 303 K were identified. 

The generated molecules have a minimum number of two and a maximum number of six 

groups with two functional groups. Subsequently, these candidates were further evaluated 

based on their HSPs (δD
S, δP

S, δH
S) relative to that of the polymer (δD

PLA = 18.9, δP
PLA = 

7.6, δH
PLA = 4.6) at 298 K (Esmaeili et al., 2019). These predictions were further validated 

with the experimental data obtained from HSPiP v5.3.07. The most promising solvents 

were evaluated on the basis of the distance between the polymer and the solvent (Ds-PLA) 

relative to the interaction radius of PLA (Ro,PLA = 9.74) (Agrawal et al., 2004).  

Ds−PLA =  √4 × (δD
PLA − δD

S )2 + (δP
PLA − δP

S )2 + (δH
PLA − δH

s )2  …… (1) 

Analysis of the interaction of these solvents with other process reagents is a subsequent 

pre-requisite for further process development. Thus, potential candidates screened on the 

basis of their relative energy difference (RED = Ds-PLA/Ro,PLA) were analyzed for the 

possibility of an azeotrope. This was based on vapor-liquid equilibrium predictions 

performed in ProCAMD v1.41 using the UNIFAC approach and was validated with the 

help of available experimental data. 

2.2 Life-Cycle Assessment of Short-Listed Solvents (Step Two) 

LCA is the most common method to assess environmental impacts of products and 

processes (Monsiváis-Alonso et al., 2020a). Prior to process analysis, the sustainability 

of the short-listed candidates was evaluated by a comprehensive LCA, in accordance to 

the ISO 14040 and ISO 14044 standards. Datasets for life-cycle inventory were obtained 

from commercial databases (ecoinvent v3.7) for some solvents while others were 

analyzed through predictive life-cycle impact assessment (LCIA) using the Chemical Life 

Cycle Collaborative (CLiCC) tool. This tool employs artificial neural networks to predict 

the impact of different organic molecules based on their chemical structure (Song et al., 

2017). Environmental impact of these solvents was primarily considered in four 

categories, namely, acidification potential, climate change, cumulative energy demand 

(resource use) and human toxicity (human heath).  

2.3 Evaluation of Process Performance and Sustainability (Step Three) 

Based on the afore-mentioned screening, one or more solvents with preferential properties 

were selected for further experimental investigation. In order to estimate the energy 

required for solvent recovery, an appropriate down-streaming concept was analyzed 

through process simulation in Aspen Plus®. In addition to this, the sustainability of the 

down-streaming strategy was also assessed by a preliminary LCA (primarily considering 

energy-related emissions).     

3. Case Study – Chemical Recycling of PLA 

Amongst other bio-plastics, PLA is the most promising polyester and is often regarded as 

a sustainable alternative to petro-chemical plastics (Majgaonkar et al., 2021). However, 

its production from first-generation biogenic feedstock requires repurposing of land and 

thus, presents a direct competition to the rising food demand (Atiwesh et al., 2021). 

Further, converting natural landscapes to cultivate feedstock for bio-plastics can lead to 

higher net GHG emissions than the current GHG savings achieved by replacing fossil-

based plastics (Piemonte & Gironi, 2011). Therefore, bio-plastics will only be sustainable 

                                                           
1 https://www.pseforspeed.com/ (accessed on 06.02.2022; 13:00) 
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if non-food crops or waste residues are used for their production and if they are duly 

recycled at their end-of-life. In the past decade, several efforts have been directed towards 

chemical recycling of PLA (McKeown & Jones, 2020). As opposed to other attempts, 

alcoholysis of PLA to produce lactate esters in the presence of primary alcohols such as 

ethanol or methanol represents an economically and environmentally sustainable 

recycling strategy (Majgaonkar et al., 2021). However, the insolubility of PLA in alcohols 

necessitates an appropriate solvent, which was assessed with the help of the proposed 

hierarchical approach. In an initial screening, about 4200 different primary molecules 

(excluding isomers) were identified. From these candidates, a compact yet comprehensive 

list of solvents capable of dissolving PLA was obtained (listed in the Table 1). In addition 

to conventional solvents, acetyl acetone and ethyl lactate are two new potential candidates 

identified by the CAMD approach. These candidates were further evaluated to identify 

the possibility of forming azeotropes with ethanol and methanol. It was observed that, 

MEK, DCM and chloroform form an azeotrope with both ethanol as well as methanol. 

Table 1: Results of the Solvent Screening by ProCAMD v1.41and HSPiP v5.3.07 

Source Solvent 

Solubility 

Parameters  Ds-PLA Ds-PLA/Ro 

δD
S  δP

S δH
S 

CAMD 

Screening 

acetyl acetone 17 11 6.8 5.52 0.586 

methyl ethyl ketone 

(MEK) 
15.6 7.8 5.5 6.54 0.671 

acetone 15.7 9.1 6.5 6.79 0.697 

ethyl lactate 16.7 7.7 13.1 9.49 0.974 

HSPiP 

Database 

cyclohexanone 17.8 8.4 5.1 2.39 0.246 

butyl benzoate 20 5.1 5.2 3.38 0.347 

N-methyl 

pyrrolidone (NMP) 
18 12.3 7.2 5.66 0.580 

tetrahydrofuran 

(THF) 
16.8 5.7 8 5.87 0.603 

N,N-di-

methylformamide 

(DMF) 

17.4 13.7 11.3 9.54 0.980 

Literature 

dichloromethane 

(DCM) 
18.2 6.3 6.1 2.67 0.275 

chloroform 17.8 3.1 5.5 5.09 0.522 
 

Comprehensive LCA of potential solvents, summarized in Table 2 and Table 3, serve as 

an indicator to assess their sustainability. It can be observed that, acetone, acetyl acetone 

and ethyl lactate have the most attractive environmental performance. However, acetone 

outperforms acetyl acetone and ethyl lactate in all impact categories. Further, it has been 

experimentally demonstrated that, acetone is a better solvent as compared to ethyl lactate 

with regards to the dissolution of PLA (Gironi et al., 2016). Thus, acetone was chosen as 

the preferred solvent for further experimental investigation and subsequent process 

evaluation. 

Majgaonkar et al. demonstrated the use of acetone in solvent-assisted depolymerization 

of PLA for the production of ethyl lactate. The ternary mixture thus obtained contains 

acetone, ethanol and ethyl lactate, which can be easily separated in a series of two 

distillation columns. The system was represented by the NRTL equation and the resulting 
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process sequence was simulated in Aspen Plus®. The energy required for this separation 

amounts to 4.89 MJ/kgproduct. 

Table 2: Heat Map of the Results of LCA from GaBi using EF 3.0 

Impact 

Category 
Unit 

Solvents 

acetone cyclohexanone DMF NMP THF 

Acidification 
[mole H+ 

eq./kg] 
0.0026 0.0047 0.003 0.006 0.046 

Resource Use [MJ/kg] 55.4 88.1 37.5 93.3 115 

Climate 

Change 

[kg-CO2-

eq./kg] 
1.58 3.65 1.98 4.52 6.86 

Table 3: Heat Map of the Results of LCA from the CLiCC tool using predictive LCIA                                          

(CED = Cumulative Energy Demand; GWP = Global Warming Potential) 

Impact 

Category 
Unit 

Solvents 

acetyl acetone butyl benzoate ethyl lactate 

Acidification [mole H+ eq./kg] 1.24 1.23 0.0515 

CED [MJ/kg]  143 121 83.3 

GWP [kg-CO2-eq./kg] 5.32 8.27 3.61 

As opposed to the afore-mentioned process, Zeus Industrial Products Inc. developed a 

chemical recycling strategy for PLA employing chloroform as a solvent and methanol as 

the depolymerizing agent. The resulting ternary system required a series of three 

distillation columns, including a pressure-swing distillation sequence, which escalated the 

energy demand by ca. 20% (5.9 MJ/kgproduct). The sustainability of these distinct 

approaches for chemical recycling of PLA was further analyzed in a comparative LCA, 

wherein the former process outperformed the latter in almost all impact categories (Aryan 

et al., 2021). 

4. Conclusion and Outlook 

This study proposes a hierarchical approach for solvent selection to compliment efforts 

directed towards a circular economy. About 4200 potential solvents were screened based 

on their ability to dissolve PLA to identify the most promising candidates. Further, 

integration of LCA and subsequent process simulation allows for the development of a 

competitive yet sustainable concept with minimal experimental efforts, as illustrated with 

regards to chemical recycling of PLA. The approach is efficient and flexible and can be 

extended to other polymers with further introduction of additional constraints. 
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Abstract
The consequences of investment decisions regarding a chemical plant’s distribution and utilities
system can be crucial for the operability, and thus the success of a chemical plant. This work
presents a novel framework for investment decision making regarding the distribution and util-
ities systems of a chemical plant, based on multi-stage infrastructure planning and production
scheduling, incorporating all relevant process and material timescales. The literature has classi-
cally investigated industrial distribution systems only for a single material or energy system and
utilities systems only in terms of heat or work exchange networks and their respective integration.
However, the evaluation of several relevant material streams holistically within the distribution
system of one chemical plant together with several interconnected utilities, and the incorporation
of different timescales has not yet been presented in a decision making framework. To do so,
a mixed-integer linear programming (MILP) problem is formulated to investigate decision mak-
ing regarding future investment decisions based on multi-stage infrastructure and maintenance
planning for chemical plants. The applicability and capabilities of the developed framework are
demonstrated through an application to the distribution and utilities system of a chemical plant in
South-East Texas.

Keywords: infrastructure planning, production scheduling, multi-scale modeling.

1. Introduction

Investigating the feasibility and economic implications of a chemical plant’s distribution and util-
ities system is of utmost importance for generating revenue, improving energy use and plant re-
silience, reducing material losses, and consequently staying competitive within a global economy.
Especially, the consequences of investment decisions regarding these systems can be crucial for
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the operability and thus the success of a chemical plant.
The optimization of distribution and utilities systems of chemical plants have been examined in the
literature for over 30 years (Sahinidis et al. (1989), Papoulias and Grossmann (1983)). However,
distribution systems have traditionally only been investigated for a a single distribution process
material or energy system (Pena et al. (2019)). Regarding the utilities system, it can be observed
that optimization has mostly been done in terms of heat or work exchange networks and their
respective integration (Pavão et al. (2020)). Recently, integrated planning and scheduling solu-
tion strategies have been applied to chemical process systems (Beykal et al. (2022)). Further, the
optimization of process integration within a plant and potentially for industrial symbiosis based
on different scales has been investigated by Kantor et al. (2020). In addition, multi-stage in-
frastructure planning and production scheduling, incorporating all relevant process and material
timescales, can be utilized to analyze the implications of possible process modifications and future
industrial investment decisions (Bi et al. (2020)).

Thus, this work introduces a generic decision making framework which can be applied to a chem-
ical plant’s utilities and distribution system. One of the main novelties of the proposed approach
is the generic nature of the tool, enabling fast and efficient analyses of competing process and
investment alternatives for chemical production facilities. Further, it allows the investigation of
various process objectives depending on the facility’s goals, i.e. minimizing investment costs or
maximizing produced energy. Therefore, various plant operational setpoints can be simulated and
automatically visualized.
In Section 2, a general overview of the developed framework and possible applications are given,
while in Section 3 the mathematical model is described in detail. In Section 4, the framework is
applied to a representative steam utilities system case study to illustrate the capabilities. Lastly,
the conclusion and a brief future outlook is stated.

2. Framework Overview

1
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of Units

Energy 
Losses
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2
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Figure 1: Superstructure of a representative utilities process.

To illustrate to what kind of processes the framework can be applied, a representative utilities su-
perstructure is shown in Figure 1. In this case, input materials (blue diamonds) are used to generate
process resources of different quality (black rectangles). These resources are of different quality
levels (L1 to L3) and can consequently be used for various purposes. Higher quality resources
can be letdown (LD - blue triangles) for lower quality usage if needed or used in intermediate
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equipment, e.g. for energy generation purposes (rectangles with rounded corners). All generated
resources are used to satisfy material demands at process sinks (black rectangles). Comparing
the overall produced energy with the energy demand of all units results in an overall energy bal-
ance which shows whether there is excess energy to be sold or additional energy to be bought. If
the process involves equipment which requires energy in the form of a material flow, i.e. turbine
driven pumps, the energy used to power this type of equipment is summarized as an energy loss,
since this material flow cannot be used for energy production. In case of distribution systems, the
given superstructure can be further simplified since material transformation or energy production
does not occur throughout these systems. In this case, our main goal is to fulfill the material sink
demands, while considering an applicable storage system and scheduling of the incoming material
from various suppliers through different means of transportation, e.g. by pipeline or truck. Thus,
for distribution systems it is essential to consider a time dependency of variables during the math-
ematical modeling, whereas for utilities steady-state assumptions are applicable. The developed
framework can handle time dependent systems of equations. However, for simplicity and since the
developed case study is based on a steam utilities system the time index has been neglected in the
mathematical modeling equations. By adding an additional time index to all material and energy
flows the given system of equations can be modified to a time dependent system.

To derive a generic decision making framework which is capable of optimizing the distribution
and utilities system of an industrial chemical plant, a mathematical model is developed in the
Python Pyomo environment. All process specific information, such as the involved units and ma-
terials, are defined in an Excel data exchange file, which is loaded into the optimization program.
Thus, historic plant data is processed to define relevant process data in terms of identifying the
correct equipment classification as well as equipment specific constraints and the relevant material
and energy conversions of the respective units. This data is automatically processed and assigned
in the optimization model. After solving the model, the feasibility of the solution is checked. Fur-
ther analyses in terms of relevant material and energy streams and their respective implications
for the obtained solution can also be conducted. It is important to note that the tool is capable of
automatically visualizing the generated solution in a superstructure summarizing all material and
energy streams.

3. Mathematical Modeling

The basis of the decision making tool are mass and energy balances based on a set notation, which
results in a more compact system of equations. To this end, various sets for all available units
and material flows are introduced as follows. All available units of a process (set called Units)
are separated into material producers or suppliers (P), intermediate equipment (EQ) and material
sinks (S). Additionally, all energy producing units are summarized in a set called energy producers
(EP), whereas units with an energy demand are classified in the set called energy sinks (ES). For
further analysis of solutions and trade-offs additional sets are introduced which consist of all ma-
terial producing and intermediate equipment (EQ2), as well as one consisting of EQ2 excluding all
energy producing equipment (EQ∗). Material flows are generally classified as the set of resources
(Res), which can be divided into the subsets key resources (Key) and other resources (NK). In
this case, key resources describe the focus of the process, e.g. for steam at various steam pressure
levels, whereas other resources summarize all non steam resources like natural gas, air or boiler
feed water and include the subset of inputs (In), In ⊆ NK.

Apart from the set notation, energy and material conversion factors are introduced. These conver-
sion factors can be deduced from actual plant data or from ASPEN simulations. These conversion
factors are equipment and material specific and summarized in the previously mentioned Excel
file, which therefore enables fast and easy modifications, if necessary. The definition of the mate-
rial and energy conversion factors are given in Eq. 1 and 2.
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Conversion Factors

fEQ,i, j =
Out put f low j o f EQ
Input f low i o f EQ

∀ EQ, i ∈ Res, j ∈ Res, i ̸= j (1)

e fEQ,i =
Energy produced or consumed in EQ

Input f low i o f EQ
∀ EQ, i ∈ Res (2)

The material conversion factors are derived for all equipment and respective input and output
flows. The energy conversion factors are calculated for all equipment and respective input flows.
The key idea of the generic tool is to introduce artificial resource pools to which generated ma-
terial throughout the process can be booked and from which consumed material throughout the
process can be taken. Therefore, book-keeping variables for all resources are introduced as xRes.
Generally, in the case of key resources this variable has to be zero for generated solutions. For
other resources the amount produced or needed can be deducted from the variable value. Further,
material flows from equipment to the resource pools can be introduced as xEQ,Res and flows from
resource pools to equipment as xRes,EQ in klb

h . Based on these definitions the following mass bal-
ance equations can be introduced (Eq. (3) overall balances of Key, Eq. (4) fulfill all demands at S,
Eq. (5) supply of Key, Eq. (6) conversion of Key in EQ, Eq. (7) overall balances of NK):

Mass Balancing

∑
P

xP,Key +∑
EQ

xEQ,Key = xKey +∑
S

xKey,S +∑
EQ

xKey,EQ ∀ Key (3)

xKey,S = xDemand,Key
s ∀ S, Key (4)

xP,Key = fP,In,Key · xIn,P ∀P, In, Key (5)
fEQ,i, j · xi,EQ = xEQ, j ∀ EQ, i, j ∈ Res, i ̸= j (6)

xNK = ∑
EQ2

xEQ2,NK − xNK,EQ2 ∀ NK (7)

For the energy balance, additional variables are introduced. The energy produced or consumed
in a unit is given by nUnits. Further, nSell and nPurchase can be introduced as variables for selling
a surplus of energy generated in the plant or buying energy in the case of an energy deficiency
throughout the system. Thus, the energy balances can be summarized as follows (Eq. (8) overall
energy balance, Eq. (9) overall energy demand, Eq. (10) energy needed for production of K, Eq.
(11) energy produced):

Energy Balancing

∑
EP

nEP −nES +nPurchase −nSell = 0 (8)

nES = ∑
P

nP +∑
EQ

nDemand
EQ (9)

nP = e fP,In · xIn,P ∀ P (10)
nEP = e fEP,Key · xKey,EP ∀ EP (11)
nEQ∗\P = e fEQ∗\P,Key · xKey,EQ∗\P ∀ EQ∗ \P (12)

Further, Eq. (12) derives the energy needs for all units summarized in EQ∗ without key resource
producing units. This special set includes units which require energy in the form of material flows,
e.g. turbine driven pumps. Therefore, ∑EQ∗\P nEQ∗\P specifies energy lost for energy generation
due to equipment specific choices and can be understood as an opportunity to increase energy ef-
ficiency throughout the system by trying to reduce this value.
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Originally, binary decision variables have been introduced for equipment and flow decision mak-
ing. However, since competing equipment or investment decisions are taking resources from the
same artificial resource pool, and flows from a resource pool to an equipment can be zero, the
introduced binaries were discovered to be redundant. Apart from that, neglecting binary decision
variables resulted in better computational performance, while no process information was lost.

4. Case Study

To highlight the capabilities of the developed tool, we apply our framework to the steam utility
system of a chemical production plant in South-East Texas. The production plant generates four
different steam pressure levels (P1 >P2 >P3 >P4, summarized in Key) as byproducts from various
processes, such as boiler and reactor systems (P). Further, the steam is used to satisfy demands
of various material (S) and energy sinks (ES) using two different sized turbines using different
pressure levels of steam as input (EP), as well as a set of intermediate turbine driven pumps for
various applications in other plant processes (EQ∗ \P). When necessary, steam from higher pres-
sure levels can be let down to lower pressure levels. Additionally, the steam process requires feed
water, air and natural gas (set of NK). A representative process operation point is summarized in
the top part of Figure 2 .
The goal of the case study is to minimize the overall cost by investigating a process alternative
denoted by neglecting one steam producer, the turbine operating at a higher pressure level, as well
as modifying all turbine driven pumps to motor driven pumps. The energy and material demands
are assumed to be constant. For this particular case study, the objective function is introduced
based on the investment and maintenance costs of the selected equipment. Linear correlations for
the total installed cost (TOC) of equipment dependent on the flow rate have been derived with
ASPEN Capital Cost Estimator (AspenTech, 2012). Further, the annual maintenance cost of a unit
are estimated based on its TOC. The process visualization for the modified case is given in the
bottom part of Figure 2. The selected modification reduced the overall cost by approximately $7.9
MM. Subsequently, by only investigating this scenario, steps towards a process cost reduction of
approximately 70% can be deducted.
Overall, the tool can not only be used to match streams for heat or work exchange, comparable to
more conventional methods such as PINCH analysis, but also to evaluate present and future opera-
tional set-points as well as influences of investment decisions and process alternatives underlining
the multi-stage nature and capabilities. This further enables the transition planning and scheduling
for an operational process transition from the current setup to a desired future one. However, one
potential drawback to conventional methods is a less rigorous implementation of thermodynamic
restrictions.

5. Conclusion

We have presented a comprehensive generic framework with the capabilities of optimizing the dis-
tribution and utilities systems of an industrial chemical production plant. Our proposed approach
is based on developing a mathematical superstructure model which encompasses the incoming
and outgoing material and energy flows, as well as their respective conversions for each unit of
the plant. By defining different investment alternatives for the facility based on the demand and
costs, we are able to identify and recommend optimal investment opportunities to reduce the over-
all cost. The effectiveness of our framework was demonstrated through its application to the steam
utility system of an industrial chemical plant. The results indicate a significant reduction in overall
cost, as well as the plant’s energy needs. Our next steps include the possible interconnection of
various utility processes, e.g. steam, water and electricity networks and take into account network
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Figure 2: Automatic visualization of process simulation. Top: Standard case; Bottom: Modified
case.

.

disruption scenarios for optimizing plant resilience and respective cost and energy trade-offs.
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Abstract 

This paper aims to develop an optimization model for the expansion planning of reliable 

power generation systems. To achieve this goal, we propose an optimization model that 

minimizes the total cost using Generalized Disjunctive Programming (GDP). 

Specifically, the model determines both investment decisions (number, size, location, and 

time of generators to install, retire, and decommission) and operation decisions (number 

of operating/backup generators, operating capacity, and expected power output) by 

imposing penalties when the demand is not satisfied, and a system has low reliability. The 

model is verified through an illustrative example of two regions with four power stations 

over five operating periods.   

Keywords:
 
Reliability, Expansion Planning, Power systems, Optimization

 

1. Introduction 

Expansion planning for power generation systems aims to determine the optimal number, 

size, location, and time to install and/or retire the power generators, while minimizing the 

total cost over a given time horizon (Conejo et al., 2016). Expansion planning works have 

been reported in the literature. For instance, Lara et al. (2018) develop a multi-region and 

multi-period MILP optimization model by considering short-term operation problems 

(e.g., unit commitment) and investment decisions. Given the large size of the model, it is 

solved with a Nested Benders decomposition method. Li et al. (2022) extend the 

expansion model developed by Lara et al. (2018) by integrating generation and 

transmission. Although studies on integrating the reliability and expansion planning have 

been reported (Moreira et al., 2017), there is still modest research that comprehensively 

accounts for the impact of reliability in expansion planning.  

Reliability is the probability that a system or component can perform its required function 

without failure for a given time (Sherwin & Bossche, 1993). Securing high reliability, or 

more precisely high availability, in the design and operation of power systems is essential 

since power generation systems aim to provide uninterrupted electric power to customers. 

One method to improve reliability at the design phase is to add redundant or backup units, 

which allows the systems to operate even if one or multiple generators fail (Kim & Kim, 

2017). This approach is known as ‘reliability-based design optimization,’ and various 

studies on this topic have been reported (Ye et al., 2018; Ortiz-Espinoza et al., 2021; Chen 

et al., 2022). However, since power systems operate dynamically due to time-varying 

power demand, reliability is also influenced by the operational strategies that power 

systems use to satisfy the load demand. Specifically, backup units have a dual role in 

power generation systems. They can remain as backup units in case of low power demand 

or change to operating units when the power demand is high. This dual purpose of backup 
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units depending on the load demand must be considered in designing reliable power 

generation systems. 

One of the conventional methods used to evaluate the reliability of power systems is “N-

1 reliability”. The N-1 reliability assumes that a power system can withstand an 

unexpected failure of a single component (Ballireddy & Modi, 2019). This implies that 

power systems may not function properly if multiple units fail simultaneously. The 

failures of multiple generators may reduce the power output but not necessarily fail the 

entire system. Hence, a rigorous method anticipating every possible failure state and 

selecting the proper number and size of the backup generators should be developed to 

design and plan reliable power generation systems. The specific goal of this work is to 

develop an optimization model for the expansion planning of reliable power generation 

systems. The model is formulated using Generalized Disjunctive Programming (GDP) 

that determines both investment (number, size, location, and time of generators to install, 

retire, and decommission) and operation decisions (number of operating/backup 

generators, operating capacity, and expected power production level) to minimize the 

total cost including unmet demand and low reliability penalties. 

2. Problem statement 

Given are regions 𝑟 ∈ 𝑅,  with power stations 𝑘 ∈ 𝐾𝑟 ,  parallel generators 𝑗 ∈ 𝐽𝑘 , and 

discretized capacities of generator 𝑝 ∈ 𝑃𝑘 . There are two types of power stations: existing 

(𝑘 ∈ 𝐾𝑟
𝐸𝑋) and potential (𝑘 ∈ 𝐾𝑟

𝑁𝑊) power stations. A set of power station designs ℎ ∈
𝐻𝑘  and corresponding operation modes 𝑚 ∈ 𝑀𝑘,ℎ, time periods (year) 𝑡 ∈ 𝑇, and sub-

periods (season) in each year 𝑛 ∈ 𝑁 are also given. Specifically, ℎ = 1 indicates that one 

generator is available in power stations k and ℎ = 𝐻 means all generators that can be 

installed in power stations k are available. Likewise, 𝑚 = 1 represents one generator is 

operated, 𝑚 = 𝑀 refers to the mode in which all generators are operated. Each power 

station k has different failure states 𝑠 ∈ 𝑆𝑚,𝑘,ℎ depending on the design h and operation 

mode m. The failure states can also be classified into successful operation states (𝑆𝑚,𝑘,ℎ
𝐹 ) 

and partial operation states (𝑆𝑚,𝑘,ℎ
𝑃 ). ‘Successful operation states’ indicate the operation 

modes in which the power generation capacity is sufficient to satisfy the load demand, 

whereas ‘Partial operation states’ refer to the operation modes in which the power 

generation capacity is insufficient to meet the load demand as it can only produce electric 

power at a limited level. The major assumptions in this model are: (i) Each power station 

has a maximum number of available power generators, (ii) Storage systems are not 

included, (iii) Operational problems such as unit commitment are not included. 

3. Model formulation 

The model is developed by Generalized Disjunctive Programming (GDP) (Trespalacios 

and Grossmann, 2014), which can be expressed in terms of Boolean and continuous 

variables, algebraic constraints, disjunctions, and logic propositions. We also introduce 

binary variables since several investment decisions are reformulated as algebraic 

constraints. 

3.1.  Investment constraints 

The binary variable 𝑦𝑗,𝑝,𝑘,𝑟
𝐸𝑋  indicates the existence of unit j with discrete capacity p in 

power station k of region r. The binary variables 𝑦𝑗,𝑝,𝑘,𝑟,𝑡
𝐼𝑁  and 𝑦𝑗,𝑝,𝑘,𝑟,𝑡

𝐴𝑉  state the installation 

and availability of unit j in year t, respectively. The binary variables are also represented 

with corresponding Boolean variables (𝑌𝑗,𝑝,𝑘,𝑟,𝑡
𝐼𝑁 , 𝑌𝑗,𝑝,𝑘,𝑟,𝑡

𝐴𝑉 ,). 𝐼𝐶𝑗,𝑘,𝑟,𝑡 , 𝐴𝐶𝑗,𝑘,𝑟,𝑡 , 𝑇𝐴𝐶𝑘,𝑟,𝑡  are 
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installed capacity, available capacity, and total available capacity, respectively. There are 

three different investment decisions for generators such as early decommission,

retirement due to lifetime expiration, and lifetime extension. However, equations for the 

three decisions are not provided here due to space limitation. Eqns. (4) – (6) correspond 

to the capacity constraints, and Eqn. (7) states that only one capacity p can be selected for 

each generator j. 

3 .2 . Operation and system reliability constraints

There are two Boolean variables related to investment and operation decisions. 𝑍𝑘,𝑟,ℎ,𝑡 is 

true if design h is selected for power station k of region r in time t (Eqn. (a)). 𝑊𝑘,𝑟,𝑚,ℎ,𝑛,𝑡

is true if power station k of region r is in operation mode m during sub-period n in time t

for design h (Eqn. (b)). The binary variable 𝑥𝑗,𝑝,𝑘,𝑟,𝑛,𝑡 indicates the operation of unit j with 

discrete capacity p in power station k of region r during sub-period n of time t. 𝑂𝐶𝑗,𝑘,𝑟,𝑛,𝑡
represents an operating capacity, 𝑃𝑠,𝑘,𝑟,𝑛,𝑡 is the probability of station k of region r being 

in failure state s during sub-period n of time t, and 𝐸𝑃𝑠,𝑘,𝑟,𝑛,𝑡 corresponds to the expected 

power output. 𝑃𝑘,𝑟,𝑛,𝑡
𝐹 and 𝑃𝑘,𝑟,𝑛,𝑡

𝑃 are the probabilities of station k being in successful and 

partial operations.

The objective function is to minimize the total cost (Eqn. (13)), which includes the 

investment costs (𝜃𝑗,𝑝𝑦𝑗,𝑝,𝑘,𝑟,𝑡
𝐼𝑁 ), the operating costs (𝜑𝑗,𝑝𝑥𝑗,𝑝,𝑘,𝑟,𝑛,𝑡), the feedstock costs
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(𝜅𝑘𝐹𝑆𝑘,𝑟,𝑛,𝑡), the downtime penalty (𝜀𝐷𝑇𝑘,𝑟,𝑛,𝑡), and the unmet demand penalty (𝑃𝑁𝑛,𝑡).
The unmet demand penalty is determined with the disjunction shown in Eqn. (14).

where 𝜌𝑛 is a duration (hours) of sub-period n, 𝐷𝑟,𝑛,𝑡 is a power demand, and 𝑅𝑡
𝑚𝑖𝑛 is a 

reserve margin related to the peak demand of time t. The GDP given by (1)−(14) can be 

reformulated into a Mixed-Integer Nonlinear Programming (MINLP) using Big-M (BM)

and/or Hull Reformulation (HR) (Trespalacios & Grossmann, 2014). In this paper we use

the Big-M method. Also, the MINLP model is reformulated as MILP model by using 

exact linearization of Eqn. (12) (Garcia-Herreros et al., 2015).

4. Illustrative example

To illustrate the application of the proposed model, we consider a simple case consisting 

of two regions, each with two power stations (i.e., coal power plants (1 existing, 1 

potential), and natural gas power plants (1 existing, 1 potential)) as shown in Figure 1(a). 

Each power station is assumed to have a maximum of three parallel generators, and there 

are three capacities for the generators. Note that renewable power generators are not 

considered in this example. Figure 1(b) displays power demands during five time periods, 

each with four sub-periods. Table 1 shows the technical and economic parameters.

Figure 1. (a) Geographical representation of illustrative example, (b) Power demand

Table 1. Parameters of the illustrative example
Parameters Symbols Values Parameters Symbols Values

Nameplate capacity (MW)

Coal plants

Natural gas plants

𝛿𝑘,𝑝 100, 150, 200

100, 200, 300

Installation cost (k$ /unit)

Coal plants

  Natural gas plants

𝜃𝑗,𝑝 50, 64, 76

60, 91, 116

Unit reliability

Coal plants

Natural gas plants

𝜆𝑗,𝑘 0.93

0.95

Start-up cost ($ /unit)

Coal plants

  Natural gas plants

𝜑𝑗,𝑝 50, 80, 100

60, 100, 150

Additionally, the deterministic expansion planning without reliability is obtained, and its 

expected cost is calculated under the risk of generator failures. Table 2 shows the 

numerical results of the cases, and the results are obtained with CPLEX in GAMS 32.1.0 

on an Intel Core i7-10510U CPU, 1.80GHz. It should be noted that the disjunctive 

constraints proposed in this paper make the model require longer computational times 

(almost 2000 sec) than the deterministic model without disjunctions (less 1 sec).
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Table 2. Numerical results of the example
#  Binary variables #  Cont. variables #  Constraints CPU (sec)

Deterministic case (No reliability)

Reliability-constrained case 

1,363

1,646

15,762

15,773

62,888

63,659

0.203

1,983

A detailed comparison of the deterministic and reliability-constrained cases can be found 

in Figure 2. As shown in Figure 2(a), when reliability is not considered, the model newly 

installs one large coal generator (200MW) in region 1 and one large natural gas generator 

(300MW) in region 2. On the other hand, the proposed model decides to install three large 

natural gas generators in region 2 (See Figure 2(c)). Note that both cases are assumed to 

have two existing coal generators and one natural gas generator. Figures 2(b) and 2(d) 

show the operation results of the deterministic and the reliability-constrained cases during 

the last period (T5), respectively. The deterministic case has one backup generator in 

region 1 during spring (N1) and winter (N4), but all generators participate in power 

generation during summer (N2) and fall (N3) due to relatively high power demand. On 

the other hand, the reliability-constrained case has two backup generators (one in region 

1 and one in region 2) during all periods. This result is because the system availability 

can be improved by having more backup generators.

Figure 2. (a) and (b): investment and operation results of deterministic case;  (c) and (d): investment and 

operation results of reliability-constrained cases during period 5 (T5)

Figure 3. (a) Total cost and (b) System availability of the cases

Figure 3(a) shows the cost contribution of the two cases. Due to backup generators, the 

reliability-constrained case requires a higher investment cost ($ 192,000 vs. $ 348,000). 

The investment cost is compensated by lower penalties (unmet demand penalty: $ 115,000 

vs. 12,703;  low reliability penalty: $ 182,774 vs. $ 61,807). The deterministic case has a 

poor performance in the case of generator failure due to a lack of flexibility. On the other 

hand, the reliability-constrained case has enough slack capacity to reallocate power 
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demands when the generator failure occurs. Such flexible design of the reliability-

constrained case enables the system to have higher availability than the deterministic 

cases (0.94 vs. 0.98), as shown in Figure 3(b). This example proves that the proposed 

model is more effective for designing reliable power systems than expansion models in 

which generator failures are not considered. 

5. Conclusions 

This paper has presented an optimization model for the expansion planning of reliable 

power generation systems. The proposed GDP model optimizes investment decisions 

(number, size, location, and time of generators to install, retire, and decommission) and 

operation decisions (number of operating/backup generators, operating capacity, and 

expected power production level). It was identified that the proposed model effectively 

designed a reliable power generation system. Future work will develop decomposition 

methods for large-scale problems and involve other operation problems such as economic 

dispatch and unit commitment to evaluate the reliability more precisely. Moreover, 

renewable technologies such as wind turbines and solar panels will be included, and 

Markov chain theory will be applied to enumerate all possible failure states explicitly. 
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Abstract 

The decision-making process for the design of formulated products faces different 

challenges because of its intrinsic complexity. On the one hand, it is not sequential, but 

iterative due to the fragmented and heterogeneous nature of available information. On the 

other hand, there is not a unique design workflow because it changes from company to 

company according to its context and specific requirements. The lack of structure of 

knowledge for product formulation requires developing a robust knowledge 

representation to show coherently and explicitly concepts, models, and data. Furthermore, 

this representation must allow design teams to use it flexibly and to adapt it to specific 

design contexts. In view of the above, this work proposes an ontology for formulated 

products with emphasis on cosmetic emulsions. This ontology integrates concepts from 

emulsion science, cosmetic formulation, expert knowledge, and design heuristics in a 

systematic and accessible way. It was done based on the recent work of our research group 

in Chemical Product Design. This document shows an overview of the ontology and one 

of its possible applications: verification of the formulation of a skin care cream. As a 

conclusion, it was found that the ontology enables the access to precise information 

according to design requirements. It is a versatile and useful information tool for the 

design of emulsion-based products. 

 

Keywords: Product design, Cosmetic emulsions, Ontology 

1. Introduction 

Formulated chemical products, such as cosmetics, are complex systems whose properties 

are defined by a synergistic action of ingredients, composition, and production process. 

Their design is a scientific and organizational challenge, as it requires the management 

of heterogeneous information from multiple sources and the application of 

multidisciplinary knowledge (Zhang et al., 2020). Available information for their design 

is huge and diverse in nature: there are multiple ingredient databases, property models, 

heuristics, knowledge from colloidal science, regulations, recommendations, guidelines, 

etc. Additionally, in the field of Chemical Product Design (CPD), there are several 

methodologies and computer-aided methods. Examples are as a design methodology for 

cosmetic formulations incorporating heuristics (Arrieta-Escobar et al., 2020), a 

methodology for formulated products applying expert knowledge (Serna et al., 2021), and 
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an integrated framework for formulated products including liquids, solids, 

emulsions(Zhang et al., 2017), among others.  

Despite its abundance, the application of the existing information for product formulation 

of is not straight-forward (Zhang et al., 2020). Design methodologies are not adapted to 

practical design processes, which are iterative and change according to the design context. 

Additionally, available information is not centralized, has different forms (qualitative and 

quantitative), and it is frequently fragmented. Thus, it is necessary to create tools capable 

of managing real design contexts and available information to solve practical problems.  

In view of the above, this work proposes OntoCosmetic, an ontology to systematically 

represent knowledge for the formulation of cosmetic products of the type of homogenous 

mixture or emulsion. It is proposed to support data storage and analysis, information 

modeling and decision-making for cosmetic formulation. It is based on the knowledge 

and information gathered and developed by our design team in CPD (Arrieta-Escobar et 

al., 2020) (Serna et al., 2021) and it has a structure that can be extended to represent more 

general information in the field of formulated chemical products. The ontology was 

developed following the ontology creation methodology described by Gabriel (2019) and 

formalized using the software Protégé1. In this document, section 2 presents a short 

introduction to ontologies and an overview of OntoCosmetic. Section 3 presents an 

application of the ontology for the verification of a formulation in relation to a heuristic 

database. Finally, Section 4 highlights some conclusions and perspectives. 

2. An ontology for cosmetic product design 

2.1. Concept of ontology 

Ontology is “an explicit specification of a conceptualization” which is an abstract, 

simplified view of the world that is represented for some purpose (Gruber, 1993). It is 

holistic since it contents all relevant concepts and relationships between concepts to 

model a specific subject or phenomenon (Hailemariam & Venkatasubramanian, 2010). It 

is also as precise as required because it is normally defined within a specific domain of 

knowledge and with a clear purpose (Gabriel et al., 2019). In software engineering, 

ontologies are seen as “a means to efficiently build the knowledge-based necessary to 

effectively support engineering work processes” (Marquardt et al., 2010). 

The main elements of an ontology are: Classes which are concepts or sets containing 

instances (e.g. the class ‘Ingredient’ in a cosmetic formulation). Relations which show 

the relation between classes (e.g., the relation ‘has’, connecting ‘Formulation’ with 

‘Ingredient’). Instances which are the elements of the classes (e.g., ‘Argan oil’, which 

belongs to the class ‘Ingredient’). Rules which are logical statements that can be used to 

make inference (e.g., heuristics). 

2.2. An ontology for cosmetic product formulation 

OntoCosmetic was constructed based on the ontology OntoCAPE (Marquardt et al., 

2010), a very elaborated ontology for process design in the field of Chemical Engineering. 

In OntoCAPE, products and processes are technical systems, which are developed in an 

engineering design process to meet defined requirements (Marquardt et al., 2010). There, 

technical systems are represented through five viewpoints: requirements, function, 

realization, behavior, and performance. OntoCosmetic uses part of this description to 

define the Product System and adapts it to the application of cosmetic formulation.  

Figure 1 shows an overview of OntoCosmetic. It is organized in two interconnected 

blocks: A) Product System, containing all the relevant concepts describing a cosmetic 

formulation, B) Product Model, containing a knowledge base of models to support 

practical decision-making during the formulation process.  

 

 
1 http://protege.stanford.edu/ 
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design of emulsion-based cosmetic products

Figure1. Overview of the OntoCosmetic ontology. A) Product System B) Product 

Model. The dark area corresponds to the concepts adapted from OntoCAPE

In OntoCosmetic, Product System is divided in four viewpoints:

• Product requirements: It corresponds to the product desired behavior, 

represented by product specifications and target values. It is a ‘to be’ relation.

• Product materialization: It corresponds to the decisions that designers can make

and implement to achieve product requirements. For example, the selection of 

ingredients. Product materialization has the modules of process and substances. 

The latter is a super class of the ingredient class which is connected to a database 

of cosmetic ingredients.

• Product behavior: It corresponds to the real behavior of the product whether it is 

expected or not. It can be characterized quantitatively, through product 

properties, or qualitatively, through a qualitative product description. Product 

behavior can also be related to a phenomenon, to the micro-structure of the 

product (in the case of emulsions, microstructure is frequently characterized by 

particle size and particle size distribution), and to the phase system (which 

describes the product as a thermodynamic system).

• Product performance: It corresponds to the evaluation of the Product System 

specifically in relation to product requirements. It indicates whether the product 

has the desired performance (as described by product requirements) or not. The 

evaluation is done through target value indicators and sustainability indicators. 

In this case, in contrast to product requirements, indicators are related to the 

product system with a ‘as is’ relation.

The ontology has been developed with focus on cosmetic applications. Thus, it contains 

concepts and databases specifically related to this subject. In the ontology, ingredients are 

classified in subclasses that enable their search based on cosmetic related categories. 

Figure 2 shows some sub-classes of the class Ingredient with their definitions. Figure 3 

shows some attributes of the sub-class Emollient with their definitions.

A B

)
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Figure 2. Extract of Ingredient 

sub-classes in OntoCosmetic 

Table 1. Extract of Ingredient sub-classes in 

OntoCosmetic 
Function Description 

Ingredient 

Chemical compounds that are part of a 

formulation 

Emollient 

Oils used in cosmetic emulsions for several 

purposes: to make skin and hair softener, to 

serve as solvents for liposoluble actives. 

Some of them can act as occlusive 

ingredients. 

Surfactant 

Ingredient used in emulsions for three 

purposes: to decrease the energy required 

during emulsification, to adsorb rapidly at 

the interface of recently formed droplets, 

and to generate a barrier for long-term 

emulsion stability.  
 

 
By its part, Product Model contains the models and tools that enable designers to make 

decisions. Product models are classified in the following classes:  

• Heuristic: It is a guideline or rule of thumb expressed in natural language that 

gives a practical instruction to achieve a product requirement. It can be 

transformed into an algebraical mathematical model. 

• Expert knowledge: It is a qualitative relation between the classes of product 

behavior and product materialization. They were established with the help of 

experts in emulsion science. They are used in combination with emulsion science 

principles. 

• Mathematical model: It is an equation that enables a quantitative definition of 

ingredients in relation to product requirements. 

• Emulsion science principles: They are scientific descriptions of emulsion 

phenomena, which explain some product system behaviors and can be used for 

decision-making in combination with expert knowledge. 

 

 
Figure 3. Some attributes of 

the class emollient 

Table2. Some attributes of the class emollient 
Function Type Description 

requiredHLB Real It determines the compatibility of 

oils with the surfactant system 

greasiness String It that reflects the oiliness of the 

skin after a lotion is applied. 

Allowed values: {Very high, High, 

Medium, Low} 

viscosity Real It is the is a measure of the 

resistance of a fluid to deformation.  

origin  String 

Ingredient source. Allowed values: 

{natural, from nature raw 

materials, from natural and 

synthetic raw materials, synthetic} 
 

 
As well, Product models are classified into sub-classes according to their applicability 

(general emulsions, cosmetic emulsions, specific cosmetic applications). Additionally, 

their implementation is related to the product materialization system (a model can be 

related to one or more ingredient class, sub-class, or attribute), and their effect is related 

to the classes of product behavior and product performance systems. Examples of product 

models and their relations are presented in Table 3. 
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Table 3. Some product models and their relations 
Product model Description Application Relations System Range 

Heuristic 

For a good sensorial, 

at least one emollient 

of each spreading 

type should be used: 

high, medium, and 

low. 

Cosmetic 

emulsion 

isImplemented

By 

Product 

Materialization 
Emollient; Spreading 

hasEffectOn 
Product 

Performance 

Performance 

indicator; Sensorial 

Emulsion 

Science 

Emulsion stability is 

affected by the 

phenomenon 

gravitational 

separation.  

General hasEffectOn 
Product 

Performance 

Performance 

indicator; Stability 

General 
isRelatedtoPhe

nomenon 

Product 

Behavior 

PhenomenonGravitati

onalSeparation 

Emulsion 

Science 

Gravitational 

separation can be 

controlled with the 

addition of a 

thickener. 

General 
isImplemented

By 

Product 

Materialization 

Thickener; 

Concentration 

General 
isRelatedtoPhe

nomenon 

Product 

Behavior 

PhenomenonGravitati

onalSeparation 

3. Application: Checking if a given formulation follows the heuristics 

The Ontology was used to verify if a given cosmetic formulation follows or not a group 

of heuristics, and thus if it is recommended based on them. The verification was done 

using the Semantic Web Rule Language (SWLR) in Protégé, where heuristics can be 

written as logic rules involving instances of classes. The formulation checked against the 

heuristics is shown in Table 4 and the considered heuristics are presented in Table 5. As 

result, the reasoner classified the formulation as recommended according to selected 

heuristics (ConformFormulation). 

 

Table 4. Formulation checked against some heuristics  
Class Ingredient [%] 

Emollient Ethylhexyl Palmitate 4 

Emollient Olive oil 3 

Emollient Caprylic/Capric Triglyceride 9 

Surfactant Glyceryl Stearate Citrate 2.5 

Surfactant Oleth-3 0.5 

Surfactant Sorbitan Monostearate 1 

Preservative Cosgard 0,7 

Antioxidant Tocopherol 0,5 

Humectant Glycerin 3 

Thickener Xanthan gum 0.1 

 Water To 100 

 
Table 5. Heuristics considered to test the formulation using the ontology 

Product 
model 

Description System Range 

Heuristic 
at least one emollient of each spreading type 

should be used: high, medium, and low 

Product 

Materialization 
Emollient;  Spreading 

Heuristic 
Use a minimum level of 2% and up to 5% of 

surfactants 

Product 

Materialization 

Surfactant; 

SurfactantComposition 

Heuristic 
At least one ingredient should be of the 

natural origin 

Product 

Materialization 
Ingredient; Origin 

Heuristic 
surfactant/emollient ratio should be between 

1:4 to 1:6 

Product 

Materialization 

SurfactantComposition; 

EmollientComposition 

Heuristic HLB should match the RHLB required 
Product 

Materialization 

Surfactant; Emollient; 

SurfactantComposition; 

EmollientComposition 

 

As shown in Figure 4, the formulation is introduced to the system as an instance with 

relations to ingredients (composition) and rules (heuristics that the formulation should 
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follow). Based on this information, the reasoner activates the required rules and classifies 

the formulation as ConformFormulation, when it follows the rules or as 

NonConformFormulation, when it does not. The formulation must be experimentally 

validated to verify that it meets the requirements. 

 
Figure 4. Results of the verification in Protégé 

4. Conclusions and perspectives  

The article presents a brief overview of OntoCosmetic, an ontology for cosmetic 

product design. Currently, the ontology formalizes concepts of product 

formulation. It can be used to create information systems with common 

definitions, to call ingredient and formulation information through a SPARQL2 

request, to apply heuristics through the activation of rules. The perspective of this 

ontology is to create an application programmer interface (API) to allow the 

integration of knowledge into a software. This software would assist the decision-

making process during design as well as visualize data and optimize the 

formulation of cosmetic products considering multiple criteria. 
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Abstract 
This work presents a synthesis problem for the separation and purification of Ethanol 
using extractive distillation. Glycerol was the chosen solvent to separate the azeotropic 
mixture. The synthesis problem was based on the Infinite-DimEnsionAl State-space 
(IDEAS) approach to discretize the liquid composition space represented by a ternary 
diagram. Then, a distillation module was assigned to each subspace, and a superstructure 
representation was used in which all distillation modules connect to generate an optimal 
distillation structure. The synthesis problem was formulated as a linear programming (LP) 
problem in which the utility cost was minimized subject to material and energy balances. 
Furthermore, the optimal structure was derived without the need to set any preestablish 
distillation structure. After the optimization problem is solved, the best connection 
between distillation modules is known. Therefore, a realistic and feasible distillation 
structure was interpreted at a post-optimization step. 
 
Keywords: Process Synthesis, Extractive Distillation, LP, Process Simulation, Ethanol 
production 

1. Main Text 
Ethanol obtained from lignocellulosic biomass can be used in the chemical industry as an 
intermediate material for the synthesis of esters and ethers and as a solvent in the 
production of paint, cosmetics, sprays, perfumery, medicine, and food, among others. 
Furthermore, mixtures of anhydrous ethanol and gasoline can be used as fuels, reducing 
environmental contamination and improving gasoline’s octane index  (Gil et al., 2014). 
In order to obtain high-purity ethanol over 99.5 mol%, the water-ethanol azeotrope (89 
mol%) must be surpassed. 
Conventional distillation fails to obtain high-purity ethanol because as the water-ethanol 
mixture approaches the azeotrope, their vapor and liquid compositions become the same．
Thus, further separation is not possible. However, by adding a third component acting as 
a mass separating agent (MSA), the vapor liquid equilibrium relationships between water 
and ethanol change so as to make possible ethanol purification. Therefore, this work deals 
with the extractive distillation of ethanol using glycerol as solvent. 
The water-ethanol separation has been extensively researched in the past decades where 
the separation alternatives have been mainly related with extractive distillation (Dai et al., 
2014), azeotropic distillation (Luyben, 2006), pressure-swing distillation (Mulia-Soto and 
Flores-Tlacuahuac, 2011), and membrane-assisted distillation (Kunnakorn et al., 2013). 
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In this work, the synthesis of extractive distillation structures for the purification of 
ethanol is studied through a low aggregation module-based superstructure framework 
consisting of the following steps: 1) superstructure representation, 2) modules generation, 
3) linear programming (LP) optimization, 4) solution interpretation, and 5) solution 
validation.  

2. Problem statement 
Given the feed conditions and product specification for the separation of a water-ethanol 
mixture, the used solvent, and the operating pressure, a synthesis problem based on 
distillation modules can be proposed to derive optimal distillation structures. 
Synthesis problems can be divided according to their aggregation level. Superstructures 
of high aggregation level comprise a set of equipment or tasks subject to a preestablished 
connectivity while superstructures of low aggregation level are based on a 
phenomenological approach, which combines cooling, heating, mixing, splitting, reaction, 
etc. (Alcantara-Avila et al., 2021). The use of low aggregation superstructures has been 
already proposed for the purification of ethanol. Kuhlmann et al., (2018) adopted the 
Phenomena Building Blocks (PBBs) framework for the synthesis of a membrane-assisted 
distillation process while Tian and Pistikopoulos, (2019) adopted a Generalized Modular 
Representation Framework (GMF) for the synthesis of an extractive distillation process. 
This work is based on the Infinite DimEnsionAl State-space (IDEAS) framework 
proposed by Drake and Manousiouthakis, (2002) in which a process can be represented 
by a network of units operations.  
2.1. Superstructure representation 
The proposed superstructure in this work is composed by five types of modules: a heating 
module, a cooling module, two feed modules, two product modules, and a set of 
distillation modules. Figure 1 shows the representation of a distillation module. 
Since the liquid composition space of the ternary mixture is discretized in subspaces, by 
definition, a distillation module is a subspace in which the liquid and vapor compositions 
and enthalpies are uniquely define given the pressure is known. 

 
Figure 1. Conceptual representation of a distillation module 

 For each module 𝑖𝑖, the liquid molar fraction of component k (𝑥𝑥𝑖𝑖𝑖𝑖), vapor molar fraction 
of component k (𝑦𝑦𝑖𝑖𝑖𝑖) , liquid enthalpy (ℎ𝑖𝑖𝐿𝐿), and vapor enthalpy (ℎ𝑖𝑖𝑉𝑉) are uniquely defined 
an entered as parameter in the optimization problem. The combination of modules will 
result in the optimal process.  
Figure 2 shows the proposed superstructure representation in this work. The modules in 
the superstructure contain heat and mass inputs and-or outputs. For example, the heating, 
feed, and solvent modules have only outputs while cooling and product modules have 
only inputs, and the distillation module have both. The superstructure considers all 
possible flow connections between distillation modules and other modules. 

3. Mathematical formulation 
The minimize utility cost (𝑈𝑈𝑈𝑈) minimization was taken as objective function because the 
distillation cost is largely dominated by UC. Equation 1 shows the objective function. 

Vapor liquid 
EquilibriumLiquid

Vapor

Heat
Liquid
Vapor

Heat
Input Output

[atm]
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𝑈𝑈𝑈𝑈 =  ��𝑐𝑐H𝑄𝑄𝑖𝑖H + 𝑐𝑐C𝑄𝑄𝑖𝑖C�
𝑖𝑖∈𝑆𝑆M

 1 

where 𝑆𝑆M the set of distillation modules, 𝑐𝑐H and 𝑐𝑐C are the cost of heating and that of 
cooling per unit amount of energy.  𝑄𝑄𝑖𝑖H and 𝑄𝑄𝑖𝑖C are the heating amount entering a module 
i and that of cooling leaving a module i. 

 
Figure 2. Conceptual representation of the module-based superstructure 

Equation 2 shows the overall mass balance while Eq. 3 shows the component mass 
balance for the two products in each distillation module 
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where 𝐿𝐿𝑖𝑖𝑖𝑖  and 𝑉𝑉𝑖𝑖𝑖𝑖 are the liquid and vapor molar flows from module i to module j, 𝐿𝐿𝐹𝐹𝐹𝐹  is 
the feed molar flow to module i, 𝐿𝐿𝑆𝑆𝑆𝑆 is the liquid solvent molar flow to module i, 𝐿𝐿𝑖𝑖𝑖𝑖𝑃𝑃  is 
the product molar flow amount from module i. 𝑥𝑥𝑘𝑘𝐹𝐹  is the liquid molar fraction of 
component k in the feed, and 𝑥𝑥𝑘𝑘𝑆𝑆 is the liquid molar fraction of component k in the solvent, 
respectively. 
Equation 4 shows the overall heat balance in each distillation module 
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where ℎ𝐹𝐹  and ℎ𝑆𝑆 are enthalpy of feed, and the solvent, respectively. 
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Equations 5 and 6 are additional equations for the connectivity between the feed module 
and distillation modules, and between distillation modules and product modules, 
respectively. 

� (𝐿𝐿𝐹𝐹𝑖𝑖)
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𝑗𝑗∈𝑆𝑆M

≥ 0 {k = 1,2} 6 

where 𝐿𝐿𝐹𝐹𝑖𝑖 is the liquid feed flow to module i, and 𝑥𝑥𝑖𝑖𝑃𝑃 is the molar purity target of 
component k. Moreover, since all the proposed equations in this section are linear, the 
optimization problem can be solved as a linear programming (LP) problem.
3.1. Case study
The feed flow rate of the water-ethanol mixture is 100 kmol/h, and its liquid molar 
fraction of ethanol is 0.894 and that of water in 0.106. The molar fraction specifications 
for ethanol, water and glycerol must be more than 0.95. The pressure in all modules is 1 
atm. The feed and the product flows are saturated liquid. The heating cost is 10 $/GJ and 
the cooling cost is 0.5 $/GJ.
As for the discretization of the liquid compositions for the distillation modules, each of 
ethanol, water, and glycerol molar composition was discretized with the width of 0.02.  
The vapor liquid equilibrium and each phase enthalpy were calculated by using NRTL

model. The calculations done in Aspen Plus V10®. The optimization was done by IBM 
ILOG CPLEX Optimization Studio 12.8.0. 

4. Results and Discussion
Figures 3 and 4 show the plot of the connectivity of liquid and vapor flows between 
distillation modules in a ternary diagram.

Figure 3. Liquid flow path of the optimal solution
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Figure 4. Vapor flow path of the optimal solution 

The utility cost of the optimization result was 9.36 $/h. Table 1 shows the description of 
colors and shapes for the ternary diagrams in Figures 2. 

Table 1. The colors and shapes of modules and flows in Figs. 3 and 4 

Shapes and colors explanation amount 
→ Flow direction  More than 1 kmol/h 
→ Flow direction Less than 17 kmol/h 
→ Flow direction Less than 25 kmol/h 
→ Flow direction Less than 33 kmol/h 
→ Flow direction More than 33 kmol/h 

〇,〇 Amount of heating or cooling More than 0 kJ/h 
□,□ Amount of heating or cooling Less than 5000 kJ/h 
◇,◇ Amount of heating or cooling Less than 10000 kJ/h 

*,* Amount of heating or cooling Less than 30000 kJ/h 
★,★ Amount of heating or cooling More than 30000 kJ/h 

It can be seen from Figs. 3 and 4 that cooling is necessary to separate Ethanol while 
heating is necessary to separate Water and Glycerol. Also, most of liquid flows are less 
than 1 kmol/h. However, modules with low molar fraction of water have liquid flows less 
than 17 kmol/h. On the other hand, there are large flows of vapor in the region with low 
molar fraction of water. 
Figure 5 shows the interpreted solution of the optimization results in Figs. 3 and 4. The 
interpreted solution exhibits several features: 1) there is no need to use a condenser in the 
first column, 2) water s separated in second column, 3) thermal coupling between stages 
makes possible to increase the internal flow of vapor streams, and 4) there is no need to 
cool the recycled solvent streams since the process will use this energy directly when 
mixed with the feed steam. The utility cost of the interpreted solution is 60.8 $/h. 
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Figure 5. Interpreted distillation structure

5. Conclusions
This work presented a module-based framework for the synthesis of extractive distillation 
column. The modules are collected and represented in a ternary diagram. The interpreted 
solution showed an intensified distillation column with a cost much higher than the cost 
obtained after solving the LP problem. The derived solution was done without any 
preestablished connectivity. Further improvements at the interpretation step must be done.
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Abstract
Feasibility is a crucial aspect when dealing with flexible operation of processes, as it is, e.g., the
case when incorporating renewable energies. Process design and operation should thus account
for the operational fluctuations. When flexible operation with multiple fluctuating input param-
eters is required, a design that increases the feasible region spanned by these parameters can be
advantageous. In this paper, we study the optimal design of a fixed bed reactor for the CO2 hydro-
genation to methanol that is operated under variable capacities. We introduce a design approach
to optimize the multidimensional operating window of the process. Dynamic optimization is used
as an overarching framework to adapt the design of the fixed bed reactor, increasing the flexibility
of the process in terms of H2 and CO2 feed capacity.

Keywords: Design optimization, flexibility, power-to-x, dynamic operability, methanol produc-
tion

1. Introduction

Chemical process plants are constantly subject to disturbances and need to respond appropriately
in order to meet safety, environmental or operational constraints. Early works found that these
disturbances should be considered as uncertainties during the design phase of processes. Mathe-
matical tools for steady-state (Swaney and Grossmann (1985)) and dynamic analysis (Dimitriadis
and Pistikopoulos (1995)) were developed to provide processes able to overcome operational flex-
ibility limitations. These tools are able to determine flexibility of a process system by means of
a hyperrectangle that is centered at the nominal point in the space of uncertain parameters. The
length of the sides of the hyperrectangle are defined by the nearest boundary. This measure can
then be used to adapt design parameters to provide feasibility in uncertain conditions. Most of the
studies analyzing flexibility under uncertainty are, however, based on open loop processes.

Therefore, there have been efforts towards the consideration of design and control actions of pro-
cesses subject to disturbances. Early research showed that an integrated approach to design and
control processes is superior to a sequential one when dealing with these disturbances during oper-
ation (Swartz and Kawajiri (2019)). However, these integrated design and control strategies were
usually developed to maintain an optimal operation around a nominal steady-state operating point.

Due to recent developments in chemical engineering such as the increasing incorporation of re-
newable energies, flexible operation of chemical plants has received considerable interest (e.g.
Caspari et al. (2019); Otashu and Baldea (2019); Fischer and Freund (2020)). Flexible operation
implies significant deviations from steady-state operating conditions and requires that process de-
sign, and operation account for these fluctuations in advance. This includes that control actions
are found that allow a feasible and fast transient behavior. When these fluctuations are the main
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concern, a system that can compensate for larger deviations in its operating conditions is advanta-
geous. However, there are few design approaches (e.g. Cao et al. (2015)) that consider the size of
the operating window of a process.

In this work, we introduce a design approach that considers the multidimensional operating win-
dow of a process. The aim of the design optimization is to provide a process design that is highly
flexible towards multiple fluctuating input parameters. We demonstrate the approach on the pro-
duction process of green methanol, as this is a realistic process scenario for flexible operation
(Mbatha et al. (2021)). We consider that CO2 is produced by absorption in a fossil power plant,
operated for frequency regulations. Hydrogen required by the process is produced by a water elec-
trolysis that operates with renewable energies. Although there is an optimum in the H2 and CO2
ratio, we assume that each flow rate varies independently, neglecting possible storage capacities.

2. Design Problem
During flexible operation, certain intended variables undergo significant deviations from their
nominal operating conditions. These fluctuating variables are limited by process boundaries and
thus span the operating window of the process. Boundaries can be, e.g., process performance,
or environmental, and safety issues. In the space of uncertain parameters the operating window
corresponds to the feasible region of the process. The size of the operating window determines the
feasible combinations of the intended fluctuating variables. Thus, increasing the size of the oper-
ating window, increases the feasible deviations of the corresponding variables. It becomes evident
that flexible operation benefits from an increased size of the operating window, as it allows for
more feasible operating points.

We consider the load ξξξ of a process or its equipment as an auxiliary variable that determines the
operating point in accordance with the intended changing variables (flexibility dictating parameter
βββ ) during flexible operation. The definition of the operating window considered here follows the
approach proposed recently in Bruns et al. (2021). The load is then a function of the vector of
design ddd and operational variables xxx, and the flexibility dictating parameters:

ξξξ = f(d,x,βββ ) (1)

Consequently, the operating window is the space of all feasible loads bounded by all considered
process limitations. To optimize the operating window of the process, we determine the maximum
ranges over which each flexibility dictating parameter may vary, while remaining in the operat-
ing window. The size of the operating window ξ ow is then characterized by the product of the
difference between the maximum and minimum deviation of each parameter:

ξ
ow =

n

∏
i=1

(
ξ

max
n −ξ

min
n

)
(2)

where n is the number of flexibility dictating parameters, and ξ max
n and ξ min

n are the farthest loads
on the process boundaries. This results in a multidimensional rectangle, where the length of its
sides correspond to the difference between maximum and minimum deviation of parameters βββ .

This representation of the operating window can be incorporated into design optimization by
means of dynamic optimization. By considering a time horizon τ , in which the flexibility dic-
tating parameters represent the degrees of freedom that are available during operation, the farthest
loads on the process boundaries can be determined.

3. Methanol Synthesis Modeling
The investigated green methanol synthesis process is shown in Figure 1. Fresh feed of H2 and CO2
enters the process and is then mixed with the recycle stream. Before entering the methanol reactor,

884

860



Optimal design for flexible operation with multiple fluctuating input parameters

the gas mixture is preheated to 498 K. Methanol is then formed in the tube bundle reactor over
a commercial Cu/Zn/Al2O3 catalyst at an inlet pressure of 55 bar. In the tube bundle reactor 150
tubes with a length of 8 m and a tube diameter of 0.058 m are assembled in parallel. The catalysts
particle diameter is 0.006 m with a density of 1175 kgm−3. The void fraction in the reactor is
0.4. The tubes are surrounded by a shell where an isothermal heat exchange fluid regulates the
temperature in the reactor. The produced gas mixture is then condensed after the reactor in a
separator in order to remove and recycle unreacted gases from methanol and water. 10 % of the
recycled gases are purged from the process.

MeOH/Water

Purge

CO2

H2 Reactor
Separator

Figure 1: Methanol synthesis process.

The tube bundle reactor is represented by a one dimensional plug-flow model, considering heat ca-
pacities and weight of the catalyst bed, and the reactor material. The model consists of component
material balances and an energy balance in the form of partial-differential equations. Reaction
rates, pressure drop correlation and heat transfer are considered in the form of algebraic equations.
We employed reaction kinetics by Bussche and Froment (1996) to calculate the reaction rates of
each component over the length of the reactor. The overall heat transfer coefficient considered in
the model between reactor wall and heat exchange fluid is 1000 Js−1 m−2.

The separator is modeled by a set of differential-algebraic equations, calculating the vapor-liquid
equilibrium, while considering liquid and gas hold-up in the vessel. Valves and the compressor in
the process are modeled to represent the typical behavior of the process equipment by efficiency
relationships and pressure drops. The entire process is solved pressure-driven in Aspen Custom
Modeler v10.

4. Optimal Process Design
The design decision variables for the methanol reactor are the length of the reactor (l ∈ [7,9]m)
and the diameter of the tubes (dt ∈ [0.02,0.065]m). Operational decision variables are the heat
exchange fluid temperature (Tcw ∈ [473.15,543.15]K) and the reactor inlet temperature (Tin ∈
[473.15,543.15]K). Process constraints are: 1) minimum productivity of 1000 kgh−1, 2) mini-
mum CO2 conversion of 0.1, 3) maximum split fraction of the purge of 0.15, 4) maximum pressure
drop of 1.5 bar, and 5) maximum hot spot temperature of 543.15 K. Due to the pressure-driven
simulation of the methanol synthesis process, the split fraction of the purge is not a fixed value,
but rather calculated according to the pressure in the system. The split fraction is thus a value
that changes during operation and should not exceed a certain value to prevent excessive loss of
reactant.

We want to design the methanol reactor such that its operating window in the space of the consid-
ered flexibility dictating parameters is optimized. The flexibility dictating parameters for this case
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are the H2 feed flow rate β1 = ṅH2 and the CO2 feed flow rate β2 = ṅCO2 . The objective function
is thus defined as follows:

ξ
ow,MeOH =

2

∏
i=1

(
ξ

upper
n −ξ

lower
n

)
=

2

∏
i=1

(
f(dv,x,β upper

n ,τ +∆t)− f(dv,x,β lower
n ,τ)

)
(3)

where f represents all model equations considered in the methanol synthesis process and ξ
upper
n

and ξ lower
n are the upper and lower load depending on the respective flexibility dictating parameter

value. At the process boundaries ξ
upper
n and ξ lower

n equal ξ max
n and ξ min

n . τ +∆t is the time horizon,
where the time step ∆t considers the dynamic behavior of the process and needs to be sufficiently
large so that steady-state is reached again. For the methanol synthesis process we chose ∆t = 500s.
β1 and β2 are degrees of freedom in addition to the design and operational decision variables that
are optimized at t = τ . We thus maximize the rectangle resulting from the farthest loads in the
feasible region in the space of β1 and β2. The dynamic optimization is performed by means of
scripts integrated in the simulation software.

We investigate two scenarios: first, solely the design decision variables are optimized and second,
both design and operational variables of the reactor are optimized. Dynamic feasibility is assessed
for both scenarios by means of path constraints. We also use the dynamic optimization framework
to test the investigated operational variables to be adapted as advanced control strategy during
operation to satisfy the path constraints. Both scenarios are compared to the base case, which was
described in Section 3.

5. Results and Discussion

The optimization results for both scenarios and for the base case are shown in Table 1. The process
model is highly nonlinear so that various initial guesses were required to find the optimal solution
for each scenario. In the base case no decision variables were considered, and by that we just
evaluate the size of the operating window. The maximum and minimum deviation for both H2
(318.39kmolh−1 and 96.22kmolh−1) and CO2 (106.19kmolh−1 and 30.44kmolh−1) feed flow
rates are determined. The resulting scaled operating window size is 16.83. We performed the same
optimization with reactor length and tube diameter as decision variables in scenario 1. The optimal
design has a reactor length at the lower design boundary and a tube diameter at the upper design
boundary. The size of the operating window increases by 54.03 %. By additionally considering the
inlet temperature and the thermal fluid temperature during the design optimization, as in scenario
2, the determined operating window can be further enhanced compared to the base case (60.56 %).
The optimal inlet temperature changed only insignificantly, while the thermal fluid temperature has
increased by 7.99 K.

For both considered scenarios, we can observe an increase of the determined operating window
size. However, because the size of the operating window is approximated by the rectangle drawn
by the farthest feasible operating points, we must evaluate the actual operating window, since the
shape of the operating window may differ significantly from a rectangle. By sampling the oper-
ating points in the space of β1 and β2 and drawing all feasibility boundaries, we can graphically
assess the actual operating window of the process (see Figure 2). As can be noticed by plotting
the optimized operating window sizes for the base case and scenario 2 (black dashed line), the
rectangle is not able to sufficiently approximate the actual operating window size. However, the
rectangle size gradient allows to push the boundaries of the operating window. In case of the
methanol process, the productivity and the split fraction boundary are moved, resulting in an in-
crease of the actual size of the operating window. This is due to the fact that productivity and split
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Table 1: Design optimization results

Results Unit Base case Scenario 1 Scenario 2

Design variables
Reactor length m 8 7 7
Tube diameter m 0.058 0.065 0.065
Operational variables
Inlet temperature K 498 498 498.33
Thermal fluid temperature K 523 523 530.99
Flexibility dictating parameter
ṅH2(ξ

max) kmolh−1 318.39 339.76 360.01
ṅH2(ξ

min) kmolh−1 96.22 94.76 95.95
ṅCO2(ξ

max) kmolh−1 106.19 136.29 132.01
ṅCO2(ξ

min) kmolh−1 30.44 30.48 29.68
ξ ow,MeOH 16.83 25.92 27.02
Objective function improvement % 54.03 60.56

fraction are highly dependent on temperatures, concentrations and pressures in the recycle stream.
A shorter reactor length, larger tube diameter and higher coolant temperature have a beneficial
impact on productivity of the reactor and equilibrium of the reactions.

In a last step, we tested dynamic feasibility of the system for all scenarios, assuming dynamic tran-
sition between the farthest operating points as worst-case test. For the methanol synthesis process
none of the relevant boundaries are violated. The temperature in the reactor reacts sluggish, never
reaching critical temperatures for the catalyst. It should be noted that dynamics of the process are
highly dependent on reaction kinetics and modelling approaches. Depending on the assumptions
made, such large steps between operating points might lead to critical conditions in the reactor. At
this point, the design approach proposed here can incorporate advanced control strategies such as
adapting the coolant temperature according to the operating point at which operation takes place
to prevent operational failure.
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Figure 2: Operating window (white space) and size of the rectangle for the base case (left) and
scenario 2 (right).

Finally, it is worth comparing the results achieved by the proposed approach with the outcome of
typical mathematical tools from the literature such as the flexibility index, since the objective is
rather similar. Comparing the two, we can observe a different design outcome with the proposed
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approach. This is due to the fact that the flexibility index is measured by a hyperrectangle which
is centered at the nominal operating conditions. By adapting design and operational decision
variables, the flexibility index can be influenced, which means changing the size of the hyper-
rectangle. However, since the length of the sides of the hyperrectangle are bound by the closest
process boundary, an increase in the size of the hyperrectangle would not directly lead to an in-
crease in the size of the operating window. We can observe this when considering the examined
methanol synthesis process. At the nominal operating condition ξ nom with a H2 feed flow rate of
270 kmolh−1 and a CO2 feed flow rate of 90 kmolh−1, changing the considered design and oper-
ational variables pushes the split fraction boundary, however, shifts the CO2 conversion boundary
towards the nominal operating condition. While the operating window increases, the flexibility in-
dex would not adequately represent this aspect, as it would only indicate the maximum deviation
to the closest process boundary, which then could be the CO2 conversion.

6. Conclusions

In this work, we present a design approach to optimize the multidimensional operating window of
processes and its equipment in the space of intended fluctuating parameters. We use a dynamic
optimization framework to incorporate the operating window size into the design decision and test
the approach on the process of green methanol synthesis. The aim is to design a methanol reactor
that is highly flexible towards the feed flow rate of H2 and CO2. We track the movement of the
operating window size and its boundaries by the size of a multidimensional rectangle spanned
from the farthest operating points. Results show that the rectangle is not able to approximate
the actual operating window size sufficiently. However, the rectangle size gradient considered in
combination with graphical assessment leads to an increase of the actual operating window size of
the methanol synthesis process. While the proposed approach does not give a direct sizing of the
operating window, it enables to determine parameters that push the process boundaries in order to
increase the size of the operating window with relatively low computational effort. Future work
should incorporate the actual size of the operating window in order to prevent false movement in
the shape of the operating window.
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Abstract 

Membrane separation may substitute conventional energy intensive technologies, and it 

could have cost benefits and lower environmental footprints. Several membrane 

processes have been developed to achieve higher purity and recovery of products. This 

study uses a generic membrane superstructure (or system) that facilitates all possible 

inter- and intra-connections among different membrane stages (or units) which are 

arranged in series-parallel configurations. The developed mathematical model for the 

membrane system is a mixed integer non-linear programming (MINLP) problem. The 

mathematical model is implemented in AMPL, and BARON solver is used to solve it. 

The MINLP model of the membrane system can choose membrane from a Membrane 

Database, which has a number of polymeric and inorganic (graphene, carbon molecular 

sieve, zeolite and metal-organic frameworks) membranes. In this work, two industrial 

case studies of gas separation are considered: post-combustion CO2 capture and biogas 

upgradation by CO2 removal. The selection of CO2 removal technology depends on plant 

location, production capacity and product quality specifications. The chosen applications 

have challenges in terms of energy consumptions, economics and environmental burden. 

The separation performance of the membrane system is evaluated and compared for same 

membrane in all membrane stages. Two optimization problems were solved for each 

membrane: minimization of total area of membranes and minimization of total 

mechanical power. For both applications, best performing membranes were identified to 

target the minimum separation cost.   

Keywords: Membrane System, Post-combustion CO2 Capture, Biogas Upgradation. 
 

1. Introduction  

Membrane separation is one of the emerging technologies that has the potential to replace 

traditional energy intensive separation technologies. In process industry, solvent 

absorption (amine absorption), solid adsorption (pressure swing adsorption) and 

cryogenic distillations are used to separate gas mixtures (Tock, 2013; Leung et al., 2014). 

Recently, gas separation using membranes has received considerable attention for 

industrial applications, namely air separation, syngas ratio adjustment, hydrogen recovery 

in refinery, post-combustion CO2 capture and biogas upgradation by CO2 removal 

(Ismail, 2015). Membrane separation has several advantages over conventional gas 

separation technologies, e.g., no use of chemicals, mild operating conditions, simple 

installation and easier operation, and flexibility to integrate with other separation 

technologies.  

Several studies have explored post-combustion CO2 capture from coal and natural gas 

power plants, using membranes (Kárászov et al., 2020). Zhang et al. (2014) studied post 
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combustion carbon capture, and amine-based capture system had higher energy 

consumptions and environmental impact compared to the membrane process. Arias et al. 

(2016) optimized performance of multi-stage membrane superstructure for capturing CO2 

from flue gases. Lee et al. (2018) optimized membrane superstructure for CO2 capture 

from coal power plants, and showed the benefits of using different membranes in different 

membrane stages. Scholz et al. (2013) performed detailed analysis of biogas upgradation 

into biomethane using several types of membranes. Finally, Sun et al. (2015) reviewed 

several biogas upgrading technologies, including cryogenic separation, physical and 

chemical absorptions, pressure swing adsorption, membrane separation, hydrate 

formation and biological methods.  

Post-combustion CO2 capture and biogas upgradation have several challenges such as 

energy consumptions, capital and operating costs. The selection of CO2 removal 

technologies depends on plant location, production capacity, product quality 

specifications, availability of financial resources, environmental regulations and energy 

integration with CO2 emitting plant or industrial site. In order to achieve the required 

purity and capture rate, membranes are arranged in complex series-parallel 

configurations. This arrangement gives numerous degrees of freedom for membrane 

system design. In this study, a generic superstructure of membrane modules/units, with 

all possible inter- and intra-connections, is used (see Figure 1). A mixed integer non-

linear programming problem of membrane superstructure has been developed in AMPL 

(A Mathematical Programming Language). A database of several membranes has been 

used, and optimization method can choose any membrane from the database.   

Two important industrial case studies of gas separation are considered: post-combustion 

CO2 capture and biogas upgradation by removing CO2. There are eight (M1-M8) and 

seven (m1-m7) membranes respectively in the membrane databases for post-combustion 

CO2 capture and biogas upgradation. The separation performance of the membrane 

system was evaluated and compared for all membranes. For each membrane, two 

optimization problems were solved: minimization of total area of membrane (TAM), and 

minimization of mechanical power (TP). The optimization results allow to identify best 

performing membranes for both applications. In the mathematical model of the membrane 

system, different membranes can also be used in different membrane stages to improve 

the separation performance. For both applications, the final solution always contains same 

membranes in both membrane stages, as Membrane Database has limited number of 

membranes. In case of large number of membranes in the Membrane Database, the 

proposed approach can identify best performing membrane clusters, based on the 

membrane permeability and selectivity. These findings could be useful to the membrane 

researchers for further improving the performances of their membranes.  

 

2. Membrane Superstructure Model   

Figure 1 presents generic membrane superstructure or system. Fresh feed is 

compressed [C(F)] and cooled-down [HE(F)] before it enters the membrane system. 

The fresh feed can go to any membrane stage or unit in the membrane system. Figure 

1 shows ith membrane stage of the membrane system, inside the dotted line. Each 

membrane stage has a membrane module [MEM(i)], a mixer [M(f,i)], two splitters 

[S(r,i), S(p,i)] on retentate and permeate sides, a compressor [C(i)] and cooler [HE(i)] 
for permeate stream. The membrane stage mixer [M(f,i)] is used to mix the fresh feed 

and retentate and/or permeate recycled from the same or different membrane stages.  
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Finally, there are two mixers [M(r), M(p)] for both product streams. A turbine [T(P)] 

and a heater [HE(P)] are used to recover the mechanical power, from the retentate 

side product.  

 

Figure 1: Membrane superstructure for gas separation 

The mathematical model for the membrane superstructure is a mixed integer non-linear 

programming (MINLP) problem. Table 1 summarizes balances and equations for 

different units in membrane system.  

Table 1: Summary of MINLP model for membrane system 

Units Balances or Equations 

Membrane system Mass and component balances 

Splitters [S(F), S(r,i), S(p,i)] Mass balance 

Mixers [M(f,i), M(p), M(r)]  Mass and component balances 

Membranes [MEM(i)] Mass and component balances, membrane transport 

Compressors, turbines [C(F), 

C(i), T(P)]  

Equations for calculating outlet temperatures and 

powers (ηC = 0.8, ηT = 0.85) 

Heaters, coolers [HE(F), 

HE(i), HE(P)] 

Heat balance equation for calculating heat duties 

Constraints  Limits on the product purities 
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3. Post-combustion CO2 Capture

The flue gases contain mainly N2, O2, CO2 and H2O. This work considers separation of 

water prior to the use of membrane separation for CO2 capture. It is assumed that the feed 

contains 14% CO2 and remaining 86% N2. The CO2 and N2 mixture have a flow rate of 

10 mol/s at 1 bar pressure and 40 0C temperature. The membrane database has eight 

membranes (M1-M8), and Figure 2(c) shows CO2 permeance and CO2/N2 selectivity for 

different membranes. M1-M3 are polymeric membranes whereas M4-M8 are inorganic 

(graphene, carbon molecular sieve, zeolite, metal-organic frameworks) membranes. The 

feed side pressure for membrane units can vary between 5 and 13 bar (Minh et al., 2008). 

The CO2 and N2 streams from the membrane system have 95% purities. 

Figure 2: Post-combustion CO2 capture using different membranes: (a) minimization of 

total area of membranes, (b) minimization of total mechanical power, (c) CO2 permeance 

versus CO2/N2 selectivity for all membranes. 

For this study, the membrane system has two membrane stages. For each membrane in 

the membrane database, two optimization problems were solved: minimization of total 

area of membranes, and minimization of total mechanical power (feed compression +  

stage compression – product expansion). The optimization problems have 252 variables 

and 266 constraints, and they were solved using BARON (v21.1.13) solver in AMPL

(v20210220), with a maximum solution time of 30 minutes. Figure 2(a) presents 

optimization results for minimum total area of membranes. This figure also presents

related values of total mechanical power obtained for different solutions. Similarly, 

Figure 2(b) presents results for minimum total mechanical power (2nd optimization 

problem) for all membranes. To minimize the total cost of separation, both total area of 

membranes and total mechanical power are equally important. It can be seen from Figures 

2(a) and 2(b) that membrane M1 has the best performance for separating a mixture of 

CO2 and N2. Further, membrane M1 has best compromise between permeance and 

selectivity. Membrane M4 has very high permeance but low selectivity, whereas 

membrane M8 has very high selectivity but low permeance. 

(a) (b)

(c)
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4. Biogas Upgradation by CO2 Removal

The biogas contains 38% CO2 and remaining 62% CH4. The biogas has a flow rate of 10 

mol/s at 1 bar pressure and 40 0C temperature. The membrane database for biogas 

upgradation has seven membranes (m1-m7), and Figure 3(c) shows CO2 permeance and 

CO2/CH4 selectivity for different membranes. m1-m3 are polymeric membranes whereas 

m4-m7 are inorganic (graphene, carbon molecular sieve, zeolite, metal-organic 

frameworks) membranes. Two membrane stages were considered for separating CO2 and 

CH4 mixture. The feed side pressure for membrane units can vary between 5 and 13 bar. 

The CO2 and CH4 streams from the membrane system have 95% purities. 

Figure 3: Biogas upgradation by CO2 removal using different membranes: (a) 

minimization of total area of membranes, (b) minimization of total mechanical power, (c) 

CO2 permeance versus CO2/CH4 selectivity for all membranes. 

Similar to previous case study, two optimization problems were solved for all the 

membranes: minimization of total area of membranes, and minimization of total 

mechanical power. Both optimization problems have 252 variables and 266 constraints, 

and they were solved using BARON solver in AMPL, with a maximum solution time of 

30 minutes. Figure 3(a) presents optimization results for minimum total area of 

membranes. This figure also present values of total mechanical power obtained for 

different solutions. Figure 3(b) presents results for minimum total mechanical power for 

all membranes, along with related total area of membranes. For minimum total cost of 

separation, solutions obtained for membrane m6 are better than other membranes, as these 

solutions are nearer to the corner. Membrane m6 has best compromise between 

permeance and selectivity, as shown in Figure 3(c). 

The mathematical model of membrane system can use different membranes in different 

stages to improve the separation performance. For biogas upgradation, we minimized 

total area of membranes, and this optimization problem has 250 variables and 268 

constraints. The optimal solution uses membrane 3 in both stages (see solution ms(3,3) 

in Figure 3(a)). Figure 4 provides detail of solution ms(3,3). If we have many membranes 

(a) (b)

(c)
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in the Membrane Database, it is possible to identify best performing membrane clusters, 

for separating a gas mixture. 

Figure 4: Details of solution ms(3,3);  membrane 3 was used in both membrane stages

5. Conclusions

This study develops a mathematical model for multi-stage membrane superstructure. The 

model is a mixed integer non-linear programming problem that has been implemented in 

AMPL, and solved using BARON solver. Two case studies, namely post-combustion 

carbon capture and biogas upgradation were solved using the developed mathematical 

optimization problem. The optimization results present optimal flows and pressure levels 

inside the membrane system, and also allow to identify best performing membranes. The 

proposed approach can identify best performing membrane clusters, based on the 

membrane permeability and selectivity. This knowledge could be useful to the membrane 

developers for further improving the performances (selectivity versus permeance) of 

membranes. The future studies will focus on separating a gas mixture with three 

components, using different number of membrane stages. 
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Abstract 

Municipal solid waste is a mixture of urban and industrial waste, consisting of 

biodegradable fractions, such as food waste, waste wood or paper, but also fossil-based 

fractions, among which plastics, textiles, metals, glass and aluminum. Depending on the 

type of waste and recovery technique, biogas, biofuels, heat, electricity and metals, are 

possible value-added products. As both biogenic and fossil carbon are present among 

waste fractions, the reduction and capture of carbon is crucial in the deployment of sound 

waste management technologies. There are several physicochemical CO2 capture 

technologies, and they have their own benefits, challenges and limitations. Some 

techniques are in the development phase, and they need to be evaluated for their possible 

integration within waste-to-energy system. We have developed a waste-to-energy 

superstructure, including digestion, gasification and incineration as the main waste 

treatment technologies. The latter is the main contributor of CO2 emissions. The 

developed superstructure includes three options for CO2 capture from flue-gases: amine 

absorption, temperature swing adsorption and membranes. Amine absorption and 

membranes are considered for biogas upgradation, whereas pressure swing adsorption 

and membranes are evaluated for syngas upgradation. This study systematically generates 

and compares a number of decarbonization options for waste-to-energy system. The 

formulated optimization problem is a mixed integer linear programming problem, and 

total annual cost is considered as the performance criterion for generating decarbonizing 

options. For carbon capture from flue-gases, amine absorption and temperature swing 

adsorption found to be better options compared to membrane separation 

Keywords: Waste-to-Energy; Anaerobic digestion; Gasification; Incineration; CO2 

Capture.  

1. Introduction 

Waste generation has increased significantly in the past few years. Close to 2 billion tons 

of municipal solid waste (MSW) are annually produced (worldbank.org). Despite a 

hierarchy framework to process and treat waste (reduce, reuse, recycle, dispose), about 

one third is still mismanaged. In that regard, several technologies have been recently 

developed and are available with different costs and environmental impacts (Brunner and 

Rechberger, 2015; Lombardi et al., 2015). For instance, frequently overlooked steps, such 

as waste collection and sorting are now subject of research and optimization, with 

advanced collection and separation systems established in numerous countries.  
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Figure 1 shows a simplified flowchart for different waste management pathways, 

focusing on three major waste categories: MSW, biomass and plastics. MSW has some 

unsorted biomass and plastics. The biomass contains 12% whey, 55.1% green waste, 

18.4% food waste and 14.5% others. Plastics have 74% PET and 26% others (LDPE and 

HDPE). Anaerobic digestion is used to convert biomass into biogas; the organic material 

is broken down by bacteria into a methane rich gas in the absence of oxygen. Syngas is 

produced by gasification of plastics in the presence of air or steam at high temperature, 

while incineration is a thermal recovery process. If required, both the biomass and plastic 

fractions of MSW can be thermally valorized. Note that plastics are a major contributor 

in lower heating value of MSW.   

In order to reduce the environmental impact of the waste management, CO2 can be 

captured, sequestrated and mineralized. Process integration and optimization techniques 

are useful in identifying sustainable and cost-effective strategies for waste management 

(Rizwan et al., 2020). Münster and Meibom (2011) have explored the integration of waste 

into energy system. Puchongkawarin and Mattaraj (2020) developed a decision-making 

tool for the design of the optimal MSW facilities. Recently, Castro-Amoedo et al. (2021) 

have studied biowaste valorization along with CO2 removal from biogas. There are 

several physicochemical CO2 capture technologies, such as physical adsorption (pressure 

swing adsorption, temperature swing adsorption), chemical absorption (amine absorption, 

ammonia scrubbing, selexol process), membrane separation and cryogenic technology 

(Tock, 2013). Each technology has its own benefits, challenges and limitations. Some of 

these technologies (e.g., temperature swing adsorption, membranes) are in the 

development phase, and they need to be evaluated for their possible integration with 

waste-to-energy system (Sharma and Maréchal, 2019). Each technology has some key 

requirements, namely materials, heat and electricity. Further, CO2 source (biogas, syngas, 

flue-gases) has specific characteristics, such as composition, temperature, pressure and 

impurities. Hence, there is a strong need to evaluate and compare the integration of 

different CO2 capture technologies within waste-to-energy system.   

In this study, we have developed a waste-to-energy superstructure, where digestion (AD), 

gasification (GAS) and incineration (INC) are the main waste treatment options (i.e. 

conversion units). The superstructure includes several options for CO2 capture: amine 

absorption, temperature swing adsorption and membranes for flue-gases; amine 

absorption and membranes for biogas upgradation; pressure swing adsorption and 

membranes for syngas. A mixed integer linear programming (MILP) formulation was 

implemented in AMPL/GLPK. Eight decarbonizing options/scenarios were 

systematically generated and compared, using total annual cost as objective function.  

2. Waste-to-Energy Superstructure 

2.1 Description 

Municipal waste generated can be divided into three broad categories: biomass, plastics 

and MSW. The biomass can be converted into biogas and compost, using an anerobic 

digester. The plastics can be recycled as monomers or can be used to produce syngas and 

char inside a gasifier. Finally, MSW can be combusted inside an incinerator to produce 

heat (or high-pressure steam). The biogas can be used in a furnace and/or upgraded to 

natural gas using amine absorption (MEA) and membranes (MEM). Syngas can be 

upgraded to natural gas using pressure swing adsorption (PSA) and membranes, whereas 

char can be burned in a furnace for heat recovery. The high-pressure steam from the 

incinerator is used to generate electricity via steam cycle. Amine absorption, temperature 
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swing adsorption (TSA) and membranes are used for CO2 capture from flue-gases. With 

proper infrastructure, heat from waste-to-energy system can be supplied to the district 

heating networks. The captured CO2 can be converted into methane using surplus 

electricity or cheap electricity from the grid. Anerobic digester is present in Cluster 1 

(C1), whereas gasifier and incinerator are considered in Cluster 2 (C2). There is no 

exchange of mass between clusters, but resources (such as electricity, natural gas and 

water) can be inter-changed between clusters.  

 
Figure 1: Waste-to-energy superstructure, with carbon capture, utilization and storage. 

2.2 Mathematical Formulation  

For each technology in the superstructure, linear models were developed that include 

mass flows, temperature-enthalpy profiles, as well as the use or generation of electricity. 

Each technology/model also include fixed and variable capital (𝑐𝑖
𝑖𝑛𝑣1, 𝑐𝑖

𝑖𝑛𝑣2) and operating 

(𝑐𝑖,𝑡
𝑜𝑝1

, 𝑐𝑖,𝑡
𝑜𝑝2

) costs. Both binary (Ψ𝑖,𝑡 , Ψ𝑖) and continuous (𝑓𝑖,𝑡, 𝑓𝑖) variables are used. The 

former accounts for the existence of a unit and the latter for its size. Based on a given 

objective function, the optimizer defines connections among technologies, levels of use 

of technologies (material flows) and heat flows. Interested readers are referred to Castro-

Amoedo et al. (2021) for more details on the problem formulation.  

The optimization problem can be solved for capital cost, operating cost or total annual 

cost (TAC) (see Eq. 1), in which the first element on the right-hand side concerns 

operating costs, while the second element pertains to annualized capital expenditures, 

with 𝑖 interest rate (0.08) and 𝑛 assumed lifetime (20 years). Constraints were added to 

ensure: (i) minimum (𝑓𝑖
𝑚𝑖𝑛) and maximum (𝑓𝑖

𝑚𝑎𝑥) units capacities (Eq. 2); (ii) resource 

consumption (Eq. 3 and 4), with  𝑚̇𝑟,𝑖,𝑡 
+  the reference quantity of resource ∀𝑟 ∈ 𝑅 needed in 

each unit; (iii) mass balances (Eq. 5) for each unit; (iv) heat cascade formulation (Eq. 6 

and 7) based on Maréchal and Kalitventzeff (1998), where residual heat (𝑅̇𝑡,𝑘) is 
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transferred, according to the 2nd law of thermodynamics, from higher (𝑘 + 1) to lower 

temperature level (𝑘). The mathematical formulation is written in AMPL (v20210220) and 

solved by CPLEX (v12.7.0.0), on a Microsoft Windows v10.0.18363 machine equipped 

with a 2.4 GHz Intel(R) Xeon (R) 8 core processor and 16 GB RAM. 

𝑚𝑖𝑛 𝑇𝐴𝐶 ($/𝑦) =  ∑ ∑(𝑐𝑖,𝑡
𝑜𝑝1

 . 𝛹𝑖,𝑡 + 𝑐𝑖,𝑡
𝑜𝑝2

. 𝑓𝑖,𝑡)

𝑖∈𝐿𝑡∈𝑇

 . 𝑡𝑡
𝑜𝑝

+ 
𝑖(1 + 𝑖)𝑛

(1 + 𝑖)𝑛 − 1
 . ∑(𝑐𝑖

𝑖𝑛𝑣1 . 𝛹𝑖 + 𝑐𝑖
𝑖𝑛𝑣2. 𝑓𝑖)

𝑖∈𝐿𝑢

 Eq. 1 

𝑓𝑖
𝑚𝑖𝑛 . 𝛹𝑖,𝑡  ≤   𝑓𝑖,𝑡  ≤  𝑓𝑖

𝑚𝑎𝑥. 𝛹𝑖,𝑡 , ∀ 𝑖 ∈ 𝐿, ∀ 𝑡 ∈ 𝑇 Eq. 2 

𝑀̇𝑟,𝑖,𝑡 
+ =  𝑓𝑖,𝑡 . 𝑚̇𝑟,𝑖,𝑡 

+ ,   ∀𝑟 ∈ 𝑅,   ∀𝑖 ∈ 𝐿,   ∀𝑡 ∈ 𝑇 Eq. 3 

𝑀̇𝑟,𝑖,𝑡 
− =  𝑓𝑖,𝑡 . 𝑚̇𝑟,𝑖,𝑡 

− ,   ∀𝑟 ∈ 𝑅,   ∀𝑖 ∈ 𝐿,   ∀𝑡 ∈ 𝑇 Eq. 4 

∑ 𝑀̇𝑟,𝑖,𝑡 
−

𝑖∈𝐿

=  ∑ 𝑀̇𝑟,𝑖,𝑡 
+

𝑖∈𝐿

,   ∀𝑟 ∈ 𝑅,   ∀𝑡 ∈ 𝑇 Eq. 5 

∑ 𝑄̇𝑖,𝑡,𝑘 .  𝑓𝑖,𝑡 + 𝑅̇𝑡,𝑘+1 − 𝑅̇𝑡,𝑘 = 0,   ∀𝑡 ∈ 𝑇, ∀𝑘 ∈ 𝐾, 𝑤𝑖𝑡ℎ 𝑇𝑘+1 ≥ 𝑇𝑘 ,

𝑖∈𝐿

 Eq. 6 

𝑅̇𝑡,𝑘  ≥ 0, 𝑅̇𝑡,𝑘𝑚𝑎𝑥+1 = 𝑅̇𝑡,1 = 0 ,   ∀𝑡 ∈ 𝑇 Eq. 7 

 

3. Waste-to-Energy: A Case Study 

For this case study, the availabilities of waste are: biomass (BM) = 1.89 t/h, plastics (PL) 

= 0.25 t/h and MSW = 15 t/h. Maximum heat demands of districts heating networks 

(DHN) are 500 kW and 15,000 kW respectively for clusters C1 and C2. For DHN, water 

supply and return temperatures are 60 and 55 0C, respectively. The selling price of 

biogas/syngas is 15.5 $/MWh, and selling price of bio-SNG is 30.9 $/MWh. There is a 

carbon tax (99 $/t-CO2) on CO2 release into environment. If captured CO2 is converted 

into methane, there is carbon credit of 99 $/t-CO2. The storage of CO2 costs 20.6 $/t-CO2, 

without any carbon tax or credit. We have generated several scenarios as shown in Table 

1, to analyze different decarbonizing strategies. Scenarios S1, S3, S5 and S7 consider 

CO2 storage, whereas scenarios S2, S4, S6 and S8 convert captured CO2 into methane.  

Table 1: Decarbonizing options/scenarios for waste-to-energy system 

 
Biogas CO2 

capture 

Syngas CO2 

capture 

Flue-gases CO2 capture CO2 

Storage 

CO2 to 

Methane MEA MEM TSA 

S1        

S2        

S3        

S4        

S5        

S6        

S7        

S8        

Table 2 presents results for all decarbonizing scenarios. The capital cost (ACC) is 

calculated yearly, whereas operating cost (MOC) is evaluated on monthly basis. These 

results can virtually be divided into several parts (via horizontal lines): economics and 
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waste flows, heat and electricity generation, anaerobic digestion and biogas upgradation, 

plastics gasification and syngas upgradation, CO2 capture from flue-gases using amine, 

membrane and TSA processes, and methanation (CO2 to methane). The flue-gases from 

incinerator contain 9,461 kg/h CO2. The amounts of captured CO2 by MEA (8,431 kg/h) 

and TSA (8,516 kg/h) processes are comparable, whereas only 6,445 kg/h CO2 is captured 

by MEM process.  

Table 2: Optimization results for different scenarios (SN: steam network, PV: 

photovoltaics, Env: environment, ELE: electricity) 

  S1 S2 S3 S4 S5 S6 S7 S8 

 MOC, $/m -794000 -225000 -984000 4977000 -614000 4085000 -932000 5110000 

 ACC, $/y 114000 1130000 357000 10730000 539000 8708000 697000 11164000 

 MSW-INC, t/h 15 15 15 15 15 15 15 15 

 BM-AD, t/h 2 2 2 2 2 2 2 2 

 PL-GAS, t/h 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 

C1 DHN, kW 143 386 143 386 143 386 143 386 

C1 SN, kW 113 176 113 176 113 176 113 176 

C1 PV, kW 42 42 42 42 42 42 42 42 

C2 DHN, kW 15000 15000 15000 15000 15000 15000 15000 15000 

C2 SN, kW 17284 17572 19898 24216 18534 21835 16966 21097 

C2 PV, kW 145 145 145 145 145 145 145 145 

C1 BG-MEA, Nm3/h 365 365 365 365 365 365 365 365 

C1 MEA-Bio NG, kW 1920 1920 1920 1920 1920 1920 1920 1920 

C1 MEA-CO2-ST, kg/h 245  245  245  245  

C1 MEA-CO2-MT, kg/h  245  245  245  245 

C2 Char-FUR, kg/h 49 49 49 49 49 49 49 49 

C2 FUR-CO2, kg/h 77 77 77 77 77 77 77 77 

C2 SG-PSA, kW 1505 1505 1505 1505 1505 1505 1505 1505 

C2 PSA-Bio NG, kg/h 3677 3677 3677 3677 3677 3677 3677 3677 

C2 PSA-CO2-ST, kg/h 643  643  643  643  

C2 PSA-CO2-MT, kg/h  643  643  643  643 

C2 FG-CO2-Env, kg/h 9461 9461       

C2 FG-MEA, kg/h   51318 51318     

C2 MEA-CO2-Env, kg/h    1030 1030     

C2 MEA-CO2-ST, kg/h   8431      

C2 MEA-CO2-MT, kg/h    8431     

C2 FG-MEM, kg/h     51318 51318   

C2 MEM-CO2-Env, kg/h      3020 3020   

C2 MEM-CO2-ST, kg/h     6445    

C2 MEM-CO2-MT, kg/h      6445   

C2 FG-TSA, kg/h       51318 51318 

C2 TSA-CO2-Env, kg/h        946 946 

C2 TSA-CO2-ST, kg/h       8516  

C2 TSA-CO2-MT, kg/h        8516 

C1,2 Total CO2-MT, kg/h  888  9319  7333  9404 

C1,2 MT-CH4, kW  4482  47065  37034  47495 

C1,2 EC-H2, kg/h  161  1695  1333  1710 

C1,2 EC-O2, kg/h  645  6777  5333  6839 

C1,2 ELE-EC, kW  6722  70581  55537  71225 

C1,2 ELE-Market, kW 14860 8348 14828 -52891 12634 -40734 14363 -54208 
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For scenarios S4, S6 and S8, the electricity produced by the waste-to-energy system is 

not enough for the methanation, due to large quantity of captured CO2. Hence, electricity 

is imported from the grid, and these scenarios are not profitable (negative MOC means 

profit). The flue-gases from incinerator are the main contributor of CO2 emissions. We 

did not compare the decarbonizing options based on capital cost due to large variabilities 

in the cost estimation. MEA and TSA are heat driven processes, whereas MEM process 

requires electricity for compression. Further, MEA and TSA processes have comparable 

CO2 product quality, which is better than MEM process. Scenarios S3 (MEA, AOC = -

984,000 $/m) and S7 (TSA, AOC = -932,000 $/m) are more profitable than scenario S5 

(MEM, AOC = -614,000 $/m). More CO2 has been captured in scenarios S3 and S7, 

compared to scenario S5. Further, scenario S5 (12,634 kW) exports less electricity to the 

grid compared to scenarios S3 (14,828 kW) and S7 (14,363 kW). Hence, MEA and TSA 

are better choices for decarbonizing the waste-to-energy sector.  

4. Conclusions     

This study presents a waste-to-energy superstructure, comprising digestion, gasification 

and incineration as the main treatment options. Amine absorption, membrane separation 

and pressure and temperature swing adsorptions were considered for carbon capture along 

with methanation for converting captured CO2 into methane. A mixed integer linear 

programming problem was formulated for waste-to-energy system. In total, eight 

decarbonizing options/scenarios were compared, and appropriate cost, credit and tax were 

used for CO2 storage, CO2 conversion to CH4, and CO2 emissions to the environment, 

respectively. For carbon capture from flue-gases, amine absorption and temperature 

swing adsorption outperformed membrane process, based on the operating cost, amount 

of captured CO2 and quality of the CO2 product.   
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Abstract 
Green biorefinery corresponds to sustainable processing of green biomass, such as grasses 
and legumes with a high content of leaf protein and soluble sugars to produce multiple 
products. The extraction of proteins from leaves represents an attractive alternative 
solution to the high European dependency on soy imports. A demonstration facility for 
R&D in Aarhus University Foulum, Denmark, optimizes the separation of protein-rich 
concentrates from green biomass. Besides the leaf protein concentrate, the facility also 
produces a fibrous pulp that can be used for ruminant feed, biomaterials, or bioenergy, 
and a nutrient-rich residual juice, that can be used for biogas production and fertilizer. 
The green biorefinery was simulated using Aspen Plus V12 for the processing of grass-
clover. The process included the maceration of the harvested biomass; mechanical 
fractionation into a fiber-rich press cake and a green juice; heat treatment of the green 
juice for precipitation of soluble leaf proteins; centrifugation and drying of the 
precipitated protein; and anaerobic digestion of the residual brown juice for biogas 
production. The simulation was validated based on data obtained from the demonstration 
plant, resulting in an overall yield of 40 % crude protein in the protein concentrate. The 
feasibility of the implementation of the biorefinery on a commercial scale was calculated 
using Aspen Process Economic Analyzer. 
 
Keywords: green biorefinery; leaf protein concentrate; process modeling; techno-
economic assessment. 

1. Introduction 
The increasing world population and increased prosperity lead to increased demands for 
nutritious food. Simultaneously, the climate changes caused by greenhouse gas emissions 
and the ecological problems of nutrient leaching, pesticide use, and soil carbon depletion 
caused by intensive agricultural practices call for the development of alternative and more 
sustainable ways to produce food, feed, biobased materials, fuels, and energy. This can 
be done through integrated biorefineries. Perennial green biomass also referred to as 
forage crops, stands out as a promising feedstock with low environmental impact and is 
suitable for producing both protein-rich food and feed, biochemicals, and bioenergy 
(Manevski et al., 2018, Njakou Djomo et al., 2020).  
Green biorefining stimulates and increases the synergy of the local agricultural sector 
(Corona et al., 2018a). Else, the production of leaf protein from forages decreases the 
dependency on protein-rich feed imports, especially soy, used for monogastric animals. 
According to FAO, soybean meal imports in Europe increased from 19.1 million tonnes 
in 1990 to around 26.2 million tonnes in 2019. The majority of the imported protein feeds 
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are used in pig and poultry meat production. Denmark is the fourth biggest pig producer 
in the EU, after Spain, Germany, and France, and imports around one million tonnes of 
protein for feed per year (EUROSTAT, 2021). This makes the biorefining of green 
forages an attractive local protein production in Denmark. 
Besides being rich in protein, forage crops (that includes grass, clover, and lucerne) are a 
source of fibers, soluble sugars, amino acids, lactic acid, biogas, among other products. 
This multiple-product green biorefinery system allows developing greener alternatives to 
conventional products, employing different routes, and integrating different technologies 
chosen according to the target products. In this scenario, the green biorefinery is presented 
in a simple form producing a feed protein concentrate, a fibrous pulp, and biogas from 
the residual liquid. The process was simulated in Aspen Plus V12, based on the results 
obtained in the green biorefinery demonstration platform located at the Aarhus University 
Foulum research center, Denmark (Corona et al., 2018; Feng et al., 2021). The anaerobic 
digester was simulated based on studies previously developed by Rajendran et al. (2014) 
and Llano et al. (2021). Techno-economic assessment of the biorefinery was carried out 
at Aspen Process Economic Analyzer V12. 

2. Materials and Methods 
2.1. Process description 
Grass-clover was chosen as the feedstock used in the green biorefinery. The crop is named 
ForageMax 45 and is a mixture of tall fescue, ryegrass, and red- and white clovers. The 
grass-clover mixture was harvested and processed at AU Foulum research center. The 
biomass is harvested whole and directly collected using a GrassTech GT140 harvester 
and processing generally starts within one hour after the forage is harvested. At the 
demonstration plant, the grass-clover is first shredded in a stationary cutter to a theoretical 
length of 4-5 cm. Then, crushed leaves are sent to a CirTech P25 Twin screw press where 
the solid and liquid streams are mechanically separated. The pressed fiber pulp was set to 
be sold as ruminants feeding. The pressed green juice is filtered in a 50 µm-filter bowl 
screen and pumped through a two-step heat exchanger, where the first step recovers heat 
from the residual liquid (brown juice) and heats the green juice to around 65°C and the 
second adds additional heat to reach 85 °C. The protein precipitates by heat and solids are 
separated in a decanter centrifuge producing a protein paste and the residual brown juice. 
The protein paste, that contains approximately 47 % of dry matter content, is sent to a 
vacuum drier to reach a dry matter content greater than 95 %. Dried LPC was set to be 
commercialized as monogastric feeding. Meanwhile, the brown juice was established to 
be fermented by anaerobic digestion in a biogas plant, due to its high content of easily 
digested organic compounds. The biogas and liquid digestate can increase the process's 
profitability. Table 1 presents the composition of the fractions that were used in the 
simulation. 
2.2. Process modeling and simulation 
The integrated process was simulated in Aspen Plus V12. The thermodynamic model 
NRTL was chosen because it correlates and calculates the mole fractions and activity 
coefficients of different compounds and facilitates the liquid and the gas phase in the 
biogas production (Rajendran et al., 2014). The feed flow rate was 40 tonnes per hour. 
Due to its complexity and variable composition, the biomass was defined as a 
nonconventional solid. In this case, the density and enthalpy of the grass-clover were 
estimated based on the proximate, ultimate, and sulfate analysis. Gates–Gaudin–
Schuhman model was used for the particle size distribution, assuming a max grass length 
of 30 cm. The maximum particle length was reduced to 5 cm in the cutter. The screw 
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press was modeled using two stages: an RYield reactor to convert the shredded 
nonconventional biomass into the biomass composition shown in Table 1, and a separator 
to split the fiber and green juice streams. 
 
Table 1. Chemical composition (%DM) of the fractions in the grass-clover biorefinery. 

Component Biomass Fiber GJ BJ LPC 
Protein 21.6 17.8 29.2 6.6 47.0 
Carbohydrates 15.0 6.7 31.7 50.6 16.9 
Hemicellulose 16.7 21.2 7.6 8.9 6.7 
Cellulose 19.6 28.7 1.3 0.1 2.2 
Lignin 9.0 13.3 0.3 0.3 0.4 
Ash 13.1 8.2 23.0 31.3 16.4 
Others 5.0 4.1 6.8 2.2 10.4 
DM content (%) 18.0 32.8 9.4 4.7 >95.0 

 
The kinetic model in the anaerobic digester was evaluated at thermophilic conditions at 
55 °C since the operation in the range of 50 to 65 °C is the best regime for maximizing 
biogas production (Llano et al., 2021). The anaerobic digester was divided into two steps 
in the simulation. First, a stoichiometric reactor was used to simulate the hydrolysis 
reactions based on the extent of the reaction. Hydrolysis of cellulose, hemicellulose, 
sugars, and lipids are modeled in this reactor. Then, a CSTR was used where the amino 
acids degradation and the acidogenic, acetogenic, and methanogenic reactions were 
modeled on a kinetic basis. A residence time of 15 days was defined. The chemical 
reactions, as well as the fractional conversions and kinetic constants, were found in the 
literature (Llano et al., 2021; Rajendran et al., 2014). The stream from the digester was 
cooled down in a flash column to remove water, improving the biogas composition. 
2.3. Techno-economic assessment 
The techno-economic evaluation was performed in Aspen Process Economic Analyzer 
V12 based on the process simulated in Aspen Plus. Capital expenses (CAPEX) are 
determined as a factor of the total purchase of equipment. It includes direct (equipment, 
installation, instrumentation) and indirect (engineering, construction, contingency) costs, 
and working capital. Equipment costs were either estimated from the designed process 
equipment or obtained from the market quotation. Fresh grass-clover is seasonal and only 
available to harvest between May and October in Denmark. Therefore, the biorefinery 
should operate during these months, in a total of 4200 hours per year of operation. All 
operating expenses (OPEX) are based on Danish prices. This includes the raw materials, 
utilities, and labor costs, as well as the taxes rate and product sales. Electricity, cooling 
water, and steam are the process utilities required. The LPC selling price was based on 
the price of soybean meal. Three different prices were compared: conventional (330 
USD/tonne), non-GMO (535 USD/tonne), and organic (840 USD/tonne). 

3. Results and Discussion 
The integrated green biorefinery flowsheet simulated in Aspen Plus is shown in Figure 1. 
Table 2 presents an overview of the main streams and compares the simulated and 
expected production. The simulated production per tonne of biomass is validated by the 
mass streams from Corona et al. (2018b). The volume of biogas estimated in the 
simulation is higher than the volume estimated by the expected results. This is because 
the latter estimates the volume of the upgraded biogas, that is the methane potential 

903

879 



produced. Conversely, the simulated results only consider the biogas production before
the upgrade, i.e., the biogas stream contains other components, essentially carbon dioxide.

Figure 1: Integrated green biorefinery process diagram to produce feed protein and biogas. 

The composition profile of the brown juice, biogas, and liquid digestate fractions, in mole 
fraction and excluding the water content is shown in Table 3. The macromolecules 
content was consumed during the anaerobic digestion, leading to the production of 
components such as ammonia, CO2, and methane. Methane and CO2 contents obtained in 
the biogas phase agree with the results expected in the literature (Penteado et al., 2019).

Table 2. Overview of the main process streams in the integrated green biorefinery. 
Biomass Fiber GJ BJ LPC Biogas

Flow rate (tonne/h) 40.0 14.7 25.3 22.5 1.4 0.29
DM content (%) 18.0 32.8 9.4 4.7 98.1 0.0
Simulated input and product (in 
kg) per tonne (DM) of biomass

1000 668.1 331.9 145.9 184.6 38.43*

Expected input and product (in 
kg) per tonne (DM) of biomass

1000 668.0 332.0 146.0 186.0 9.15*

*Unit: m3

Table 3. Mole fractions of brown juice, biogas, and digestate excluding the water content.
Component BJ Biogas Digestate
Carbohydrates, lipids 0.798 0.000 0.024
Cellulose, hemicellulose, lignin 0.202 0.000 0.023
Ammonia 0.000 0.001 0.048
Carbon dioxide 0.000 0.405 0.461
Methane 0.000 0.593 0.159
Others 0.000 0.001 0.285

The capital and operating expenses summary, as well as the total product sales when LPC 
is commercialized using the conventional soybean meal price, are reported in Table 4. 
The cost of the raw material corresponded to around three-quarters of the total operating 
cost. In this scenario, the total product sales are smaller than the total operating cost, 
which means that the expenses are greater than selling profits. Therefore, under those 
conditions, the implementation of the green biorefinery is unprofitable.
Sensitivity analysis investigated the feasibility of implementing the integrated grass-
clover biorefinery to produce LPC, biogas, and fiber. Besides the selling price of the 
protein, the analysis evaluated the rate of return in case the biomass was estimated 
cheaper, the CAPEX was reduced and the biorefinery operated the whole year. Figures 2 
and 3 presents the variation of the profitability index as a function of the LPC price and 
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fluctuation on the CAPEX. Figure 3 reports the index when the biomass cost was 
estimated 20 % cheaper than the cost reported.

Table 4. Techno-economic assessment of the integrated green biorefinery.
CAPEX Mio. USD OPEX Mio. USD/year

Total purchase of equipment 1.96 Raw material 4.72
Direct costs 4.15 Utilities 0.11
Indirect costs 3.09 Labor and maintenance 0.45
Fixed capital investment 7.24 Total operating cost 6.05

Total project capital cost 9.33 Total product sales 5.25

The profitability index shows the relative profitability of the project, showing the present 
value of the benefits relative to the costs. An index greater than one suggests that the 
project is profitable. Index lower than one was observed in all the cases when LPC was 
sold using the conventional price. In the case of selling the LPC at non-GMO prices, the 
process would be profitable only if the biorefinery operates throughout the whole year, 
with a biomass price at least 20 % cheaper than the estimated (Figure 3b). Conversely, 
selling the LPC at the organic price for soybean meals resulted in a profitability index 
greater than one in different scenarios (Figures 2b, 3a, and 3b).

Figure 2: Profitability index of the biorefinery operating during (a) 6 and (b) 12 months per year. 

Figure 3: Profitability index of the biorefinery operating during (a) 6 and (b) 12 months per year, 
at a 20 % cheaper biomass cost.

In the case of annual production, the biorefinery payout return varied between 5 and 6 
years, while this return could be reduced to around 4 years if the biomass was cheaper 
than the estimated value. However, those scenarios are not viable in a Danish 
environment, where the annual operation is not realistic. To obtain yearly production, the 
biorefinery needs to integrate the processing of biomasses that are available during winter. 
This could be grass clover silage, but then the LPC product would be replaced by amino 
acids, as the soluble protein degrades during ensiling, and the processing should be 

greater than one in s (Figures s (Figures 
(a)                                                                 (b)

(a)                                                                 (b)
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adapted to recover amino acids, using membrane filtration instead of precipitation and 
centrifugation. This scenario was not carried out within this study. Integration of other 
routes in the biorefinery to obtain higher-value products is also strongly recommended. 
Upgraded biogas, for example, could increase the total product sales, since biomethane is 
more expensive than non-upgraded biogas. The same could be obtained separating the 
white protein, used for human consumption, from the green LPC. The use of fiber and 
brown juice in other applications also needs further investigation. A complete techno-
economic assessment could indicate the best scenario to be implemented. 

4. Conclusions 
An integrated biorefinery was simulated using data from a demonstration-scale platform. 
The techno-economic assessment suggested that the process could be profitable for 11 
out of 36 scenarios evaluated. Payout return of around 10 years is expected for an organic 
LPC. Moreover, the cost of biomass has a major effect on profitability. Whole year 
production would be a good way of increasing the profit, reducing the return time to 5-6 
years. However, the process needs to be adapted to other feedstock with different product 
opportunities. It could also be placed in countries where a continuous annual operation 
on grasses is viable. The integration of different routes is further recommended. 
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Abstract 

Calcium-looping (CaL) is a promising post-combustion CO2 capturing technology, 

showing high compatibility with the cement industry. Nevertheless, this technology is 

still under development, and its implementation still leads to higher operating costs. 

Aiming cost reduction, the influence of using alternative fuels, commonly used in the kiln 

of cement plants, in the CaL calciner was studied in terms of key performance indicators, 

such as the amount of fuel needed, the carbonator’s heat duty, the air separation unit 

(ASU) energy consumptions, and the amount of CO2 captured in the process. Thus, a CaL 

process was modeled using Aspen Plus, incorporating a carbonator model developed 

using Python. Different random compositions of petroleum coke, tire chip, waste-derived 

fuels, olive pomace, dangerous liquid residues, and cork residues were studied. It was 

concluded that the use of petroleum coke leads to lower fuel consumption and ASU 

consumption due to its higher heating value. However, the alternative fuels studied have 

advantages in terms of CO2 capture efficiencies and energy produced in the carbonator 

due to lower sulfur contents. Therefore, the sorbent flowrates would have to increase to 

obtain the same capture efficiency using petroleum coke, which would result in a higher 

process cost. Alternative fuels are promising in CaL and should be a topic for further 

studies. 

Keywords: Calcium-looping, cement, CO2 capture, alternative fuels, process modeling 

1. Introduction 

The cement industry is one of the primary industrial sources of CO2 emissions, 

responsible for 7 % of the anthropogenic emissions (IEA, 2018). Carbon capture 

utilization and storage (CCUS) technologies emerge as a strategy to achieve carbon 

neutrality by 2050, according to the objectives defined in the 13th United Nations 

Sustainable Goals. A promising CCUS technology is the calcium-looping (CaL) process. 

This process presents a high synergy with the cement industry since a Ca-based sorbent, 

limestone, is also a raw material for cement production. This process comprehends two 

circulating fluidized bed (CFB) reactors, a calciner, and a carbonator. The kiln flue gas is 

fed to the carbonator, in which the CO2 is captured, reacting with CaO to form CaCO3. 

The carbonation reaction is exothermic and the heat released is used to produce electrical 

energy through a steam cycle. The CaCO3 formed in the carbonator enters the calciner to 

be regenerated to CaO. As the calcination is endothermic, energy must be supplied to the 

calciner through oxyfuel combustion. The most common fuel used in CaL pilot-plants is 

still coal (Hornberger et al., 2017; Arias et al., 2018). However, there is an effort to replace 

it with greener fuels, such as biomass (Alonso et al., 2014). The use of alternative fuels 

(AFs) leads to the maintenance of fossil fuel reserves and is also reported to enable cost 
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reduction in cement plants (Chatziaras et al., 2014). Thus, they are partially replacing 

fossil fuels to fulfill the kiln’s energy requirements. The calcium looping process must 

follow as the cement industry evolves towards using higher percentages of alternative 

fuels. This work aims to assess the influence of these fuels on CaL performance and 

evaluate them as an alternative to fossil fuels. The alternative fuels studied were the ones 

usually consumed in Portuguese cement plants. 

2. Model development 

2.1. The experimental procedure 

An experimental laboratory-scale fluidized bed reactor (FBR) system with an electric 

oven was used to obtain the multicyclic sorbent deactivation curve of a CaO-based 

sorbent. The sorbent used was a Portuguese limestone provided by an industrial partner 

with particle sizes of 250-355 μm. The carbonation and calcination were conducted at 

atmospheric pressure and 700 ºC and 970 ºC, respectively. The FBR is fed with synthetic 

mixtures (at 20 ºC, 1 bar, 5 mL/min) of 25 mol% CO2 and 75 mol% air during carbonation 

and 80 mol% CO2 and 20 mol% air during calcination. A limestone sample with 

approximately 5 g was loaded into the reactor for each experiment. Four deactivation 

curves were obtained, and the average sorbent conversion was considered. 

2.2. The process model 

The CaL process model was developed using the commercial software Aspen Plus. A 

diagram of the process is presented in Figure 1. The calciner (T = 970 ºC, p = 1 atm) was 

modeled by minimizing the free energy of Gibbs. 100 combinations of 6 different fuels 

(petroleum coke, waste-derived fuels, tire chip, olive pomace, dangerous liquid residues 

(DLR), and cork residues) with different random compositions were provided to the 

calciner to fulfill its energy requirements. The proximate and ultimate analysis of each of 

these fuels is shown in Table 1. These analyses were provided by an industrial partner 

and are presented on a dry basis. The sulfur present in all the fuel samples was considered 

organic. The fuels were burnt in oxyfuel conditions, and the amount of fuel needed was 

estimated to maintain the calciner’s temperature at 970 ºC. A 4 mol% O2 excess was 

considered in the calciner. A fresh sorbent stream was added to the calciner, and a sorbent 

purge was withdrawn to reach a steady-state with an average sorbent conversion. 

High-efficiency cyclones were placed at the exit of both the calciner and the carbonator 

to separate the CO2 concentrated stream and the CO2 free flue gas from the sorbent stream, 

respectively. They had a separation efficiency higher than 99 wt% and a pressure drop of 

approximately 0.01 atm. The composition of the flue gas being treated in the carbonator 

was based on the annual emissions of a Portuguese cement plant (Cimpor, 2019). 

Currently, the model is customized to describe a pilot-plant unit; therefore, the process 

was designed to treat a hundredth part of the actual emissions. A heat exchanger between 

the CO2 concentrated stream leaving the calciner and the sorbent stream leaving the 

carbonator was considered in the model, as suggested by Martínez et al. (2013). This heat 

integration leads to a reduction in the calciner’s energy requirements, decreasing fuel 

consumption. The CO2 concentrated stream was compressed with moisture removal. 
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Figure 1. Diagram of the CaL process model developed using Aspen Plus. Solid streams are 

presented in red, gas streams in blue, liquid ones in pink and gas-solid streams in green. 

Table 1. Proximate and ultimate analysis of fuel samples. 

Fuel analyses 
Petroleum 

coke 

Waste 
derived 

fuels 

Tire chip 
Olive 

pomace 

Dangerous 
liquid 

residues 

Cork 

residues 

P
ro

x
im

at
e Moisture 9.0 26.9 1.4 12.1 22.0 12.1    

Fixed 
Carbon 

87.2 66.2 21.3 90.9 100.0 94.0 

Volatiles 12.0 0.0 63.1 0.0 0.0 0.0 

Ash 0.8 33.8 15.6 9.1 0.0 6.0 

U
lt

im
at

e 

Ash 0.80 33.80 15.58 9.10 0.0 6.00 

C 85.80 46.90 71.41 49.80 63.20 51.40 

H 3.92 5.56 4.55 5.83 9.47 5.91 

N 0.00 0.85 0.58 1.59 2.35 0.00 

O 0.00 0.54 0.01 0.00 0.00 0.00 

S 6.16 0.58 1.59 0.16 0.57 0.00 

O 3.34 11.77 6.28 33.52 24.41 36.69 

2.3. The carbonator model 

The carbonator model followed the work developed by Romano (2012). The model was 

implemented in Python and returned the CO2 capture efficiency. This value was inserted 

on the process model, yielding ash and sulfur flowrates, which entered the carbonator 

model as an input. This process was repeated until convergence was reached. The 

deactivation over multiple carbonation/calcination cycles was considered based on the 

semi-empirical law proposed by Grasa and Abanades (2006). Based on the empirical 

curves, the deactivation constant, k, and residual sorbent conversion, Xr, were estimated 

at 0.086 and 4.78, respectively. The experimental fitting of the deactivation is represented 

in Figure 2. Since there is no combustion occurring in the laboratory calciner, the 

experiments were performed in the absence of SO2. The deactivation caused by the 

presence of sulfur was assumed to follow the correlation proposed by Romano (2012). In 

the carbonator, the sorbent recycling flowrate to CO2 flue gas flowrate ratio and the fresh 

sorbent flowrate to CO2 flue gas flowrate ratio were set to 6 and 0.5, respectively. The 

CFB hydrodynamics was considered by applying the model by Kunii and Levenspiel 

(2000), as proposed by Romano (2012). A reactor height of 40 m and a mean superficial 

velocity of 5 m/s were considered.  
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Figure 2. Comparison between model and experimental multicyclic sorbent deactivation. The 

model deactivation constant, k, and residual sorbent conversion, X r, were estimated at 0.086 and 

4.78, respectively. The experimental data was obtained for a Portuguese limestone (250-355 μm).

3. Results

3 .1 . Amount of fuel needed

The influence of the fuel mixture composition on the amount of fuel needed in the calciner 

is presented in Figure 3. The increase of the petroleum coke fraction in the fuel mix

corresponds to a decrease in the amount of fuel needed in the calciner. On the other hand, 

an increase in the waste-derived fuel (WDF) and olive pomace contents results, in general, 

in an increase in the fuel requirements in the calciner. This increase is explained by the 

carbon content of the fuels. A higher carbon content results in a higher calorific value, 

thus in a lower amount of fuel needed in the calciner. Petroleum coke is the fuel with 

higher C content, and both WDF and olive pomace have low carbon contents.

Figure 3. Variation in the mass flowrate of total fuel needed in the calciner as a function of fuel 

composition variations. 

3 .2 . Air separation unit energy consumptions

The oxygen needs in the calciner and thus the air separation unit electric consumptions 

decrease with the increased use of petroleum coke, as represented in Figure 4. This

decrease was expected, since a higher content of petroleum coke results in lower fuel 

consumption, thus a lower amount of oxygen required for the combustion reactions. It is 

possible to see the reverse trend when using higher amounts of olive pomace.
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Figure 4. Variation of the air separation unit (ASU) consumptions as a function of fuel composition 

variations.  

3.3. CO2 capture in the carbonator 

As depicted in Figure 5, the increase of the petroleum coke content results in a reduction 

of the CO2 capture efficiency. This reduction is related to the high sulfur content of this 

fuel, as can be seen in Figure 2. Therefore, for presenting the same capture efficiency as 

the one obtained using the AFs studied, the recycling sorbent stream flowrate would have 

to increase, thus increasing process costs.  

 

Figure 5. Variation of the carbonator CO2 capture efficiency as a function of fuel composition 

variations.  

3.4. Carbonator’s heat duty 

The carbonation reaction is exothermic, thus releasing energy. The influence of each of 

the fuels in the energy released in the carbonator is presented in Figure 6. It is possible to 

conclude that the petroleum coke content also significantly impacts the energy released 

in the carbonator. With the increase of this content, the energy released decreases because 

of the lower CO2 capture efficiencies obtained using this fuel. The lower captures mean 

the extent of the reaction is lower, thus producing less energy. 
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Figure 6. Variation of the energy released in the carbonator as a function of fuel composition 

variations.  

4. Conclusions 

The use of fuels commonly consumed in the cement plant, including AFs, was evaluated 

in terms of total fuel required, ASU electric consumptions, CO2 capture in the carbonator, 

and heat released during carbonation. It was concluded that petroleum coke had the 

highest heating value, thus requiring lower flowrates to fulfill the calciner’s energy 

requirements. Despite the higher AFs’ flowrates required, they may reduce fuel costs 

since their market values are lower than fossil fuels. However, the higher amounts of fuel 

also lead to higher O2 usage and, therefore, ASU’s electric energy consumption, which 

corresponds to higher process costs. On the other hand, petroleum coke has a high sulfur 

content, resulting in lower carbonator CO2 capture for equal sorbent flowrates; therefore, 

higher sorbent flowrate and, thus, higher costs are required to keep CO2 capture 

efficiency. Consequently, it can be concluded that these AFs are a promising alternative 

for the CaL process and should be a topic for further studies, including a global 

comparative economic analysis, where the carbon tax savings due to the negative CO2 

emissions of AFs is considered. 
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Abstract 

The paper presents a systems integration approach for the computational strain design 

workflow for the identification of reaction eliminations that reshape network connectivity 

in a way that both biomass production and revenue are simultaneously maximized by 

utilizing a bilevel optimization framework. The research expands the outer problem of 

the bilevel approach that is established in the literature with the use of a superstructure 

scheme that addresses several design options simultaneously with the several options to 

select the pathways. The superstructure scheme is laid out to reduce model and 

optimization complexities. We assess the effect of the new optimization goal, for varying 

number of metabolic interventions to the downstream separation network and the 

bioprocess revenue.  We then compare the enriched model to the previous analysis, which 

only aims to maximize the production of a target metabolite. To showcase the 

functionality and effectiveness of the developed model we applied the workflow to a 

muconic acid producing strain of S. cerevisiae (iMM904 GEM) that includes the 

necessary heterologous pathways. Overall, this computational framework could be an 

important step to bridge the gap between strain design and process engineering. 

 

Keywords: Systems metabolic engineering, superstructure optimization, bilevel 

programming, OptKnock, DBTL 

1. Background and Motivation 

Metabolic engineering has played a central role in the production of chemicals and 

materials but it can be time consuming and costly to produce strains suitable for industrial 

production (Choi et al., 2019). Still, recent advances in metabolic pathway reconstruction 

and in silico modelling have enabled the development of microbial strains suitable for 

efficient cell-factories. Directed evolution, for instance, has assisted in the expansion of 

the possible spectrum of products that can be derived from host strains. It involves a cyclic 

process that aims to reveal functional gene variants through an alternation between gene 

diversification and screening (Arnold, 2018). It has also made the manufacturing of 

enzymes and biofuels more environmentally friendly, by shifting the input from 

petroleum-based to renewable sources such as lignocellulosic. 

 Emerging infrastructures of Design-Build-Test-Learn (DBTL) paradigms hold a 

tremendous promise to innovate with new products and novel integrated processes that 

can be intensified for the highest efficiency. DBTL is a cycle that starts with the Design 

of the strains based on the industrial specifications through a computational workflow. 

The next steps are Build, where the strains are manufactured with protein engineering 

techniques, and then Test with omics analysis and high throughput measurements. 
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Finally, the Learn step derives insightful solutions, by using data management and life 

cycle analysis, that are fed back into the first step.  

The current DBTL cycle approach in biofoundries and biorefineries, however, 

remains a disconnected sequence of tasks with an undisclosed potential to integrate. 

Specifically, the genetic modifications of strains are usually driven by the overproduction 

of target metabolites without considering downstream processing which can account for 

up to 80% of the overall bio-production cost (Kiss et al., 2015). The explosion of data 

masks poor interactions between upstream science and engineering. The Design step 

typically produces hundreds, thousands, or even millions of candidates, but Build stages 

proceed with a few choices, often made by heuristics and intuition. The selected choices 

hold no guarantees for quality and all inheritance and knowledge generated by the in-

silico work is lost and unexplored. For instance, by utilizing convex analysis models on 

Genome Scale Models (GSM) the behavior of cells can be explained and predicted. But, 

still these models fail to incorporate the downstream processing steps that are ahead 

Additionally, the connection between the Design and Learn accounts for the weakest of 

all interactions in the DBTL cycle. Generally, the Design deploys over-simplified 

formulations for mass and balances and neglects important aspects of process 

engineering. Lastly, yields in pilot or industrial scale installations dramatically inferior to 

initial promises. As such, there is an instrumental potential for the synthesis of in-silico 

methods meant to optimize the metabolism of organisms and the design of downstream 

processes.  

2. Methodology  

To address the issues raised we propose to expand the mathematical formulation of a 

metabolic reconstruction tool (OptKnock) by including the downstream processing step 

in the form of a superstructure. In this part, we will present the extension of the model, 

then explain the mathematical formulation utilized and present the enlisted 

superstructure. 

2.1. Model Extension 

The problem faced in this work is the following. Given the target product, the 

microorganism with constrained based model available and reconstruction options to 

select, as well as the sequences of process engineering trains with options, optimize the 

process efficiency, select the metabolic reconstruction and select the process engineering 

options most suitable to the problem. 

The objective function is the maximization of the profit, which is calculated by 

the final product flow and value, as well as the downstream costs. The problem is 

constrained by the outer problem, which is the process performance, and the inner 

problem, which is is the cell performance, and together they form a bilevel optimization 

problem. To simplify the final optimization problem, it was decided to solve it using 

linear programming, which led to the utilization of simplified engineering models for unit 

operations and shortcut cost models. Additionally, the engineering processes focused only 

on the extracellular products as a part of this study. 

2.2. Mathematical Formulation 

Optknock is a bilevel programming framework for identifying gene knockout strategies 

for microbial strain optimization (Burgard et al., 2003). The initial OptKnock 

optimization problem consists of an inner problem and an outer problem. The inner 

problem aims to maximize the biomass and the outer problem aims to maximize the target 

product. These two targets are competing for the carbon intake and are referred as a 

bilevel optimization problem.  
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The novel approach in this research is that the outer problem is expanded to 

include new process engineering objectives and the maximization goal is shifted from 

product maximization to profit optimization. Since profit is derived directly from the 

desired final product flow, the product is still maximized, but now process engineering is 

also accounted for. Specifically, the downstream processing is translated in the form of a 

superstructure. Each processing stage (S) includes the selected possible separation 

processes (T). Separation steps include pretreatment, cell removal, product isolation, 

concentration, purification and refinement. The existence of each process is denoted by 

binary variables. The superstructure’s input stream is a variable determined by the 

optimization problem and is separated into five components: product, liquid by-product, 

water, cells, and solid by-product. Each process redistributes the stream’s components 

through linearized model equations. The problem can be constrained based on the specific 

bio-process characteristics and objectives.

Our method entails the identification and the categorization of these 

technologies as well as the insertion of the model equations and their economic 

parameters into the optimization problem. The model has been developed in GAMS 

environment and solved using the BARON global optimization solver. On the tables 

below, the mathematical formulation is presented.

Table 1 (left): The mathematical representation of the model with the new maximization goal

Table 2 (right): Representation of the additional sets of constraints

2 .3 . Enlisted Downstream Processing

The downstream processing of each bioproduction might be different but the general steps 

for the treatment of the fermentation broth are similar. The difference lies on the specific 

process that is chosen. For our case, we selected a broad spectrum of separation processes 

for each step but these can be adjusted to each specific case. In the case that a step should

be omitted we added the option BYPASS where the process flows remain the same for 

the following step. Below we present the superstructure illustration.

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑃𝑟𝑜𝑓𝑖𝑡 Target Maximization
Outer
Problem

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑣𝑏𝑖𝑜𝑚𝑎𝑠𝑠 Biomass Maximization

Inner 
Problem

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

 𝑆𝑖𝑗 𝑣𝑗 ∀𝑖 ∈ 𝐼

𝑗∈𝐽

Mass Balance

𝑉𝐸𝑋 𝑔𝑙𝑐 𝑒 ≥ −𝑣𝐸𝑋 𝑔𝑙𝑥 𝑒
𝑢𝑝𝑡𝑎𝑘𝑒 Nutrient intake requirement

𝑉𝐸𝑋 𝑒 ≥ −𝑣𝐸𝑋 𝑒
𝑢𝑝𝑡𝑎𝑘𝑒 Oxygen intake requirement

𝑉𝐴𝑇𝑃𝑀 𝑣𝐴𝑇𝑃
𝑚𝑎𝑖𝑛𝑡 ATP requirement

𝑉𝑏𝑖𝑜𝑚𝑎𝑠𝑠 ≥ 𝑓𝑣𝑏𝑖𝑜𝑚𝑎𝑠𝑠
𝑚𝑎𝑥 𝑊𝑇 Biomass production 

requirement

𝐿𝐵𝑗𝑦𝑗 ≤ 𝑣𝑗 ≤ 𝑈𝐵𝑗𝑦𝑗 ∀𝑗 ∈ 𝐽 Limits of reaction flows

  − 𝑦𝑗  ≤ 𝐾

𝑗∈𝐽

Allowed knockouts

𝑦𝑗 ∈   𝑣𝑗 ∈ 𝑅 ∀𝑗 ∈ 𝐽

New constraints
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Figure 1: Representation of the enlisted downstream processing superstructure

3. Illustration Cases

Here we will showcase the optimization problem and present a case study for the 

utilization of the proposed methodology and tool. The case is the production of muconic 

acid from the strain of S. cerevisiae (iMM904 GEM) that includes the necessary 

heterologous pathways.

3 .1 . Optimization Problem

The degrees of freedom of the problem include the biological system, meaning the 

reactions that could be knocked out and the processes engineering objectives that are the 

separation trains and equipment for a 5 year operation. Firstly, a parametric analysis will 

be conducted by using only the metabolic reconstruction tool where glucose intake 

(substrate) and minimum allowed biomass will be set to derive the deleted reactions and 

output distributions. It is assumed that up to 2 reactions can be knocked out, the separation 

task can be repeated but with a single and different piece of equipment, no separation 

stages are repeated in a sequence and the separation mixtures are ideal (e.g. no azeotropes 

and recycles are allowed). Then, after calculating the initial product flows, they will be 

inserted to the disconnected superstructure for the downstream processing and the results 

will be compared to the proposed approach, which is solving the two problems

simultaneously. It is expected that designing the biological system and the separation 

together will yield a more profitable production.

3 .2 . Case Study

Muconic acid is considered a “bio-privileged molecule” as it enables the production of a 

variety of useful products such as bio-plastics and energy (Bentell et al., 2001). It can be 

produced by renewable resources such as lignocellulosic biomass through bio-production

(Wu & Maravelias, 2019). Therefore it crucial to build strains, by introducing 

heterologous enzymes and genes, which can produce muconic acid economically. S. 

cerevisiae is a microorganism that has been used for the production of muconic acid and 

has been chosen for this study (Wang et al., 2020).

3 .2 .1 . Parametric Analysis ( Cases A, B, C)

As it was discussed in this part we conducted a parametric analysis on the biological 

system. Specifically, we assessed the effect of substrate intake (glucose) and minimum 

biomass on the final concentration of the product, the liquid by-product and the water. It 

was revealed that increasing the minimum biomass, with the same glucose intake, led to 

significantly increased product formation, with a slight decline in the liquid-by product 

and the same water content. By returning the glucose intake to its initial value and 

decreasing the minimum biomass it, the results showcased that the product was again 
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higher than the initial value, but the liquid by-product and the water contents got reduced. 

The results can be seen on the Table 3. 

3.2.2. Conventional Approach (Case C) 

Here we set the glucose intake to 0.5 mmol/(dDW∙h) and the minimum biomass to 0.01 

h-1 and solved the biological system to find the metabolites distribution which were then 

used to feed the downstream processing superstructure. By solving the problem we found 

the deleted reactions, the chosen processes, as well as the total profit, which was 1,7 mil. 

$. Again, the overall results can be seen on the Table 3. 

3.2.3. Simultaneous Approach (Cases D, E, F, G) 

By solving the optimization problem simultaneously we were able to reveal different 

metabolic reconstruction options (deleted reactions), which led to a different selected 

downstream processing scheme and a more profitable production that reached 16.1 mil. 

$ (Case D). This significant increase in profits could not be revealed from the 

disconnected approach. For Case E, the problem is further constrained by demanding the 

minimum product flow at the final stage to be 40 kg/h. This forces the algorithm to 

comply with this restriction and thereby choosing the suitable parameters that decrease 

the overall profits to 14.9 mil. $. Similarly, in the following run (Case F) the restriction 

of maximum water content at the final stage decreases the overall profit to 13.9 mil. $. 

Finally, in Case G the two previous restrictions are relaxed and the effect of increased 

glucose intake is examined. Specifically, at 0.1 mmol/(dDW∙h) substrate intake the profits 

increase to 37.9 mil. $, a significant increase from Case D, where glucose intake was just 

the half amount. 

3.3. Summary of Results 

On the following table, a summary of the results is presented. 

Table 3: Summary of all the cases inputs and outputs 

 

Scenario A B C D E F G

Glucose Intake [mmol/dDW∙h] 1 1 0.5 0.5 0.5 0.5 1
Minimum Biomass [h^(-1)] 0.01 0.05 0.01 0.01 0.01 0.01 0.01
Min Product Flow [kg/h] 0 40
Maximum Water Flow [kg/h] 0 0.02

Deleted Reaction 1 r_3529 r_0892 r_0253 r_0073 r_4025 r_2220 r_3028
Deleted Reaction 2 r_3530 r_1836 r_1994 r_0806 r_4608 r_4608 r_3908
Product [mmol/dDW∙h] 0.16 0.47 0.31 0.41 0.41 0.41 0.85
Liquid By-product [mmol/dDW∙h] 3.02 2.79 0.71 0.54 0.54 0.54 0.91
Water [mmol/dDW∙h] 4.35 4.36 1.82 1.77 1.77 1.77 3.45
Product S11 [Kg/h] 36.6 40.1
Water S11 [kg/h] 0.027 0.005

S1 T1 T1 T1 T1 T1
S2 T3 T3 T3 T3 T3
S3 T6 T6 T6 T6 T6
S4 T12 T10 T8 T8 T12
S5 T13 T13 T13 T13 T13
S6 T18 T17 T20 T20 T20
S7 T21 T21 T21 T21 T21
S8 T23 T23 T23 T23 T23
S9 T25 T25 T25 T25 T25
S10 T27 T27 T27 T27 T27
S11 T28 T28 T28 T28 T28
Profit [mil. $] 1.7 16.1 14.9 16.9 37.9

Conventional Simultaneous 

Output

Superstructure

Input
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From the results above it is evident that there are significant deviations between the 

simultaneous and the staged approach, including differences in the knockout reactions. 

At the same time different types of separation trains for each case are observed, where 

the number and the types of DSP both change as different engineering constraints are 

used. Even in the simultaneous approach, each case has resulted into different sets of 

knockouts. Engineering constraints hold a lesser impact on profitability, holding a similar 

order of magnitude, so the approach can be good for targeting provided that the design 

stage retains DOF for reaction knockouts and that the optimization is allowed to switch 

different types of separation 

4. Future Work 

The present work contributes to the connection between the Design and Learn steps of 

the DBTL cycle, but still follows a simplified approach on the superstructure 

construction. Therefore, the development of a complete superstructure with all the 

possible downstream processes and their respective more realistic equations that describe 

them, could yield more accurate results. Moreover, this work does not contribute to the 

Design to Build steps, which consists of the scaling-up, that is affected by kinetic 

parameters and dynamics. An approach that simultaneously solves the GSMs and kinetics 

is still needed. Additionally, systematic methods that connect GSMs with the real world 

are important and therefore complete superstructures have to ‘wait’ before this part of 

systematization is addressed. The proposed methodology described in the paper has value 

mostly as a targeting and scoping tool and not as an all-encompassing solution. 
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Abstract 
This paper aims to present an optimization approach for the design and planning of a 

hydrogen supply chain in Corsica Island. The formulation developed is based on a multi-

period approach using a Mixed Integer Linear Programming (MILP) methodology. Three 

configuration scenarios of the Hydrogen Supply Chain (HSC) considering three single 

objective case studies are investigated related to the minimization of the total daily cost, 

of greenhouse gas emissions and of a risk-based index, respectively. The production of 

hydrogen is expected to cover the future demand of the fuel cell electrical vehicles 

(FCEVs) fleet planned for the 2030 period. The key innovation proposed here is to 

reconcile design and strategic planning over a short period using monthly fluctuations of 

hydrogen demand according to the predicted fuel consumption of the territory. The single 

objective optimizations for the case study show a decentralized distribution of production, 

storage and distribution units across the territory, with a lowest hydrogen cost of 8 €/kg 

during the period of high demand. This approach can be used to explore appropriate 

incentive mechanisms to boost the hydrogen economy in an isolated territory. 
 

Keywords: Hydrogen, optimization, low-carbon fuel, Mixed-Integer Linear 

Programming, isolated area. 

1. Introduction 
The urgency to fight climate change has stimulated more and more interest in shifting 

investments from fossil-based energy to renewable sources. In that context, islands could 

play a key role in global development by becoming perfect places for demonstration of 

new clean technologies and pathways for sustainable development (Krajačić et al., 2008). 

In these isolated territories, the impact of the fossil fuel price is even higher due to its 

transport and their grid network is less stable. These reasons make the grid management 

more difficult and increase the cost of electricity production (Lamas, 2016). The massive 

integration of renewable energies (RE) on the small island grids could further increase 

the disturbances between production and demand because of their intermittency. In that 

context, hydrogen can be viewed as an “energy vector” and play a major role in 

decarbonization if generated by electrolysis using renewable energy surplus (Krajačić et 

al., 2008). Due to actual hydrogen demand scale, today investments remain yet too risky 

for wide-scale green hydrogen production that could compress costs, creating the so-

called chicken-and-egg problem. 

According to several studies, the economic viability of a hydrogen production system 

associated with renewable energy sources depends strongly on the identification of an 
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optimal configuration of the hydrogen supply chain (HSC) (Seo et al., 2020; Won et al., 

2017). The HSC design has been mostly studied at the strategic/tactical level compared 

to the operational levels. The inputs of such models are constituted by a set of options for 

the production, storage and transportation, while the outputs are relative to the type, 

number, location and capacity of the production, storage and transportation units. Most 

works devoted to hydrogen supply chain modelling are based on mathematical 

programming approaches, mainly Mixed Integer Linear Programming (MILP) and 

generally limited to single objective (cost minimization) (Won et al., 2017) or bi-criteria 

assessment, i.e., cost-environment or cost-risk (Kim and Moon, 2008). These 

contributions generally involve a rolling horizon approach in which the overall horizon 

is divided into strategic periods during which capital investments are made at the very 

beginning and which can last up to 10 years. The decision variables made at a given period 

are then coupled over the large time-span, since the optimization strategy is viewed 

globally. As reported in (Agnolucci et al., 2013) only a few infrastructure optimization 

studies explored the spatial and temporal dynamics of demand which was identified as a 

key sensitive parameter with sources of uncertainty that can be addressed by a stochastic 

approach (Kim et al., 2008).  

The objective of this work is to demonstrate deployment of hydrogen technologies in an 

integrated manner in a remote territory, here Corsica Island. The formulation is based on 

the previously developed long-term MILP approach for HSC infrastructure design (De 

Leon Almaraz, 2014). The key innovation we propose here is to extend this framework 

to the combined design and planning over a shorter period using monthly fluctuations of 

hydrogen demand according to the fuel consumption of the territory.  

2. Presentation of the methodological framework  
2.1. Principles  
The methodological framework for the design and operation of a future HSC is treated 

regarding a geographical and multi-period approach in order to supply hydrogen demand 

profile of a given geographic area.  The optimization problem was formulated as a Mixed 

Integer Linear Programming (MILP) model using GAMS® modeling system with 

CPLEX 12 solver (De Leon Almaraz, 2014). Three optimization objectives are 

considered in this study: an economic criterion that consists of the minimization of the 

total network cost, both in terms of capital and operating expenditures, an environmental 

criterion related to the global Greenhouse Gas (GHG) emissions of the supply chain and 

a risk index (Kim and Moon, 2008) subject to: supply, demand, mass conservation and 

technical performance. A set of techno-economic parameters is considered: production, 

storage, and transport options, possible locations, available energy sources, capital and 

operation cost, technical features (efficiency, capacity, lifetime, load factors, storage 

capacities) and GHG emissions of the various technologies. Several constraints are 

involved considering continuous, integer and binary variables. The integer decision 

variables represent the location of facilities, sizing decisions and the selection of suitable 

production technologies and of transportation modes between facilities. The binary 

(respectively continuous) variables indicate the hydrogen transport direction (respectively 

flows). The model then provides as outputs the HSC optimal configuration. 

2.2. Model assumptions 
The assumptions of the model can be summarized by: 

- The territory is divided into grids; 

- Production units can only be installed on specified grids; 

- Only photovoltaic (PV) and wind power are considered for energy sources; 
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- Hydrogen is produced only by electrolyzers and supplied in gaseous form; 

- Only transport by tanker-trucks may exist between grids; 

- Produced hydrogen is dedicated to transport application and distributed via 

refueling stations.

2.3. Mathematical formulation  
The novelty of this work is based on the use of finer grains for time interval definition 

(i.e. monthly intervals) that require the definition of additional parameters such as the 

number of operating hours and the power of the electrolyzers.   

2.3.1 Constraints 
The total availability of primary energy sources in a grid g during time period t (Atotgt) is 

given as a sum of three terms, that correspond to the initial average availability of 

renewable energy sources (A0egt), the import of primary energy sources from the grid 

network (IPESegt) and the rate of consumption of the primary energy sources (ESUgt): 

 𝐴𝑡𝑜𝑡𝑔𝑡 = ∑ (𝐴0𝑒𝑔𝑡 + 𝐼𝑃𝐸𝑆𝑒𝑔𝑡) − 𝐸𝑆𝑈𝑔𝑡    ∀ 𝑒, 𝑡, 𝑔 ; 𝑔 ≠ 𝑔′
𝑒  

ESUgt is equal to the product of gama (ɣpj) the rate of utilization of primary energy source 

by the daily hydrogen production rate for each production plant type p and size j (PRpjigt). 

ESUgt = ∑ (γpj × PRpjigt) ∀ g, t; g ≠ g′pji   

 

The Energy Availability EAgte is the product of the energy power source capacity in each 

grid during period t and for each energy source (ESPgte) multiplied by the number of hours 

per month (Mht) and the capacity factor for each energy source (CFet) divided by the total 

number of days per month (dMt). 

𝐸𝐴𝑔𝑡𝑒 =
∑(𝐸𝑆𝑃𝑔𝑡𝑒 × 𝑀ℎ𝑡 × 𝐶𝐹𝑒𝑡)

𝑑𝑀𝑡
    ∀𝑒, 𝑔, 𝑡: 𝑔 ≠ 𝑔′ 

The installation of production (IPpjigt), storage (ISsjigt), and distribution (IFSfsjigt) units only 

occurs at the first period t. 
IPpjigt = 0, ∀ t ≠ 1;     ISsjigt = 0, ∀ t ≠ 1;    IFSfsjigt = 0, ∀ t ≠ 1;  

 

The minimum and maximum daily production capacity (PCAPmin
p,i,j) and (PCAPmax

p,i,j)  

is respectively calculated by considering the lower and upper daily capacity factor of  

electrolyzer type p and size j given in hours per month (respectively ELCFmin
p,j,i and 

ELCFmax
p,j,i) and the assigned power of each given electrolyser in kW (PElecp,I,j). Nd is 

the number of days per month and gama (ɣpj) is the rate of utilization of primary energy 

source (in kWh/kg). 

𝑃𝐶𝑎𝑝𝑝𝑖𝑗
𝑚𝑖𝑛 =

(
𝐸𝐿𝐶𝐹𝑝𝑖𝑗

𝑚𝑖𝑛

𝑁𝑑
) × 𝑃𝐸𝑙𝑒𝑐𝑝𝑖𝑗

𝛾𝑝𝑗
  ;               𝑃𝐶𝑎𝑝𝑝𝑖𝑗

𝑚𝑎𝑥 =

(
𝐸𝐿𝐶𝐹𝑝𝑖𝑗

𝑚𝑎𝑥

𝑁𝑑
) × 𝑃𝐸𝑙𝑒𝑐𝑝𝑖𝑗

𝛾𝑝𝑗
  ;  ∀ 𝑝, 𝑖, 𝑗 

2.3.2 Objective functions 
The monthly average cost of hydrogen (Mcostt) is determined by summing the capital 

costs of all units over the lifetime of the units (lf) with the maintenance and operating 

costs (Opext) of the units over the sum of the total demand for each grid g of product type 

i in time period t (DTigt) multiplied by the number of days per month (dMt). 

𝑀𝑐𝑜𝑠𝑡𝑡 = ((𝐶𝑎𝑝𝑒𝑥𝑡 ÷ 𝑙𝑓) + 𝑂𝑝𝑒𝑥𝑡)/ ∑(𝑑𝑀𝑡 × 𝐷𝑇𝑖𝑔𝑡) ; ∀𝑒, 𝑔, 𝑡; 𝑔 ≠ 𝑔′

𝑖𝑔

 

The total global warming potential is determined from the total daily greenhouse gas 

(GHG) emissions of the production, storage and transport units. Similarly, the relative 
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risk of hydrogen activities is determined by risk ratings calculated based on a risk index 

method including the  risk of production, storage and transport (Kim and Moon, 2008). 

2.4. Study case   

2.4.1 Demand evaluation 
Corsica is a French region that is greatly impacted by tourist activities. According to the 

annual evolution of the fuel consumption in the island, 2.5% of the equivalent energy 

could be substituted by hydrogen fuel in 2030 (“Le Schéma Régional Climat, Air, Energie 

(SRCAE) de Corse,” n.d.). This corresponds to a daily hydrogen demand ranging from 

4.3 t/day in January to 8.1 t/day in August. The fluctuating hydrogen demand expressed 

in energetic values is presented in figure 1. 

 

 
Figure 1: H2 Demand and RE source potential  

2.4.2 Techno-economic parameters 
Table 1 presents the minimum and maximum values of the most significant parameters 

for production, storage, transport and distribution units. 

 
Min-Max Production unit 

 
Compressor unit  Storage unit  Transport unit  Distri. unit 

Capacity 300-5000 (kW) 126 (kg/h) 50-30000 (kg) 670 (kg) 20-1300(kg/d) 

CAPEX 1038-3500 (€/kW) 635 (€/kW) 500 (€/kg) 746 (€/kg) 410-1480 (k€) 

O&M 0,11-0,20 (€/kg) 0,007 (€/kg) 0,006-0,02 (€/kg) trip dependent 0,15-0,39 (€/kg) 

Efficiency  37,80-52 (kWh/kg) 2,66 (kWh/kg) - - - 

Tableau 1: Techno economic data of the production, storage, transport and distribution units 

Two types of electrolysis technologies are used, i.e., Alkaline (AE) and Proton Exchange 

Membrane (PEM) electrolyzers, seen as the most suitable ones for the supply chain in 

Corsica as they are mature technologies and do not require large heat sources to operate. 

2.4.3 Energy sources (cost and potential)  
The cost projections used in this work assume that renewable energies will cover 87% of 

the French electricity demand in 2050 and that 70% of the French nuclear park will be 

kept. This hypothesis projects the cost of electricity produced by PV and wind power at 

respectively 16 €/MWh and 35 €/MWh in 2030. 

The power generation capacity of the renewable energy sources (PV and wind 

respectively 60 MW and 40 MW) allocated to the production of hydrogen has been 

determined according to the available resources on the island and the capacity factor of 

each technology. Figure 1 shows the forecasted production of these sources for year 2030. 
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3. Results and discussions  
The territory is divided into 9 grids for this study. The results of the simulations show that 

the model has treated a total of 134308 single equations, 53861 single variables and 24192 

discrete variables. The single optimization run led to a maximum CPU time 22s for an 

instance with CPLEX solver provided with Gams 28.2 (using 7 threads of an Intel Core 

i5 computer). Figure 2 shows the distribution of the different types of electrolyzers 

selected and the value of each objective function for each optimization case. The number, 

size and technology chosen for each configuration is different depending on the objective 

function used. Large production, storage and distribution units are the most used to reduce 

the operating cost by mutualizing the maintenance and operation costs. The average 

production cost obtained is the lowest 12.19 €/kg against 28.03 €/kg and 26 €/kg for the 

GHG and risk criteria respectively (i.e. expressed as a monthly average cost of production 

that differs from the levelized cost of hydrogen (LCOH) which takes into account the life 

cycle of the plant and the discount rate). This cost evolves according to the monthly 

production rate of hydrogen and the availability of energy sources, reaching its lowest 

value in August, i.e. 8 €/kg. 

A total of 6 transport units are found with cost optimization and one less for the other 

criteria. The transport from zone 7 to 1 has been replaced by a production unit directly 

located in zone 1.   

 

Figure 2: Hydrogen supply chain configuration 

The objective based on minimizing GHG emissions leads to a more decentralized 

configuration with much smaller equipment and more efficient alkaline-type 

electrolyzers.  The amount of GHG emissions is 94 gCO2e/kWh and although logically 

most favorable compared to the other criteria, the gap is not significantly high compared 

to the result obtained with the cost criterion since the technologies considered for 

hydrogen production involve a green energy mix. Finally, when the optimization criterion 

chosen is to reduce the total risk index, almost all the equipment chosen are of minimal 

size because they present less risk. The risk index at this level is 51.5 against 67.3 and 89 

for the cost and GHG emission criteria respectively.  

According to the season, the distribution of hydrogen can vary. In winter, the distribution 

rate is at a minimum (670 kg/truck) while in summer it reaches almost 1t/day with no 

additional transport units. Although the demand in zone 7 is the highest, it provides 56% 

of the hydrogen supply due to its high production potential. Figure 3 shows the 

distribution rate for the cost criteria in January and August.   
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Figure 3: hydrogen distribution during winter and summer  

Since photovoltaic energy is the cheapest, it is used up to 74% for the production of 

hydrogen in order to obtain the most affordable costs. However, the use of photovoltaic 

energy is still higher than wind energy even for the two other criteria (56% and 65% for 

the GHG and risk criteria respectively) since the availability of solar energy is higher 

during periods of high consumption. Photovoltaic power plants are only available in grids 

6 and 7 and wind power plants only in grids 1, 4 and 7. 

4. Conclusion and perspectives  
This paper presented a methodological framework for the design and operation of HSC 

in Corsica island considering monthly variations in demand. The single objective 

optimizations for the case study show a decentralized distribution of production, storage 

and distribution units across the territory. The production cost is still quite high compared 

to large-scale production chain, but this approach can be used as a framework to support 

authorities to invest in this field in isolated areas. The next step of this work is to look for 

the optimal configuration for the three optimization criteria taken simultaneously (multi-

objective optimization). This approach can be used to explore appropriate incentive 

mechanisms to kick-start the hydrogen economy in an isolated territory since the 

hydrogen cost still remains high even when cost minimization is considered. This 

optimization approach can also be extended by integrating the geographical and 

topographical constraints of Corsica.  
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Abstract 

Before the pandemics, society was facing challenges regarding the climate change 
problem as well as the decline in oil well's production. Now, the economic recovery, 
which also must be sustainable, represents a bigger challenge. In this context, the 
development of sustainable biofuels is a key area to accelerate economic recovery. In 
particular, biodiesel is one of the most produced biofuels worldwide. Nonetheless, all the 
existent plants are based on vegetable or animal oils (edible, non-edible, and waste); 
however, these bioenergy sources have limited availability, especially considering that 
oils derived from cultivated crops compete with lands with other edible crops, affecting 
food safety. Therefore, the current efforts are focused on the search for other oil sources. 
Particularly, biodiesel production using oil derived from black soldier fly larvae has been 
proposed (Jung et al., 2022), since the cultivation of this insect requires reduced spaces 
of non-fertile lands, and its life cycle is 24 days; thus, this oil has advantages as bioenergy 
source. Additionally, these insects can be fed with waste (as animal manure, food and 
agricultural waste, among others); these residues are transformed into biomass with high 
(35-40%) content of lipids (Feng et al., 2018). Therefore, in this work the optimal 
configuration for a biodiesel production network is proposed, considering as raw material 
the oil derived from black soldier fly larvae. Hence, a mathematical model was proposed 
where all the involved unit operations required for the biodiesel production supply chain 
were included; for this, a B10 mixture was considered to satisfy the Mexican's demand. 
As objective functions were considered the CO2 minimization, and the profit 
maximization. Results show that is possible to satisfy the current total diesel demand in 
Mexico using a B10 mixture, generating a national benefit of 3.529E9 USD/y, which 
represent 0.27% of increase of national Growth Domestic Product; in addition, 90% fewer 
emissions are released, in comparison with those derived from conventional diesel use. 
 
Keywords: Biofuels, optimization, supply chain, waste management, circular economy. 

1. Introduction 

Globally energy security and climate change mitigation are the two main drivers of the 
transformation of the current energy system; a transition from an economy based on fossil 
fuels to one based on renewable sources, which allows to sustain current economic 
activities and reduced net carbon emissions. Particularly, transport sector consumes 30% 
of the total primary energy, being 98% of this consumption obtained from fossil fuels, 
which is traduced into 8.5 Gt of CO2 emissions. According to Net Zero by 2050 report 
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(EIA, 2021), to achieve a de-carbonization in the transport sector is possible, if new 
policies focused in promote modal shifts and energetic efficiency operations are 
implemented; in addition to an energy source transition, including electric vehicles and 
biofuels implementation. Thus, the substitution of fossil fuels, in transport sector, by 
alternative sources such as solar, wind, biomass has received the greatest attention, given 
the growing demand and the problems associated with this need (Im-orb et al., 2021).  
Particularly, biodiesel is a biofuel alternative to conventional diesel consumption; this is 
obtained from renewable sources, such as vegetable oils and animal fats through a 
transesterification reaction with methanol in presence of an acid or basic catalyst. 
However, nowadays the biodiesel production is mainly obtained from first and second-
generation biomass, which results in disadvantages in economic, competitiveness, and 
use land terms. Specifically, in first-generation biodiesel production, approximately 70% 
of the total cost is generated by raw materials production, given low profitability. 
Therefore, new raw materials to reduce costs and avoid competition with food supply are 
needed; some authors have proposed the use of oils obtained from insects, particularly 
the one extracted from the black soldier fly larvae (Hermetia illucens). In this way, Leong 
et al. (2015) and Nguyen et al. (2018) proposed that there are many advantages linked to 
the use of black soldier fly larval oil (BSFO), due to its high-fat content, high reproductive 
speed, and short life cycles; coupled with the ability to consume organic waste or residues 
without any application of recovery, being this the main sustainable advantage over other 
raw materials. 
Hence, in this work the supply chain optimization of biodiesel production using BSFO as 
raw material is proposed, through a mathematical model approach. Current conventional 
diesel demand in Mexico was used as a case study. In addition, organic residues generated 
in each State in Mexico are considered as food sources for the black soldier fly larvae 
production; in addition, this biological treatment contributes to a sustainable management 
residues strategy.  

2. Problem statement  

According to the National Biomass Atlas (ANBIO, 2020), Mexico generates 278 million 
tonnes of organic waste per year, with an estimated energy potential of 2,980 PJ. These 
kind of residues in developing countries are burned, or dumped into a final disposal site, 
contributing with negative environmental consequences (Pradhan et al., 2019). On the 
other hand, the Secretariat of Energy (SENER, 2018) expected a diesel national demand 
of 405 Mbd in 2021, with annual growth of 1.57%; 30% of the total diesel demand is 
produced in Mexico, while the 70% is imported. In this way, Mexico is the 13th emitting 
country of CO2e, with almost 737 million tonnes; 64% of these emissions are given by the 
energy sector, while 18.5% is released by transport sector, 7% generated by the residues 
management and 3.9% by the final disposition sites (INECC, 2019). Consequently, in the 
recent COP26, Mexico committed to reduce 25% of its greenhouse gas emissions, in 
addition to decrease its emissions from the industry sector through the generation of 35% 
of clean energy by 2024 and 43% by 2030; these actions enrolled to achieve the objective 
of keeping the temperature increase below 1.5 °C. Thus, the use of new renewable energy 
sources that do not compromise food security, ensure economic development, and help 
achieve the commitments agreed is required; thus, the use of oil from this insect is a 
promissory raw material for biodiesel production. 
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3. Methodology 

The biodiesel production network in Mexico described in Figure 1 is proposed. As first 
step, the places (being the 32 states of Mexico) where organic wastes are collected 
(harvested) are considered. Particularly, only the food loss waste (approximately 
1,840,853 tonne/y) are taken into consideration; therefore, if the residues flux is 
representative in one site, then a black soldier fly biotransformation plant (BP) is 
installed; this plant will serve as waste management biological center. Then, in each 
installed BP all the oil from the cultivated larvae is extracted; with the collected oil in 
each site is produced pure biodiesel through the transesterification process. The final 
consumer of biodiesel is the Mexican transport sector; in order to supply this biofuel, a 
B10 mixture is considered to avoid additional costs for engine modifications. In Figure 
1, sub-indexes i, k, j, and l have the possibility to take values from 1-32, while s only can 
take values from 1-6 (considering current conventional refineries).  
 

Figure 1. Biodiesel supply chain 
3.1 Mathematical model 
The proposed approach considers the current situation of organic residues in Mexico and 

its diesel demand. The organic residues flux in each site ����,�
� � has the possibility to be 

dumped in a final disposal site ����,�,�
������� or to be used as feed in the black soldier fly 

larvae production plants �����,�,�
������; the sum of both fluxes are equal to the total flux of 

organic waste produced in each site (�) per week (�), as equation 1 describes. In equation 

2, the flux of oil ����,�
����, extracted from each tonne of larvae produced (����), using the 

organic residues received as feed �����,�
� � in each installed black soldier fly production 

plant, is calculated.  

���,�
� = ∑ ����,�,�

�����
� + ∑ ���,�,�

������
� , ∀ � ∈ �, � ∈ �  Eq. 1 

���,�
��� = ����,�

� ∙ ���� , ∀ � ∈ �, � ∈ �      Eq. 2 

Afterward, the collected flux of larvae oil is sent ����,�,�
����� to the transesterification plant 

(�) as equation 3 shown; while in equation 4, the biodiesel flux produced per week 

����,�
���� in each transesterification plant is calculated through the multiplication of the 

received larvae oil flux ����,�
����� per a respective conversion factor (�), tonne of pure 

biodiesel produced per tonne of larvae oil.  

���,�
���� = ∑ ���,�,�

����
� , ∀ � ∈ �, � ∈ �      Eq. 3 

���,�
��� = ���,�

���� ∙ �, ∀ � ∈ �, � ∈ �      Eq. 4 
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Thus, with the pure biodiesel produced in each plant is possible to obtain the B10 mixture 

(10% of pure biodiesel ����,�
���� and 90% of conventional diesel ����,�

�����). The expected 

flux of B10 �����,�
����, in tonnes in each installed plant, is calculated with Equation 5. 

Then, the B10 flux transported �����,�,�
��������� to the consumption sites (�) is computed 

with Equation 6. Current fuel demand in each site ����,�
����� is lower to sum of available 

B10 flux �����,�
��������� plus conventional diesel flux ����,�

����, as equation 7 describes. 

Conventional diesel consumption is considered when is not possible to satisfy the fuel 
demand with B10. 

����,�
��� = ���,�

��� + ���,�
����, ∀ � ∈ �, � ∈ �             Eq. 5 

����,�
�������� = ∑ ����,�,�

��������
� , ∀ � ∈ �, � ∈ �  Eq. 6 

���,�
���� ≤ ����,�

�������� + ���,�
���     Eq. 7 

Total cost (��) is calculated through equation 8, in which are summed all the generated 
transportation cost (����), the cost by the conventional diesel consumption (������), the 
cost by the waste management (���), and the production of B10 (�����). Waste 
management and B10 production cost include fixed and variables cost for each installed 
plant. Similarly, the CO2 emissions (��) include those due to transportation (����), the 
use of conventional diesel (������), the use of B10 (�������), B10 production (�����), 
and those released by the waste management strategies (���).  

�� = ���� + ������ + ��� + �����          Eq. 8 
�� = ���� + ������ + ������� + ��� + �����  Eq. 9 

Equation 10 shows the profit balance (������), where total costs is subtracted to 
generated sales by B10 (�����), plus the economic gain by food losses waste 
management (��������). This last earning is considered if the residues are sent to 
biotransformation plant; hence, the current cost of the final disposal site is removed. 
Lastly, a multiobjective function was included (�. �. ) for the profit 
maximization ( ��� ������) and emissions minimization (��� ���), Equation 11. 

������ = ����� + �������� − ��      Eq. 10 
�. �. = ��� ������; ��� ���     Eq. 11 

4. Results 

The mathematical optimization model was codified in GAMS® platform, and it includes 
47,558 constrains, 273,734 single, and 192 discrete variables. This model was solved as 
a Mixed Integer Linear Programming problem using the CPLEX solver. The test was 
carried out in an Intel® Core-i7, with a CPU 3.60 GHz and 8 GB RAM, with an execution 
time of 1.093 s/assay. The results show that is possible to produce 561,976 tonnes of pure 
biodiesel per year, this production represents 5.2% of the total diesel demand in Mexico; 
however, nowadays is impossible the use of pure biodiesel in the current engines available 
in Mexican transport sector. Thus, 6,811,732 tonne/y of B10 can be produced and used 
directly in the transport sector without modify the vehicle’s engines. Thus, approximately 
58% of current diesel demand in Mexico is satisfied with B10, and the rest with 
conventional diesel. To achieve this amount of B10 production is required the installation 
of biotransformation plants and biodiesel plants in each State of Mexico as Figure 2 
shows. Note that biotransformation plants in white color represent those that received 
organic wastes from CDMX; this means the plants of 24 States, from 32, receive residues 
from CDMX, the biggest waste generator. Particularly, CDMX contributes with almost 
70% of the food loss waste produced in Mexico, where 6% of the Mexican population 
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lives. On the other hand, biodiesel plants in yellow color (located in 11 States) are those 
with the capacity to share B10 with CDMX, which is the city with the bigger flux of B10, 
due its bigger population. Additionally, arrows in red and black color indicate the fluxes 
of residues and B10 transported, respectively.  
 

Figure 2. Mexican biodiesel supply chain distribution. 
 
According to the CO2 emissions quantification performed in GREET software (2021), the 
raw material generation used in biodiesel production, crops production and residual 
materials are 39% and 8% (respectively) of the total CO2 emissions generated by each 
tone biodiesel produced. In this way, each tonne of food loss transformed by BSF releases 
0.88 kg CO2 (Pang et al., 2020); therefore, as is shown in Table 1 each tonne of BSFO 
produce approximately 12 kg of CO2. This value is 98.8% lower that the emissions 
generated by the crops production, and 83.3% lower in comparison with other residual 
products. On the other hand, if all the Mexican food losses waste are sent to a final 
disposal site are generated approximately 11,497,200 tonne of CO2, based on the values 
of emissions indicated by Scukling et al. (2021). However, if these residues are bio-
transformed into biodiesel using the BSF, then emissions are reduced in 86%. Table 1 
also shows the CO2 emissions generated by each tonne of biodiesel produced; 
particularly, the production of 1 tonne of biodiesel from BFSO is 41% and 78% lower in 
terms of emissions respect to the use of waste cooking oil and soybean oil, respectively. 
 

Table 1. CO2 emissions comparison 
  Raw material 

production  
Total emissions 

 Type of raw 
material 

(CO2 kg/raw material 
tonne) 

(CO2 kg/tonne 
biodiesel) 

 
 

Residual  

Lard+chicken fat  72 956 θ 

Waste cooking oil  72 956 θ 

Tallow 72 956 θ 

Annual Castor bean 1,031 2,654 θ 

Annual Mechanized Soybean  1,031 2,654 θ 

Perennials Palm 1,031 2,654θ 

Black soldier fly (BSF) BSFO 12 562ε 

929

Optimal configuration of a biodiesel production network using oil from
   black soldier fly larvae

905 



 

Note: θ Value reported by Costa et al., 2013; ε calculated value using GREET. 

5. Conclusion  

Food losses waste can be transformed to biodiesel through its processing with the 
cultivation of black soldier fly, oil extraction from larvae, and its transesterification. This 
approach promotes a circular economy based on residues management. Moreover, it is 
possible to satisfy 58% of the national demand using B10 mixtures; at the same time, the 
food loss waste is processed, reducing the environmental impact, and new green business 
can be created. To achieve a total de-carbonization of the transport sector new policies, 
alternative energy sources, as well as higher investment are required. 
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Abstract 

The detrimental environmental impacts of climate change that are a result of high 

atmospheric CO2 concentrations have prompted global efforts to limit the continuous 

increase in greenhouse gas (GHG) emissions. Many are now relying on the deployment 

of various carbon capture, utilization and storage (CCUS) methods which have been 

found reliable for reducing CO2 levels in the atmosphere. Various industries are shifting 

towards the decarbonisation of their operations through the use of a combination of 

various CCUS activities. This could involve the conversion of CO2 into value-added 

chemicals, the utilization of CO2 for enhanced oil recovery (EOR), the injection of CO2 

into geological formations and/or oceans, the biological fixation of CO2, and other 

similar activities. Such operations are often referred to as CO2 “sinks”. It is often crucial 

for industries to identify which CCUS operations to deploy, especially when faced with 

many choices, since factors such as the cost of implementation and the sink efficiency 

play a significant role in the sink selection process. In this work, a mathematical model 

that helps identify optimal CO2 sink locations within industrial clusters is developed and 

utilized. Identifying optimal sink locations is an important factor that needs to be 

considered as part of a CCUS network planning problem. The proposed mathematical 

model was found to be very useful for identifying optimal CCUS sink selections, and 

their respective locations. A total of 22.7% of savings in transportation costs have been 

realized within the network, when compared to the case of having sink locations 

prescribed upfront. 

  

Keywords: CCUS, Climate Change, Integration, Optimization, Spatial 

1. Introduction 

Carbon Capture, Utilization, and Storage (CCUS) technologies aim to remove CO2 from 

the atmosphere in a safe and effective manner. When talking about the exact 

terminology used for each, (1) capture refers to the process of capturing CO2 from 

exhaust and/or reformed gases at stationary sources, via standardized technologies that 

are applied pre- or post- combustion, (2) utilization refers to the use of captured CO2 for 

the production of value-added chemicals and other useful industrial products, (3) 

storage (also known as sequestration) refers to the process of transferring captured CO2 

into geological formations and/or oceans, in which it is stored permanently. The 

investigation efficient CCUS schemes has been the subject of many research papers.  
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Liang et al. (2009) studied the economic value, as well as the investment characteristics 

of carbon capture and reuse (CCR) plants in China. Li et al. (2012) developed a 

qualitative assessment that investigates early opportunities CO2 capture in advanced 

gasification plants. Yousefi-Sahzabi et al. (2011) presented a review on the applicability 

of geo-information technology for the screening and analysis of CO2 emission sources, 

transportation and storage possibilities. Wilberforce et al. (2021) presented a thorough 

investigation of the various technologies that can be harnessed to capture carbon 

dioxide. Hasan (2015) developed a hierarchical and multi-scale framework for the 

design CCUS networks at minimum investment, operating and material costs. Al-

Mohannadi and Linke (2016a) presented a mathematical model to systematically design 

low cost carbon integration networks for industrial parks through an integrated analysis 

of sources, utilization and storage options, while accounting for capture, separation, 

compression and transmission. Following this, Al-Mohannadi and Linke (2016b) 

presented an extension to the MINLP that is capable of CO2 planning network 

transitions over a time horizon. Zhang et al. (Zhang et al., 2020) developed a 

superstructure optimization-based framework in the form of a multi-objective mixed 

integer linear programming (MILP) program, for the deployment of CCUS supply 

chains. Al-Mohannadi and Linke (2020a) presented a Mixed Integer Nonlinear 

(MINLP) optimization approach which simultaneously considers natural gas 

distribution combined with (CCUS), and energy integration. Al-Mohannadi et al. 

(2020b) then introduced a two-step optimization approach that is capable of evaluating 

CO2 reduction policies using a Mixed Integer Linear program (MILP) using a 2-step 

process. Hetti et al. (Hetti et al., 2020) presented a systematic literature review to 

critically analyze the feasibility of community level carbon capturing, and explored the 

prospects of CCSU integration towards transitioning into zero-emission community 

energy systems. D’Amore et al. (2021) presents a supply chain Mixed Integer Linear 

Programming method for the optimization of a Europe-wide carbon capture and storage 

supply chain. Mualim et al. (2021) proposed an improved pinch-analysis based method 

for carbon capture and storage target and network design, which mainly involves 

targeting the maximum carbon exchange in the carbon capture and storage system, 

followed by designing a CCUS network.  

Even though much of the previous work has looked into the design of efficient carbon 

integration and CCUS systems, there exist no models that account for the possibility of 

having CO2 utilization sink (or sequestration site) location selections, simultaneously. In 

other words, the possibility of locating more than one type of sink in the same location, 

and choosing the best sink out of all that would need to be incorporated in that location 

(or site) is an important problem, especially if there exists a number of location choices 

that could potentially be assigned from a selection of different CCUS operations. The 

proposed extension allows this aspect to be incorporated into the main CCUS model. 

2. Methodology 

It is often common to use the term “source” to refer to the capture stage of CO2, while 

both utilization and storage are often referred to as CO2 “sinks”. Hence, multiple aspects 

need to be combined for the successful removal and capture of CO2, followed by an 

appropriate selection of utilization and storage options. Moreover, before utilization and 

storage, captured CO2 would need to be appropriately conditioned to meet the CO2 sink 

requirements. This is often achieved through a combination of treatment, compression, 
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and pumping operations. Upon this, CO2 can then be dispatched and transported from 

the source location at the capture site, to appropriate sink locations. This work 

introduces the respective sink locations as additional variables that need to 

mathematically represented and identified within the model. Each CO2 sink be assigned 

one optimal location, which is to be chosen from a set of available locations that are 

appropriately identified. Figure 1 below represent the sink location problem within the 

context of source-to-sink CO2 mapping. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. CO2 Source-Sink mapping with Sink locations 

Pipelines are widely used for CO2 transportation between stationary sources and sinks. 

However, other modes of transportation may be utilized, depending on the sink type, 

such as trucks, ships etc. In this work, pipelines were utilized as the primary 

transportation model. Ultimately, viable CCUS structures must prove to be effective in 

terms of their ability to reduce atmospheric CO2 while maintaining its ability to sustain 

long-term operation. Moreover, identifying effective CCUS schemes based on sink 

locations must provide economic, as well as environmentally-sustainable solutions. 

Hence, the cost associated with having a pipeline constructed at each sink location site 

must be accounted for.  Moreover, it is imperative that only one sink site is chosen per 

source-to-sink allocation, and each sink location in set L must be chosen only once for 

each sink identified within the CCUS network.  

3. Mathematical Formulation 

A Mixed Integer Non-Linear Problem (MINLP) has been adopted from Al-Mohannadi 

and Linke (Al-Mohannadi & Linke, 2016), with the following additional equations that 
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account for the sink location selection. Even though the overall model is nonlinear, the 

equations that are needed to account for sink location selections within the problem 

were all identified to linear, as described below. Superscripts s, k, and l represent the 

carbon source, carbon sink, and sink locations respectively. S, K and L represent the set 

of CO2 sources, CO2 sinks and sink locations, respectively. T and U represent treated 

and untreated CO2 flows, X is a binary variable which takes a value of 1 when source s 

has a connection with sink k; and 0 otherwise. Similarly, W is a binary variable which 

takes the value of 1 when sink k is located at location l, and 0 otherwise: 

  1kll
W k K=    (1) 

  1klk
W l L=    (2) 

  ,sk sk sk skL X T U s S k K +     

  ,sk sk sk skT U M X s S k K+      

(3) 

  X ,W {0,1} s S,k K,l Lsk kl       (4) 

 

The objective function of this study is set to minimize the total cost of the carbon 

integration network. The overall cost of the network entails the cost of carbon treatment, 

compression, transportation and sink processing costs. All carbon-related costs are 

adapted from Al-Mohannadi and Linke (Al-Mohannadi & Linke, 2016). Moreover, the 

carbon compression and pumping costs consist of operating and capital costs functions. 

The central decision variables mainly consist of the carbon source-to-sink flows (treated 

and untreated) and the respective sink locations. The total cost is obtained by 

subtracting any obtained revenue, as a result of selling any captured carbon dioxide, 

from all the previously mentioned costs. Moreover, the model constraints consist of 

total and component mass balance equations of the different material present throughout 

the system. Since there are different qualities of sources, an overall mass balance is used 

to compute actual stream compositions, before they are sent to the sinks. Production and 

performance constraints were also used, to ensure certain requirements on the amount of 

material flows, mainly CO2, capacity constraints, which refer to setting a minimum on 

the amount of material to be allocated (carbon and ash) or a maximum amount of 

material that can be accommodated by the available sinks, and composition constraints, 

which place a restriction on the amount of specific component (carbon) in the flowrate 

allocated to a specific sink. Moreover, since only one sink site must be chosen per 

source-to-sink allocation, and no single sink location can be chosen more than once for 

different sinks. The MINLP combines equations (1-4) above, together with the objective 

function and mass balance constraints from Al-Mohannadi and Linke (Al-Mohannadi & 

Linke, 2016). The problem was implemented using What’sBest via MS Excel, and the 

LINGO solver was used on a laptop with an Intel core i5 processor, 8 GB RAM and a 

64-bit Operating System.  
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4. Case Study 

This case study involves the possibility of allocating 4 different types of CO2 sources, 

with differing qualities into six different sink possibilities. Table 1 below summarizes 

the respective flowrate and composition data for each. For each sink, six different 

location options have been allowed, and the distance data associated with each of those 

locations are shown in Table 2. 

Table 1: Available source and sink data (Al-Mohannadi & Linke, 2016) 

Source Flow  

MTPD 

CO2 

Composition 

(%) 

Sink Max.Capacity  

MTPD 

Min.CO2 

Composition 

(%) 

Ammonia 

Removal 

977 1 Algae 4716.7 6 

Steel-Iron 3451 44 Greenhouse 1095.7 94 

Power 9385 7 Storage 8847.9 94 

Refinery 1092 27 Methanol 

Sol. 

1711.7 99.9 

   Urea 1127.1 99.9 

   EOR 2913.8 94 

Table 2: Sink location data (km) 

Source Location 

1 

Location 

2 

Location 

 3 

 

Location 4 Location 

5 

Location 

6 

Ammonia 

Removal 

1.0664 1.7356 0.862 0.9362 0.961 0.9672 

Steel-Iron 1.2834 1.9526 1.0432 1.1532 1.178 1.1842 

Power 1.7174 1.9446 1.261 1.829 0.5642 0.3162 

Refinery 1.5686 1.7958 1.802 1.6802 0.4092 0.5084 

 

In order to demonstrate the proposed approach, a net capture target of 15% 

(corresponding to a total of 3076 MTPD of captured CO2) has been imposed on the 

system. In doing so, only 2 sinks were activated within the network (Methanol and 

EOR), and the values corresponding to the optimal allocations attained have been 

provided in Table 3.  

Table 3: Summary of optimal source-to-sink allocations and the respective sink locations  

 Algae Greenhouse Storage 

 

Methanol Urea EOR 

Ammonia 

Removal 

0 0 0 0 0 977 

Steel-Iron 0 0 0 279.1 0 1170.7 

Power 0 0 0 0 0 591.3 

Refinery 0 0 0 265.4 0 0 

Location - - - Location 5 - Location 6 

 

While the EOR sink was completely filled to its maximum capacity, the Methanol sink 

was filled to about 31.8% of its maximum capacity. Moreover, the optimal locations for 
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each of those 2 sinks has been identified by the solver. Location 5 was assigned for Sink 

4 while Location 6 was assigned for Sink 6. The optimal cost of the network was found 

to be 5,959,719 USD as opposed to a total of 6,013,437 USD when no location 

optimization is enabled, and each sink is prescribed a location beforehand. Hence, upon 

enabling the sink location optimization feature, a total of 22.7% of savings in the total 

transportation costs have been realized within the network, when compared to the case 

of having the sink locations prescribed upfront. This aspect highlights the importance of 

sink locations in CCUS networks on the overall transportation costs, and allows for 

appropriate sink location planning activities, especially within multi-period problems, 

are studied, and expansion activities are crucial in the system.  

5. Conclusions 

In this study, a mathematical model that assesses sink location optimization features 

within carbon integration networks has been introduced. In order to ensure the 

successful development and implementation of a CCUS network, appropriate planning 

and location identification of CO2 sinks is necessary, since significant economic savings 

in terms of transportation costs can be realised. 
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Abstract 

Bioenergy with carbon capture and storage (BECCS) can produce carbon-negative 

biofuels from dedicated cellulosic biomass to mitigate global warming; however, the 

economic and environmental performance of a BECCS system is highly sensitive to 

carbon incentives and the supply chain (SC) network. Because dedicated bioenergy crops 

have yet to be planted, there is an opportunity to simultaneously design the SC and choose 

crop locations that balance the tradeoffs among transportation costs, emissions, biomass 

yields, and soil carbon sequestration. At the biorefinery, alternative pretreatment and 

conversion methods lead to different ethanol yields and relative carbon flows among point 

sources of CO2 emissions. We present an integrated mixed-integer optimization model 

for the biofuel SC with a detailed biorefinery model considering CCS that can be used to 

study the economic and environmental tradeoffs between (i) high resolution SC design 

and operation, (ii) upstream spatially explicit carbon sequestration in soils by dedicated 

bioenergy crops, (iii) biorefinery design and operation, and (iv) downstream CCS 

technology selection and operation. We present a case study with, critically, realistic crop, 

economic, and environmental data in the US Midwest to explore the effects of key system 

parameters on the cost and GHG balance of the entire system, and the associated changes 

in SC and biorefinery design and operation. 

 

Keywords: Sustainability, Supply Chain, Carbon Capture 

1. Introduction 

An efficiently designed and operated supply chain (SC) from field to product will be 

required to make cellulosic biofuels competitive with current grain-based fuels and fossil 

fuels. While a large amount of highly distributed land will need to be converted to 

biomass to produce an adequate amount of fuel, carefully choosing the location of crop 

establishment and levels of management (e.g. fertilization) can have a significant impact 

on crop yields and the greenhouse gas (GHG) balance of the supply system; however, 

landscape design decisions are typically studied separately from SC and biorefinery 

design (Field et al., 2018). Crop yields and soil carbon sequestration potentials are field 

specific and involve complex tradeoffs with downstream SC decisions related to facility 

location, transportation planning, and inventory management. Optimization modeling at 

a high spatial resolution can be used to study the above tradeoffs simultaneously to 
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minimize both the SC costs and GHG emissions. However, the soil carbon sequestration 

is not the only source of negative emissions. Carbon capture and storage (CCS) 

technologies installed at the biorefinery have the potential to improve the GHG balance 

of the system but require additional capital and operational investment. 

At the biorefinery, CO2 is emitted from three different point sources: nearly pure CO2 

from fermentation, ~73 wt.% CO2 in biogas from anaerobic digestion of wastewater, and 

~20 wt.% CO2 in flue gas from solid residue (primarily lignin) combustion (Humbird et 

al., 2011). The relative amounts of CO2 emitted from these point sources varies depending 

on what pretreatment technology is used. While dilute acid (DA) pretreatment is the most 

mature, other pretreatments based on ammonia fiber expansion (AFEX) or copper-

catalyzed alkaline hydrogen peroxide (AHP) have been developed. In addition to 

affecting the relative CO2 emissions from each point source, these pretreatment 

technologies have different ethanol yields, energy demands, and operating and capital 

costs. Therefore, a biorefinery model needs to consider different pretreatment 

technologies and allow for capture from specific point sources independently, which has 

only recently been considered by Geissler and Maravelias (2021).  

Several studies have simultaneously considered SC and CCS optimization for other 

bioenergy systems (Lainez-Aguirre et al., 2017); however, relaxing assumptions about 

the availability and location of biomass and modeling a spatially-explicit supply chain is 

important especially given the opportunity to design the landscape while considering the 

effect of soil carbon sequestration on the GHG balance. Importantly, modeling the SC 

and landscape at a high spatial resolution and allowing flexible capture from different 

point sources of CO2 at the biorefinery can identify tradeoffs between upstream and 

downstream designs, operation, costs, and emissions to inform policy decisions. We 

combine SC and biorefinery design into a flexible integrated model to study the relative 

economic and environmental impacts under a range of carbon incentives applied to 

different areas of the system. 

In section 2, we present a model for simultaneous optimization of landscape, SC, and 

biorefinery design. In section 3 we report and discuss the results for a case study in the 

state of Michigan, USA. Finally, in section 4 we present conclusions and discuss further 

applications of our research. 

2. Supply chain and biorefinery model 

The integrated optimization model introduced in this paper consists of three components: 

a landscape design model, a multi-period logistics network model, and a biorefinery 

superstructure model. We employ a flexible data workflow to generate realistic high-

resolution data for switchgrass grown on marginal lands. First, a geographic raster of 

marginal land is identified based on a chosen definition (Lark et al., 2020). Next, crop 

growth is simulated using the SALUS biogeochemical crop model for the chosen lands 

according to weather, soil, and land use data (Basso and Ritchie, 2015). The resulting 

biomass yields, soil carbon sequestration potentials, and land areas are processed into a 

set of fields 𝑓 ∈ 𝐅 and a set of harvesting sites 𝑗 ∈ 𝐉 for use in the optimization model. 

Other model parameters are based on literature values. The model is solved for a 

representative year broken into time periods 𝑡 ∈ 𝐓. We use italicized uppercase Latin 

letters for variables, lower and uppercase Greek letters for parameters, lowercase Latin 

letters for indices, and uppercase bold Latin letters for sets. The landscape model makes 

decisions regarding the location of crop establishment, the level of fertilization to apply 

at each location, and harvest decisions. The associated costs, 𝐶𝐿𝐴𝑁𝐷, and emissions, 

𝐺𝐻𝐺𝐿𝐴𝑁𝐷, from the landscape model are presented in equations (1) and (2). Emissions 
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are considered from all on field activities including the annualized impact from crop 

establishment and soil carbon sequestration. 

 

𝐶𝐿𝐴𝑁𝐷 =  ∑ 𝜆𝑖𝐻𝑖,𝑗,𝑡  𝑖,𝑗,𝑡 + ∑ 𝜌𝑁𝑓𝑓 +  ∑ 𝜙𝑖𝐴𝑖,𝑓𝑖,𝑗   (1) 

𝐺𝐻𝐺𝐿𝐴𝑁𝐷 =  ∑ Γ𝑖
𝑀𝐺𝐻𝑖,𝑗,𝑡  𝑖,𝑗,𝑡 + ∑ Γ𝑁𝐹𝑓𝑓 + ∑ Γ𝑖

𝐻𝐴𝐴𝑖,𝑓𝑖,𝑗 − ∑ 𝐺𝐻𝐺𝑖,𝑓
𝑆𝑂𝐶

𝑖,𝑓   (2) 

 

Parameter 𝜆𝑖 is the per-Mg cost of harvesting and handling (𝐻𝑖,𝑗,𝑡) crop 𝑖 ∈ 𝐈𝐅 at 

harvesting site 𝑗. Variable 𝑁𝑓 is the amount (kg) of fertilizer applied to field 𝑓, and 𝜌 is 

the cost per-kg of fertilizer. 𝜙𝑖 is the annualized per-ha cost of crop establishment and 

𝐴𝑖,𝑓 is the area of field 𝑓 established with crop 𝑖. Emissions are determined similarly with 

Γ𝑖
𝑀𝐺 , Γ𝑁 , and Γ𝑖

𝐻𝐴 being the per-Mg crop, per-kg nitrogen fertilizer, and per-ha emissions 

respectively. Finally, 𝐺𝐻𝐺𝑖,𝑓
𝑆𝑂𝐶  is a decision variable that represents the amount of soil 

carbon sequestered at field 𝑓 and is constrained by decision variables related to crop 

establishment and fertilization. If 𝐺𝐻𝐺𝑖,𝑓
𝑆𝑂𝐶  is positive, the soil at field 𝑓 sequesters carbon. 

The logistics model extends work by Ng et al. (2018) to include a more detailed 

representation of the biorefinery, including CCS (details shown in equations (3)-(6)). The 

biorefinery superstructure model makes decisions related to the technology selection and 

interconnection within the facility, the production planning decisions for a representative 

year, and the capacity of each technology block. A diagram of the biorefinery and the 

potential interconnections is shown in Figure 1. The SCND model makes decisions for a 

representative year that include preprocessing depot location, technology, and capacity, 

biorefinery location, transportation planning, transportation mode, and inventory 

planning. In the interest of brevity, detailed equations for the SCND model are omitted 

as a similar logistics model has previously been published (Ng et al., 2018).  

 

 

Figure 1. Biorefinery configuration, potential technologies, and potential interconnections.  

The pretreatment block is a set of alternatives 𝐌𝐏𝐁 = {𝐷𝐴, 𝐴𝐹𝐸𝑋, 𝐴𝐻𝑃}. The CCS block 

𝐌𝐂𝐂𝐒 = {𝐹𝐸𝑅, 𝐹𝐿𝑈, 𝐵𝐼𝑂} includes technologies for capturing carbon from each point 

source (fermentation, flue gas, and biogas respectively). The binary variable 𝑈𝑙,𝑚 

indicates if technology 𝑚 is installed at biorefinery 𝑙 ∈ 𝐋, and the capacity 𝑄𝑙,𝑚 of each 

technology is constrained in equation (3) by lower and upper bounds 𝜖𝑚
𝐿 /𝜖𝑚

𝑈 . The variable 

𝑃𝑖,𝑙,𝑚,𝑡 represents the amount of CO2, 𝑖 ∈ 𝐈𝐂, produced during biomass conversion as 

different point sources that are available to be consumed by installed CCS technologies. 

Equations (4)-(6) govern the flow of CO2 through the biorefinery where 𝐺𝑖,𝑙,𝑚,𝑡
𝐶𝐶𝑆  is the 

amount of carbon source 𝑖 ∈ 𝐈𝐂 consumed by CCS technology 𝑚 ∈ 𝐌𝐂𝐂𝐒. We introduce 

two-dimensional set 𝐕 ⊂ 𝐈𝐂 × 𝐌𝐂𝐂𝐒 as the set of valid CCS combinations, so that if 

element (𝑖, 𝑚) ∈ 𝐕, carbon point source 𝑖 can be captured by CCS technology 𝑚. 
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𝜖𝑚
𝐿 𝑈𝑙,𝑚 ≤ 𝑄𝑙,𝑚 ≤ 𝜖𝑚

𝑈 𝑈𝑙,𝑚  (3) 

𝐺𝑖,𝑙,𝑚,𝑡
𝐶𝐶𝑆 ≤ ∑ 𝑃𝑖,𝑙,𝑚′ ,𝑡𝑚′∈𝐌𝐂𝐁     ∀ (𝑖, 𝑚) ∈ 𝐕, 𝑙, 𝑡  (4) 

𝐺𝑖,𝑙,𝑚,𝑡
𝐶𝐶𝑆 ≤ 𝑄𝑙,𝑚    ∀(𝑖, 𝑚) ∈ 𝐕, 𝑙, 𝑡  (5) 

𝐿𝑖′ ,𝑡 = ∑ 𝑃𝑖′,𝑙,𝑚,𝑡
𝐼𝑃𝐵−𝐶𝐵

𝑙,𝑚∈𝐌𝐏𝐁∪𝐌𝐂𝐁 + ∑ 𝑃𝑖′,𝑘,𝑚,𝑡
𝐼𝐷−𝑃𝐷 +𝑘,𝑚∈𝐌𝐏𝐃  

∑ 𝜂𝑖,𝑖′,𝑚𝐺𝑖,𝑙,𝑚,𝑡
𝐶𝐶𝑆

𝑙,𝑖∈𝐈𝐂,𝑚∈𝐌𝐂𝐂𝐒     ∀𝑖′ ∈ 𝐈𝐁, 𝑡  
(6) 

The amount of carbon consumed by a CCS technology is bounded by both the amount 

that is produced in the conversion block (the balance is assumed to be vented if 𝐺𝑖,𝑙,𝑚,𝑡
𝐶𝐶𝑆 <

𝑃𝑖,𝑙,𝑚′,𝑡) and by the installed capacity of appropriate CCS technologies. Finally, 𝐿𝑖′,𝑡 , the 

sale/sequestration of electricity/CO2, 𝑖 ∈ 𝐈𝐁 = {𝐶𝑆𝐸𝑄, 𝐸𝐿𝐸𝐶}, is controlled by equation 

(6) where 𝑃𝑖′,𝑙,𝑚,𝑡
𝐼𝑃𝐵−𝐶𝐵 represents the production of 𝑖′ ∈ 𝐈𝐁 from the conversion and 

pretreatment blocks 𝑚 ∈ 𝐌𝐏𝐁 ∪ 𝐌𝐂𝐁, 𝑃𝑖′ ,𝑙,𝑚,𝑡
𝐼𝐷−𝑃𝐷 is the electricity consumption of 

preprocessing depot technology 𝑚 ∈ 𝐌𝑃𝐷  at depot  𝑘 ∈ 𝐊 (𝑃𝑖′,𝑙,𝑚,𝑡
𝐼𝑃𝐵−𝐶𝐵 =  𝑃𝑖′ ,𝑙,𝑚,𝑡

𝐼𝐷−𝑃𝐷 = 0 for 

𝑖′ = 𝐶𝑆𝐸𝑄) and 𝜂𝑖,𝑖′,𝑚 is the conversion coefficient for product 𝑖 to 𝑖′ using technology 

𝑚. We take the convention of variables being ≤ 0 for the consumption of electricity and 

≥ 0 for the production. The objective value is given by equation (7) which considers, on 

an annualized basis, the capital cost, landscape cost, production cost, transportation cost, 

inventory cost, revenue from byproducts (electricity), and GHG costs respectively. 

𝑇𝐴𝐶 = 𝐶𝐶𝐴𝑃 + 𝐶𝐿𝐴𝑁𝐷 + 𝐶𝑃𝑅𝑂𝐷 + 𝐶𝑇𝑅𝐴 + 𝐶𝐼𝑁𝑉 − 𝐶𝐵𝑌 + 𝐶𝐺𝐻𝐺  (7) 

𝐶𝐺𝐻𝐺 = ∑ 𝜋𝑆𝐶𝐶𝐺𝐻𝐺𝑡
𝑆𝐶

𝑡 − ∑ 𝜋𝑆𝐸𝑄𝐿𝐶𝑆𝐸𝑄,𝑡𝑡   (8) 

Equation (8) represents the GHG emissions on a cost basis rather than using an explicit 

multi-objective approach in order to better compare captured carbon and GHG emissions 

from the SC (You et al., 2012). To compare the environmental impact of the SC with the 

impact of CCS at the biorefinery, we introduce two parameters that value CO2 equivalents 

(CO2e) in the objective. The first is the sequestration credit, 𝜋𝑆𝐸𝑄, which applies only to 

tangible CO2 sequestered by CCS technologies at the biorefinery. The sequestration credit 

represents a measurable policy-based tax/credit that can incentivize CCS. The second 

parameter, 𝜋𝑆𝐶𝐶 , is the ‘social cost of carbon’ (SCC) which represents the cost impact of 

all the additional sources of CO2e (𝐺𝐻𝐺𝑡
𝑆𝐶) that are present from annualized landscape 

and SC activities, and the impact from replacing grid electricity with excess electricity 

produced at the biorefinery. Importantly, the SCC also applies to the less readily 

measurable source of negative emissions, the soil carbon sequestration. By adjusting the 

two carbon value parameters separately, the integrated model can be used to study the 

environmental and economic tradeoffs between the landscape, the SC, and the 

biorefinery. Furthermore, this framework could be easily extended to use multi-objective 

optimization for further insights into the tradeoff between cost and GHG emissions. 

3. Results 

We apply the model discussed in section 2 to a case study of Michigan, USA. We use a 

harvesting site resolution of 8 x 8 km with 15 potential biorefinery locations, 300 potential 

depots, and 41,000 potential fields for establishment identified as marginal lands (Lark et 

al., 2020). The model is implemented in GAMS 36.1 and solved with Gurobi 9.1.2 to a 

1% optimality gap on 2.6 GHz Linux cluster machines in under 24h for all instances. The 

results for a range of values for sequestration credit and SCC are shown in Figure 2. The 

SC and biorefinery decisions for representative solutions are shown in Figure 3. 
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Figure 2. Effect of sequestration credit and SCC on the A) GHG emissions and B) minimum TAC 

for 320 million L/y of ethanol production. Points i and ii refer to solutions shown in Figure 3. 

The optimal biorefinery design depends on the sequestration credit and social cost of 

carbon. At sequestration credits above $25/Mg CO2, CCS from fermentation is 

incentivized when no SCC is considered. Further increasing the sequestration credit 

decreases the cost of ethanol production and incentivizes CCS from biogas and flue gas 

at $45/Mg CO2 and $63/Mg CO2, respectively. While the SC does result in some net 

emissions, as the SCC increases, harvesting sites with greater soil sequestration are 

chosen to reduce GHG emissions, and therefore the overall GHG balance improves. There 

are some instances where increasing the SCC leads to slightly more emissions, likely due 

to the presence of symmetric solutions in the model.  

 

Figure 3. SC and biorefinery configuration for SCC and sequestration credits of (i) $50/Mg CO2e 

and (ii) $170/Mg CO2e. Heatmap shows soil carbon sequestration trends at 8 x 8 km2. 

The SCC is applied to the total GHG emissions (except for CO2 sequestered at the 

biorefinery), which includes GHG mitigation for displacing grid electricity with excess 

electricity produced at the biorefinery. CCS requires electricity and heat for purification 
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and compression, so less electricity is sold when carbon is captured, and therefore a lower 

total credit is obtained for selling grid electricity. This causes the sequestration credit 

required to incentivize CCS from a given point source to increase proportionally to the 

SCC considered. The rate of this increase is determined by the electricity-equivalent 

energy requirement for capture from that source. It is important to note that the GHG 

credit for selling grid electricity depends on the electricity production mix, which varies 

significantly by location and over time. Overall, CCS at the biorefinery has a much greater 

effect of the GHG balance than SC operation by nearly an order of magnitude.  

Applying sequestration credits less than $25/Mg CO2 does not incentivize any carbon 

capture at the biorefinery and therefore has no effect on the total cost. At this level of 

biofuel production, the SC results in net GHG emissions, so increasing the SCC increases 

the cost of ethanol production. As the SCC increases, fields with higher soil carbon are 

chosen, and the rate of increasing total cost diminishes as the SCC increases. 

4. Conclusions 

We present a model to simultaneously consider high resolution SC design with detailed 

biorefinery design that includes carbon capture and sequestration. In the case study, we 

find that CCS at the biorefinery has a much greater impact on the total GHG mitigation 

of ethanol production than the SC operation. Correspondingly, a sequestration credit has 

a greater effect on the total cost of ethanol production than a social cost of carbon applied 

to all other GHG emissions/sequestration. Still, the social cost of carbon impacts what 

sequestration credit is needed to incentive carbon capture from specific point sources and 

also effects the optimal SC and landscape configuration. The magnitude of this effect is 

determined by the energy requirement of capture from that source, and the emissions from 

local grid electricity, the latter of which varies by location and both of which will change 

in the future. The proposed model allows for the study of economic and environmental 

tradeoffs among different stages in the production of biofuels. Its integration of spatially-

explicit real-world data makes it a critical tool for future analyses of BECCS systems.  
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Abstract
Supply chain problems for the production of green electricity and green hydrogen-based fuel for
use in utilities and transportation markets are typically represented by large-scale multi-period
planning and scheduling models. The solution of such models often presents computational chal-
lenges even with state-of-the-art commercial solvers. In this work, we present an effective de-
composition based strategy to overcome this challenge featuring a two-stage matheuristic that is
embedded in a mixed-integer programming (MIP) solver. The matheuristic first determines a lo-
cally optimal solution for the infrastructure planning decisions based on a relaxed solution to the
overall problem, and then identifies a locally optimal solution for the operation scheduling deci-
sions. For large-scale supply chain problems, the computational results indicate that the proposed
strategy is quite effective.

Keywords: Supply Chain Optimization, Mathematical Programming, Large-Scale Problems

1. Introduction
Due to globalization, liberalization of emerging markets, and population growth, the demands for
raw materials and manufactured products are rapidly increasing (Allen et al., 2019). Consequently,
supply chains are expanding with alacrity at the global scale and becoming more and more syn-
ergistic at the regional scale. At the same time, there has been a societal push towards carbon
neutral energy systems that meet their energy requirements via power generated from solar arrays
and wind turbines (Shell, 2020; Li et al., 2021).

Unfortunately, the dispatchability of these two types of energy generators are plagued with fluc-
tuations and stochastic intermittencies. To combat these complications, various technologies for
storing energy have been put forth, namely, lithium-ion batteries, pumped storage hydro-power,
and hydrogen-based dense energy carriers (H-DECs); however, each of these energy storage tech-
nologies have their own strengths and weaknesses (Palys et al., 2021). Therefore, there is a need
for quantitative frameworks to ensure that the energy systems within supply chains are optimally
developed and can operate over a wide range of conditions (Demirhan et al., 2020; He et al., 2021).

In this work, we generalize our previously developed optimization framework for the simultaneous
design and operation of energy systems from a single period framework to a multi-period frame-
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work (Allen et al., 2021). To address the computational issues that arise in solving multi-period
planning and scheduling problems, we have developed a matheuristic that can be integrated into a
MIP solver to compute upper bounds at nodes in the branch-and-bound tree – for a detailed review
on matheuristics, please see (Archetti and Speranza, 2014). The proposed strategy is agnostic to-
wards the exact MIP formulation of the problem and only assumes: (i) the planning constraints
and scheduling constraints can be separated from each other; and (ii) the scheduling constraints
can be further divided by their corresponding planning period and representative scenario.

We demonstrate the effectiveness of the framework through the use of a case study wherein we
examine the development of a green hydrogen-based supply chain that spans multiple locations
over the course of multiple planning periods. We find that the proposed strategy significantly
reduces the overall computational time when compared to a state-of-the-art MIP solver.

The outline of this article is as follows: in Section 2 we present the problem statement; in Section
3 we present a MIP formulation for solving multi-period planning and scheduling problems and
describe how it can be further decomposed, show the two-stage matheuristic, and outline how the
matheuristic can be conjoined with a MIP solver; in Section 4 we present and describe the results
to the problem under consideration; and in Section 5 we state some closing remarks.

2. Problem Statement

Consider a central planner who is developing a green hydrogen-based supply chain along the Gulf
Coast of Texas and in Southern California over the next thirty years. The central planner would
like to produce hydrogen and ammonia via electrolysis and the Haber-Bosch process, respectively,
in Houston, Texas and Corpus Christi, Texas. To power these processes the central planner would
like to utilize solar and wind farms. To combat the issues in the dispatchability of these generators,
the central planner would like to have the ability to store electricity in lithium-ion batteries.

Once the fuels are produced in Texas, they are either transported directly to Long Beach, California
or stored to be transported to Long Beach at a later time. After the fuels reach Long Beach, they
are: (i) utilized to meet the regions fuel and energy demands as given in Table 1; and/or (ii) stored
to be utilized at a later time. It should be noted that electricity can be generated locally via solar
farms and/or stored locally in lithium-ion batteries in Long Beach.

Table 1: Energy and fuel demands in Long Beach, California

Planning Period

Material 2025 2030 2035 2040 2045 2050

Ammonia [ton/day] 300 350 400 450 500 550
Electricity [GW] 1.0 1.2 1.4 1.6 1.8 2.0
Hydrogen [ton/day] 50 600 900 1100 1300 1500

The cost functions and conversion factors of the processes, storage units, and transportation mech-
anisms in the problem are taken from a case study in the literature (Allen et al., 2021; Demirhan
et al., 2020). The hourly capacity factors for the solar and wind farms are taken from the SIND
Toolkit (Hummon et al., 2012) and WIND toolkit (Draxl et al., 2015), respectively.

3. Solution Framework

In this section, we present a generic and compact MIP formulation for solving multi-period plan-
ning and scheduling problems. We then describe how the multi-period planning and scheduling
problem can be decomposed into a single planning problem and a set of independent scheduling
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problems. Finally, we present a two-stage matheuristic that utilizes the decomposed form of the
problem to first find a locally optimal integer feasible solution to the planning problem, and then
find a locally optimal integer feasible solution to the set of scheduling problems.

3.1. Mathematical Program

The generic and compact MIP formulation of the multi-period planning and scheduling problem
is given by Eq. (1). In this formulation there are no underlying assumptions about the structure of
planning and scheduling problems except that their corresponding constraint matrices are decom-
posable. Specifically, it is assumed that planning constraints can be separated from the scheduling
constraints and that the scheduling constraints can be further decomposed by their corresponding
planning period, p ∈ P, and representative scenario, s ∈ S, where P is the set of planning periods
where infrastructure decisions can be made and S is the set of representative scenarios.

minx∈X ,y∈Y
{

c(x)+d(y) : f (x) = 0; g(x, y) = 0
}

(1)

The vector, x ∈ X , represents the binary and continuous variables required to describe the planning
decisions. The vector, y ∈ Y , represents the binary and continuous variables required to describe
the scheduling decisions. The objective functions, c(·) and d(·), capture the capital and opera-
tional costs, respectively. The constraints, f (·) = 0 and g(·, ·) = 0, govern the behavior of the
planning decisions and scheduling decisions, respectively. It assumed that a new component of a
technology, t ∈ T , can be constructed in each planning period, p ∈ P, at each location, l ∈ L, in the
supply chain.

3.2. Decomposition Framework

Infrastructure planning problem

1st set of
scheduling
problems

2nd set of
scheduling
problems

3rd set of
scheduling
problems

Figure 1: Decomposed formulation of the
multi-period planning and scheduling problem

Figure 1 is an illustration of the block-diagonal
decomposable structure of the multi-period
planning and scheduling problem. In this il-
lustration, it is assumed that there are three
planning periods in which infrastructure deci-
sions can be made – each set of corresponding
scheduling problems are represented by a large
diagonal block. It is further assumed, that each
scheduling problem has been restructured such
that it is now composed of three representative
scenarios – each of the representative scenarios
are illustrated by a small blue diagonal block.
From inspection of Figure 1 it is evident that
if the planning decisions have been fixed, the
problem reduces to nine independent schedul-
ing problems, as given by Eq. (2).

Each of the independent scheduling problems
are parameterized by the vector, x̄, which stores a feasible solution for the infrastructure planning
decisions. The goal of each scheduling problem is to minimize the operational cost of the system,
dp,s(·), during the respective planning period, p ∈ P, and representative scenario, s ∈ S, while si-
multaneously ensuring that the scheduling constraints, gp,s(·, ·) = 0, are not violated, where the
vector, ys,p ∈Ys,p, represents the binary and continuous variables required to describe the schedul-
ing decisions as well as any additional slack variables.

y∗p,s(x̄) = argminyp,s∈Yp,s

{
dp,s(yp,s) : gp,s(x̄, yp,s) = 0

}
(2)

It should be noted that the size of each scheduling problem is on the order of |P| · |S| times smaller
than the original multi-period planning and scheduling problem.
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3.3. Two-Stage Matheuristic

Algorithm 3.1: Two-Stage Matheuristic
input : y – relaxed solution to the

operational scheduling decisions
output: locally optimal solution to the

planning and scheduling decisions
Function Matheuristic(y):

x̄← /0
foreach (t, l) ∈ T ×L do

x̄← x̄ ∪ x∗t,l(yt,l)

end
ȳ← /0
foreach (p, s) ∈ P×S do

ȳ← ȳ ∪ y∗p,s(x̄)
end
return x̄ ∪ ȳ

End Function

In this subsection, we present a two-stage
matheuristic, which is given by Algorithm 3.1,
for constructing locally optimal integer feasi-
ble solutions to multiple-period planning and
scheduling problems. In the first stage of the
matheuristic, a solution to the infrastructure
planning decisions is found by solving a set of
independent set covering problems. These set
covering problems are parameterized by a re-
laxed solution to the operational scheduling de-
cisions. In the second stage of the matheuris-
tic, a solution to the operational scheduling
decisions is found by solving a set indepen-
dent scheduling problems. These independent
scheduling problems are parameterized by lo-
cally optimal solution to the infrastructure plan-
ning decisions constructed in the first stage of
the matheuristic.

The first stage of the matheuristic constructs an integer feasible solution to the infrastructure plan-
ning decisions, ∪t∈T ∪l∈L x∗t,l(ŷt,l). The parameter, ŷt,l , that is passed to the optimization problem,
x∗t,l(·), stores a relaxed solution to the scheduling decisions for components of technology, t ∈ T ,
that are located in location, l ∈ L. In Eq. (3), the goal is to minimize the capital cost, ct,l(·), of
constructing the components of a given technology, t ∈ T , over the course of the planning horizon,
P, at a specific location, l ∈ L, where the vector, xt,l ∈ Xt,l , represents the binary and continuous
variables required to describe the infrastructure planning decisions for a specific technology, t ∈ T ,
at a location, l ∈ L.

x∗t,l(ŷt,l) = argminxt,l∈Xt,l

{
ct,l(xt,l) : ft,l(xt,l) = 0; ht,l,p,s(xt,l , ŷt,l)≥ 0 ∀ p ∈ P, s ∈ S

}
(3)

Simultaneously the set covering constraint, ht,l,p,s(·, ·) ≥ 0, ensures that the combined capacities
of the components of a given technology are larger than their maximum combined production
set points in a relaxed scheduling solution, ŷt,l , for each planning period, p ∈ P, and each rep-
resentative scheduling scenario, s ∈ S. Practically speaking, this constraint ensures that there is
always enough production capacity that can operate in parallel for a given technology to cover the
production set points given in a relaxed solution to the scheduling problems.

In the second stage of the matheuristic, the locally optimal infrastructure planning decisions, x̄ =
∪t∈T ∪l∈L x∗t,l(ŷt,l), found in the first stage of the matheuristic are utilized as parameters to generate
a locally optimal solution, ∪p∈P∪s∈S y∗p,s(x̄), for the operational scheduling decisions.

3.4. Unification of the Two-Stage Matheuristic and a MIP solver

The matheuristic is integrated into a MIP solver and is called whenever the MIP solver generates
a new node in the branch-and-bound tree. Once it is called, a three-stage procedure begins to
transpire. In the first stage of the procedure, a relaxed solution to planning and scheduling deci-
sions is accessed from the MIP solver. In the second stage, the solution to these relaxed decisions
is passed to the two-stage matheuristic and a locally optimal integer feasible solution is gener-
ated. In the final stage, the solution found in the two-stage matheuristic is passed back to the MIP
solver as a new upper bound. It should be noted that set covering problems in the first stage of
the matheuristic and the scheduling problems in second stage of the matheuristic can be solved in
serial or parallel via a MIP solver or a heuristic.
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4. Results and Discussion

Table 2: Size of the MIQP formulation for the
problem that the central planner is facing

Rep. Binary Continuous
Days Variables Variables Constraints

1 97,962 37,482 87,564
2 195,738 74,778 174,756
3 293,514 112,074 261,948
4 391,290 149,370 349,140
5 489,066 186,666 436,332
6 586,842 223,962 523,524
7 684,618 261,258 610,716
8 782,394 298,554 697,908
9 880,170 335,850 785,100
10 977,946 373,146 872,292

Figure 2: Computational time required to solve
the problem utilizing Gurobi employing its de-
fault parameters

Figure 3: Computational time required to solve
the problem utilizing the two-stage matheuristic
when it is integrated in Gurobi

In this Section, the proposed framework is uti-
lized to solve the aforementioned problem that
the central planner is facing. Specifically, the
proposed framework is pitted against Gurobi 9.5
utilizing its default parameters through the use
of a set of computational experiments that ex-
amines how the number of representative sce-
narios effects the problem’s overall run time
(Gurobi Optimization, LLC, 2021). The experi-
ments were performed on a machine with a In-
tel Xeon W-10885M Processor and 64 GB of
RAM.

The MIP formulation of the problem was
posed as a mixed-integer quadratic program-
ming (MIQP) problem, please see (Allen et al.,
2022) for the constraints and objective func-
tion utilized in the model. It should be noted
that in the MIQP formulation the bilinear terms
arise from the multiplication of the continuous
and binary variables in the constraints. Futher-
more, we did not linearize these constraints be-
cause it was found that Gurobi’s internal lin-
earization toolbox provided a tighter initial lin-
ear programming relaxation albiet with a slight
increase in the overall computational time.

Table 2 describes the summary statistics for the
MIQP formulation for the problem that the cen-
tral planner is facing. Figure 2 and Figure 3 il-
lustrate the MIP gap of the problem as a func-
tion of computational time and the number of
representative days for Gurobi when employing
its default parameters and for the proposed so-
lution strategy respectively. In both of these bar
plot figures, the color of the bar represents the
MIP gap at a specific time. It should be high-
lighted that: (i) when the color of the bar is
“black” Gurobi has yet to compute the initial
lower bound to the problem; (ii) the y-axis and
the color bar scale in both of the figures utilize
a log10 scale; and (iii) the problems have been
solved a MIP gap of less than 1%.

From inspection of Figure 2 and Figure 3 it is
clear that the proposed solution strategy signifi-
cantly reduces the amount of time that it takes
the problem to converge to the desired MIP
gap of 1%. Specifically, we find that when
the two-stage matheuristic is conjoined with
Gurobi, thereby acting as its primal heuristic,
the amount of time required to solve the prob-
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lem, once the initial linear programming relaxation was found, was reduced by an average of
93%. This feat is primarily attributed to the strength of the initial linear programming relaxation
in which the two-stage matheuristic is utilized to construct a locally optimal solution to the infras-
tructure planning decisions. This tight relaxation inturn allowed the proposed solution strategy to
converge to the desired MIP gap in one iteration for each of the test instances.

5. Conclusion

We have presented a solution strategy for solving large-scale multi-period planning and schedul-
ing problems. We first illustrated that multi-period planning and scheduling problems can be
decomposed into a single infrastructure planning and a set of scheduling problems. We then in-
troduced a two-stage matheuristic that allows the problem to be further decomposed into a set of
infrastructure planning problems and a set of scheduling problems. We demonstrated the effec-
tiveness of the solution strategy through the use of a case study that examined the development of
a national supply chain that produces green electricity and green hydrogen-based fuels for use in
utilities and transportation markets. The results show that the proposed strategy significantly re-
duces the amount of time it takes the problem to converge to the desired MIP gap when compared
to Gurobi’s default solver. From inspection of the converge plots, Figure 2 and Figure 3, we be-
lieve that the framework can be further improved by reducing the amount of time spent computing
the initial linear programming relaxation of the problem. This can be accomplished by utilizing
a lagrangian decomposition method or by applying a Dantzig-Wolfe reformulation and utilizing a
column generation procedure.
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Abstract 

Pharmaceutical companies are responsible for the consistent delivery of life-saving 

medicines to patients. Production must be planned to ensure supply-demand balancing 

and time-dependent capacity constraints must be handled through capacity planning. This 

work describes an aggregated 4-step framework for mid-term decision support on 

integrated production and capacity planning including the relevant MILP mathematical 

models. The framework has been developed by combining theory with observed 

requirements in industry and it is applied to a case study abstracted from industrial API 

manufacturing to provide an example of its industrial relevance.      

Keywords: MILP, Planning & Scheduling, Pharmaceutical Manufacturing, Capacity 

Planning 

1. Introduction 

Pharmaceutical companies must coordinate all parts of their complex supply chain (SC) 

to deliver life-saving medicines to patients consistently at low cost (Marques et al., 2020). 

Manufacturing of active pharmaceutical ingredient (API) is a crucial step that is 

constrained by low manufacturing flexibility, high capital investment and long building 

& approval timelines. Multi-product manufacturing lines are introduced to increase 

flexibility but the added system complexity makes it necessary to plan production on the 

mid-term time horizon spanning months to a few years. On this time horizon, short-term 

operational effects and long-term capacity changes can be overlooked. Typically, 

manufacturing at minimum cost is desired which results in a capacity constrained 

planning problem and the highly regulated pharmaceutical environment means that only 

certain limited capacity adjustments can be made. Researchers in process systems 

engineering (PSE) and operations research (OR) have developed models for production 

planning (Maravelias and Sung, 2009; Hu and Hu, 2016) and capacity planning (Smirnov 

et al., 2021) but the combined problem of planning production and capacity on the mid-

term horizon has received limited attention despite its industrial importance. In this work, 

we aim to bridge the gap by developing a framework for evaluating capacity in a multi-

product, multi-stage, multi-line campaign production environment, which is typical in 

pharmaceutical manufacturing. The development is based on the planning literature 

within PSE and OR combined with insights from a pharmaceutical company, and the 

framework integrates mathematical optimization models for campaign scheduling. The 

news value consists of creating production plans while accounting for capacity projects 

949

http://dx.doi.org/10.1016/B978-0-323-95879-0.50155-7 



  S. B. Lindahl et al. 

to both provide production plans, expected inventories of all materials and effects of 

capacity changes as a function of both capacity level and implementation timing.      

2. Problem Statement 

The capacity and production planning problem can be stated as follows: Given a multi-

product, multi-stage, multi-line API manufacturing system, demand profiles for all 

products and initial inventories of all products and intermediates. Determine optimal 

system-wide mid-term production plans and any required capacity changes, their amount 

and timing. This is subject to maintaining all products above their safety levels and 

specific features of API manufacturing such as changeover and release times.  

3. Methodology 

In this section, a 4-step framework for combined, model-based production and capacity 

planning in the pharmaceutical industry is presented. Such an approach is necessary to 

evaluate mid-term capacity requirements that are variable in both amount and timing 

along with regular production planning across a complex system. Next, the model is 

described followed by the framework for evaluating production plans and capacity. 

3.1. Campaign scheduling model 

The basis of the framework is a campaign scheduling model that is used to assess 

production capability across the system and estimate mid-term inventory levels for 

products and intermediates through campaign plan generation. The model is formulated 

as a discrete time, multi-period, multi-product, multi-stage, multi-line mixed integer 

linear programming (MILP) model based on the state-task network (STN) (Kondili et al., 

1993). It includes new release time parameters 𝑅𝑒𝑙𝑖𝑠, continuous slack variables for 

representation of demand backlogging and/or safety inventory violations ∆𝑠𝑡 , inclusion 

of time dependency in parameters for both capacity and safety storage level 𝑉𝑖𝑗𝑡
𝑚𝑎𝑥,  𝐶𝑠,𝑡

𝑚𝑖𝑛, 

respectively, and a new continuous variable that allows the activation and selection of 

required capacity changes ∇𝑖𝑗𝑡. Overall, the model must be able to determine material 

balances through the allocation of production to lines while respecting capacity and 

storage limitations and time requirements for cleaning and quality control of products. 

Equation 1 determines the continuous material balance variable 𝑆𝑠𝑡 , of product s at time t 

as a function of continuous variables for production and consumption 𝐵𝑖𝑗𝑡 , and parameters 

for task stoichiometry 𝜌𝑖𝑠
′  and 𝜌𝑖𝑠, and demand 𝐷𝑠𝑡 . Equation 2 enforces a safety 

inventory. Equation 3 uses binary allocation variables 𝑊𝑖𝑗𝑡 , to describe allocation of 

manufacturing to lines through full backwards aggregation and states that only one 

product can be produced at a time. Equation 4 sets the production amount which is 

(de)activated by the allocation variable and constrained by the upper system capacity 

which has a fixed and variable component. Equations 5 is used to enforce sequence-

dependent changeover times such that a new task can only start when enough time has 

passed after the previous task has finished. Equation 6 states that all slack variables must 

be below a maximum value and Equation 7 enforces all capacity increase variables below 

their corresponding allocation variable which maintains the link between production and 

allocation. Equation 8 constrains all capacity variables below a maximum value. 

𝑆𝑠𝑡 = 𝑆𝑠,𝑡−1 + ∑ 𝜌𝑖𝑠
′ ∑ 𝐵𝑖,𝑗,𝑡−𝑃𝑖𝑠−𝑅𝑒𝑙𝑖𝑠

𝑗∈𝐾𝑖𝑖∈𝑇𝑠

− ∑ 𝜌𝑖𝑠 ∑ 𝐵𝑖𝑗𝑡  −  𝐷𝑠𝑡

𝑗∈𝐾𝑖𝑖∈𝑇𝑠

+ ∆𝑠𝑡 − ∆𝑠𝑡−1, ∀ s, t 

                                                                                                                                    (1) 

𝐶𝑠,𝑡
𝑚𝑖𝑛 ≤ 𝑆𝑠,𝑡 , ∀ s, t (2) 
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∑ ∑ 𝑊𝑖𝑗𝑡′ ≤ 1,

𝑡−𝑝𝑖+1

𝑡′=𝑡

∀ j, t

𝑖∈𝐼𝑗

(3)

𝐵𝑖𝑗𝑡 ≤ (𝑊𝑖𝑗𝑡 + ∇𝑖𝑗𝑡)𝑉𝑖𝑗𝑡
𝑚𝑎𝑥, ∀i, t, j ∈ Ki (4)

∑ 𝑊𝑖′𝑗𝑡

𝑖′∈𝐼
𝑗
(𝑘)

+ ∑ 𝑊𝑖𝑗,𝑡−𝑝𝑖−𝜃 ≤ 1,

𝑖∈𝐼
𝑗
(𝑘)

∀t, j, θ = 0 … τjkk′ − 1
(5)

∆𝑠𝑡≤ ∆𝑚𝑎𝑥 , ∀s ∈ Products, t (6)

∇𝑖𝑗𝑡≤ 𝑊𝑖𝑗𝑡, ∀i, t, j ∈ Ki (7)

∇𝑖𝑗𝑡≤ ∇𝑚𝑎𝑥, ∀i, t, j ∈ Ki (8)

Different objective functions may be used depending on the questions or problems that 

are addressed. Objective O1 states that product inventories are maximized on a set of time 

points. Objective functions O2 and O3 are used in reformulations of the original problem

to obtain minimum safety stock violation/backlogging or minimum capacity increase. 

maximize ∑ 𝑆𝑠𝑡, ∀𝑠 ∈ 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠, 𝑡 ∈ 𝑇𝑖𝑚𝑒 𝑃𝑜𝑖𝑛𝑡𝑠

𝑡

(O1)

minimize ∆𝑚𝑎𝑥 (O2)

minimize ∇𝑚𝑎𝑥 (O3)

3 .2 . Framework for capacity and production planning

The framework is applicable to production planning problems within pharmaceutical 

manufacturing. The overall objective of the problem will determine the specific objective 

function and relevant scenarios to be investigated. It consists of four main steps: (1) 

system categorization and data collection, (2) baseline supply capability, (3) capacity 

analysis and (4) supply decision analysis. Baseline performance is tracked through steps 

1 & 2, step 3 is added to escalate from a production planning to a capacity planning 

problem which is demanded by practitioners and step 4 shows the effects of changing the 

system capacity, operation, etc. Each of the steps will now be described in further detail.

3 .2 .1 . System characterization and data collection

The characterization step is used to establish system 

boundaries and describe manufacturing of each 

product and intermediate. System boundaries must be 

established based on the problem definition to ensure

that conclusions are valid and to limit complexity and

required assumptions. The system characterization 

results in the overview in Figure 1 showing 

production pathways, lines that are set up for specific 

production and where these lines exist. The data 

collection step defines model parameters based on 

internal company systems and people. The data could 

come from finance systems or it could be extracted 

from data historians and aggregated into main 

operations to avoid describing individual pieces of equipment. Future capacities from 

projects that have already been approved can be added along with any planned downtime.

The projects are an outcome of step 3 in the framework and the planned downtime comes 

out of steps 3 or 4 depending on whether it results in changed capacity or not.   

3 .2 .2 . Baseline supply capability

In step 2, the campaign scheduling model is set up with an objective function(s) that

depends on the decision maker (DM) and the type of analysis/type of questions asked. 

Figure 1: System characterization

describing products (dark blue), 

intermediates (light blue), production 

lines (pink) and facilities (green).
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Next, the model is solved, and the results are reported in terms of key performance 

indicators (KPIs), for example, minimum inventories, cost or number of changeovers, and 

illustrations of the plans and inventories. It is our experience that DMs often want to see 

real plans and inventories rather than just KPIs since these are more relatable and provide 

a better understanding. If all KPIs are within specifications, step 3 is skipped, otherwise 

the capacity analysis is carried out.

3 .2 .3 . Capacity analysis

In step 3, the future capacity of the system is explored either through a direct or an indirect 

approach. In the direct approach, one or more capacity changes are considered and 

introduced either as scenarios or directly into the model. These changes could originate

from modelling activities on the system that result in physical changes or changed 

operating parameters. In the indirect approach, optimal capacity changes are investigated 

solely based on the campaign scheduling model to suggest required capacity increases 

that are given as input to other modelling activities.

3 .2 .4 . Supply decision analysis

In step 4, the effects of any changes to the system (capacity, shutdown, product priority 

etc.) are determined. The results include scenario-dependent production plans, expected 

inventories, effects of (capacity) changes and suggested capacity implementation timings 

and final levels. Relevant KPIs are used to compare baseline supply with the different

scenarios to provide the DM with the needed information to decide.

4. Case Study

The case study is abstracted from an industrial manufacturing network that converts raw

materials to API on multiple multi-product lines. Plans up to a certain time are fixed due 

to constraints on manning, material supply, fixed deliveries etc. and used to project initial 

inventories for all materials along with the state of each equipment (producing, idle, 

changeover in progress). Demand increases in the pharmaceutical industry typically lead 

to a situation where capacity becomes constrained. Therefore, in this case study 

inventories maximization was selected throughout the horizon for all final products. The 

next sections will describe the solution of the case study through the 4-step framework.

4 .1 . System characterization and data collection

The baseline system consists of four products

(referred to as A-D) and seven production lines in 

three separate stages (A, B and C) with intermediate 

storage as shown in Figure 2 (dark blue). Upstream 

production (USP) lines (A) produce the precursor 

which is purified in two downstream production

(DSP) stages, DSP1 (B) and DSP2 (C), to the final 

API. The product-line allocations (Table 1) show that 

not all products visit all stages and final products are

therefore defined by the last stage a product visits. As 

shown in Figure 2 the system used in the current case 

study (dark blue) was reduced from a larger system 

by assuming sufficient supply of material from Line A3 to Line B3. Demand data was 

given by the company as an average over two years with weekly deliveries and all final 

products have a six-month safety storage level and require four weeks release time for 

quality control after production. The results based on constant demands are applicable 

since the demand volatility is less than the final product safety storage levels and no 

stockouts will thus occur when implementing the generated plans. Table 1 gives yearly 

Figure 2: System reduction in a 3-

stage environment with USP (A), 

DSP1 (B) and DSP2 (C)
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(46 week) capacities in final product equivalents (scaled by yearly demand) and yields 

for all product-line combinations that exist. Raw material is unconstrained and therefore 

the yield in USP is set to 100%. Production is shut down 6 weeks per year (weeks 7, 29-

31, 42, 52) and after each shutdown, the first week is spent on ramping-up. Table 1 

provides ramp-up coefficients for each line as a fraction of full capacity. Initial levels in 

final product yearly demand equivalents are: 9 months for final products and 1 month for 

intermediates. Changeover times are sequence-independent and last 3 weeks in USP and 

1 week in DSP. 

Table 1: Capacity and yield overview in the format ‘Capacity (Yield)’ and ramp-up coefficients 

as a fraction of total capacity in the first week after a shutdown. Capacities are reported in units of 

yearly final product demand equivalent. 

 
USP DSP1 DSP2 

Line A1 Line A2 Line B1 Line B2 Line B3 Line C1 Line C2 

Product A 1.5 (1.0)  1.5 (0.5) 1.5 (0.5) 1.5 (0.5)   

Product B 1.5 (1.0) 1.5 (1.0) 1.5 (0.5)   1.5 (0.9)  

Product C  1.5 (1.0)  1.5 (0.5)   1.5 (0.5) 

Product D     1.5 (0.5)   

Ramp-up 

coefficient 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 

4.2. Baseline supply capability 

The campaign scheduling model was set up in Pyomo and solved with CPLEX on a 2-

year horizon with a weekly discretization and objective function O1 maximizing final 

product inventories every half year which weights all products equally and highlights the 

need for high inventory levels throughout the horizon rather than solely at the end. All 

slack variables and capacity increase variables were constrained to 0. The results are 

given in Table 2 (Scenario I) which shows that all KPIs are acceptable, and the company 

therefore considers manufacturing intermediate for a development product on Line A1. 

The estimated duration of the production is 12 full-capacity weeks with standard 

changeover time, release time & ramp-up and delivery in week 84 on the horizon. The 

problem was solved including the development product which returned an infeasible 

solution showing that not all product inventories can be kept above their safety levels 

when the clinical production is introduced. Before continuing to step 3 in the framework, 

it is relevant to know how far from feasibility the solution is since small deviations from 

safety stock might be accepted by the DM. Therefore, the model was reformulated with 

an objective of minimizing the maximum slack value (objective function O2). The 

reformulated mathematical program (Scenario II) was solved giving an objective value 

of 0.06 which shows that the lowest expected inventory level is 0.44. If this number is not 

accepted by the DM, step 3 in the framework can be explored. As can be seen, this 

example shows that capacity planning is relevant to both account for changing demands 

for current products but also to handle new product introductions (NPIs).  

4.3. Capacity analysis 

In step 3, an example of the indirect approach to capacity changes is presented and applied 

to all legacy products on Line A1. The goal is to determine the minimum amount of 

capacity required to avoid safety violations since these could result in patients not getting 

access to life-saving medicines. The reformulation from step 2 was modified by replacing 

objective function O2 with O3, capacity variables were fixed at 0 for all product-line 

combinations except for the legacy products (A, B) on line A1, slack variables were fixed 

at 0 and the program (Scenario III) was solved giving an objective value of 0.16 which 

shows that a 16% capacity increase on Line A1 is required for both products A and B. 
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4.4. Supply decision analysis 

In step 4 the result from step 3 is used to solve the original problem from step 2 with a 

16% increased capacity on Line A1 for legacy products at the beginning of the horizon 

(Scenario IV). The results (Table 2) show that no safety stock violations occur and the 

remaining KPIs are close to the baseline (Scenario I). Based on the results, it is 

recommended to investigate how to achieve the capacity increase and accept the clinical 

production contingent on finding a solution. If the increase cannot be achieved, the DM 

will decide if additional information is needed before the clinical production is accepted. 

Table 2: Data and results (KPIs) for the 4 scenarios 

 KPIs 

 
Line A1 

Capacity 

Clinical 

Demand 
Changeovers 

Lowest 

inventory 

Final 

inventories 

Scenario I Baseline No 20 0.5 2.64 

Scenario II Baseline Yes N/A 0.44 N/A 

Scenario III +16% Yes N/A N/A N/A 

Scenario IV +16% Yes 22 0.5 2.72 

5. Conclusions & Perspectives 

A framework is described for handling mid-term capacity and production planning 

applied to the pharmaceutical industry. It allows the DM to evaluate current supply 

capabilities, identify capacity requirements and analyze the effect of specific changes to 

the system. This knowledge can be used to handle capacity proactively and increase 

collaboration across the supply chain from development through manufacturing and 

distribution. The framework was applied to a case study abstracted from industrial API 

production to give an example of its use. Future research will focus on expanding the 

framework with specific methods for each step and to add uncertainty to both framework 

and models. Plan robustness will be added to ensure feasibility subject to certain levels 

of uncertainty which will reduce volatility and firefighting in the planning processes as 

requested by industrial practitioners. Additionally, methods for multi-objective 

optimization will be added and model application will be explored including 

triggers/frequencies for updating data and applying the framework.     
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Abstract
Recent clinical outcomes of Advanced Therapy Medicinal Products (ATMPs) highlight promising
opportunities in the prevention and cure of life threatening diseases. ATMP manufacturers are
asked to tackle engineering product and process-related challenges, whilst scaling up production
under demand uncertainty; this highlights the need for tools supporting supply chain planning un-
der uncertainty. This study presents a computer-aided modelling and optimisation framework for
viral vector supply chains. A methodology for the characterisation of process-related uncertainties
is presented; the impact of input demand and process bottlenecks on optimal supply chain con-
figurations and capacity allocations is assessed. A trade-off between cost and scalability emerges,
larger costs incurring at higher input demands, whilst ensuring improved flexibility under demand
uncertainty. Furthermore, bottlenecks uncertainty drives the optimisation to alternative strategic
decisions, highlighting the need for a systematic integration within the framework.

Keywords: mathematical programming, supply chain optimisation, advanced therapeutics, phar-
maceutical manufacturing

1. Introduction

Advanced Therapy Medicinal products (ATMPs) form a novel class of therapeutics with promising
outcomes in the prevention and treatment of life-threatening diseases. ATMPs mostly rely on the
delivery of genetic components to the target patient; this is achieved either via insertion of a vector
carrying the genetic payload (in vivo) or by transplanting cells that been engineered to produce
therapeutic proteins or factors (ex vivo). The gene therapy field is rapidly growing, with the U.S.
Food & Drug Administration (FDA) forecasting 10-20 gene therapies approvals per year by 2025
(FDA, 2019). Viral vectors are currently at the forefront of next-generation vaccines and thera-
peutics. Adenoviral vectors have demonstrated their suitability and flexibility as vaccine carriers,
with the commercial approval of Vaxzevria (AstraZeneca), the Janssen and the Sputnik COVID-
19 vaccines (EMA, 2021). On the other hand, adeno-associated viruses have shown to be suitable
for in vivo gene therapy with approvals of Luxturna and Zolgelsma, lentiviruses (LV) find broad
application in ex vivo gene therapy and utilised in the manufacturing of cell-based gene therapy
products, such as autologous CAR-T cell therapy (Papathanasiou et al., 2020). As more advanced
therapeutics and vaccine platforms reach clinical trials and commercialisation, the field is experi-
encing a need for innovative solutions for process development, manufacturing and infrastructure
to ensure clinical availability and patient accessibility. Similar to product development and manu-
facturing, ATMPs distribution faces challenges that are often present across pharmaceutical supply
chains (SC) (Fig.1). These include capacity planning under uncertainty of demands, clinical trial
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Figure 1: Generalised SCs for viral vectors: (1) primary and (2) secondary manufacturing, (3-4)
regional-district storage, (5) hospitals/administration points and (7) leukapheresis sites, (6) cell
therapy manufacturing facilities.

outcomes, process capabilities and dosage requirements (i.e. in-risk manufacturing and distribu-
tion). This highlights the need for informed decision-support tools for ATMPs SCs to improve
strategic and operational planning (Sarkis et al., 2021). Several optimisation-based frameworks
for scheduling of pharmaceutical plants and SCs under uncertainty have been proposed in recent
works (Sousa et al., 2011; Siganporia et al., 2014; Vieria et al., 2019). This study presents (i) a
novel methodology for the identification of underlying manufacturing uncertainties in emerging
biopharmaceutical industries, focusing on LV vectors SCs (system S, Fig. 1) and (ii) an assessment
of how these may impact optimal SCs configurations from clinical to commercial scale.

2. Materials & Methods

2.1. Techno-economic modelling

A primary and a secondary manufacturing platform for LV vectors was modelled using SuperPro
Designer (Intelligen) to (i) allow for techno-economic assessment of the overall manufacturing
process and (ii) evaluate how underlying uncertainties may propagate to key performance indica-
tors of interest of the SC. SuperPro relies on built-in sets of algebraic and differential equations
to calculate material and energy balances, sizes equipment, schedules operations and computes
CapEx and OpEx. Information regarding production processes, resources costs was obtained from
literature (Comisel et al., 2021; Perry and Rayat, 2021) and input ranges were recorded (Table 1).
Additional inputs were sourced from SuperPro’s industrial-based databases and were assumed to
vary within a range of ±50% of their nominal value, preserving order of magnitude and allowing
assessment of input significance. The uncertainty analysis was conducted using a SobolGSA-
MatLab-Component Object Model (COM)-SuperPro interface, with the primary manufacturing
model simulated for 1023 quasi-random combinations of inputs within the pre-defined range.

2.2. Optimisation framework

A mixed-integer linear programming (MILP) problem was developed (Table 2); given a range
of production scales, manufacturing and logistics costs, the optimisation identifies (i) candidate
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Table 1: Key input ranges for uncertainty analysis

Input Nominal LB UB Units Section Step
Target viral titre (main product) 1×107 1×106 1×108 TU mL−1 USP Vector growth

Raw material (medium) cost 33.1 16.6 49.6 $ kg−1 USP Seed cells; vector growth

Reaction task lengths 11.0 8.0 14.0 days USP Seed cells; vector growth

Buffer utilisation 150.5 75.3 225.8 kg batch−1 DSP Purification

Recovery (%) 90.0 70.0 99.0 - DSP Purification (dead-end filtration)

DNA removal task length 60 30 90 min DSP Purification (nuclease)

Filtration task length 240 120 360 min DSP Purification (dead-end filtration)

Chromatography task length 75 37.5 112.5 min DSP Purification (chromatography)

Elution yield (%) 41.0 29.0 90.0 - DSP Purification (chromatography)

Raw material (buffer) cost 43.5 21.8 65.2 $ kg−1 DSP Purification (nuclease)

Concentration factor 3 1.5 4.5 - DSP Purification (dead-end filtration)

Volume of Eluant 2 1 3 BV DSP Purification (chromatography)

Recovery (%) 99.0 70.0 99.0 - DSP Purification (ultra-filtration)

Rejection coefficient (%) 1.0 1.0 2.0 - DSP Purification (sterile filtration)

SC structures and allocated capacities, (ii) operational plans and (iii) transportation flows. The
aim of the optimisation problem is to maximise the total network cost (Eq.1), comprising CapEx,
OpEx and transportation costs (Eq 2-6). For manufacturing nodes j and f , the operational cost
is subdivided into a labour-dependent component, a variable (batch-size dependent) a facility-
dependent cost, accounting for equipment depreciation and maintenance (Eq. 4). A set of logic
constraints ensure that feasible connections are established only if nodes are built (Eq. 7-14),
whilst imposing 1 size s is selected for every node. Additionally product allocations occur only
in installed equipment (Eq. 15-16). Material balances at each node ensure balanced flow between
nodes, only if a match is established (Eq. 17, 22-26). In nodes j and f , batches are manufactured in
campaigns, with the first batch being collected after α days and subsequent ones every r days (i.e.
cycle time) (Eq. 18-21); this holds for USP, DSP and secondary manufacturing process sections.

2.3. Case study: viral vectors

The LV vector SC considered in this study comprises 3 candidate locations for primary and sec-
ondary manufacturing respectively, 3 storage nodes and 5 demand zones (i.e. cell therapy facili-
ties). The impact of input demand on optimal SC configuration is assessed via 3 demand scenarios,
which capture (i) a Phase I-II clinical demand (1,000 doses y−1 on aggregate), (ii) Phase III-
commercial demand (Comisel et al., 2021) and a (iii) commercial demand (Papathanasiou et al.,
2020), with a commercial CAR-T cell therapy facility in L5. The impact of cycle time ru and
USP processing time αu uncertainty on SC structures and capacity allocations is also assessed
(Table 3). Finally, the resilience of the network is tested by fixing strategic decisions (i.e. scale
and number of parallel lines), whilst allowing operational decisions to adjust accordingly, thereby
identifying a SC breakpoint.

3. Results & Discussion

3.1. Techno-economic modelling and uncertainty analysis

The results of the proposed uncertainty analysis can be decoupled into throughput-related outputs
(Fig. 2a-e) and cost-related (Fig. 2f-k) outputs. Process tasks length uncertainty is expected to
impact upstream and downstream process (USP, DSP) times, with USP processing time remaining
within 40-58 days, as opposed to 1-2 days for the DSP. With cycle times between 12-15 days,
USP remains a bottleneck in the process, due to time-intensive batch cell cultures. Overall pro-
cess capability is impacted (Fig. 2e), as an integer number of batches must be completed within
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Table 2: Mathematical formulation of the supply chain optimisation problem

Formulation Equations Index

Objective z = TCCAP
j +TCCAP

f +TCCAP
k +TCOP

j +TCOP
f +TCOP

k +TCT 1

Capital Costs TCCAP
j = ∑ jsl C

CAP jl
s Z jsl ; TCCAP

k = ∑ks CCAPsl
s Yks 2-3

Operational Costs TCOP
j = ∑ jsli CLAB jlB jsli +CVAR jli

s Pjsli +CLAB jl
s Z jsl ; TCOP

k = ∑ki COPkiQkli 4-5

TCT = tc ∑i j f D j f Qi j f + tc ∑i f k D f kQi f k + tc ∑ikl DklQikl 6

Logic Constraints X j f ≤ ∑s Yjs ∀ j, f ; X f k ≤ ∑s Yf s ∀ f ,k; Xkl ≤ ∑s Yks ∀k, l 7-9

∑ j X j f ≥ ∑s Yf s ∀ f ; ∑ f X f k ≥ ∑s Yks ∀k; ∑k Xkl ≥ 1 ∀l 10-12

Z jsl ≤ Yjs ∀ j,s, l; Z f sl ≤ Yf s ∀ f ,s, l 13-14

Wjsli ≤ Z jsl ∀ j,s, l, i; Wf sli ≤ Z f sl ∀ f ,s, l, i 15-16

Sample Flow Constraints QminX j f ≤ ∑i Qi j f ≤ QmaxX j f ∀ j, f 17

Manufacturing Constraints TminWjsli ≤ Tjsli ≤ TmaxWjsli ∀ j,s, l, i; U jsl = ∑i Tjsli ∀ j,s, l; 18-19

Sample Node Balances B jsli =Wjsli +1/r(Tjsli −αWjsli) ∀ j,s, l, i; Pjsli = xsiB jsli ∀ j,s, l, i 20-21

Network Balances ∑l Pjsli = ∑ f Qi j f ∀i, j; ∑ j Qi j f = ∑l Pf sli ∀i, f ; ∑l Pf sli = ∑k Qi f k ∀i, f 22-24

∑ f Qi f k = ∑k Qikl ∀i,k; ∑k Qikl ≥ Dil ∀i, l 25-26

Table 3: Summary of scenarios considered

Scenario
Location-specific product demand (doses y−1) Capability (d b −1)

L1 L2 L3 L4 L5 αu ru

A 200 200 200 200 200 40 12

B 1,000 1,000 1,000 1,000 10,000 40 12

C 1,000 1,000 1,000 1,000 40,000 40 12

D 200 200 200 200 200 58 15

E 1,000 1,000 1,000 1,000 10,000 58 15

F 1,000 1,000 1,000 1,000 40,000 58 15

the annual operating days (335 days y−1). Uncertainty in USP titers, DSP recovery and mate-
rial consumption per unit product determines a range of batch sizes (Fig. 2d). Consequently, a
varying number and size of output batches impact labour-related OpEx and variable OpEx respec-
tively (Fig. 2h-k). CapEx output ranges instead depend on variability in stream volumetric flows,
resulting from uncertainty in medium/buffer consumption rates per unit product produced.

3.2. Supply chain optimisation

The major contributor to SC cost is primary manufacturing accounting for 69-89% of costs across
all scenarios considered (Fig. 3b-d). In scenario A, a clinical demand (1000 doses y−1) is fulfilled
by a single primary manufacturing site at 500 L, comprising a single USP and DSP line (Table
4). As the demand increases in L5 to commercial-scale (B-C), the framework selects to build the
facility at 2000 L, with the addition of 1-3 parallel USP lines. Economies of scale are expected
to be a key driver in lowering the unit production cost. At the same time, the installation of a
parallel USP line increases the throughput of the facility and the utilisation of the DSP line in
J1. Similar trends are seen in scenarios D-F, which consider longer cycle and processing times.
Whereas D and E yield the same optimal capacity allocations, in scenario F the different process
capability drives the optimisation to install an additional facility in J3, with an extra USP and DSP
line respectively compared to C. As shown in Fig. 3a-c, the demand-optimised scenarios B and E
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Figure 2: Results of uncertainty analysis for (a-e) throughput-related quantities and (f-k) cost-
related quantities for 2000 L scale primary manufacturing process.

Figure 3: Cost-scalability analysis and SC costs for (a-b) ru = 12 d b−1 and for (c-d) ru = 15 b−1
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Table 4: Summary of capacity allocations by scenario

Scenario

A B C D E F

Scale (L) 500 2000 2000 500 2000 2000

Primary Manuf. J1 J1 J1 J1 J1 J1+ J3

USP lines 1 2 4 1 2 2+3

DSP lines 1 1 1 1 1 2

Secondary Manuf. F1 F1 F1 F1 F1 F1+F3

Scale (vials min−1) 50 50 50 50 50 50

F&F lines 1 1 1 1 1 1+1

require the same expenditure to fulfill the input demand, as cost is computed as a function of scale,
number of batches and batch size. When assessing scalability, scenario B allows for a scale-up
up to 25,000 doses y−1, thanks to the shorter cycle times, whereas the SC network in scenario E
saturates at 20,000 doses y−1. Similarly, for scenarios C and F, the two SC networks can scale-up
to 50,000 doses y−1, albeit with 20 million USD y−1 gap in estimated costs and alternative capacity
allocations and transportation links. This could result from a minimisation of transportation cost,
which favours in this case a decentralised network as opposed to centralised manufacturing. This
highlights the need to (i) carry out strategic decisions whilst considering bottlenecks that can
emerge at operational level and therefore (ii) integrate an evaluation of the input uncertainty space
as part of the optimisation. The latter is translated into considering uncertainty ranges for all
throughput-related and cost-related inputs.

4. Conclusions

This study presents a computer-aided modelling and optimisation framework for vector-based
ATMPs manufacturing and distribution networks. The developed tool identifies cost-effective SC
structures and capacity allocations for a range of clinical to commercial demand scenarios and
quantifies SC scalability under demand uncertainty. A methodology to characterise key process-
related uncertainties is proposed; hence, the impact of cycle time uncertainty on SC network
performance is demonstrated. The need for augmenting such tool to systematically enumerate
the input uncertainty space as part of the optimisation has been highlighted. The identification of
a unified resilient solution to realisations of uncertainty outcomes is expected to bring benefits to
the emerging ATMPs industry, as it transitions from clinical to commercial operations.
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Abstract
In an effort to decarbonize and electrify the chemical industry, the incorporation of renewable en-
ergy sources in the energy input portfolio of chemical processes is a key step. To this end, we
present a study of the effects of connecting a wind farm to a small-scale chemical process net-
work comprising a shale gas processing plant and steam cracker. The steam cracker is assumed to
be able to utilize a hybrid energy stream to support the endothermic cracking reactions, whereby
conventional (fossil fuel) heat generation can be replaced with electricity whenever the latter is
readily available from the wind farm. We probe the impact of employing this energy blend, as
well as the network economics and CO2 emissions, showcasing the potential benefits of incorpo-
rating renewable energy sources in lieu of/in addition to conventional ones to support chemical
manufacturing.

Keywords: Decarbonization, Network Modeling, Electrification, Wind Power, Chemical Manu-
facturing

1. Introduction

The energy use of the industrial sector accounted for 33% of the total U.S. energy consumption in
2020, with almost 60% of this amount being related to chemicals and petroleum and coal products
(U.S. Energy Information Administration, 2021c). While the majority of this energy need is met
by fossil fuels, wind power contributed up to 8.4% of total U.S. utility-scale electricity generation
(U.S. Energy Information Administration, 2021d). However, cases of under-utilization of avail-
able wind power are common, with the main issues being the transmission capacity of the wind
generation facilities to the main electricity load centers and the inherent variability in generation
rates. Infrastructure additions that would only be operational at full capacity when wind power is
at its peak are uneconomical. More effective use of wind power could entail expanded local use
of electricity at times of peak wind power generation, or finding ways to store energy at times of
peak wind power production. In the case of chemical production (which is a form of expanded
use of electricity and energy storage), the main advantage would be to (locally) produce chemicals
that would be readily compatible with existing fuel transport systems. In this work we investigate
modalities for utilizing (peaks in) wind power generation to support the decarbonization and elec-
trification of chemical processing. We utilize a small-scale process network model that represents
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a shale gas processing plant, an ethane cracking facility and a wind farm. We consider the limiting
case where the endothermic cracker can utilize a hybrid energy stream, comprising an infinitely
variable supply of conventional (fossil) fuels and electricity. Depending on the electricity produc-
tion level, production of the ethane cracker may be fully electrictrified or fully conventional, or
anywhere in between. We choose to maximize overall network profitability, which enables us to
study the energy supply with the most cost-efficient use of available wind power. Furthermore,
CO2 emissions are calculated and presented.

2. Background

In recent years, there has been significant research interest in electrification and decarbonization
in the chemicals and energy sectors. For example, Chen et al. (2019) evaluated the effect of direct
and indirect electrification on the chemical industry by using a methanol process as a case study.
Electrification is achieved by changing the energy mix required by the process (direct electrifica-
tion) or by utilizing alternative feedstocks (indirect electrification). van Rooij et al. (2017) studied
CO2 reduction in the chemical industry by designing a plasma process that would transform CO2
to CO. In this case, decarbonization is achieved by converting CO2 into a different and useful
molecule. Such approaches are further discussed by Schiffer and Manthiram (2017), who study
the electrification and decarbonization of the chemical indsutry via electrochemistry, focusing on
the largest production volume and energy consumption chemicals. Papadis and Tsatsaronis (2020)
focus on the energy sector and discuss the challenges and steps that need to be considered on envi-
ronmental, economic, technical, social and political levels in order to limit the adverse effects on
the environment. Even though these researchers, and the many others working in this field, focus
on different aspects of electrification and decarbonization, there is a consensus that the integration
and efficient use of renewable resources are necessary and will be the main drivers of these efforts.

3. Problem Definition

In order to study the impact of electrifying chemical processing, we consider a canonical process
network comprising a natural gas processing plant and ethane cracker, supported by a wind farm
whose generation capacity varies throughout the day. The choice of gas processing plant/cracker
is motivated by the need to process distributed fossil fuel sources, such as natural gas liquids
(NGLs) obtained from shale gas fields. Such distributed processing lends itself naturally to elec-
trification via locally generated renewable energy. In the scenario considered, the gas processing
plant utilizes shale gas feedstock and produces natural gas that is ready for use, and NGLs (ethane,
propane, butanes, and smaller amounts of heavier hydrocarbons), with the latter used to produce
ethylene via steam cracking. In order to obtain a realistic representation of the process economics,
we utilize data (process stoichiometries, production costs, material costs, selling prices) from the
IHS Markit (2012) Process Economic Yearbook. Data on electricity prices throughout the day are
obtained from the Electric Reliability Council of Texas (2021). The capacity of the gas processing
plant is 150 million ft3, which is the average capacity for gas processing plants, according to the
U.S. Energy Information Administration (2019), and the assumed wind farm capacity is 250 MW.

We represent the network as a directed graph, and describe here a network model in general terms.
The set of network nodes is denoted as N, which is comprised of sets of supply nodes (denoted
by S), sink nodes (K), conventional unit manufacturing nodes (U), electrified unit manufacturing
nodes (Z) and a wind farm node (E). Therefore, N = S∪K∪U ∪Z∪E. The set of all the materials
and utilities (e.g., natural gas, steam, electricity) in the model is denoted by I and the set of
all the technologies used in the manufacturing nodes are denoted as J. A set of inputs Iin,m is
associated with each node m ∈ U ∪K ∪Z and a set of outputs Iout,n is associated with each node
n ∈U ∪S∪Z∪E. Potential flows from node n ∈ N to node m ∈ N are represented with a directed
edge (n,m) in the graph. The set of all edges representing potential flows of i ∈ I is then given
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by Gi = {(n,m) | i ∈ Iout,n ∩ Iin,m}. Chemical manufacturing nodes (sets U and Z) are assumed to
operate continuously, while the wind farm (set E) may operate intermittently.

The model serves as the basis for formulating a multiperiod linear program (LP). For the case
study presented here, the objective function is maximization of the daily total profit:

maxP = ∑
n∈N

∑
t
(Rn,t −Cn,t)−W (1)

where P is the total daily profit from the network, Rn,t is the revenue from node n during time
period t, Cn,t is the cost incurred at node n during time period t, and W is a daily fixed cost (i.e.
not dependent on production rate) associated with the wind farm (which incurs fixed costs even
when not producing power). Time periods in the model are one hour in length. The revenue term
is given by:

Rn,t = bn,tPn,t (2)

where bn,t is the unit selling price of n at time period t and Pn,t is the amount of n produced during
time period t. The cost term is given by:

Cn,t = an,tPn,t (3)

where an,t is the unit cost of producing n at time period t. The fixed charge W for wind farm capital
costs, operation and maintenance was estimated as $118,500/day based on published data (U.S.
Energy Information Administration, 2021a; Reuters Events, 2017). Note that wind farm costs
may be overestimated because there are financial incentives for the installation of wind farms and
renewable energy production that are not accounted for here.

An important aspect of this case study is that the steam cracker can operate on a (hypothetical)
hybrid energy source: conventional fossil-based energy, electricity or some combination of the
two. In the model the cracker is represented as two different nodes, one in set U and one in set
Z; however, there would physically be only a single hybrid cracker unit. The fraction of energy
obtained from electricity is ηe, and from conventional sources 1−ηe. Here ηe is a continuous
variable and ηe ∈ [0,1].

The constraints in the optimization problem are as follows:

1. There are material and utility balances governing flows in the network. These are formulated in
terms of the network flow variables as shown by Giannikopoulos et al. (2021).

2. There may be supply constraints on the raw materials entering the network and demand con-
straints on the products exiting the network.

3. There may be limits on the flow of electricity to and from the grid, due to transmission con-
straints.

4. There are constraints on the availability of wind power, based on the variability of wind. This
is quantified using the nominal capacity of the wind farm (specified as 250 MW) and multiplying
it by a wind capacity factor (WCF) which is a function of time. The wind capacity factor is a
representation of the wind energy performance which is assumed proportional to wind speed. For
a given time period the wind speed is determined by random sampling from a Weibull probability
distribution:

fv =
k
c
(

v
c
)k−1 exp[(−(

v
c
)k] (4)

where v is the wind speed (m/s), k is the Weibull shape factor, and c is the Weibull scale parameter
(m/s), which is a measure of the characteristic wind speed of the distribution. The WCF is then set
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(a) Example wind capacity factor distribution for one
day. The Weibull shape parameter is k = 2 and the
scale parameter is c = 4 m/s. (b) Flows of material and energy for Case B.

Figure 1: Wind capacity factor distribution and flow diagram for Case B.

to WCF = min{0.1v,1}, with the proportionality factor of 0.1 chosen to obtain an average WCF of
about 0.35 (corresponding to the U.S. average). An example plot of the WCF for a 24-hour period
is shown in Figure 1a.

Finally, the model accounts for CO2 emissions from the production of the utilities used (steam,
natural gas, electricity), as well as the emissions from the combustion of natural gas. Information
about the CO2 equivalent emissions from production of the utilities is based on data from GREET
Argonne National Lab (2021), and information about the emissions from natural gas combustion
are based on data from the U.S. Energy Information Administration (2021b). Based on these data,
we are able to estimate the CO2 equivalent emissions from the cracking process, and how these
change as the mix of hybrid energy varies between electricity and fossil fuel. Note that these
emissions data are not currently included in the objective function for the optimization model;
however, this can be easily done (alternatively emissions could be treated as a separate objective
in a multiobjective optimization analysis).

4. Case Studies and Results

We are interested in probing the effect of a renewable energy source, in this case the wind farm,
in contributing energy to a small-scale process network involving a hypothetical steam cracker
that can operate on a hybrid energy source (conventional fossil fuels and/or electricity). As two
simple initial case studies, we will first solve the optimization-based model described above for a
scenario with no wind farm (Case A), and then solve it for a case in which the wind farm energy
is available (Case B). A simplified representation of the network flows for Case B is presented in
Figure 1b. In each case, we will be interested in determining the total profit of the network, the
total CO2 emissions and the fraction ηe of electricity-powered operation in each time period. In
both cases, there are no raw material supply constraints, so the production levels in the gas plant
and ethane cracker are always at full capacity. In Case B, the wind farm can sell electricity to the
grid at the prevailing price, but there are restrictions on transmission capacity that limit sales to 12
MWh daily, divided equally over the 24 one-hour time periods. This restriction is an upper limit;
thus, the wind farm does not have to sell this amount to the grid, unless it is more profitable for
the overall network system. For Case B, the model is run for 5 days, each with a different WCF
distribution, in order to better account for the variability of the wind-generated electricity.

In Case B, the production levels due to electrified (production fraction ηe) and conventional opera-
tion (production fraction 1−ηe), are shown in Figure 2. This shows an average day of production,
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Figure 2: Steam cracking production level for each type of energy used (average at each hour over
the five-day period studied).

determined by taking the average at each hour over the five-day period studied. The wind farm
sells power to the grid at the maximum allowable rate, with all the remaining power used for the
stream cracker. Thus, the degree of electrification depends strongly on the WCF, and tracks the
amount of available electrical power closely. For the situation in this case study, both electrical and
conventional fossil energy are used continuously throughout the average day. Of course, usage of
electricity may be higher or lower depending on the nominal capacity assumed for the wind farm
and on values specified for the wind distribution parameters c and k. It is important to note that,
for this simple case study, we have assumed that an instantaneous and continuous change can be
made between electrical- and fossil-powered operation of the steam cracker, which may not rep-
resent the true dynamics of the hybrid-powered operation. But, by considering this limiting case,
we can still help evaluate the potential benefits of adopting such a hybrid technology, especially
when paired with a renewable energy source.

The objective function in the model is the maximization of the overall network profit. The total
network production levels are constant and the same in both cases; therefore, the difference in
the total profit between Case A and Case B will stem only from the partial electrification of the
cracker and sale of electricity to the grid in Case B, as well as the investment and other fixed costs
associated with the wind farm in Case B. A summary of the maximized profit values for Case A
and Case B is given in Table 1. We are also interested in the CO2 equivalent emissions in both
cases, as decarbonization is a key goal. Values for the CO2 equivalent emissions are also shown
in Table 1. Comparing Cases A and B, these values indicate a modest decrease in profit but a
very substantial decrease in CO2 emissions due to the addition of the wind farm and hybrid-power
operation of the steam cracker in Case B.

Table 1: Network profit and CO2e emissions for both case studies, with change relative to Case A.

Case A Case B–Day 1 Case B–Day 2 Case B–Day 3 Case B–Day 4 Case B–Day 5

Profit (1000 $/day) 1,009 920 913 915 919 917
(−8.9%) (−9.5%) (−9.3%) (−8.9%) (−9.1%)

CO2e Emissions (t/day) 812 385 482 459 395 436
(−52.6%) (−40.6%) (−43.5%) (−51.4%) (−46.3%)
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5. Conclusion

In this work, we used a small-scale chemical process network comprising a shale gas processing
plant and an ethane steam cracker, with connection to a wind farm, to study the potential use
of a hybrid energy system to support the cracker. This hybrid system would allow conventional
(fossil fuel) heat generation to be replaced with electricity whenever the latter is readily available
from the wind farm. An optimization-based network model was used to develop simple case
studies comparing a purely fossil-fueled case with the hybrid case, indicating, for the specific cases
considered, that a large reduction in CO2 emissions could be achieved with only a modest loss of
profit. However, given the current incentives for adoption and utilization of renewable energy
sources, the profit reduction could be even smaller. This suggests there is long-term benefit in
adopting renewable energy resources and pairing them with chemical manufacturing, contributing
to emissions reductions through electrification and decarbonization.
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Abstract
The shale gas boom in the U.S. has had a strong effect on the U.S. petrochemicals industry. The
availability of feedstocks, particularly natural gas liquids (NGLs), has significantly increased,
prompting new investments and increased production, as well as research on new technologies
and routes to products. Optimization-based industry network superstructure models can be used,
with a cost minimization objective, to evaluate the potential of such new technologies and routes.
A key aspect of such models is the approach used for propagating material prices and costs as new
technology is adopted. This is needed because the extent to which a new technology is used may
affect the raw material costs of processes elsewhere in the network, leading to a nonlinear model.
In previous work, we proposed a cost propagation method for this situation, leading to solution
of the nonlinear problem as a sequence of linear ones. Here we explore an alternative solution
strategy based on use of a mixed-integer nonlinear programming (MINLP) model formulation,
and compare to the previous approach.

Keywords: Optimization, Network modeling, MINLP, Chemical manufacturing, Supply chain

1. Introduction

Recent technological advancements in hydraulic fracturing and horizontal drilling have led to rapid
increases in crude oil and natural gas production in the United States (U.S. Energy Information
Administration, 2021). A result of this growth is the significant increase in the production of
natural gas liquids (NGLs), which are often abundant in shale gas. NGLs consist mainly of ethane,
propane, butanes and (in smaller amounts) C5+ compounds, molecules that constitute some of the
most important building blocks of the chemical manufacturing industry. Therefore, the increase
in the availability of shale gas and associated NGLs has provided a unique opportunity to expand
the U.S. chemical manufacturing industry (Siirola, 2014; Yang and You, 2017).

Given the scale of capital investment involved in industry expansions, judicious decisions must
be made regarding the choice of products, technologies and capacities. Network models are often
at the core of such decision processes, due to their ability to capture existing and potential path-
ways and interconnections between different manufacturing processes (Derosa and Allen, 2015).
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In recent work (Skouteris et al., 2021), we developed and used a network superstructure model
involving several hundred of the highest-volume chemicals and hundreds of potential processing
technologies, and considered the industry at the level of the entire United States. The model served
as the basis for formulating an optimization-based industry configuration framework, seeking to
minimize overall cost. A key innovation consisted of the fact that—in contrast to previous work
(e.g., DeRosa and Allen, 2016)—process costs and material prices were allowed to change and
respond to external perturbations in the network structure (e.g., adding a new process). To solve
the resulting nonlinear problem, we used (Skouteris et al., 2021) a successive linear programming
(SLP) approach that alternates between solving a constant-cost linear program (LP) and a special
cost-propagation algorithm that updates process costs and material prices based on the LP results.
In this paper, we explore another option for solving this nonlinear problem, based on formulating
it as a mixed-integer nonlinear program (MINLP). Developing this alternative will enable com-
parisons to the SLP approach in terms of accuracy and computational efficiency, and is part of our
strategy for evaluating the overall efficacy of the SLP scheme. The initial work reported here is
focused on a simple network example, which we use for testing prior to scaling up to the larger
U.S. industry model.

2. Background

Optimization-based, chemical industry network models originated with the work of Stadtherr and
Rudd (1976), who initially focused on minimization of resource usage and subsequently on mini-
mization of industry cost (Fathi-Afshar et al., 1981). Many variations and extensions of this initial
work, with different applications, have appeared since, as reviewed by Skouteris et al. (2021) and
Derosa and Allen (2015). Network models represent the industry as a directed graph, with nodes
corresponding to manufacturing processes and edges corresponding to material and utility flows
between the nodes. Each process node j is characterized by a process stoichiometry and a net
production cost C j (including raw material and utility costs plus annualized fixed capital cost and
other operating costs) and each edge by a flow rate. The industry network model is then typi-
cally formulated as an LP, provided that process and materials costs are assumed to be constant
and not dependent on the industry configuration (Derosa and Allen, 2015). The LP is comprised
of material balance constraints for each material, as well as supply and demand constraints for
primary raw materials and final end products, respectively. The objective is often chosen to be
minimization of total industry cost, but many other driving forces have been explored (e.g., envi-
ronmental considerations). For example, we recently developed (Giannikopoulos et al., 2022) a
multi-objective industry network model that, in addition to a minimum total cost objective, also
considers minimization of carbon loss (e.g., as CO2 emissions) in the network, accounting for both
feedstock carbon and fuel carbon used to provide process energy.

As established in our previous work (Skouteris et al., 2021), assuming process costs to be constant
and independent of the process utilization levels is not always realistic and can lead to the model
being unresponsive towards external perturbations to the network, such as introducing a new pro-
cess. This was addressed by making the process costs dependent on the production levels, thereby
rendering the network-level optimization problem nonlinear. To address this, we developed an
SLP approach that alternates between the solution of a constant-cost LP and the use of an iterative
cost-propagation procedure that updates material prices and thus process costs based on the results
of the previous LP. The updated costs are then treated as constants in the next LP and the solution
process continues until there are no cost changes. The price update mechanism used was based
on the dominant-producer price leadership model (Scherer and Ross, 1990), in which the largest
producer of a material determines its price. Complete details of the LP formulation, as well as the
cost-propagation procedure used in the SLP approach, are given by Skouteris et al. (2021) and will
not be repeated here.
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3. MINLP Problem Formulation
As an alternative to the SLP approach, we consider here an explicit MINLP formulation of the
problem, which allows for validating the proposed cost propagation/SLP framework. The MINLP
formulation and solution procedure will be described here. As a preliminary step, a baseline LP
minimizing total industry cost (Skouteris et al., 2021) using constant baseline process costs C j,0
is solved, with the solution representing the state of the system prior to any external perturbations
(e.g., addition of a new process):

min
X j

Ctot = ∑
j∈J

C j,0X j (1)

s.t. ∑
j

ai, jX j ≥ Di −Si, ∀i ∈ I. (2)

Here, I and J are the sets of all materials and processes, respectively, in the model, ai, j is the
input-output coefficient for material i in process j (negative if material i is consumed in process
j, positive if i is produced; unity if i is the main product), X j is the nonnegative production level
of process j (in terms of flow rate of main product), and Si and Di are specified exogenous raw
material supply and final product demand rates, respectively. Eq. (2) is a combination of material
balance, supply and demand constraints and is expressed in terms of annual mass flow rates. From
the solution of this baseline LP, the largest producer of each material i occurring as a main product
is determined, and the initial price Bi,0 of i is then set equal to its production cost in this dominant
process (currently no profit margin is added). Now a new process is added to the model to study
its impact, and the industry network is reoptimized as an MINLP.

As in the SLP approach, the largest producer for each material i occurring as a main product has
to be determined, since its cost will be used as the price for i in other processes, and, if i is a main
product that is not produced at all in the optimal industry structure, then its price should remain
at the initial price Bi,0. For the MINLP case, these considerations are captured via additional
constraints in the optimization problem rather than as a separate calculation task. To avoid using
the non-differentiable max function, we propose the following constraints:

Pi ≥ X j, ∀i ∈ Imp, ∀ j ∈ Ji (3)

Pi ≤ X j +M(1−di, j), ∀i ∈ Imp, ∀ j ∈ Ji (4)

∑
j∈Ji

di, j = ei, ∀i ∈ Imp (5)

Pi ≥ ei (6)

Here Imp is the set of all materials produced as main products and Ji is the set of all processes
yielding i as a main product. Two binary variables are used: di, j = 1 if process j is the largest
producer of i as a main product and zero otherwise, and ei = 1 if i is produced as a main product
and zero if it is a main product not produced. M is a constant with a value that must be large
enough to be an upper bound for all production rates X j. When ei = 1, Pi is the largest production
rate of i, which occurs in the process j for which di, j = 1. When ei = 0, di, j = 0 and X j = 0,
∀ j ∈ Ji. This means that Eqs. (3) and (4) can be satisfied for any Pi ∈ [0,M]. However, this is
problematic if Pi = 0 since now Eq. (4) can be satisfied for either di, j = 0 and ei = 0 or di, j = 1
and ei = 1. To force ei = 0 and thus all di, j = 0 in this case, we add constraint (6), which ensures
that ei = 0 when Pi = 0.

The prices Bi (in cents/lb) for each material i ∈ Imp and the net unit production costs C j for each
process j ∈ J are given by

Bi = ∑
j∈Ji

di, jC j +Bi,0(1− ei), ∀i ∈ Imp (7)

C j =C j,0 +∑
i∩ j

−ai, j(Bi −Bi,0), ∀ j ∈ J (8)

969

using network models
945 



A. Skouteris et al.

If there is no production of material i, then di, j = 0, ∀ j ∈ Ji, and ei = 0; thus, the first term in Eq.
(7) becomes zero and the second term becomes Bi,0, the baseline price. Otherwise, if i is produced,
then ei = 1; thus, the second term in Eq. (7) becomes zero and the first term becomes the C j for
the largest producer of i (di, j = 1). As in the baseline case, no profit margin has been added. In Eq.
(8), the notation i∩ j indicates that the summation is over all materials i participating in process j.
The summation represents the change in the materials cost for process j due to price changes.

Finally, since the constraints, Eqs. (3)–(6) will not force ei = 1 when i is produced as a main
product, the objective function used in the LP is modified for the MINLP by adding a penalty
term:

min
X j ,Pi,di, j ,ei,Bi,C j

C̄tot = ∑
j∈J

C jX j − ∑
i∈Imp

ei (9)

Here the summation over ei acts to set all ei not already forced to zero by the constraints to have a
value of one.

The MINLP defined by Eqs. (2)–(9) was implemented and solved in GAMS (GAMS, 2021) using
the DICOPT solver (Duran and Grossmann, 1986), with the MILP master problems solved by
using CPLEX and the NLP subproblems were solved using IPOPT.

4. Discussion

Figure 1: Graph representation of small industry
network example problem. Node P2005 and the
red edges represent the addition of a new process
to the existing network.

The MINLP formulation was validated on
several small-scale networks (not represent-
ing physical processes used in practice) prior
to use on the much larger full U.S. industry
model. The results for the network depicted
in Fig. 1 will be described here. In this net-
work, before any external perturbations, there
are three supply nodes (P3001, P3002, P3003)
providing primary raw materials A, B and C
to processes P1, P2 and P4, which in turn pro-
duce the intermediates D, E and F. Processes
P3 and P5 then can produce the end product
G. Overall, there are two competing pathways
to produce G, one consisting of P2 and P3, and
one consisting of P4 and P5 (each also requir-
ing use of D from P1). The process costs have
been set in such way that the P2-P3 pathway is
much cheaper than the P4-P5 pathway, result-
ing in the former being selected in the baseline
state.

A new process, P2005, is then introduced in
existing network. P2005 produces the inter-
mediate F and can therefore potentially replace
P4. If the process costs are assumed to be con-
stant, then any reduction in the cost of F due to use of the new technology P2005 will have no
effect on the cost of operating P5, thus hampering the adoption of P2005. However, if the process
costs are allowed to vary, as considered here, and P2005 can produce F more cheaply, then the
lower price of F will be reflected in the cost of operating P5, thus favoring the adoption of P2005
in the network.
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Figure 2: Process utilization for new technology P2005 as a function of its net process cost. Results
for the SLP and MINLP methods are the same and overlap.

This can be seen in Fig. 2, which shows the level of adoption of P2005 (in terms of production
rate) as a function of its net production cost. These results were obtained by solving the constant
cost LP model, the SLP model, and the MINLP model with successively larger values of the P2005
net production cost, incremented by one cent/lb.

In the case of constant costs, where no price and costs changes are propagated throughout the
network, the maximum adoption cost for the new process is just 3 cents/lb of F. For higher cost
points, the new process is dropped from the optimal network configuration. This is the cost level
for which the P2005-P5 pathway becomes cheaper than the P2-P3 one, even if the effect of cheaper
F production is not propagated to P5. However, when this effect is propagated, the maximum
adoption cost increases to 8 cents/lb of F. This is attributed to a price reduction in F, which is in
turn propagated to the operating cost of P5. For example, at the insertion cost point of 5 cents/lb
of F, the price of F decreases from 14 to 5 cents/lb, which leads to the cost of P5 decreasing from
13 to 6.7 cents/lb of G. This also leads to the price of G being reduced from 10 cents/lb to 6.7
cents/lb, since its largest producer switches from P3, which has a cost of 10 cents/lb of G, to P5.
There is only one production level throughout the cost range where the new process is adopted and
this is the same for all cases and is equal to 70 lbs of F/year. This is the amount needed to produce
100 lbs of G/year in P5 based on its specified stoichiometry, which is the value specified for the
exogenous demand for G.

Comparing the results of the SLP and MINLP approaches for solving the nonlinear variable-cost
problem, it is clear that both approaches yield the same solutions, in terms of adoption rates for
the new process (shown in Fig. 2), the production rates of other processes, and the cost and price
values (not shown). This, and experience on other small networks, indicates that the original
SLP scheme employed in our previous work (Skouteris et al., 2021) was successful in accurately
solving the variable-cost problem. In terms of efficiency, the SLP approach is fast and scales up
well to the full industry network. The MINLP can be solved in about the same time for this small-
scale network, but may not scale as well to the full network. This is a concern that will be further
investigated.
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5. Conclusions

The increased production of shale gas and, consequently, NGLs has led to a unique opportunity
to expand the U.S. petrochemicals industry. Thus, to optimize the benefits of this expansion, it
is important to have modeling and computational tools to aid the decision making that is driving
this expansion. Network modeling is one such approach for assessing the impact of new tech-
nologies. In previous work using network models (Skouteris et al., 2021), we highlighted the
importance of considering process costs to be variable, allowing them to respond to the addition
of new processes into the industry network, and developed a new framework based on successive
linear programming (SLP) to deal with this nonlinear problem. In this work, as an alternative to
the SLP approach, we considered a new explicit MINLP formulation of the problem, and used it
on a small-scale network example to validate the earlier SLP framework. Both approaches gave
the same optimal solutions over a range of net process costs for an added process, indicating no
loss of accuracy by using the SLP approach. Both approaches were very efficient computationally
on the small-scale example problem, but whether the MINLP approach scales well to much larger
problems is a concern. In future work, we will test the MINLP approach described here on the
full-scale U.S. chemical industry network.
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Abstract 
In this work, we propose a novel optimization model based on mixed integer linear 
programming (MILP) whose goal is to optimize the size and allocation of vehicle fleets 
under uncertain demand patterns. In contrast to previous contributions, the probability 
of meeting demand is a model decision and the approach is able to handle any 
probability distribution to characterize the number of trips required in the network. 
Furthermore, fleet procurement and contracting decisions for alternative types of 
vehicles are integrated into the model. The formulation allows to considerably reduce 
costs by avoiding oversizing and can be adapted to diverse demand characterizations 
and contracting terms from different industries. The proposed approach is able to tackle 
problems of real dimensions in very low computational times in comparison to previous 
works. A real-world case study involving maintenance operations in geographically 
spread assets is addressed to highlight the model capabilities and draw conclusions. 
 
Keywords: fleet sizing, allocation, planning, optimization, uncertainty. 

1. Introduction 
Fleet management is a complex logistic process that involves the simultaneous planning 
of tactical and operational decisions. The sizing of vehicle fleets, their procurement 
policies and allocation to services are key decisions for modern industries that need to 
meet the demand of geographically distributed operations. Efficient fleet planning is an 
indispensable prerequisite to guarantee the supply of services, resources and equipment 
to keep operations running. Planning maintenance operations in offshore wind farms 
(Gundegjerde, 2015), sizing and allocating aircraft fleets to airline routes (Repko, 
2017), organizing shipments in freight forwarding companies (Zak, 2008) or, in more 
general terms, optimizing transportation services through a network of origin and 
destination nodes using a fleet of vehicles (List, 2003) are challenging problems 
proposed in the literature. Fleet planning integrates short-term and long-term decisions 
aimed at fulfilling transportation demands that are often subject to uncertainty, usually 
leading planners to overestimate the number of required resources. An efficient vehicle 
procurement and utilization plan relies on solving critical tradeoffs between fleet 
acquisition and contracting costs, asset performance decay and penalties for unmet 
demand, among others, under a wide range of possible scenarios. 
Many contributions have been made to solve this problem. Turnquist and Jordan (1986) 
propose a mathematical programming model to optimize the fleet size of reusable 
containers to match production and shipping schedules under deterministic and 
stochastic travel times. They conclude on the need of further treating demand 
uncertainty in mesh-like networks.  Later on, List et al. (2003) propose a two-stage 
stochastic formulation for fleet sizing (first stage decision) and allocation to trips 
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(scenario dependent decision), accounting for uncertainty in the forecasted demand and 
fleet productivity. The authors highlight the tradeoff between fleet investment costs and 
the risk of unmet demand, which is solved through a computationally challenging 
approach. In turn, Wu et al. (2005) propose a linear programming model to address the 
rental car fleet sizing problem, deciding on the acquisition and sale of vehicles and the 
assignment and movement of vehicles to different locations to meet seasonal demands, 
at minimum total cost. Sha and Srinivasan (2016) make use of agent-based simulation 
to address the tank car fleet sizing problem in the chemical industry under deterministic 
demand. In 2020, Vanga and Venkateswaran develop an analytical model for sizing 
fleets of vehicles that carry generalized reusable articles. They consider cases of lost-
sales and backorders, and assess the service level for different policies at a later stage. 
Nevertheless, resource allocation decisions are not considered. Most of the above-
mentioned contributions are based on discrete probabilistic scenarios and stochastic 
modeling frameworks whose complexity grows rapidly with the number of possible 
outcomes. In most cases, service levels are evaluated after optimization and specific 
probability functions are used to characterize demand (Papier and Thonemann, 2008). 
In short, previous authors propose either analytical methods based on limiting 
assumptions or two-stage stochastic programming models that become intractable for 
rather small instances.     
In contrast to previous approaches, we propose a novel MILP formulation aiming to 
optimize the size and allocation of vehicle fleets under uncertain demand patterns where 
the probability of meeting demand is a model decision. Moreover, the model is able to 
handle any probability distribution to characterize the number of trips required in the 
network. The optimal number of units to contract from different suppliers should be 
established according to the most convenient service level, seeking to minimize 
penalties for unmet demand and costs of contract agreements. The results show that an 
effective allocation of the contracted fleet to routes can significantly reduce the number 
of vehicles required for sufficiently high levels of service. 

2. Problem Statement  
The problem addressed in this work can be stated as follows. Given: (i) a set of nodes, 
(ii) random variables accounting for the total number of trips to be made between the 
nodes during the time horizon, (iii) the type of vehicle required in each trip, (iv) 
alternative contracts with vehicle suppliers, (v) unit costs for vehicle acquisition, rental, 
hiring/firing, and (vi) penalty costs for unsatisfied demand; we seek to optimally 
determine: (a) the fleet size for each type of vehicle; (b) the allocation of vehicles to 
trips over the network; (c) the service level to be provided, usually represented by the 
probability to meet demand; and (d) the plan of contracts (vehicles hiring/firing) along 
the time horizon, in order to minimize the total costs.  
Figure 1 illustrates the main elements of the model, namely the nodes, the travel times 
between locations, and random variables accounting for demands, given in number of 
trips. For simplicity, a Gaussian distribution rectified at zero (Socci et al., 1998) is 
assumed in the illustrative example, although any probability distribution is eligible for 
parameterization. Although travel times are symmetrical in this figure, the model is able 
to consider different travel times according to origin-destination nodes and vehicle 
types. It is important to highlight that the duration of the trips is one of the critical 
drivers for the assignment of vehicles to routes. A good allocation will be one that takes 
maximum advantage of supplier time availability, reduces the number of vehicles in 
non-critical connections, and reinforces the level of service in the most critical paths. 
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Figure 1 – Left: geographical distribution of the nodes. Middle: travel times between nodes (any 

direction). Right: random variables accounting for the demand of trips between nodes. 

3. Mathematical Formulation 
Let i ϵ I stand for the nodes, v ϵ V for the vehicle types and p ϵ P for providers. 
Moreover, 𝜏 ϵ T and k ϵ K represent daily and monthly periods, respectively. Finally, sl ϵ 
SL are discrete service levels. Two general contracting modes are proposed in the 
formulation and validated with our industry partner. The first is established on an 
annual basis, where the supplier makes a certain number of vehicles available for every 
day of the next year. On the other hand, monthly additions to the fleet are possible 
through flexible contracts. The objective function is given in Eq. (1), where QFv,p is the 
number of vehicles to be contracted on an annual basis, and QVv,p,k the number of 
available vehicles through flexible contracts. Unit costs ccv,p, ccvv,p and ccvtv,p are 
monthly rates for vehicles of type v from supplier p accounting for fixed annual 
contracting, flexible contracting and flexible contract termination charges, respectively. 
Lastly, CDIv,i,j,t stands for the total expected cost due to daily unmet demand, under the 
selected contracting scheme and fleet allocation.  

Min 𝑧 = ෍ ෍[𝑄𝐹௩,௣𝑐𝑐௩,௣ + ෍(𝑄𝑉௩,௣,௞𝑐𝑐𝑣௩,௣ + 𝑄𝑉𝑇௩,௣,௞𝑐𝑐𝑣𝑡௩,௣ ෍ ෍ ෍ 𝐶𝐷𝐼௜,௝,ఛ

ఛ∈்(௞)௝∈௃௜∈ூ

) 

௞∈௄

]

௣∈௉௩∈௏

 (1) 

Each supplier provides vehicles serving during a specific number of hours per day 
(hdispv,p). The number of vehicles to be procured through different contracts will define 
the overall number of hours available to meet demands (see RHS of Eq. 2). In turn, the 
service hours required to meet a given service level may be covered by allocating 
vehicles to trips over the network. Travel time requirements are defined by assigning 
vehicles to trips, as in the RHS of Eq. (2). Xv,i,j,k is the number of trips from i to j 
assigned to vehicles of type v during the time period k while parameter di,j is the travel 
time between nodes i and j. Then, Eq. (3) accounts for vehicle flow balances.  

∑ ∑ ൫𝑑௜,௝  𝑋௩,௜,௝,௞൯௝∈ூ   ≤ ∑ ቀℎ𝑑𝑖𝑠𝑝௩,௣൫𝑄𝐹௩,௣ + 𝑄𝑉௩,௣,௞൯ቁ௣∈௉     ௜∈ூ ∀𝑣, 𝑘  (2) 

∑   𝑋௩,௜,௝,௞ = ∑ 𝑋௩,௝,௜,௞௜∈ூ
௜ஷ௝

                                                              ௜∈ூ
௜ஷ௝

   ∀𝑣, 𝑗, 𝑘  (3) 

The proposed MILP is capable of handling uncertainty in travel demands between nodes 
for each type of vehicle. We recognize two sources of uncertainty: (a) the intrinsic 
variability of operations due to external phenomena (e.g. weather conditions), 
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roadblocks, unforeseen operating inconveniences, among others, which result in the 
random behavior of the demands around the expected value for each month; and (b) the 
prediction error, typical in all forecasting tools. Both values are usually synthesized in a 
dispersion parameter that is transferred as input data to the optimization model. It is 
important to highlight that the demand uncertainty can be modeled with any probability 
distribution. Figure 2 illustrates the demand profile in a given network of locations, for 
a given month and vehicle category. The characterization of the travel demands between 
nodes is shown for different pairs. The example is based on rectified normal 
distributions. Each directed arc has an associated mean and a standard deviation, which 
represent the expected number of trips required from the origin to the destination, and 
its variability. These parameters are used to build a probability distribution to estimate 
the cost of unmet demand for each possible service level, as shown in the following 
equations. Notice that the variability may significantly differ depending on the type of 
operations to develop in each node. 
To compute the cost of the expected unmet demand for a given contracting plan, we 
illustratively show the calculations based on a normal distribution rectified at zero, 
Extensions are straightforward. Let 𝑡𝑑തതത

௜,௝,௩,௞ and 𝑡𝑠𝑑௜,௝,௩,௞ be the mean and standard 
deviation of the demand of trips of vehicle v between i and j, while cutv represents the 
cost of missing one trip of vehicle v. Hence, the cost of expected unmet demand during 
period k if a service level sl is adopted, can be stated as follows: 

𝑐𝑢𝑡𝑑௜,௝,௩,௞,௦௟ = ∫  
ଵ

௧௦ௗ೔,ೕ,ೡ,ೖ√ଶగ
𝑒

ି
ቀ೟ష೟೏തതതത

೔,ೕ,ೡ,ೖቁ
మ

మ ೟ೞ೏೔,ೕ,ೡ,ೖ
మஶ

௧ୀ௡௧ೡ,೔,ೕ,ೖ,ೞ೗
𝑐𝑢𝑡௩൫𝑡 − 𝑛𝑡௩,௜,௝,௞,௦௟൯𝑑𝑡   ∀𝑖, 𝑗, 𝑣, 𝑘 

(4) 

In Eq. (4) ntv,i,j,k,sl accounts for the number of trips required to reach the service level sl, 
according to the number of standard deviations over the mean (see Eq. 5). Notice that 
Eq. (4) can be conservatively approximated by a finite summation as in Eq. (6), which is 
favored by the integer nature of variable t (i.e., number of trips). MAXTv,i,j,k is the 
maximum number of trips to achieve full coverage (sl ~ 100%).   

𝑛𝑡௩,௜,௝,௞,௦௟ = 𝑡𝑑തതത
௜,௝,௩,௞ + 𝛾௦௟  𝑡𝑠𝑑௜,௝,௩,௞                          ∀𝑖, 𝑗, 𝑣, 𝑘, 𝑠𝑙  (5) 

𝑐𝑢𝑡𝑑௜,௝,௩,௞,௦௟ = ∑  
ଵ

௧௦ௗ೔,ೕ,ೡ,ೖ√ଶగ
𝑒

ି 
ቀ೟ᇲష೟೏തതതത

೔,ೕ,ೡ,ೖቁ
మ

మ ೟ೞ೏೔,ೕ,ೡ,ೖ
మ

𝑐𝑢𝑡௩(𝑡′ − 𝑛𝑡௩,௜,௝,௞)
ெ஺௑்ೡ,೔,ೕ,ೖ

௧ᇲୀඃ௡௧ೡ,೔,ೕ,ೖ,ೞ೗ඇ
   ∀𝑖, 𝑗, 𝑣, 𝑘    

(6) 

The optimization of the service level implies solving the tradeoff between the costs of 
contracting more vehicles to be ready for operation, and the expected costs due to unmet 
demand. The latter are defined by constraint (7), which imposes a minimum charge 
depending on the service level selected for every link i-j and vehicle v during month k. 
That decision is made through the 0-1 variable 𝑌௩,௜,௝,௦௟,௞. In turn, Eq. (8) imposes a lower 
bound to the number of trips Xv,i,j,k that are required to reach a service level of  𝑘𝑣௦௟  
standard deviations over the mean. Note that 𝐾𝑆௩,௜,௝,௞ is a decision variable that equals 
 𝑘𝑣௦௟  if the service level sl is adopted for the link i-j and vehicle v over month k (Eq. 9). 

𝐶𝐷𝐼௩,௜,௝,ఛ ≥ ෍ 𝑐𝑢𝑡𝑑௩,௜,௝,௦௟,௞  𝑌௩,௜,௝,௦௟,௞

௦௟∈ௌ௅

         ∀𝑣, 𝑖, 𝑗, 𝑘, 𝜏 ∈ 𝑇(𝑘) (7) 

𝑋௩,௜,௝,௞  ≥ 𝑡𝑑തതത
௩,௞,௜,௝ +  𝐾𝑆௩,௜,௝,௞𝑡𝑠𝑑௩,௞,௜,௝          ∀𝑣, 𝑖, 𝑗, 𝑘    (8) 
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Figure 2 – Optimal solution for one of the vehicle types in the proposed case study. 

𝐾𝑆௩,௜,௝,௞ = ෍ 𝑘𝑣௦௟

௦௟∈ௌ௅

𝑌௩,௜,௝,௦௟,௞   ;     ෍ 𝑌௩,௜,௝,௦௟,௞

௦௟∈ௌ௅

= 1                  ∀𝑣, 𝑖, 𝑗, 𝑘 (9) 

4. Results and Discussion 
An illustrative case is proposed in this section to show the potential of the tool. We 
consider two types of vehicles with weekly travel demands for each pair of nodes that 
are forecasted for the next 6 months. Each demand is characterized by a rectified normal 
distribution that captures the possible outcomes of the number of trips required for 
every week of that month. Figure 2 (left) shows the demand characterization for month 
2, whereas the duration of the trips for both vehicles between the nodes is presented in 
Figure 1 (center). Decision variables to be optimized are the number of vehicles to be 
contracted on a fixed basis (for the 6 months), the number of vehicles to be hired on a 
flexible monthly basis, and the service level to be provided by assigning vehicles to 
every path in the network. The monthly contracting cost is set at US$ 10,000 and US$ 
14,000 per vehicle, for fixed and flexible contracts, respectively. A penalty cost of US$ 
5,000 is considered for every unsatisfied trip. For this example with 8 nodes the MILP 
(after preprocessing) comprises 1619 0-1 variables, 329 continuous variables and 331 
constraints. The formulation is coded in GAMS and solved using CPLEX 31.5 in a CPU 
time of 40 s. Figure 2 also illustrates the optimal solution obtained. At the right of 
Figure 2 we show the optimal contracting scheme for each month.  

 

Figure 3 – Optimal service level for some of the links in the illustrative case (month 2). 
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A total of 77 vehicles are engaged on a fixed basis, and some additional units are hired 
on a variable basis during months 2, 3 and 4 in order to satisfy demands with the 
optimal service level. Similarly, Figure 3 illustrates the optimal service level obtained 
for the routes connecting nodes I6-I2 and I5-I6 during month 2, respectively. It is 
interesting to note that some routes may reach very high service levels due to the need 
to pass through those links to fulfill other services. On the other hand, the model has the 
capability of incorporating different suppliers for the same type of vehicle, accounting 
for their quality/reliability indicators, and integrating other benefits such as joint 
contracting (several types of vehicles from the same supplier) and quantity discounts.  

5. Conclusions 
We have developed a novel MILP mathematical programming model to optimize the 
size of vehicle fleets and their allocation to trips in a network of nodes asking for 
transportation services. The model accounts for demand uncertainty with no need to 
generate scenarios and solve large stochastic formulations. Moreover, the service levels 
are optimally selected to meet the demand of trips along each pair of nodes. In contrast 
to previous contributions, the formulation proves to be computationally efficient, 
flexible and capable of handling demand characterizations under any probability 
distribution. The model overcomes current industry practices that arbitrarily oversize 
fleets to avoid non-compliance with critical services. Significant reductions in logistic 
costs and emissions are observed, yielding a certainly better performance of the supply 
chain. This is achieved by optimally setting flows, minimizing idle times and avoiding 
unjustified trips. Since fleet sizing and allocation decisions are made in a single stage, 
we are currently performing further experiments to assess the quality of our solutions in 
comparison to two-stage stochastic models where vehicle allocations are recourse (wait-
and-see) actions. Future research aims to add routing and inventory decisions to gain 
greater detail in the solutions and validate the model accuracy with real data.   
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Abstract 

Chimeric Antigen Receptor (CAR) T cell therapy is a type of patient-specific cell 

immunotherapy demonstrating promising results in the treatment of aggressive 

haematological malignancies. Autologous CAR T cell therapies are based on bespoke 

manufacturing lines and distribution nodes that are exclusive to the production and 

delivery of a single therapy. Given their patient-specific nature, they follow a 1:1 business 

model that challenges volumetric scale up, leading to increased manufacturing and 

distribution costs. Manufacturers aim to guarantee the in-time delivery and identify ways 

to reduce the production cost with the ultimate objective of releasing these innovative 

therapies to a bigger portion of the population. In this work, we investigate upstream 

storage to the supply chain network as means to introduce greater flexibility in the modus 

operandi. We formulate and assess different supply chain networks via a Mixed Integer 

Linear Programming model.  

 
Keywords: CAR T cell therapy; supply chain optimisation; MILP; personalised 

medicine; cryopreservation
. 

1. Introduction 

Chimeric Antigen Receptor (CAR) T cell therapy is an emerging type of ex vivo 

autologous cell therapy, where the patient’s T cells are collected and are genetically 

modified to express the CAR (Vormittag et al., 2018). This enables them to better identify 

and kill cancer cells. The therapy is then administered to the patient. The unprecedented 

success in early clinical trials involving patients with acute lymphoblastic leukaemia 

(ALL) and B cell lymphomas have led to historic regulatory approvals from the U.S. Food 

and Drug Administration (FDA) in 2017 and the European Medicines Agency (EMA) in 

2018. Five autologous CAR T cell therapies have been granted approval so far and their 

demand is expected to rapidly grow in the following decade (UPMC, 2021). They are 

currently offered at a relatively high price, potentially attributed to the 1:1 business model 

describing their lifecycle, that varies between $300,000 and $475,000 (Spink et al., 2018). 

Presently, cell therapies are administered to approximately 5,000 patients worldwide. 

However, projections show that up to 50,000 patients per year will be receiving cell and 

gene therapies with up to 60 products in 2030 (Quinn et al., 2019). 

A unique feature of CAR-T therapies is that the patient’s cells are used as raw material 

and therefore the therapy manufacturing and distribution does not allow volumetric scale-

up, posing challenges towards commercialisation (Papathanasiou et al., 2020). 
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Furthermore, the short shelf life of the therapy introduces tight time constraints 

challenging distribution and handling, especially under high-demand scenarios. The 

turnaround time of the therapies from leukapheresis to treatment administration can vary 

between 15 and 24 days for the commercially available treatments (Nucleus Biologics, 

2021). Timely therapy delivery is of utmost importance for the patients as it can 

significantly impact therapy efficiency (Han et al., 2021). To overcome these limitations, 

digital tools that utilise the principles of mathematical modelling and optimisation are 

used to assist decision-making by coordinating the different tasks and identifying the 

optimal supply chain network structures (Sarkis et al., 2021a). The complexity of the 

CAR T cell supply chain is reflected by the product’s lifecycle (Sarkis et al., 2021b). The 

main steps of the CAR T cell therapy chain are: (a) leukapheresis, (b) manufacturing, (c) 

Quality Control, (d) therapy administration under hospital admission. 

Given the autologous and sensitive nature of CAR-T therapies, novel, decentralised 

manufacturing models are considered promising alternatives to a traditional centralised 

approach, since small scale local manufacturing facilities offer greater flexibility and can 

significantly reduce transportation costs (Harrison et al., 2018). On the other hand, 

intermediate storage of the therapies may offer greater flexibility in the operation of the 

overall distribution network. As far as transportation and storage are concerned, the 

samples can either be transported fresh (-80 oC) or cryopreserved (-180 oC). In general, 

cryopreservation is more expensive but allows to extend the shelf life up to 14 days, and 

therefore is the preferred option when more flexibility is desirable. Cryopreservation 

currently is conducted at the leukapheresis clinical centres with hospitals not providing 

this service. The cryopreserved therapy needs to be thawed before it reaches the 

manufacturing site, something that adds extra complexity to the logistics of the process 

(Avramescu et al., 2021). 

In this work, we present a Mixed Integer Linear Programming (MILP) model for the 

CAR-T cell therapy supply chain optimisation considering different randomised demand 

scenarios of up to 2,000 therapies per year. The main objective is to assess the impact of 

cryopreservation on the supply chain performance in terms of flexibility and risk of loss 

of the therapy due to short shelf life of non-cryopreserved products. The supply chain 

networks designed here are assessed with respect to two key performance indicators: (a) 

average production cost, and (b) average response treatment time.  

2. Materials and methods 

The mathematical model used in this work is a MILP model that describes the CAR T 

cell therapy supply chain (Bernardi et al., 2022). The model assists the identification of 

the optimal supply chain network structure, mode of transport, assignment and sequence 

of the therapies to the manufacturing facilities, ensuring in-time delivery and minimum 

therapy cost (Table 1). The supply chain network includes 5 nodes: namely, leukapheresis 

site, storage, manufacturing site, quality control (QC), and hospital. The therapy lifecycle 

starts with the patient being assigned to a leukapheresis site, where T cells are separated 

from the bloodstream. Next, the leukapheresis sample is shipped fresh (-80oC) or frozen 

(-180 oC, cryopreserved) to the manufacturing site for manufacturing, followed by QC. 

Finally, the CAR T cell therapy is transported fresh to the hospital for administration to 

the patient.  

In this study, we investigate two cases: fresh or frozen handling of the therapy upstream 

of the network (Figure 1). In the frozen case, the therapy is cryopreserved, and optional 

storage is available for up to 8 days. The upper bound of 8 days was chosen as a suitable 
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window not compromising patient experience. Storing therapies before manufacturing 

may offer greater flexibility and improved scheduling of a manufacturing facility with 

given capacity. Bernardi et al. proved essential to optimally coordinate manufacturing 

and distribution tasks. On the other hand, when the therapy is transported fresh (-80 oC) 

storage is bypassed because of the limited shelf life. The supply chain model aims at 

simultaneous planning and scheduling with its objective being to minimise the total cost 

over a long-term planning horizon (annually), while operating the supply chain in the 

short-term (daily). In addition, the minimisation of the turnaround time appears as a 

constraint in the model. 

Table 1: Overview of the model formulation. 

Figure 1. CAR T cell supply chain network with 5 or 4 nodes for the frozen and fresh cases 

respectively. 

The supply chain is tested for different demand scenarios of up to 2,000 patients per year 

generated by an in-house bi-level decomposition algorithm. The model parameters, such 

as product demand scales, cost coefficients and current and planned manufacturing 

facilities sizes are assumed to be deterministic and were obtained through expert 

discussions with TrakCel Ltd, something that enables the development of industrially 

accurate cases. This work considers 4 leukapheresis sites and 4 hospitals in the UK and 6

manufacturing sites found in the UK, Europe and US. Following standard European and 

UK procedures of public or semi-public healthcare systems, it is assumed that the choice 

of collaborating hospitals and leukapheresis centres is not entirely under the 

manufacturer’s control. Hence, the two corresponding nodes are provided as model inputs 

and not as decision variables. For the leukapheresis sites, a capacity of 8 patients daily is 

assumed, considering that the leukapheresis procedure lasts 2-3 hours per patient. For the 

hospital site, the capacity is not a bottleneck for the administration of the therapy and 

therefore no upper limit is provided. The manufacturing sites have a capacity of up to 4, 

10, or 31 parallel lines, and a forward-looking scenario of 7 days of manufacturing

Index Mathematical Formulation Description

Objective function

(1) 𝑚𝑖𝑛 𝐶𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 = 𝐶𝑚𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑖𝑛𝑔 + 𝐶𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 + 𝐶𝑠𝑡𝑜𝑟𝑎𝑔𝑒 + 𝐶𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 Total cost of therapies

Constraints

(2) 𝑇𝑅𝑇𝑝 = 𝑡𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 − 𝑡𝑠𝑡𝑎𝑟𝑡 ≤ 𝑈𝑡 Return time of therapy

(3) 𝐶𝐴𝑃𝑚 ,𝑡 = 𝐹𝐶𝐴𝑃𝑚 − 𝐼𝑁𝑀𝑝 ,𝑚 ,𝑡
𝑝

Capacity constraint

(4) 𝑋1𝑐 ,𝑚 ≤ 𝐸1𝑚 ,∀𝑐,𝑚, 𝑋2𝑚 ,ℎ ≤ 𝐸1𝑚 ,∀𝑐,ℎ ,  𝐸1𝑚 ≤ 𝑈𝑀𝑚 Network constraints

(5) 𝐼𝑁𝐶𝑝 ,𝑐 ,𝑡 = 𝑂𝑈𝑇𝐶𝑝 ,𝑐 ,𝑡+𝑇𝐿𝑆 , ∀𝑝, 𝑐, 𝑡
𝐼𝑁𝑆𝑝 ,𝑚 ,𝑑 ,𝑡 = 𝑂𝑈𝑇𝑆𝑝 ,𝑚 ,𝑑 ,𝑡+𝑇𝑆𝑇𝑂𝑅𝑑 , ∀𝑝,𝑚,𝑑, 𝑡
𝐼𝑁𝑀𝑝 ,𝑚 ,𝑡 = 𝑂𝑈𝑇𝑀𝑝 ,𝑚 ,𝑡+𝑇𝑀𝐹𝐸+𝑇𝑄𝐶 , ∀𝑝,𝑚, 𝑡

Sample balances at each

node (leukapheresis,

storage, manufacturing)

(6) 𝐿𝑆𝑅𝑝 ,𝑐,𝑚 ,𝑗 ,𝑡 = 𝐿𝑆𝐴𝑝 ,𝑐 ,𝑚 ,𝑗 ,𝑡+𝑇𝑇1𝑗 , ∀𝑝, 𝑐,𝑚, 𝑗, 𝑡 ,

𝐹𝑇𝐷𝑝 ,𝑚 ,ℎ ,𝑗 ,𝑡 = 𝑀𝑆𝑂𝑝 ,𝑚 ,ℎ ,𝑗 ,𝑡+𝑇𝑇2𝑗 , ∀𝑝,𝑚,ℎ, 𝑗, 𝑡
Transport constraints
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duration is assumed. Q uality control takes place in the manufacturing site and the hospital 

and leukapheresis centres are different facilities located in the same area. Transportation 

can happen either within 24 or 48 hours in case of fresh therapy and 24, 48 or 72 hours in 

case of frozen therapy, regardless of the transport mode (i.e. truck, rail etc). This is to 

align with standard practice in the cell therapy market where courier contracts are cost 

based on the estimated delivery time. The fresh transportation costs are 50% less than the 

frozen ones.

The model is implemented in Python 3.7.1 and Pyomo 6.1.2 and solved with CPLEX 

12.9. All computational experiments were performed in a 24-core Xeon E5-2697 machine 

with 196GB. Here we present the results for the two cases (fresh and frozen) for demand 

profiles of increasing size. All scenarios are solved using a bi-level decomposition 

algorithm that is capable of reducing the computational complexity of the model and 

providing optimal solutions at reduced CPU times (Erdirik-Dogan and Grossmann, 2008;  

Terazzas-Moreno and Grossmann, 2011). The CPU time ranged between 12 s and 950 s.

3. Results and discussion

The proposed model is used for the design and assessment of the optimal supply chain 

network for four different demand scales (200, 500, 1,000 and 2,000 patients annually). 

The demand scenarios considered are assumed to be homogeneous and repeated every 

trimester. The model is allowed to invest in the establishment of up to two manufacturing 

facilities for the optimal network structure.

Figure 2 depicts the results for the four scenarios in terms of average production cost and 

return time per therapy. The average cost per therapy is broken down into transport cost, 

manufacturing cost and Q uality Control cost. The storage cost is negligible and thus not 

presented in the graph. Figure 3 illustrates the utilisation of the manufacturing facilities 

for the scenario of 500 therapies per year.

Figure 2. Comparison of fresh (black) and frozen (grey) transportation of the CAR T cell therapies 

based on (a) average cost per therapy (USD), where the cost is broken down in transport cost, 

manufacturing cost and Q uality Control cost and (b) average return time per therapy. 

In Figure 2a, we can observe that for the scenario of 200 patients per year the average 

cost per therapy is identical for fresh and frozen transportation, whereas in all the other 

cases the frozen transportation leads to a significantly reduced cost per therapy. This can 

be attributed to the incorporation of storage in the model, as it allows for improved

manufacturing planning. The manufacturing cost is the biggest contributor to the total 

cost, with Q C cost being fixed in every scenario and transportation costs being negligible.
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The average return time for fresh transportation is 18 days for all demand scenarios, and 

20 days for the majority of frozen transportation scenarios (Figure 2b). This is expected 

as in the frozen case the model can choose to store samples for up to 8 days and choose 

between 3 modes of transport (24, 48 or 72 hours). The cost vs return time trade-off can 

be observed in Figure 2;  when the total return time of therapy decreases, the cost 

increases. 

The steepest decrease of 43% of the average therapy cost takes place in the 500 therapies 

per year scenario. The model proposes the establishment of two manufacturing facilities 

(m3 and m6) in the case of fresh therapy with a total of 20 parallel lines (Figure 3a), while 

in the case of frozen therapy it chooses to build only facility m3 with a total of 10 parallel 

lines (Figure 3b). From Figure 3a we can observe that the facility m6 in the fresh case is 

substantially underutilised, resulting in an increased manufacturing cost per therapy. In 

the frozen transportation case, m3 is roughly always operating at maximum capacity

leading to decreased manufacturing costs. Therefore, the reduction in the average therapy 

cost is attributed to the supply chain network structure and utilisation of the 

manufacturing facilities.

Figure 3. Utilisation of manufacturing facilities to be built for (a) fresh transportation and (b) frozen 

transportation in the 500 therapies per year scenario.

4. Conclusions

In this work, the impact of cryopreservation was assessed compared to fresh therapy 

transportation by the utilisation of a digital tool based on mathematical modelling and 

optimisation. The MILP model provided useful insights for the design and optimal supply 

chain networks in personalised therapies. Cryopreservation increases the shelf life of the 

samples, allowing to utilise an intermediate storage between the leukapheresis centre and 

the manufacturing facility. The results indicate that the extra flexibility granted by 

cryopreservation almost always leads to a decrease in the average therapy cost under the 

investigated demand scenarios, but the average vein-to-vein time slightly increases. 

Overall, the model identifies a trade-off between cost and average return time. The cost 

reduction achieved in the frozen case is linked to an improved manufacturing planning, 

which can potentially debottleneck the complex supply chain and logistics, and ultimately

decrease the risk of loss of the therapies- especially for high-demand scenarios. Future 

work will aim to assess the effect of variable manufacturing time and failure rates of fresh 

versus frozen manufacturing on the supply chain robustness and on the average therapy 

cost.

manufacturing facilities.
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Abstract 

A novel hybrid algorithm integrating advantages of genetic algorithm (GA) on 

computational efficiency and sequence-based mixed-integer linear programming (MILP) 

model on solution optimality is proposed for industrial-scale scheduling problems of 

multipurpose batch plants. The computational results show that the hybrid algorithm has 

strong convergence and is efficient to generate the same or better schedules with less 

computational efforts compared to the existing methods. 

Keywords: Scheduling; Multipurpose batch plants; Hybrid algorithm; Genetic algorithm 

1. Introduction 

Scheduling multipurpose batch plants is challenging due to the process flexibility and 

layout complexity. Specifically, products are produced using product-specific processing 

steps with batch splitting, mixing, and recycling allowed. A variety of mixed-integer 

linear programming (MILP) models have been proposed, including sequence-based and 

time-grid-based models (Harjunkoski et al., 2014). Discrete-time models confirm its 

capability on processes with time-varying availability but fail to guarantee data accuracy 

due to discretization errors. Unit-specific event-based models are prominent on solution 

optimality. However, they are hard to solve industrial-scale problems as the appropriate 

number of event points is unknown a priori. Although several decomposition methods 

(Nishi et al., 2010) have been attempted, generation of optimal or near-optimal solutions 

with low computational costs for large-scale scheduling is still an unresolved issue. 

Hybrid algorithm is promising to address large-scale problems as integrating advantages 

of multiple approaches. Recently, a discrete-continuous algorithm (Lee and Maravelias, 

2018) was developed to generate approximate solutions quickly in first stage and then 

refine the solution to optimality. Metaheuristics are superior in high solution quality and 

computational efficiency. He and Hui (2010) and Woolway and Majozi (2018) 

demonstrated the GAs are efficient to schedule multipurpose batch plants in short time 

frames due to their inherent parallelism and strong global search capability. Therefore, in 

this work, we take advantages of GA on low computational costs and integrate it with a 

sequence-based MILP model to generate near-optimal or optimal solutions for scheduling 

of industrial multipurpose batch plants. The computational results show that the designed 

algorithm can generate the same or better solutions and reduce the computational time, 

over one order of magnitude in some instances, compared to existing methods. 

2. Genetic algorithm  

A novel GA is designed to generate suboptimal or optimal solutions using short 

computing time. In GA, an encoding set 𝑃𝑜𝑝𝑐  of individual chromosome c is defined to 

represent solutions for a given problem. One chromosome 𝑐 = {𝑐1, 𝑐2, 𝑐3} comprises of 
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three parts representing production sequence, unit assignment and task repetition, 

respectively. In the first part, a variable 𝑐𝑛
1 = 𝑝 ∈ 𝐒𝑃 represents product 𝑝 going to be 

manufactured at n-th production step in the production. In each production step, one batch 

of the selected product 𝑝 is produced, and one product may be produced for multiple 

batches to satisfy order demands. In the second part, 𝑐𝑚𝑖
2 = 𝑗 ∈ 𝐉𝑖  is the assigned unit j 

for batch m of task i that have multiple feasible units. In the third part, 𝑐𝑜
3 is a binary 

variable. When 𝑐𝑜
3 = 1   the o-th performed task would be repeated. 𝑐3  is designed to 

influence the sequence of tasks performed to produce different batches of products. 

A decoding algorithm is designed to synthesize solutions based on above solution 

representation. It steps iteratively through 𝑐1  to produce products until demand 

requirements are met. In each production step, the producing task 𝑖 ∈ 𝐈
𝐒𝑃
𝑃  for the product 

p must be performed and other tasks providing intermediate states would be performed 

when the state is insufficient. Unit assignments are determined by 𝑐2, and whether to 

repeat the performed task is decided by 𝑐3. For minimization of makespan, a heuristic 

rule ‘earliest starting strategy’ is adopted to start every batch of tasks as early as possible.  

𝑓𝑐 = (1/𝑀𝑆𝑐)20        (1) 

Fitness value of individual c is calculated using Eq.(1), where MS is makespan. The 

roulette wheel method is adopted to select parents who would be subjected to two-point 

crossover and two-point mutation. A knowledge-guided search (Zheng and Wang, 2018) 

is incorporated to adjust production sequence and unit assignment of child chromosome 

based on experiential possibility. 𝑃𝑟𝑛𝑝
𝑔

 denotes the experiential possibility of product p is 

produced at n-th production step (i.e. 𝑐𝑛
1 = 𝑝) at g-th generation. At each generation, the 

experiential possibility is updated based on memory and experiences from NF elitists in 

current generation, as indicated in Eq.(2), where 𝐼𝑛𝑝
𝑠𝑐 = 1 if 𝑐𝑛

1 = 𝑝 for the sc-th selected 

elitist. Evolution of the GA terminates until maximum generation is reached.  

𝑃𝑟𝑛𝑝
𝑔

= (1 − 𝑎) ∙ 𝑃𝑟𝑛𝑝
𝑔−1

+ 𝑎 ∙
∑ 𝐼𝑛𝑝

𝑠𝑐𝑁𝐹
𝑠𝑐=1

𝑁𝐹
                                                       (2) 

3. Sequence-based MILP formulation  

Sequence-based MILP formulation is developed where two binary variables 𝑋𝑖𝑚𝑖′𝑚′  and 

𝑋𝑆𝑖𝑚𝑖′𝑚′𝑠 are defined to denote the sequential relations between batch m of task i and 

batch 𝑚′ of task 𝑖′ on unit 𝑗 ∈ (𝐉𝑖 ∩ 𝐉𝑖′) and storage 𝑠 ∈ (𝐒𝑖 ∩ 𝐒𝑖′), respectively. A binary 

variable 𝑧𝑖𝑚 is defined to denote if batch 𝑚 of task 𝑖 is performed. A task that is allowed 

to be processed in multiple processing units is divided into different tasks. All batches of 

a task should be processed in sequence, as constrained in Eq.(3). 

𝑧𝑖𝑚 ≤ 𝑧𝑖(𝑚−1) ∀𝑖, 𝑚 > 1                       (3) 

Sequence constraints are formulated as Eq.(4-6). If the batch 𝑚 of task 𝑖 precedes one 

batch 𝑚′ of the task 𝑖′ on a unit 𝑗, it must also precede the batch (𝑚′ + 1) of task 𝑖′, as 

indicated in Eq.(4). Similarly, the batch 𝑚′ of task 𝑖′ succeeds batch (𝑚 − 1) of task 𝑖 if 
it is processed after the batch 𝑚 of task 𝑖 , as Eq.(5). Eq.(6) expresses the sequential 

relation between two batches of different tasks 𝑖 and 𝑖′ performed in one same unit. 

𝑋𝑖𝑚𝑖′(𝑚′+1) ≥  𝑋𝑖𝑚𝑖′𝑚′ ∀𝑗, 𝑖 ∈ 𝐈𝑗 , 𝑖′ ∈ 𝐈𝑗 , 𝑖 ≠ 𝑖′, 𝑚, 𝑚′ < 𝑀          (4) 

𝑋𝑖(𝑚−1)𝑖′𝑚′ ≥ 𝑋𝑖𝑚𝑖′𝑚′  ∀𝑗, 𝑖 ∈ 𝐈𝑗 , 𝑖′ ∈ 𝐈𝑗 , 𝑖 ≠ 𝑖′, 𝑚 > 1, 𝑚′        (5) 

𝑋𝑖𝑚𝑖′𝑚′ + 𝑋𝑖′𝑚′𝑖𝑚 ≥ 𝑧𝑖𝑚 + 𝑧𝑖′𝑚 − 1 ∀𝑗, 𝑖 ∈ 𝐈𝑗 , 𝑖′ ∈ 𝐈𝑗 , 𝑖 < 𝑖′, 𝑚, 𝑚′               (6) 
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Batch size 𝑏𝑖𝑚 is bounded by the maximum 𝐵𝑖
𝑚𝑎𝑥 and minimum 𝐵𝑖

𝑚𝑖𝑛 capacity.  

𝐵𝑖
𝑚𝑖𝑛 ∙ 𝑧𝑖𝑚 ≤ 𝑏𝑖𝑚 ≤ 𝐵𝑖

𝑚𝑎𝑥 ∙ 𝑧𝑖𝑚 ∀𝑖, 𝑚        (7) 

Eq.(8) indicates the duration constraint, where 𝑎𝑖 and 𝛽𝑖 are fixed and variable terms of 

processing time, respectively. If a state 𝑠 is subject to zero-wait (𝑠 ∈ 𝐒𝑍𝑊), the duration 

of its producing task (𝑖 ∈ 𝐈𝑠
𝑃) is exactly equal to the processing time in Eq.(9). Sequencing 

constraints for the same task and different tasks in a unit are given in Eq.(10) and Eq.(11). 

𝑇𝑖𝑚
𝑓

≥ 𝑇𝑖𝑚
𝑏 + 𝑎𝑖 ∙ 𝑧𝑖𝑚 + 𝛽𝑖 ∙ 𝑏𝑖𝑚     ∀𝑠 ∈ 𝐒, 𝑠 ∉ 𝐒𝑍𝑊 , 𝑖 ∈ 𝐈𝑠

𝑃 , 𝑚                        (8) 

𝑇𝑖𝑚
𝑓

= 𝑇𝑖𝑚
𝑏 + 𝑎𝑖 ∙ 𝑧𝑖𝑚 + 𝛽𝑖 ∙ 𝑏𝑖𝑚 ∀𝑠 ∈ 𝐒𝑍𝑊 , 𝑖 ∈ 𝐈𝑠

𝑃 , 𝑚    (9) 

𝑇𝑖(𝑚+1)
𝑏 ≥ 𝑇𝑖𝑚

𝑓
 ∀𝑖, 𝑚 < 𝑀      (10) 

𝑇𝑖′𝑚′
𝑏 ≥ 𝑇𝑖𝑚

𝑓
− 𝐻 ∙ (1 − 𝑋𝑖𝑚𝑖′𝑚′) ∀𝑗, 𝑖 ∈ 𝐈𝑗 , 𝑖′ ∈ 𝐈𝑗 , 𝑖 ≠ 𝑖′, 𝑚, 𝑚′      (11) 

Variable 𝑇𝑖𝑚𝑠
s  denotes the transfer time of batch m of task 𝑖 ∈ 𝐈𝑠  into or out from the 

dedicated storage of state 𝑠. Eq.(12) enforces for batch 𝑚 of task 𝑖 ∈ 𝐈𝑠
𝑃 producing 𝑠, the 

transfer time 𝑇𝑖𝑚𝑠
s  equals to its finish time 𝑇𝑖𝑚

f . The start time (𝑇𝑖𝑚
b ) of batch 𝑚 of task 𝑖 ∈

𝐈𝑠
𝐶 consuming 𝑠 equals to its transfer time out from the storage in Eq.(13). Sequences on 

storage for batches of the same tasks and different tasks are given by Eqs.(14-15).  

𝑇𝑖𝑚𝑠
𝑠 = 𝑇𝑖𝑚

𝑓
 ∀𝑠 ∈ 𝐒𝐼𝑁 , 𝑖 ∈ 𝐈𝑠

𝑃 , 𝑚            (12) 

𝑇𝑖𝑚𝑠
𝑠 = 𝑇𝑖𝑚

𝑏  ∀𝑠 ∈ 𝐒𝐼𝑁 , 𝑖 ∈ 𝐈𝑠
𝐶 , 𝑚            (13) 

𝑇𝑖(𝑚+1)𝑠
𝑠 ≥ 𝑇𝑖𝑚𝑠

𝑠  ∀𝑠 ∈ 𝐒𝐼𝑁 , 𝑖 ∈ 𝐈𝑠, 𝑚 < 𝑀           (14) 

𝑇𝑖′𝑚′𝑠
𝑠 ≥ 𝑇𝑖𝑚𝑠

𝑠 − 𝐻 ∙ (1 − 𝑋𝑆𝑖𝑚𝑖′𝑚′𝑠) ∀𝑠 ∈ 𝐒𝐼𝑁, 𝑖 ∈ 𝐈𝑠, 𝑖′ ∈ 𝐈𝑠, 𝑚, 𝑚′, 𝑖 ≠ 𝑖′     (15) 

Eqs.(16-18) are formulated to enforce precedence of batches on storage, which are similar 

to Eqs.(4-6). When task i and 𝑖′ can be processed in the same unit and related to one state, 

sequence relations for their batches keep consistent on the unit and storage, as Eq.(19).  

𝑋𝑆𝑖𝑚𝑖′(𝑚′+1)𝑠 ≥ 𝑋𝑆𝑖𝑚𝑖′𝑚′𝑠   ∀𝑠 ∈ 𝐒𝐼𝑁, 𝑖 ∈ 𝐈𝑠 , 𝑖′ ∈ 𝐈𝑠, 𝑖 ≠ 𝑖′, 𝑚, 𝑚′ < 𝑀      (16) 

𝑋𝑆𝑖(𝑚−1)𝑖′𝑚′𝑠 ≥ 𝑋𝑆𝑖𝑚𝑖′𝑚′𝑠   ∀𝑠 ∈ 𝐒𝐼𝑁, 𝑖 ∈ 𝐈𝑠 , 𝑖′ ∈ 𝐈𝑠, 𝑖 ≠ 𝑖′, 𝑚 > 1, 𝑚′      (17) 

𝑋𝑆𝑖𝑚𝑖′𝑚′𝑠 + 𝑋𝑆𝑖′𝑚′𝑖𝑚𝑠 ≥ 𝑧𝑖𝑚 + 𝑧𝑖′𝑚′ − 1 ∀𝑠 ∈ 𝐒𝐼𝑁, 𝑖 ∈ 𝐈𝑠, 𝑖′ ∈ 𝐈𝑠, 𝑚, 𝑚′, 𝑖 < 𝑖′       (18) 

𝑋𝑆𝑖𝑚𝑖′𝑚′𝑠 = 𝑋𝑖𝑚𝑖′𝑚′    ∀𝑗, 𝑠 ∈ 𝐒𝐼𝑁, 𝑖, 𝑖′ ∈ 𝐈𝑠 ∩ 𝐈𝑗 , 𝑚, 𝑚′, 𝑖 ≠ 𝑖′                 (19) 

𝐶𝐵𝑖𝑚𝑖′𝑚′𝑠 is defined to monitor batches 𝑚′ of task 𝑖′ transferred before batch 𝑚 of task 

(𝑖 ≠ 𝑖′) in Eqs.(20-22) or task (𝑖 = 𝑖′) by Eq.(23). It equals to 𝑏𝑖′𝑚′ if batch 𝑚′ of task 𝑖′ 
is transferred before or at the same time as batch 𝑚 of task 𝑖. Otherwise, it equals to 0.  

𝐶𝐵𝑖𝑚𝑖′𝑚′𝑠 ≤ 𝐵𝑖′
𝑚𝑎𝑥 ∙ 𝑋𝑆𝑖′𝑚′𝑖𝑚𝑠 ∀𝑠 ∈ 𝐒𝐼𝑁 , 𝑖, 𝑖′ ∈ 𝐈𝑠, 𝑚, 𝑚′, 𝑖 ≠ 𝑖′                    (20) 

𝐶𝐵𝑖𝑚𝑖′𝑚′𝑠 ≥ 𝑏𝑖′𝑚′ − 𝐵𝑖′
𝑚𝑎𝑥 ∙ (1 − 𝑋𝑆𝑖′𝑚′𝑖𝑚𝑠)  ∀𝑠 ∈ 𝐒𝐼𝑁 , 𝑖, 𝑖′ ∈ 𝐈𝑠, 𝑚, 𝑚′, 𝑖 ≠ 𝑖          (21) 

𝐶𝐵𝑖𝑚𝑖′𝑚′𝑠 ≤ 𝑏𝑖′𝑚′  ∀𝑠 ∈ 𝐒𝐼𝑁 , 𝑖, 𝑖′ ∈ 𝐈𝑠, 𝑚, 𝑚′, 𝑖 ≠ 𝑖′      (22) 

𝐶𝐵𝑖𝑚𝑖𝑚′𝑠 = 𝑏𝑖𝑚′  ∀𝑠 ∈ 𝐒𝐼𝑁 , 𝑖 ∈ 𝐈𝑠, 𝑚, 𝑚′ < 𝑚      (23)  

The inventory level of state 𝑠 after transfer of batch 𝑚 of task i is calculated by Eq.(24), 

being positive and less than the maximum storage capacity 𝑆𝑇𝑠
𝑚𝑎𝑥 . Eq.(25) enforces total 

amount transferred must satisfy storage limitation, where In0𝑠 is the initial inventory.  
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0 ≤ ∑ ∑ 𝜌𝑖′𝑠𝐶𝐵𝑖𝑚𝑖′𝑚′𝑠𝑚′:(𝑖=𝑖′∩𝑚>𝑚′)∪(𝑖≠𝑖′)𝑖′∈𝑰𝑠
+ 𝜌𝑖,𝑠𝑏𝑖𝑚 + 𝐼𝑛0𝑠 ≤ 𝑆𝑇𝑠

𝑚𝑎𝑥

∀𝑠 ∈ 𝐒𝐼𝑁, 𝑖 ∈ 𝐈𝑠, 𝑚 ( 2 4 a,b)

0 ≤ ∑ ∑ 𝜌𝑖𝑠 ∙ 𝑏𝑖𝑚𝑚𝑖∈𝑰𝑠
+ 𝐼𝑛0𝑠 ≤ 𝑆𝑇𝑠

𝑚𝑎𝑥 ∀𝑠 ∈ 𝐒𝐼𝑁 ( 2 5 a,b)

For the objective of minimizing makespan, demand constraints are given in Eq.(26). 

Makespan must exceed the finish and transfer time of all batches.

∑ 𝜌𝑖𝑠 ∙ ∑ 𝑏𝑖𝑚𝑚𝑖∈𝑰𝑠
𝑃 ≥ 𝐷𝑠 ∀𝑠 ∈ 𝐒𝑃      ( 2 6 )

𝑀𝑆 ≥ 𝑇𝑖𝑚
𝑓

∀𝑖, 𝑚      ( 2 7 )

𝑀𝑆 ≥ 𝑇𝑖𝑚𝑠
𝑠 ∀𝑠 ∈ 𝐒𝐼𝑁, 𝑖 ∈ 𝐈𝑠, 𝑚      ( 2 8 )

4. Hybrid framework 

A hybrid algorithm is proposed to harness GA and sequence-based MILP, as illustrated 

in Figure 1. There are three stages in the hybrid framework: GA is first used to generate 

good-quality solutions;  determinations on the batch numbers of tasks and sequencing 

relations are extracted;  the majority of the binary variables in the sequence-based MILP 

model are fixed based on the extracted information and the MILP model is finally solved 

to optimality. Multiple feasible solutions (𝑃𝑠𝑖𝑧𝑒 ∙ 0.01) generated by GA are optimized 

using the third-stage MILP model, where 𝑃𝑠𝑖𝑧𝑒 is the population size of GA.

Fig.1 Illustration of hybrid algorithm 

Batch size and timings would be optimized in the sequence-based MILP model. Therefore, 

in GA, batch sizes of tasks are assumed to be maximum and processing times are assumed 

to be fixed as maximum value (i.e. 𝜏𝑖
𝐺 = 𝑎𝑖 + 𝛽𝑖 ∙ 𝐵𝑖

𝑚𝑎𝑥). The strategies for fixing binary 

variables in the MILP model are described as follows. Two tasks 𝑖 ∈ 𝐈
𝑖′
𝑔

and 𝑖′ ∈ 𝐈𝑖
𝑔

in 

the MILP model denote one task performing on two different units. If there is no task 𝑖′
belonging to 𝐈𝑖

𝑔
, all performed batches 𝑚 ∈ 𝐌𝑖

𝐺 of task i in the solution from GA must be 

processed in the MILP model. That is 𝑧𝑖𝑚 = 1 ∀𝑖: ∄𝑖′ ∈ 𝐈𝑖
𝑔

, 𝑚 ∈ 𝐌𝑖
𝐺 . One batch m of a 

task 𝑖 ∈ 𝐈
𝑖′
𝑔

starts at time 𝑇𝐵𝑖𝑚
G . If there are consecutively idle times from any time 𝑡 ∈

[𝑇𝐵𝑖𝑚
G , 𝑇𝐵𝑖𝑚

G + 𝜏𝑖
𝐺 2⁄ ) to time 𝑡′ > 𝑡 + 𝜏𝑖

𝐺 2⁄ on unit 𝑗′ ∈ 𝐉𝑖′, the batch m is assumed to 

be potential to divide into two batches, including batch m on unit j (i.e. 𝑧𝑖𝑚 = 1) and 

batch 𝑚′ = 𝐌𝑖′
𝐺 + 1 of task 𝑖′ on unit 𝑗′ in the MILP model;  otherwise, 𝑧𝑖𝑚 = 1 and 

𝑧𝑖′𝑚′ = 0. The sequencing relations between batches of tasks on the same unit in the 

solution from GA are used to fix 𝑋𝑖𝑚𝑖′𝑚′ . 𝑋𝑆𝑖𝑚𝑖′𝑚′𝑠 is partially fixed by enforcing batch 

𝑚′ of task 𝑖′ ∈ 𝐈𝑠
𝐶 to start after batch m of task 𝑖 ∈ 𝐈𝑠

𝑃 that provides required state for batch 
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𝑚′ (i.e., 𝑋𝑆𝑖𝑚𝑖′𝑚′𝑠 = 1). Also, batch 𝑚′ of task 𝑖′ ∈ 𝐈𝑠
𝐶  starts before the finish of batch m 

of task 𝑖 ∈ 𝐈𝑠
𝑃 whose s is consumed by the batch 𝑚′ to ensure inventory level of the state 

lower than the maximum storage capacity (i.e., 𝑋𝑆𝑖′𝑚′𝑖𝑚𝑠 = 1).  

5. Case studies  

Five examples are solved to evaluate the performance of the proposed hybrid algorithm. 

Examples 1-2 are from He and Hui (2010), where instances I1 and I4 are small instances 

whilst the instances I2, I3 and I5 are large ones. Example 3 are the Kallrath example from 

Velez et al. (2015), which is an industrial-scale example. Finite intermediate storage and 

zero-wait policy are involved in Examples 1 to 3. Examples 4 and 5 are the Example 1 

and PP solved by Lee and Maravelias (2018). GA is implemented in MATLAB 2020 and 

the sequence-based MILP formulation is solved using CPLEX 12.10/GAMS 33.2 on a 

desktop computer with AMD Ryzen™ 9 3900X 3.8 GHz and 48 GB RAM running 

Windows 10. We also solve these examples using the MILP models from Vooradi and 

Shaik (2012) and Velez et al. (2015) denoted as VS2012 and VM2015, respectively, as 

well as a hybrid algorithm from Lee and Maravelias (2018) denoted as LM2018.  

Table 1. Computational results for examples 1 to 3  

 

VS2012 VM2015 Hybrid algorithm 

N MS 

Gap 

(%) 

CPU 

Time (s) H MS 

CPU 

Time (s) MS 

CPU 

Time (s) 

Example 1 

I1 22 37 - 45.2 60 37 0.8 37 3.1 

I2 65 109 1.4 >3600 110 108 11.0 108 61.0 

I3 131 229 5.6 >3600 219 217 3298.0 217 250.3 

Example 2 

I4 15(𝛥𝑛 = 1) 37 - 11.7 60 37 0.4 37 0.2 

I5 42 102 - 1328.2 120 100 1.2 100 2.7 

Example 3 

I6  11 33 3.1 >3600 60 32 13.2 32 12.1 

I7  12 40 - 1856.3 60 39 103.9 39 18.7 

I8  23 58 17.3 >3600 60 52 93.9 52 58.2 

 

The computational results for Example 1 to 3 are presented in Table 1. Results show that 

our hybrid algorithm can yield global optimality for all solved instances. Comparing to 

VS2012, the computational times are dramatically decreased in all instances. Also, better 

solutions are found for most cases (e.g. I3, I6, I7 and I8) using our algorithm. Although 

the proposed hybrid algorithm obtains the same optimal solution as VM2015, our 

algorithm requires significantly less computational efforts (< 5 minute) for the large-scale 

problems. For example, our algorithm leads to a reduction in computational efforts by 

about one order of magnitude while solving I3 of Example 1 and I7 of Example 3. 

We also address the benchmark examples with complex features on processing times. The 

computational results are provided in Table 2. The results show the effectiveness of the 

proposed framework on generating optimal or near-optimal solutions within short time 

frames (1 minute) even for the examples with large demands (Example 4) or complex 

process structures (Example 5). In the proposed framework, the first-stage GA is critical 
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to reduce computational effort. For instance, a good solution (44) for I11 is found in 5 

seconds by GA but more than 1 hour using the discrete-time model in LM2018. The high 

quality of the final solutions can be contributed to the integration of the MILP model. 

Table 2. Computational results for examples 4 to 5  

 Demand LM2018 Hybrid algorithm 

P1 P2 P3 P4 H Dis. 

MS 

MS CPU 

Time (s) 

GA. 

MS 

MS CPU 

Time (s) 

Example 4 

I9 100 200 - - 40 15.5 14.25 0.8 15.5 14.25 2.5 

I10 300 300 - - 60 27 25.37 2.5 27 25.37 4.2 

I11 500 400 - - 80 44 41.38 >3600 44 41.38 6.2 

Example 5 

I12 23 25 24 23 120 68 63.56 13.1 68 63.85 7.9 

I13 26 50 48 46 200 120 115.9 47.9 120 115.3 62.2 

6. Conclusions 

In this work, a hybrid algorithm is proposed for scheduling multipurpose batch plants 

with a wide range of processing features, such as variable conversion fraction, processing 

time and multiple storage policies. The computational results demonstrate the 

effectiveness of the proposed algorithm to solve large-size problems to optimality. More 

importantly, the computational times are significantly reduced to reach optima within 5 

mins, leading this hybrid strategy potentially to use as an industrial operational 

optimisation tool.  
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Abstract 
The use of discrete-event simulation has been gathering relevance to explore dynamic 
solution generation approaches in the design and planning of biomass supply chains. In 
this work, the combination of simulation with an optimization module in a hierarchical 
sequence is proposed, in order to compute the decision variables of interest to validate the 
economic viability of the supply chain network. The results highlight the advantage to assess 
strategic/tactical solutions with a more precise liability of overall uncertainty factors, such as 
the availability of biomass sources and demand variability.  
Keywords: Design and planning, biomass supply chain, discrete-event simulation. 

1. Introduction 
The dynamic structure of current supply chains poses significant challenges to the 
implementation of effective decision support systems. This complexity often entails the 
simultaneous assessment of different business criteria for most strategic and operational 
decisions, in an interdependent structure of stakeholders facing with operational 
uncertainty. With the advent of digitalization, the development of decision support 
systems is demanding an enterprise integration with faster decisions (Vieira et al., 2021). 
It represents a contend for the traditional modeling techniques to encompass the tradeoffs 
of different dimensions, with particular importance to the growing sustainability 
implications of economic, environmental, and social levels. 
Within the modeling research of complex systems, the development of Digital Models, 
Twins or Shadows have been addressed in the fields of planning and control 
improvement. The scope often aims at high-resolution views of physical systems or focus 
on specified traces when fast reaction is crucial (Liebenberg et al., 2020). Due to this 
multi-level decision-support, discrete-event simulation (DES) can generate a digital 
representation with useful data information and performance indicators (e.g. lead time, 
makespan, resources setting, capacity utilization), allowing to model uncertainty and 
evaluate how the system reacts in different scenarios as a sequence of events in time. 
It is recognized the growing importance in replacing fossil resources consumption by 
biomass to produce bioenergy and biomaterials at integrated biorefineries (Paulo et al., 
2015). However, beyond its environmental contributions, attracting investment requires 
additional efforts to increase its competitiveness with an efficient supply chain network, 
gauging the diverse biomass sources to the demand of each region. The overall challenges 
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concerning its design and planning can include the (1) selection of biomass sources, type, 
and quantities; (2) storage locations/capacities and preprocessing technologies; (3) 
processing facilities with technology definition, capacity, and location; (4) type of 
products/byproducts and respective amounts; (5) demand centers, location and quantity 
to satisfy; or (6) logistic operations at the supply chain nodes. Moreover, these strategic 
decisions are greatly influenced by the uncertainty on biomass availability and quality, 
products demand, or the non-mature biorefineries technologies for pre/processing 
operations. 
The biomass supply chain design under uncertainty has been an active area within the 
research community in recent years. Despite largely supported by analytical optimization 
modeling studies, DES approaches have been gaining relevance to address the behavior 
and performance under different conditions to describe uncertain scenarios. For example, 
simulation can be used to validate the long-term economic viability of a biorefining 
supply chain, as presented by Sukumara et al. (2015). To examine the economic 
performance of the supply chain over time, including supply and demand variability, a 
simulation model is created to determine the optimum feedstock requirement, capital 
investment, and operating costs of the process. Another recent contribution, Pinho et al. 
(2016) modeled the biomass supply chain using DES to estimate the system behavior 
regarding stochastic drive and chipping times to improve management and scheduling 
tasks. And Eriksson et al. (2017) develop a model for weather-driven analysis of forest 
fuel systems, with a DES approach analyzing the supply chains that account for active 
and passive machine activities, such as quality changes during storage. The results 
illustrate significant improvements concerning machine capacity requirements. 
Following the recognized advantage of DES to model uncertainty, the application to 
decision support in the design and planning of biomass supply chains remains fairly 
unexplored. The aim of this work is to explore a hybrid simulation-optimization approach, 
with focus on the representation of the dynamics and uncertainty interactions of the real 
supply chain system by means of an event-based model. This preliminary study outlines 
the combination of an optimization-based solution to be evaluated in a virtual model that 
accurately simulates the characteristics of the biomass/bioproduct flows and the network 
performance under alternative scenarios to generate a solution. As follows, we present an 
overview of methodology and discuss the results in a case study example for a biomass 
supply chain problem. 

2. Methodology 
Due to the stochastic and complex nature of biomass supply chains, an adequate choice 
for an effective solution generation approach resumes the research for hybridization of 
techniques to overcome the computational burden. As noted by Figueira and Almada-
Lobo (2014), the potential hybridization of simulation with optimization approaches 
combines the advantages of the system detail representation with the ability to optimize 
solutions, leaving the hard-to-model constraints to the former. Despite this hierarchical 
combination can be defined in one-way or iterative, here we focus on the case where 
analytical models can be formulated and their solutions simulated (optimization-based 
simulation), in order to compute some variables part of the solution generation. The 
analytical model generates a solution under ideal conditions, while the simulation 
considers the inherent variability and provides the expected realistic outcomes. 
For the proposed case of a biomass supply chain, the economic viability of a solution for 
the strategic/tactical decisions comprises the definition of which biomass sources supply 
raw-material for the integrated biorefineries to satisfy demand centers within a 
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transportation network. However, matching the uncertain biomass seasonality throughout 
the given time horizon to each center demand can generate a reduced income output. 
Therefore, we devise the methodology composed by an optimization module to generate 
an initial deterministic solution, completed at the simulation module which evaluates the 
dynamic representation of process interconnections. 
 

2.1. Optimization module 
Based on the work of Paulo et al. (2015), this module is composed by a MILP model 
using GAMS/CPLEX which is stated as follows: given (a) a superstructure defining all 
possible locations of biomass sources (with the corresponding availability per type), 
biorefineries and demand centers, considering the distances between all points; (b) 
transportation modes and their costs, biomass acquisition costs, biorefinery installation, 
fixed/variable operating costs (for a set of discrete capacities); and (c) the conversion 
factors of the different biomass types into products and corresponding demand; determine 
the optimal supply chain network structure with the (d) number, location, technology and 
capacity of biorefineries to install, with the corresponding amounts produced and demand 
centers to serve; and (e) amount of each biomass type collected at each source and 
transportation flows between each pair of facilities; so as to (f) minimize the supply chain 
total cost (Eq.1). 

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 =  ෍(𝐵𝑖𝑜𝑚𝑎𝑠𝑠 𝐶𝑜𝑠𝑡 + 𝐹𝑖𝑥𝑒𝑑/𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝐶𝑜𝑠𝑡 𝑎𝑡 𝐵𝑖𝑜𝑟𝑒𝑓𝑖𝑛𝑒𝑟𝑖𝑒𝑠

+ 𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑛𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡𝑠 + 𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑 𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝐶𝑜𝑠𝑡)                   (1) 
 

2.2. Simulation module 
The embedded biomass supply chain structure of operations is evaluated with a DES 
model implemented in SIMIO, which computes the output scenario statistics involving 
the occurrence of events at discrete time point using probability distributions of 
parameters. The main components and library of objects available at the SIMIO software 
are used to achieve the most accurate representation of the network nodes, which requires 
advanced programming of the system properties. As a general concept of the model 
principles, an ‘entity’ (e.g. demand order) will arrive, is processed by a sequence of 
‘servers’ (e.g. biorefinery), and then departs from the system. The level of detail, 
uncertainty factors and problem assumptions should be considered as suitable to case 
objectives. Due to the scope limitations of the present work, the focus relies in the time 
horizon variability of biomass availability at each selected source, the technology 
conversion performance at the biorefineries and bioproducts prices. For simplification, it 
was considered the software’s default number of replications to guarantee statistical 
significance. 
The interaction of the two modules aims to generate a supply chain configuration 
accounting with the precise simulated biomass/bioproducts flows in order to compute a 
techno-economic investment viability. Adequate parameter availability, unfulfilled 
demand penalty and prices forecast was considered to examine the economic performance 
cashflows over time. To account for the time value of money, the simulation model tracks 
the net present value (NPV) of the biomass supply chains operations (Eq.2), for n time 
periods, CFk as annualized value of cashflow at year k and i discount rate. 

𝑁𝑃𝑉 = ∑
஼ிೖ

(ଵା௜)ೖ
௡
௞ୀ଴                      (2) 
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3. Case Study 
The described methodology has been applied to an illustrative case study of bioethanol 
and biodiesel production in Portugal. The supply chain structure integrates the process of 
harvesting and biomass collection, biorefineries, demand centers and all the logistic 
activities for biomass and bioproducts transportation. Considering the 278 portuguese 
municipalities, 150 are considered as biomass supply sources (i) (the remaining 
municipalities were excluded due to low biomass availability), and 28 locations are 
candidate to biorefineries installation (k), to satisfy the 18 portuguese districts in biodiesel 
and bioethanol demands (v). Two types of biomass types are considered: Sugar/starch 
biomass (b1) and seeds/animal fats (b2), processed by fermentation (m1) and 
transesterification (m2) technologies at the biorefineries to bioethanol and biodiesel, 
respectively. All models run in an Intel(R) Xenon(R) CPU ES-2660v3@2.60GHz with 
64GB RAM, with GAMS (25.1.1 ver.), using CPLEX (12.8.0.0 ver.) solver, and SIMIO 
(9.5 ver.). 
 

3.1. Results discussion 
Setting the problem input data for a 12-months' time horizon, the optimization module 
generates an optimal cost solution with the supply chain characteristics presented in Table 
1, with the number of biomass collection sources and total biomass amounts to be 
transported to the installed biorefineries. The biorefineries properties, as well as the total 
amount of production to entirely fulfil the demand centers by each of the biorefineries, 
are also displayed.  While the optimal solution yields a network with assumed conditions, 
variability in biomass availability has influence on supply chain performance over time 
and directly linked to demand variability. At the simulation module, these biorefineries 
activities that account for biomass sources transportation, conversion to final bioproducts, 
product distribution and sale prices, are assessed. 
   
Table 1. Optimal supply chain characteristics 

Biomass 
type 

Biomass collection 
sources 

Total 
biomass 

(ton) 
Biorefinery 

Total  
product. 

(ton) 

Demand 
centers 

b1 i5, i8, i9, i14, i16, i26, i29, 
i34, i35, i38, i43, i53, i69, 
i74, i75, i78, i87, i89, i90, 
i94, i100, i112, i114, i115, 
i123, i126, i135, i143 

700 575  Location: k13 
Tech: Fermentation 
Cap: 250 000 ton 
Product: Bioethanol 

241 435 v2, v7, v8, 
v11, v14, v15 

b1 i1, i2, i4, i6, i7, i18, i21, 
i22, i27, i39, i41, i49, i51, 
i52, i58, i62, i63, i67, i72, 
i76, i88, i96, i97, i98, i103, 
i108, i109, i112, i122, 
i127, i129, i131, i132, 
i134, i137, i146 

598 416  Location: k16 
Tech: Fermentation 
Cap: 250 000 ton 
Product: Bioethanol 

206 229 v1, v5, v6, v9, 
v10, v12, v13, 
v18 

b1 i11, i20, i23, i42, i46, i50, 
i77, i83, i86, i117, i118, 
i119, i138, i142, i145 

217 627  Location: k26 
Tech: Fermentation 
Cap: 75 000 ton 
Product: Bioethanol 

75 000  v1, v3, v6, v7, 
v10, v11, v13, 
v14, v15, v16, 
v17, v18 

b2 i1, i6, i7, i9, i14, i16, i26, 
i29, i34, i35, i38, i39, i43, 
i49, i53, i67, i72, i74, i90, 
i94, i98, i108, i112, i114, 
i115, i131, i134, i135, i143 

14 383  Location: k20 
Tech:  
Transesterification 
Cap: 250 000 ton 
Product: Biodiesel 

4 770 v3, v4, v13, 
v16, v17 

994

970



Assessment of biomass supply chain design and planning using discrete-event 
simulation modeling   

  
The optimal solution of this supply chain is then modeled in SIMIO to simulate its 
feasibility, considering the defined parameters distributions (from historical public data 
of energy regulatory agency) and the year seasonality of biomass availability and 
bioproducts demand applied to each corresponding location (Table 2). By recording the 
monthly flows between nodes, the DES model is run for a period of 15 years to compute 
the variability and cashflows of this initial scenario, considering a discount factor of 3%. 
 
Table 2. Seasonality discretization of biomass availability and bioproducts demand 

Seasons/Months 
  

Annual 
biomass 

availability 

Biodiesel 
annual 

demand 

Bioethanol annual 
demand 

Winter (Dec. – Feb.) 10% 21% 25% 
Spring (Mar. – May) 40% 20% 23% 

Summer (Jun. – Aug) 30% 31% 26% 
Fall (Sep. – Nov.) 20% 28% 26% 

 
The simulation results displayed in Figure 1, related to the first year of the investment 
period, allows to verify the virtual utilization of the optimal theoretical capacity installed 
and the corresponding costs breakdown, enabling a more accurate assessment of the 
design decisions. Likewise, in Figure 2 is possible to identify that the availability of 
biomass less concentrated in Fall and Winter seasons does not allow to fulfil all 
corresponding districts’ demand of bioproducts. Therefore, an additional scenario can be 
simulated to include the additional installation of a dry-storage warehouse for biomass 
buffer at each biorefinery that does not satisfy associated seasonal demand, k13, k16 and 
k20. This scenario enables to satisfy the entire country’s demand and increases the project 
investment NPV from –95,2 M€ to 26,3 M€. 
 

 
 
Figure 1. Results of simulated capacity utilization of each biorefinery and costs 
breakdown for the first year of investment project  

4. Conclusions 
The present work proposes the integration of a hybrid simulation-optimization approach 
for the design and planning of biomass supply chains, in which the role of the DES is to 
mimic the real-world environment to evaluate an optimized solution under dynamic and 
uncertain interdependent conditions. The results demonstrate that this combination offers 
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a method with potential to deal with such strategic/tactical decision liabilities, such as the 
importance of storage warehouse or pre-processing facilities to generate an efficient 
supply chain solution. Future work will explore the DES capabilities to assess a more 
robust definition of the nodes, configuration, and capacities of the supply chain by 
increasing the detail of the uncertainty effects in the overall operations. 
 

 

Figure 2. Percentage of total fulfilled demand of each bioproduct per season  
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Abstract
Nowadays there is a growing concern regarding greenhouse gas emissions and their consideration
in the supply chain design. In this work we present a robust stochastic model for the design
of a supply chain under uncertainty of CO2-allowance prices and market demand. The three-
echelon petrochemical supply chain superstructure consists of four production plants in Europe,
storage associated with these plants and four possible markets. At each plant different products
can be produced according to the available technologies. The goal is to maximize the expected net
present value (ENPV), while reducing the amount of CO2 equivalent emissions. We implemented
the carbon cap and trade model from the European Union emissions Trading System, whose goal
is to reduce the emission cap over time in order to achieve a climate-neutral EU by 2050. We
combine the environmental LCIA data, required to determine the global warming potential, with
the forecast of CO2 allowance prices. The problem involves a multi period mixed-integer linear
program (MILP) formulation, which was implemented in Python using Pyomo and solved using
IBMs CPLEX algorithm. To deal with uncertainty in market demand and CO2-allowance prices,
we implemented an ARIMA model and generated multiple scenarios. Since a full discretization of
the resulting probability space leads to a number of scenarios that exceeds capacities of state-of-
the-art computers with ease, decomposition techniques are applied. The obtained results show an
improvement of the economic performance when compared to the results from the deterministic
approach that is being widely used in literature.

Keywords: CO2 price uncertainty, stochastic model, optimum supply chain management, Aug-
mented Lagrangian Relaxation

1. Introduction

In a globalized world the efficiency of supply chains is gaining more importance. Supply chains
integrate different activities, resources and institutions to ensure effective production, storage and
distribution of products. Real world uncertainties can have a large impact on the design and
efficiency of a supply chain. In this paper, we not only focus on uncertainties in the market demand
(which have been studied extensively in the literature), but also on uncertainties in the CO2 prices.
In this work we will consider the European Union Emissions trading system, whose goal is to
achieve a climate neutral EU by reduction of the maximum amount of allowed emissions over
time, c.f. European Union (2016). The study of combined uncertainty in CO2 prices and demand
require the use of a huge number of scenarios for fully discretizing the underlying probability
space. Since this exceeds capacities of modern day computer with ease, we combined various
techniques to being able to obtain a supply chain design that takes these combined uncertainties
into account.
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We first generated a large number of scenarios and clustered them according to their economic
and environmental performance. In order to solve the resulting stochastic mixed-integer linear
program, we applied an Augmented Lagrangian Relaxation (ALR) scheme together with an al-
ternating direction of multipliers to ensure separability of the problem into subproblems. The
resulting subproblems could then be solved in parallel to reduce computational time. For more in-
formation regarding ALR see Boyd S., Parikh N., Chu E., Peleato B., Eckstein J. (2011); Conejo
A. J., Castillo E., Mı́nguez R., Garcı́a-Bertrand R. (2006).

To the best of our knowledge, a combination of the before mentioned methods for the study of
combined uncertainty in a European three-echelon petrochemical supply chain has never been
used before.

2. Methodology

In this section, we briefly introduce the problem under study. Also, we review the different tech-
niques that were combined in order to compute a stochastic supply chain model that adapts to the
scenarios under study.

2.1. Problem statement

The studied three-echelon petrochemical supply chain superstructure consists of 4 production
plants in Europe: Kazincbarcika (Hungary), Leuna (Germany), Mantova (Italy) and Wloclaweck
(Poland). Each plant has an expansion limit between 10 and 400 kt/year and an initial capacity of
20 kt/year, c.f. Guillén-Gosálbez, G., Grossmann, I.E. (2009). All plants can produce acetalde-
hyde, acetone, acrylonitrile, cumene, isopropanol and phenol using one of 6 available technologies
involving up to 18 different chemicals. There is a warehouse associated to each plant having the
same expansion limits and initial capacities. Initially, the inventory is empty. The material flow
between plant and warehouses, as well as warehouses and markets, is limited to 500 kt/year. A
minimum demand satisfaction of 30% is specified. The initial maximal amount of CO2 emissions
is 2 ·108 kg CO2 equivalent, with a 2.2% yearly reduction rate.

2.2. Supply chain model

The model under study is composed of environmental impact, economical assessment, capacity
constraints and mass balance equation blocks. The objective is to maximize the expected net
present value, while satisfying all of these equation blocks. The cap-and-trade system provides
a link between economic and environmental performance. Since a full description of the model
would turn out to be quite long and considering the page limit, we refer the reader to Ruiz-Femenia
et al. (2013) for more details on the model. The most important equations read

GWP(t,s) ≤ MAXCO2(t)+BUYCO2(t,s)−SALESCO2(t,s), ∀t,s (1)
NETCO2(t,s) = PRICECO2(t,s) ·SALESCO2(t,s) (2)

−COSTCO2(t,s) ·BUYCO2(t,s), ∀t,s

NETE(t,s) = (1−TAX)

[
EARNINGS(t,s)−EXPENSES(t,s)+NETCO2(t,s)

]
(3)

+TAX ·DEP(t), ∀t,s

Equation (1) describes the available emissions for the supply chain at each time-step t and scenario
s, and consists of the maximum amount of emissions allowed by the system in each year, as well
as the amount of bought as well as sold emissions. In equation (2), the economic impact of the
emissions trading on the supply chain is calculated. We call this quantity NETCO2. This term
is then taken into account when calculating the net earnings for a specific time and scenario, as
described in equation (3).
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2.3. Uncertainty in CO2 allowance prices and market demand

In order to make decisions on a supply chain design, oftentimes a deterministic approach is chosen
in literature. Since uncertainties are not taken into account, and computations are done for a fixed
deterministic setting, this can be considered a risky approach. In the design of a supply chain,
there are many possible sources of uncertainty, such as CO2 allowance prices, changes in raw
material prices, energy prices, demand, etc. If these uncertainties are not taken into account, the
resulting design may perform poor in unexpected future situations. In this paper, we consider
uncertainties of demand and CO2 allowance prices through combined scenarios. Each scenario
represents a possible time-dependent evolution of both parameters. By taking the uncertainties into
account when computing an optimal supply chain design, the result will be more robust to future
changes in both parameters than the classical deterministic approach. The scenarios for the CO2
allowance prices were generated using an autoregressive integrated moving average (ARIMA)
model. ARIMA models are defined by three parameters. The first parameter determines the
non-seasonal polynomial degree. The second one is the order of differentiation used to remove
seasonal trends. The third parameter is the number of moving average terms, which is related to
the accuracy of approximations produced by an update of the parameters from fitting the model to
the historical data. In Shumway and Stoffer (2000), details can be found.

Appropriate values of the parameters were identified by fitting the historical data from 2009 to
2021 and using the Akaike and Bayesian information criteria. In our case, the best-fitting model
is ARIMA(7,1,8).

Random time series data for the demand of each chemical at each market were generated using a
normally distributed random growth with a standard deviation of 7% to a given start value at time
t = 0. We compared the environmental and economic performance of 1000 combined scenarios,
and grouped them into 20 clusters using the K-means algorithm (see fig. 1). The centroids of
each cluster were then used as scenarios for the stochastic program. For an overview of clustering
methods see Omran et al. (2007).

2.4. Augmented Lagrangian Relaxation

The aim of decomposition methods is to solve many easy-to-solve subproblems instead of one
hard-to-solve full problem. We split the full problem into subproblems containing information
only on one scenario. The main difficulty then lies in the linking of the non-scenario dependent
variables from each subproblem, since these should coincide. To do so, we included as many
non-anticipative constraints to the model as there are non-scenario dependent variables. These
non-anticipative constraints represent the complicating constraints of the model, which have to
be relaxed by introducing them as penalty terms into the objective function, together with new
multipliers. Since our objective is a linear function, we added additional quadratic penalty terms
to ensure convergence of the method, resulting in the so called Augmented Lagrangian Relaxation
of the problem. Because of the appearing products of variables from different scenarios in the
quadratic penalty terms, the resulting objective is not decomposable into subproblems for each
scenario anymore. To overcome this problem, the alternating direction method of multipliers is
used. This method linearizes the product of variables from different scenarios using values of
previous iterations for one of the appearing variables. The result is a relaxed problem that is fully
decomposable into subproblems only involving one scenario each.

A tolerance of 5% was set as stopping criteria for the ALR-loop. After each iteration, if the
stopping criteria was not fulfilled, the multipliers will be updated according to the subgradient
method and a new iteration is started, and we refer to Conejo A. J., Castillo E., Mı́nguez R.,
Garcı́a-Bertrand R. (2006) for details. The overall procedure is explained in fig. 2
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Figure 1: Economic and environmental performance of 1000 deterministic scenarios. The sce-
narios are clustered in different colors and the centroids are marked with a +. For the exemplary
cluster centroid 5, the values of the CO2 allowance prices (dotted blue line) and demand in the
market Leuna for the 6 products over time are shown.

3. Results

Numerical experiments were conducted on a MacBook Pro model 2020 with 16 GB Ram and
macOS 11.2.1. The model has been implemented in Python using Pyomo and solved using IBMs
CPLEX algorithm.

Thanks to the method of alternating direction of multipliers, each subproblem can be solved in-
dependently of the others. This allows for a massive speedup through parallelization, since in the
best case one processor only solves one or a few subproblems per iteration. According to the pre-
vious runtime of each subproblem, a redistribution of subproblems among the processors will be
carried out between iterations. The goal is to reduce the total runtime per iteration by balancing the
expected runtime of each processor. In our case (on 6 processors), we could speed up the solution
process by about 80% compared to sequential solving. The problem was moreover reformulated
and the number of variables per subproblem could be reduced from about 27000 to 24000, further
simplifying the solution process.

We validated our method by comparing the obtained stochastic supply chain design against its
deterministic counterpart from a scenario with an average investment cost, which is typically the
one chosen by companies. In average, the stochastic model leads to an increase of the net present
value by approx. 927600 e while reducing the global warming potential by around 225000 tons
of CO2-equivalent.

The resulting stochastic supply chain design has a net present value (NPV) of 254603229 e and
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Figure 2: Schematic representation of the iterative solution algorithm. The problem has been
separated into subproblems with additional coupling constraints, that appear as penalty terms in
the corresponding objective function. The multiplier update uses a subgradient method.

a global warming potential (GWP) of 7624500 tons CO2 equivalent. In average, 580 tons of CO2
equivalent will be bought each year. In fig. 3, the capacities of the different technologies of each
plant, as well as the total quantities transported between warehouses and markets in the last time-
step are presented.

The major expansions have taken place at the Wloclaweck and Kzincbarcika plants, which have
the lowest production costs. At all plants, the capacity for technology 5 “Reaction of benzene and
propylene” was expanded most, since cumene is not only one of the products demanded at all four
markets, but also the raw material for the production of phenol and acetone (technology 6). Sines
and Tarragona markets are mainly supplied by the Mantova plant, which is the closest one. These
decisions reduce not only transportation costs, but also emissions.

4. Outlook and further work

We are currently working on a supply chain design, which is able to represent the penalties asso-
ciated with a non-satisfaction of the demand. In this work, we studied the impact of uncertainty in
market demand and CO2 prices on the supply chain design. Nevertheless, a study for uncertainties
in different parameters should be carried out, in order to recognize which parameters possibly have
a higher impact on the performance. We are also working on increasing the feasible number of
scenarios and assess the information loss caused by the clusterization. Considering the ALR loop,
there are still many open questions regarding a robust choice and update of the multipliers for each
iteration, which tend to have an enormous impact on the solvability of the stochastic model.
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Figure 3: Stochastic supply chain design for the last time-step. The blue boxes represent the
four plants and their respective warehouses. Capacity expansion information for each technology
is included in the corresponding box. The four markets, Sines (SIN), Tarragona (TAR), Leuna
(LEU) and Neratovice (NER) are represented with green circles. The orange arrows represent
quantities transported (in kt) between each plant/warehouse and each market.
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Abstract 

Despite the increasing development of optimisation-based approaches over the last 

decades, simulation methods are still widely employed for problems that could instead be 

optimised. Simulation relies on achieving feasibility through a trial-and-error procedure 

and provides meaningful and useful resources to find quick or rigorous solutions. On the 

other hand, optimisation provides proper capabilities for automatic and systematic 

searching over the solution space. Although more computationally expensive, 

optimisation has been increasingly used due to the recent technological improvements 

and research developments in the wake of the Industry 4.0. However, industrial decision-

making is still often carried out manually, which indicates an urgent need for addressing 

the difficulties, complexities, and issues in the implementation of automated tools. This 

work aims to provide guidance for industrial operations towards selecting proper 

decision-making capabilities. An industrial perspective on simulation and optimisation 

decision-making is provided, whereby highlighting the issues and challenges faced by 

industrial peers, and the current gaps between academic research and industrial 

implementation. This includes the interplay between simulation and optimisation tools, 

academic research, and industrial implementation. From an industrial perspective, we 

provide guidance for incorporating academic knowledge by the industry, exposing what 

are the industrial requirements to be further addressed, and assisting industrial peers 

towards achieving further breakthroughs. 

Keywords: Optimisation, simulation, planning, scheduling, decision-making. 

1. Introduction 

Recent Industry 4.0 (I4) developments comprising digital transformation, big data, 

machinery automation, advanced analytics, and decision-making frameworks, offer 

opportunities for improvement in multiple applications of diverse fields. I4 technologies 

provide further automation of decisions with faster and more efficient operations, reduced 

costs, and higher product quality. There has been an urgent need for replacing outdated 

processes and tools more efficient and automated systems. This is fundamental towards 

achieving safer, more profitable, and more efficient industrial operations. In this work, 

we discuss simulation versus optimisation capabilities for industrial processes with 

particular emphasis from an industrial perspective. 

Simulation methods have been historically used for decision-making. They rely on 

achieving feasibility through a trial-and-error procedure and provide meaningful and 
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useful resources to quickly find solutions for real-world problems. Simulation refers 

either to manual decisions (e.g., to be determined by the operations team) or to automatic 

computer-based algorithms (e.g., rigorous simulation) based on ranges and probabilities. 

Over the last decades, simulation-based software has been extensively developed for 

industrial applications (Yang et al., 2020). 

Optimisation tools have arisen as improved alternatives for automated decisions. They 

provide proper capabilities to systematically find optimal (and better) solutions. Their 

searching algorithms are based on mathematically proven concepts in order to guarantee 

optimality. However, due to the increasing complexity that scales with the type and size 

of the formulation, there are limitations in the application of optimisation depending on 

the problem to be solved and the availability of computational resources. Despite such 

complexity issues, recent advances on decision-making algorithms and computer-aided 

resources have increasingly provided enhanced capabilities for properly addressing and 

solving industrial applications (Franzoi et al., 2018; Brunaud et al., 2020). 

Such simulation versus optimisation ideology is widely known and discussed in 

academia. Both approaches have their advantages with highly important and meaningful 

applications. Nevertheless, there is a huge gap between the methodologies and strategies 

presented by the state-of-the-art literature and the capabilities currently used by the 

industry. Many industrial decision-making methods and tools are still obsolete. Common 

reasons include lack of knowledge, training, and qualification to employ better decision-

making. This is often a result of the resistance to change from both the people and 

organisations. Consequently, further breakthroughs and enhancements towards improved 

operations are compromised or not properly exploited. Given the current economic 

scenario with increasing competitiveness, most companies either struggle to survive or 

miss significant opportunities to achieve economic and operational improvements.  

In this work, we stimulate a discussion on simulation and optimisation capabilities and 

emphasise the importance of employing appropriate tools according to the industrial 

needs, limitations, and requirements for each process or application. Particular emphasis 

is given to the petroleum refinery industrial sector, where the decision-making process 

often relies on trial-and-error, manual, and simulation-based strategies and tools despite 

the emerging applicability of their optimisation counterparts. 

2. Simulation-based versus optimisation-based industrial capabilities 

Despite the increasing development and implementation of optimisation methodologies, 

algorithms, and tools over the last decades, the industry still heavily relies on simulation-

based methods and software. In many cases, simulation is indeed more suitable or 

advisable. However, many organisations are still outdated in terms of software and 

technological capabilities, whereby not realising or exploiting opportunities to achieve 

increased operational efficiency and economic value. In fact, many problems and 

applications that could be optimised are instead handled by less efficient simulation tools. 

Some key differences and applications of simulation and optimisation methods are 

illustrated in Figure 1. Such concepts are fundamental to understand how to best employ 

the current industrial capabilities in a proper and efficient fashion. 

A typical example of highly complex processing industry that still requires 

computational-based improvements, especially in terms of software and methodologies 

employed for the decision-making process, are petroleum refineries. In the following, we 

address the topic of simulation-based versus optimisation-based capabilities for 
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petroleum refinery operations, although such discussion and concepts are generally valid 

for other industries and applications as well.

Figure 1: Simulation versus optimisation decision-making.

3. An industrial perspective on petroleum refinery decision-making 

Petroleum refinery operations require determination of variables over a complex 

processing network, in which planning and scheduling decision-making are often 

performed aided by computer-based software and resources. The scheduling decision-

making comprises the crude oil scheduling (feedstock edge), processing scheduling (unit-

operations and streams throughout the process), and blend scheduling (product edge

blending). Despite a vast amount of research and tools on scheduling optimisation, 

refineries worldwide still employ scheduling simulation software. That leads to feasible 

or suboptimal solutions, and it is typically performed based on manual or automatic trial-

and-error methods (Li et al., 2020). For planning decision-making, refinery planning 

software are employed to determine the production throughout the plant over weeks or 

months. Similar to the scheduling decisions, simulation tools are still often employed to 

assist in the identification of financial losses or profit opportunities in the refinery through 

evaluation based on trial-and-error (and therefore, limited) scenarios.

There are important aspects on planning/scheduling decision-making from an industrial 

perspective, which comprise the interplay between simulation tools, optimisation tools, 

academic research, and industrial implementation, as shown in Figure 2.

Simulation versus optimisation: Simulation is still employed for problems and 

applications that could be better solved or handled by optimisation methods. The main 

reasons include insufficient knowledge to implement or develop better approaches, lack 

of trained or qualified personnel, fear of change, lack of investments, etc. In addition, 

many companies still have highly experienced planners/schedulers that manage the entire 

operational decision-making process, in which outdated tools are often used, and which 

compromises further breakthroughs and enhancements towards improved operations.

Industrial implementation of simulation tools: Trial-and-error or try-and-test simulation 

methodologies, either commercial or home-grown planning/scheduling, rely on 

simulating events to test feasibility, where the user is often responsible for manually 

testing different scenarios and keeping track of convoluted decision-trees that do not work
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or prove feasible (Menezes et al., 2015). The simulation software is often time-consuming 

due to the need of continuously check and update the processing data to achieve good or 

proper solutions. Such procedure is not reliable, may take hours or days, and does not 

guarantee even feasible solutions. Furthermore, in the best-case scenario, the simulation 

software provides a limited number of solutions to be chosen by the planner/scheduler. 

This leads to exhausting efforts to model, save, and manage the numerous scenarios and 

to update the modelling premises and situations that constantly change. A typical outcome 

is that planners/schedulers abandon the solutions given by the software and return to their 

simpler manual spreadsheets. Hence, this translates into even less efficient decisions to 

be incorporated in the plant, which results in reduced operating capacity, increased 

process variability and uncertainty, not efficient nor reliable solutions, etc.

Industrial implementation of optimisation tools: Optimisation software can overcome 

some of the simulation issues often faced by planners and schedulers. However, such 

commercial tools are often expensive, require previous knowledge or proper training, and 

may be subject to resistance from the users or organisation that heavily rely on the 

currently used methodologies/tools and that are against or afraid of changes. 

Industrial implementation of academic research: A proper discussion is required on the 

applicability of the methods developed in academic research into industrial processes. 

Planners and schedulers argue that academic research is not fully adaptable or suitable in 

the industrial environment, especially because of the simplifications proposed to solve

complex-scope and large-sized problems. Such simplifications are often not realistic and 

do not provide proper capabilities for industrial implementation. Moreover, academic 

research that is applicable and coherent with industrial applications is often not 

investigated and employed by potentially interested companies.

Figure 2: Interplay between simulation tools, optimisation tools, academic research, and 

industrial implementation.

4. Guidelines for enhanced industrial capabilities

A fundamental concept regarding the application of computational-based tools for 

industrial processes is that both simulation and optimisation are relevant and important, 

but for distinct purposes and applications. Simulation can be used to evaluate multiple 

distinct scenarios in order to provide information on how a given system is expected to 

work, i.e., system response under different conditions. There have been long joint 

developments in simulation tools for the industry, including strong collaboration in 

tailoring opportunities and solutions according to the industrial needs, graphical user 

1006

982



interfaces for operator interactions, and rigorous simulation software, which are widely 

used for controlling process conditions according to operational limitations, constraints, 

or requirements. Conversely, optimisation provides enhanced decision-making 

capabilities for identifying better solutions under specific scenarios or operating 

conditions. This includes finding better process conditions that lead to the optimal 

solution of a given problem or application. 

The decision on whether to use simulation or optimisation strongly depends on the 

problem, application, complexity, and solution requirements. Simulation is preferred for 

applications in which optimisation may fail (e.g., highly degenerate, nonconvex, or 

complex problems) and when the operational and economic benefits of optimal solutions 

do not worth the requirements of resources (e.g., time, effort) for the development and 

implementation of optimisation methods. Simulation is indeed quite important for diverse 

industrial problems, but it is fundamental to highlight the importance of employing 

optimisation methods for applications that are optimisable, i.e., suitable to be solved by 

optimisation-based algorithms and tools rather than simulation-based or trial-and-error 

procedures. In fact, many works from the literature (Khor and Varvarezos, 2017; Franzoi 

et al., 2021) emphasise the importance of investigating such applications for replacing 

simulation by optimisation whenever the latter is suitable and applicable aiming to 

achieve better process efficiency and improved operations. 

A key topic to be further addressed by the industry is the importance and necessity to seek 

better and more efficient decision-making capabilities. This involves technological and 

research advancements in software, tools, resources, and methodologies that provide a 

positive impact on the operational decision-making with increased economic value. 

Organisations must overcome the traditional resistance and limitations imposed by 

outdated tools and methods. Towards an enhanced decision-making reality within the 

Industry 4.0, it is fundamental to learn with the state-of-the-art technological development 

and to adhere to novel and improved capabilities currently available for industrial 

applications. Within this context, it is highly advisable to gather academic knowledge on 

planning and scheduling applications. This can be achieved by research and development 

teams, and through academic-industry collaborations. Such concepts may provide high-

quality implementable research with mutual overall benefits. An illustrative example is 

provided as follows to exemplify industrial operations driven by simulation tools that 

could be better managed by their optimisation counterparts. 

5. Illustrative example 

The scheduling operations to be determined in a crude oil refinery are assisted by a 

scheduling simulation software that provides potentially feasible solutions. The software 

requires manual inputs and checking of information in multiple distinct simulations, 

which typically takes hours for an experienced scheduler to determine the solution to be 

implemented in the plant. Replacing it by an optimisation decision-making tool requires 

investments in research and software and may take months for proper development and 

testing. Such an optimisation capability is anticipated to provide: 

• Easier and quicker rescheduling of the problem whenever needed. 

• A pool of multiple optimal solutions that can be chosen by the user depending 

on any processing limitation or requirement. 

• Possibility of continuously optimising the problem and integrating the updated 

solutions with the scheduling operations in an automatic and systematic fashion. 
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• Significant economic savings in the operations. 

In addition, the solution can be checked manually to ensure high quality and consistency, 

and the simulation tool can be used as an alternative if the optimisation fails. 

6. Conclusions 

An industrial perspective on simulation and optimisation decision-making capabilities is 

provided herein, whereby highlighting some key gaps and challenges. Such aspects 

include the interplay between simulation tools, optimisation tools, academic works, and 

industrial implementation. Simulation is still widely employed for problems that could be 

rather optimised; simulation tools are often not easily or properly applicable; optimisation 

tools are often not available or require additional resources; and despite huge academic 

breakthroughs, most methodologies are not suitable for industrial implementation.  

Simulation tools have been historically employed for industrial applications. Recently, 

optimisation decision-making has been increasingly used given the enhanced industrial 

capabilities (e.g., technological improvements, higher computer power) and research 

developments (e.g., improved algorithms and methodologies). This provides significant 

advancements with more efficient processes and operations. The main benefits include 

more flexible, adaptable, and reliable processes with higher economic value. In this work, 

we emphasise the importance of optimisation replacing simulation for problems and 

applications that are optimisable. Such concepts are widely known in the academic 

literature, but further improvements are still required in the industry.  

The industrial decision-making is often carried out manually. Therefore, there is an urgent 

need to address the main difficulties, complexities, and issues on replacing simulation by 

optimisation from an industrial perspective. This work aims to stimulate the discussion 

on such meaningful topics from an industrial perspective and to provide guidance for 

incorporating academic knowledge by the industry, exposing the industrial requirements 

still unaddressed or that need further development or improvements, and assisting 

industrial peers on how to properly achieve such breakthroughs. 

References 

B. Brunaud, H.D. Perez, S. Amaran, S. Bury, J. Wassick, I.E. Grossmann, 2020, Batch scheduling 

with quality-based changeovers, Computers and Chemical Engineering, 132, 106617. 

R.E. Franzoi, B.C. Menezes, J.D. Kelly, J.A.W. Gut, 2018, Effective scheduling of complex 

process-shops using online parameter feedback in crude-oil refineries Computers Aided 

Chemical Engineering, 44, 1279-1284. 

R.E. Franzoi, B.C. Menezes, J.D. Kelly, J.A.W. Gut, 2021, A moving horizon rescheduling 

framework for continuous nonlinear processes with disturbances, Chemical Engineering 

Research and Design, 174, 276-293. 

C.S. Khor, D. Varvarezos, 2017, Petroleum refinery optimisation, Optimisation and 

engineering, 18(4), 943-989. 

F. Li, M. Yang, W. Du, X. Dai, 2020, Development and challenges of planning and scheduling for 

petroleum and petrochemical production, Frontiers of Engineering Management, 1-11. 

B.C. Menezes, J.D. Kelly, I.E. Grossmann, A. Vazacopoulos, 2015, Generalized capital investment 

planning of oil-refineries using MILP and sequence-dependent setups Computers and Chemical 

Engineering, 80, 140-154. 

H. Yang, D.E. Bernal, R.E. Franzoi, F.G. Engineer, K. Kwon, S. Lee, I.E. Grossmann, 2020, 

Integration of crude-oil scheduling and refinery planning by Lagrangean 

decomposition, Computers and Chemical Engineering., 138, 106812. 

1008

984



L. Montastruc, S. Negny (Editors)
© 2022 Elsevier B.V. All rights reserved.

Decomposition of Two-stage Stochastic Scheduling
Problems via Similarity Index
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Abstract
Two-stage stochastic scheduling problems (TSSP) are computationally demanding and challenging
to solve in a monolithic fashion, as they often involve numerous discrete and continuous variables.
One option is to apply decomposition methods (e.g. Benders, Progressive Hedging, etc.) with the
idea of splitting the original problem into smaller ones that progressively approach the solution of
the monolithic formulation. Here, we propose an alternative decomposition method based on the
so-called Similarity Index (SI). The SI measures the similarity of schedules along a discretized
time horizon. The non-anticipativity constraints of the TSSP are removed from the model and an
SI is incorporated instead in the objective function to be maximized. Then, the original problem
can be divided into subproblems on a scenario basis. An iterative procedure is set up so that
the subproblems solutions progressively increase the global SI. The algorithm stops when the SI
has reached a value of 1, i.e, the first-stage decisions are identical for all subproblems. The SI
decomposition was successfully applied to an industrial-like TSSP of an evaporation network, using
different MILP solvers: CPLEX and Gurobi. Two instances of different size and scenarios were
considered. For the small one, significant improvements over the monolithic approach were not
observed. However, for the large instance, our decomposition method was considerably faster.

Keywords: Online Scheduling, Decomposition Methods, Uncertainty, MILP

1. Introduction

Two-stage stochastic formulations are a popular way to take uncertainty into account in scheduling
formulations. In two-stage scheduling problems (TSSP), the decision variables are split into two
categories: here and now decisions (first-stage variables) which have to be taken now with the
available information and cannot be changed later; and wait and see decisions (recourse variables)
which are adjusted according to the realization of the uncertain parameters. This results in large-
scale problems that involve both continuous and discrete variables which are computationally
demanding to solve. Hence, uncertainty is often ignored in online or closed-loop scheduling,
as such applications require providing solutions in real-time. One possibility to overcome this
obstacle is to use decomposition methods. Unfortunately, not many ideas have arisen different to
the classic approaches: the Benders Decomposition (Benders, 1962) and the Progressive Hedging
(PH) algorithm (Rockafellar and Wets, 1991).
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The Benders method, and its variations, is widely employed but has a high computational burden
too, as each iteration generates either an optimality or a feasibility cut to reduce the feasible region
of the master problem (Rahmaniani et al., 2017). The PH algorithm decomposes over scenarios
by computing suitably penalties with average values of the decision variables in each iteration
(Peng et al., 2019). However, the discrete nature of some first-stage decisions may provoke that
the solutions obtained by the independent scenarios lead to opposite values in each iteration, so
convergence of PH to a feasible solution is not guaranteed.

Here we propose a novel decomposition method based on the idea of measuring how similar the
first-stage decisions are among the different scenarios. Such single measure is provided by the
so-called similarity index. All subproblems are solved simultaneously in an iterative way, updating
a weight for maximizing the similarity index. The proposal is tested in an industrial-like case study.

The concept of similarity index and the algorithm of the decomposition method are described in
Section 2. Section 3 presents the case study that is used for testing our proposal. The results are
presented in Section 4. Lastly, the paper closes with Section 5 where the conclusions are presented.

2. Similarity Index

The Similarity Index (SI) in a TSSP, first proposed by Palacı́n et al. (2018), is an aggregated measure
of how similar the recourse variables are among the scenarios, i.e., an indication of the solution
robustness. It is calculated by fuzzifying the discrete decisions over a specified time horizon, so that
a decision taken at instant t is weighted by 1 (100%), but it also influences the nearby time instants
tn with a decreasing value that is proportional to the time difference |t− tn|. See Figure 1 for a
graphical representation. The SI is then computed as the total intersection area among the scenarios
schedules, normalized by the maximum possible area (where all the solutions would coincide).
Consequently, an SI equal to 1 means that the schedules for all the scenarios are identical.

Weight

Timet

100%

Scenario A
decision

Scenario B
decision

Figure 1: Example of fuzzifying the same discrete decision along seven time periods in two
scenarios. The SI is computed from the intersection between both scenarios A and B and the total
fuzzified area.

There is no reason to restrict the SI to the recourse variables. In a TSSP, by definition, the non-
anticipation criterion enforces the first-stage variables to be identical. Therefore, if the SI were
applied to them, it would necessarily take the value of 1. However, if the non-anticipativity
constraints are removed from the formulation, the global model would be block-separable on a
scenario basis, i.e., each scenario could be solved as an independent scheduling problem. Those
solutions would not coincide in the first-stage and the SI would be lower than 1. However, an
iterative procedure could be set up so that the subproblems (scenarios) are solved iteratively while
pushing the SI up to the point where the solutions coincide in the first stage.

From now on, just fuzzification along the two neighboring time periods is considered to enhance
the understanding of the decomposition method. The formula for computing the similarity index
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for first-stage variables in this case is shown in (1).

SI :=
tR

∑
t=1

min
e∈E

{
yte +0.5y(t−1)e|t>1 +0.5y(t+1)e|t<tR

}
2tR−1

(1)

Where tR is the end of the robust horizon, E is the set of uncertainty realization scenarios, and
yte ∈ {0,1} are the binary variables of the scheduling problem. Decision variables outside the
robust horizon do not contribute towards the SI calculation.

Note that the min{·} operation is nonlinear, so (1) cannot be used in linear scheduling formulations.
Nonetheless, a lower bound for the SI can be computed using slack variables st and inequalities
as in (2) and (3). The slack variables need to be maximized in the objective function of the
optimization problem so that the lower bound on the SI is tight. Consequently, the right-hand side
of (2) is incorporated in the objective function.

SI ≥
tR

∑
t=1

st

2tR−1
(2)

st ≤ yte +0.5y(t−1)e|t>1 +0.5y(t+1)e|t<tR ∀e ∈ E ; t : 1, . . . , tR (3)

2.1. Decomposition Algorithm

Two similarity indexes need to be computed. The Local Similarity Index (SIe) is computed as part
of the optimization subproblems. The SIe are maximized individually in each subproblem so that
the similarity of the local solution with respect to the other scenarios is as high as possible. Hence,
the computation of the local SIe requires information from the other scenarios. For the subproblems
to be separable, a previous solution from the other subproblems needs to be used. Such reference
solution is the one corresponding to the scenario that yielded the worst local SIe in the previous
iteration. Using all the scenarios solutions can lead to competitive behavior among subproblems, so
the global problem may get stuck in an infeasible solution and convergence is never reached. A
Global Similarity Index (SI) is computed using the solutions collected from the subproblems. It is
used to update a parameter that progressively increases the importance of maximizing the local SIe.
The subproblems read as in (4).

minimize
yte,st

Je−λ

tR

∑
t=1

st

2tR−1

subject to Local model constraints (4)
st ≤ ȳt +0.5ȳt−1|t>1 +0.5ȳt+1|t<tR t : 1, . . . , tR
st ≤ yte +0.5y(t−1)e|t>1 +0.5y(t+1)e|t<tR t : 1, . . . , tR

Where Je is the original objective function and λ is a Lagrange-like multiplier that is updated in
each iteration using a formula inspired by the sub-gradient method (Shor, 1985) as in (5). The
variables ȳt contain the solution of the scenario that yielded the worst SIe in the previous iteration.

λk+1 = λk−αk+1 (SI−1) (5)

In (5), α is the step size, decreased in each iteration. For instance, αk+1 = 0.9αk.

The proposed algorithm starts by initializing the multiplier parameter λ and the discrete decision
variables in the previous iteration ȳt to zero, which implies that the local SIe is set to zero in the
first iteration. The next steps of the algorithm comprise the calculations that are repeated until the
stop criteria are met. The subproblems are solved in parallel and both their solutions and their local
SIe are collected. The global SI is calculated using (1). The solution of the scenario that yielded
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the worst local SIe is assigned to the variables ȳt that will be used in the subsequent iteration to
re-compute the local SIe. The multiplier parameter λ is updated using (5) and the termination
criteria is checked. If neither the global SI has reached 1 nor the maximum iterations have been
reached, the process is repeated. The solution of the subproblems y∗te is reported after the algorithm
has converged. Algorithm 1 summarizes these steps.

Algorithm 1 Similarity Index Decomposition

Require: α0, tol,kmax
1: k← 0,λ0← 0, ȳt ← 0 ▷ Initialization
2: repeat
3: for e in E do
4: y∗te,s

∗
t ← argminyte,st

Je−λkSIe ▷ Solve (4)
5: SI∗e ← SIe(s∗t )
6: end for
7: SI← Eq. (1) with y∗te ▷ Global SI computation
8: ȳt ← argminy∗te

{SI∗e } ▷ Solution with worst SIe
9: αk+1← 0.9αk ▷ Multiplier update

10: λk+1← λk−αk+1 (SI−1)
11: k← k+1
12: until |SI−1| ≤ tol∨ k = kmax ▷ Convergence check
13: return y∗te

3. Case study

The similarity index decomposition was tested in an industrial-like case study of an evaporation
network. Each evaporation plant is made up of two evaporation chambers with several heat
exchangers in between. The objective is to concentrate an inlet stream of a certain product so that it
is recycled to the main process of the factory. The plants need to be cleaned regularly as fouling
increases steam consumption and production costs. The scheduler must assign products and loads
to plants and decide when to stop the plants for cleaning.

The allowed transitions between stages are clearly defined: A plant that is under operation can go to
standby or remain in operation. A plant in standby can go to a cleaning stage or remain on standby.
A plant that is in a cleaning stage can go directly to operation or go to standby. And finally, a clean
plant on standby can remain in such a state or start operating. Additionally, the model shall account
for: a plant can only process a product at a time; only one cleaning stage can occur per day; if a
product has been assigned to a plant, it cannot be changed unless the plant is cleaned; a terminal
cost is established for plants that end up in an advanced fouling state at the end of the scheduling
horizon, etc.

Palacı́n et al. (2018) formulated a two-stage scheduling problem for this case study using the
pre-defined precedence approach. Here, we recall their example and apply our decomposition
method to two different instances of the problem. The model equations are not displayed for brevity.
Using the notation in such paper, Equation (1) for computing the global SI becomes:

SI = ∑
v∈V

∑
s∈S

∑
t∈MR

min
e∈E

{
Evtse +0.5Ev(t−1)se|t>1 +0.5Ev(t−1)se|t<tR

}
nv (2tR−1)

(6)

Where V is the set of evaporation plants, S is the set of possible stages, M is the set of days in the
discretized scheduling horizon, P is the set of products, and E is the set of uncertainty realization
scenarios. The binary variables Evtse specify if a plant v at day t is at stage s in the scenario e. The
total number of evaporation plants is denoted by nv.
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The local similarity index is computed using (2) and (3), updated to the case study notation as
shown in (7) and (8) respectively.

SIe = ∑
v∈V

∑
s∈S

∑
t∈MR

svts

nv (2tR−1)
(7)

svts ≤ Evts +0.5Ev(t−1)s|t>1 +0.5Ev(t+1)s|t<tR

svts ≤ Evtse +0.5Ev(t−1)se|t>1 +0.5Ev(t−1)se|t<tR ∀v ∈ V ,s ∈S , t ∈MR
(8)

Where Evts are the binary variables of the subproblem that yielded the worst SI in the previous
iteration. Consequently, Evts are not decision variables of the optimization problems. Each
subproblem is then formulated using the model equations in Palacı́n et al. (2018), except for the
non-anticipativity constraints, plus inequalities (8).

4. Results

Two problem instances of the case study were analyzed, denoted by A and B. In instance A,
the scheduling problem was solved for three plants, two products, and four scenarios for the
products demands. The resulting problem had 18000 variables, 17280 of which were binary. The
subproblems had 4320 binary variables each. Instance B consisted of a larger problem with nine
plants, three products, and sixteen scenarios for the products demands. The resulting model had
196000 variables, 90% of which were binary. The sub-problems had 11025 binary variables each.

Both instances were solved in GAMS 36.2.0 using IBM ILOG CPLEX 20.1 and Gurobi 9.1. The
maximum execution time was set to one hour and the relative gap tolerance to zero. The default
values were used for the rest of the solvers options. The monolithic problems of both instances were
solved using concurrent optimization on 32 CPU threads. The subproblems of the decomposed
approach were solved using 8 threads in instance A, and 2 in instance B.

The execution time and the final relative gap for each solver are reported in Tables 1 and 2 for
instances A and B respectively.

Table 1: Instance A: Three plants, two products and four scenarios.

Approach CPLEX Gurobi

Gap Time Gap Time
Monolithic 0.00% 30.84s 0.00% 7.46s

Decomposed 0.00% 26.88s 0.00% 20.91s

For instance A, both solvers could reach the optimal solution in less than a minute with the
monolithic approach. Our decomposition method outperformed the monolithic approach only when
using CPLEX. Using Gurobi, it was around three times slower. However, this problem instance is
relatively small and the advantages of using the decomposition method are only fully realized in
large settings as instance B. The algorithm converged in five iterations.

Table 2: Instance B: Nine plants, three products and 16 scenarios.

Approach CPLEX Gurobi

Gap Time Gap Time
Monolithic 0.76% 3600s* 0.00% 2590.12s

Decomposed 0.00% 40.58s 0.00% 42.89s
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For instance B and using CPLEX, the monolithic approach only managed to get a 0.76% gap
solution within the specified time limit. The decomposed approach greatly outperformed it by
arriving to the optimal solution in only 40.58 sec. Furthermore, when the time limit was increased
to one day, CPLEX could only get a 0.44% gap solution. It is clear that the solver struggles to
improve the optimality gap after finding a feasible solution. Unlike CPLEX, Gurobi managed to
get an optimal solution within the time limit with the monolithic approach, specifically 2590.12
seconds. However, our decomposition algorithm was around sixty times faster, arriving to the
optimum in just 42.89 seconds. The decomposed approach only needed two iterations to converge.

5. Conclusions

This work proposed a novel decomposition method that uses a single indicator to measure the
similarity between discrete-time schedules. The non-anticipativity constraints are removed from
the formulation, which enables a scenario-based decomposition. Each scenario is solved as an
independent problem that includes the maximization of the similarity among the other scenarios.
An iterative procedure is repeated until the first-stage variables of all the subproblems coincide.
This setting enables parallelization beyond the native capabilities of the optimization solvers.

Note that the algorithm only has two tuning parameters: the step-size decrease rate α and the length
of the time horizon along the discrete decisions are fuzzified for computing the similarity index.
The proposed method was tested in two problem instances of different sizes. In the smaller one,
significant improvements were not observed when using the decomposition approach. However, in
the larger instance, the computation time required for achieving optimal solutions was significantly
reduced with the decomposition method. When using CPLEX, the monolithic approach could not
arrive to an optimal solution in one hour. In contrast, our decomposition method managed to arrive
to an optimal solution in less than a minute. When using Gurobi, the optimal solution was obtained
around sixty times faster. In conclusion, the potential of our proposal is fully realized as the number
of scenarios increases.

The convergence properties of the similarity index decomposition have not been studied yet and
future work will focus on it. We also aim to extend the method to non-linear mixed-integer (MINLP)
scheduling problems and continuous-time scheduling formulations.
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Abstract 

Scheduling of crude oil operations is one of the most critical and challenging problems in 

petroleum refineries. Crude oil operations have more impact on the profitability of the 

whole refinery as these operations are the first steps of refinery operations. Crude oil 

operations scheduling is a complex problem as many complicated relationships and many 

conditions must be considered. In a refinery, a planner tries to schedule all crude oil 

operations by using a wide variety of complex and very dense data sets. Daily planning 

is mainly based on manual scheduling by trial and error method and operational 

experiences. Therefore, as a planner, it is almost impossible to reach the optimal solution 

or even a satisfactory feasible solution by handling all the data sets in a short period. 

Unfortunately, there is no efficient and adaptive tool or software that can be used for 

different refinery scheduling cases. In this study, an efficient scheduling and allocation 

model for an oil refinery located in İzmir is developed for unloading crudes into multiple 

storage tanks from the vessels arriving at various times, blending crudes, and feeding the 

crude distillation units from these tanks at various rates over time. To tackle the 

scheduling problem effectively, a Mixed Integer Linear Program (MILP) is formulated. 

The model is solved for the refinery, and satisfactory solutions are gathered.  
 

Keywords: crude oil operations, short-term scheduling, MILP, optimization. 

1. Introduction 

Scheduling of crude oil operations is one of the most critical and challenging problems in 

oil refineries. Crude oil operations have a high impact on the continuity and profitability 

of the refinery, as it is the first step of the all refinery operation process. Besides, crude 

oil operations scheduling is very complex due to continuous, discrete, and binary variable 

optimization, and it is known as NP-hard (Li-ping & Nai-qi, 2011). 

Scheduling tool provides some utilities such as (1) crude storage optimization, (2) the 

best evaluation of the monthly plan implementation, (3) guiding the operations, (4) 

optimal sustainable operations even with unexpected changes, and (5) comparison actual 

operating results with planning objectives. It also enables to use of superior capacity, 

increases plant efficiency and improves visibility and control throughout the supply chain. 

Therefore, the necessity of computer aided methods to optimize refinery operations 

should be considered in quick response to problems and opportunities and making a 

decision (Reddy et al., 2004a). The optimization of production plans is a hot topic for 

both industry and academia due to its advantages. 
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Several mathematical methods such as linear programming (LP), mixed-integer linear 

programming (MILP), and mixed-integer nonlinear programming (MINLP) are used to 

solve scheduling problems. Also, numerous modeling approaches were suggested to 

handle various scheduling problems related to different production environments, process 

constraints, and features. Especially, time representation is one of the most important 

features of modeling approaches taken in models, as it determines many aspects 

consisting of modeling flexibility, size, and constraints types (Lee et al., 2019). All 

present formulations of timing can be categorized into two main types, namely discrete 

and continuous-time formulations. The first attempts in scheduling problems are based 

on the discrete-time approach in which the time horizon is split into a count of time slots 

of uniform durations and events (Shah, 1996; Reddy et al., 2004b and Saharidis et al., 

2009). Unlike the discrete-time approach, the time slots are not uniform in the continuous-

time approach so that events can start and end at any point in the continuous-time domain 

(Yadav et al., 2012; Chen et al., 2012 and Karuppiah et al., 2008).  

In this paper, a new MILP model is formulated for the refinery scheduling problem 

involving crude oil unloading from vessels, transferring crude between tanks, and 

charging the crude distillation units (CDUs). The long-term scheduling problem of an oil 

refinery located in İzmir is addressed to find the optimum schedule. Compared to other 

refinery structures in the literature, the tanks are not categorized as charging and storage 

tanks in this refinery. The tanks here are used for both charging and storage. Also, around 

50 types of crude oil can mix in the tanks. Several specific operational features make 

refinery management as a complex problem. There is no effective computer tool or study 

in the literature for such a complex oil refinery to our best knowledge. The motivation in 

the study is that the model formulation reflects real characteristics of the refinery structure 

and operations, so it is valuable for the theory to take shape in an industrial applications. 

The discrete-time model is preferred in this study as it allows handling the constraints 

more easily than continuous models. 

2. Materials and Methods 

In this section, the process to be analyzed is described, and then the MILP formulation to 

optimize the process is presented. 

2.1. Process Description 

In this paper, the scheduling of crude oil operations is conducted for an oil refinery located 

in İzmir, Turkey. Since, the planning department makes decisions for very complex crude 

oil operations manually, it is impossible to reach the optimal solution or even a feasible 

solution by handling all the data sets in a short period. Thus, it is crucial to develop an 

optimization tool for an effective management of crude oil operations.  

Crude oil operations of the refinery are difficult to determine manually with the ever-

increasing constraints. Operations in the İzmir Refinery consist of 1 docking station, 12 

crude oil tanks, and 2 CDUs. An overview of crude oil operations is shown in Figure 1. 

Various crude oil types are shipped to the refinery and processed according to their yield. 

There are about 50 different types of crude oil that have been received and processed by 

the refinery up to now, and more different types of crude oil may also be shipped.  It is 

very hard to process varying types of crude oil because of immiscibility and precipitation 

problems. Since it is hard to manage to have one storage tank for each 50 or many crude 

oil types; crude oil storage, blending and charging operations are handled in the same 

tank. Also, blending may occur in the pipelines if multiple tanks are opened. Besides, 

some of the crude oil types have unique properties and must be stored in particular tanks. 
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Therefore, tanks are labeled as national and non-national, and also with a pump and 

without a pump. Domestic crude oils should be stored at specific tanks because of 

government regulations. Also, specific types of crude oils are stored in tanks that have 

pumping infrastructure installed to feed continuously for economic reasons. However, 

this brings out other constraints related to pumps. Furthermore, operations on tanks are 

complex because of the piping system and measuring tank content. As unloading from 

vessels to tanks and transfers between tanks are using the same piping system, these 

operations cannot be done simultaneously. Also, only unloading or charging operations 

for one tank are allowed to measure tank content correctly. Operability to complex tank 

processes is the main concern in the refinery, and thus, there are too many constraints 

related to tank operations. Having too many crude oil types causes operational burdens in 

CDUs. Each crude oil has widely varying properties, processability and product yields, 

so they have minimum and maximum rates to be processed in each CDUs. Most of these 

constraints are unique to the İzmir Refinery, and there is limited information in the 

literature. 

 
Figure 1. An overview of crude oil operations 

2.2. Proposed MILP  

In this section, the proposed MILP model is presented that corresponds to the scheduling 

problem described above. The model uses a discrete-time formulation that includes 24-

hour intervals over a scheduling horizon of 60 days. The following assumptions for the 

model are considered: (1) Perfect mixing occurs at each tank. (2) Remaining crude oil in 

the pipeline during the unloading is neglected. (3) Resting times in tanks are ignored.  

The modeled system has t ϵ T days, i ϵ I crude oil tanks, j ϵ J CDUs, h ϵ H crude oil types, 

and there are four operations o ϵ O which are unloading, transfer-sending, transfer-

receiving, and charging. Crude oils have p ϵ P set of distinguishing properties such as 

American Petroleum Institute (API) gravity and sulfur. Tanks, pumps, and CDUs have m 

ϵ M set of minimum and maximum limits in terms of these features and volume limits. 

Lastly, k ϵ K vessels arrive at the system over the planning horizon.  

The parameters of the model are set as follows: the initial volumes of tanks, VIh,i (m3); 

API-sulphur contents and blending properties of crude oil types, PRh,p  and TBh,hh, 

respectively; minimum and maximum capacity of tanks, LCi and UCi; whether the tank 

has a pumping system, Ei; unloading limits to each tank, ULi; tolerance limit to obtain 

whether a crude oil type is going to be considered for blending, Toi; maximum transfer 

capacity between tanks, FLi,ii. Vessels have three descriptive parameters which are 

arriving times KTk,t, volume and crude oil type of each vessel, KVk, and KHk,h respectively. 

Also, the parameters for the CDU characteristics are total processing volume, TDt,j; 

maximum charging capacity from each tank to each CDU, DLi,j; min-max limits of 

processing each crude oil in each CDU, MRt,h,j,m; API and Sulphur content limits of each 

CDU, LAj, UAj and USj, respectively. Finally, cardi shows the count of the total number 

of elements within the set I. 
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While scheduling, unloading, transfer, and charging amounts and the volume of tanks in 

terms of crude oil types for each time period are determined, so the variables for them are 

defined as  ut,i,k, trt,ii,h, ct,i,j,h, and vi,t,h respectively. The API (at,j) and Sulphur (st,j) values 

of CDUs are needed to be known for each CDU. To ensure operating conditions, some 

binary variables are defined. Let ubt,k and cbt,i,j, show whether there is any unloading and 

charging operations, respectively. tki,t,o shows whether a tank is assigned to an operation. 

Lastly, yt,i,h represents whether the crude oil types exist in the tanks. 

The planning process is required to be managed with minimum transfer operation as it 

restricts the other crucial operations. Thus, the objective function is the minimization of 

total transfer operations, Eq. (1). The first set of constraints include material balance, 

pump, and operational limitations. Material balances are given in Eq. (2). Eq (3) states 

that the volume vi,t,h must be within the capacity limits of tanks. Eqs. (4-6) ensures that 

the amount of flow in unloading, transfer, and charging (if there is any) operations should 

not exceed the pump limits. There are 2 CDUs, so there can be two charging operations 

for each tank per time period, Eq. (7). The operational limits in charging for pumping 

tanks are given Eqs. (8a-8c). Only one transfer or unloading operation is allowed at the 

same time due to the line structure of the system, given in Eqs. (9a-10). There cannot be 

simultaneous inflow and outflow to the tank. However, there can be two outflows, Eq. 

(11). As a result of this condition, simultaneous unloading and transfer operations are not 

allowed for a tank, Eq. (12). 

𝑚𝑖𝑛 𝑍 = ∑.

𝑡

∑.

𝑖

∑.

𝑖𝑖

∑(𝑡𝑟𝑡,𝑖,𝑖𝑖,ℎ

ℎ

) 
(1) 

𝑣𝑖,𝑡,ℎ = 𝑣𝑖,𝑡−1,ℎ + ∑(𝑢𝑡,𝑖,𝑘 ∗ 𝐾𝐻𝑘,ℎ

𝑘

) + ∑(𝑡𝑟𝑡,𝑖𝑖,𝑖,ℎ

𝑖𝑖

) − ∑(𝑡𝑟𝑡,𝑖,𝑖𝑖,ℎ)

𝑖𝑖

− ∑(𝑐𝑡,𝑖,𝑗,ℎ

𝑗

) ∀𝑖, ℎ, 𝑡 (2) 

𝐿𝐶𝑖 ≤ ∑(𝑣𝑖,𝑡,ℎ)

ℎ

≤ 𝑈𝐶𝑖  ∀𝑖, 𝑡 
(3) 

∑(𝑢𝑡,𝑖,𝑘)

𝑘

≤ 𝑡𝑘𝑖,𝑡,1 ∗ 𝑈𝐿𝑖 ∀𝑖, 𝑡 
(4) 

 

∑.

𝑖𝑖

∑(𝑡𝑟𝑡,𝑖,𝑖𝑖,ℎ)

ℎ

≤ 𝑡𝑘𝑖,𝑡,2 ∗ 𝐹𝐿𝑖,𝑖𝑖  ∀𝑖, 𝑡              ∑.

𝑖𝑖

∑(𝑡𝑟𝑡,𝑖𝑖,𝑖,ℎ)

ℎ

≤ 𝑡𝑘𝑖,𝑡,3 ∗ 𝐹𝐿𝑖,𝑖𝑖  ∀𝑖, 𝑡 
(5a,5b) 

∑(𝑐𝑡,𝑖,𝑗,ℎ)

ℎ

≤ 𝑐𝑏𝑡,𝑖,𝑗 ∗ 𝐷𝐿𝑖,𝑗  ∀𝑡, 𝑖, 𝑗 (6) 

∑(𝑐𝑏𝑡,𝑖,𝑗)

𝑗

≤ 𝑡𝑘𝑖,𝑡,4 ∗ 2 ∀𝑖, 𝑡 (7) 

∑(𝑐𝑏𝑡,𝑖,𝑗 ∗ 𝐸𝑖)

𝑖

≤ 2 ∀𝑡, 𝑗 ∑.

𝑖

∑(𝑐𝑏𝑡,𝑖,𝑗 ∗ 𝐸𝑖)

𝑗

≤ 3 ∀𝑡 ∑.

𝑖

∑(𝑐𝑏𝑡,𝑖,𝑗 ∗ (1 − 𝐸𝑖))

𝑗

≤ 2 ∀𝑡 

(8a,8b,8c) 

∑(𝑡𝑘𝑖,𝑡,2)

𝑖

≤ 1 ∀𝑡 ∑(𝑡𝑘𝑖,𝑡,3)

𝑖

≤ 1 ∀𝑡 
(9a,9b) 

∑(𝑢𝑏𝑡,𝑘)

𝑘

≤ 1 ∀𝑡 
(10) 

𝑡𝑘𝑖,𝑡,1 + (0.5 ∗ 𝑡𝑘𝑖,𝑡,2) + 𝑡𝑘𝑖,𝑡,3 + (0.5 ∗ 𝑡𝑘𝑖,𝑡,4) ≤ 1 ∀𝑡, 𝑖 (11) 

𝑐𝑎𝑟𝑑𝑖 ∗ (1 − ∑(𝑢𝑏𝑡,𝑘))

𝑘

≥ ∑(𝑡𝑘𝑖,𝑡,2)

𝑖

∀𝑡 
(12) 

Constraints related to unloading operations are as follows: Eq. (13) ensures that all the 

volume of that vessel should be unloaded. However, the whole volume of vessel may not 

be unloaded in just one time period. Thus, the sum of volume unloaded from one vessel 

in each time period must be equal to the total volume of that vessel, Eq. (14). Vessels 

should be unloaded sequentially, Eq. (15). 

∑.

𝑡

∑(𝑢𝑡,𝑖,𝑘)

𝑖

= 𝐾𝑉𝑘 ∀𝑘 
(13) 

1018

994



A New MILP Formulation for Scheduling of Crude Oil Operations  

 

𝑢𝑏𝑡,𝑘 ∗ 𝐾𝑉𝑘 ≥ ∑(𝑢𝑡,𝑖,𝑘)

𝑖

 ∀𝑡, 𝑘 
(14) 

𝑢𝑏𝑡,𝑘 + 𝑢𝑏𝑡𝑡,𝑘−1  ≤ 1 ∀𝑘, 𝑡 < 𝑡𝑡 (15) 

The total charging amount may change on daily basis. Eq. (16) states that the total 

charging amount must be equal to the input value. Same conditions are also applied to the 

ratio of crude oil types that are going to be charged into CDUs, Eq. (17). 

∑.

𝑖

∑(𝑐𝑡,𝑖,𝑗,ℎ)

ℎ

= 𝑇𝐷𝑡,𝑗 ∗ 24 ∀𝑡, 𝑗 | 𝑇𝐷(𝑡, 𝑗) ≠ 0 
(16) 

∑(𝑐𝑡,𝑖,𝑗,ℎ)

𝑖

≤ 𝑇𝐷𝑡,𝑗 ∗ 24 ∗ 0.01 ∗ 𝑀𝑅𝑡,ℎ,𝑗,𝑚𝑎𝑥 ∀𝑡, ℎ, 𝑗 | 𝑀𝑅𝑡,ℎ,𝑗,𝑚𝑎𝑥 ≠ 0 ∧ 𝑀𝑅𝑡,ℎ,𝑗,𝑚𝑎𝑥 ≠ 100 
(17) 

The calculation of API and Sulphur values belonging to the CDUs are stated in Eqs. (18-

19). The API and Sulphur contents must then be within given bounds, Eqs. (20-21) 

𝑎𝑡,𝑗 = (∑.

𝑖

∑(𝑃𝑅ℎ,𝐴𝑃𝐼 ∗ 𝑐𝑡,𝑖,𝑗,ℎ

ℎ

)) /(𝑇𝐷𝑡,𝑗 ∗ 24) ∀𝑡, 𝑗 
(18) 

𝑠𝑡,𝑗 = (∑.

𝑖

∑(𝑃𝑅ℎ,𝑆𝑈𝐿𝑃𝐻𝑈𝑅 ∗ 𝑐𝑡,𝑖,𝑗,ℎ

ℎ

)) /(𝑇𝐷𝑡,𝑗 ∗ 24) ∀𝑡, 𝑗 
(19) 

𝐿𝐴𝑗 ≤ 𝑎𝑡,𝑗 ≤ 𝑈𝐴𝑗  ∀𝑡, 𝑗 (20) 

𝑠𝑡,𝑗 ≤ 𝑈𝑆𝑗  ∀𝑡, 𝑗 (21) 

Finally, blending constraint is handled in Eq. (22).  Eq. (23) states that if the volume of h 

crude oil type is above the tolerance limit, then the binary variable takes the value 1 as it 

should be considered in the blending constraint. 
𝑦𝑡,𝑖,ℎ + 𝑦𝑡,𝑖,ℎℎ ≤ 1 ∀𝑖, 𝑡 ≥ 2, ℎ > ℎℎ | 𝑇𝐵ℎ,ℎℎ = 0 (22) 

𝑣𝑖,𝑡,ℎ − 𝑇𝑂𝑖 ≤ 𝑦𝑡,𝑖,ℎ ∗ 𝑈𝐶𝑖  ∀𝑡, 𝑖, ℎ (23) 

3. Results and Discussions 

In line with the needs of the planning department, the time horizon is chosen as 60 days. 

The time interval of 24 hours is used. The selected industrial case study contains 20 

vessels shipped 9 different types of crude oil, 2 CDUs, 12 tanks (2 tanks are in 

maintenance), including 13 crude oil types. The volume of vessels varies between 40,000 

and 175,000 m3 and total volume of 20 vessels is about 1.9 million m3. The final model 

includes 93,398 variables, of which are 10,524 binary, and 28,829 constraints. The 

scheduling problem is solved by CPLEX in GAMS 28.2.0 using an Intel Xeon Gold 6252 

CPU @2.10 GHz with 12.0 GB of RAM. The optimum solution is obtained within 

1191.09 seconds of CPU time. The MILP model results are shown in Figure 2 for the first 

10 days of the planning period. 

 
Figure 2. Gantt chart of optimal solution for first 10 days -of planning period 
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The results of MILP is compared with the planning department’s schedule in Table 1. 

According to the results, there are no transfer operations in MILP results, because the 

objective function of the MILP is the minimization of total transfer operations. It is also 

observed that the computation time of the MILP model is shorter than the working hours 

of the experienced planner and selected tanks, charge compositions based on actual results 

are compatible with the MILP model results. On the other hand, more tanks are used to 

unload each vessel's operations, and the total number of switching tanks for charging to 

CDU is more in MILP result than the planning department’s schedule. Therefore, we may 

conclude that the results of MILP are promising and satisfactory for the given case. 

However, there is still room for improvement.  

Table 1. Comparison of MILP and planning department’s schedule 
 MILP Model Planning Department 

Computation time 1191.09 sec. (0.33 h) 7200 sec. (2 h) 

Total number of transfer operations / Duration 0 3 / 20 h 

Penalty time of vessels 24 h for 3rd vessel (V3) - 

Total duration of unloading operations 120 h 58 h 

Total number of used tanks for unloading operations 12 7 

Total number of switching tanks for charging to CDU 54 26 

4. Conclusions 

The industrial applications of optimization-based scheduling methods are highly 

challenging tasks. The proposed discrete MILP model supports optimal decision making 

in operational planning processes of the refinery and reflects real-life scheduling 

problems. The model is promising in terms of support in decision making of production 

planning. As a further research, a multiple objective programming can be developed for 

taking account the other criteria given in Table 1. Furthermore, continuous-time modeling 

can be considered as a better optional technique to identify the planning conditions, and 

the model can be extended to the other refinery cases. 
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Abstract 
Colombia is formulating policies to accelerate the energy transition, decarbonize its 
industries and decrease its dependency on fossil fuels. In this work we present a novel 
optimization framework for the carbon capture, utilization, and storage (CCUS) design 
applied to the Colombian case. The model maximizes the net present value considering 
technologies for carbon capture, multimodal transportation, CO2 utilization for enhanced 
oil recovery (CO2-EOR) and geological storage to meet a given target on greenhouse 
gases (GHG). The novelty of this work is the integration of the CCUS design with the oil 
field development for CO2-EOR. Thus, the optimal petroleum production campaign (i.e., 
production wells for CO2 injection) is computed based on the oil production profiles, 
petrophysical properties and economic data. Moreover, this approach provides insights 
regarding investments on carbon capture technologies such as timing, sizing, location, 
and type of technology. The model also determines the optimal transportation mode 
considering on-shore (pipelines, railcars, and trucks) and off-shore (pipelines and ships). 
We tested our approach on a nationwide long-term planning horizon (20 years), 
considering 30 CO2 emissions sources distributed across 12 regions in the country, 16 
carbon capture technologies, 3 different plant sizes (small, medium, and large), 6 potential 
oil fields for CO2-EOR, 2 sinks for geological storage, and 4 multimodal transportation 
modes. Results shown a carbon capture cost of 99.8 USD/t, with a cost breakdown of 
45%, 30% and 25% allocated into the carbon capture processes, CO2 transportation and 
CO2-EOR utilization, respectively. 
 
Keywords: supply chain design, carbon capture, utilization, and storage, CCUS, 
enhanced oil recovery

, 
CO2-EOR

. 

1. Introduction 
Global CO2 emissions declined to 31.5 Gt CO2 in 2020 in comparison to 33.4 Gt CO2 in 
2019, this partial recovery is entirely related to restrictions on transport activity in 2021 
due to the Covid-19 pandemic. However, the emissions projected future growth to 33 Gt 
CO2 in 2021 (IEA, 2021). Even with an increase in CO2 emissions from oil of over 650 
Mt CO2 in 2021, these should remain 500 Mt CO2 below 2019 levels. This reduction in 
emissions is achieved due to the global concern in mitigating fossil fuels use and the 
strategies of CCUS. In Colombia, the target is to reduce greenhouse gas emissions by 
50% in 2030 and is much more closely aligned with the country's objective of achieving 
carbon neutrality by 2050 (UPME, 2019). To achieve these goals, is necessary to consider 
key aspects like increase the use of new renewable energy sources, efficient use of energy, 
and analysis of CCUS supply chain.  
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Herein, we present an optimization framework for the CCUS supply chain design. Our 
approach can be distinguished from previous studies in the following aspects: firstly, a 
complete CO2-EOR model that involves evaluating the real considerations in the field 
such as petrophysical properties, dynamic oil and CO2 production profiles and some 
operative’s conditions are integrated into the CCUS model. Secondly, a transport patterns 
considered by Zhang et al., (2020) with free movements between sources and reservoirs 
are incorporated. And thirdly, surrogate models to evaluate the capital expenditure 
(CAPEX) and operational expenses (OPEX) proposed by Hasan et al., (2015) are 
incorporated into the CCUS model.  

2. Model formulation  
The main components of a CCUS supply chain include: i) stationary CO2 sources, ii) 
carbon capture facilities, iii) transport network and, iv) geological storage and CO2-EOR 
as utilization. The proposed mathematical model is based on the multiperiod model for 
CCUS published by Han et al., (2012). In this model, a superstructure composed of 
regions (g) enclosing different types and sizes of capture, sequestration and utilization 
facilities is formulated as a large-scale mixed-integer linear programming (MILP). The 
CO2 captured from an emission source in a region g, according to an established target, 
can be sent to sequestration or utilization facilities within the same region g or to another 
region g’ depending on its capacity and availability. Regions are connected to each other 
by different potential transportation modes (pipeline, truck, railcar, and ship) and different 
types and sizes of intermediate storage are also considered in the regions to adequately 
supply the non-pipeline transportation modes.  
 
Han et al., (2012) considered utilization facilities to produce biobutanol and green 
polymers in South Korea. For the Colombian case, we have assumed EOR-CO2 as the 
potentially most important use of CO2. The EOR-CO2 has been modeled considering the 
typical petrophysical properties of oil reservoirs and the dynamic oil and CO2 production 
profiles. The oil and CO2 production rates depend on the CO2 injection rate, where the 
CO2 injection and production rates are normalized by hydrocarbon pore volume (𝐻𝐶𝑃𝑉!, 
[m3]) of each reservoir 𝑚. According to Eq. 1, 𝐻𝐶𝑃𝑉! is a function of reservoir properties 
as area (𝐴!, [m2]), net pay thickness (ℎ!, [m]), average porosity (𝜙!, [-]), and the initial 
water saturation (𝑆"#,!, [-]). 
 

𝐻𝐶𝑃𝑉! = 𝐴!ℎ!𝜙!+1 − 𝑆"#,!.				∀	𝑚 (1) 
 
The oil production is normalized by the original oil in place (𝑂𝑂𝐼𝑃!, [m3]) which is 
defined following the Eq. 2. 
 

𝑂𝑂𝐼𝑃! =
𝐻𝐶𝑃𝑉!
𝛽%#,!

				∀	𝑚 (2) 

 
Where 𝛽%#,! represent the initial oil formation volume factor. Each reservoir is 
characterized by a unique 𝐻𝐶𝑃𝑉!, and it determines the oil and CO2 production rates of 
the field. The oil and CO2 production profiles, considering high, medium, and low oil 
production, are calculated using a piecewise linearization strategy of the dimensionless 
curve representing the incremental recovery factor for oil and the cumulative CO2 
production (both as a function of cumulative CO2 injection as shown in Figure 1).  
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Figure 1. Cumulative production of oil (solid) and CO2 (dash) for high, medium, and low oil 

recovery and CO2 production (Adapted from Kolster et al., 2017) 
 
The rate of CO2 injected each period of time 𝑡 per field (𝐶𝑂2𝐼𝑁𝐽!,&, [Mt/y]) is limited by 
both the maximum CO2 injection rate per well (𝑞𝐶𝑂2!!'(, [Mt/(y∙well)]) and the number 
of injection wells available in the field (𝑊𝐼!,&, [well]). According to Eqs. 3 and 4, 
𝑞𝐶𝑂2!!'( is assumed equal as the historical water injection rate in the field and 𝑊𝐼!,& is 
limited to the oil fields drilling campaign (𝑤𝑡!,&!'(, [well]). 
 

𝐶𝑂2𝐼𝑁𝐽!,& ≤ < 𝑞𝐶𝑂2!!'( ∗𝑊𝐼!,&)
&)*&

					∀	𝑚, 𝑡 (3) 

<𝑊𝐼!,&)
&)*&

≤ 𝑤𝑡!,&!'(					∀	𝑚, 𝑡 (4) 

 
The 𝐶𝑂2𝐼𝑁𝐽!,& is normalized with the 𝐻𝐶𝑃𝑉! to calculate the cumulative CO2 injection 
(𝐶𝑂2𝐼𝑁𝐽𝐶𝑈𝑀𝐻!,&,+, [-]), as seen in Eq. 5; where Δ𝑇 is the time between two consecutive 
time periods. 
 

<𝐶𝑂2𝐼𝑁𝐽𝐶𝑈𝑀𝐻!,&,+
+

= Δ𝑇 ∗ < C
𝐶𝑂2𝐼𝑁𝐽!,&)
𝐻𝐶𝑃𝑉!

D
&)*&

					∀	𝑚, 𝑡 (5) 

 
Each linear segment of the production curves	ℎ is limited by lower (𝑙𝑜𝑖𝑛𝑗ℎ!,+, [-]) and 
upper (𝑢𝑝𝑖𝑛𝑗ℎ!,+, [-]) limits (see Eq. 6) and each linear segment is selected introducing a 
binary variable (𝐵𝑖𝑛𝐻!,&,+) that can active only one of the linear segments as shown in Eq. 
7.  
 

𝑙𝑜𝑖𝑛𝑗ℎ!,+ ∗ 𝐵𝑖𝑛𝐻!,&,+ ≤ 𝐶𝑂2𝐼𝑁𝐽𝐶𝑈𝑀𝐻!,&,+ ≤ 𝑢𝑝𝑖𝑛𝑗ℎ!,+ ∗ 𝐵𝑖𝑛𝐻!,&,+					∀	𝑚, 𝑡, ℎ (6) 

<𝐵𝑖𝑛𝐻!,&,+
+

≤ 1					∀	𝑚, 𝑡 (7) 

 
The cumulative oil and CO2 produced (𝐶𝑂2𝑃𝑅𝑂𝐷𝐶𝑈𝑀!,&, [-], and 𝑂𝐼𝐿𝑃𝑅𝑂𝐷𝐶𝑈𝑀!,&, [-], 
respectively) are calculated with the Eqs. 8 and 9. Where 𝛼𝑐𝑜2!,+ and 𝛽𝑐𝑜2!,+ represent 
the slope and the intercept of the linear segment ℎ of the CO2 breakthrough curve, 
respectively; 𝛼𝑜𝑖𝑙!,# and 𝛽𝑜𝑖𝑙!,, represent the slope and the intercept for each segment 𝑠 
of the oil performance curve. 
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𝐶𝑂2𝑃𝑅𝑂𝐷𝐶𝑈𝑀!,$ =./𝛼𝑐𝑜2!,% ∗ 	𝐶𝑂2𝐼𝑁𝐽𝐶𝑈𝑀𝐻!,$,% +	𝛽𝑐𝑜2!,% ∗ 𝐵𝑖𝑛𝐻!,$,%;
%

				∀	𝑚, 𝑡 (8) 

𝑂𝐼𝐿𝑃𝑅𝑂𝐷𝐶𝑈𝑀!,$ =./𝛼𝑜𝑖𝑙!,# ∗ 	𝐶𝑂2𝐼𝑁𝐽𝐶𝑈𝑀𝑆!,$,# +	𝛽𝑜𝑖𝑙!,# ∗ 𝐵𝑖𝑛𝑆!,$,#;
#

				∀	𝑚, 𝑡 (9) 

 
Eq. 10 represents a CO2 mass balance at the inlet of the injection well in function of the 
fresh CO2 for EOR (𝐶𝑂2𝑃𝑈𝑅𝐶!,&, [Mt/y]), the recycled CO2 (𝐶𝑂2𝑅𝐸𝐶𝑌!,&, [Mt/y]) and the 
injected CO2. In our model, the fresh CO2 rate is used to integrate the EOR-CO2 module 
with the CCUS model proposed by Han et al. (2012).  
 

𝐶𝑂2𝑃𝑈𝑅𝐶!,& + 𝐶𝑂2𝑅𝐸𝐶𝑌!,& = 𝐶𝑂2𝐼𝑁𝐽!,&					∀	𝑚, 𝑡 (10) 
 
The economic model in this framework is adapted from the one proposed by Calderón & 
Pekney, (2020). In our model we maximize the net present value (𝑁𝑃𝑉, [MUSD]), which 
is function of the global CCUS supply chain profit after taxes and penalties (𝐶𝐴𝑆𝐻𝐹𝐿𝑂𝑊&, 
[MUSD]), the global capital costs of the supply chain (𝐶𝑃𝑋𝐶𝐶𝑈𝑆&, [MUSD]) and the 
interest rate (𝑖𝑟, [-]), as shown in Eq. 11. 
 

𝑁𝑃𝑉 =
𝐶𝐴𝑆𝐻𝐹𝐿𝑂𝑊& −	𝐶𝑃𝑋𝐶𝐶𝑈𝑆&

(1 + 𝑖𝑟)&-.  (11) 

3. Results  
The mathematical model was formulated as a MILP that maximizes the net present value 
of the CCUS supply chain. The optimization problem was implemented in GAMS 33.2.0 
and was solved using CPLEX v12.10.  
 

Table 1. Selected capture technology for the CCUS model 

 
The main considerations about the components of the CCUS supply chain analyzed in 
this study are the following: (a) the data for CO2 sources and sinks was taken from Yáñez 
et al., (2020), as seen Figure 3. Comprising emissions from natural sources (F-4-NatCO2 
and F-5-NatCO2), oil (R1 and R2, aggregated into 14 emission sources), cement (Cem-1, 
…, Cem-7), power generation (PG-G-1, …, PG-G-7), and bioethanol (ET2, …, ET7) 
industries. Nodes A, B, H, K, M, and N are candidate oil fields for CO2-EOR process, 
and nodes C1 and C2 are candidates for geological storage. (b) surrogate models for 
investment and operating costs developed by Hasan et al., (2015) were considered for 
modelling CO2 capture technologies. (c) finally, three transport patterns (source-sink, 
source-source and sink- sink matching) with free movements between sources and sink, 

Source Capture technology Size Facilities No. 
ET={2,...,7} 

Compressor 

small 6 
R1-H2-2 small 1 
F-4-NatCO2 small 1 
F-5-NatCO2 small 1 
PG-G ={1,7,8} Abs-MEA small 4 
R1-FCC={1,2} 

PSA-MVY* 

small 2 
R1-CHP-1, R1-HDT-2 small 5 
R2-FCC-1, R2-CHP-6 small 2 
R1-HDT-2 medium 1 
Cem={1,3,7} PSA-WEI* small 5 
*Zeolite-based physical adsorption of CO2 for Pressure Swing Adsorption (PSA) technologies. MVY (Mobil composition 
of matter-seVentY) and WEI (Weinebeneite) are zeolites considered by Han et al., (2015).  
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as summarized by Zhang et al., (2020), were assumed for the multimodal-network 
transportation. The other parameters for transport and intermediate storage were taken 
from Han et al., (2012). 
 

 
Figure 3. CO2 sources, storage, and utilization projects in Colombia.  

 
Absorption based on monoethanolamine (Abs-MEA) is selected for sources with a CO2 
concentration as low as 4% (PG-G-1, PG-G-7 and PG-G-8), since Abs-MEA is the only 
one that works in this concentration range. On the contrary, compression is selected for 
sources with high CO2 concentration (ET={2,...,7}, R1-H2-2, F-4-NatCO2 and F-5-
NatCO2). For refineries, with concentrations of 7%, the technology with the lowest 
investment and operational costs is PSA-MVY. Finally, when the concentration is as high 
as 47% as in the case of the sources: Cem-1, Cem-3 and Cem-7, the model uses the PSA-
WEI capture technology, which is the one with the lowest costs for this CO2 concentration 
(see Table 1). Even though the model considers 2 sinks for geological storage, the optimal 
solution chooses EOR as the main use for CO2 because it represents economic benefits 
as opposed to the geological storage. Results of transport infrastructure are consistent, 
since it minimizes the costs of the network by choosing pipelines with the smallest 
possible diameters (6 and 8 in) to connect most of the sources with the sinks. Although it 
also selects 12 in pipelines to connect sources with high capture capacity, such as the R1 
source. Results shown a carbon capture cost of 99.8 USD/t, with a cost breakdown of 
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45%, 30% and 25% allocated into the carbon capture processes, CO2 transportation and 
CO2-EOR utilization, respectively. 

4. Conclusions 
The motivation for this study is to present an optimization framework to support decision 
making for a CCUS supply chain. For this purpose, we formulated a mathematical model 
that considers: (1) the integration between EOR and CCUS in a supply chain 
configuration that includes petrophysical properties, dynamic oil and CO2 production 
profiles and operating conditions, (2) transport patterns with free movements between 
sources and sinks, and (3) a surrogate model which calculates the investment and 
operating cost for carbon capture technologies taking into account different plant sizes 
and CO2 concentrations. The model was tested with representative information from the 
Colombian context for the capture and use of CO2 for EOR. The optimal solution is 
coherent and presents the number and size of capture technologies necessary for each 
source and the configuration of the transport network based on pipelines. Future research 
may focus on considering a more detailed model representation for designing the CO2 
pipeline transportation network. 
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Abstract 

Decision-making capabilities and solution approaches for industrial scheduling 

operations are often inefficient. Both the academic literature and industry require further 

investigation of scheduling strategies and methodologies to achieve further 

breakthroughs, in which a proper selection of modelling and optimisation parameters is 

imperative. This work investigates the impact of time-step size and time-horizon length 

on multiple scheduling applications. Small time-steps provide better management of 

feedstocks, more efficient production, and higher profit, whereas long time-horizon can 

leverage spot market opportunities and achieve a more comprehensive formulation. 

Moreover, such parameters are especially meaningful in combination with continuous 

rescheduling strategies. A blend scheduling case study is employed in this work, whereby 

the operational scheduling and economic value of the process are investigated over 

distinct conditions in three examples. The interplay between rescheduling optimisation 

and the aforementioned scheduling parameters is highlighted. The insights drawn are 

useful for diverse problems and scenarios, and can significantly provide further 

operational and economic enhancements for industrial applications. 

Keywords: Scheduling, optimisation, mathematical programming, rescheduling, 

industrial processes, decision-making capabilities. 

1. Introduction 

Computer-aided tools have been increasingly employed for scheduling operations, in 

which recent advances on decision-making modelling and optimisation, solving 

algorithms, and computer-aided resources (Franzoi et al., 2018) have provided enhanced 

capabilities for properly addressing and solving large-scale scheduling applications. Such 

mathematical representations require the pre-determination of scheduling parameters 

such as time-step size and time-horizon length, whose importance and impact are often 

neglected in the literature on the topic. This work addresses the topic of scheduling 

optimisation based on discrete-time formulation, whereby providing a relevant discussion 

on scheduling parameters used in the modelling and optimisation. These parameters are 

determined according to the type of problem to be solved or to the required solution in 

terms of accuracy or timeliness. Common choices for industrial applications are in the 

order of seconds or minutes (e.g., real time optimisation and control), hours or days (e.g., 

scheduling), months or years (e.g., procurement planning and process design). 

The time-horizon length should be chosen according to the desired application and the 

computational resources available. Large time-horizon lengths incorporate future 

information into the formulation/optimisation decision-making, which is helpful for 
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adjusting the scheduling operations according to the known or expected scenario in the 

plant. In addition, the time-horizon plays a key role on the interplay between the 

scheduling solution to be implemented in the process and the market/sales decision-

making through spot market opportunities. 

Large time discretisation may cause lack of accuracy and may not fully exploit scheduling 

opportunities in terms of better economic value and operations (Lee and Maravelias, 

2018). Small time-steps overcome such issues but lead to large formulations with 

potentially intractable models. However, this has been recently overcome by the recent 

technological advances, which provide proper capabilities for breakthrough research on 

large-scale optimisation. Small time-steps are closely related to online scheduling (also 

referred to as rescheduling) applications. Online scheduling concepts are especially 

important because a continuous cycle of improvement is required to reduce the deviation 

between the model predictions and the actual values in the plant. Operational data used 

in the scheduling are typically out of date or not integrated with the production, which 

leads to inconsistencies in the prediction throughout the process. According to Gupta et 

al. (2016a), rescheduling facilitates the adaptation of the schedule under uncertainties and 

unforeseen events, in addition to considering new information as soon as possible, which 

aims to increase the economic value of the process. In previous work, Franzoi et al. (2021) 

discuss and illustrate the importance of rescheduling for handling data uncertainty and 

disturbances, maintaining feasibility, restoring optimality, and providing more reliable 

and effective capabilities for industrial applications. Importantly, such benefits can only 

be achieved through a continuous cycle of updates and re-optimisations. 

Although the literature on the topic indicates the importance of addressing small time-

steps and large time-horizon for improved scheduling operations, to the best of our 

knowledge there are no works that provide comprehensive quantitative analyses and 

results on the impact of these features on the scheduling economics and operations. In 

this work, we investigate the influence of the time-step and time-horizon lengths in the 

scheduling solutions aiming to achieve a better understanding on the role and importance 

of these elements for scheduling solutions. Such discussion can be especially important 

to establish guidelines for future research on the topic aiming to develop more efficient 

methodologies and to achieve enhanced industrial operations. 

2. Scheduling parameters: time-step and time-horizon 

There is not standard practices or common understanding about how to properly define 

time-steps, time-horizon, and time-periods within scheduling formulations. On one hand, 

the academic literature lacks more comprehensive and conclusive studies and analyses on 

the impact of such parameters towards improved scheduling optimisation. On the other 

hand, industrial organisations worldwide do not have a standardised or optimum approach 

to address that question. The scheduling operations are often not properly optimised, in 

which outdated manual/simulation capabilities are still employed; or the optimisation 

tools are not sufficiently accurate or applicable. Even under the utilisation of proper and 

effective optimisation, the approaches, strategies, and methodologies used within the 

decision-making capabilities are often not appropriate. That requires an accurate 

representation of the problem with an integrated mathematical modelling environment 

(e.g., detailed operations, inclusion of operational constraints, limitations, and 

requirements), consideration of external factors (e.g., noises, disturbances, and 

uncertainties), determination of scheduling parameters, proper computational balance and 

tractability, etc. An important factor within this context concerns the proper selection of 
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scheduling parameters to be used in the mathematical formulation and optimisation. 

Previous literature on scheduling optimisation indicates the lack of standards to address 

such a question. For example, Panda and Ramteke (2019) uses time-steps of 8-hours and 

time-horizon of 14 days; Hou et al. (2015) considers 10-days time-horizon and 1-day 

time-step; Dai et al. (2021) employs 7-days time-horizon and 1-day time-step of; and 

Kelly et al. (2017) proposes time-horizon of 7-days and time-step of 2-hours. Ideally, the 

time-horizon should be as large as possible and the time-step should be as small as 

possible, but proper balance is fundamental to overcome computational limitations. 

A previous study (Franzoi et al., 2021) addressed the importance of a continuous cycle of 

scheduling updating for industrial operations. In this work, we investigate how scheduling 

parameters, namely, time-step size and time-horizon length, affect the scheduling 

optimisation and its solution, whereas aiming to achieve proper balance between model 

complexity and computational effort. To the best of our knowledge, such analyses are 

missing in the state-of-the-art literature and may provide meaningful insights for 

improved scheduling optimisation capabilities in future works on the topic. Small time-

steps enlarge the search space in the optimisation, which provides additional degrees of 

freedom and potentially better solutions. Large time-horizon provides further information 

that may significantly improve the scheduling decision-making towards better solutions. 

Assuming the formulation is suitable to be solved in acceptable computational time, both 

these concepts are meaningful and present potential for enhanced scheduling capabilities. 

Importantly, they need to be carefully analysed for each application to achieve proper 

balance between computational tractability and solution quality. 

3. Problem statement 

To investigate how the time-step and time-horizon sizes affect the scheduling 

optimisation and its solution, a blend scheduling optimisation problem for the production 

of diesel is addressed. Figure 1 illustrates the proposed network. There are two incoming 

diesel streams D1 and D2 with distinct qualities in terms of specific gravity and sulphur 

content. They are connected to four intermediate storage tanks S1 to S4 to be further 

blender in the BLENDER unit. The outgoing mixture is sent to final storage tanks F1 to 

F6 to be further distributed according to the demand of product P1. The data are presented 

in Table 1, including the properties of intermediate and final streams (i.e., specific gravity 

and sulphur content), their estimated market value (negative for costs of feedstocks and 

positive for selling prices of products), and the maximum incoming/outgoing flowrates. 

Table 1: Data for the blend scheduling optimisation problem. 

Unit D1 D2 P1 

Specific gravity (g/mL) 0.80 0.95 0.88 

Sulphur content specification (g/g) 0.90 1.20 1.00 

Maximum incoming/outgoing flowrate 100 100 500 

 

The demands of product P1 over the time-horizon is randomly generated between 40 and 

100 bbl/day, which are represented as hard bound constraints (e.g., contractual demands) 

and must be met. It is assumed that each daily demand needs to be supplied by a single 

tank F. The scheduling optimisation aims to continuously supply the demand of P1 

meeting the product specifications to maximise the refinery profit. 
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Figure 1: Blend scheduling problem flowsheet. 

4. Examples and results 

Three examples are proposed to evaluate how scheduling parameters affect the 

computational effort and solution quality (operations and economic value). They 

respectively address the impact of the time-step size, time-horizon length, and 

rescheduling combined with enhanced scheduling parameters. The examples are built as 

mixed-integer nonlinear programming (MINLP) problems and solved by a two-stage 

optimisation approach. The mathematical model and the optimisation framework are 

omitted for the sake of simplicity; for further details, see Franzoi et al. (2021). 

4.1. Example 1: Analysis on the time-step size 

Example 1 investigates the impact of the time-step size on the scheduling. This is 

especially important to manage operations with tanks and flows throughout the process. 

Small time-steps are helpful to exploit additional degrees of freedom whereby achieving 

more efficient operations. For example, formulations involving tanks typically consider 

that simultaneous incoming and outgoing flows are prohibited in the same tank. Thus, 

large time-steps may impose difficulties either to obtain a good schedule or to implement 

the solution in the plant. Two scenarios are considered:  

• Scenario 1a optimises the future 20-days scheduling considering time-steps of 2-days 

each in a single optimisation with 10 time-periods.  

• Scenario 1b optimises the future 20-days scheduling considering time-steps of 1-day 

each in a single optimisation with 20 time-periods.  

Table 2 provides information on the scheduling solution for each scenario, which 

illustrates the importance of small time-step sizes. Smaller time-steps provide 6% profit 

increase associated with better feedstock management and less product giveaway. 

Table 2: Scheduling solution for Example 1. 

 Scenario 1a Scenario 1b Difference 

Contractual demand met (%) 100 100 - 

Refinery profit (k$) 66 70 4 

Computational time per optimisation (s) 1 2 1 

4.2. Example 2: Analysis on the time-horizon length 

Example 2 explores the impact of the time-horizon length on the scheduling. Since the 

beginning of the event horizon (Day1), there is a known spot market demand of 500 bbl 

of product P1 available at Day20, with market price 10% above the average and that can 

be either partially or fully met. Two scenarios are proposed: 
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• Scenario 2a optimises the future 20-days scheduling considering time-steps of 1-day 

each in a single optimisation with 20 time-periods.  

• Scenario 2b performs sequential 10-days optimisations within a moving horizon 

rescheduling strategy (see Franzoi et al. (2021) for further information) with 1-day 

time-steps. There are 10 optimisations, from Day1 to Day10 until Day11 to Day20. 

Table 3 presents important aspects of the scheduling solution for each scenario, which 

illustrates the importance of employing a sufficiently large time-horizon length. 

Table 3: Scheduling solution for Example 2. 

 Scenario 2a Scenario 2b Difference 

Contractual demand met (%) 100 100 - 

Spot market demand met (%) 45 100 55 

Refinery profit (k$) 121 105 16 

Computational time per optimisation (s) 10 2 8 

Due to the larger time-horizon in Scenario 2a, the spot market opportunity is considered 

in the formulation/optimisation since Day1, which provides flexibility for the plant to 

adjust its production accordingly. In addition, the optimisation capabilities are especially 

useful to ensure whether the scheduling is able to comply with the demand requirements 

in terms of amount and qualities. Conversely, although such spot market information is 

known since Day1, Scenario 2b includes it in the formulation/optimisation only at Day11, 

so that the scheduling does not have enough time/resources to adjust the production and 

misses the opportunity of selling additional product at a higher price. 

4.3. Example 3: Analysis on the role of continuous rescheduling 

Example 3 investigates the importance of large time-horizon length within continuous 

rescheduling optimisation. A spot market opportunity becomes available for Day20, in 

which there is an additional demand of 500 bbl of P1 with market price 10% above 

average and that can be either partially or fully met. However, such information is only 

known since Day5. Three scenarios are proposed. Information on the scheduling solution 

is shown in Table 4. 

• Scenario 3a optimises the future 40-days scheduling considering time-steps of 1-day 

each in a single optimisation with 20 time-periods. The spot market opportunity is 

considered in the formulation. 

• Scenario 3b optimises the future 15-days scheduling considering time-steps of 1-day 

each in two optimisations with 15 time-periods each (Day1 to Day15 followed by 

Day16 to Day30). The spot market opportunity is considered only in the second 

scheduling formulation, from Day16. 

• Scenario 3c optimises the future 15-days within a moving horizon rescheduling 

strategy with 1-day time-steps in a total of 15 optimisations. The spot market 

opportunity is considered in the formulation since Day15. 

Table 4: Scheduling solution for Example 3. 

 Scenario 3a Scenario 3b Scenario 3c 

Contractual demand met (%) 100 100 100 

Spot market demand met (%) 0 32 100 

Refinery profit (k$) 146 155 175 

Computational time per optimisation (s) 30 5 5 
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The large time-horizon in Scenario 3a does not capture the spot market information. There 

is no safety stock available and the production could not exploit such additional 

opportunity because. Scenario 3b considers the spot market demand only in the second 

optimisation run, which does not provide enough time/resources to properly adjust the 

production. On the other hand, higher flexibility is provided in Scenario 3c due to the 

continuous rescheduling operations, which allow to include the updated information into 

the model as soon as it becomes available. This illustrates the importance of such interplay 

of scheduling parameters with rescheduling strategies towards improved scheduling 

operations. It is worth noting that although such example emphasises spot market 

opportunities which are common in petroleum refineries, other fields or industries have 

similar cases involving peaks of demand (e.g., seasonal markets, peak of sales, etc.).   

5. Final remarks and future guidelines 

There is an important interconnection between rescheduling strategies and the selection 

of scheduling parameters. Despite highly relevant for industrial applications, such topic 

has been rarely discussed in the literature. In this work, we address scheduling parameters 

such as time-step size and time-horizon length and highlight their particular importance 

in combination with rescheduling strategies. The results indicate that a) proper choice of 

time-step size provides better selection and management of feedstocks, more efficient 

production, less giveaways, and higher profit; b) spot market opportunities can be better 

exploited by large time-horizon lengths, which is especially useful to account for future 

information that might be available; c) rescheduling strategies are fundamental for 

enhanced scheduling operations, especially when combined with proper selection of the 

aforementioned parameters. 

Seeking enhanced industrial capabilities, it is fundamental to investigate scheduling 

parameters through extensive testing to identify better strategies and achieve improved 

solutions. The analyses carried out in this work are useful for diverse problems, 

applications, and conditions, and can significantly provide further operational and 

economic enhancements. The examples focus on the petroleum refinery industry, but the 

ideas and discussion provided are valid for other industrial applications as well. 
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Abstract 

Pharmaceutical supply chains tend to be complex, and its management encounters several 

challenges. In this work, a decision-support tool based on a multi-objective mixed integer 

linear programming model is proposed, aiming to integrate several strategical-tactical 

decisions while considering the three pillars of sustainability, which are addressed as 

objective functions. The economic assessment is performed through the Net Present 

Value (NPV). The environmental impact assessment follows the Life Cycle Analysis 

(LCA) methodology. Accessibility of pharmaceutical products is the major focus for the 

social assessment, aiming to provide an equal distribution based on the burden of diseases 

which is made through a DALY-based metric (Disability-Adjusted Life Year). The model 

is applied to a representative case study aiming to discuss different optimization scenarios 

and allowing to understand the effect of decisions on each performance indicator. 

Important results were obtained that show that sustainability issues influence the supply 

chain design and planning. 

 

Keywords: Pharmaceutical Industry, Sustainable supply chains, Equity, MILP 

1. Introduction 

The 2030 Agenda of Sustainable Development comprises several goals intended to drive 

global and national policies in the direction of a sustainable development of our societies. 

Within these goals, one seeks to support well-being at all ages and guaranteeing healthy 

lives, while another fosters inclusive and sustainable economic growth, employment, and 

proper work for all (Johnston, 2016).  

Pharmaceutical companies represent a group of healthcare companies that have been 

facing strengthened regulations concerning economic, environmental, and social issues, 

driving them towards more sustainable supply chains. Moreover, pharmaceutical 

companies dealing with vaccines need to cope with particularities regarding the product 

itself, such as storage temperature and shelf-life time, influencing the resources needed 

to be allocated to each facility (Lemmens et al., 2016). This sector plays a critical role in 

the healthcare structure of each country by providing medicines and vaccines with direct 

impact on population’s quality of life. Undoubtedly, medicines are responsible for 

preventing and treating diseases, enhancing, or preserving health, and to avoid 

exacerbation of existing illnesses (Pfizer, 2019). Accordingly, along with the direct 

benefits for population, medicines and vaccines also contribute towards a significant cost 

reduction in the total healthcare costs of each country by decreasing the need for long-

term care services and/or costly surgeries. Hence, addressing equity in access when 

designing and planning pharmaceutical supply chains has proven to be essential and helps 

driving this sector in the direction of a more socially sustainable industry. 
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Bearing in mind the described scenario for pharmaceutical supply chains, particularly 

when dealing with vaccines, the present work aims to study how to make strategic and 

tactical decisions to help attaining sustainability objectives, where the integration of 

social concerns is the main focus. 

2. Problem Definition and mathematical formulation 

The proposed model follows the work developed by Mota et al. (2018), where a decision-

support tool for the design and planning of sustainable supply chains focusing on 

strategic-tactical challenges is suggested. Adaptations were made to better shape 

demanding characteristics of the pharmaceutical industry, such as storage technologies 

needed at warehouses. The generic supply chain representation considers a four-echelon 

structure (see Figure 1), where the raw materials flow from suppliers to factories to be 

transformed into final products. At factories, production technology selection is possible. 

Once the final products are obtained, they can either flow to warehouses or directly to 

markets to be sold. At warehouses, storage technology selection is possible. Moreover, 

transhipment between warehouses is allowed and transportation between different entities 

may be done by either unimodal or intermodal transportation, by road, air and sea. 

  

Figure 1. Modelled supply chain structure 

 

The three pillars of sustainability are introduced as objective functions. The economic 

objective function is obtained from the maximization of the Net Present Value (NPV) by 

calculating the sum of the discounted cash flows of each time-period, at an interest rate. 

These cash flows are obtained through the net earnings (NEt), which are given by the 

difference between incomes and overall costs, where the former corresponds to the 

amount of products sold at a certain price, and the latter by the following costs:  

• raw material costs (first term)- number of products purchased from suppliers times 

the unit raw material cost (𝑟𝑚𝑐𝑚𝑖); 

• production operating costs (second term) - amount of final products produced 

(𝑃𝑚𝑔𝑖𝑡 ) times the unitary operating costs of each production technology (𝑜𝑝𝑐𝑔); 

• storage costs (third term)- amount of final products stored with technology g (𝑆𝑚𝑔𝑖𝑡) 

times the unitary operating cost of storage technology (𝑜𝑝𝑐𝑔); 

• transportation costs (fourth term)- flow of products transported through 

transportation mode a (𝑋𝑚𝑎𝑖𝑗𝑡) times the transportation cost per kg.km (𝑡𝑐𝑎), weight 

of each unit of product transported (𝑝𝑤𝑚) and distance traveled (𝑑𝑖𝑗); 

• hub handling costs (fifth term)- flow of products through the hub terminals at the 

airports or seaports times the unit handling costs at these terminals (ℎℎ𝑐𝑗); 

• airline/freighter contracted costs - contracted costs (𝑐𝑓𝑝𝑖) for the allocated 

transportation capacity and/or for hub terminal use per time period (sixth term); 

• inventory costs (seventh term)- amount of products in stock (𝑆𝑚𝑔𝑖𝑡) times the unitary 

stock cost, (𝑠𝑐𝑚); 
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• labor costs at entities (eight and night terms) and labor costs for technologies’ use 

(tenth term), which vary with the fixed (𝑤𝑖), the variable (𝑤𝑝𝑠𝑞) number of workers 

at each entity and the number of workers needed for each technology (𝑤𝑔), 

respectively. The labor cost at each location (𝑙𝑐𝑖), the weekly working hours (𝑤𝑤ℎ) 

and the number of weeks per time period (𝑤𝑝𝑡) are also considered, 

The last term describes the depreciation of the capital invested (DPt) with tr being the  

tax rate. 

 

𝑁𝐸𝑡 = (1 − 𝑡𝑟)

[
 
 
 
 

∑ 𝑝𝑠𝑢𝑚𝑋𝑚𝑎𝑖𝑗𝑡 

(𝑚,𝑖,𝑗)∈𝐹𝐼𝑁𝐶𝐹𝑃

(𝑎,𝑚,𝑖,𝑗)∈𝑁𝑒𝑡𝑃

−

(

 
 

∑ 𝑟𝑚𝑐𝑚𝑖𝑋𝑚𝑎𝑖𝑗𝑡 

(𝑚,𝑖,𝑗)∈𝐹𝑂𝑈𝑇𝑆𝑈𝑃𝑅𝑀

(𝑎,𝑚,𝑖,𝑗)∈𝑁𝑒𝑡𝑃

+  ∑ 𝑜𝑝𝑐𝑔𝑃𝑚𝑔𝑖𝑡 

(𝑚,𝑔)∈𝐻𝑝𝑟𝑜𝑑

𝑖∈𝐼𝑓

+ ∑ 𝑜𝑝𝑐𝑔𝑆𝑚𝑔𝑖𝑡 +
(𝑚,𝑔)∈𝐻𝑠𝑡𝑜𝑟

𝑖∈(𝐼𝑓∪𝐼𝑤)

∑ 𝑡𝑐𝑎. 𝑝𝑤𝑚. 𝑑𝑖𝑗 . 𝑋𝑚𝑎𝑖𝑗𝑡

(𝑎,𝑚,𝑖,𝑗)∈𝑁𝑒𝑡𝑃

𝑎∈(𝐴𝑝𝑙𝑎𝑛𝑒∪𝐴𝑏𝑜𝑎𝑡∪𝐴𝑡𝑟𝑢𝑐𝑘𝑠)

 

+   ∑ ℎℎ𝑐𝑗 . 𝑋𝑚𝑎𝑖𝑗𝑡

(𝑎,𝑚,𝑖,𝑗)∈𝑁𝑒𝑡𝑃

(𝑗∈𝐼𝑝𝑙𝑎𝑛𝑒∧𝑖∉𝐼𝑝𝑙𝑎𝑛𝑒)∪(𝑗∈𝐼𝑏𝑜𝑎𝑡∧𝑖∉𝐼𝑏𝑜𝑎𝑡)

+ ∑ 𝑐𝑓𝑝𝑖 . 𝑌𝑖

𝑖∈(𝐼𝑝𝑙𝑎𝑛𝑒∪𝐼𝑏𝑜𝑎𝑡)

 

+  ∑ 𝑠𝑐𝑚𝑆𝑚𝑔𝑖𝑡

(𝑚,𝑔)∈𝐻𝑠𝑡𝑜𝑟

(𝑚,𝑖)∈𝑉

+ ∑ 𝑤𝑖 . 𝑙𝑐𝑖 . 𝑤𝑤ℎ.𝑤𝑝𝑡. 𝑌𝑖

𝑖∈(𝐼𝑓∪𝐼𝑤)

+ ∑ 𝑤𝑝𝑠𝑞. 𝑙𝑐𝑖 . 𝑤𝑤ℎ.𝑤𝑝𝑡. 𝑌𝐶𝑖

𝑖∈(𝐼𝑓⋃𝐼𝑤)

+ ∑ 𝑤𝑔. 𝑙𝑐𝑖 . 𝑤𝑤ℎ.𝑤𝑝𝑡. 𝑍𝑔𝑚𝑖

(𝑚,𝑔)∈𝐻
𝑖∈𝐼𝑓 )

 
 

+ 𝑡𝑟.𝐷𝑃𝑡 

]
 
 
 
 

 

 

The environmental objective function is obtained through the minimization of the 

environmental impact, where the environmental impact of production, storage, 

transportation, and entity installation is calculated for each midpoint category c, summed 

and normalized as represented in equation (2).  

min 𝐸𝑛𝑣𝐼𝑚𝑝𝑎𝑐𝑡 =  ∑𝜂𝑐

𝑐

( ∑ 𝑒𝑖𝑚𝑔𝑐𝑝𝑤𝑚𝑃𝑚𝑔𝑖𝑡

𝑡∈𝑇
(𝑚,𝑔)∈𝐻

+ ∑ 𝑒𝑖𝑚𝑔𝑐𝑣𝑝𝑢𝑚𝑆𝑚𝑔𝑖𝑡

𝑡∈𝑇
(𝑚,𝑔)∈𝐻

+ ∑ 𝑒𝑖𝑎𝑐𝑝𝑤𝑚𝑑𝑖𝑗𝑋𝑚𝑎𝑖𝑗𝑡

𝑡∈𝑇
(𝑎,𝑚,𝑖,𝑗)∈𝐻

+ ∑ 𝑒𝑖𝑖𝑐𝑌𝐶𝑖

𝑡∈𝑇
(𝑎,𝑚,𝑖,𝑗)∈𝐻

)  

 

(1) 

(2) 
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Availability and affordability are considered by the Access to Medicine Index (AtMI), as 

crucial when addressing equity in access to medicines, and within these two concepts, 

AtMI considers that countries with highest disease burden and less ability to pay for 

medicines need to be prioritized. The burden of disease of a country can be measured 

through the metric DALYs (Disability-Adjusted Life Years), which reflects the sum of 

mortality and morbidity, providing a more encompassing view on health status of a 

population. Henceforth, the above-mentioned metric (DALY as a rate per 100,000 

population) is incorporated into an objective function allowing the maximization of 

pharmaceutical accessibility, as represented in equation (3). In this equation, the higher 

the disease burden, the higher will be the value of the social factor of location i ( 𝑒 𝑖
𝐷𝐴𝐿𝑌), 

thus prioritizing the location of entity i (through the decision variable 𝑌𝑖) in countries with 

higher disease burden, as well as countries with lower levels of health expenditure. 

max𝑃ℎ𝑎𝑟𝑚𝑎𝐴𝑐𝑐𝑒𝑠𝑠 = (  ∑  𝑒 𝑖
𝐷𝐴𝐿𝑌  .  𝑌𝑖

𝑖𝜖(𝐼𝑓∪𝐼𝑤)

   ) 

The model additionally considers constraints that account for material balances, supply 

capacity, flows of products at entities, inventory levels, production, and storage 

technology capacities, as well as transportation capacity constraints. 

3. Case-Study 

The developed model is applied to a real based case-study of a supply chain of 

meningococcal meningitis’ vaccine. Input data include the markets which demand has 

to be satisfied (U.S, Europe, Latin America, Eurasia, Asia, Africa, Middle East, Canada 

and Australia), suppliers and manufacturing sites, which include the ones already 

established in U.S. (Pennsylvania), Canada (Toronto), Europe (France), and Asia (India), 

and a fifth possible location for a factory in Africa (Kenya) is proposed so as to cover the 

“African meningitis belt”. Moreover, warehouses’ locations include U.S. 

(Pennsylvania), Canada (Toronto), Europe (France), Asia (India) and Latin America 

(Brazil). Possible new warehouse locations are included in the case-study:  two in Africa, 

one in Kenya and one in Nigeria, one in Middle East (Israel), Eurasia (Russia) and 

Australia. The product considered in the study needs to be refrigerated (stored at 2º to 

8ºC) and each product stock keeping unit (SKU) contains 5 single-doses of meningitis 

vaccines. 

Figure 2. Superstructure considered for the case-study 

(3) 
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Decisions were made on facility location (suppliers, factories, warehouses, hub terminals, 

and markets), production and storage levels as well as transportation network established. 

4. Results and Discussion 

Different cases are studied using a lexicographic optimization so as to obtain non-

dominated solutions (see Table 1): 

Case A: optimum economic performance.  

Case B: optimum social performance. 

Case C: optimum environmental performance. 

Table 1. Summary of results considering the different cases being studied 

Cases 

Decisions A B C 

Entity locations 

Suppliers and 

factories: Asia and 
Africa 

Warehouses: India and 

Kenya 

Suppliers and factories: 

Asia, Europe, Canada, US, 
Africa 

Warehouses: Europe, US, 

Asia, Canada, Africa 

Suppliers and factories: 

Asia, Europe, Canada, US, 
Africa 

Warehouses: Europe, US, 

Asia, Canada, Africa 

Production levels 
Most production in 

Asia (94%) 
Most production is in Asia 
(38%) and Europe (32%) 

Most production is in 

Europe (33%), Canada 

(26%) and Africa (20%) 

Storage 
technology 

Refrigeration Refrigeration None 

Transportation 
network 

Trucks of big capacity 

Intercontinental 
transportation by plane 

and boat 

Trucks of big capacity  

Intercontinental 

transportation by boat 

Trucks of big capacity 

Transportation by plane 
and boat were highly 

required  

The most profitable solution is obtained in case A, which is not the scenario with the 

worst social and environmental performances. In case B, the best social performance is 

obtained, however this is also the case where environmental indicator perform its worst, 

at a cost of a 3% increase, approximately, on the environmental impact when compared 

with optimal performance obtained in case C. As of case C, the minimum environmental 

impact is achieved at a cost of approximately 1% reduction in the NPV over the same 

period of 10 years and social performance achieves its worst value when achieving the 

greenest solution, with a 67% decrease in equal access of medicines comparing with the 

best solution obtained in case B. Thus, the greener solution has both the worst economic 

and social performances.  

In case A, factory in Asia is the one with higher production levels. Regarding case B, the 

major production of vaccines is done in Asia and Europe and in case C the installed 

capacity is more uniformly distributed between the five factories installed. Regarding 

warehouses’ installed capacity, one can note that, while in case A only two warehouses 

are considered, located in India and Kenya, in case B seven warehouses are included in 

the supply chain. This can be explained by the more socially beneficial case being 

analyzed in situation B and being the maximization of economic objective function the 

second indicator considered, thus allowing for less profitable structures when comparing 

with case A (which corresponds to the maximization of NPV as the first indicator being 

maximized). Finally, in case C, no warehouses are installed, which can be due to the more 

evenly distribution of production across the installed factories, leading to the less need of 

keeping inventory in warehouses. Moreover, installation of warehouses has an impact to 

the environment associated, which is aimed to be minimized, as well as further costs.  

The smaller variation in economic performance among the three cases can be justified by 

the significant contribution of production to the total costs. Moreover, by assuring a total 
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demand satisfaction, the cost of production can only be minimized up to a certain point, 

for instance, by locating a factory in a country with lower construction and labor costs.  

The small variation in the environmental impact across the different cases can also be 

justified by the major contribution of production technology to the total environmental 

impact. Hence, it would be important to address different options of greener production 

so as to minimize the impact for the environment. Recovery and remanufacturing of 

pharmaceutical products are extremely challenging, not only due to their limited shelf-

life, but also because of their hazardousness for the environment, humans, and animals. 

According to some researchers on this topic, such as Amaro and Barbosa-Póvoa (2008), 

outdated vaccines should be properly collected to recycle, remanufacture or to be 

destroyed at incineration centers. These activities can potentially reduce negative 

environmental impacts caused by production activities of the pharmaceutical industry. 

5. Conclusions and future work 

The presented work proposes a decision-support tool for the design and planning of a 

pharmaceutical sustainable supply chain, allowing to study and comprehend the effect of 

each decision on the performance indicators. The application of the developed model 

allows for the comprehension of connections among different supply chain activities, 

providing an opportunity to better understand the performance of different sustainability 

indicators across the supply chain.  

Future work is foreseen regarding recovery of pharmaceutical products, use of alternative 

technologies and other transportation modes (such as rail transportation). Moreover, the 

developed model will still be improved so as to explore different social indicators, as well 

as to consider uncertainty, such as uncertainty in supply, demand, production times, and 

also regarding the transportation modes used.  
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Abstract 

Jatropha curcas and castor oils are non-edible materials that can be used to produce 

biodiesel. When designing a biodiesel production process, an important aspect is that each 

raw material has a different lipid profile and different free fatty acids content. This may 

affect the performance of the production process. Nevertheless, with a proper design-

control strategy, a given process can handle the variations on the composition of the raw 

material, maintaining the quality of the product. In this work, a strategy for the design 

and control of a process to produce biodiesel from Jatropha curcas oil with variations in 

triglycerides’ composition of the raw material. The process is first designed in Aspen Plus 

V. 8.8. Then, control loops are established in Aspen Dynamics, applying disturbances of 

±10% to the feed flowrate to test the proposed loops and the parameters of the controllers. 

The compositions on the feed streams are varied, maintaining the same structural design 

for the equipment on the process. The effect of these variations on the process operation 

is assessed, and the capability of the proposed control structure to stabilize the process 

while maintaining the product quality is verified. In general terms, the proposed control 

structure allows keeping the product with the desired quality, stabilizing the process after 

variations in the composition of the Jatropha curcas oil. 

 

Keywords: biodiesel, controllability, feed composition disturbance. 

1. Introduction 

The use of low-quality vegetable oils helps reducing the production costs of biodiesel 

associated with the raw material. Jatropha oil is an example of this type of raw material, 

having a high content of free fatty acids and water. Biodiesel is mainly produced through 

the process of transesterification of triglycerides, with alcohol and alkaline catalysts. One 

of the main difficulties when working with this type of raw material is that, when 

synthesizing biodiesel through transesterification, alkaline catalysts could easily cause a 

saponification reaction that leads to the formation of soaps, which makes difficult 

biodiesel’s downstream purification. It has been determined that to obtain good yields in 

the transesterification reaction, the raw material must have a percentage of free fatty acids 

lower than 1% (Rani et al., 2013). Berchmans and Hirata (2008) proposed producing 

biodiesel using Jatropha oil through 2 routes: using 1 reactive stage or with 2 reactive 

stages. For the one-stage approach, it has been observed that yields of up to 80% are 
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obtained using excess methanol in the reaction; this is due to the high amount of free fatty 

acids present in the Jatropha oil. On the other hand, an acid-catalyzed oil pretreatment 

stage allows reducing the concentration of the free fatty acids, and the presence of 

secondary reactions such as saponification is avoided. With this two-stages strategy, there 

are higher yields in the production of biodiesel, amounting to 90% under optimal 

conditions. Likewise, the use of different alcohols applied in the transesterification of 

triglycerides to produce biodiesel has been reported, where methanol and ethanol are the 

most used, although isopropanol cannot be ignored. It has been verified that by means of 

the synthesis of biodiesel using methanol and ethanol, a biofuel with characteristics that 

comply with the quality standards of the American standard ASTM D6571 and the 

European standard EN 14214 is obtained (Castillo Ospina et al., 2011; Degfie et al., 

2019). Castillo Ospina et al. (2011) proposed a design for biodiesel production process 

with ethanol, using Jatropha oil with oleic acid and linoleic acid content. The process has 

an acid pretreatment stage followed by the alkaline transesterification of triglycerides, 

resulting in a high performance in the process, with a final product complying with the 

American standard. 

The plantwide control strategy is highly recommended for its application in processes that 

have recycle streams, heat integration, and the interconnection of several unit operations, 

which is the case for a biodiesel production process through homogeneous catalysis. da 

Silva et al. (2019) conducted a study using the Aspen Dynamics software where different 

control structures were evaluated for the plantwide control strategy used in a biodiesel 

production process. Other works have developed decentralized control structures for 

biodiesel production processes with disturbances in the production (Sheng et al., 2011) 

or the feed flowrate (Cheng et al., 2014) In the last decade, the plantwide control strategy 

has been increasingly implemented in biofuel production and studied in complex 

processes. The processes that are fed with vegetable oils considered of low quality, such 

as Jatropha oil, have not been the exception. In order to have the capacity to satisfy a 

specific biofuel demand, applications of plantwide control strategies have been reported 

in which annual biodiesel production is maintained while respecting the quality of the 

biofuel produced. The plantwide control strategy is used for tuning the control loops 

following the corresponding heuristics proposed by different authors, and the 

methodologies proposed for the analysis of the perturbations applied to the system (da 

Silva et al., 2019; Luyben, 2013). In this study, a plantwide control strategy is proposed 

and assessed for a biodiesel production process, using Jatropha oil as raw material. The 

effect of composition variations in raw material on dynamic performance is analyzed, and 

the potential of the control structure to reject such perturbations is assessed. 

2. Case study 

The biodiesel production process presented in this work operates with Jatropha oil feed. 

Jatropha plant has a high potential for cultivation in Mexico. Table 1 reports the lipid 

composition of the oil used as a basis for the design of the process. This oil, composed of 

4.5% free fatty acids, was characterized in Sinaloa, Mexico (Araiza Lizarde et al., 2015). 

In Mexico, the production of Jatropha curcas is favored by the different climatic and 

ground conditions throughout the country. According to a study carried out by INIFAP 

(2012), in Mexico there are at least 3,000,000 hectares with optimal conditions for the 

harvest of Jatropha. In addition, it is reported that up to 1,000,000 plants can be harvested 

per hectare, and a Jatropha plant provides approximately 3 seeds, and each of these 

produces 6.25x10-5 liters of oil (Hooda and Rawat, 2006). Based on the aforementioned 
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Jatropha curcas oil with variable composition 

information, a process feeding of 3,500 kg/h of vegetable oil was proposed, since Mexico 

could produce this amount annually. 

Table 1. Lipid composition of Jatropha oil. 

Fatty acids (4.5% wt) Triglycerides (95.5% wt) 

Palmitic acid (4.1% wt) Trypalmitin (4.1% wt) 

Oleic acid (46.87% wt) Triolein (46.87% wt) 

Linoleic acid (45.18% wt) Trilinolein (45.18% wt) 

Linolenic acid (3.85% wt) Trilinolenin (3.85% wt) 

 

Figure 1 shows the process proposed to produce biodiesel. The Jatropha oil pretreatment 

stage is implemented; this step is catalyzed by an acid. The second reactive stage is where 

the transesterification of triglycerides to ethyl esters takes place. Likewise, downstream 

of the esterification and transesterification reactors, there is a neutralization reactor, where 

the catalysts are neutralized, and the resulting salts are separated to improve the efficiency 

of the process. Furthermore, with the help of a decanter, the biodiesel phase and the 

ethanol-glycerol-water phase are separated; the oily phase goes to a series of equipment 

where the biodiesel is washed and separated from the impurities to finally obtain the 

refined biofuel. On the other hand, the aqueous phase is directed to two distillation 

columns where most of the ethanol and glycerol present in the stream are recovered.  

Sensitivity analysis has been applied to the process equipment with available degrees of 

freedom, mainly the reactors and distillation columns, to obtain the best operating 

variables, aiming to keep costs down and maintain product quality. The NRTL 

thermodynamic model was used in the proposed process; however, in the phase separation 

stages with the presence of ethyl esters with glycerol, such as the decanter and the 

biodiesel washing column, the UNIFAC-LL model is used (Berchmans and Hirata, 2008). 

 

 

Figure 1. Process flowsheet. 

3. Control strategy 

The plantwide control methodology allows covering the studied system, given by a 

chemical process with different stages and many variables. This can be done by 

decentralizing the process. For processes with no recycling of matter and energy 

integration, it is possible to perform a decomposition based on process units to be 

addressed in individual problems (Luyben 2013). Control objectives have been defined 

in each of the process units used to produce biodiesel. These control objectives are mainly 

the operating variables that have the greatest influence on the operation of the equipment; 

this is easily detectable with the knowledge of the operation of the process. In addition, 

an open-loop analysis of the process has been carried out, where perturbations of ±10% 

have been applied in the oil feed flow. 
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Taking into consideration the proposed control objectives, the control ties proposed in the 

control strategy are established and shown in Table 2. To determine the location of the 

temperature controllers in the distillation columns, an analysis was carried out to observe 

the variations that the temperature presented between one stage to another, selecting the 

stage with the greatest variation in temperature. The controllers used are of the 

proportional-integral (PI) type; these are enough to control pressure and level due to the 

zero complexity in these control loops. In addition, to control the temperature in non-

extreme systems, the PI controller is a good option (Luyben, 2013). The level and pressure 

controllers were tuned following the heuristics reported in Luyben (2013); however, to 

tune the temperature controllers, the Ziegler and Nichols method was used, supported by 

the tuning tool included in the Aspen Dynamics software.  

Table 2. Proposed control loops. 

Equipment Controlled variable Manipulated variable 

Pre-esterification Inlet stream temperature Heat duty 

Esterification reactor 
Temperature Heat duty 

Level Output stream flow 

Pre-transesterification Output stream temperature Heat duty 

Transesterification reactor 
Temperature Heat duty 

Level Output stream flow 

Decanter 
Liquid 1 level Output liquid 1 flow 

Liquid 2 level Output liquid 2 flow 

Ethanol recovery columna 

Pressure Condenser heat duty 

Reflux tank level Distilled flow 

Reboiler tank level Condensate flow 

Stage 15 temperature Reboiler heat duty 

Glycerol recovery column 

Pressure Condenser heat duty 

Reflux tank level Distilled flow 

Reboiler tank level Condensate flow 

Stage 3 temperature Reboiler heat duty 

 

4. Results 

The operation of the process has been considered for 8,160 hours of annual production 

(340 days), based on that, the process has the capacity to produce 30,000 tons of biodiesel 

per year. The steady-state process reduces the amount of free fatty acids present in the 

oil, with the pretreatment stage operating at 70°C. This temperature is important since 

having higher temperatures would decrease the performance of the reactor and elevation 

in costs. Likewise, in the transesterification reactor, high yields are obtained due to the 

lower presence of free fatty acids, in addition, with the conditions proposed such as 

operating at 70°C, a global conversion of triglycerides to ethyl esters above 99% was 

obtained. The characteristics of the obtained biodiesel have been compared with those 

presented in the EN 14214 standard, being satisfactory in all areas. In addition, the 

distillation columns allow the recovery of a good amount of ethanol and glycerol, which 

could be reused through the implementation of recycling.  

The control strategy is evaluated in different ways. First, perturbations of ± 10% were 

applied to the mass flowrate of the oil fed to the process, analyzing the behavior of the 

controlled variables throughout the process. In both cases, the behavior in the 

esterification reactor and the transesterification reactor stabilizes relatively easily. The 
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controllers in the distillation columns stabilize after a couple of hours, and the greatest 

variations are observed in the temperature controller. The purity of ethanol and glycerol 

remains above 99.5% in both cases, and the foregoing is shown in Figure 2. In addition, 

the biodiesel obtained, although in greater quantity, resembles its characteristics to those 

recommended by the European standard.  

 

 

Figure 2. + 10% variation in oil feed mass flowrate. 

Because of the composition of Jatropha curcas varies depending on its harvest origin, the 

capacity of the process was evaluated in the face of variations in the composition of the 

oil fed to the process, based on typical compositions previously reported (Araiza Lizarde 

et al., 2015; Guevara-Fefer et al., 2016). In these cases, the tank levels of the important 

equipment in the process are affected by the variation in the molar composition of the oil, 

however, these are less than the variation in the mass flowrate. In the distillation columns, 

the temperature controllers are the ones that present the greatest variations, this mainly 

due to the significant changes that the molar composition of the same type of oil can 

present due to being harvested under different conditions.  

 

 
   

Figure 3. Composition variation in Jatropha oil fed. 

1043

Plantwide control strategy for a biodiesel production process from 1019 

Jatropha curcas oil with variable composition



1020  O. Martínez-Sánchez et al. 

In these cases, the purity of the ethanol and glycerol undergo small changes, while the 

purity and quality of the biodiesel obtained are satisfactorily maintained, as can be seen 

in Figure 3. 

5. Conclusions 

The design for a biodiesel production process has been carried out in a simulation 

environment, allowing the analysis for the complete process to be carried out. The 

operating conditions of the most influential stages in the process were analyzed through 

sensitivity analysis corresponding to each equipment, which proved to be enough to 

obtain a product capable of complying with the international regulations to which biofuels 

are subjected.  

The proposed control strategy proved to be appropriated for the requirements sought in 

the work, which are the production of biodiesel from Jatropha oil, considering the 

variability of its composition or its availability. However, there are still areas of 

opportunity, among which it can be mentioned that the method used to tune the drivers 

was the Ziegler-Nichols method, which tunes the driver empirically. This can be 

improved by implementing a methodology to optimize these parameters, or else 

complement the closed-loop strategy with optimization. On the other hand, in the control 

loops proposed in the project, although the application with the cases presented was 

correct, a methodology was applied to close these loops sequentially and without 

considering the dead time in the controllers. This was mainly done because the proposed 

biodiesel production process does not contain material recycles or energy integration. 
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Abstract 

Cascade control is a multi-loop control structure often used in industrial applications, 

which offers a possibility for applying advanced controllers. This paper compares cascade 

control with type-1 fuzzy controllers, type-2 fuzzy controllers, and PID controllers on the 

case study of a tubular chemical reactor. The primary controllers are type-1 fuzzy PID 

and PD controllers, type-2 fuzzy PID and PD controllers, or conventional PID controllers. 

The secondary controllers are type-1 fuzzy P, type-2 fuzzy P or conventional P 

controllers. Simulation results demonstrate that cascade control with both types of fuzzy 

controllers can assure better values of followed performance indices and higher energy 

savings measured by the coolant consumption during control of the tubular chemical 

reactor. 

 

Keywords: cascade control, type-1 fuzzy control, type-2 fuzzy control, PID control, 

tubular chemical reactor. 

1. Introduction 

Between advanced control strategies, fuzzy logic control is often found in applications 

where conventional closed loop control does not assure satisfactory results because of 

non-linearity, asymmetric dynamics, or uncertainties in the controlled processes. Fuzzy 

logic control is based on the theory of fuzzy sets pioneered by Zadeh (1965). Zadeh 

(1975) also introduced the concept of the type-2 fuzzy logic. History, application, and 

possible future of fuzzy control are summarized in Guerra et al. (2015). Mendel (2018) 

introduced rule-based systems from type-1, interval type-2 and general type-2 fuzzy 

systems. Mittal et al. (2020) offered overview of past, present, and future trends of type-

2 fuzzy logic applications including theoretical and practical implications.  

Cascade control is a multiloop control strategy that enables using of advanced controllers. 

Meng and Hou (2011) designed cascade control with main fuzzy PID controller and 

auxiliary PID controller for hydro-viscous drive speed regulating start. Kumbasar and 

Hagras (2013) proposed a cascade control architecture, which includes the inner and outer 

control loops for the path tracking control of mobiles robots in presence of uncertainty. 

García et al. (2007) designed fuzzy logic controller with intermediate variable as an 

alternative for cascade control with fuzzy controllers and compared both strategies. Xie 

and Liu (2017) formed fuzzy cascade control based on known control history for 

superheated temperature. 

Despite intensive research and promising applications in various fields, there is a lack of 

studies devoted to implementation of type-1 fuzzy logic controllers (T1FLCs) and type-

2 fuzzy logic controllers (T2FLCs) to tubular chemical reactors and T2FLCs in cascade 

control. The main goal of this paper is to show that cascade control (CC) with T2FLCs 

can guarantee energy savings and better performance compared to CC with conventional 
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PID controllers and is alternative to CC with T1FLCs when controlling systems with 

uncertainties, asymmetric dynamics or nonlinear systems, as tubular chemical reactors.  

2. Cascade fuzzy control 

2.1. Cascade control 

Cascade control (CC) (Figure 1) is a multi-loop control structure used in process industry 

to improve control under immeasurable disturbances (Bequette, 2003). In Figure 1, C1 is 

the primary (main) controller, C2 is the secondary (auxiliary) controller, P1 is the primary 

controlled system, and P2 is the secondary controlled system. Signals r1 and r2 represent 

reference values, y1 and y2 are controlled outputs, e1 and e2 are errors, u2 is the manipulated 

variable that results from the control input calculated by C2 influenced by the disturbance 

d2. The disturbance d1 influences the primary controlled output y1. Both controllers in the 

CC can be fuzzy controllers. 

 

Figure 1: Scheme of a cascade control system 

2.2. Type-1 fuzzy control and interval type-2 fuzzy control 

The structure of T1FLC is represented in Figure 2. The crisp inputs to the dynamic 

controller can be errors, derivatives of errors, integrals of errors or previous values of 

measurements backward in time. Fuzzifier converts input data to degrees of membership 

by a lookup in one or several membership functions. Rule base includes various empirical 

rules. Defuzzifier converts the resulting fuzzy set to numbers that enter the process as 

control inputs.  

 

Figure 2: Type-1 fuzzy controller 

 

Figure 3: Interval type-2 fuzzy controller 

Figure 3 represents structure of T2FLC. The rule base for T2FLC remains the same as for 

T1FLC, but its membership functions are type-2 interval fuzzy sets, and a reducer must 

be used prior defuzzification (Kumbasar, 2014). The advantage of using type-2 fuzzy 

logic (FL) compared to type-1 FL is that type-2 FL can handle uncertainty in control, 

which may be due to noise, dynamic changes in the environment, or imprecision in the 

models (Mittal et al., 2020).  

3. Case study 

The case study from chemical engineering domain is devoted to a tubular chemical reactor 

(TCR) with exothermic consecutive reactions A
𝑘1
→ B

𝑘2
→ C in the liquid phase and with the 

co-current cooling (Dostal et al., 2015). Vasičkaninová et al. (2019) did steady-state 

analysis and step-response based identification of the TCR and based on presented results, 

TCR is the nonlinear system with asymmetric dynamics and can be treated as a system 

with uncertainty. As B is the main product and C is the side product, it is necessary to 

 1 

 2 
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keep the concentration cB at the reference value. In CC of TCR, the concentration cB is 

the primary controlled output and the temperature of reaction mixture T is the secondary 

controlled output. The manipulated variable is the flow rate of coolant q. 

3.1. Cascade control of the tubular chemical reactor using conventional PID controllers 

The transfer function of the PID controller has the form (Mikleš and Fikar, 2007) 

𝐶 = 𝑘𝑝 (1 +
1

𝑡𝑖𝑠
+ 𝑡𝑑𝑠) (1) 

where kp is the proportional gain, ti is the integral time, td is the derivative time. The 

secondary controller was tuned experimentally as a P controller. The primary PID 

controller was tuned using the Rivera-Morari method (PID-RM) and the primary PI 

controller was tuned using the Cohen-Coon method (PI-CC) (Bequette, 2003). Two 

primary controllers assuring best simulation results were chosen from several designed 

controllers and no fine-tuning was done. Table 1 presents the controller parameters. 

Table 1: PID controller parameters 

Controller parameters  Primary controllers Secondary controller 

 PID-RM PI-CC P 

kp  1.95 2.18 -0.4 

ti 14.30 3.86  

td  0.67   

3.2. Cascade control of the tubular chemical reactor using fuzzy controllers 

3.2.1. Secondary type-1 fuzzy P controller and secondary type-2 fuzzy P controller 

Both, the secondary type-1 fuzzy P controller (P-T1FLC) and the secondary type-2 fuzzy 

P controller (P-T2FLC) were designed as Sugeno-type fuzzy inference systems (FISs), 

each with 2 rules 

𝐼𝑓 𝑒 𝑖𝑠 𝐴𝑖 𝑇ℎ𝑒𝑛 𝑓𝑖 =  𝑝𝑖𝑒 +  𝑞𝑖 (2) 

where e is the error, pi, qi are the consequent parameters presented in Table 2 together 

with the antecedent parameters Ai and the parameters of the symmetric Gaussian 

membership function i, ci (Zhao and Bose, 2002) used for fuzzification of inputs. 

Table 2: Parameters of symmetric Gaussian functions, antecedent and consequent parameters 

Rule i ci Ai pi qi 

1 5.93 -14.79 A1 -0.029 0.23 

2 5.93 -0.81 A2 -0.031 0.24 

 

3.2.2. Primary type-1 fuzzy PD controller and primary type-2 fuzzy PD controller 

Both, the primary type-1 fuzzy PD controller (PD-T1FLC) and the primary type-2 fuzzy 

PD controller (PD-T2FLC) were designed as the Sugeno-type FISs with 6 rules: 

𝐼𝑓 𝑒 𝑖𝑠 𝐴𝑖 𝑎𝑛𝑑
𝑑𝑒

𝑑𝑡
𝑖𝑠 𝐵𝑖 𝑇ℎ𝑒𝑛 𝑓𝑖 =  𝑝𝑖𝑒 +  𝑞𝑖

𝑑𝑒

𝑑𝑡
+  𝑟𝑖 (3) 

where e is the error, de/dt is the derivative of error, Ai, Bi are the antecedent parameters 

and pi, qi, ri are the consequent parameters, which are presented in Table 3.  

Sugeno-type FISs were generated using the subtractive clustering method. Triangular 

membership functions (Zhao and Bose, 2002) were used for fuzzification of inputs and 

Table 4 presents parameters of used triangular membership functions. 
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Table 3: Antecedent parameters and consequent parameters 

Rule Ai Bi pi qi ri 

1 A1 B1 121.29 -16.33 316.04 

2 A1 B2 -22.92 -68.84 329.37 

3 A2 B1 87.13 -192.30 201.02 

4 A2 B2 30.52 128.56 370.74 

5 A3 B1 103.65 -28.07 142.95 

6 A1 B3 84.70 -4.02 178.70 

Table 4: Parameters of triangular membership functions 

e de/dt 

ai bi ci ai bi ci 

-0.96 -0.05 0.86 -0.59 -0.28 0.006 

-0.01 0.86 1.78 -0.28 0.02 0.32 

0.87 1.78 2.70    

 

3.2.3. Primary type-1 fuzzy PID controller and primary type-2 fuzzy PID controller 

Both, the primary type-1 fuzzy PID controller (PID-T1FLC) and the primary type-2 fuzzy 

PID controller (PID-T2FLC) were designed as the Sugeno-type FISs with 8 rules: 

𝐼𝑓 𝑒 𝑖𝑠 𝐴𝑖 𝑎𝑛𝑑
𝑑𝑒

𝑑𝑡
𝑖𝑠 𝐵𝑖 𝑎𝑛𝑑 ∫ 𝑒 𝑑𝑡 𝑖𝑠 𝐶𝑖 𝑇ℎ𝑒𝑛 𝑓𝑖 =  𝑝𝑖𝑒 +  𝑞𝑖

𝑑𝑒

𝑑𝑡
+  𝑟𝑖 ∫ 𝑒 𝑑𝑡 + 𝑠𝑖 (4) 

where e is the error, de/dt is the derivative of error, ∫ 𝑒 𝑑𝑡 is the integral of error, pi, qi, ri, 

si are the consequent parameters. Table 5 presents the antecedent and consequent 

parameters. Table 6 shows the parameters of the symmetric Gaussian membership 

functions (Zhao and Bose, 2002) used for the fuzzification of inputs. 

 Table 5: Antecedent and consequent parameters 

Rule Ai Bi Ci pi qi ri si 

1 A1 B1 C1 52.44 -0.41 132.53 45.48 

2 A1 B1 C2 25.95 11.54 31.96 52.56 

3 A1 B2 C1 27.66 -0.40 0.18 330.32 

4 A1 B2 C2 -2.44 0.07 0.15 330.53 

5 A2 B1 C1 129.66 91.08 21.09 111.06 

6 A2 B1 C2 141.61 -18.23 6.13 66.79 

7 A2 B2 C1 144.14 -2.60 11.26 85.82 

8 A2 B2 C2 13.47 -2.26 50.51 16.70 

Table 6: Parameters of symmetric Gaussian membership functions 

e de/dt 
∫ 𝑒 𝑑𝑡 

i ci i ci i ci 

0.82 -0.04 0.06 -0.26 3.12 0.17 

0.59 1.83 0.05 0.07 3.07 7.29 

4. Simulation results 

The MATLAB/Simulink R2021b programming environment was exploited for 

simulations using CPU i7-11700 2.50 GHz, 32 GB RAM. The simulation results for six 

scenarios in reference tracking and disturbance rejection are presented in Figures 4 and 5. 
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The primary reference value was the desired value of the product concentration cB = 

2.15 kmol m-3. The disturbances were represented by increasing the flow rate of the 

reaction mixture from 0.2 to 0.36 m3s-1 at time 100 s and then by decreasing to 0.1 m3s-1 

at time 200 s. The results were compared numerically assessing the total consumption of 

cooling water V during control, the integral performance index IAE (integrated absolute 

error), and ISE (integrated squared error) defined e. g. in Mikleš and Fikar (2007). Table 7 

summarizes these numerical results. 

 

Figure 4: Control responses of the product 

concentration cB in six scenarios 

 

Figure 5: Trajectories of the manipulated 

variable in six scenarios 

Table 7: Values of V, IAE, and ISE 

Scenario Primary 

controller 

Secondary 

controller 

V 

(m3) 

IAE 

(kmol m-3 s) 

ISE 

(kmol2 m-6 s) 

1 PI-CC P 100.4396 9.9652 8.4881 

2 PID-RM P 108.3361 9.7175 8.5058 

3 PD-T1FLC P-T1FLC 99.7704 9.5105 8.4505 

4 PD-T2FLC P-T2FLC 99.2400 9.6808 8.4572 

5 PID-T1FLC P-T1FLC 98.5960 9.9505 8.4576 

6 PID-T2FLC P-T2FLC 98.5958 9.7361 8.3604 

 

CC with PID-T2FLC and P-T2FLC guaranteed the lowest coolant consumption and the 

coolant consumption using CC with PID-T1FLC and P-T1FLC was almost the same. The 

coolant consumption increased by 0.65 % if CC with PD-T2FLC and PD-T2FLC was 

used and by 1.19 % for CC with PD-T1FLC and P-T1FLC. CC with conventional PID-

RM and P assured the highest coolant consumption. CC with PD-T1FLC and P-T1FLC 

reached the lowest value of IAE and the second best according to IAE was CC with PD-

T2FLC and P-T2FLC. The worst cascade control according to IAE achieved conventional 

CC with PI-CC and P controllers. The IAE increased in this CC by 4.78 %. The best value 

of ISE assured CC with PID-T2FLC and P-T2FLC. The second best was the CC with PD-

T1FLC and P-T1FLC with the ISE value greater by 1.08%. CC with PID-RM and P 

controller was the worst with the ISE value higher by 1.74% compared to the best CC 

with PID-T2FLC and P-T2FLC. Comparing the coolant consumption, the ISE and IAE 

values, the CC with the primary PID-T2FLC and the secondary P-T2FLC was the best 

CC scenario.  

5. Conclusions 

CC with conventional controllers, type-1 fuzzy controllers, and type-2 fuzzy controllers 

was studied on TCR. CC with the primary PID-T2FLC and the secondary P-T2FLC 
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assured the most efficient operation of TCR. This scenario assured the lowest coolant 

consumption and the lowest value of the ISE performance index. According to the IAE 

performance index, CC with the primary PD-T1FLC and the secondary P-T1FLC was the 

best. The second best was CC with the primary PD-T2FLC and the secondary P-T2FLC. 

Based on the comparison of all results, it can be stated that both types of FLCs can be 

used successfully in cascade control for reaching the goals of control. Application of more 

complicated fuzzy type-2 controllers helped to improve the energetic efficiency of the 

studied TCR measured by coolant consumption. Further intensive research in this field 

will continue in the future. 
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Abstract 

The high penetration of renewable sources into fossil fuel-based thermal power 

plants demand for operational flexibility with Carbon Capture and Storage (CCS) 

technologies. Post-combustion CO2 Capture (PCC) processes using chemical absorption 

of CO2 in flue gas need to cope with flexible operation and the CO2 capture rate must be 

controlled under fluctuating flue gas conditions. To fill this gap, in this work, an optimal 

control framework is proposed and implemented on PCC with monoethanolamine 

(MEA)-based CO2 capture process simulation. A two-input-two-output control structure 

is selected from PCC that consist of flue gas flow rate and lean MEA flow rate as the 

input/manipulated variables while CO2 capture rate and reboiler duty are considered as 

the output/controlled variables. Open-loop simulations are performed in which simulated 

step tests are designed by individually moving the input variables as steps and collecting 

the resulting data for the output variables. The classical autoregressive model with 

exogenous inputs (ARX) method is used for deriving the data-driven simplified dynamic 

model that can be embedded inside the Biologically Inspired Optimal Control Strategy 

(BIO-CS) casted as Model Predictive Control (MPC) to compute control moves for 

simultaneous control of both output variables in the dynamic simulation. The results are 

compared to the standalone Proportional-Integral-Derivative (PID) controller existed in 

the simulation in terms of the time required to reach new steady state and output tracking 

error. The proposed approach improves the overall performance of the process resulting 

in faster and flexible setpoint tracking during ramp decrease in the flue gas flow rate case 

study and thus providing a promising alternative. 

Keywords: Carbon Capture and Storage (CCS), Process Control, Dynamic Simulation. 

1. Introduction 

The global Greenhouse Gas (GHG) emissions need to peak now and be reduced 

to net-zero by 2050 to fulfil the Paris agreement (Figueres et al. 2017). Fossil fuel-based 

thermal power plants accounts for the majority of the GHG, such as CO2 release. 

Therefore, these energy processes can be integrated with Carbon Capture and Storage 

(CCS) technologies to mitigate CO2 emissions and produce cleaner electricity (Dutta et 

al. 2017a). In addition, hydrogen can, as an energy carrier, enable decarbonization and 

increased deployment of renewable energy through sector coupling of transport, industry, 

buildings, as well as the power sector. Norway has the potential to produce hydrogen 

from the abundant natural gas resources with CCS and provide Europe with blue 

hydrogen required for the long-term plans (Skar et al. 2018). For such clean energy, post-

combustion CO2 capture (PCC) processes using chemical absorption of CO2 in flue gas 

from power plants are the most near-term carbon capture technologies (Dutta et al. 
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2017a). However, the regeneration of chemical solvents is a highly energy intensive 

process that require particular attention. The excess heat requirement at the reboiler in the 

stripper lead to an increase in the overall energy requirements (Dutta et al. 2017b). 

Additionally, the CO2 capture rate needs to be maintained at a desired level during power 

plant load variations that changes flue gas flow rates. In the past, PCC plant behavior has 

been analyzed by variations in steam extraction from the power plant and plantwide 

control methods have been studied for suitable control structures using dynamic 

simulations (Dutta et al. 2017a). Few studies have been performed to examine the effect 

of controlling the CO2 capture rate when the PCC plants operate under fluctuating flue 

gas conditions. In industry, decentralized control structures and open-loop responses for 

load changes have been experimentally studied for flexible operations (R. Montanes et 

al. 2018). Additionally, the applications of nonlinear Model Predictive Control (MPC) 

have been demonstrated on PCC pilot plants considering CO2 capture ratio as a controlled 

variable and reboiler duty as a constraint (Hauger et al. 2019). However, the simultaneous 

control of CO2 capture rate and reboiler duty has not been analyzed yet. Therefore, a 

control strategy capable of mitigating the effects of fluctuations and improve overall 

performance of the system during simultaneous control with minimal human interference 

must be implemented. 

In recent years, a Biologically Inspired Optimal Control Strategy (BIO-CS) is 

developed and implemented on different processes. The applications of BIO-CS include 

(i) a nonlinear first principle-based fermentation process model; and (ii) a simulation of 

a subsystem from the Integrated Gasification Combined Cycle (IGCC) that involves 

absorption column associated with the Acid Gas Removal (AGR) using physical solvent 

selexol (Mirlekar at al. 2018a, 2018b). The results of the implementation show that the 

BIO-CS can tackle various challenges such as, nonlinearities in the process models, 

multivariable control structures, performance improvement in terms of setpoint tracking 

error and response time when compared with classical Proportional-Integral-Derivative 

(PID) controller. Specifically, BIO-CS casted as MPC has displayed faster computational 

time advantage over standalone BIO-CS. Hence, to address challenges in CCS 

technologies combined with power plants, in this work, a design of an optimal control 

framework is presented and its implementation on PCC with monoethanolamine (MEA)-

based CO2 capture dynamic process model simulation is illustrated. The BIO-CS as MPC 

approach is at the core of this optimal control framework with inclusion of steps that 

needs to be considered during the implantation of the framework on PCC simulation. The 

application of the developed framework addresses problems related to control stricture 

with multiple variables, connection between two software platforms, maintaining 

required CO2 capture rate during variations in the flue gas flow rate and increasing energy 

efficiency. 

The paper is organized as follows: section 2 describes the PCC process; section 

3 discusses the design of an optimal control framework with details on implementation 

steps; section 4 consists of framework implementation case study and closed-loop 

simulation results; section 5 concludes the paper. 

2. Post-combustion CO2 Capture (PCC) Process 

The post-combustion CO2 capture process considered for application in this 

paper is a dynamic simulation of an amine-based chemical absorption process in Aspen 

HYSYS
®

 V10 (Aspen HYSYS
®

 software). As depicted in Figure 1, this process consists 

of two cylindrical columns representing absorber and regenerator/stripper respectively. 

The flue gas stream containing nitrogen, water and CO2 enters the absorber column from 
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the bottom. The lean solvent stream consisting of a mixture of fresh MEA, CO2 and water 

is connected at the top of the absorber. In the flowsheet, the flow rate of the lean MEA is 

regulated via PID controller for desired CO2 capture rate. The absorber and stripper are 

represented by equilibrium-based stage models and random packing material. After the 

absorption process, the treated gas stream at the top obtained after desired CO2 capture 

with trace amount of CO2 is released into the atmosphere. 

 
Figure 1: Schematic of the dynamic simulation of the PCC process in Aspen HYSYS

®
 

The rich solvent stream coming from the bottom of the absorber is pumped through a 

heat-exchanger and sent at the top of the regenerator. The heat exchanger employed for 

heat transfer between rich and lean solvents is modeled using plate-fin configuration and 

the thermal properties are estimated from the steady-state conditions. CO2 is separated 

from the rich solvent in the regenerator with condenser and reboiler modeled as volumes 

with suitable heat duty. The separated CO2 stream at the condenser is sent for storage or 

compression while the lean solvent stream at the bottom of the regenerator is pumped 

backed into the heat-exchanger. Pumps are modeled by specifying their efficiencies and 

duty. Few assumptions are also made in this dynamic simulation, for example, the piping 

is ignored, and the corresponding pressure drop is included in the neighboring equipment. 

The dynamic simulation model of PCC process is validated using data from the pilot plant 

available in the literature (Dutta et al. 2017a). The fluctuations in the flue gas flow rate 

caused by ramp down or ramp up activities performed during load variations affect CO2 

capture rate and energy requirements when such PCC model is connected to a power 

plant. This issue in a dynamic operation of the system is addressed using the optimal 

control framework in this work and discussed in the next section. 

3. Optimal Control Framework 

The design of an optimal control framework consists of three steps. 

i. Data-driven PCC model development for controller design 

ii. Formulation of BIO-CS casted as MPC 

iii. Implementation of control laws on the simulation plant 

These steps are summarized in a block diagram depicted in Figure 2. The data-driven 

dynamic process model of PCC system is developed as a first step in the design of an 

optimal control framework. Initially, input/manipulated and output/controlled variables 

are selected based on the previous knowledge of the PCC process. For the implementation 

case study considered in this paper, flue gas flow rate and the valve opening that regulates 

lean MEA flow rate are chosen as the input variables while CO2 capture rate and reboiler 

duty are considered as the output/controlled variables. Next, the open-loop simulation is 

performed by moving each input variable as a step change to the process. The obtained 

data, plotted in Figure 3, is used in the classical autoregressive model with exogenous 

inputs (ARX) method for deriving the simplified dynamic model. After the data 

processing, the dynamic characteristics of the PCC system are represented in a typical 

continuous-time state-space model format to be employed in the control strategy. The 
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second crucial step in this framework is the design of a controller based on previously 

developed BIO-CS that mimics ant’s rule of pursuit phenomenon. In this case, BIO-CS 

casted as MPC configuration is used for implementation purposes due to its computation 

time advantage (Mirlekar et al. 2018b).

Figure 2: Schematic representation of the optimal control framework

In BIO-CS as MPC formulation, the optimal control problem associated with each agent 

is solved considering a fixed setpoint trajectory of an output variable for error 

minimization. dynopt (a freely available optimal control toolbox) is employed to solve 

the optimal control problems associated with BIO-CS as MPC and the optimal input 

trajectories are computed (MATLAB
®

software, dynopt library). Specifically, dynopt is 

a gradient-based solver that utilizes the orthogonal collocation on finite elements method 

in conjunction with the constrained nonlinear minimization function fmincon to determine 

Figure 3: Open-loop simulation data used in the model development

The third important step deals with the implementation of control moves on the PCC 

simulation plant in an online manner. For this purpose, a freely available MATLAB
®

-

Aspen HYSYS
®

link is employed for communicating the controller and the simulation 

plant model. As shown in Figure 2, the BIO-CS as MPC developed as a script can

compute control trajectory (ub) over a sample time horizon and call simulation for 

implementation using link. The script/function is paused until the implementation is being 

performed via simulation/integration for a specified time/horizon. Once this specified 

time is reached at a feedback sample time, the values of output variables (y) are sent back 

from simulation to controller and the loop is closed where controller subroutine is called 

for calculation of control trajectory (ub) for the consecutive time horizon. The 

computational time for control moves calculation is about 2 seconds. In the next section, 

the analysis of the implementation results is presented.

time advantage (Mirlekar et al. 2018b).
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4. Implementation Results 

The PCC system model and the optimal control framework described in previous 

sections are employed for implementation purposes. Figure 4 shows the closed-loop 

simulation results of optimal control framework in comparison with standalone PID 

controller implementation for setpoint tracking case study. These results are assessed in 

terms of time to reach steady-state and the output setpoint tracking error. The case study 

mimics a real-world scenario in which variations in flue gas flow rate are introduced 

based on the ramp down operations of a power plant.  

  
Figure 4: Closed-loop simulation results: setpoint tracking case study 

For such simulation, a transient trajectory replicating a 10% ramp decrease in flue gas 

flow rate is applied over a period of 24 minutes followed by a constant flue gas flow rate 

profile for next five hours as an input to the process and represented by green solid line. 

Such dynamic operation is controlled by manipulating the valve opening that regulates 

the lean MEA flow rate for setpoint tracking scenario. For PI controller application, a 

fixed setpoint value of 97.34% is given for CO2 capture rate with controller gains as kc = 

0.1 and 𝜏c = 0.25. Note that the reboiler duty cannot be controlled by PI controller. The 

standard Aspen HYSYS
®

 algorithm type is chosen for PI and tuning parameters are 

selected from the literature (Dutta et al. 2017b) and extensive simulation runs. In the case 

of BIO-CS as MPC implementation, prediction horizon/pursuit time (∆) of 5 minutes and 

the feedback sample time of 1 minute is selected. A constant setpoint trajectory of 97.34% 

and 124kW shown by black dashed line is supplied for CO2 capture rate and reboiler duty, 

respectively. PID controller is disabled, and the valve opening calculated by BIO-CS as 

MPC with the objective of minimizing the difference between the setpoints and the output 

variables is supplied to the system. The formulation of BIO-CS as MPC allows 

simultaneous control of both the outputs giving major advantage over standalone PI 

controller. As depicted in Figure 4, the corresponding output data associated with CO2 

capture rate and reboiler duty as well as the computed input trajectory of lean MEA flow 

rate is recorded during both control strategy implementation. During the implementation 

of the developed approach, the reboiler duty and CO2 capture rate reach the desired 

setpoint in approximately 60 and 25 minutes from the time of introduction of flue gas 

flow rate ramp down profile, respectively. The settling time and the output tracking error 

with respect to the setpoint for both the outputs for PI execution are relatively large when 

compared with the BIO-CS as MPC performance. This translates into reasonably high 
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reboiler duty and higher energy demand to achieve required CO2 capture during PI 

implementation. Thus, these results illustrate the benefits of employing the optimal 

control framework. 

5. Conclusions 

In this article, the implementation of an optimal control framework on PCC 

process simulation was demonstrated successfully. The goal of the control strategy design 

was to track the setpoints of the desired variables, in this case CO2 capture rate and 

reboiler duty, during ramp decrease in the flue gas flow rate. Following objectives were 

accomplished in this paper: (i) A systematic design of the proposed methodology with 

BIO-CS as MPC at the core and steps that need to be followed during its implementation; 

(ii) address challenges associated with the interaction of multiple variables representing 

PCC control structure; (iii) communicate two software platforms and enhancing the 

capabilities of the process simulator. The results showed that the developed approach 

improves the time required to reach new setpoints for multiple outputs and the setpoint 

tracking error when compared with traditional control approaches. Therefore, such 

advancements increase energy efficiency and reduce GHG emissions in the decarbonized 

economy where integrations of CCS technologies into the thermal power plants is 

necessary. The studies associated with disturbance rejection cases and simulation of more 

challenging scenarios will be the subject of investigation in the future. The developed 

framework thus provides a promising methodology for advanced control of energy 

systems with CCS technologies addressing flexible operations. 
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Abstract 

Non-upgraded process monitoring approaches rationally and methodically cannot cope 

with the vast, diverse, and heterogeneous so-called "Big Data" produced rapidly due to 

Industry 4.0 applications. They require radical enhancements in the computational 

capacity, required CPU time, precision, and flexibility to emulate newly emerged 

technologies. The Industry 4.0 context, also known as networked information-based 

technology, is the most current level of industrial innovation that significantly improves 

the quality of processes and products. 

This paper reviews the Fault Detection and Diagnosis (FDD) scheme as a requisite 

component of the process monitoring systems, considering Industry 4.0 requirements. 

Furthermore, to represent the adequate Industry 4.0 FDD framework, different applied 

technologies associated with Industry 4.0 are studied concisely. 

 

Keywords: Industry 4.0, Process Monitoring, Big Data Analytic. 

1. Introduction 

The Industry 4.0 context outlines an evolution towards innovative products and the digital 

world. Through it, industrial automation technologies are at the beginning of a new 

modern period. With the intention of process monitoring, data with distinct and complex 

characteristics must be analyzed. Internet of Things (IoT) devices and sensors used in 

Industry 4.0 produce Big Data that may possess various forms of uncertainty (Hariri et 

al., 2019). Analyzing complex uncertain data in Industry 4.0 is a time-consuming and 

challenging task that necessitates the use of relevant Big Data Analytics (BDA) platforms 

to transform Big Data into smart data to derive hidden knowledge (Zhang et al., 2010).  

Process monitoring of Industry 4.0 and large-scale systems can be tricky due to the many 

sensors, the high correlation among the measured variables, and the complex interaction 

between the faults and symptoms (Lau et al., 2013). Studies prove that applying regular 

process monitoring systems, such as the SCADA system, begets difficulties manipulating 

Industry 4.0 challenges (Tan et al., 2018). Typical process monitoring methods would 

produce tremendous computation pressure when faced with large-scale, complex data. 

They are ineffective in interpreting high-speed data flowing from various sources because 

of their congenital deficiencies (Gokalp et al., 2017).  

In the era of Industry 4.0 and Big Data, data-driven approaches find a particularly proper 

context for expanding their application scopes and growing in diversity and importance 

(Reis and Gins, 2017). Data-driven process monitoring methods do not need the process 
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model and the associated expert knowledge. They have become increasingly popular in 

recent years, especially in complex industrial processes (Ge et al., 2013), and represent 

one of the most reliable areas in research and practice. However, they also have some 

crucial shortcomings: they depend on unbiased data, and training and testing samples 

should be drawn from the same distribution of data (Saufi et al., 2019). 

The process monitoring challenges presented by Industry 4.0 technologies must be well 

answered to make them provide acceptable performance. In this paper, process 

monitoring requirements in the Industry 4.0 context, mainly from the data-driven FDD 

points of view, are studied. In this regard, fundamental components of the Industry 4.0 

context are addressed, too.   

2. Industry 4.0 and Associated Technologies 

The transition from Industry 3.0 to Industry 4.0 requires inclusive analysis to develop a 

strategic plan (Zhou et al., 2016). Industry 4.0 adoption demands considerable capital 

investments; therefore, its characteristics for prospective transformation should be 

principally comprehended. Industry 4.0 is driven by several emerging concepts and 

technologies, including Cyber-Physical Systems (CPS), the IoT, data analytics, cloud 

systems, etc. For any process to be regarded as Industry 4.0, constant connectivity, human 

assistance, and decentralized decision-making are absolute necessities (Muhuri et al., 

2019).  

The introduction of CPS is one of the most remarkable changes and the core foundation 

of Industry 4.0. It is based on the idea of integrating the physical and virtual worlds. It 

removes the boundaries between these two worlds and promotes the interconnection of 

physical and cyber elements (Angelopoulos et al., 2020). “Things” in CPS can 

communicate with each other through an IoT communication platform to detect their 

environment, interpret available data, and act on the physical world. The IoT offers 

promising transformational solutions that enable the real-time interconnection of different 

sensors, actuators, machines, etc., safely (Xu et al., 2018). It is one of the most significant 

contributions to Industry 4.0 and intelligent manufacturing. The industrial IoT is a subset 

of the IoT and follows the exact core definition, but the “things” and goals of the industrial 

IoT are usually different (Thames and Schaefer, 2016). 

One of the relevant concepts of Industry 4.0 is Big Data. The main characteristics of Big 

Data include volume, velocity, variety, veracity, and value (Yan et al., 2017). In general, 

Big Data refers to datasets that cannot be perceived, acquired, managed, and processed 

by conventional tools within a tolerable time because of their size, which usually reaches 

Petabyte (=1024 Terabyte) or Exabyte (=1024 Petabyte) (Nguyen et al., 2020). Since 

usual computers may not succeed in processing Big Data, performing the respective 

analysis with the cloud system would be simpler and more efficient. The main objective 

of cloud computing is to use enormous computing and storage resources under 

concentrated management to provide Big Data applications with rigorous computing 

capacity (Chen et al., 2014). 

Cloud system developments aim to minimize the cost of capital investments in 

infrastructure set-up, reduce maintenance efforts, and achieve efficient management. 

Parallel processing, virtualized resources, and data service integration with scalable 

storage are all advantages of cloud system technologies. Cloud computing developments 

offer solutions for the storage and processing of Big Data. The role of cloud systems is 

crucial for Big Data as they can provide any infrastructure and a variety of tools on-

demand. Given that the emergence of Big Data accelerates the growth of cloud 

computing, the reciprocal association between them is constructive (Nguyen et al., 2020). 
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3. Process Monitoring within Industry 4.0 Context 

In the Industry 4.0 context, thousands of devices and sensors would be installed to collect 

and analyze data (Henao-Hernández et al., 2019). To extract essential information from 

Big Data obtained from a variety of sources, it must be synthesized into structured data, 

which removes constraints imposed by format, dimension, and other factors (Yan et al., 

2017). 

Applying a well-organized data processing framework to monitoring Big Data has 

become a considerable challenge. Therefore, new difficulties in understanding and 

managing Big Data and extracting underlying knowledge have emerged (Zhang et al., 

2018). The consequential considerations are to verify that the data is of high quality and 

that the data sources are trustworthy. The first step to monitoring Big Data is determining 

where and how to store it. The following step, data processing, requires rapid data loading 

and querying. Additionally, efficiency and adaptivity in storage space utilization and 

dynamic workload patterns are expected. The next step is to analyze data that applies 

algorithms to interpret data and extract unknown valuable patterns, relationships, and 

information (Zhang et al., 2018). 

3.1. Big Data Analytics 

BDA refers to collecting, storing, processing, analyzing, and distributing the data and 

providing an integrated framework that supports decision-making. Time and 

infrastructure are dominant factors in BDA that would be met through cloud computing 

systems (Londhe and Prasada Rao, 2018). BDA tools are suitable for Industry 4.0 to ease 

cleaning, formatting, and transforming industrial data (Santos et al., 2017). However, 

there are various difficulties in applying BDA in Industry 4.0. The two primary ones 

would be to choose the most relevant data and to develop a model capable of exploring 

the underlying dependence structures (Zhu et al., 2018). Moreover, visualization of the 

results, heterogeneous data generated by different equipment, and incomplete data are 

problems for real-time BDA (Gokalp et al., 2017).  

To monitor Big Data, FDD systems must possess the ability to convert problems to small 

ones to make better decisions and reduce costs (Hariri et al., 2019). Obviously, some 

primary strategies have been adopted to achieve this needed attribute. Applying several 

parallel algorithms, called parallelization, that work simultaneously, either doing the 

same tasks or different ones, and using incremental (gradual) learning algorithms that 

learn from data step-by-step are among the most common ones (Zimányi and Kutsche, 

2015). Moreover, a hybrid of these two strategies could be a solution, too. Additional 

regular proposed methods in the literature are divide-and-conquer, instance selection, and 

granular computing (Hariri et al., 2019). This problem within the Industry 4.0 context is 

addressed through cloud system technology that significantly assists practical processing. 

3.2. Fault Detection and Diagnosis 

In general, none of the FDD methods has all the desirable features that a flawless 

technique must possess (Ardakani et al., 2017). Hybrid frameworks are recommended to 

cover the weaknesses of individual strategies and propose robust FDD systems. In a 

hybrid framework, methods are integrated while belonging to any type (Reis and Gins, 

2017). 

Fault detection and fault diagnosis are both significantly essential, but it should be noted 

that fault detection compared with fault diagnosis is a well-developed topic. Besides, the 

required time for fault detection would be trivial compared with the fault diagnosis, which 

may take days. Therefore, fault diagnosis needs more research concentration, while 

process monitoring systems commonly employ both simultaneously (Reis and Gins, 

2017).  
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The most popular supervised data-driven FDD approaches are based on classification 

methods that would be considered a classification problem (Venkatasubramanian et al., 

2003). Without requiring explicit mathematical models, classifiers could be trained based 

on pattern recognition principles on historical data, including information about normal 

and different faulty situations. By optimizing or adjusting the parameters, the learning 

process enables these classifiers to extract knowledge from data. Then, the trained 

classifiers can be used for process supervision to detect and diagnose faults in the process 

output measurements (Shokry et al., 2017).  

The classifiers would be categorized into multiclass classifiers and One-Class Classifiers 

(OCC). Multiclass classifiers for training need at least two labeled classes of samples, 

while OCCs need only one class for training (Chiang et al., 2004). Depending on the FDD 

purposes, any combination of the classifiers may be applied. Multiclass classification of 

Big Data is a subject of broad interest in machine learning research. It is necessary to 

extract process conditions between different classes that may also be imbalanced, making 

it challenging to differentiate faults from normal data (Sleeman and Krawczyk, 2021). 

Because of the possible time constraints and sample availability, the FDD algorithms 

would be divided into four general groups: batch learning, incremental learning, online 

learning, and anytime learning (Zimányi and Kutsche, 2015). For smart FDD, real-time 

access to Big Data is necessary to identify faults in the shortest possible time. For 

monitoring Big Data, the speed with which the data is processed must meet the rate at 

which it is received, and this is one of the critical criteria for selecting the FDD framework 

(Khan et al., 2017). 

3.3. Advanced Techniques 

For employing FDD in the Industry 4.0 context, there is a limitation to using traditional 

data-driven methods, although they would be implemented in some circumstances (Yan 

et al., 2017). Therefore, several advanced machine learning techniques for monitoring 

Big Data such as Deep Learning (DL), Active Learning (AL), feature learning, distributed 

learning, and transfer learning are proposed. Among them, DL and AL have attracted 

more attention. AL, categorized into semi-supervised approaches, is applicable when data 

is abundant while related reliable labels are scarce or expensive. Learning in this manner 

is a time-consuming and not always straightforward task, but AL is designed to select 

critical samples for labeling to achieve high accuracy. In the literature, three main AL 

scenarios are proposed: membership query synthesis, stream-based selective sampling, 

and pool-based sampling (Qiu et al., 2016). 

DL is a branch of machine learning that processes data through multiple non-linear 

processing layers. It is defined as the modeling of neural networks, while “deep” stands 

for adequate layers of representations (Kotsiopoulos et al., 2021). To construct a DL 

model, many parameters and hyper-parameters must be determined (Dekhtiar et al., 

2018), but they are considered the most promising machine learning technique in many 

manufacturing fields nonetheless (Dogan and Birant, 2021). In recent years, the most 

common DL models used extensively in FDD systems include convolutional neural 

networks, restricted Boltzmann machines, deep belief networks, and deep neural 

networks (Angelopoulos et al., 2020). The ability to handle high-dimensional and 

multivariate data and discover formerly unknown knowledge makes DL techniques 

crucial in Industry 4.0 (Kotsiopoulos et al., 2021). In the Industry 4.0 context, DL models 

have been extensively implemented in FDD systems, although the high performance of 

DL comes with challenges and costs (Saufi et al., 2019). Training DL with Big Data is 

tricky since iterative calculations are often complicated to be parallelized. Therefore, 
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there is a tremendous surge of interest in applying parallel algorithms for training deep 

models (Chen and Lin, 2014). 

4. Conclusions 

Because of the subject's importance, there has been an increasing demand for research to 

provide insights into the concerns, difficulties, and solutions related to the monitoring, 

design, implementation, and management of Industry 4.0. Still, many impediments need 

to be resolved to launch Industry 4.0 applications into various industrial sectors, 

notwithstanding all the endeavors made up to now. 

Industry 4.0 enhances process monitoring performance by quickly providing more 

information. In addition, process monitoring systems, particularly FDD frameworks, 

reinforce Industry 4.0 by efficiently extracting the required information from unprocessed 

data and transforming it into valuable knowledge. 

The data processing in the Industry 4.0 FDD framework must be investigated profoundly 

since the rapidly available Big Data in Industry 4.0 is quite heterogeneous and may 

include vast amounts of uncertainty. Moreover, because of the volume of Big Data in the 

Industry 4.0 context, developed FDD models must be in accordance with the cloud system 

and its associated techniques to prevent computational burden and delay in detecting and 

diagnosing abnormal situations. 
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Abstract
Reinforcement Learning (RL) has received interest within the context of decision making under
uncertainty in the process industries. The primary benefit of RL arises from the formulation of
the control problem as a Markov decision process (MDP), meaning that it inherits the benefits
of accounting for uncertainty in a closed loop feedback control framework and models dynamics
very generally via conditional probability density functions. This enables RL to handle problems
with various types of exogenous and endogenous uncertainties. Despite this there has been little
reported uptake of RL in the process industries. This is partly due to the inability to provide opti-
mality guarantees under the model used for learning, but more importantly due to safety concerns.
This has led to the development of RL algorithms in the context of ‘Safe RL’. Here, we present an
algorithm that leverages the variance prediction of Gaussian process state space models to a) han-
dle operational constraints and b) account for mismatch between the offline process model and the
real online process. The algorithm is then benchmarked on an uncertain Lutein photo-production
process against nonlinear model predictive control (NMPC) and several state-of-the-art Safe RL
algorithms. Through definition of key performance indicators, we demonstrate the efficacy of the
method with respect to objective performance and probabilistic constraint satisfaction.

Keywords: Safe Reinforcement Learning; Optimal Control; Dynamic Optimization; Bioprocess
Operation; Machine Learning

1. Introduction

The operation of nonlinear, uncertain batch processes is a well established research focus within
the academic community. Both modelling and control often poses challenges. Recent focus in
the domain of control (and online optimization) has considered how best to integrate data accrued
from process operation to inform decision-making and account for model uncertainties. Histor-
ically, consideration of model uncertainty in the context of optimization has been handled via
stochastic and robust variants of model predictive control (MPC) (Heirung et al. (2018)). How-
ever, batch processes are often characterised by multiple, nonlinear dynamical regimes, which
makes model construction notoriously difficult. This has somewhat limited the efficacy of general
model predictive control in application to these processes, as they are reliant upon accurate finite
dimensional (and closed form) descriptions of the true system dynamics, which has led to the rise
of statistical process control approaches within industry (see Yoo et al. (2021)).
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Recent efforts to remedy the apparent challenges of batch processing have manifested in the devel-
opment of various scenario (Maiworm et al. (2015)), distributionally robust (Zhong et al. (2021))
and learning-based MPC approaches (Hewing et al. (2020)). Another approach is provided by
Reinforcement Learning (RL). Strictly speaking RL does not require a model explicitly, lending
to interpretation as model-free decision making algorithms. However, the data intensity and re-
quirement for exploration of different control decisions necessitates offline model simulation to
pre-learn a control policy (via RL) before deployment to the real process. As a result of the pres-
ence of process model-mismatch between the real process and the model used for simulation, there
is a potential for one to observe distributional shift when the policy is deployed to the real process.
In such a case, RL would be making extrapolative control decisions via a data-driven model and
may drive the process in to operationally undesirable regimes. Further to this, process operational
constraints are not explicitly handled within the Markov decision process framework. Hence, for
RL to be applied safely to the process industries, development of training approaches and frame-
works are required. In this work, we present an algorithm that leverages the posterior predictive
distribution of a Gaussian process simulation model to jointly handle process model-mismatch and
joint chance constraints. The ideas we present in this work combine the concepts of pessimism
and constraint tightening, which are common to the fields of batch (or offline) RL and stochastic
MPC, respectively.

2. Methodology

2.1. Problem Statement

In this work we assume that the system concerned is Markovian and expresses uncertain process
dynamics, such that discrete time process evolution may be described as follows:

xt+1 = f (xt ,ut ,st) (1)

where x ∈X⊆Rnx are states; u ∈U⊆Rnu are control inputs from a given control set; s ∈ S⊆Rns

are realisations of process uncertainty termed generally to describe various sources of uncertainty;
and, t ∈ {0, . . . ,T} is a discrete time index within a discrete finite time horizon. We would like to
solve the following chance constrained problem:

P(πC) :=



max
π

J

s.t.
X0 ∼ p(x0)

xt+1 = f (xt ,ut ,st)

ut ∼ π(ut |xt)

ut ∈ U;st ∈ S
P(∩T

i=0{xi ∈ Xi})≥ 1−α

∀t ∈ {0, ...,T}

(2)

where πc(ut |xt) defines a conditional probability density function, that provides a distribution over
controls given observation of state; Xt = {xt ∈ Rnx : AT

j xt −b j ≤ 0,∀ j ∈ {1, . . . ,ng}} is the set of
states that satisfy an affine (A j ∈ Rnx and b j ∈ R) constraint set at a given time index; α = (0,1]
is the probability allowed for violation of the constraint set for all time indices; p(x0) defines
the initial state distribution, which is treated a random variable, X0; and, J = Eπ

[
∑

T−1
t=0 Rt+1

]
,

is the process objective, which is equivalent to the expected sum of rewards, Rt+1 ∈ R, over the
discrete time horizon. The reward is provided by a function, R :X×U×X→R, that ranks process
evolution with respect to control objectives. Due to the presence of joint chance constraints and
uncertain process evolution (neither of which can be expressed via finite dimensional or closed
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form expressions), one is typically required to make approximations to Eq. 2 (to obtain finite
dimensional and closed form surrogate expressions) (Heirung et al. (2018)). Despite the problem
formulated here, RL is generally only able to find a policy which optimizes a given objective,
Ĵ. Specifically, in the paradigm of policy optimization, parameterizations of a policy are learned,
such that:

θ
∗ = argmax

θ

Ĵ(θ , ·) (3)

where θ ∈ Rnθ define the parameters of the policy. As a result, constraints are handled via a
penalty function. When the constraints are subject to realizations of uncertain variables, s ∈ S,
the specification of the penalty function is more involved. Recently, the concept of constraint
tightening has been translated from the domain of stochastic MPC to RL (see. e.g. Petsagkourakis
et al. (2020)). In the following we outline an approach that leverages the posterior predictive
distribution of Gaussian process (GP) models to jointly identify a constraint tightening mechanism
and to handle process model mismatch.

2.2. Gaussian Process State Space Models

GPs operate within a nonparametric, Bayesian inference framework. This allows us to exploit
statistical relationships we assume exist within the data to identify a function, f : Rnz → R. One
can make predictions, f = [ f (z1), . . . , f (zN)], where f (zi) ∈ R, by simply querying the function
at given model inputs. In order to proceed we assume the availability of a dataset D = {Z,Y},
expressive of discrete time process evolution, where Z = [z1, . . . ,zN ]

T , such that zi = [xT
i ,uT

i ] and
Y = [y1, . . . ,yN ]

T , y∈Rny , represents measurements of the system state. A GP is fully specified by
a mean, m(·), and covariance function, k(·, ·;λ ), which is parameterised by some hyperparameters
λ . Selection of the mean, covariance function, and the associated hyperparameters, defines the
prior. Inference in GPs utilizes a Bayesian framework. Therefore, a variant of Bayes’ rule is
used to predict the discrete time evolution of a specific component of the system state. Given
the training data and modeling assumptions regarding the mean and covariance functions, this
allows us to identify a posterior predictive distribution, p(f|Y j,Z,λ ), descriptive of discrete time
process evolution. Here, Y j ∈ RN , denotes the jth column of Y . Identification of λ is achieved
by maximisation of the marginal log-likelihood. If a Gaussian likelihood is chosen, the posterior
is constructed exactly as a Gaussian distribution. At a new test point z∗, a posterior predictive
distribution over function values, f ∗, may be identified as:

p( f ∗|Y j,Z,z∗,λ ) = N
(
µ(z∗;Y j,Z,λ ),σ(z∗;Y j,Z,λ )

)
(4)

where µ and σ have closed form expression. As GPs are multiple-input, single-output models, if
one has an nx systems states to dynamically model, then nx separate GP models can be constructed
independently and then assembled to form a state space model. It is worth emphasising that this
state space model represents a probabilistic forecast of discrete time process evolution i.e. is an
approximation of Eq. 1.

2.3. Integration of Gaussian Process State Space Models for Safe Reinforcement Learning

In the following, we show how to use GP state space models to identify closed form expressions
for the probabilistic constraints via the concept of constraint tightening. Specifically, we leverage
Boole’s inequality which enables us to decompose the probability of constraint violation α across
the ng constraints, such that the probability of violating constraint j, may be defined as ι j = α/ng.

Having decomposed the joint chance constraints into individual chance constraints, we then deploy
the Cantelli-Chebyshev inequality to obtain robust and closed form surrogate expressions for each
chance constraint. The idea here is to identify an approximate tightened constraint set X̂t = {xt ∈
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Rnx :AT
j x̄t + ε j,t −b j ≤ 0,∀ j ∈ {1, . . . ,ng}}, where ε j,t = f (Σ[xt ], ι j) is a constraint and time index

specific backoff; Σ[xt ] is the finite variance of the state; and, x̄t is the nominal (mean) state -
all of which can be estimated by the posterior distribution of the GP state space model. The
relevance of the Cantelli-Chebyshev inequality here is that it provides means to identify a backoff
in closed form (i.e. f (Σ[xt ], ι j)). Satisfaction of this tightened constraint set can then be handled
by optimization of an lp norm penalty function, for example see Mowbray et al. (2021). Having
identified means to handle the joint chance constraints, we deploy the concept of pessimism as is
common to the domain of batch (or offline) RL. Specifically, we wish to reduce exploitation of
regions of the GP state space model, where the predicted variance (which expresses both aleatoric
and epistemic uncertainties) is high - this is achieved by adding a penalty in the objective function.
In doing so, it is expected that the effects of distributional shift when the policy is transferred to the
real system will be minimised. In summary, the analysis provided here enables the identification
of a closed form function, ϕ : X×U×X→R, which includes penalty for constraint violation and
for high uncertainty regions of the GP state space model. Policy optimization of ϕ then handles
both the joint chance constraints and plant-model mismatch:

θ
∗ = argmaxθE

[T−1

∑
t=0

ϕ
(
x̄t+1,Σ[xt+1],ut

)]
, (5)

In practice, the Cantelli-Chebyshev backoff, ε j,t often proves conservative. To compromise be-
tween constraint satisfaction and operative performance, we plan to tune εεε t = [ε1,t , . . . ,εng,t ], ∀t
via a set of multipliers ξξξ = [ξ1, . . . ,ξng ], which are identified by solving an upper-level Bayesian
optimization problem. For specific information on the Bayesian optimization scheme used, see
Mowbray et al. (2021). A bilevel optimization problem is formed as a result.

3. Case Study

3.1. A Fed-Batch Lutein Photo-production process

The work developed in this paper focuses on online optimization of fed-batch bioprocesses. The
performance of the proposed soft-sensors is assessed assessed in case study on a Lutein photo-
production process, which was first detailed in del Rio-Chanona et al. (2017). We assume the
same model structure (which is nonlinear) and kinetic parameters as detailed in this study. The
model itself describes the evolution of biomass, nitrate and lutein concentration, with lutein pro-
duction strongly controlled by the complexities of cell metabolism, which are dependent on nitrate
availability and incident light intensity. We additionally introduce uncertainty in the form of 5%
parametric uncertainty. A set of three affine constraints were imposed on the problem, all of which
reflect real operational concerns, such as the preservation of biomass productivity and limits on
biomass concentration for the purposes of downstream separation. The objective of process oper-
ation is to maximise productivity of lutein production, which enables us to define J so as to reward
lutein concentration and penalise nitrate concentration at the end of the batch. For full details of
the case study please refer to Mowbray et al. (2021).

3.2. Case Study Design and Benchmarks

The study itself is purely computational. Because of this, we leverage the availability of the uncer-
tain, mechanistic model (that is equivalent to Eq. 1) and conceptualise that it represents the real
system. The relevant procedures to demonstrate the methodology proposed then follow: a) gen-
erate a dataset (that in practice could be available from e.g. design of experiments) by sampling
the uncertain mechanistic model with space filling control trajectories; b) deploy the methodol-
ogy described by building a GP state space model with the dataset and identify a policy through
the framework detailed by Figure 1; c) deploy the policy identified to optimize the real uncer-
tain process (model); and, d) benchmark the performance against NMPC, first order constrained
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optimisation in policy space (FOCOPS) (Zhang et al. (2020)), the model-based offline policy op-
timization (MOPO) algorithm (Yu et al. (2020)), and the conservative offline model based policy
optimization (COMBO) algorithm (Yu et al. (2021)). The first two benchmarks represent the best
case deterministic method, and a state-of-the-art constrained RL method. The latter two are of-
fline (batch) RL methods and designed to account for mismatch. In all RL benchmarks, constraints
are handled by incorporating deterministic expressions for the hard constraint sets into a penalty
function within the GP state space model. In FOCOPS, the mechanism for pessimism was im-
plemented into the objective function to mitigate process model-mismatch. The evaluation and
comparison of the different algorithms’ performance was based on metrics that quantify the qual-
ity of the policy identified with respect to two main operational objectives: the expected process
objective, J and the probability of constraint satisfaction, F = P

(⋂T
t=0 xt ∈ Xt

)
. In the algorithm

proposed one can choose to set a lower bound on F ≥ 1−α . Clearly, closed form expression is
unavailable so F is instead approximated via the sample approximate, FSA, and a statistically ro-
bust metric, FLB, which accounts for the limitation of finite samples. All RL policies were trained
via the GP state space model and then validated on the uncertain process model, via Monte Carlo
(MC) simulation.

4. Results and Discussion

All algorithms observed extensive hyperparameter tuning to ensure objective comparison could
be made. All tuning was conducted via Bayesian optimization via the same scheme and objective
used to tune the multipliers ξξξ ∈ Rng proposed in Section 2.3; also, the probability of constraint
violation was set α = 0.01. Table 1 details the result. The results demonstrate the ability of the

Table 1: Results of policy transfer to the real uncertain process (i.e. the mechanistic model).
SCCPO indicates the method proposed.

KPI SCCPO NMPC FOCOPS MOPO COMBO

J 13.65 +/- 0.082 11.58 +/- 4.07 12.31 +/- 0.092 10.56 +/- 0.065 13.24 +/- 0.082
FSA 1.0 0.12 1.0 1.0 1.0
FLB 1.0 0.148 1.0 1.0 1.0

method proposed to handle both constraints and mismatch. This is especially reinforced by the
relative performance to NMPC, where the model is exactly the same as the uncertain real process
and the only difference that exists is the presence of parametric uncertainty in the real process. All
RL benchmark methods (MOPO, COMBO, FOCOPS) handle constraints with the desired proba-
bility. It is thought that this arises due to the implementation of a backoff as introduced through
a) the pessimism mechanism present in MOPO and FOCOPS, b) the nature of the conservative
mechanisms that underpin COMBO as well as c) the utility of hyperparameter tuning utilised in
the experiment. However, it should be noted that the action of these mechanisms is not specific to
any given constraint, which may go some way to explaining the conservative control performance.
This is reinforced by Fig. 1, which demonstrates the policies learned on the real process over
500 MCs. The figure shows the RL methods are able to well handle the process uncertainty (with
all policies showing stable, low variance control profiles). This jointly ensures sufficient nitrate
conditions, whilst minimising waste. The NMPC scheme shows high variance in the controls,
which arises from an inability to account for mismatch in constraint satisfaction. This leads to
high variance in the productivity of the batch. The SCCPO algorithm gains performance benefits
because it is able to incorporate uncertainty information into constraint satisfaction, and observes
a less conservative policy, e.g. it has the lowest feasible nitrate concentration at batch termination.
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Figure 1: Final learned policies evaluated over 500 MCs on the real process. Plots on the left:
show the state distributions (+/− 1 standard deviation) induced by the policies; the right shows
the distribution of controls.

5. Conclusions

In this work, we have presented an algorithm that handles both operational constraints and pro-
cess model-mismatch for the deployment of RL policies for the online optimization of uncertain,
nonlinear fed-batch process systems. The algorithm has been benchmarked against best case de-
terministic method in the form of NMPC (observing a performance benefit of 13%) and state-of-
the-art safe and offline RL methods (observing a performance benefit of 4%). The performance of
the approach was demonstrated to be advantageous relative to the benchmarks proposed.
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Abstract
There is an increasing need to monitor industrial key variables by inferential (soft) sensors. This
contribution deals with the challenge of increasing the accuracy of inferential sensors yet maintain-
ing the simple (linear) structure. In order to fulfill these opposing requirements, we design a linear
multi-model inferential sensor (MIS) that switches between two models. We enhance the design
of a sensor by continuous switching and optimized data labeling. The case study deals with a non-
linear model of pressure-compensated temperature often used in distillation columns monitoring
and control. The results show a significant accuracy improvement of MIS over a single-model
sensor. The studied MIS design approaches present a great potential for practical use.

Keywords: Inferential Sensor, Monitoring, Data-based Design, Multi-model Prediction

1. Introduction

The inferential (soft) sensors (IS) find applications in all industrial and engineering fields. They
provide a frequent and accurate estimation of key process variables, and therefore play a significant
role in industrial monitoring (Li et al., 2021; Mojto et al., 2021; Qi et al., 2021). The principle of
IS is to use the measurements from the easy-to-measure variables (e.g., temperatures, pressures)
to estimate hard-to-measure variables (e.g., concentration) (Qin et al., 1997; Zhu et al., 2020).

Industrial processes usually exhibit nonlinear behavior. It significantly reduces the estimation
accuracy of the simple (linear) inferential sensors. The nonlinear behavior can be compensated by
the design of more complex (nonlinear) inferential sensors. Supposing the linear model structure
should be maintained, it is possible to reduce the nonlinear aspect of the industrial processes by
designing a so-called multi-model inferential sensor (MIS) (Khatibisepehr et al., 2012).

The standard approach for MIS design does not guarantee the continuity of the model. This can
lead to significant stability issues of the (control) system that uses MIS. The further drawback is
the a priori labeling of the training set without considering its impact on the MIS accuracy.

This paper investigates improvements of the standard MIS design. We enhance the approach by
a continuous switching logic based on the support vector machines (SVM) methodology (Boser
et al., 1992). Subsequently, this approach is extended by the optimized data labeling. We compare
the effectiveness of these approaches by analyzing the performance of the single-model inferential
sensor (SIS) and MIS for the nonlinear model of pressure-compensated temperature PCT . This

Acknowledgments: This research is funded by the Slovak Research and Development Agency under the projects APVV-
20-0261 and APVV SK-FR-2019-0004 and by the Scientific Grant Agency of the Slovak Republic under the grants VEGA
1/0691/21 and VEGA 1/0297/22.
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contribution deals with a special case of the sensor structure with two linear models. A possible
extension with multiple models is discussed in Mojto et al. (2022).

2. Problem Statement

We aim to find a multi-model inferential sensor (MIS) with two models of the following form:

ŷ =

{
pᵀ1x+bp,1, if x ∈R1,

pᵀ2x+bp,2, if x ∈R2,
(1)

where ŷ ∈ R stands for the inferred (desired) variable, x ∈ Rnp is a vector of the input data, np is
a number of input variables, pi ∈ Rnp represents a vector of the sensor parameters in region Ri
and bp,i is a constant sensor off-set. Regions of individual model validity denoted as Ri represent
convex polyhedra such that R1

⋂
R2 = /0.

2.1. MIS-std: A Standard Approach to the Design of Multi-model Inferential Sensor (MIS)

The standard approach of the MIS design (MIS-std) involves three sequential steps:

1. A priori labeling of the training dataset. We use k-means clustering (Forgy, 1965).

2. Data classification for switching-logic design. The considered approach is support vector
machines (SVM) with linear separators (Boser et al., 1992).

3. Individual sensor training. The parameters of the linear models within the MIS structure are
fitted by using standard least-squares regression.

The main limitations of MIS-std are: (a) the designed models of MIS are not necessarily continu-
ous, (b) a priori labeling of the training dataset is unaware of its impact on the MIS accuracy.

3. Design of MIS with Advanced Approaches

3.1. MIS-con: An Approach to the Design of MIS with Continuous Switching

To deal with the first limitation of MIS-std, a novel approach (MIS-con) is developed. It combines
the SVM-based data classification with the individual sensor training in the optimization problem:

min
w,bw,e≥0

p1,bp,1,p2,bp,2

n

∑
i=1

zi
(
yi− pᵀ1xi−bp,1

)2
+(1− zi)

(
yi− pᵀ2xi−bp,2

)2
+α‖w‖2

2 +β‖e‖1 (2a)

s.t. (2zi−1)(wᵀxi +bw)≥ 1− ei, ∀i ∈ {1,2, . . . ,n}, (2b)
p1− p2−w = 0, bp,1−bp,2−bw = 0, (2c)

with the number of measurements n, a normal vector and a constant off-set of the separation hy-
perplane, respectively, w and bw, a vector of slack variables e, and a vector of binary parameters
z that results from the data labeling procedure with zi = 1 if xi ∈R1 and zi = 0 if xi ∈R2. The
constraints (2c) ensure continuity at the switch between the two models. This is achieved by estab-
lishing the intersection of model surfaces to coincide with the determined switching hyperplane.

As the a priori data labeling can be inappropriate for the design of a MIS with continuous switch-
ing, we allow small violations of the labeling using the slack variables e in (2b). We also consider
that the user can aim at giving up some portion of model (training) accuracy for the better separa-
tion by widening the separation band. The latter feature is established by minimizing ‖w‖2

2 in (2a).
The described features can be enforced/weakened by tuning of the positive weights α and β .
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3.2. MIS-con-lab: An Approach to the Design of MIS with Optimized Data Labeling

We propose the approach MIS-con-lab to mitigate the inaccuracies caused by the a priori labeling
of the training dataset. This approach searches directly for the optimal data labeling by adding z
among the optimized variables in (2a). The underlying optimization problems reads as:

min
z∈{0,1}n,w,bw,e≥0

p1,bp,1,p2,bp,2

n

∑
i=1

zi
∣∣yi− pᵀ1xi−bp,1

∣∣+(1− zi)
∣∣yi− pᵀ2xi−bp,2

∣∣ , s.t. Eqs. (2b)–(2c). (3)

We adopt the sum of absolute errors criterion in (3) to reduce the complexity of the optimization
problem as this can now be transformed to mixed-integer linear program (MILP). If the sum of
squared errors is used in the objective function, the optimization problem turns into mixed-integer
nonlinear program (MINLP) that might be challenging especially when n is high. Moreover, the
sum of squared errors criterion tends to reduce significant deviations, whereas the small deviations
are neglected. This can reduce the MIS accuracy in the presence of outliers in the dataset.

MIS-con-lab can employ the regularization by penalizing the magnitudes of e and w as in the
MIS-con approach to balance between the MIS accuracy and distinction of the individual models.

The problem (3) serves primarily to decide about data labels, i.e., distribution of the training data
and, subsequently, of model validity regions. After fixing the values of z, the final training can
be performed via solving (2). This two-step approach does not require the a priori labeling of the
training set and can provide optimal MIS for the prize of an increased computational burden.

The problem (3) can be transformed to MILP via: (a) the epigraph reformulation (Milano, 2012)
of the absolute value, (b) the big-M method (Griva et al., 2008) to linearize the bilinear constraints.
As the variables z are binary, the big-M method does not require any new integer variables.

4. Case Study

In this contribution, the design of MIS is tested for the estimation of pressure compensated tem-
perature PCT . This is a phenomenological variable used very often in the petrochemical industry.
It is derived by combining the Antoine and Clausius-Clapeyron equations as (King, 2016):

1
PCT

=
R
Hv

ln
(

P
Pref

)
+

1
T
, with x = (T,P) , y = PCT, (4)

where Hv is the heat of vaporization, R is the universal gas constant, Pref is the reference pressure,
P is the absolute pressure, and T is the absolute temperature. The ground-truth parameters of the
PCT model are R = 8.314J/mol/K, Hv = 55,940.550J/mol, Pref = 145,325Pa. The data used in
this work is generated within the following intervals:

523.2K≤ T ≤ 573.2K, 2,000Pa≤ P≤ 20,000Pa, 618.5K≤ PCT ≤ 902.7K. (5)

Despite the PCT model is usually used within low-pressure devices, the pressure scale used here
is even lower. We use this scale in order to provide a more apparent nonlinear behavior of PCT .

We further assume that the training data of PCT is corrupted with some noise. The noise is
generated as a random variable from the standard normal distribution. In order to remove the
discrepancies in the variables magnitudes (P, T , PCT ), we normalize the variables (Pnorm, Tnorm,
PCTnorm) used in the further experiments to lie within the interval [0,1].

We study two different scenarios (clustered and uniformly distributed dataset) each with 140 syn-
thetic measurements. The weighting parameter α is set to zero and the weighting parameter β is
set to 0.01. The calculations are executed in MATLAB using Yalmip (Löfberg, 2004). The MIS
approaches use Gurobi (Gurobi Optimization, 2021).
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(a) The training and testing datasets. (b) PCT and its MIS designed by MIS-con-lab.

Figure 1: The PCT model on the clustered dataset.

Table 1: The median computational times (CPU time) for 100 simulation runs (clustered datasets).

SIS MIS-std MIS-con MIS-con-lab

CPU time [s] < 0.01 0.4 0.4 5.1

4.1. Clustered Dataset

This scenario mimics the situation when the industrial data is well treated from the systematic
errors. We can indicate two distinct clusters of measurements in Fig. 1a, where each cluster
represents a particular operating point. The measurements are evenly divided into clusters with
50 % of the measurements being randomly distributed into the training set (red points) and the rest
to the testing set (blue stars). For lucidity of the results, we perform 100 runs with similar datasets.

We first analyze the performance of the trained MISs on one representative run in Fig. 1b. The
ground-truth PCT is approximated by two linear models of MIS designed according to the cor-
responding classes of training datasets (class 1 – circles, purple model surface; class 2 – squares,
yellow model surface). The accuracy of the MISs designed using all studied methods is the same.
We visualize the results for MIS-con-lab as this approach has optimized the data labels.

The results in Tab. 1 indicate longer computational time of the MIS approaches compared to SIS,
as expected. The results also show that MIS-std and MIS-con impose a lower computational
burden than MIS-con-lab in this case. The optimized binary variables significantly increase the
computational time of the MIS-con-lab approach.

A statistical evaluation of the results from 100 simulation runs is shown in Fig. 4. The accuracy of
each method (via RMSE – root mean square error) on the testing set (RMSE-TS) is characterized
by the blue box (25th–75th percentile, indicating variance), red line (median), and red crosses (out-

Figure 2: The prediction accuracy statistics on the testing dataset (RMSE-TS) of the designed
inferential sensors from 100 simulation runs with different clustered datasets.
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(a) The training and testing dataset. (b) PCT and its MIS designed by MIS-con-lab.

Figure 3: The PCT model on the uniformly distributed dataset.

Table 2: The median prediction accuracy on the training (RMSE-TR) and testing (RMSE-TS)
datasets from 100 simulation runs (uniformly distributed datasets).

SIS MIS-std MIS-con MIS-con-lab

RMSE-TR×103 44.2 18.7 19.2 11.8
RMSE-TS×103 44.9 21.5 19.8 14.0

CPU time [s] < 0.01 0.3 0.3 20.4

liers). We can conclude that the average/median accuracy and its variance are improved by MISs
compared to SIS. The performance of all the designed MIS is the same. The MIS-std and MIS-con
approaches can reach comparable accuracy to the MIS-con-lab approach as the (clustered) datasets
in this scenario are appropriate for the k-means clustering (a priori labeling). The small accuracy
variance confirms the good performance of these approaches.

4.2. Uniformly Distributed Dataset

This scenario involves data uniformly distributed over the whole considered range of the PCT
model (see Fig. 3a). Such setting covers the cases of non-ideal industrial datasets, which usually
involve this type of data. The available data is randomly and evenly distributed into the training
and testing sets. These sets contain the same number of measurements. To provide accurate
conclusions, we generate 100 similar datasets and statistically evaluate the results.

The results from one representative simulation run are shown in Fig. 3b. We can see that the MIS
is approximated by two models (model 1 – purple surface; model 2 – yellow surface). These
models are designed by the MIS-con-lab approach. We visualize the results from this approach
because its accuracy is higher compared to other studied approaches.

The results in Tab. 2 prove the highest accuracy of the MIS-con-lab approach on both training
and testing datasets. This method outperforms MIS-std by about 35 %. Furthermore, we can
indicate a slightly lower accuracy of the MIS-con approach compared to MIS-std on the training
dataset. This is expected as the MIS-con approach gives up some prediction accuracy for the
model-switching continuity. On the other hand, the MIS designed by MIS-con performs better on
the testing set. It seems that the enforcement of continuity weakens the effects of the measurement
noise in the training dataset and leads to more accurate models. The results from the computation
time (CPU time) indicate a higher computational burden of the MIS-con-lab approach compared
to the previous scenario (see in Tab. 1). The increased computational burden is caused by the
provided dataset nature, which increases the data labeling complexity.

The results in Fig. 4 confirm the superior accuracy of the MIS-con-lab approach over SIS. The
accuracy statistics of MIS-std and MIS-con involve several outliers that represent the accuracy
comparable to SIS. These outliers can illustrate the low performance of the a priori labeling on
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Figure 4: The prediction accuracy statistics on the testing dataset (RMSE-TS) of the designed
inferential sensors from 100 simulation runs with different uniformly distributed datasets.

the uniformly distributed training dataset. The variance and number of outliers in Fig. 4 show the
superiority of the MIS-con-lab approach in this respect.

5. Conclusions

This contribution is focused on the multi-model inferential sensor design using two sensor mod-
els with continuous switching and with optimized data labeling. We presented novel design ap-
proaches and compared their effectiveness against the standard design approach and against a
single-model inferential sensor. The results suggest a significant accuracy improvement of the
multi-model inferential sensor compared to a single-model one. The comparison of the approaches
shows a very promising potential of the approach with optimized data labeling as it designs the
most accurate inferential sensor and does not suffer from the limitations of the standard approach.
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Abstract 
Greenhouse cultivation targets provide protection to the plantations from severe weather 
and become a way to achieve controlled agricultural production. The appropriate control 
of the climate within the greenhouse can lead to the growth of potential yields and the 
extension of the growing season. However, greenhouses are usually constructed in a way 
without further consideration to the energy efficiency, leading to the need for an advanced 
automation control system to save the energy budget. Model predictive control (MPC) 
has been acknowledged as a suitable control strategy to solve the problem of regulating 
the climate and growth processes, plus MPC can also guarantee the fulfilment of the 
constraints specification. To develop the state-space model (SSM) required for the 
proposed MPC, we start by studying the dynamics of the greenhouse and crop based on 
the building geometry, weather dynamics, and input control signals. Afterward, we use 
data-driven techniques and system identification methods to construct the SSM and then 
incorporate the SSM into the proposed MPC framework. Based on the proposed data-
driven dynamic SSM model and the data-driven uncertainty set, we propose a novel data-
driven RMPC framework, which is capable of controlling the greenhouse’s temperature, 
humidity, CO2.  
 
Keywords: Model Predictive Control, Greenhouse Model, Crop Model. 

1. Introduction 

The greenhouse is gaining popularity in recent years because of its significant 
contribution to the sustainable intensification of crop production in many countries 
(Villagran et al., 2020). Greenhouse control can be further developed into a low-cost 
production system, which is compatible with the shortage of natural resources and the 
low investment capacity of the growers (Chen and You, 2021). These agronomic and 
financial benefits give sufficient incentives for developing the control of greenhouse 
(Bennis et al., 2008). However, the control of the greenhouse is usually deemed as a 
complex process, regarding its multi-input multi-output (MIMO) and nonlinear 
characteristics. The greenhouse presents time-varying behavior and is disturbed generally 
by meteorologic conditions. All these difficulties adversely affect the control 
performances of classical controllers to the greenhouse (Fourati and Chtourou, 2007). 
Model predictive control (MPC) has been acknowledged as a suitable control strategy to 
solve the problem of regulating the climate and growth processes, handling all scheduling 
decisions effectively (Chu et al., 2015). Besides, MPC can also guarantee the fulfillment 
of the constraints specification (Camacho and Alba, 2013). MPC is a model-based control 
strategy that determines the optimal control sequence by solving a sequence of numerical 
optimization problems with constraints over a specific horizon based on the prediction 
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model (Agachi et al., 2016). The first input in the optimal sequence is sent into the system, 
and the entire computation is repetitively performed at subsequent control intervals 
following a receding horizon approach (Qin and Badgwell, 2003). Several efforts are 
conducted. In El Ghoumari et al. (2005), the authors have demonstrated the advantageous 
control of MPC in regulating the temperature of greenhouse compared to the PID control. 
In Gruber et al. (2011), the nonlinear MPC was proposed and further proved the control 
performance of MPC in regulating the diurnal temperature in the greenhouse around the 
desired reference. Despite the progress made over the years, there still exists some 
knowledge gap: None of the research mentioned above considers the crop model, but they 
only focused on the control to the greenhouse. The crop model can contribute 
significantly to greenhouse cultivation while being applied to the optimization work 
(Lentz, 1998).  
In this work, we propose an MPC framework that minimizes the greenhouse’s energy and 
natural resources consumption as well as maximizes crop production. To develop the 
state-space model (SSM) required for the proposed MPC, we start by studying the 
dynamics of the greenhouse based on the building geometry and dynamics. To take a 
further step, we also add the crop model and correlate it to the greenhouse model 
mentioned before. Afterward, we use data-driven techniques and system identification 
methods to construct the SSM and then incorporate the SSM into the MPC framework. 
Weather forecast data and measurement data about ambient temperature, relative 
humidity, and wind speed are gathered. Based on the proposed dynamic SSM model and 
forecast values, we can develop the MPC framework which can be adopted for the 
automation control system. This MPC framework is capable of controlling the 
greenhouse’s temperature, humidity, CO2, irrigation, and fertilization. The proposed 
framework not only is computationally efficient but also mitigates the wasted 
consumption issues that arise from the greenhouse power regulation. 

2. State-space model construction 
2.1. Greenhouse model 
Vanthoor et al. (2011) has designed the greenhouse model which studies the impact of 
outdoor climate and greenhouse design on the indoor greenhouse climate. Weather 
information is comprehensively considered in this model, including ambient temperature, 
ambient relative humidity, global radiation, diffuse radiation, and wind speed. This model 
is adopted in this research regarding its fulfillment of the following three requirements: 
1) this model can adequately predict the temperature, water vapor pressure, CO2 
concentration greenhouse indoor air under different greenhouse designs and regional 
climate; 2) this model is able to take greenhouse construction parameters and climate 
adjustment facilities into consideration. 3) This model is also ready to be incorporated 
with the tomato yield production model (Rezvani et al., 2021).  
2.2. Crop model 
Although Vanthoor et al. included tomato growth in the model, fertilization and irrigation 
were not considered. These two factors are crucial to crop production and tightly related 
to the quality of the crop. Therefore, we apply the VegSyst model designed by Gallardo 
et al. (2011). In this model, we are able to retrieve the crop growth rate by compiling the 
weather information data and adjusting the fertigation rate (Shang et al., 2020). Therefore, 
we can now develop the steady-state matrix required by the MPC framework.  
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2.3. System identification
Although we have the physics-based model which can describe the correlation between 
each state, the linear SSM is preferred in MPC computation because of computational 
efficiency. Therefore, we apply the system identification to the nonlinear model to 
identify the SSM which combines the greenhouse model and crop model. The SSM is 
described in the following equation:

1t t u t v t w tx Ax B u B v B w+ = + + +   (1) 

Where A is a 9 ×  9 state matrix. In this SSM, 9 states are considered, including cover 
temperature, internal temperature, mat temperature, tray temperature, floor temperature, 
soil temperature, water vapor density, CO2 density, and growth rate. B u is a 9 ×  7 input 
matrix, in which 7 control signals are considered: heater, fans, humidifier, dehumidifier, 
CO2 enrichment, irrigation, and nitrogen enrichment; B v is a 9 ×  5 weather disturbance 
matrix which describes the linear correlated impact from weather data. In this research, 
we consider 5 weather information, including ambient temperature, ambient relative 
humidity, global radiation, diffuse radiation, and wind speed. B w is a 9 ×  3 weather 
forecast uncertainty matrix. Three major forecast uncertainties are considered including 
temperature forecast error, humidity forecast error, and wind speed forecast error (Shang 
et al., 2019). Figure 1 demonstrates the results of system identification. The overall mean 
absolute percentage error (MAPE) for the linearization is 7.06 %, indicating that this SSM 
is sufficiently accurate in describing the nonlinear physics correlation between each state. 

Figure 1. System identification results of: (a) indoor greenhouse temperature (b) water vapor 
density (c) CO2 concentration (d) growth rate. The linear results are demonstrated as a dashed black 
line and original nonlinear model results are represented in a green solid line.
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3. Model predictive control framework 
After acquiring the SSM for the control framework. The MPC optimization problem can 
be formulated as below: 

min

s.t. ,
[ ]

u crop

T
i i i i i j

i B j x

u u

x u v w x

c u L x

F u f
F Ax B u B v B w f

λ λ α

λ

∈ ∈

+ −

≤
+ + + ≤ +

∑ ∑
 (2) 

Where Fx, Fu, fx, fu represent the state variable constraints matrix, control input constraints 
matrix, constraints for state variables, and constraints for the input. L is the weighted cost 
matrix that penalizes the violation to the constraints (Jia et al., 2021). Λ is the slack 
variable that allows some extent of violation to the hard constraints. In this problem, we 
introduce the soft constraint to the optimization to ensure the feasibility and help alleviate 
the over-pessimism or infeasibility of hard constraints (Meseguer et al., 2006). Besides 
minimizing the cost of energy consumption and violation of the constraints, we also try 
to maximize crop production. α is the weighted coefficient for crop production. This 
coefficient is necessary because the growth rate is a much smaller value compared to the 
energy cost and to the constraint-violation penalty. The absence of this coefficient will 
lead decision impartial to the growth condition of the crop. xcrop is the growth rate states 
from the state matrix A. 

4. Control profile 
In this research, we simulate the greenhouse located in Ithaca, the USA from 0:00, March 
1st, 2020 to 23:00, March 30th, 2020. The initial conditions are set as (Chen et al., 2021): 

• For all temperature values, the starting conditions are 298.15 K 

• The initial water vapor density is set as 2.5 ×10-3 kg/m3 

• The initial CO2 concentration is set as 0.8 kg/m3 

• The initial growth rate is set as 0 kg/hr 

The constraints are set as follows: For daytime (from 7:00 to 19:00), the upper limit for 
temperature is 302.5 K and the lower limit is 297 K; the upper limit for relative humidity 
is 90% and the lower limit is 80%. For nighttime (from 19:00 to next day 7:00), the upper 
limit for temperature is set as 297.5 K and the lower limit is 288.7 K. The relative 
humidity range is from 65 % to 75 %.  
 
The control results are demonstrated in Figure 2 and Figure 3. We can observe from plots 
that temperature has fewer violation cases than for humidity control profile. The reason 
behind this is that the forecast error of temperature only occupies less than 1 % of the 
actual measured value (when temperature value is recorded as in kelvin), whereas the 
forecast error of humidity can be away from the actual measurement value up to 25 %. 
Therefore, the humidity forecast error can drive the control decision away from the 
desired constraints.  
 
The crop growth curve is illustrated in Figure 4. We can conclude that the crop is steadily 
growing. 
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Figure 2. Temperature control profile of greenhouse from March 1st 0:00 to March 30th 0:00 in 
2020. The orange dashed line indicates the upper limits for the temperature constraints while the 
green dash line for the lower limits. 

Figure 3. Humidity control profile of greenhouse from March 1st 0:00 to March 30th 0:00 in 
2020. The orange dashed line indicates the upper limits for the temperature constraints while the 
green dash line for the lower limits.

Figure 4. Gross tomato production profile from March 1st 0:00 to March 30th 0:00 in 2020. 

5 . Discussion
In this research, we focused on developing the MPC framework for the SSM, which 
combines the greenhouse model and crop model. Thanks to the linearization process, the
average CPU time for each case is only 0.044 seconds, which is sufficient to finish the 
optimization procedure within the sampling interval of 8 hours. Plus, the soft constraint 
within the optimization also ensures feasibility (Lu et al., 2020). However, the drawback 
of this MPC framework is also noticeable. The violation of the constraints is not 
negligible in this control profile, as these violation cases may result in a harsh climate in 
the greenhouse and become harmful to the tomato growth. Therefore, Robust MPC, 
which takes forecast errors into consideration in obtaining optimal control inputs, should 
be used in this case to hedge against the forecast uncertainties. 
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Abstract 
As a large amount of industrial data have been acquired by distributed control system 
(DCS), data-driven process monitoring methods have attracted a significant research 
interest. However, various types of noise are also collected with signal together from 
process instruments and data transformation, which could compromise the information of 
signal itself and provide a huge challenge for data analysis and modeling. Moreover, noise 
contents of different measurements, such as temperature measurements, pressure 
measurements, flow measurements, and etc., may be also varied in industrial process. 
Therefore, the selection of decomposition scale has a great influence on the denoising 
effect, while among methods reported in the literature, the decomposition scale is usually 
constant for all measurements in a process.  
In this research, a novel standard to characterize an optimal denoising depth for each 
measurement is proposed. Wavelet decomposition is first selected to extract the high-
frequency features of signals in different measurements for its ability to retain the local 
characteristics of signals in both time and frequency domains. Then information entropy 
is applied as a standard to characterize the depth of wavelet decomposition. An optimal 
decomposition scale is determined by maximizing the retention of raw signal information 
in each measurement. According to this standard, signal in each measurement can be 
processed individually according to its optimal decomposition scale. Then the processed 
data can be further applied to a multivariate statistics method for a more effective process 
monitoring. In order to verify the effectiveness of this method, the research is 
implemented on an industrial continuous catalytic reforming process. The results show 
that abnormal operational conditions can be detected earlier on the basis of the proposed 
method compared to other methods without considering the denoising of different 
variables respectively.  
Keywords: wavelet denoising, process monitoring, information entropy, continuous 
catalytic reforming process. 

1. Introduction 
Production safety in chemical industry is always considered as a prerequisite, whether it 
is from the perspective of design or production operations. In fact, large-scale chemical 
production is always accompanied by a great potential safety hazard due to harsh 
operating conditions and various unexpected disturbances, which will cause huge losses 
to human lives and national economy. To prevent safety accidents, process monitoring 
technology has been developed in chemical processes to assist operators to detect 
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abnormal changes in a process plant timely. Take advantage of the real-time data 
collection technology provided by distributed control system (DCS), data-driven feature 
extraction methods have been widely adopted for fault detection. For example, as a 
conventional multivariate statistical method, principal component analysis (PCA) has 
been widely used by projecting high dimension data into a feature space and achieved 
good results on simulation data of Tennessee-Eastman process (MacGregor, et al., 1995). 
However, the actual measurement value obtained from DCS is inevitably coupled with 
various types of noise during data transmission. Numerous researches have been 
conducted to solve this problem. The widely used wavelet transform method has shown 
a powerful denoising effect in chemical industry by adopting both time and frequency 
analysis (Bakshi, 1999). Li and Wen developed a wavelet-PCA method for air-handling 
units monitoring, by which the advantages of wavelet transform method for data 
preprocessing in process monitoring has been demonstrated (Li, et al., 2014). When 
applying wavelet denoising, the selection of wavelet basis function and denoising depth 
shows a great impact on the denoising effect. Among methods reported in the literature, 
the decomposition scale is usually constant for all measurements in a process. However, 
noise distribution and contents of different measurements, such as temperature 
measurements, pressure measurements, flow measurements, and etc., varies in industrial 
process. Therefore, it is necessary to determine a proper denoising standard to achieve an 
optimal denoising effect for each measurement.  
The aim of this paper is to extract data features for process monitoring under the premise 
of determining an optimal denoising depth for each type of measurement. When denoising 
different measurements such as temperature measurements, pressure measurements, flow 
measurements, and etc., it can be found that the noise contents of them are different in 
industrial process. On this basis, information entropy maximization, which has been 
proved to be a useful wavelet parameters selection standard introduced by Altay and 
Kalenderli (Altay, et al., 2014), is adopted to determine an optimal denoising depth for 
each measurement. Since signal in each measurement has been processed according to its 
optimal decomposition scale, the processed data are further applied to a PCA model for 
a more effective process monitoring. According to the results obtained from an industrial 
reforming heat exchanger unit, it can be seen that the fault could be earlier detected with 
a lower false alarm rate by the proposed method compared with other methods with only 
one denoising policy.  

2. Methodology 
In this section, the methods applied in this work are introduced. 

2.1. Wavelet Threshold Denoising Method 
Wavelet threshold denoising method is an effective time-frequency signal processing tool. 
Signals are decomposed based on a scaled and translated mother wavelet given as 

( ) 0t dt



                                                                                                                      (1) 

In continuous wavelet transform (CWT), the decomposed coefficients are given as 

1
( , ) ( ) ( )

t u
CWT u s x t dt

ss


 



                                                                                      (2) 

where u and s are the scaling and translation parameters. x(t) is the raw signal. The discrete 
form of CWT is obtained by sampling the time-scale plane. In discrete wavelet transform 
(DWT), the decomposed coefficients are given as 

1082



Study on the noise contents of different measurements in industrial process
and their impact on process monitoring  

1059
 

1
( , ) ( ) ( )

t b
DWT a b x t dt

aa


 



                                                                                        (3) 

where a and b are the discrete versions of u and s. De-noising of signals in the wavelet 
domain can be done in decomposition, thresholding and reconstruction three steps.  

2.2. Shannon entropy 
Shannon entropy is a concept introduced from physical systems by Shannon to estimate 
the amount of information (Shannon, 1948), its calculation is given as follows, 

2
1

1
log

l

i
ii

S p
p

 
  

 
                                                                                                                                 (4) 

where l is the total number and pi is the probability of the situation i in the system. 
Maximum information entropy can be applied in the wavelet de-nosing process for 
parameter selection, the probability can be calculated as follows, 

' 2 ' 2
, ,

1 1 1 1

/ ( ) / ( )
j jK KM M

i j j j k j k
j k j k

p E E w w
   

                                                                                   (5) 

where Ej is the energy in time scale level j and M is the maximum time scale level. Kj is 
the number of wavelet coefficients in time scale level j. wj,k is the processed wavelet 
coefficient. Maximum separation between signal and noise can be calculated using the 
maximization of entropy technique calculated by Equation 6, which gives the optimal 
value of j and helps to determine an optimal mother wavelet. 

, 2 , 2
, ,1 1

1 1
log log

k k

signal noise i signal i noise
i signal i noisei i

S S S p p
p p 

   
           

                                  (6) 

2.3. Principal component analysis (PCA) 
PCA is a classical feature extraction technique by projecting high dimensional data into 
a lower feature space, which has been widely used in process monitoring with T2 and SPE 
statistic. Given normalized n observations of m measurement variables Xn×m, the 
covariance matrix of X can be calculated as follows, 

( )
1

TX X
Cov X

n



                                                                                                                   (7) 

Then singular value decomposition is employed to Cov(X), a score matrix T and a loading 
matrix P are determined by retaining the first k features that contain the most information. 
The raw matrix X can be decomposed as follows, 

1 1
T T T

k kX TP E t p t p E     L                                                                                             (8) 

where p, t are the loading vector and score vector, and E is the residual matrix. For online 
monitoring, T2 statistic and SPE statistic can be calculated as monitoring statistics to 
measure the deviation in the principal component space and residual space respectively. 

3. Selection of optimal denoising parameters and its application on an 
industrial continuous catalytic reforming process 
In this chapter, the implement procedures of proposed research on the selection of optimal 
denoising parameters are introduced with the case study of an industrial continuous 
catalytic reforming process.  
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3.1. Continuous catalytic reforming process and data description 
The proposed Shannon entropy-based denoising strategy is applied to an industrial 
continuous reforming process, which contains four reactors, four furnaces and a plate heat 
exchanger. The pressure drop of the plate heat exchanger is of great importance because 
it will increase with various factors, such as environment temperature and equipment 
factors. However, the increase in the pressure drop is usually a process of slow change, 
and is difficult to be detected in time by operators. Therefore, it is necessary to build an 
effective process monitoring model in this process to detect the faulty deviation at its 
early stage. The process variables applied in this work are shown in Table 1.  

Table 1 Process variables in the industrial continuous catalytic reforming process. 

Variable Description Variable Description 

T01 Outlet temperature at cold side PD10 Outlet pressure at cold side 

T02 Inlet temperature at hot side PD11 Pressure drop at hot side 

T03 Inlet temperature at cold side PD12 Pressure drop at cold side 

T04 Outlet temperature at hot side PD13~16Reactor pressure drop 1  

F05 Naphtha feed flow T17~20 Furnace outlet temperature 

F06 Circulating hydrogen flow T21~24 Reactor outlet temperature 

PD07 Inlet filter pressure drop at cold side T25~28 Furnace temperature drop 

PD08 Inlet pressure at cold side PD29 Reactor inlet pressure 

P09 Circulating hydrogen pressure   

3.2. Determination of the optimal denoising parameters 
In this section, the selection of denoising parameters in wavelet denoising, containing 
mother wavelets, decomposition levels, thresholds and thresholding rules are introduced. 
In most existing denoising methods, all process variables are denoised under a same 
standard, which is called identical denoising in this work. A widely-used mother wavelet 
‘db4’ is chosen and a decomposition level is selected properly according to the length of 
data. After decomposition, threshold for each layer is determined with a universal fixed 
threshold method. As for the thresholding rule, it has been proved that noise can be 
separated effectively from signal with soft threshold rule. However, considering noise 
content in different measurements, a novel Shannon entropy-based denoising strategy is 
applied to the industrial continuous reforming process. With the adjustment of mother 
wavelets and decomposition levels, the wavelet coefficients at different denoising depths 
are obtained. Then the fixed threshold and soft threshold rule are chosen for coefficient 
processing. Based on the processed coefficients, the signal entropy and noise entropy 
under different denoising parameters can be calculated. On this basis, the optimal mother 
wavelets and decomposition levels for different measurements can be found according to 
the criterion of maximum information entropy. 

3.3. Process monitoring method based on new Shannon entropy denoising 
A Shannon entropy-based denoising method and principal component analysis method 
are combined for process monitoring on an industrial continuous catalytic reforming 
process. The detailed flowchart of the monitoring process is shown in Figure 1. Historical 
data under normal operating conditions is selected for denoising. The optimal wavelet 
parameters suitable for the data set are determined according to the maximum information 
entropy criterion. Then the denoised historical data are input into the raw PCA model for 
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training. For the processing of real-time data, the previous denoising parameters are 
applied for its denoising. Then the denoised real-time data is input into the trained PCA 
model for testing. On the basis of this, the final monitoring results are obtained. 

 
Figure 1 The detailed flowchart of the monitoring process. 

4. Results and discussion 

On the basis of wavelet threshold method, signals from an industrial continuous catalytic 
reforming process are denoised. Signal distribution of pressure variable PD07 before and 
after denoising is shown in Figure 2 and it can be seen that wavelet threshold method is 
effective for signal denoising. Three different measurements including temperature 
variable, flow variable and pressure variable are respectively denoised based on the 
maximum information entropy criterion. After normalization, the noise distribution of the 
variables in the time domain is shown in Figure 3. It can be seen that the noise extracted 
from the raw measurements conforms to the zero-mean distribution. More importantly, 
the result shows a higher degree of noise pollution in the pressure and flow measurement 
compared with the temperature measurement. Therefore, it’s necessary to determine 
optimal denoising parameters for different measurements.  

                      
Figure 2 Signals before and after denoising      Figure 3 Noise distributions of three measurements 

Both historical data and real-time data are input into the PCA model in the form of a 400-
length sliding window for process monitoring. The parameters of identical denoising are 
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introduced in Section 3.2. In separate denoising, mother wavelets and decomposition 
layers are determined by the maximum information entropy criterion. The parameters for 
temperature measurements are SYM4, 4 layers while a higher decomposition scale is 
recommended in pressure and flow measurements for their higher noise contents, which 
are SYM4, 6 and SYM8, 6. Then monitoring results based on the raw, identical denoised 
and respective denoised data are compared. Due to page limitations, the monitoring 
results without denoising have not been displayed. Based on the monitoring model 
constructed from raw data, the slowly changing fault can be identified at 471th sample. 
As is shown in Figure 4 and Figure 5, the control limit of the statistics based on the 
identical denoising method is exceeded at 252nd sample while the respective denoising 
one exceeded at 236th sample. Compared with the identical denoising method, the slowly 
changing fault can be detected 16 minutes earlier by the proposed method.  

 
Figure 4 Result for identical denoising                             Figure 5 Result for respective denoising  

5. Conclusions 
In this work, a novel wavelet denoising strategy for industrial process data is proposed 
and applied to process monitoring with PCA. By considering the difference in noise 
distribution and contents of various types of variables, signal in each measurement is 
processed by wavelet transform individually according to its optimal decomposition scale, 
which is determined by information entropy maximization. Since each type of signal has 
been denoised to an optimal level, the signal feature could be effectively extracted by 
PCA, leading to a better process monitoring result. The method is applied to an industrial 
continuous catalytic reforming process, the slowly changing fault can be earlier detected 
by the proposed method compared with other methods without considering the denoising 
of different variables respectively. Compared with other studies with undifferentiated 
denoising, the determination of optimal denoising parameters on different measurements 
is discussed in detail in this work, which can provide a novel idea for the selection of 
denoising parameters in industrial practice. 
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Abstract 

As a representation of the difference between observed and expected behaviors, residual 

has been widely used in monitoring methods based on the mechanism models, but the 

accurate mechanism models of certain complex processes are hard to obtain. With the 

rapid development of artificial intelligence, the accuracy of data-driven prediction models 

has been significantly improved, which makes it possible to reflect a certain status of the 

process by data-driven models instead of mechanism models. The residuals between 

status estimations from data-driven models and observations can be calculated to indicate 

status changes in the process. Therefore, residual-based multivariate statistical models are 

established for faults detection. Quite a few data-driven monitoring methods based on 

predicted residuals have been proposed. However, the influence of different prediction 

models on prediction residuals and monitoring performance hasn’t been fully discussed. 

Referring to the above issue, various data-driven prediction models including PLS, SVM, 

and LSTM are applied in the Tennessee Eastman (TE) process and a real industrial case 

to study the influence of prediction models, evaluation indicators, distribution of 

prediction residuals on monitoring performance. A statistical analysis on corresponding 

residuals is also conducted to investigate its impact to monitoring performance.  

 

Keywords: Multivariate linear regression, Time series modelling by LSTM, SVM 

(Support Vector Machine), Selection strategy of prediction models, Statistical feature of 

residuals
 

1. Introduction 

Most modern chemical processes are known with large-scale, and highly complex with 

multiple variables(Nor, Hassan, & Hussain, 2020), which leads to the rapid growing need 

of process safety and reliability. To fulfill this need, process monitoring gains more and 

more attention recently. Many process monitoring methods have been proposed, which 

can be basically classified into mechanism model-based methods and data-driven 

methods. 

An important step of mechanism model-based methods is to generate residual between 

measurements and estimations, and residuals are further evaluated to detect changes in 

their behavior caused by faults. However, the performance of mechanism model-based 

methods is limited by the accuracy of the model especially for certain complex processes 

whose mechanistic model are hard to obtain. Nowadays, data-driven methods, which 

solely rely on the data, are developed due to the widespread application of the instruments 

and distribution control system. Instead of mechanism model-based methods, data-driven 
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methods are introduced to reflect a certain status of the process for residual generation. 

Residuals obtained under normal operating conditions can be approximately considered 

as noise. Furthermore, the monitoring based on residuals variety can avoid the influence 

of data fluctuation and noise to achieve the early faults detection. 

Various data-driven methods are introduced to generate residuals, which are further 

integrated into the residual-based process monitoring methods for better monitoring 

performance. Tong et.al proposed a data-driven residual generation method based on PLS 

for process monitoring(Tong, Lan, Yu, & Peng, 2019) to present more efficient fault 

detectability. Kazemi et.al used the estimated residual signal to univariate statistical 

control charts by developing SVM models (Kazemi, Giralt, Bengoa, Steyer, & 

Technology, 2020). Tao et.al proposed a LSTM-residual model on the MIT-BIH 

arrhythmia database to detect arrhythmia (Tao, Liu, & Liang, 2021). In the above 

researches, residuals are generated by linear, nonlinear and dynamic nonlinear models 

with the consideration of process characteristic. 

Inspired by the above researches, the influence of prediction models, evaluation 

indicators, distribution of prediction residuals on monitoring performance are discussed 

in this study, where PLS, SVM and LSTM are selected as prediction models, PCA is 

selected as the monitoring model. 

The rest of paper is organized as follows. The related methods are briefly reviewed in 

section2. Section 3 presents the residual-based monitoring method. The Comparison 

results of the Tennessee Eastman process and a real case are discussed in section 4. 

section 5 gives the conclusion. 

2. Preliminary 

In this section, the methods applied in this work are introduced. 

2.1. Partial least squares regression (PLS) 

Partial least squares regression (PLS) is a well-known linear prediction method by 

modeling latent relations between input and output variables. It was introduced by the 

Swedish statistician Herman O. A. Wold to predict dependent variables form independent 

variables and to describe the common structure underlying the two variables. As a linear 

method, PLS is a suitable choice for datasets that do not fit the traditional expectations 

demanded by ordinary regression(Pirouz, 2006). 

2.2. Support vector machine (SVM) 

Support vector machine (SVM) is a supervised learning model with associated learning 

algorithms that analyze data for prediction and classification analysis. It is developed at 

AT&T Bell laboratories by Vladimir Vapnik with colleagues. It can be used in regression 

to achieve multivariate pattern regression analysis with excellent generalization 

capability and high prediction accuracy(Awad & Khanna, 2015). 

2.3. Long Short-Term Memory Network (LSTM) 

LSTM is a deep neural network to capture the historical information of time series, and it 

is suitable for the prediction of long-term nonlinear series(Hochreiter & Schmidhuber, 

1997). The prediction model established by LSTM can extract the nonlinear and dynamic 

characteristics of process data to achieve satisfactory prediction performance. 

2.4. Principal components analysis (PCA) 

PCA is a dimensionality reduction technology widely used in pattern recognition, image 

processing and feature extraction(Pearson, magazine, & science, 1901). For the purpose 

of process monitoring, Hotelling 2T statistics and squared prediction error (SPE) 
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statistics are introduced to monitor the variation of feature space and residual space 

respectively. 

3. Establishment of residual-based monitoring models 

The residual-based monitoring method is employed to get the approximation of the local 

process state through prediction models, then the multivariate statistical methods are used 

to monitor the change of the prediction residual to achieve the early detection of faults. 

The complete procedure of residual-based monitoring method is presented as Figure 1. 

 

Figure 1. The detailed flowchart of the monitoring process 

4. Case study 

In this section, three representative prediction models are used for generating residuals, 

and PCA is used for residual monitoring for a fair comparison of monitoring performance. 

PLS-PCA, SVM-PCA and LSTM-PCA are applied in TE process and an industrial case 

to compare the influence of different prediction models on the performance of residual-

based process monitoring methods. 

4.1. Tennessee Eastman process (TE) process 

Tennessee Eastman (TE) process proposed by Eastman Chemical Company is a widely 

used benchmark test based on a real industrial process for process monitoring. There are 

33 measurement variables and 21 faults in TE process. The technological process of the 

TE simulation process can be briefly introduced as: the reaction raw materials A, C, D, 

and E are input into the reactor in gaseous form, and the main products G and H of the 

process are generated under the action of the catalyst. In addition, the process will produce 

by-products, namely by-product F.  

In this case, 960 sample points are selected to establish residual-based model. It is divided 

into three parts: 500 sample points as training data for prediction model, 100 sample 

points as verifying data for prediction model and 360 sample points as training data for 

the monitoring model. Fault 3, fault 5 and fault 15 are hard to detect due to other 
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researcher’s study, so 18 faults are used as testing data for the monitoring model(Chiang, 

Russell, & Braatz, 2000). 

Table 1. Alarm point, FDR (%) and FAR (%) of 19 Faults in the TE process 

Fault 

No. 

Alarm point FDR FAR 

PLS-

PCA 

SVM-

PCA 

LSTM-

PCA 

PLS-

PCA 

SVM-

PCA 

LSTM-

PCA 

PLS-

PCA 

SVM-

PCA 

LSTM-

PCA 

1 165 165 170 99.75 99.5 99.13 0.625 0.625 1.25 

2 204 191 180 95.13 96.5 98.38 0.00 0.00 5.00 

4 161 161 201 100.00 100.00 56.75 0.00 0.63 20.00 

5 161 162 176 100.00 99.88 61.13 0.00 0.63 20.00 

6 161 161 200 100.00 100.00 99.88 0.00 0.00 23.13 

7 161 161 164 100.00 100.00 99.88 0.00 0.00 21.88 

8 180 183 180 94.88 96.63 98.25 0.00 0.63 42.50 

10 183 185 171 80.88 81.13 76.88 0.00 0.00 15.63 

11 169 169 193 64.00 66.25 56.38 0.00 0.00 20.63 

12 162 163 190 99.38 99.63 95.75 0.00 0.00 36.88 

13 203 201 215 95.13 95.25 97.13 0.00 0.00 5.63 

14 162 162 - 99.88 99.88 40.75 0.00 0.00 26.25 

16 169 167 175 86.75 86.00 70.63 0.00 0.63 51.88 

17 182 182 211 95.88 96.25 61.25 0.63 0.00 62.50 

18 244 244 265 89.75 89.75 88.13 0.00 0.63 43.13 

19 171 171 327 85.00 84.75 53.63 0.00 0.00 28.13 

20 225 225 240 90.63 77.375 85.38 0.00 0.00 28.75 

21 618 649 684 44.25 39.13 78.50 0.63 1.25 52.50 

Average - - - 90.06 89.33 78.76 0.10 0.28 28.09 

As shown in Table 1, it is a comparison of fault alarm points, fault detection rate (FDR) 

and false alarm rate (FAR) of three residual-based process monitoring methods. It can be 

seen from Table 1 that for most faults, the monitoring performance of PLS-PCA and 

SVM-PCA algorithms is better than that of LSTM-PCA. Among them, the PLS-PCA 

algorithm has the highest average FDR for 18 faults and the lowest false alarm rate. 

In residual generation part, the prediction errors of 28 variables can be obtained through 

their corresponding regression models. The average root-mean-square error (RMSE) of 

PLS, SVM and LSTM for these 28 variables are 0.465, 0.466 and 0.035, respectively. 

Among them, the average RMSE of LSTM is the lowest, however, the monitoring 

performance of residual-based LSTM-PCA model is not the best. This indicates that when 

the prediction model is only selected by lowest prediction error, the performance of the 

monitoring model is not necessarily the best. 

When the process is under normal conditions, the prediction model residuals should be 

the noise in data, which should conform to the normal distribution. Quantile-Quantile plot 

is a method to compare two probability distributions by plotting their quantiles against 
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each other(Huang, Qiao, Liu, Liu, & Dai, 2019). Through the analysis for residuals of all 

variables, it shows that the probability of most residuals obtained from PLS and SVM 

consisting with the normal distribution is higher than the probability of residuals obtained 

from LSTM. Taking the variable stripper underflow (stream 11) as an example, as shown 

in Figure 2 (the Q-Q plots), compared to residuals from LSTM, points of residuals 

obtained from PLS and SVM are closer to the diagonal, which illustrates that the 

prediction residuals from PLS and SVM is more consistent with normal distribution. 

 

Figure 2. The Quantile-Quantile plots of the regression model in TE process 

4.2. Industrial case 

Data from continuous catalytic reforming unit are utilized to further illustrate the 

relationship between prediction model residuals and monitoring performance. In this case, 

4000 sample points are selected to establish residual-based model. It is divided into three 

parts: 2000 sample points as training data for prediction model, 1000 sample points as 

verifying data for prediction model and 1000 sample points as testing data for prediction 

model. 2500 fault points, including a reactor temperature abnormal change, are collected 

as testing data for the comparison of monitoring performance.  

Table 2. Alarm point in the industrial case 

Methods PLS SVM LSTM 

Alarm point 204 191 210 

 

Figure 3. Monitoring results in the industrial case 

As shown in Table 2 and Figure 3, it is a comparison of fault alarm points of three 

residual-based process monitoring methods. It can be found that SVM-PCA detects this 

fault at 191th sample which has a significantly earlier alarming time compared with 

PLS-PCA and LSTM-PCA.  

Taking the cold-end outlet temperature of heat exchange as an example, as shown in 

Figure 4, compared to PLS and LSTM, points of residuals obtained from SVM are 

closer to the diagonal, which illustrates that the prediction residuals from SVM is more 

consistent with normal distribution.  
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The analysis results of two cases above states that: (1) The prediction error of the 

prediction model isn’t the dominant factor in determining the monitoring performance, 

and the prediction model with the lowest prediction errors can’t achieve best monitoring 

performance necessarily; (2) Through the research on the residual distribution of three 

representative prediction methods, the consistency of the residual distribution and the 

normal distribution has a certain corresponding relationship with the monitoring 

performance, which could be a factor to select the prediction model for residual-based 

monitoring method. 

 

Figure 4. The Quantile-Quantile plots of the regression model in the industrial case 

5. Conclusions 

The influence of prediction models, evaluation indicators, distribution of prediction 

residuals on monitoring performance are discussed in this paper. Through the comparison 

of these three models, it can be seen that in addition to the traditional evaluation indicators, 

whether the residuals are normally distributed is also important indicators that affect the 

monitoring performance. The above factor should be considered in the selection and 

establishment of the prediction model for the residual-based monitoring method.  

References 

Nor, N. M., Hassan, C. R. C., & Hussain, M. A. J. R. i. C. E, 2020, A review of data-driven fault 

detection and diagnosis methods: Applications in chemical process systems, 36(4), 513-553.  

Tong, C., Lan, T., Yu, H., & Peng, X. J. J. o. P. C. 2019, Distributed partial least squares based 

residual generation for statistical process monitoring, 75, 77-85. 

Kazemi, P., Giralt, J., Bengoa, C., Steyer, J.-P. J. W. S., & Technology, 2020, Data-driven fault 

detection methods for detecting small-magnitude faults in anaerobic digestion process, 81(8), 

1740-1748. 

Tao, L., Liu, B., & Liang, W. J. M. P. i. E, 2021, Automated Detection of Arrhythmia for Hybrid 

Neural Network of LSTM-Residual with Multi-Information Fusion, 2021.  

Pirouz, D. M. J. A. a. S,2006, An overview of partial least squares.  

Awad, M., & Khanna, R, 2015, Support vector regression. In Efficient learning machines (pp. 67-

80): Springer. 

Hochreiter, S., & Schmidhuber, J. J. N. c, 1997, Long short-term memory. 9(8), 1735-1780. 

Pearson, K. J. T. L., Edinburgh,, magazine, D. p., & science, j. o, 1901, LIII. On lines and planes 

of closest fit to systems of points in space. 2(11), 559-572. 

Y. K. Awad, M., & Khanna, R, 2015, Support vector regression. In Efficient learning machines 

(pp. 67-80): Springer. 

Chiang, L. H., Russell, E. L., & Braatz, R. D, 2000, Fault detection and diagnosis in industrial 

systems: Springer Science & Business Media. 

Huang, K.-W., Qiao, M., Liu, X., Liu, S., & Dai, M. J. a. p. a, 2019, Computer Vision and Metrics 

Learning for Hypothesis Testing: An Application of QQ Plot for Normality Test.  

1092

Jiaying Ma  et   al.



PROCEEDINGS OF THE 32nd European Symposium on Computer Aided Process Engineering  

(ESCAPE32), June 12-15, 2022, Toulouse, France  

L. Montastruc, S. Negny (Editors) 

© 2022 Elsevier B.V. All rights reserved.  

 

Optimal operation of parallel mini-bioreactors in 

bioprocess development using multi-stage MPC 

Niels Krausch,a Jong Woo Kim,a Sergio Lucia,b Sebastian Groß,c Tilman 

Barz,a,d Peter Neubauer,a Mariano N. Cruz Bournazou,a,e 

aTechnische Universität Berlin, Bioprocess Engineering, 13355 Berlin, Germany 
bTechnische Universität Dortmund, Process Automation Systems, 44227 Dortmund, 

Germany 
cwega Informatik (Deutschland) GmbH, 79576 Weil am Rhein, Germany 
dAIT Austrian Institute of Technology GmbH, Center for Energy, 1210 Vienna, Austria 
eDataHow AG, 8600 Dübendorf, Switzerland 

Abstract 

Bioprocess development is commonly characterized by long development times, 

especially in the early screening phase. After promising candidates have been pre-selected 

in screening campaigns, an optimal operating strategy has to be found and verified under 

conditions similar to production. In view of the large number of strains and the process 

conditions to be tested, high-throughput cultivation systems provide an essential tool to 

sample the large design space in short time. Furthermore, cultivating cells with pulse-

based feeding and thus exposing them to oscillating feast and famine phases has shown 

to be a powerful approach to study microorganisms closer to industrial bioreactor 

conditions. We have recently presented a comprehensive platform, consisting of two 

liquid handling stations coupled with a model-based experimental design and operation 

framework to increase the efficiency in High Throughput bioprocess development. Using 

calibrated macro-kinetic growth models, the platform has been successfully used for the 

development of scale-down fed-batch cultivations in parallel mini-bioreactor systems. 

However, it has also been shown that parametric uncertainties in the models can 

significantly affect the prediction accuracy and thus the reliability of optimized 

cultivation strategies. To tackle this issue, we implemented a multi-stage Model 

Predictive Control (MPC) strategy to fulfill the experimental objectives under tight 

constraints despite the uncertainty in the parameters and the measurements. Dealing with 

uncertainties in the parameters is of major importance, since constraint violation would 

easily occur otherwise, which in turn could have adverse effects on the quality of the 

heterologous protein produced. Using the feedback information gained through the 

evolution along the tree, the control approach is significantly more robust than standard 

MPC approaches without being overly conservative. We show in this study that the 

application of multi-stage MPC can increase the number of successful experiments, by 

applying this methodology to a mini-bioreactor cultivation operated in parallel.  

 

Keywords: high-throughput, model-predictive control, scale-down, multi-stage 
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1. Introduction 

1.1. High-throughput bioprocess development 

The development of a process in biotechnology is enormously time-consuming. Not only 

does it take a long time to find a suitable strain from a huge collection of strains, but the 

identification of optimal process conditions for this strain also takes a lot of time and 

resources. Especially due to the increased demand for resource-saving and 

environmentally friendly bioproducts, the requirements for faster process development 

are also increasing. Miniaturization and parallelization are two recent technologies that 

can accelerate throughput in screening processes and process development (Hemmerich 

et al., 2018). In particular, the use of liquid handling stations and the application of 

computer-aided and model-based methods could make a decisive contribution to holistic 

and faster process development (Hans et al., 2020). These methods have already been 

used for optimal experimental re-design as well as process insights and faster strain 

phenotyping (Anane et al., 2019).  

 

1.2. Implications of MPC for optimal automated bioprocess development 

Fed-batch is still the most widely used process strategy in bioprocessing. Here, the change 

of the feeding rate plays an important role. Classically, feeding sequences after the batch 

phase follow an exponential course, based on a previously defined growth rate. However, 

it can easily happen that the selected growth rate is either too low and thus the process 

takes a long time to reach a certain cell density or that the feeding rate was selected too 

high and oxygen limitation can occur. This is a problem for various processes, as it causes 

unwanted stress reactions and can significantly influence the yield (Baez & Shiloach, 

2014). Model predictive control is a method that has been widely used in the chemical 

industry and has also shown good success in several simulation studies in bioprocess 

engineering but has had little application in real experiments (Rathore et al., 2021). This 

is mainly due to the fact that good estimates for the underlying parameters must be 

available for the model and that the inherent system dynamics in microbial cultivations 

with e.g. E. coli are much different compared to other cultivation systems like mammalian 

cell cultures. Finding good values for this is often time consuming and the values are 

subject to large uncertainties. We show here our implementation of a combination of 

moving horizon estimation for parameter estimation and multi-stage model predictive 

control. This strategy provides rough estimates for the parameters for new strains where 

no information is available in a short time, and multi-stage MPC is then used to compute 

an optimal feeding regime while explicitly taking into account the uncertainty of such 

parameters. As more information, in the form of measurements, is gathered, the parameter 

estimation can be improved and the multi-stage MPC can include this information online 

to improve the performance while ensuring robust process control and avoiding oxygen 

limitation. Since the dissolved oxygen tension (DOT) is measured with a first order delay, 

it is not possible to control the process optimally by means of a PID controller, since the 

violation of the constraint always occurs after a glucose pulse has been added. In this 

respect, a model-based control with prediction of whether a selected pulse satisfies the 

constraint is necessary. This is another reason to take the uncertainties of the parameter 

values into account, as this approach has proven to be significantly more robust than 

previous approaches (Lucia et al., 2013). By using our fully automated liquid handling 

station, we can quickly take many measurements to adapt our model well to the new strain 

and at the same time use the outputs of the MPC to optimally adjust the process online. 
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The multi-stage approach in particular makes it possible to still ensure robust process 

control even with inaccurate estimated values for the parameters. 

2. Material and Methods 

Initial testing experiments for the parameter estimation were conducted on our high-

throughput bioprocess development platform, although the actual multi-stage 

experiments were performed in silico. The platform comprises two liquid handling 

stations (Freedom Evo 200, Tecan, Switzerland; Microlab Star, Hamilton, Switzerland), 

a mini bioreactor system (48 BioReactor, 2mag AG, Munich, Germany) and a Synergy 

MX microwell plate reader (BioTek Instruments GmbH, Bad Friedrichshall, Germany). 

With this setup, the platform is capable to perform up to 48 cultivations in parallel. DOT 

and pH are measured online, while the concentrations of the other state variables, i.e. 

glucose, acetate and biomass were measured at-line using enzymatic kits. The reader is 

referred to (Haby et al., 2019) for a detailed description of the facility and sampling 

procedure. The multi-rate sampling frequency of the different states poses another 

challenge for the optimization, as DOT is measured every 60 s, while the other state 

variables are only measured every 20 min. 

The MHE part for parameter and initial state estimation can be generally formulated 

according to (1), subject to (2). 

min
𝜃,𝑥0,𝑟

1

2
‖𝑥0,𝑟 − 𝑥0,𝑟,𝑜𝑙𝑑‖

𝑊𝑥

2

+
1

2
‖𝜃 − 𝜃𝑜𝑙𝑑‖𝑊𝑃

2

+ ∑
1

2
‖ℎ(𝑥𝑟(𝑡), 𝑢𝑟(𝑡), 𝜃) − 𝑦𝑚𝑒𝑎𝑠(𝑡)‖𝑊𝑦

2

𝑁𝑀𝐻𝐸

𝑘=0

 

(1) 

s.t. 

𝑥̇𝑟(𝑡) = 𝑓(𝑥𝑟(𝑡), 𝑢𝑟(𝑡), 𝜃) 
𝜃𝑚𝑖𝑛 ≤ 𝜃 ≤ 𝜃𝑚𝑎𝑥 

(2) 

The estimate for the states at the initial point of the window are then denoted by𝑥0,𝑟,𝑜𝑙𝑑, 

the current parameter vector 𝜃, the parameter vector from the previous horizon 𝜃𝑜𝑙𝑑. The 

squared norm is applied to all calculations and the optimizer tries to minimize the 

deviations over the time window of length 𝑁𝑀𝐻𝐸 of the measurements 𝑦𝑚𝑒𝑎𝑠 and the 

predicted outputs ℎ(𝑥𝑟(𝑡), 𝑢𝑟(𝑡), 𝜃), considering the inputs 𝑢𝑟(𝑡) and current parameter 

vector. Each norm is further weighted by the factors 𝑊𝑥,𝑊𝑝,𝑊𝑦 . 

The optimization problem that is solved to compute the optimal inputs via MPC is: 

min
𝑢𝑟

−𝑊𝑀𝑋𝑟 (𝑡 + 𝑁MPCΔ𝑡) −𝑊𝐿 ∑ 𝑋𝑟(𝑡 + 𝑘Δ𝑡)

𝑁MPC−1

𝑘=0

 (3) 

s.t. 

𝑥̇𝑟(𝑡) = 𝑓(𝑥𝑟(𝑡), 𝑢𝑟(𝑡), 𝜃) 

𝑥𝑟(𝑡0) = 𝑥0,𝑟 

DOT𝑟(𝑡) ≥ 20%, 𝑢𝑟(𝑡) ≥ 3μL 

(4) 

Where 𝑊𝑉 and 𝑊𝐿 denote the weightings for the terminal- and the stage-cost, 

respectively. The goal was to maximize the biomass 𝑋𝑟 in the shortest time while at the 

same time avoiding oxygen limitation, i.e. having a level of at least 20% dissolved oxygen 

in the medium. The macro-kinetic growth model used in this study hence consists of 6 

ordinary differential equations (ODEs) including the measured oxygen as well as an 

1095



1072  N. Krausch et al. 

 

algebraic equation describing the actual oxygen, forming a system of differential-

algebraic equations.  

The problem was solved using the do-mpc software which utilizes orthogonal collocation 

on finite elements to discretize the system, which can then be solved using NLP 

optimizers (Lucia et al., 2017). One main challenge when operating this system is the 

non-continuous property of the inputs. Since glucose feeding is bolus-like, concentrations 

and volumes are changed at discrete time points. To deal with this, mass balances must 

be solved for the respective pulse additions, and it is mathematically more difficult to 

solve the system. The reader is referred to (Kim et al., 2021) for an in depth description 

of the underlying model and description of the optimization process. To consider the 

uncertainties in the parameters, a scenario tree is built. Here, each branch of the tree 

represents a possible combination of the uncertain parameter combinations. At each node, 

the optimization problem is solved again considering the current parameter uncertainty 

and an optimal trajectory is identified. When the parameter uncertainty is large, this 

approach yields much better constraint satisfaction than nominal MPC approaches. In this 

contribution, we tested the multi-stage approach to consider the uncertainties for a 

prediction horizon of 180 min and a robust control horizon of 10 min.  

3. Results and discussion 

Based on our previous work, where we showed the advantage of using MPC to obtain 

higher biomass while avoiding oxygen limitation compared to a predefined feeding 

regime (Krausch et al., 2020), we extended our work to account for the uncertainties in 

the parameters. Compared to the nominal MPC, multi-stage MPC offers the opportunity 

to consider the inherent uncertainties of the model parameters to be more robust. This is 

especially important to ensure that the defined constraints are not violated. Especially for 

processes with a large uncertainty in the parameters or difficult to predict dynamics, this 

offers a much better possibility of process control. In this setup, the framework was used 

to consider the uncertainties of three important model parameters, namely the maximum 

substrate uptake rate 𝑞𝑆,𝑚𝑎𝑥 , the yield coefficient of biomass per substrate excluding 

maintenance 𝑌𝑋𝑆,𝑒𝑚 and the volumetric oxygen transfer coefficient 𝑘𝐿𝑎. All these 

parameters can affect the oxygen consumption and hence easily lead to constraint 

violation. Choosing the right parameters in the scenario tree could be supported by using 

a subset selection method with sensitivity analysis or further data-driven approaches like 

PCA (Thombre et al., 2019). Many studies have shown the advantage of advanced control 

methods such as MPC, but have mainly been studying the nominal case for optimization 

(Chang et al., 2016; Ulonska et al., 2018). As depicted in Figure 1, the multi-stage MPC 

calculates a lower feeding rate compared to the nominal MPC, since it considers the 

uncertainties in the parameters. The nominal MPC can actually only ensure that the 

constraints are not violated if the parameters are well estimated and have very low 

uncertainty. The multi-stage approach, on the other hand, can identify an optimal feeding 

regime and account for the strength of uncertainties via a feedback loop. This is 

particularly advantageous for processes about which little information and measurement 

data are available like in early screening of new strains and therefore the parameter 

uncertainties are correspondingly large. Accordingly, taking these uncertainties into 

account leads to a lower feeding behavior in contrast to the nominal MPC, but to a much 

more robust process behavior. In particular, the system can react quickly in an 

unpredictable manner if the constraint is violated, since oxygen limitation also has a 
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strong influence on the expression of numerous genes and thus could strongly change the 

dynamics of the system.

Figure 1: Comparison of nominal (upper) and multi-stage (lower) MPC at 3 h. The multi-stage 

approach guarantees constraint satisfaction even when the uncertainties are considered.

Uncertainties for the DOT and feed are shown as shaded plots and error bars, respectively.

4. Conclusion and outlook

In this study, we have shown that a robust multi-stage MPC approach that takes into 

account the uncertainties in the parameters is even better than a nominal MPC. Violation 

of the constraint is a problem for many bioprocesses and there are various approaches to 

control bioprocesses. With the predictive approach, the constraints can be met well before 

they are violated, and the process can be guided to its optimum, so constraints are satisfied 

even in case of high uncertain parameters. However, the computational effort increases 

significantly with the number of parameters and the underlying uncertainties, so careful 

consideration must be given to which parameters the uncertainties should be considered 

for. Future work will need to deal with this problem by being more flexible in terms of 

what parameter uncertainties are considered and how large the prediction horizon should 

be, since the problem size is growing exponentially with a larger robust horizon or number 

of uncertain parameters to account for. Another aspect is to represent the product 

formation with the help of data-driven models, so that the process can also be optimized 

in this respect.
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Abstract 
Dynamic Micro/Ultra-filtration technology has shown to be an intensified process able to 
provide improved selectivity and/or throughput required in challenging separations. 
However, there is a trade-off between operating conditions to achieve optimal operation 
which is time-variant and difficult to estimate. Herein, a platform for online system 
identification is built for a dynamic ultrafiltration system, where the Forgetting Factor 
Recursive Least Squared (FFRLS) method is investigated to describe transmembrane 
evolution at constant flux operation for a real wastewater pilot plant. The model 
predictions have around 4% average error, predicting relatively fast and slow system 
dynamics. Therefore, the model has a good permeability estimation useful to determine 
the membrane fouling rate in real-time. 
 
Keywords: Online system identification, ARX model, Dynamic ultrafiltration, 
Membrane fouling rate modelling.  

1. Introduction 
Ultra and Micro-filtration are mature separation technologies widely used in water 
treatment, food, beverage, pharmaceutical and biotechnological industries. Membrane 
filtration processes have shown remarkable performance in terms of selectivity, 
throughput, low footprint and system modularity, operation at mild conditions, low 
chemical consumption, and relatively simple operation and automation. However, 
filtration technology is challenged to guarantee optimal stable operation under 
unmeasured high-variance inlet disturbances, which highly influence the system 
performance. The reason is two time-variant coupled phenomena referred to as 
concentration polarization and membrane fouling, which promote decay in the separation 
performance in terms of selectivity and/or throughput. To recover system performance, 
physical/chemical cleaning is forced, which substantially affects process operating costs 
and processing time (Baker, 2012).  
 
To mitigate the adverse effect of concentration polarization and irreversible fouling, the 
dynamic operation has been proposed instead of conventional crossflow filtration (Prado-
Rubio, O.A., 2012). This corresponds to a non-invasive physical technique where a 
portion of permeate is reversed using a high frequency – short duration backshock. This 
inverted flux can partially remove membrane fouling and disrupts the boundary layer 

1099

http://dx.doi.org/10.1016/B978-0-323-95879-0.50180-6 



1076  Oscar A. Prado-Rubio et al.

adjacent to the membrane surface. The latter avoids a high solute concentration at the 
membrane surface which reduces membrane rejection (López-Murillo et al., 2021). The 
intensifying effect of the dynamic membrane operation has been shown in diverse 
applications, where overall performance can be improved significantly by reverting flux 
periodically (Prado-Rubio, O.A., 2012; López-Murillo et al., 2021). As a drawback, 
process intensification can be only accomplished by a specific combination of operating 
conditions. Those are relatively complex to determine due to the system dynamic and 
unmeasured disturbances. Thus, to obtain an economically attractive operation scenario, 
the filtration unit must adapt to the operating conditions relaxing and tightening the 
driving force along with the operation. As expected, massive experimental work is 
required to establish a sustainable operation in real industrial conditions and sometimes 
operating conditions cannot be reliably estimated (Prado-Rubio, O.A., 2012). 
 
Therefore, it is relevant to explore different modelling approaches for dynamic 
ultrafiltration that allows exploiting PSE tools to improve process design and operation. 
Recently, we have investigated off-line modelling approaches to describe dynamic 
membrane filtration, including scheduled linear time-invariant (LTI)-SISO and MISO 
autoregressive models, neural networks, and hybrid approaches (Prado-Rubio and 
Huusom, 2015; Prado-Rubio and Von Stosch, 2017; Grisales Díaz et al, 2017). Those 
approaches have shown to be useful for process design but have limitations for optimal 
operation/control. Therefore, there is still a need for tools to determine the membrane 
state during real operation, thus, to have a chance to optimize the relatively high energy 
demanding system. The purpose of this contribution is to implement and investigate a 
platform to describe the dynamic filtration system based on online system identification. 
The platform aims to provide a real-time representation of the dynamic ultrafiltration 
system, focused on the fouling rate represented by the membrane permeability evolution. 
For testing, the platform uses a database of experimental data which are provided in real-
time, and the Forgetting Factor Recursive Least Squared (FFRLS) method to correlate 
operating conditions when the system is operated at constant membrane flux. Thus, an 
estimation of the membrane permeability is performed to indicate the membrane fouling 
rate. This contribution corresponds to a preliminary effort to investigate the modelling 
approach for dynamic ultrafiltration which later can be implemented in a pilot plant. 

2. Methodology 
 
The platform has been implemented in Matlab® 2019b in three modules. The platform 
emulates the real system by using a database from experiments of dynamic filtration at 
field conditions, which have been exported from .txt (raw data from the PLC) to a .mat 
file. Accounting for the large sequential experiments database, continuous long-term 
system operation is emulated combining data from different operation scenarios. Within 
the algorithm, the first step is to pre-process the information for subsequent system 
identification including a data reconciliation strategy, and emulate real sampling time data 
access. Finally, the platform uses a custom-made function for Recursive Least Squared 
parameter estimation with forgetting factor to correlate the membrane flux and the 
manipulable transmembrane pressure, thus estimating the membrane permeability. Then 
model quality is determined and subsequently membrane permeability is predicted and 
analyzed.  
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2.1. Experimental data – produced water treatment using dynamic ultrafiltration 
 
Produced water is wastewater in the oil and gas industry after most of the crude oil has 
been separated into an oil field. Produced water is a complex emulsion mainly composed 
of organic matter, oils, microorganisms, heavy metals, chemicals, salts, dissolved oxygen, 
among others. Produced water treatment is challenging accounting for the complex 
mixture and the time-variant nature depending on the oil well maturity and location. 
Membrane technology has been tested for produced water management since 
conventional specific gravity-based technologies have difficulties coping with the stricter 
environmental legislations for water disposal. Dynamic ultrafiltration experiments were 
performed in a real produced water treatment plant, where effluents from different 
sections of the processing facility were fed to the membrane system (Prado-Rubio, 2012). 
The membrane system was operated at constant flux using the step-up/step-down 
methodology (Beier & Jonsson, 2009). Under this operation strategy, the transmembrane 
pressure is increased during operation to compensate for the increasing transport 
resistance due to fouling. The pilot plant records data from flow rates, absolute pressure, 
and temperature every 3 seconds. Inlet and outlet water quality was characterized offline 
using spectrophotometry. During the long-term experiments, inlet water varied between 
30<Total Suspended Solids (TSS)<100 mg/l and 3<Total Hydrocarbons (TH)<1200 mg/l. 
The membrane treatment removed above 96% of TSS and 94% of TH. For this 
application, a subset of 26 experiments is employed to test the developed tool, those 
experiments contain approximately 22000 data points for every variable.   
 

2.2. Signal pre-processing 
 
In previous work, a signal processing algorithm has been developed which allows 
reconstructing frequency and amplitude of the in-situ cleaning strategies namely 
backshock and backflush (Prado-Rubio and Von Stosch, 2017). This was necessary due 
to the induced signal delays to avoid potential overlapping of both cleaning strategies and 
fast dynamics of the backshock that cannot be captured by the used sampling time in the 
PLC. This signal reconstruction algorithm has shown to be useful for off-line system 
identification and therefore, it is incorporated in the platform. However, the user can 
define if these reconstructed signals are used for online process identification. 
Additionally, in this emulated application, the user defines which experiments are used 
for testing. Taking advantage of the large database, different operation scenarios have 
been evaluated pilling nonconsecutive experiments to assess the online system 
identification methodology and predictions. During this investigation, scenarios from 
single experiments up to 7 pilled experiments were evaluated.   
 

2.3. Online system identification  
 
System identification tools are well-established within process control including offline 
and online strategies. Forgetting Factor Recursive Least Squared (FFRLS) is the most 
used method for system parameter identification since it is simple and stable. The 
forgetting factor adjusts the proportion of old and new data employed so the proportion 
of old data is reduced when new data is available. This algorithm has a fast convergence 
to the actual value (Diniz, 2013). FFRLS method is employed to correlate the evolving 
transmembrane pressure to operate the dynamic filtration unit at constant membrane flux, 
where the membrane flux is controlled through a PI control. The linear dependency of 
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both variables is evident in the pore-flow model, where the membrane flux (J) is 
proportional to the transmembrane pressure (TMP) (Baker, 2012): 
 

 pJ L TMP                                                                                                                     (1) 

  
The membrane permeability (Lp - L/m2 h bar) is expected to decrease during operation 
due to the increase in transport resistance generated by concentration polarization and 
fouling. Permeability evolution is a function of the operating conditions such as the inlet 
concentrations, pH, temperature, ionic strength, membrane, flow rates, pressures, 
cleaning strategies, among others. Based on the pore-flow model, it is natural to use a 
simple ARX model to correlate variables. ARX has been applied for offline system 
identification of this system previously. For preliminary modelling approach assessment, 
FFRLS has been implemented to estimate the TMP signal as output using the membrane 
flux as an inlet. In this way, the model can predict the membrane permeability evolution 
as an indirect indication of the membrane fouling rate.  
 
As inputs, the user defines the model order, and the forgetting factor is a tunable 
parameter. The implementation was validated using the recent functions included in 
Matlab® for online system identification. The estimation quality is evaluated against the 
available experimental data and moving average method.  

3. Results 
 
As mentioned previously, different combinations of the experiments were investigated to 
determine the modelling approach capabilities. As an example, a particular situation is 
depicted in this contribution: operation under low fouling rate, followed by high fouling 
rate experiment and returned to low fouling rate operation. This case is particularly 
interesting since it contains subcritical and supercritical flux operations. Simulations were 
performed for a sequence of polynomials order (from 1 up to 4) and exploring the 
influence of the forgetting factor. First, it was evidenced that the online system 
identification procedure was substantially faster than the sampling time, allowing to have 
faster sampling time in forthcoming experiments (e.g., every second). Secondly, 
increasing the order of the polynomials led to a high correlation between parameters 
without improving the model quality. Therefore, for illustration purposes, first-order 
models were sufficient to match previously obtained results with higher-order MISO 
offline system identification (Prado-Rubio and Von Stosch, 2017).  
 
In Figure 2, the quality of the model predictions is depicted. It should be mentioned that 
the estimation is performed in real-time, thus, the figure is animated. Conventionally, 
forgetting algorithms have shown to be suitable for tracking slow dynamics while having 
more difficulties describing fast changes. Interestingly, the online ARX model can 
reproduce most of the fast behaviour associated with the backshock and backflush, while 
following the slow dynamics associated with the membrane fouling. This indicates that 
the identified model has a high degree of experimental data reproduction under different 
operating strategies. Most of the data have around 4% average prediction error, while 
there are some points with up to 10%.  
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Figure 2. Simulation results of the real experimental data and model predictions. (a) full data set 
and (b) parity diagram for TMP using moving window average with 20 samples plus ±10% error.  
 

 
Figure 3. Adaptive parameters evolution to reproduce different fouling rate experiments. 
 
The adaptive evolution of the parameters can be seen in Figure 3, where A(z) and B(z) 
are the polynomials for the backward shift operator z-1, defining the system transfer 
function. As expected from the pore-flow model, the changes in the membrane 
permeability are tracked by B. Despite the lack of interpretability of those parameters, 
interestingly, b1 captures the increase of the fouling rate evidenced in the transmembrane 
pressure. Besides, the parameter b2 might not be entirely necessary, thus it could be 
omitted, and the system could be represented by even a simpler first-order discrete 
model.   
 
Finally, Figure 4 depicts the predicted average permeability and the average estimated 
from the raw data. The online model provides a clearer representation of the membrane 
permeability, where it is evident the trend which indicates the fouling rate, instead of 
using the instantaneous estimation based on the raw data. Although in situ cleaning was 
performed, a permeability decrease was observed in all windows studied (at low or high 
TMP). According to the operation strategy, the controlled operation increases the 
transmembrane pressure to compensate for the adverse influence of fouling. At low flux 
operation (subcritical) the TMP increment is tolerable and associated with reversible 
fouling, increasing the desired flux can generate undesirable irreversible fouling. The 
threshold between both operation windows is challenging to estimate due to its time-
variant nature, but this approach has shown that can estimate the average membrane 
permeability instead of the instantaneous permeability, which can be used to define an 
adaptive controller to avoid excessive membrane fouling during operation.  
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Figure 4. Comparison between predicted average permeability and average instantaneous 
permeability from raw data 
 
 

4. Conclusions 
 
Despite the simplicity of dynamic membrane filtration systems, its modelling has shown 
to be challenging accounting for the time-variant nature of the involved transport 
phenomena. Herein, a tool for online system identification has been implemented to allow 
process engineers to investigate dynamic ultrafiltration modelling. This platform is used 
to predict changes in transmembrane pressure (TMP) with an averaged error lower than 
4%. Thus, it provides a better membrane permeability estimation compared to previous 
efforts with off-line system identification or using raw data to have an instantaneous 
calculation. This estimation provides an indirect estimate of the membrane fouling rate. 
These preliminary tests are encouraging to pursuit an implementation in a real system to 
introduce adaptive control actions into the system operation, which will have a significant 
impact on the operation of membrane-based treatment systems.  
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Abstract 

We report progress of an ongoing work to develop a virtual sensor for flowability, which 

is a critical tool for enabling real time process monitoring in a granulation line. The sensor 

is based on camera imaging to measure the size and shape distribution of granules 

produced by wet granulation. Then, statistical methods were used to correlate them with 

flowability measurements such as ring shear tests, drained angle of repose, dynamic angle 

of repose, and tapped density. The virtual sensor addresses the issue with these flowability 

measurements, which are based on off-line characterization methods that can take hours 

to perform. With a virtual sensor based on real-time measurement methods, the prediction 

of granule flowability become faster, allowing for timely decisions regarding process 

control and the supply chain. 

 

Keywords: virtual sensor, monitoring, flowability, machine learning, size and shape 

distribution 

1. Introduction 

The manufacturing of tablets often relies on a granulation step to improve the 

processability of a pharmaceutical powder blend. By converting them into granules, 

flowability, tabletability, compressibility, and compactibility can be improved. These 

properties are considered to be the critical quality attributes (CQA) of the granulation 

unit; and in a wet granulator, the monitoring of these properties is considered critical. 

Unfortunately, characterization tests for these CQAs are usually off-line methods that can 

take hours to measure and require sample reduction procedures that can lead to significant 

sampling errors. It is thus important to develop faster ways to estimate the CQAs and 

minimize sampling error. 

 

In a wet granulation platform employing a fluidized bed, it is possible to measure the size 

and shape distribution of a finished batch of granules as it discharges from the product 

hopper. If these real-time measurements of size and shape can be used to automatically 

predict the CQA of the discharging granules, decisions regarding the batch and the 

process could be made much faster. This time advantage could save future batches from 

failure, provide valuable information about the raw material, and allow optimization of 
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the control process parameters of downstream unit operations to match the characteristics 

of each batch of granules. 

 

Particle size and shape distributions are known to be strong indicators of granule 

properties, so they have a great potential to be reliable predictors of a granule’s CQA’s. 

However, their measurement result in a large number of data points that are difficult to 

manage and process. In practice, these distributions often get reduced to 1 to 3 D-values 

(i.e., D10, D50, D90) prior to analysis. There has been demonstrated success in this 

strategy, but this practice can lead to significant loss of information from the dataset, 

especially when the distributions have statistical central tendencies that do not fall close 

to those selected D-values. An ideal solution would be to employ all available information 

from the size and shape distribution measurements, and then to use an appropriate data 

reduction technique that maximizes the relevant information from the distribution 

measurements. By implementing this with an appropriate feature extraction technique, 

the reduced dataset should maximize correlatability with properties of interest such as 

flowability. 

 

Aside from the predictor variables (i.e., size and shape distribution), the need for data 

reduction and feature extraction is also applicable for the predicted variables (i.e., the 

CQA’s), especially for flowability. Since there is no singular measure for it, several 

methods exist to characterize flowability. Often, the goal in characterization is to select 

the method with test conditions that can closely match the conditions to which the 

granules are subjected to during processing. For some applications, a single method might 

suffice. But if granules will be subjected to tablet pressing, they will be subjected to quasi-

static flow conditions in the hopper of the tablet press, as well as dynamic flow conditions 

inside the feed frame. Hence, several methods are required to ensure that the granules 

would result in quality tablets. Furthermore, each of these methods produce multiple test 

result parameters that are highly correlated. This can potentially result into a large dataset 

that needs to be appropriately reduced to make it more manageable and maximize its 

predictability with real-time measurements of granule size and shape distributions. 

 

2. Methods 

2.1. Data Reduction: Principal Component Analysis (PCA) 

PCA is a method that reduces the dimensionality of large datasets while retaining most 

of its information. This is achieved by taking an orthogonal decomposition of the 

covariance matrix of process variables along the directions that explain the maximum 

variation of the data. (Wold et al., 1987) While this method gives the same number of 

principal components as the original variables in the dataset, it also puts maximum 

possible variance in the first few principal components, making it possible to drop the rest 

of the principal components without losing much information. With the appropriate 

selection of principal components, data analysis and exploration can be performed on 

lower number of dimensions. 

2.2. Latent Variable Regression 

2.2.1. Linear Regression: Partial Least Squares (PLS) 

With both the predictor and the predicted variables requiring data reduction through PCA, 

linear regression on their projections to latent spaces can be performed (i.e., projection to 

their principal components). This process is known as Partial Least Squares, and it is a 
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widely used technique in areas such as chemometrics bioinformatics, neurosciences, and 

sensor development, to name a few.(Liu and Chen, 2014) 

3. Materials and Equipment 

3.1. Granules 

The granules used in this study are made with varying compositions of lactose and 

microcrystalline cellulose as the excipient, acetaminophen (APAP) as the active 

pharmaceutical ingredient (API), and either hydroxypropyl cellulose (HPC) or 

polyvinylpyrrolidone as the liquid binder solution. The excipient, API, and binders are 

prepared in varying compositions and wet granulation process conditions to produce 

granules with different flowability characteristics. This work studied four types of 

granules labelled as: HHIU1, HHIU2, HHIU3, and HHIU4.  

3.2. Granulation Equipment 

The granules are produced by wet granulation using the Xelum platform manufactured 

by Syntegon. Xelum employs a fluidized bed, where the pharmaceutical powders are 

automatically dosed and pneumatically charged with the liquid binders that facilitate the 

formation of granules. Moreover, granulation and drying takes place in the same process 

chamber, which eliminates the need to transfer wet granulate and improves the system’s 

reliability. 

3.3. Size and Shape Distribution Measurement 

The size and shape distribution of the granules are measured using Eyecon2, which is a 

direct imaging particle analyzer developed by Innopharma Technology. By using a 

camera to take images of the particles at-line or inline, this tool uses image analysis 

algorithms to detect particle boundaries and fit an ellipse around them. The ellipse gives 

a major and a minor diameter, which when averaged gives a third dimension to estimate 

a 3D volume of the particle using the equation: 

𝑉𝑜𝑙𝑢𝑚𝑒 =
𝜋

6
× 𝐷𝑚𝑖𝑛 × 𝐷𝑚𝑎𝑥 × 𝐷𝑎𝑣𝑒  Equation 1 

 

Using this volume, an equivalent spherical diameter is computed, and this diameter is the 

basis for the size distribution reported by Eyecon2. Size distributions are reported as D-

values, which are based on the cumulative size distribution. Reporting distributions in 

this manner fixes the number of variables for every possible form of size distributions. 

 

The major and minor diameters of each particle are also reflective of its shape, which may 

be quantified as eccentricity, as shown in the following equation.  

𝐸𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦 = √1 − (
𝐷𝑚𝑖𝑛

𝐷𝑚𝑎𝑥
)

2

 Equation 2 

 

Eyecon2 inherently acquires a distribution of eccentricity/shape but reports, by default, 

the distribution as a mean and relative standard deviation. 

3.4. Flowability Measurements 

The set of flowability measurements employed in this study covers both quasi-static flow 

and dynamic flow. Quasi-static flow is characterized by the ring shear tester and partly 

by tapped density analysis, while dynamic flow is characterized by drained and dynamic 

angle of repose. 
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3.4.1. Ring Shear Tester (RST) 

The Schulze ring shear tester is an essential tool for hopper design since it is mainly 

concerned with quasi-static flow. In this technique, powder is loaded normally to a 

specific bulk density and then seared until the material begins to flow. Data is collected 

as yield strength as a function of normal stress. From these measurements, the flow 

function coefficient can be computed, which may also be referred to as flowability. 

Additionally, other parameters such as internal friction, wall friction, and bulk density 

can be determined from the Schulze RST. 

3.4.2. Drained Angle of Repose and Jamming Onset 

The drained angle of repose is measured using the FlodexTM tool, which essentially 

measures the ability of a powder to fall freely under gravity through an orifice. Initially, 

the powder is contained in a hopper with a flow disk at the bottom. The disk has an orifice 

that can be opened via a discharge valve to start the powder flow. After opening the 

discharge valve, not all the powder in the hopper would be able to flow out and this 

residual powder would remain between the edge of the orifice and the hopper walls. The 

angle between the surface of this residual powder and the orifice disk is called the drained 

angle of repose and is correlated with the flowability of the powder. 

3.4.3. Dynamic Angle of Repose 

The dynamic angle of repose is measured using a rotary drum developed by GranuTools 

called the GranuDrumTM. The powder is loaded into a drum that can be rotated at a set 

rotating speed. As the drum is rotated from rest, the angle of the powder surface increases 

from horizontal until an avalanche occurs. The angle at which this happens may be 

referred to as the yield point and is correlated with flowability. Thereafter, the powder 

surface is maintained at an angle from horizontal, and this is recorded automatically using 

back-lit cameras as the dynamic angle of repose. As the rotation speed of the drum 

changes, the dynamic angle of repose also changes, revealing interesting rheological 

behaviors of powder during flow. 

3.4.4. Tapped Density Analyzer 

Tapped density analysis is performed by another tool developed by GranuTools called 

GranuPackTM. This tool minimizes operator error during filling and volume 

measurements using automation and sensor technologies. Powder is loaded onto a 

cylinder container and its density is monitored as the container is tapped continuously. 

As the powder is tapped, the density increases until it asymptotically approaches a 

maximum. The density may be expressed as the Hausner ratio, which is basically the ratio 

between the tapped density and the poured density. The dynamics of the compaction 

during tapping is also automatically captured via the parameters characteristic number 

and tau. The characteristic number is the number of taps at which the density is between 

between the poured density and the asymptotic density (i.e., density at infinite number of 

taps), while Tau is another characteristic number extrapolated from an exponential model 

(Philippe and Bideau 2003) fitted onto the compaction curve. 

4. Results and Discussion 

4.1. Principal Component Analysis on Size and Shape Distributions 

Size and shape distributions measurements can result in at least 24 variables as shown in 

the x-axis of Figure 1. Applying principal components analysis (PCA) on the dataset 

reduced the number of variables into just 3 principal components (PC), which can explain 

up to 97% of the variance in the original dataset. 
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Figure 1. Explained variance per size and shape distribution variable 

 

  
Figure 2. Loadings of size and shape distribution variables on principal component 1 (left 

figure) and principal component 2 (right figure) 

 

This drastic reduction of variables suggests that many of them are highly correlated, as 

shown in the loadings plot in Figure 2. This is the case for the size distribution variables, 

as they dominate influence on the first principal component, which explains 89% of the 

variation in the original data. On the other hand, shape-related variables (i.e., the shape 

mean and relative standard deviation) have the strongest influence on the second principal 

component, supporting the importance of measuring shape distributions, and not just size. 

4.2. Predicting Flowability Data 

Measurements from the Schulze RST can lead to 9 different parameters (or variables) that 

are related to flowability. Similar to the Eyecon2 data, most of the variation in these 

parameters (up to 98%) can be explained by only three principal components.  Hence, by 

applying partial least squares using three principal components onto the Eyecon2 data (as 

the predictor variables) and the RST data (as the predicted variables), the parity plot of 

the flow function coefficient (FFC) shown in Figure 3 show good prediction performance. 

Although not shown, similar performance was also observed for the rest of the variables.  

 

 

Figure 3. Predicted vs observed flow function 

coefficients measured from Schulze RST. 

 

Figure 4. Ranking of variable importance to 

the PLS projections. 
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Figure 5. Parity plots for selected dynamic flow test parameters: drained angle of repose (left), 

Hausner ratio (middle), and dynamic angle of repose (right). 

The performance of the PLS model can be attributed to the effectiveness of using all 

available information instead of selecting some and then ignoring the rest. Figure 4 shows 

the how the larger D-values (e.g., D85, D90, and D100) and the shape parameters 

contribute the most to the PLS projections and hence its performance. This not only 

corroborates the importance of measuring shape distributions, but also the folly of 

selecting certain D-values such as D50, D10, and D90. As shown in Figure 4, those 

variables are not the most important. Using the aforementioned techniques, similar results 

were achieved from the dynamic flow tests, as shown in Figure 5 for selected parameters 

from the Flodex (left figure), GranuDrum (middle figure), and GranuPack (right figure) 

measurements. 

5. Conclusions  

Using PLS regression, sensor models were developed to predict flowability 

measurements based on size and shape distribution of granules, and parity plots show 

good predictability for all flowability measurements. The importance of shape 

measurements as well as using the complete size distribution, instead of selecting a few 

D-values, in the predictive performance was highlighted. 
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Abstract 

Controllers are often tuned during plant commissioning, with a fixed process model.  

However, over time degradation can occur in the process, the process model and the 

controller, making it necessary to either re-tune the controller or re-identify the process 

model.  Authors have proposed a variety of approaches to identify plant-model mismatch 

(PMM) and control performance degradation (CPD). While each approach may have its 

own advantages and disadvantages, they are generally designed to function on different 

timescales. The differing timescales result in the need for a multi-level hierarchical 

approach to monitor, detect, and manage PMM and CPD, as illustrated through a 

continuous pharmaceutical manufacturing application, i.e., a direct compression tablet 

manufacturing process.  This work also highlights the requirement for index-based 

metrics, that enable the impact of PMM and CPD to be quantified and assessed from a 

control performance monitoring perspective, to aid fault diagnosis through root cause 

analysis to guide maintenance decisions for continuous manufacturing applications. 
 
Keywords: control performance monitoring, plant-model mismatch, nonlinear model 

predictive control. 

1. Introduction 

The pharmaceutical manufacturing industry is being pushed to transition from batch to 

continuous process operation due to potential improvement in process controllability and 

product quality. Additional factors such as the development cost of new medicines makes 

it both desirable and feasible to produce smaller annual volumes of targeted dosages for 

smaller patient populations. Due to stringent regulations placed by regulatory bodies, the 

development of reliable real-time process monitoring, control and management 

approaches is of crucial importance, so that deviations in critical material (CMAs) and 

critical quality attributes (CQAs) can be minimized (Su et al., 2019). These include the 

need for efficient estimation and control frameworks, and algorithms to monitor these 

frameworks to identify and quantify plant-model mismatch (PMM) and control 

performance degradation (CPD). Quantification of PMM and CPD can in turn support 

higher level fault detection and diagnosis efforts. 

Identification and management of PMM and CPD has received significant attention in the 

control literature. PMM can arise in the continuous manufacture of oral solid dosage for 

several reasons, e.g., the feeder refill step can introduce disturbances that can affect 

CMAs such as bulk density (Destro et al., 2021), and this can in turn result in deviations 

in the CQAs. A minimum variance-based assessment criterion was proposed by (Harris, 
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1989) to assess the condition of the working control loop but was limited to single-input-

single-output (SISO) systems. More recently, partial correlation coefficient (PCC)-based 

and mutual information (MI)-based approaches were proposed by (Badwe et al., 2009; 

Chen et al., 2013) to identify PMM:  both approaches are well-suited to handle cases 

where there is high correlation between manipulated variables. Advanced estimation and 

control strategies such as the moving horizon estimation-based nonlinear model 

predictive control (MHE-NMPC) framework have also been employed for continuous 

pharmaceutical manufacturing applications to handle the impact of PMM (Huang et al., 

2021). While identification of PMM is important, quantifying the PMM and assessing its 

impact on control loop behavior will aid higher level decision making related to 

maintenance and safety. (Wang et al., 2012) proposed a control performance index (CPI) 

and loop robustness index (LRI), based on the integral absolute error and sensitivity 

margin to quantify PMM and CPD, respectively. Each of the methods described thus far 

are computed on different timescales, e.g., LRI requires identification of the transfer 

functions for the MIMO system and can only be carried out during regularly scheduled 

maintenance, while MI can be computed more frequently using closed operating data, 

and the MHE-NMPC framework is designed to operate on a significantly shorter 

timescale. Therefore, it is important to develop a multi-level hierarchical approach to 

utilize the quantitative information regarding PMM and CPD from different timescales, 

that will further support root cause diagnosis efforts and aid higher-level maintenance 

decisions for continuous pharmaceutical manufacturing applications. 

 

To summarize, since the LRI which is based on the sensitivity margin is limited in 

applicability to SISO systems, this work seeks to extend its applicability by utilizing the 

disk margin proposed by (Seiler et al., 2020) for MIMO systems. This work also proposes 

a multi-level hierarchical framework to handle metrics that quantify PMM and CPD on 

different timescales to support higher level decision making related to safety and 

maintenance. Practical applicability will be demonstrated through an illustrative example 

that focuses on the continuous manufacture of oral solid dosage. The rest of this work is 

organized as follows. In Section 2, components of the hierarchical framework will be 

explained. An illustrative example using a rotary tablet press will be presented in Section 

3, along with a discussion on the results. Concluding remarks will be presented in Section 

4.  

2. Methodology 

The aim of this work is to propose an approach that enables efficient interpretation and 

management of quantitative information obtained from different metrics on different 

timescales to support higher-level fault detection and diagnosis efforts which in turn aid 

decision making related to maintenance and safety. The Quality-by-Control (QbC) 

framework proposed by (Su et al., 2019) presents a 3-level hierarchical framework for 

control that includes equipment-based control at Level 0, process analytical technology 

(PAT)-based property feedback control at Level 1, and model-based supervisory control 

at Level 2. This work seeks to demonstrate that the framework can incorporate 

quantifiable metrics to carry to enable multi-level control performance monitoring. A 

schematic illustration of the multi-level hierarchical framework is presented in Figure 1. 

Like the original QbC framework, Level 2 hosts the MHE-NMPC framework where 

online estimation and control is accomplished. Level 2 operates on the shortest timescale, 

e.g., in seconds. Metrics such as the integral absolute error (IAE), magnitude-to-product 

(M2P), and duration-to-reject (D2R) serve as preliminary indicators that monitor the 
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effectiveness of the framework. This information is utilized to determine if attention need 

to be paid to the metrics from Level 3. Level 3 operates on a longer timescale, e.g., in 

minutes or hours depending on process dynamics, where closed loop operating data is 

utilized to compute the MI and covariance matrix-based indices. The MI index allows the 

engineer to determine the number of input-output channels affected by PMM and identify 

these channels. The covariance matrix-based approach proposed by (Yu and Q in, 2008)

is utilized to track CPD. If severe deterioration in either metric is identified at Level 3, 

attention needs to be paid to the metrics from Level 4. LRI for Level 4 can only be 

computed during scheduled maintenance as it requires the collection of open-loop data to 

re-identify transfer functions. The CPI for Level 4 also provides information regarding 

the impact of PMM on control loop behavior and can be used in combination with the 

LRI to determine the urgency of required maintenance. It should be noted that the 

proposed hierarchy enables early detection of PMM and CPD through the monitoring of 

metrics from different levels and time scales. Metrics obtained from all levels can be fed 

into an analytics platform to aid maintenance decision making and root cause analysis.

However, this is out of the scope of the current work as it will require monitoring metrics

from other components of the process, e.g., condition of unit operations, to demonstrate 

the strength of analytics platform, and will be addressed in subsequent work.

Figure 1. Schematic illustration of multi-level hierarchical framework for control performance 

monitoring.

3. Case Study

The case study presented in this work utilizes the process model for the rotary tablet press 

provided by (Huang et al., 2021) as the benchmark. The system consists of five input 

variables: dosing position (Dose), pre-compression thickness (Ptck), main compression 

thickness (Mtck), turret speed (Tret), and concentration of glidant (Csil), and four 

controlled variables: tablet weight (Twei), pre-compression force (Pcom), production rate 

(Prod), and tensile strength (Tstr). A process schematic listing the unit operations and 

available PAT measurements is provided in Figure 2. Model parameters for three cases 

of PMM (no PMM, mild PMM, and high PMM) are provided by (Huang et al., 2021).

3 .1 . Level 2 Monitoring

Monitoring indices for Level 2 for this case study are available in (Huang et al., 2021), 

where the ability to distinguish between high PMM and the other two cases was 

demonstrated. However, due to the effectiveness of the MHE-NMPC framework, the 

indices were unable to clearly distinguish between the case of no PMM and mild PMM, 

as PMM was effectively managed when mild. Therefore, attention needs to be paid to the 

indices from Level 3 to determine if the three cases of PMM can be clearly distinguished.

3 .2 . Level 3 Monitoring

For Level 3, MI for PMM functions by examining the correlation between the error 

residuals and the manipulated variables. A pseudo-binary random signal (PRBS) was 

utilized to provide sufficient excitation to the system to compute the MI metrics. A 
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summary of the results for all three cases of PMM is provided in Table 1. While the level 

of PMM cannot be easily visualized using the raw MI values, the percentage difference 

compared to the base case (no PMM) makes quantification of PMM straightforward. A 

threshold of 10% was set for this case study. For mild PMM, five input-output channels 

showed PMM, while seven input-output channels were identified for high PMM. The 

channels experiencing degradation are highlighted in yellow. The percentage increase is 

also significantly higher for high PMM. This result highlights the need for Level 3 

monitoring indices due to its ability to distinguish between varying degrees of PMM.

Figure 2. Process schematic.

Table 1. Summary of mutual information metrics.

The covariance matrix-based assessment criterion utilized in this work was proposed by 

(Yu and Q in, 2008), where a generalized eigenvalue analysis is used to assess control 

performance. Using the case of no PMM for demonstration purposes, this case study 

examined three different scenarios of controller tuning, where the parameters and their

values are provided in Figure 3, with the prediction horizon, control horizon, and past 

window of measurements in the MHE framework denoted by Np, Nc, and Npast, 

respectively. An eigenvalue greater than 1 implies degraded performance for a particular 

control loop, and a value lower than 1 implies improved performance. A summary of the 

generalized eigenvalues, and their confidence intervals is provided in Table 2.

Table 2. Summary of generalized eigenvalue analysis for controller tuning.

For cases of adequate and poor tuning the lower limit of the confidence interval for one 

loop is greater than 1, confirming degraded performance. This result is important to note 

as the difference between adequate and ideal tuning cannot readily be distinguished

visually from the time series plots (see production rate in Figure 3 (a) and (b)).
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Figure 3. Time-series plots for different cases of controller tuning.

3 .3 . Level 4 Monitoring

Level 4 monitoring indices, CPI and LRI, were designed to be utilized together for 

decision making. CPI is based on the IAE and provides a means to compare the 

benchmark performance to current operation. While CPI is a useful indicator, the LRI 

provides additional information regarding the stability and robustness of the system. To 

enable use of the LRI for MIMO systems, this work utilizes the disk margin proposed by 

(Seiler et al., 2020) instead of the sensitivity margin obtained from the Nyquist plot, to 

make it easier to quantify and visualize the robustness of different input-output channels. 

Computing the LRI is a 3-step process that involves: (1) identification of the open-loop 

transfer functions of the MIMO system, (2) computation of disk margin for all channels, 

(3) computation of LRI for all channels. A summary of the CPI and LRI values for the 

same case study presented by (Huang et al., 2021) is provided in Table 3 and Table 4, 

respectively. Negative values for both the CPI and LRI indicate degradation in control 

performance and loop robustness. As the level of PMM increases, the CPI values become

increasingly negative, indicating increased degradation in control performance. In this 

example, the LRI for most channels (with the exception of turret speed-tensile strength 

channel) are also increasingly negative in the presence PMM, implying that the robustness 

and stability of those channels are affected as well, requiring maintenance actions. The 

channels with no values were open loop unstable for both the benchmark and monitored 

cases. This case study demonstrated how metrics from the different timescales can be 

evaluated to determine if maintenance actions are required. Indices from the shortest 

timescale, i.e., Level 2, evaluate the feasibility of continued operation, but the indices 

from Levels 3 and 4 allow process engineers to periodically evaluate the urgency of 

required maintenance.
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Table 3. Summary of CPI metrics for different cases of PMM.

Table 4. Summary of LRI metrics for different cases of PMM.

4. Conclusions

This work demonstrated how the Q bC framework could be applied to enable multi-level 

control performance monitoring by incorporating indices from different timescales. 

Future work includes the development of a data analytics platform to aid decision making 

for continuous manufacturing industries, and experimental validation on the pilot plant at 

Purdue University.
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Abstract 

Crystallization is widely used in the pharmaceutical industry to purify reaction 

intermediates and final active pharmaceutical ingredients. This work presents a novel 

implementation of Inverse Reinforcement Learning (IRL) approach where an agent 

observes the expert’s optimal control policies of a crystallization process and attempts to 

mimic its performance. In essence, an Apprenticeship Learning (AL) setup was 

developed where the expert demonstrates the control task to the IRL agent to help attain 

effective control performance when compared to the expert. This is achieved through 

repeated execution of “exploitation policies” that simply maximizes the rewards over the 

consecutive IRL training episodes. The cooling crystallization of paracetamol is used as 

a case study and both proportional integral derivative (PID) and Model Predictive Control 

(MPC) strategies were considered as expert systems. A model based IRL technique is 

implemented to achieve effective trajectory tracking which ensures final crystal size, 

considered as the critical quality attributes, by reducing the deviation from the optimal 

reference trajectories namely process temperature, supersaturation, and particle size. The 

performance of the trained IRL agent was validated against the PID and MPC and tested 

in presence of noisy measurements and model uncertainties.  

 

Keywords: Apprenticeship Learning; Reinforcement Learning; Inverse Reinforcement 

Learning; Batch Crystallization. 

1. Introduction and Background 

Crystallization is one of the most widely used techniques in the pharmaceutical industry 

to purify intermediates and final active pharmaceutical ingredients (API) (Benyahia, 

2018). It is significant that effective control strategies are required to regulate the target 

critical quality attributes such as crystal size, shape distributions, purity, and 

polymorphism. The downstream processes also depend on the ability of the crystals to 

flow, dry, and filter. Pharmaceutical industries are subject to stringent regulatory 

requirements for product quality as a small deviation from the target quality can create 

significant impacts on quality control, safety, efficacy, and shelf life (Lakerveld et al., 

2015). This may even lead to the failure of the clinical trials during the early development 

stages, post-approval, and drug recalls that leads to severe economic setbacks.  

Owing to the recent and significant development in the field of computer science, 

Artificial Intelligence (AI) has witnessed a resurgence of interest over a broad research 

and industrial applications. Reinforcement Learning (RL) is one among those techniques 
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that has been well-investigated and implemented in field of robotics and automation

industries (Roveda et al., 2018). Similar investigations and developments have motivated 

the adoption of RL as a new control strategy for a variety of applications. RL has also 

been used to control chemical reactions and demonstrated its potential advantages 

compared to some of state-of-the-art algorithms and control techniques, such as PID

(Zhou et al., 2017). The use of RL in presence of various uncertainties and measurement 

noise in real-world dynamic systems has also gained a lot of interest. For instance, 

Petsagkourakis et al., 2020 implemented a RL-based control strategy for a batch 

bioprocess with various uncertainties (measurement and process noises). Benyahia and

coworkers, demonstrated the advantages of combining RL with a Kalman Filter (KF) for 

controlling batch crystallization processes for achieving robust control in presence of 

measurement noise and plant-model mismatch (Benyahia et al., 2021). With the 

continuous and successful implementations of RL in various domains, there has been a

growing demand for effective training strategies. Transfer Learning (TL) is one among 

the most effective methods to accelerate the learning process while parallelly achieving

better performance. In essence, TL follows a sequential training approach to address the

continuously evolving training objectives (Taylor and Stone, 2009).

This paper outlines a novel IRL application for crystallization processes. Previously, 

Apprenticeship Learning (AL) approaches included the definition of a reward function 

that mimics the behavior of an expert controller (Mowbray et al., 2021). Such 

implementations rely on human expertise to capture the underlying theories of the expert 

controller. This paper, on the contrary, is an effort to train an agent to mimic the expert 

controller’s actions by shadowing them. The IRL agent was associated with a KF for 

further TL-based trainings to deal with various levels of noise in one of the most critical

measurements in crystallization; the number of crystals (number of counts). Towards this 

end, this paper promotes an initial IRL approach to mimic the behavior of the expert 

controllers, and later use TL-based training strategies with an intension to exploit and 

understand the potential of RL for crystallization control.

Figure 1: Overview of the IRL training and validation setup
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2. Problem Formulation

The central objective of this work is to exploit the existing AI-based techniques to build

robust controllers that can effectively compete with the efficiency of the traditional 

proportional integral derivative (PID) and Model Predictive Control (MPC) strategies. To 

achieve this objective, this paper presents the use of IRL approach combined with RL,

TL and KF techniques to build a very responsive and efficient control strategies for batch 

crystallization processes that deals with various uncertainties (measurement noise and 

plant-model mismatch). This work makes use of three reference trajectories for process 

temperature, supersaturation, and particle size to ensure the product’s critical quality 

attributes are within safe and acceptable margins. The reference trajectories are computed 

using model-based open-loop dynamic optimization method illustrated by Nagy et al., 

2008, where the focus was on maximising the crystal size. The case study for this work 

uses the batch crystallization process of Paracetamol in water. The details of the dynamic 

mathematical model used for this case study can be found in our previous literature 

(Benyahia et al., 2021). The kinetic parameters of the growth and nucleation were 

obtained from the literature (Nagy et al., 2008). The agent’s policy and value function 

definitions are based on the Deep Deterministic Policy Gradient (DDPG) technique. 

Please refer to our previous literature for the details regarding the agent definitions used 

in this work (Benyahia et al., 2021).

The setup used for this IRL training strategy is shown in Figure 1. During training, the 

expert controller (PID/ MPC) acts on the jacket temperature (manipulated variable) of the 

batch crystallization process. The chosen IRL approach will penalise the agent for 

deviations beyond a critical limit from the expert’s actions. This allows the agent to 

imitate the expert’s behaviour while reducing the training effort. The training makes use 

of a reward function that is defined based only on penalties. Therefore, the maximum 

theoretical reward that can be achieved in this case is zero which means that the agent’s 

control actions are equivalent to the expert’s (PID/ MPC) actions. In the context of IRL 

training, the agent will focus on minimizing the total penalties received per training 

episode. However, to reduce the training time, a reasonable value closer to the maximum 

theoretical reward was selected to stop the training. After training, the saved agent can be 

used to validate the performance of the IRL strategy. At the validation stage, the control 

loop is disconnected from the expert’s control actions and replaced by the RL agent. This

ensures that the trained agent is the only control system for the batch crystallizer acting 

on the jacket temperature, which is used as the manipulated variable.

Figure 2: Simplified overview of the reward Function
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It is important to note that this work includes IRL and RL trainings in two steps.

Accordingly, Figure 2 presents the simplified overview of the separate reward functions 

used in the first and second stages. The reward function for the first step (Rt1) focuses on

the IRL approach, where the agent is forced to learn by shadowing the expert controller. 

The reward definition for the second step (Rt2) is focused on exploiting the training results 

obtained in the first step by combining them with RL, TL, and KF techniques. The goal

was to improve the performance of the trained IRL agents with subsequent trainings

targeted at more accurate and multiple trajectory tracking. The addition of KF to the 

trainings can help to address the issues related to various measurement noises and plant-

model mismatch.

3. Result and Discussion

The trained agents were validated in two stages in conjunction with the two-step training

strategy suggested in Figure 2. Figure 3 presents the comparison between the 

validation results captured at the end of each stage of the trainings conducted. The 

trajectories of the sum of the squared errors (SSE) presented in Figure 3d, e and f provide 

further qualitative insights about the difference in accuracy between the two stages of the

trainings. The mean crystal size was considered as the target critical quality attribute and

higher penalties were defined for control actions resulting with larger deviations from the 

refence trajectory. For a better insight, Figure 3f indicates that the performance of the 

stage1 trainings are not far off from the target expert controllers (PID/ MPC). However,

Figure 3: Overview of the validation results after stage 1 and stage 2 training.
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with subsequent second stage trainings, the performance of the agents has achieved an 

even more effective performance compared the target expert controllers (PID/ MPC).

Figure 4 is used to present the benefits of including KF during the second stage of 

training. The idea is to present the usefulness of KF to deal with various measurement 

noise and uncertainties related to plant-model mismatch. In other words, the use of KF 

will help achieve more effective training by providing optimal state estimates which 

enable more reliable and accurate evaluation of the rewards associated with the agent’s 

control actions. The measurement noise (band-limited white noise) was introduced to the 

output signal related to the number of particles (µ0) predicted by the process model. It is 

one of the most important real-time process measurements commonly obtained by a

Focused Beam Reflectance Measurement (FBRM) technique. Similarly, the plant-model 

mismatch is introduced to the kinetic growth parameter (kg) of the process model. It is 

important to note that separate trainings were conducted for cases with measurement 

noise and plant-model mismatch. The trajectories of the sum of the squared errors (SSE),

presented in Figure 4d, e, and f, provide further qualitative insights about the difference 

in accuracy between the two stages of the trainings. Again, to obtain a clear conclusive 

performance comparison, it is necessary to pay more attention to Figure 4f. This is simply 

because of the highly weighted penalty over crystal size deviations. It is also worth noting

that the results shown in Figure 4 does not include the actual expert controllers (PID/ 

MPC), instead it is the comparison between the two stages of the IRL agent trainings

investigating the usefulness of KF in the context of measurement noise and model

uncertainties. The results indicate that the integration of KF at the second stage of the 

trainings is clearly beneficial, and with further TL-based trainings, the accuracy and 

performance of the agents can be further improved.

Figure 4: Overview of the results showing the benefits of integrating KF in the stage 2 training.
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4. Conclusion 

This paper demonstrated the use of model-based RL control policies for the trajectory 

tracking control of a batch crystallization process. Initially, the agent was trained using 

an IRL approach to mimic the behavior of the PID and MPC. A range of reward functions 

defined with penalties-only (no rewards) fashion were used to achieve the highest score 

in a reasonable amount of time, using the best compromises between exploration and 

exploitation. The resulting IRL agents were then validated by comparing their control 

performance against the expert controllers. It was shown that the IRL approach can 

exhibit a very close performance to the benchmark controllers. Later, the IRL agents’ 

performances were further enhanced by conducting subsequent TL-based RL trainings. 

The results revealed that the IRL approach combined with TL and KF can demonstrate 

robust control performance in presence of noisy measurements and model uncertainties. 
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Abstract
Current trends toward globalization and electricity market deregulation are requiring increasingly
dynamic operation of chemical processes. In this paper, we develop a dynamic real-time optimiza-
tion (DRTO) formulation for plants controlled by NMPC. It utilizes a prediction of the plant under
the action of constrained NMPC. At every prediction time-step, an NMPC problem determines
the control inputs that are applied to the dynamic process model. We show that the unconstrained
NMPC problem for SISO systems affine in the inputs has a single stationary point that corre-
sponds to the global optimum, and numerical experiments suggest that a similar property holds
for the constrained problem. This allows the embedded NMPC subproblems in the DRTO for-
mulation to be replaced by their first-order Karush-Kuhn-Tucker (KKT) conditions, yielding a
single-level optimization problem. We show that the DRTO with embedded NMPC subproblems
can lead to significant improvement in plant performance, and also compare the performance of
NMPC to that of linear MPC.

Keywords: NMPC, DRTO, Karush-Kuhn-Tucker conditions

1. Introduction

Real-Time Optimization (RTO) utilizes a rigorous steady-state plant model to compute the set-
point trajectories that optimize an economic process metric. These set-points are then provided
as targets to a multivariable controller, generally model predictive control (MPC), that computes
the input values applied to the plant. Because RTO utilizes a steady-state plant model, it is not
executed during process transitions, but only when the plant has reached an almost steady-state
operation (Darby et al., 2011). This particular limitation is averted if a dynamic plant model is
used instead. This variation of RTO is commonly referred to as DRTO. In a recent development,
Jamaludin and Swartz (2017) proposed to account for the MPC action in the DRTO formulation.
This new variation, named CL–DRTO, models the closed-loop response of the plant, and has been
shown to improve process economics compared to a DRTO formulation that utilizes an open-
loop prediction of the plant dynamics (Jamaludin and Swartz, 2017). An alternative paradigm
is economic model predictive control (EMPC) (Ellis et al., 2014) that replaces standard MPC
by optimizing the process economics and computing the input values simultaneously. EMPC
versions that utilize linear and nonlinear dynamic models have been proposed. It has been argued
that the EMPC problem can not be solved as frequently as standard MPC due to the problem
complexity, and that the integration of economic optimization and control in one problem lead
to conflicting objectives, which may hinder process safety (Würth et al., 2011). The EMPC and
DRTO approaches are representative of the so called single and two-layer control architecture,
respectively.
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CL-DRTO
min. Economic Objective

s.t. Process model
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Figure 1: Schematic representation of (a) two-layer approach, and (b) optimal solution of CL–
DRTO problem.

While linear MPC is the prevalent control strategy in chemical enterprises (Qin and Badgwell,
2003), it can perform poorly for large transitions and/or in highly nonlinear plants. The reason
is that the built-in linear model provides a poor approximation in regions away from the steady-
state operation, exacerbated by strong nonlinearity. Moreover, in multiproduct plants, multi-linear
models may have to be used in order to appropriately model all the operating regions. Due to these
limitations, nonlinear model predictive control (NMPC), that uses a nonlinear process model, is
often the preferred choice of control strategy for highly nonlinear processes.

In this study, we propose a DRTO formulation similar to that in Jamaludin and Swartz (2017)
but that accounts for the action of a nonlinear model predictive control (NMPC) instead of linear
MPC. To avoid a bilevel optimization problem, we use the associated first-order Karush-Kuhn-
Tucker (KKT) conditions to account for the NMPC action in the DRTO formulation. We consider
in this paper systems that are affine in the control inputs, and derive conditions under which the
unconstrained NMPC problem yields a single stationary point, which corresponds to the global
optimum. Numerical experiments suggests that a similar property holds for the input constrained
problem as well, supporting the reformulation of the embedded NMPC problems using the cor-
responding KKT conditions. Performance of linear and nonlinear MPC for controlling a SISO
nonlinear system in the presence and absence of a DRTO layer is compared.

2. Formulation

Figure 1a provides an schematic representation of the framework for online real-time optimization
and control of a chemical process implemented in this study. The CL–DRTO layer computes the
reference trajectories yref and uref that optimize an economic or target tracking objective function.
The set-point trajectories ySP

j and uSP
j are extracted from the reference trajectory and provided to

the lower level NMPC that then computes the input values u j applied to the plant. The lower-
level NMPC and upper-level DRTO problems are executed at time periods ∆tNMPC and ∆tDRTO,
respectively, with ∆tDRTO/∆tNMPC ∈ Z+.

In order to account for the closed-loop behavior of the process in the CL–DRTO formulation, an
NMPC problem is formulated at every time-step j along the DRTO prediction horizon to determine
the input values used in the process model. Figure 1b shows a schematic representation of the
response of a plant under the combined action of DRTO and NMPC. N and P are, respectively, the
CL–DRTO and NMPC prediction horizon, M is the NMPC control horizon and yDRTO is the output
trajectory predicted by the DRTO process model. The set-point trajectories used in the NMPC
subproblems are extracted from the reference trajectory yref. Note that the NMPC problem solved
after time-step N −P+1 sees beyond the CL-DRTO horizon N, and for that reason the reference
trajectory is extended until N +P− 1. More detail about the CL–DRTO problem formulation is
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provided in the next sections. We highlight that the general formulation and solution approach
are similar to that proposed in Jamaludin and Swartz (2017), but with the linear MPC (LMPC)
replaced by NMPC. We use the Python backend of CasADi (Andersson et al., 2019) and the
interior point solver IPOPT (Wächter and Biegler, 2006) to implement and solve the optimization
problems in this study.

2.1. Process Model

The process model includes the mathematical model of the plant, bounds on the optimization vari-
ables and process outputs, and constraints linking the process model to the NMPC subproblems.
The discrete plant model is assumed to have the following form

xDRTO
j+1 = f DRTO(xDRTO

j ,uDRTO
j ) ∀ j ∈ JN−1

0 (1a)

yDRTO
j =CxDRTO

j ∀ j ∈ JN
1 (1b)

where xDRTO
j ∈ Rnx and yDRTO

j ∈ Rny are column vectors of the predicted state and output values
at time-step j, respectively. uDRTO

j ∈ Rnu is the vector of input values computed via solution of
jth NMPC subproblem, that is uDRTO

j = uNMPC
j,0 , where uNMPC

j,k ∈ Rnu. C ∈ Rny×nx is a matrix that
relates the states to the outputs, and Jb

a = { j|a ≤ j ≤ b, j ∈ Z+
0 } is a set of time-steps. f DRTO(·) is

a nonlinear function obtained via discretization of the dynamic plant model.

The optimization degrees of freedom are the reference trajectories yref =
[
(yref

1 )T , . . . ,(yref
N+P−1)

T
]T

and uref =
[
(uref

0 )T , . . . ,(uref
N+M−2)

T
]T where yref

j ∈ Rny and uref
j ∈ Rnu. For j beyond the CL–DRTO

horizon, the reference trajectories are held constant, that is yref
j = yref

N ∀ j ∈ JN+P−1
N+1 and uref

j =

uref
N−1 ∀ j ∈ JN+M−2

N . Additionally, lower and upper bounds can be imposed on the optimization
variables and predicted outputs. Set-point hold constraints to force the reference trajectory to have
a constant value for a specified number of time-steps could also be applied.

2.2. NMPC subproblems

The NMPC subproblems are assumed to have an equivalent formulation to the lower-level NMPC
in Figure 1a:

min
uNMPC

j

Φ
NMPC
j =

P

∑
k=1

(yNMPC
j,k − ySP

j,k)
TQ(yNMPC

j,k − ySP
j,k)+

M−1

∑
k=0

[
∆uT

j,kR∆u j,k +(uNMPC
j,k −uSP

j,k)
TS(uNMPC

j,k −uSP
j,k)

]
(2a)

subject to xNMPC
j,k+1 = xNMPC

j,k +∆tNMPC f (xNMPC
j,k ,uNMPC

j,k ), ∀ k ∈ JP−1
0 (2b)

yNMPC
j,k =CxNMPC

j,k , ∀ k ∈ JP
1 (2c)

∆u j,k = uNMPC
j,k −uNMPC

j,k−1 , ∀ k ∈ JM−1
0 (2d)

uNMPC
j,k = uNMPC

j,M−1, ∀ k ∈ JP−1
M (2e)

uNMPC
min ≤ uNMPC

j,k ≤ uNMPC
max , ∀ k ∈ JM−1

0 (2f)

uNMPC
j =

[(
uNMPC

j,0

)T
, . . . ,

(
uNMPC

j,M−1

)T
]T

(2g)

where Q∈Rny×ny is a positive definite matrix, and R∈Rnu×nu and S ∈Rnu×nu are positive semidef-
inite matrices. uNMPC

j,k ∈ Rnu, xNMPC
j,k ∈ Rnx and yNMPC

j,k ∈ Rny are, respectively, the input, state and
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output values for the jth NMPC subproblem at time-step k. f (·) : Rnx+nu → Rnx is the dynamic
model of the process, here assumed to be affine in the inputs and given by

dx
dt

= f (x,u) = g(x)+B(x)u (3)

with g(x) : Rnx → Rnx and B(x) : Rnx → Rnx×nu. We assume that f (·) is smooth, continuous and
differentiable in Rnx+nu. In linear MPC formulations, f (·) is a linear function and the resulting
control problem a convex quadratic programming problem with linear constraints. Due to the
convexity property, the first-order Karush-Kuhn-Tucker (KKT) conditions are necessary and suffi-
cient for global optimality (Nocedal and Wright, 2006), and they can be used instead of Equation
2 in the CL–DRTO (Jamaludin and Swartz, 2017) allowing solution as a single-level optimization
problem. Because in this study f (·) can be nonlinear, problem 2 is potentially non-convex. Next
we show some results that suggest that problem 2 with f (·) defined as in Equation 3 has a unique
local optimum for Single-Input Single-Output (SISO) systems, that is when ny = nu = 1.

Consider the smaller NMPC problem,

min
v

ΦR =
P

∑
k=1

Q(yk − ySP
k )2 (4a)

subject to xk+1 = xk +∆t f (xk,uk), ∀ k ∈ JP−1
0 (4b)

yk =Cxk, ∀ k ∈ JP
1 (4c)

v = [u0 ...,uP−1]
T (4d)

which retains all potential sources of nonconvexity in problem 2. For a SISO system, we have
ySP

k ,yk,uk ∈ R and xk ∈ Rnx, Q > 0 is a scalar and C ∈ R1×nx a row vector. v ∈ RP are the op-
timization variables, f (·) is defined as in Equation 3, and ∆t is the sampling time. ΦR is ulti-
mately a function of only x0, v, and ySP = [ySP

1 , · · · ,ySP
P ]T , since the equalities in Equations 4b

and 4c can be used to eliminate yk. The first-order KKT conditions for problem 4 are simply
∇vΦR(v,x0,ySP) = 0, where

∇vΦR(v,x0,ySP) = 2



(
(y1 − ySP

1 )QC+∑
P
k=2(yk − ySP

k )QC ∂xk
∂x1

)
∂x1
∂u0(

(y2 − ySP
2 )QC+∑

P
k=3(yk − ySP

k )QC ∂xk
∂x2

)
∂x2
∂u1

...(
(yP−1 − ySP

P−1)QC+(yP − ySP
P )QC ∂xP

∂xP−1

)
∂xP−1
∂uP−2(

(yP − ySP
P )QC

)
∂xP

∂uP−1


(5)

We have that for z ∈ Rn and w ∈ Rm, ∂ z
∂w is a n×m matrix with (i j)th element ∂ zi

∂w j
. Substitut-

ing ∂xk
∂uk−1

= ∆tB(xk−1) in Equation 5, and assuming CB(x) ∈ R−{0} for all x ∈ Rnx, we obtain

that the unique stationary point of ΦR(v,x0,ySP) is given by yk − ySP
k = 0 for all k ∈ JP

1 . This
expression can be solved explicitly for the optimal value of the optimization variables v. More-
over, note that this solution corresponds to the global optimum of problem 4, since it leads to
ΦR(v,x0,ySP) = 0. Therefore, the first-order KKT conditions are necessary and sufficient for
problem 4. This result suggests that they may also be necessary and sufficient for problem 2
since the constraints in Equations 2d-2f are linear and the additional terms in the objective func-
tion are convex. To substantiate this conjecture, we solved the constrained problem in Equa-
tion 2 for distinct SISO systems using both the first-order KKT conditions and an optimiza-
tion solver, for thousands of different initial guesses for the optimization variables. The first-
order KKT conditions yield a system of nonlinear equations with complementary constraints (e.g.
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µ1
k (u

NMPC
j,k −uNMPC

min ) = 0, µ2
k (u

NMPC
max −uNMPC

j,k ) = 0, ∀ k ∈ JM−1
0 where µ i

k ∈ R+ are Lagrange mul-
tipliers), that are handled using an exact penalty formulation (Ralph and Wright, 2004). For all the
test problems, the KKT conditions and optimization solver returned the same optimal solution for
all initial guesses.

3. Case Studies

We use the CL-DRTO formulation with embedded NMPC subproblems reformulated via the KKT
conditions for optimization and control of an isothermal nonlinear CSTR used to produce five
grades A, B, C, D and E via the reaction 3R k−→ P (Flores-Tlacuahuac and Grossmann, 2006). The
dynamic model is given by

dCR

dt
=

F
V
(C0 −CR)− kC3

R

where C0 and CR are the composition of the inlet and outlet stream, respectively. F is the inlet and
outlet flow rate, V is the volume of liquid in the reactor, and k is the reaction rate constant. For
this study, we use C0 = 1 mol/L, V = 5 m3, k = 2 L2/mol2h (Flores-Tlacuahuac and Grossmann,
2006). Using the previous introduced notation, we have that x =CR, u = F , C = 1, g(x) =−2x3,
B(x) = 0.2(1− x). We use NMPC and DRTO parameters Q = 1, R = 0.2, S = 0, M = 3, P = 30,
N = 50, ∆tNMPC = 0.5 h , ∆tDRTO = 2 h and impose the bounds 0 ≤ uNMPC

j−1,k ≤ 3, 0 ≤ yDRTO
j ≤ 0.6,

0 ≤ yref
j ≤ 0.8 for all k ∈ JM−1

0 , j ∈ JN
1 . The bounds on uNMPC

j,k are sufficient to prevent CB(x) = 0
from being a feasible solution, and we do not have to impose constraints on the output values in the
NMPC subproblems. The NMPC and DRTO process model is discretized using the forward–Euler
method with a step size of 0.1.

We consider an economic (ΦECO) and set-point tracking (ΦSP) objective function formulation to
be minimized:

Φ
ECO =

N

∑
j=1

∆tNMPCu j−1 −50R1
jR

2
j , Φ

SP =
N

∑
j=1

(y j − ytarg
j )2

R1
j = 0.5tanh

(
γ

(
y j − ytarg

j (1− ε)
))

+0.5, R2
j = 0.5tanh

(
γ

(
ytarg

j (1+ ε)− y j

))
+0.5

where ytarg
j is the specified target output concentration at time-step j, γ defines the steepness of

the switching function Ri
j, and ε is the tolerance by which y j can deviate from ytarg

j . We have that
R1

j ≈ 1 if y j > ytarg
j (1− ε), and it is zero otherwise. Similarly, R2

j ≈ 1 if y j < ytarg
j (1+ ε), and it is

zero otherwise.

We compare the performance of NMPC against that of linear MPC for closed-loop control of the
nonlinear CSTR, both when the CL-DRTO layer is present (Figure 1a) and when it is not. The
target output trajectory ytarg is provided as set-points to the control layer in the latter case. The
objective values at the end of the simulation horizon for these control implementations are given
in Table 1. For both, LMPC and NMPC, the objective values improve considerably when the set-
points are computed by the DRTO layer. The NMPC controller tends to lead to an overall better
plant performance compared to LMPC. We note that by accounting for the control action, the
DRTO becomes aware of the LMPC and NMPC limitations, and can therefore compute reference
values that to an extent compensate for that.

The plant input and output trajectories for the case when the set-point tracking objective function
is used in the CL-DRTO are shown in Figure 2. The response is quite similar for both controllers
despite some small differences in the reference trajectory. We note that the value of F , while small
(0.01 m3/L), is not zero after 70 hours (Flores-Tlacuahuac and Grossmann, 2006).
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Table 1: Objective values for NMPC and LMPC control implementations.

LMPC NMPC DRTO–LMPC DRTO–NMPC
ΦECO -6543 -6,592 -7,241 -7,292
ΦSP 0.4388 0.4407 0.1479 0.1402

(a) (b)

Figure 2: Input and output trajectories for the nonlinear plant under the action of CL–DRTO with
embedded (a) LMPC and (b) NMPC subproblems, and ΦSP as the objective funtion.

4. Conclusion

In this study, we proposed a DRTO formulation for plants controlled by NMPC. We showed that
the unconstrained NMPC problem for SISO systems affine in the inputs has only one stationary
point that is also the global optimum. Numerical experiments suggests that this property also
holds for the constrained NMPC problem, making the first-order KKT conditions necessary and
sufficient for global optimality. This allows us to use the associated KKT conditions to account
for the NMPC control action in the DRTO formulation. At every time-step the control problem
is solved to compute the input value used in the process model. The results indicate a better
performance of the NMPC compared to linear MPC, and show that significant improvement in
plant performance can be achieved by accounting for the control action in real-time optimization.
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Abstract 

In this work, an economic Dynamic Real-Time Optimization (DRTO) of the operation of 

a solar thermal plant is conducted. A planning phase is used to improve the use of storage, 

and a storage state target is included in the objective function of the DRTO. The weight 

of this term in the objective function is adjusted. The trajectories for the flow rates 

obtained with the DRTO algorithm are used in a simulation model undergoing 

disturbances on the solar irradiation. This methodology is compared with a simulation 

following the flow rate trajectories obtained during the planning phase. The results show 

an improvement in the total expenses and the percentage of solar energy used to satisfy 

the demand, with a reasonable tracking of the storage state target, bringing good 

perspectives for the implementation of the method in a real environment. 
 

 

Keywords: Dynamic real-time optimization, solar thermal energy, simulation. 

1. Introduction 

In order to achieve greenhouse gases emissions reduction, developing solar thermal plants 

and making the most of them appear crucial. In addition to the design, the operation of 

the plant can be optimized in order to reduce the operating cost, help to meet the heat 

demand and cut down the fossil fuel consumption in heat production. Dynamic 

optimization was used to optimize the operation of a solar thermal plant including a 

storage tank during 36 hours using weather and load forecasts (Scolan et al., 2020). 

Trajectories for the flow rates in the different parts of the solar plant were computed. 

Especially, the use of the storage tank was optimized to extend the time period where 

solar heat could be supplied to the consumer. More studies focusing on the dynamic 

optimization of Concentrated Solar Power (CSP) plants can be found in the literature. In 

these studies, the operation of the plant is optimized in order to maximize the income 

from electricity selling, with a variable electricity price and a thermal energy storage 

(Lizarraga-Garcia et al., 2013; Wittmann et al., 2011). Hybridization of the solar plant 

with a back-up fossil fuel has also been considered, leading to a larger amount of solar 

energy collected (Ellingwood et al., 2020; Powell et al., 2014). These studies show an 

improvement in the performance of the solar thermal plants, with more energy collected 

at a lower cost. However, it is difficult to predict the weather and the heat demand 

accurately several days ahead of time and dynamic optimization cannot consider 

disturbances, such as differences in planned weather and heat demand, to adapt the 

optimal strategy. The lower level in the hierarchical operation of a plant is the control. 

The controllers in a solar thermal plant are generally basic controllers such as PID 

(Proportional Integral Derivative) tracking a target value for the outlet temperature of the 

solar field.  More complex controllers, suited for nonlinear systems with various 
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dynamics, have been studied for CSP plants to improve the disturbance rejection and the 

uncertainty handling (Camacho et al., 2007).  Furthermore, it is possible to integrate an 

economic objective in the controller (Engell, 2007). In two studies, this approach was 

used to minimize the back-up fossil fuel consumption in a solar system including storage 

(Pintaldi et al., 2019; Serale et al., 2018). The authors suggest that a hierarchical structure, 

with a decoupling between the dynamic optimization and the control tasks might improve 

the use of storage. A Dynamic Real-Time Optimization (DRTO) could be used to 

compute reference trajectories for the flow rates that will be tracked by controllers 

(Kadam, 2002). The  DRTO of a solar plant was performed in only one study (Pataro et 

al., 2020). The flow rate in the concentrating solar field was optimized in real-time using 

measurements of the ambient conditions and an economic objective function. However, 

the storage management was not considered. Based on this literature survey, an economic 

DRTO of a solar thermal plant including storage is carried out in this paper. 

2. Solar thermal plant description and modelling 

A typical layout for a solar thermal plant was chosen for this study and is presented in 

Figure 1. The production loop is composed of a solar field with 12 loops of 15 flat plate 

collectors each, corresponding to a panel surface of 2873 m². A glycol-water (30/70 

volume) mixture is heated up in the solar field. It can by-pass the heat exchanger 

connecting the production circuit to the secondary circuit during the warm-up phase of 

the solar field, until a target temperature is reached. Once collected in the secondary loop, 

the solar heat can be stored in the stratified storage tank for later use or directly delivered 

to the consumer circuit. The storage tank can be discharged to supply heat to the consumer 

when solar irradiance is too low to meet the demand. These different operational modes 

make the operation of the solar thermal plant flexible, but nevertheless complex. Variable 

speed pumps and control valves are used to operate the plant. A back-up gas heater, not 

modelled and not represented in Figure 1, is associated to the solar thermal plant to meet 

the load curve. 

Details about the nonlinear models used for each element of the solar thermal plant can 

be found in (Scolan et al., 2020). In this paper, the solar field is modelled as an equivalent 

surface panel to speed up the calculations.  

 

Figure 1: Architecture of the solar thermal plant 

3. Dynamic Real-Time Optimization methodology 

The structure of the algorithm used to optimize in real-time the solar thermal plant is 

presented in Figure 2. First, an offline Dynamic Optimization (DO) based on weather and 

load forecasts is performed for a 2-day period. The objective function for this planning 

phase is to minimize the costs associated with the electricity used for pumping 
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(130 €/MWh) and the gas (80 €/MWh) used in the backup heater. A value is given to the 

stored energy at the end of the time horizon because the stored heat could be valuable 

beyond the end of this optimization (17.5 €/MWh from (Scolan et al., 2020)). Finally, a 

penalty term is added to smooth the trajectories computed for the flow rates in the 

different parts of the plant. The planning phase is used for the storage management. 

Indeed, storage has slower dynamics than the rest of the plant and needs to be considered 

on a longer time period. 

 

 

 

 

 

 

 

 

 

Figure 2: Optimization algorithm 

The DRTO methodology is applied during daytime of the first day of the complete time 

horizon using the two layer approach presented in (Kadam, 2002). It starts when the 

warm-up phase of the solar field is completed, which corresponds to a temperature at the 

outlet of the solar field of 70°C.  The objective function for the DRTO also minimizes the 

cost of gas and electricity and smooths the trajectories obtained for the flow rates. In 

addition, a term that minimizes the difference between the planned stored energy and the 

actual energy stored at the end of the day is added. A new DRTO is carried out every 

hour, until the end of the day. Thus, the time horizon shrinks for every DRTO (from about 

12h to 1h) and the computational time also reduces from 15 minutes to less than 5 

minutes. The models and the resolution method could be modified in future work to speed 

up the calculations. Measurements of temperatures in the different parts of the solar 

thermal plant are used to determine the initial state. Disturbances are also measured, and 

weather forecasts are updated. A simulation model is used to represent the solar thermal 

plant and provide the feedback measurements. The optimal trajectories are sent to the 

simulation model of the solar thermal plant. Perfect control is assumed in first approach, 

so the exact optimal trajectories are followed is spite of disturbances. The optimizations 

were conducted in the Gams software and the solar thermal plant was simulated in Matlab. 

The optimizations, solved using the simultaneous approach, are initialized with results 

from simulations with standard operation strategy. The complete discretized model 

involves up to 28,000 variables for the first DRTO with a time horizon of about 12 hours. 

4. Case study 

4.1. Inputs 

For the weather forecasts, averaged data over the last 50 years in Pau, France, are used. 

For this study, two summer days are chosen: a sunny day followed by a cloudy day, as 

shown in Figure 3 with GHI standing for Global Horizontal Irradiance. This configuration 

imposes the use of storage to avoid exceeding the heat demand the first day and to supply 

some solar heat the second day despite the low solar irradiation. 
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For the real-time data during the first day, an uncertainty of p %, several values of p being 

tested, is applied to the entire curve of solar irradiance. Other inputs, such as ambient 

temperature or heat load are considered certain in this work. Weather forecasts are 

updated before each DRTO, as shown in Figure 4, for the hours 9 and 14 with an 

uncertainty of - 30 % on the GHI. This procedure is used in this first approach, but real 

data for weather forecasts and measurements should be used for more realistic results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The load curve is considered constant, with a value of 836 kW. The consumer flow enters 

the heat exchanger at 55°C. The storage is initially at 60°C, which represents a partially 

charged storage. The temperatures in the solar thermal plant are equal to the ambient 

temperature at the beginning of the planning phase. The initial state for the DRTO during 

daytime is retrieved from the planning when the temperature at the outlet of the solar field 

reaches 70°C. 

4.2. Outputs 

Figure 5 shows an example of trajectories 

obtained for the flow rate in the solar field 

𝑚̇𝑠𝑜𝑙𝑎𝑟 𝑓𝑖𝑒𝑙𝑑  from the planning (DO) and the 

DRTO with an uncertainty of - 50 % on the 

GHI. It can be observed that 𝑚̇𝑠𝑜𝑙𝑎𝑟 𝑓𝑖𝑒𝑙𝑑  is 

lower for the DRTO. In order to achieve a 

temperature high enough for storage and heat 

supply, a lower flow rate is used in the solar 

field associated with lower pumping cost. 

Similar trends can be seen for the other flow 

rates in the plant. 

 

4.3. Following of the planned heat storage state 

As mentioned in Section 3, the objective function of the DRTO includes a term to 

minimize the difference between the planned heat storage state at the end of the first day 

and the actual storage state. The energy difference is multiplied by the gas price 

(80 €/MWh) in the objective function, since the lack of stored energy will be compensated 

by gas in the backup heater. The cost associated with the failure to follow the planning is 

affected by a weight, which needs to be adjusted.  

On Figure 6 two performance criteria are plotted for different weights. On the left axis, 

the difference between the stored energy at the end of the day and the planned target is 

drawn. On the right axis, the difference between the cost during the day and the lowest 

Figure 3: Solar irradiance forecast Figure 4: Real-Time solar irradiance and 

updated forecasts 

Figure 5: Comparison between DO and DRTO 
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cost achieved for the DRTO without any objective on storage is shown. It can be observed 

that, with a higher weight, the target on the storage state is better achieved but it is at a 

higher cost because less heat is delivered to the consumer and thus more gas is used to 

complete the demand. DRTO without any target on storage (weight of 0) leads to less 

expenses for this first day but it will cost more money on the second day where little solar 

heat can be produced.  For the remaining part of this paper, a weight of 0.65 is chosen as 

it represents a good compromise between total cost for the day and tracking of the storage 

target.  

 

 

 

 

 

 

 

 

 

Figure 6: Effect of weight on storage target in the objective function on storage and costs 

4.4. Results for different uncertainty levels on the GHI 

 

Figure 7 presents the methodology 

used to assess the improvements in 

the solar thermal plant operation 

obtained with DRTO.  The DRTO 

method presented in section 3, and 

repeated on the left-hand side of 

the diagram, is compared to a 

simulation following the flow rates 

trajectories obtained during the 

planning phase (DO) but 

undergoing the disturbance on 

the solar irradiation. 

The results of the comparison of the simulations based on offline and real-time 

optimizations of the solar thermal plant are presented in Table 1, for different values of 

disturbances on the GHI. Only negative disturbances are considered to avoid exceeding 

the heat demand in the simulation based on DO trajectories. Table 1 shows an 

improvement (bold characters) for DRTO compared to DO in the total cost (between 

15 % and 44 %) and the percentage of solar energy directly used to satisfy the demand, 

for every case tested. However, it is at a price of a decrease in storage state monitoring. 

A study over a longer time period, a week or even a month, would help to assess the 

benefits of DRTO since the storage state at the end of the last day would be less important 

and the cost and solar percentage would be the only performance criteria. In Table 1, it 

can be noticed that for a higher uncertainty level on the GHI, the overall performance of 

the solar thermal plant is improved with DRTO, with a high solar energy percentage 

(+ 52 % compared to DO) and a small difference in storage state tracking (- 20 % 

compared to DO). The results observed depend on the weight chosen in the previous 

section. Based on these observations, a variable weight should be considered: for a small 

uncertainty level, the storage state target should be tracked, and the weight should be 

adjusted to ensure a good tracking while minimizing the cost. However, for a large 

Figure 7: Comparison of simulations based on DO or DRTO 
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uncertainty level, the storage state target cannot be met, and it seems more suitable to 

minimize the cost of the day without consideration for the planned stored energy. 

Table 1: Solar thermal plant performance in simulations based on DO or DRTO for different 

disturbances on the GHI 

5. Conclusion 

The economic DRTO of a solar thermal plant was conducted, with a planning phase to 

improve storage management. The weight used for the tracking of the storage target was 

adjusted to make a compromise between the income achieved on the first day and the 

tracking of the storage target ensuring revenues the second day. Using the chosen weight, 

DRTO was compared with a simulation based on offline DO for various levels of 

uncertainty. The results indicate a general improvement in the operation of the solar 

thermal plant, especially for large uncertainty on the solar irradiation. Future work should 

focus on the testing of the methodology with real data and over a longer period of time. 
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 GHI – 10 % GHI – 20 % GHI – 30 % GHI – 40 % GHI – 50 % 

 DO DRTO DO DRTO DO DRTO DO DRTO DO DRTO 

Difference with 

storage target (%) - 17.5 - 48.0 - 35.2 - 65.9 - 54.5 - 79.3 - 75.3 - 101.9 - 97.7 - 117.3 

Total expenses (€) 218.6 121.7 291.3 191.3 369.0 291.3 451.9 373.3 540.4 456.6 

% Solar heat 69.3 83.0 58.5 72.5 47.0 57.4 34.7 45.3 21.6 32.8 
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Abstract 

High-throughput robotic platforms boost gathering informative data sets to support 

bioprocess development by resorting to on-line redesign of asynchronous parallel 

experiments. Due to significant uncertainty in both structure and parameters of 

mathematical models of bioreactors during early developmental stages, a probabilistic 

Bayesian approach is proposed. A novel algorithm that combines Asynchronous Posterior 

Sampling (APS) of model parameter distributions with chance-constrained optimization 

is used to bias data sampling depending on the modeling goal. As new data are available, 

model parameter distributions are updated using variational Bayesian inference. Myopic 

posterior sampling is then used online for purposefully changing cultivation conditions in 

parallel experiments. The proposed approach is based on a probabilistic macroscopic 

model, whereas the modelling goal is specified by integrating domain expertise and 

preferences via a reward function. A case study related to Escherichia coli expressing a 

desired product is used to demonstrate that a trade-off between improving parametric 

precision and biasing data gathering towards bioprocess optimization is achieved. Results 

obtained are encouraging for autonomous operation of robotic platforms.
  

 

Keywords: Bayesian inference, optimization, Experimental design, Probabilistic Models. 

1. Introduction 

The availability of high-throughput robotic platforms (Cruz Bournazou et al., 2017; Haby 

et al., 2019) demands a systematic methodology to efficiently explore large experimental 

search spaces while generating informative data sets to support model-based optimization 

during bioprocess development in the face of uncertainty. To this aim, online re-design 

of parallel experiments must explicitly pursue the goal of biasing data gathering to 

increase parametric precision only for the reduced region of operating conditions of 

interest. In the field of biopharmaceuticals, with the main goal of improving the 

understanding of innovative processes and reproducible end-use product quality, 

statistical analysis of available data highlights the importance of actively striking a 

balance between exploring for new knowledge and exploiting what is already known to 

account for scale-up effects on bioprocess development (Hernández Rodríguez, et al., 

2019). The use of a Bayesian (probabilistic) approach (Martínez, et al., 2021) is appealing 

to account for significant prediction errors in macroscopic dynamic models of biological 

systems which are too shallow to comprehensively describe the full complexity of 

switching in metabolic pathways when responding to changes in the operating conditions 

or to the addition of an inducer for protein expression (Kiparissides et al., 2011).  
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2. Online re-design via posterior sampling  

2.1. Bayesian set up 

Let Ξ denote a parameter space, 𝒰 a decision space, and 𝒴 an observation space. A 

probabilistic macroscopic model of a bioreactor is defined by a joint probability 

distribution over the following set of stochastic variables: 

• x; y: the n x nt   hidden states time-series; the p x nt observations (sampled data), 

• u: the nu x nt   redesign actions time-series, 

• ;: the n x 1 evolution parameters; the n x 1 observation parameters, 

• : the state noise precision (structural errors), 

• : the measurement noise precision (analytical and sensor calibration errors). 

From sample to sample in a dynamic experiment, these variables follow the equations: 

𝑥𝑡 = 𝑓(𝑥𝑡−1, 𝜃, 𝑢𝑡−1) + 𝜂𝑡;  𝜂𝑡 = 𝑁(0, 𝛼−1𝑰),       (hidden) state evolution 

𝑦𝑡 = 𝑔(𝑥𝑡 , 𝜑) + 𝜀𝑡;    𝜀𝑡 = 𝑁(0, 𝜎−1𝑰),                   observation (samples) 
        (1) 

 

where f (resp. g) is the first-principles model (observation model), and t (observation t) 

is the state (resp. measurement) modeling errors (noise). A probabilistic model of a 

bioreactor is then completed by specifying the (initial) Gaussian prior distributions for its 

parameters 𝜃, 𝜑. Also, Gamma distribution priors are defined for the precision 

hyperparameters 𝛼, 𝜎.  

We now consider a Bayesian setting, where at stage t a sample 𝜉𝑡
∗ ∈ Ξ is drawn from a 

prior distribution 𝑝𝑡(𝜉) of model parameters  𝜉 = {𝑥, 𝑥0, 𝜃, 𝜑, 𝛼, 𝜎}. Depending on the 

modeling goal, a redesign action 𝑢𝑡
∗ ∈ 𝒰 is chosen as if 𝜉𝑡

∗ were the true vector of 

parameters in a deterministic model, then the redesign action 𝑢𝑡
∗ is performed and the 

resulting (next) outcome 𝑦𝑡+1 is measured. Using variational Bayesian inference 

(Daunizeau et al., 2014), the posterior 𝑝(𝜉𝑡+1
∗ |𝑢𝑡

∗, 𝑦𝑡+1) is obtained, and a new stage of 

experimental redesign begins by using Thompson sampling (Russo et al., 2018). Thus, 

online re-design proceeds for n stages, resulting in a data sequence 𝐷𝑛 = {(𝑢𝑡
∗, 𝑦𝑡+1)}, 𝑡 =

1, . . , 𝑛, which is an ordered set of action-observation pairs in a dynamic experiment. 

2.2. Goal-oriented online redesign 

Let us assume that the desired redesign goal is specified via a reward function 𝑟: Ξ × 𝒟 →
ℝ that drives online decisions towards gathering informative data at the end of the 

experiment. Here, 𝒟 denotes the set of all possible data sequences that can be generated 

in a dynamic experiment. It is worth noting that depending on how 𝑟 is defined, the data 

sequence 𝐷𝑛 may be biased differently. The reward function can be related either to 

improving model selection, parametric precision, productivity, or a combination thereof. 

Alternatively, the modeling goal can be related to cumulative rewards gathered at the end 

of the experiment. In the latter case, online re-design decisions may require propagating 

beliefs from the current stage 𝑡 onwards. In this work, a simple and intuitive strategy is 

used for online re-design aiming to maximize the estimated final reward  𝑟̂𝑛 at the end of 

the experiment based on sampling the posterior 𝑝(𝜉𝑡+1
∗ |𝑢𝑡

∗. 𝑦𝑡+1) of the data 𝐷𝑡+1 

collected so far and exploring the redesign decision space using a deterministic model of 

the bioreactor dynamics with parameter 𝜉𝑡
∗, by solving the mathematical program: 

 

 𝑢𝑡
∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑢∈𝒰 𝑟̂𝑛(𝑦̂𝑛|𝜉𝑡

∗, 𝑥̂𝑡 , 𝑢𝑡),                                                                            (2a) 

 Subject to Eqs. (1) and  𝐶(𝑥, 𝑢) ≥ 0                                                                         (2b)   
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where 𝐶(𝑥, 𝑢) stands for physiological constraints that prevents undesired cultivation 

conditions. In robotic platforms having nMBR mini bioreactors, the optimization problem 

in Eq. (2) can be solved for each one of them. The optimal solution found 𝑢𝑡
∗ is expected 

to maximize the sampled value 𝑟̂𝑛 of the reward function by assuming that the value 𝜉𝑡,𝑖
∗

is the true one (unknown) vector of model parameters, 𝑥̂𝑡 is the inferred current state and 

𝑦̂𝑛 is the predicted observation at the end of the experiment for a given action 𝑢𝑡. A 

schema of the procedure for online re-design using posterior sampling is shown in Fig. 1.

Figure 1. Online re-design strategy using Thompson sampling.

When several asynchronous parallel experiments are made, there are many possibilities 

for implementing the strategy in Fig. 1 to explore the search space depending on the

modeling or optimization goal. The main advantage of the proposed approach is that 

predictions by different model parameterizations generated by posterior sampling can be 

experimentally tested in different mini bioreactors (MBRs), which depending on how it 

is done, gives rise to very different trade-offs between exploration and exploitation.

3. Case study

The proposed method was tested using artificial data generated based on the model 

proposed in Nickel et al. (2017), consisting of six differential equations and eighteen

parameters. Eight MBRs for Escherichia coli fed-batch cultivations were run over a six-

hour period. Samples are taken every thirty minutes and biomass (X ), glucose (Glc) and 

acetate (Ac) concentrations are measured at-line, whereas the oxygen (O2) is measured 

continuously using an online sensor. Based on new data, glucose pulses are computed 

following the model-based optimized feeding strategies for each MBR, and then the 

experiment is redesigned online. The aim of the experimental design is to find an optimal 

feeding profile that maximizes the amount of biomass obtained at the end of the run 

without allowing the oxygen concentration to drop below 20% in any of the MBRs.

Algorithm 1
Input :  𝑥0, n, nMBR, prior 𝑝𝑡(𝜉), state evolution and observation functions 𝑓, 𝑔

               1:   𝐷0 ← ∅

 for t =  1,2…𝑛  do 

  2:    Infer current state 𝑥̂𝑡 using 𝑢𝑡−1
∗ , 𝑥̂𝑡−1

 for i =  1,2…𝑛𝑀𝐵𝑅  do

  3:  Thompson sampling:  𝜉𝑖
∗ ∼ 𝑝𝑡(𝜉)

  4:   Choose 𝑢𝑡,𝑖
∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑢∈𝒰 𝑟̂𝑛(𝑦̂𝑛,𝑖|𝜉𝑖

∗, 𝑥̂𝑡,𝑖, 𝑢𝑡,𝑖)

Subject to Eqs. (1) and  𝐶(𝑥, 𝑢) ≥ 0
                                                                         

5:   Implement action 𝑢𝑡,𝑖
∗ and observe 𝑦𝑡+1,𝑖

 end for

6:     Update prior: 𝑝𝑡(𝜉) ← 𝑝(𝜉𝑡+1
∗ |𝑢𝑡

∗, 𝑦𝑡+1)

7:    Augment data set: 𝐷𝑡 ← 𝐷𝑡−1 ∪ {(𝑢𝑡
∗. 𝑦𝑡+1)}      

 end for

  Output: 𝐷𝑛, 𝑝
𝑡
(𝜉)
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The first-principles model is assumed to have the same structure as the one used to create 

the artificial data (no structural process-model mismatch) and 5% gaussian noise was

added to the simulated values. The priors 𝑝(𝜉) were chosen to be wide enough to contain 

the real values of the parameters. The algorithm, the models and all optimization routines 

were implemented using Matlab 2021a. Model inversion is performed using the VBA

toolbox by Daunizeau et al., (2014). Details about the toolbox can be found in the 

literature. Results obtained for eight MBRs runs are shown in Fig. 2. The biomass and 

oxygen concentrations are plotted for all bioreactors. For oxygen, only the minimum 

value for each sampling interval is shown for clarity. As biomass concentration increases, 

dissolver oxygen tension drops steadily until glucose fully depletes (not shown in Fig. 2). 

After that, the oxygen concentration increases until a new glucose pulse is added to the 

mini bioreactor, which gives rise to a drop in the dissolved oxygen tension. Once the new 

glucose is consumed, oxygen concentration rises again, until another pulse is fed. This

pattern is repeated until the end of the experiment for all MBRs. The optimizer chooses 

the feeding strategy for each MBR based on the model parameterization resulting from 

Thompson sampling. Even when all MBRs start from the same initial condition, the 

different strategies give rise to a wide range of process states. However, most of the 

experimental datapoints are skewed towards the region of high productivity without 

constraint violation.

Figure 2. Normalized values for biomass and oxygen concentrations (thick lines: model predictions, 

circles: experimental datapoints), together with the feeding strategy for each MBR.
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After each sampling time, the parameter distributions are updated with new data from all 

MBRs. The evolutions of some selected model parameters are presented in Fig. 3. As can 

be seen, the uncertainty of model parameters is significantly reduced in the first iteration 

and then it slowly decreases, as the mean values converge to some stationary values. This 

fast convergence is probably because the artificial data generator and the first-principles 

model have the same structure. If structural mismatch is present, convergence may take 

more iterations and modeling uncertainty will not be completely reduced.

Figure 3. Evolution of selected model parameters during the experiments. Solid lines: mean 

values of the distributions, dashed lines: 95% confidence intervals.

Once the parallel eight experiments have been completed, the probabilistic model is 

updated using the complete dataset (model predictions are shown as solid lines in Fig. 2)

that is biased towards improved operating conditions, which is the main objective of the

proposed approach for parallel experimental redesign. The Bayesian nature of the 

resulting model allows for a probabilistic formulation of the optimization problem for 

each MBR (see Luna and Martinez, 2018):

𝑢∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑢∈𝒰 𝐸[𝑚𝑋,𝑒𝑛𝑑]                                                                (3.1)  

Subject to Pr (𝑂2,𝑚𝑖𝑛 > 20) >  95%                                                                        (3.2)  

where 𝑚𝑋,𝑒𝑛𝑑 is the biomass amount obtained at the end of the experiment (in mg) and 

𝑂2,𝑚𝑖𝑛 is the minimum dissolved oxygen tension (in percentage saturation). The prior and 

the posterior distributions of the model parameters are used to solve the chance-

constrained mathematical program in Eq. (3). The resulting model-based optimized 

feeding strategy can be tested in a simulated experiment for a standalone bioreactor. The 

final amount of biomass obtained as well as the minimum dissolved oxygen concentration 
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during the testing run are presented in Table 1 for both model parameterizations. The 

uncertainty in model predictions using the prior distributions is significantly higher 

compared to that of the probabilistic model with the posterior distributions. As a result, 

the a priori optimized feeding profile is more cautious than the one with the probabilistic 

model parameterized using the updated distributions; for the later a higher amount of 

biomass is obtained while the dissolved oxygen tension is kept above the threshold value 

during the whole run. The information content of the generated data in the redesigned 

parallel experiments is aptly biased for solving the optimization problem in Eq. (3). 

 

Table 1. Performance comparison of model parameterizations 

 𝑋𝑒𝑛𝑑 [mg] 𝑂2,𝑚𝑖𝑛  [%] 

𝑢prior
∗  19.7 57.59 

𝑢posterior
∗  31.6 21.20 

4. Concluding remarks 

A new approach for on-line redesign of parallel experiments using Thompson sampling 

was proposed. Results obtained for the case study demonstrate the advantages of 

enforcing chance-constrained physiological constraints in balancing exploration with 

exploitation based on sampling model parameter distributions for feed rate optimization.  
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Abstract 

Integrated continuous bioprocessing (ICB) holds great promise towards achieving higher 

efficiency, a critical target for ensuring the advent of biopharmaceutical manufacturing. 

Culture productivity must be drastically improved to reduce production cost projections, 

especially in comparison to traditional fed-batch process platforms (Pollock et al., 2017). 

The present paper explores the benefits of continuous bioprocessing, employing dynamic 

optimisation of upstream fermentation for production of monoclonal antibodies (mAb). 

Industry-standard cultures of hybridoma cells have been used to develop models of mAb 

bioreactor operation. These models track several state variable trajectories of interest, 

including profiles for viable cells, substrates, by-products and the target mAbs product. 

Dynamic optimisation of both operation modes (fed-batch and perfusion bioreactors) has 

been undertaken, with the objective function of maximizing the final mAb product titers 

through optimal feeding strategies in two reactor types for improved culture proliferation. 

The clear differences in terms of reactor space (capital costs) and time (operating costs) 

are highlighted, and a fair comparison basis is established so as to evaluate performance. 

For both modes of operation, a technoeconomic analysis illustrates the implications of 

optimal bioreactor designs, with a view to systematic decision-making in mAb ventures. 

Keywords: Biopharmaceutical manufacturing; monoclonal antibodies; dynamic optimisation. 

1. Introduction 

Monoclonal antibodies (mAbs) are immune proteins which are genetically engineered 

within laboratories for the treatment of a variety of ailments, including some autoimmune 

diseases and cancers (Schulze-Koops et al., 2000), (Adams et al., 2005). In terms of 

commercial expansion, mAbs are currently the fastest growing biopharmaceutical 

product type in the market, representing the majority (57%) of total European Medicines 

Agency (EMA) biopharmaceutical approvals between 2015 and 2018 (Grilo et al., 2019). 

Traditionally, biopharmaceutical process platforms have consisted of a series of batch 

mode operating units as seen in Figure 1. Batch operation has been favoured due to its 

inherently simpler configuration for the manufacture of small-scale speciality products 

such as (bio)pharmaceuticals (Shirahata et al., 2019). Despite this, the industrial drivers 

of process economics and rapid quality control generate a strong motivation to pursue 

semi-continuous or (preferably) continuous industrial scale biomanufacturing. The need 

to provide accessible therapies in developing countries, and the advent of biosimilars, 

means that optimising process economics is more imperative than ever in today’s market. 

Steadily improving efficiencies of commercially available bioreactors address this need. 
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The Quality by Design (QbD) framework set out by the U.S. Food & Drug Administration 

(FDA) highlights the need to explore continuous processing for many therapies, and our 

recent paper stresses the role of parametric model analyses (Jones and Gerogiorgis, 2021). 

The present study capitalises on dynamic modelling and optimisation methods towards 

probing technoeconomic potential for fed-batch and perfusion bioreactors to manufacture 

mAbs. Dynamic optimisation solutions are first established in order to elucidate feeding 

and outlet trajectories for maximised mAb production. Following this, both bioreactor 

designs and cost components are studied within a technoeconomic framework, providing 

novel insights into operational efficiency and potential for manufacturing cost reductions. 

2. Dynamic Modelling and Optimisation for mAb Production 

2.1 Dynamic Model of CHO Cell Fermentation 

A widely cited model published by De Tremblay et al. (1992) has been selected as a basis 

for the dynamic study, the state variables of which are presented in Table 1. Growth rates, 

consumption rates and productivities have been modelled using Monod kinetics, and all 

relevant kinetic parameters are detailed in the original publication. In this biosystem, 

hybridoma cells secrete mAbs and growth limiting metabolites (lactate and ammonia). 

Throughout the time domain, both designs are inoculated with glucose and glutamine 

substrates, to promote culture growth. In the perfusion bioreactor design, the outlet flow 

consists of a bleed flow to modulate cell density, and a harvest flow to recover protein. 
 

 

2.2 Dynamic Optimisation of Fed-Batch and Perfusion Bioreactors for mAb Production 

A technoeconomic comparison of both (fed-batch and perfusion) bioreactors hosting the 

mAb biochemical system of Table 1 should proceed on the basis of dynamic optimisation, 

to ensure that the two are used in the most productive (albeit diverse) regime of operation. 

For both cases, a heavily constrained Non-Linear Programming (NLP) problem emerges. 

Manipulated and state variable profiles of these ODEs have been discretised in time using 

orthogonal collocation of finite elements, thus facilitating NLP solver use (Biegler, 2007). 

The fed-batch bioreactor optimisation is solved with APOPT (Hedengren et al., 2014). 

The perfusion bioreactor optimisation is solved via IPOPT (Wächter and Biegler, 2006).  

 
Figure 1: Generalised process platform for the manufacture of biotherapeutic proteins. 

Table 1: Dynamic model for mAb production (De Tremblay et al., 1992). 

𝑑𝑉

𝑑𝑡
= 𝐹𝑖𝑛 − 𝐹𝑜𝑢𝑡 

(1) 𝑑[𝑋𝑉]

𝑑𝑡
= (𝜇 − 𝑘𝑑)𝑋𝑉 −

(𝐹𝑖𝑛 − 𝐹ℎ𝑎𝑟𝑣𝑒𝑠𝑡)

𝑉
𝑋𝑉 (2) 

𝑑[𝐺𝐿𝐶]

𝑑𝑡
= (𝐺𝐿𝐶𝑖𝑛 − 𝐺𝐿𝐶)

𝐹𝑖𝑛

𝑉
− 𝑞𝐺𝐿𝐶𝑋𝑉 (3) 𝑑[𝐺𝐿𝑁]

𝑑𝑡
= (𝐺𝐿𝑁𝑖𝑛 − 𝐺𝐿𝑁)

𝐹𝑖𝑛

𝑉
− 𝑞𝐺𝐿𝑁𝑋𝑉 (4) 

𝑑[𝐿𝐴𝐶]

𝑑𝑡
= 𝑞𝐿𝐴𝐶𝑋𝑉 −

𝐹𝑖𝑛

𝑉
𝐿𝐴𝐶 (5) 𝑑[𝐴𝑀𝑀]

𝑑𝑡
= 𝑞𝐴𝑀𝑀𝑋𝑉 −

𝐹𝑖𝑛

𝑉
𝐴𝑀𝑀 (6) 

𝑑[𝑚𝐴𝑏]

𝑑𝑡
= 𝑞𝑚𝐴𝑏𝑋𝑉 −

𝐹𝑖𝑛

𝑉
𝑚𝐴𝑏 (7) 
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3. Results and Discussion 

3.1 Dynamic Optimisation of a Fed-Batch Bioreactor for mAb Manufacture 

Fed-batch dynamic optimisation has been conducted with the initial conditions and state 

variable constraints exactly as specified by De Tremblay et al. (1992), enabling the 

validation of our bioreactor design and optimisation results. Key design trajectories are 

illustrated in Figure 2. The manipulated (inlet flowrate) variable discretisation is varied 

between 0.05 L day  ̶ 1 and 0.10 L day   ̶1, to analyse its effect on bioreactor performance. 

The bioreactor time horizon discretisation has been set to 0.5 days for both optimisations. 

The trajectories of the state variables for both fed batch designs are very similar across 

the entire time domain, suggesting the additional flowrate set points provided by the finer 

(0.05 L day  ̶ 1) discretisation step provided no tangible benefit to bioreactor performance. 

Furthermore, we underline that an improved final mAb titer (157 mg L  ̶1) is achieved in 

comparison to the previous, lower optimised titer (147 mg L ̶ 1) (De Tremblay et al., 1992). 

  

 Figure 2: Optimal fed-batch bioreactor trajectories for 0.10 (L) and 0.05 L day  ̶ 1 (R). 
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3.2 Dynamic Optimisation of a Perfusion Bioreactor for mAb Manufacture 

Identical initial conditions and inlet flowrate constraints have been used for optimising 

the fed-batch and perfusion bioreactors. Manipulated variables include bleed and harvest 

flows, and their constraints were set equal to the inlet flowrate constraints. Key variable 

and mAb titer trajectories for the optimised perfusion reactor are illustrated in Figure 3. 

Some fundamental features of the trajectories are summarised to analyse performance. 

The bleed flowrate remained fixed at zero throughout the time domain so as to retain the 

maximum number of cells in the reactor during operation, maximizing mAb production. 

A significantly larger quantity of total feed has to be provided in the optimised perfusion 

system, in comparison to the optimised fed-batch bioreactor (3.96 L compared to 1.20 L). 

The ability to harvest growth-limiting by-products of lactate and ammonia in the 

perfusion system has been shown to be highly beneficial to the bioreactor productivity. 

The importance of harvesting is evident when comparing final mAb titers for the systems, 

as perfusion achieves 210 mg L ̶ 1, representing a 33.8% increase vs. the fed-batch case. 

3.3 Comparative Technoeconomic Analysis of Fed-Batch vs. Perfusion Bioreactors 

Extensive technoeconomic analysis of the two optimised bioreactors required a basis of 

operation and industrial scale unit sizing; reported campaign lengths vary for these, so a 

typical fed-batch (15 days) and perfusion time (30 days) are explored for both designs. 

Industrial fed-batch bioreactor sizes reported are much greater than respective perfusion 

units. This disparity is due to the difference in maturity of the technologies, as less than 

10% of commercial biotherapeutics are manufactured via perfusion (Lindskog, 2018).  

Bioreactor sizes of 2000 L and 12000 L have been previously employed for perfusion and 

fed-batch operation modes, respectively, in the literature (Farid, 2007; Yang et al., 2019). 

The nominal mAb basis considered in our analysis is 200 kg annually (Klutz et al., 2016). 

Figure 4 shows the annual operating cost breakdown for both bioreactor types, different 

initial cell densities and campaign times. Despite handling higher cell densities better, 

increased perfusion bioreactor culture and medium demands induce higher cost for the 

higher (40·106 cells mL ̶ 1) density designs. Conversely, the perfusion bioreactor operation 

shows improved cost viability vs. fed-batch, for the low (0.2·106 cells mL ̶ 1) density case. 

 Figure 3: Optimal perfusion bioreactor trajectories of manipulated and state variables 
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Figure 4: Operating costs of optimised (FB: fed-batch, P: perfusion) industrial designs.  

A key difference concerns higher utility (heating and mixing) costs needed for fed-batch 

reactor vessels, even if fixed (purchase) cost per L is lower. Extended campaigns benefit 

perfusion bioreactor designs, but adversely affect fed-batch reactor cost-effectiveness. 

These observations in Fig. 4 plots agree with the established understanding that perfusion 

bioreactor campaigns should be longer than fed-batch bioreactor ones (Yang et al., 2019). 

Finally, it is important to analyse the long-term viability of these designs for industrial 

implementation. Accordingly, the Cost Of Goods Sold per gram of mAb (COGS) metric 

is computed for the fed-batch and perfusion designs with lowest operating costs (Eq. 8). 

COGS =
NPC (£)

Total mAb Production (g)
 (8) 

The Net Present Cost (NPC) is another key metric, being a function of capital expenditure 

(CapEx), operational expenditure (OpEx), interest rate (𝑟) and plant lifetime (𝜏) (Eq. 9). 

NPC = CapEx (£) + ∑ (
OpEx (£)

(1 − 𝑟)𝑖
)

𝜏

𝑖=1

 (9) 

For the technoeconomic analysis performed here, a range of fixed interest rates elucidated 

the sensitivity of the optimised designs to market pressures. The COGS results for both 

modes and interest rates between 1-10% (15-year plant lifetime) are shown in Figure 5.  

Despite initially being marginally favourable for perfusion design (due to reduced capital 

expenditure from smaller vessel material), COGS value indicate that perfusion design is 

eventually outperformed by the fed-batch design soon afterwards (and well ahead of mAb 

plant lifetime), due to clear Operating Cost (OpEx) differences. At higher interest rates, 

perfusion mode exhibits a significant COGS value surge towards the end of plant lifetime. 

For identical plant lifetime and interest rates, the fed batch design experiences a relatively 

small change in COGS, reinforcing the conclusion that the more established fed-batch 

reactor technology is still more cost-effective for mAbs in the biopharmaceutical industry. 
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Figure 5: Cost of goods sold per gram analysis for the optimised industrial designs. 

4. Conclusions 

Technoeconomic analysis via dynamic optimisation of a hybridoma cell line employed 

for fed-batch as well as perfusion mode mAb production has been addressed in this study. 

The mAb titer for the optimised fed-batch design is improved compared to the previous 

literature value reported (De Tremblay et al., 1992). A further enhancement of the mAb 

titer for bench-scale design has been established for the perfusion bioreactor, highlighting 

the importance of reactor harvest flowrate in manipulating cell dynamics for proliferation. 

The economic analysis considers the cost-effectiveness of both (fed-batch and perfusion) 

bioreactor systems, for two initial viable cell densities and two campaign durations. 

Larger initial cell densities decrease Operational Cost (OpEx) for both bioreactors, while 

longer campaign times clearly benefit perfusion vs. fed-batch bioreactor performance. 

Plant lifetime analysis is conducted via the Cost Of Goods Sold (COGS) per gram metric, 

showing lower long-term viability of perfusion designs, especially for high interest rates.  
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Abstract
The present contribution addresses the design of feedback control in a biodiesel washing column
with structured packing. The column dynamics is described with a pseudo-homogeneous dis-
persion model previously developed in gPROMS® ModelBuilder and validated against industrial
data. The operation of the extraction column was analysed for scenarios where biodiesel compo-
sition changes, presence of contamination in biodiesel inlet, and change of glycerol concentration
in the washing water inlet. The impact of these disturbances on the column hydrodynamics (e.g.,
flooding, phase inversion) and product quality was analysed. Finally, the performance in open-
loop, closed-loop, and closed-loop with decouplers of the system was carefully compared.

Keywords: Biodiesel, Liquid-liquid extraction, Process Control, Dynamic simulation

1. Introduction
Biodiesel (fatty acids methyl esters or FAME) is a recognised renewable substitute of fossil diesel,
and its production in Portugal has been steadily increasing with an average annual growth rate
of 4.1 % since 2013(Knoema, 2021). A recent trend in the European Union is the increasing
incorporation of waste cooking oils (WCO) in biodiesel production (Grinsven et al., 2020), due
to its lower cost and by new regulations limiting the production of first-generation biodiesel. This
trend causes the formulations of raw oil to fluctuate significantly, requiring more process flexibility
and adequate control systems to maintain the product within strict quality standards and prevent
operational problems.

Existing literature devoted to process control in the biodiesel industry focuses on the transester-
ification reaction section, while the biodiesel washing step is described with shortcut methods
(Brásio et al., 2016). However, the increase of the incorporation of lower-quality feedstocks in
biodiesel processing may originate operation problems in the column due to subtle changes in
the oil composition, leading to more frequent shutdowns and higher maintenance costs. As such,
simplified models are of limited use to mitigate these issues and design effective control systems.

This work aims to implement a robust control system based on a real industrial biodiesel washing
column model to prevent operational problems and keep the product within quality standards.
The remaining of the paper is structured as follows: the implementation and tuning of the control
scheme are demonstrated in Section 2; the results are presented in Section 3, followed by final
remarks in Section 4.

1147

http://dx.doi.org/10.1016/B978-0-323-95879-0.50188-0 



M. L. Pinho et al.

2. Development of the control strategy for the extraction column

The dynamic model of the extraction column was developed in gPROMS® ModelBuilder fol-
lowing a detailed pseudo-homogeneous approach shown in (Pinho, 2021). The washing column
is static, has structured packing and operates isothermally. The general transient mass balance
equations for the continuous and dispersed phases, the boundary and initial conditions, and the
hydrodynamic behaviour of the column are detailed in Mohanty (2000) and Pinho (2021) based
on the most accurate state of the art. The overall model was validated with data retrieved from
an industrial unit, Pinho (2021). For simplicity sake, all input/output variables will be presented
in this section as deviation variables. This analysis was conducted with WCO-based biodiesel at
45 °C and a solvent-to-feed ratio (S/F) of 13.5 vol%.

Regarding extraction columns, most control systems focus on the interface level between the two
phases inside the column and outlet concentrations control. If this level is not adequately sta-
bilised, the dispersed layer can flood, causing the loss of solvent and product (Weinstein et al.,
1998). Typically, the manipulated variables (MV) used to control the holdup and product compo-
sition are the dispersed-phase flow rate, the continuous-phase feed/effluent flow rate and the rotor
speed (in the case of agitated Kühni columns).

2.1. Open-loop testing and system linearisation

The impact of disturbances in input variables related to the biodiesel formulation, such as inter-
facial tension, density, viscosity, and inlet glycerol composition (that reflects a poor phase sepa-
ration) on the glycerol composition (wt%) of the biodiesel outlet stream, flooding percentage of
both phases, holdup and in the phase inversion parameter (χ) was analysed. The effect of step
disturbances in the inlet and outlet biodiesel and water mass flow rates over the outputs mentioned
above are also shown.

To proceed with the development of a control system in MATLAB®, it was necessary to linearise
the system, which was achieved with the System Identification toolbox. All transfer functions had
a fit to the estimation data higher than 94 % and are listed in Tables 1 to 3.

Table 1: Transfer functions for the outlet flow rates and output variables.
Transfer Functions Qout water (kg/h) Qout biodiesel (kg/h)
Biodiesel Glycerol Composition (wt%) −5.98E(−3)

s2+121.6s+644.9
0.016s+0.135

s3+137.3s2+8362s+4.40E04

Flooding Continuous Phase % 359.9s2+3.15E04s+2.84E05
s3+6.75E04s2+5.98E06+5.52E07

358.3s+2.50E04
s2+4.93E04+3.41E06

Flooding Dispersed Phase % −58.41s2−4657s−3.88E04
s3+6.21E04+5.08E06+4.67E07

77.49s+4937
s2+8.70E04s+5.34E06

Holdup (fraction) 0.851s2+14.77s+52.96
s3+4.47E04s2+7.90E05+2.82E06

1.664s+6.588
s2+5.51E04+2.18E05

Phase Inversion Parameter 1.34s+18.27
s2+3.65E04+5.28E05

2.305s+171
s2+4.21E04+3.11E06

2.2. Variable pairing

The classical methods of Relative Gain Array (RGA) and Singular Value Analysis (SVA) were
used to analyse the multivariable process control problem (Seborg et al., 2011). Since manip-
ulating both inlet and outlet flow rates for biodiesel and water would lead to an over-specified
system, only the outlet streams are considered for control purposes. On the other hand, Weinstein
et al. (1998) demonstrated that manipulating the outlet instead of the inlet flow rate would lead to
smoother system behaviour. Consequently, the mass fraction of glycerol in biodiesel and holdup
are the two controlled variables. The recommended pairings from RGA and SVA the pairings:
glycerol outlet composition — water outlet flow rate, and holdup — biodiesel outlet flow rate
are recommended. These pairings have a λ of 0.83 (compared to 0.82 and 1.40) and a condition
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Table 2: Transfer functions for the interfacial tension and feed glycerol composition.
Transfer Functions Interfacial Tension (N/m) Feed Glycerol Composition (wt%)
Biodiesel Glycerol Composition (wt%) 89.82s2+1.37E04s+9.37E04

s3+158.7s2+9404s+5.43E04 e−0.0277s 3007s+7.68E04
s2+253.2s+1883

Flooding Continuous Phase % −1.26E06s3−1.92E08s2−1.21E10s−1.17E11
s4+224.5s3+3.41E04s2+2.16E06s+2.10E07

e−2.03s(2.22E05s2+3.18E06s−1.27E07)
s4+411.8s3+2.22E04s2+5.16E05s+2.80E06

Flooding Dispersed Phase % −3.25E05s2−2.37E07s−2.13E08
s3+141.5s2+1.04E04s+9.38E04 e−0.003s −261.3s+2562

s2+74.5s+607.5

Holdup (fraction) 1.313s−11.59
s2+90.95s+634.3

2.37s−211.3
s2+81.64s+549.6

Phase Inversion Parameter 13.08s+10.25
s2+95.77s+760.4

−109.1s−3871
s2+342.9s+2579

Table 3: Transfer functions for biodiesel density.
Transfer Functions Biodiesel Density (kg/m3)
Biodiesel Glycerol Composition (wt%) 0.754s2+264s+2494

188.1s3+2.43E04s2+1.37E06s+1.19E07

Flooding Continuous Phase % 141.7s4+4.15E04s3+5.19E06s2+3.56E08s+2.81E09
276.8s4+8.08E04s3+1.02E07s2+6.89E08s+5.45E09

Flooding Dispersed Phase % −13.59s3−2046s2−1.13E05s−8.30E05
187.7s3+2.80E04s2+1.58E06s+1.18E07

Holdup (fraction) 2.65E(−3)s3+0.517s2+41.69s+298.2
s3+195.5s2+1.57E04s+1.13E05

Phase Inversion Parameter 5.96E(−3)s3+0.946s2+59.67s+421.3
s3+158.5s2+9974s+7.05E04

number of 3.78, whilst other parings have a condition number of ∞. The other possible pairings
presented singular steady-state gain matrices, meaning that they are ill-conditioned. The control
scheme implemented is illustrated in Figure 1. The nomenclature used in Figure 1 will refer to the
controllers in the following subsection.

Figure 1: Control scheme for the biodiesel extraction column.

2.3. Controller tuning

Knowing which variables to pair, it is necessary to tune the controllers. The controllers tested
were evaluated based on integral error criteria in set-point tracking and disturbance rejection. The
three most used integral error criteria are the integral of the squared error (ISE), the integral of
the absolute value of the error (IAE), and the integral of the time-weighted absolute error (ITAE).
Here, the IAE was the deciding factor to select the controllers. The control system was also
analysed in terms of relative stability with the concepts of Gain Margin (GM) and Phase Margin
(PM) (Seborg et al., 2011). Saturation was added to the MV, −10 % to 10 % for biodiesel and
−20 % to 20 % for water mass flow rates. For this process, set-point changes are not expected, so
only the results for disturbance rejection are shown.
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Starting with the FC101 controller, the Ziegler-Nichols (ZN) and Internal Model Control (IMC)
tuning methods were tested. These methods and respective tuning procedures are detailed in
Seborg et al. (2011). The controller settings for the different tuning methods are presented in
Table 4, with the values of GM and PM. The controller is in parallel, and the derivative mode
has a filter N. For the disturbance rejection, a disturbance of −80 % in the interfacial tension was
applied to the system. The PI controller tuned with IMC has the smallest value of IAE.

Table 4: Controller settings for the controller FC101 according to ZN and IMC tuning methods
and Gain and Phase Margins.

Tuning Method ZN IMC
Controller mode PI PID PI PID

Controller
Settings

KP -2.05E06 -2.73E06 -2.24E06 -1.07E09
KI -7.21E07 -1.60E08 -6.36E07 -1.41E11
KD - -1.16E04 - -8.08E05
N - 100 - 100000

Relative
Stability

GM 68 1392 67 2
PM 34 23 37 47

Similarly to FC101, the controller FC102 was tuned with two different methods. Both ZN and
IMC tuning approaches were tested; however, the IMC tuning technique (in Mathematica®) failed
to return a viable controller. Hence, the Cohen-Coon (CC) tuning method was used (Cohen and
Coon, 1953). The controller settings and relative stability margins are shown in Table 5. Analysing
this table and taking the IAE criterion as the deciding factor, the PI controller tuned with CC rules
has a slightly better performance when compared with the other ones.

Table 5: Controller settings for the controller FC102 according to ZN and CC tuning methods and
Gain and Phase Margins.

Tuning Method ZN CC
Controller mode PI PID PI PID

Controller
Settings

KP 3.02E04 4.03E04 5.76E04 5.34E04
KI 1.64E06 3.65E06 9.21E06 5.18E06
KD - 111 - 91.7
N - 100 - 1000

Relative
Stability

GM ∞ ∞ ∞ ∞

PM (◦) 156 ∞ 125 ∞

Two decouplers were added to minimise the interaction between the closed-loops, which is observ-
able by the peaks in Figure 3, for example, in Section 3. However, analysing the transfer function
of one of the decouplers, a real right-half plane pole was identified, which makes it unstable.
Hence, static decouplers were used instead.

3. Results

After implementing the multiloop with decouplers, the system response was evaluated in open-
loop, closed-loop, and closed-loop with static decouplers to disturbances in interfacial tension,
biodiesel density and feed glycerol composition are presented in Figures 2 to 4. The response of
the MV is not shown here.

It is observed that the addition of decouplers to the control system was beneficial. The control
of holdup significantly improved with the reduction of settling-time and lower overshoots; the
control of biodiesel glycerol composition was not ideal due to an increase in oscillation; however,
the overshoots were minimised. Additionally, the closed-loop interactions were reduced by adding
decouplers, which successfully reduced excessive controller action.
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Figure 2: Evolution of the controlled variables: biodiesel glycerol composition (wt%) and holdup
fraction to a disturbance in interfacial tension of −80 %.

Figure 3: Evolution of the controlled variables: biodiesel glycerol composition (wt%) and holdup
fraction to a disturbance in biodiesel density of 3.5 %.
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Figure 4: Evolution of the controlled variables: biodiesel glycerol composition (wt%) and holdup
fraction to a disturbance in feed glycerol mass composition of 100 %.

4. Conclusion and Future Work

The present work focuses on the implementation of a 2×2 control system on a dynamic model of
a biodiesel washing column. The model was developed in gPROMS® ModelBuilder using a rate-
based approach and describing the dispersed phase as pseudo-homogeneous. In this model, mass
transfer phenomena, hydrodynamics and biodiesel properties are estimated. The model was vali-
dated with industrial data provided by an industrial partner and successfully predicts the solubility
of the solutes in the washed biodiesel.

The system is analysed to implement a control scheme. The best-suggested pairing is Glycerol
outlet composition in the biodiesel-water outlet flow rate and holdup-biodiesel outlet flow rate.
The controllers are then tuned with the IMC and CC methods, respectively. The addition of static
decouplers is successful in minimising strong loop interactions. Overall, the control system has a
good performance for set-point tracking and disturbance rejection.
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Abstract
As the pharmaceutical industry transitions from batch to continuous manufacturing, real-time
monitoring, and mechanistic model-based control are essential to conform to FDA quality stan-
dards. Glidants and lubricants are known to affect the Critical Quality Attributes (CQAs) of a
tablet such as tensile strength, tablet porosity, and dissolution profile (Razavi et al., 2018; Apeji
and Olowosulu, 2020). Quantitative models for predicting these effects are essential for enabling
centralized control strategies of lubricant and glidant feeding and blending in direct compression
tableting lines. This work presents the development of mechanistic reduced order models to cap-
ture the effects of lubricant (magnesium stearate) and glidant (silica) on CQAs and Critical Process
Parameters (CPPs). A Latin Hypercube experimental campaign with thirty different mixing con-
ditions of silica with MCC (Avicel PH200) and APAP (Acetaminophen) was carried out using
a Natoli NP400 tablet press and a SOTAX AT4 tablet tester. Experiments show that the tensile
strength and blend bulk density are significantly affected by the mixing conditions of silica. Simi-
larly, adding magnesium stearate (MgSt) changes the bulk density of the blend, compaction force
required to form a tablet, and tensile strength of the tablet, depending on the lubrication conditions
(Mehrotra et al., 2007; Razavi et al., 2018).

Keywords: Lubricant effects, glidant effects, continuous pharmaceutical manufacturing

1. Introduction

The production of tablets in the pharmaceutical industry has predominantly been operated in batch
mode, where tablets are produced using a specified amount of raw materials within a given time
frame. In recent years, with the advent of process analytical technology (PAT) sensors, the tran-
sition from batch to continuous manufacturing has been made possible. However, modeling and
advanced understanding of the tablet production process is essential to implement continuous man-
ufacturing in the pharmaceutical industry. In particular, active process control using the Quality-
by-Control (QbC) approach (Su et al., 2019) requires predictive and fast models of the tablet
Critical Quality Attributes (CQAs). Therefore, steady-state mechanistic models which can predict
Critical Process Parameters (CPPs) and CQAs of tablets are essential to the implementation of
robust control strategies in the direct compression tableting line.

In continuous manufacturing, it is essential that the powder has good flowability. A glidant, such
as colloidal silica (Silica), is an excipient added to improve powder flowability. A lubricant, such
as magnesium stearate (MgSt), helps reduce internal friction during compaction and tablet-tooling

1153

http://dx.doi.org/10.1016/B978-0-323-95879-0.50189-2 



S. Bachawala et al.

friction during ejection. Typically formulations use 0.25%-1% w/w of MgSt and 0-0.02% w/w
of Silica. Even when added in such small amounts, these excipients significantly affect the bulk
properties of the powder, such as bulk density (Mehrotra et al., 2007), and surface properties, such
as the strength of solid bridges formed during compaction. This change in the properties of the
blend naturally impacts the tableting process and the CQAs of the final tablet (Razavi et al., 2018;
Van Veen et al., 2005), including its dissolution profile, and in turn, the bioavailability of the active
pharmaceutical product (API).

It is well-known that MgSt increases the bulk density of the powder and reduces the tensile strength
of the tablets (Mehrotra et al., 2007). Quantitative models to describe the effects of MgSt on the
tensile strength and elastic modulus of tablets were proposed by Razavi et al. (2018). However,
little research has been carried out to quantify the effects of Silica. In this paper, mechanistic
reduced-order models of the entire tableting process, i.e., algebraic models based on the under-
standing of the underlying physical mechanisms which describe the effects of Silica and MgSt
on tablet CQAs, are proposed and calibrated. These models are a means to implement moving
horizon estimation-based non-linear model predictive control (MHE-NMPC) for the tablet press
at Purdue’s pharmaceutical continuous manufacturing pilot plant (Huang et al., 2021).

The paper is organized as follows. In Section 2, the design of experiments (DoE) to study both
MgSt and Silica is described. In Section 3, the quantitative models proposed for CPPs and CQAs
of the tableting process are discussed, with a special focus on the differences between MgSt and
Silica effects. Section 4 discusses conclusions and directions for future work.

2. Materials and Methods

Two experimental campaigns were carried out, one to study the effects of Silica and the other to
study the effects of MgSt. The materials used in this study were microcrystalline cellulose Avicel
PH200 (MCC), 10% w/w acetaminophen (APAP), and Silica and MgSt at different concentrations.
The DoE to study the effects of Silica was carried out using a mixture of MCC, APAP, and Silica.
MCC and APAP were mixed in a Tote blender with 0-0.2% w/w Silica for 10-30 minutes. The
in-die thickness was kept constant at 3.1 mm and the dosing position was chosen to be 7-11 mm, to
manufacture tablets having a broad range of relative densities, i.e., 0.6-0.9. The tablet press turret
speed was varied between 25-35 rpm. A Latin Hypercube sampling (Viana, 2013) of turret speed,
dosing position, concentration, and mixing time for 30 experiments was created using the MAT-
LAB function lhsdesign. The same procedure was repeated for the second DoE to characterize
the effects of MgSt. Blends with 0-2% w/w MgSt, APAP, and MCC were prepared by mixing in
a Tote blender for 11-30 minutes. The in-die thickness was also chosen to be 3.1 mm, the dosing
position 9-13 mm, and the tablet press turret speed 11-20 rpm. Tablets formed with MgSt blends
required higher dwell time as compared to Silica blends and hence lower turret speeds were used
in the MgSt DoE. In this case, a Latin hypercube design of 20 experiments was created. Next,
tablets were manufactured using a Natoli-NP400 tablet press using D-type tooling with shallow
cup depth. For each run in the DoE, a SOTAX AT4 tablet tester was used to measure tablet thick-
ness, diameter, weight, and hardness of 50 tablets under steady-state manufacturing conditions.
The tablet press hopper was filled with 0.5 kg of the blend at the start of each experimental run.

3. Reduced Order Models

The bulk density of a powder ρb is observed to be affected by shear strain γ imparted to the powder
during mixing (Mehrotra et al., 2007). As the total shear increases, the bulk density initially
increases and ultimately reaches a plateau, during which no further change in the bulk density
is observed. The following asymptotic relationship between the bulk density and total shear is
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Figure 1: Bulk density increases with increase in concentrations for both Silica and MgSt.

proposed to capture this trend

ρb = ρb,∞ −
ρb,∞ −ρb,0

1+Cρ

with Cρ =
c

r1
l (γ+γ0)

r2

r3
(1)

where ρb,∞ and ρb,0 represent the bulk densities when the shear imparted is infinite and zero re-
spectively, Cρ is a lumped parameter which defines the glidant or lubricant mixing conditions,
where cl is glidant or lubricant concentration, γ is the shear imparted to the powder during mixing,
γ0 is the initial shear imparted during pre-blending, and r1,r2,r3 are fitting parameters. The total
shear γ + γ0 is considered proportional to mixing time. Figure 1 shows that increasing the concen-
tration or mixing time of Silica or MgSt results in an increase in bulk density. The bulk density
gradually increases and reaches an asymptotic value.

The tablet weight, W , is affected significantly by the process parameters such as the turret speed
(nT), feeder speed (nF), dosing position (fill depth -Hfill) and diameter of the tablet (D). If turret
speed is too high, then the die may be filled unevenly, resulting in undesired deviation in tablet
weight, ultimately affecting the dosage of the active ingredient. The weight of a doubly-convex
tablet formed by Natoli D-type tooling with cup-depth, h, is computed as follows:

W
ρbV fill =−ξ1

nF

nT
+ξ2

Hfill

D
+ξ3

(
Hfill

D

)2

(2)

with the volume of die-cavity, V fill, given by

V fill =
πD2Hfill

4
+

πh
6

(
3D2

4
+h2

)
(3)

where ξ1,ξ2,ξ3 are fitting parameters. The same model describes the trends for both MgSt and
Silica blends.

The main compaction force Fpunch for the effect of Silica can be estimated using Kawakita equation
(Kawakita and Lüdde, 1971):

σpunch =
4Fpunch

πD2 =
ρ in−die −ρb/ρt

[ρ in−die(a−1)+ρb/ρt ]b
(4)

with the in-die relative density, ρ in−die, given by

ρ
in−die =

W
ρtV in−die (5)
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Figure 2: (a) shows that compaction force is independent of mixing conditions of Silica. (b) shows
that compaction force decreases with increase in lubrication.

where σpunch is the compaction pressure, ρt is the true density of the blend, a and b (MPa) are
Kawakita parameters, V in−die is the volume of die-cavity with main compression thickness H in−die,
given by

V in−die =
πD2H in−die

4
+

πh
3

(
3D2

4
+h2

)
(6)

The compaction force for MgSt blends depends on lubrication conditions (Figure 2b). This effect
is incorporated by modeling the parameter a as

a =
a0 −a∞

1+Cc
+a0,∞ with Cc =

c
p1
l (γ+γ0)

p2

p3
(7)

with Cc where a0,a∞, p1, p2, p3 are fitting parameters. The compaction force does not depend on
the mixing conditions of Silica (Figure 2a), whereas it increases with increasing lubrication 2b.

Elastic recovery, ερ , of a tablet is defined as

ρ tablet = ρ in−die(1− ερ) (8)

with the out-of-die tablet relative density, ρ tablet, given by

ρ tablet =
W

ρtV tablet (9)

and the out-of-die tablet volume after elastic recovery, V tablet, with bellyband, H tablet given by

V tablet =
πD2H tablet

4
+

πh
3

(
3D2

4
+h2

)
(10)

Elastic recovery is not sensitive to mixing conditions of Silica (Figure 3a) and is governed by
(Gonzalez, 2019)

ερ = ε0
ρ in−die −ρc,ε

1−ρc,ε
(11)

However, with increase in lubrication with MgSt, the elastic recovery increases (Figure 3b). This
trend is captured by modifying the ε0 as follows:

ε0 = ε∞ +
εφ − ε∞

1+Cε
with Cε =

c
q1
l (γ+γ0)

q2

q3
(12)
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Figure 3: (a) shows that elastic recovery is independent of mixing conditions of Silica, (b) shows
that elastic recovery increases with increase in lubrication.

where ε∞, εφ , q1,q2,q3 are fitting parameters.

Tensile strength of a tablet is an important CQA since it is correlated with tablet dissolution. The
tensile strength σt of a tablet depends on lubricant or glidant concentration and mixing time as
follows (Kuentz and Leuenberger, 2000)

σt = σ0

[
1−

(
1−ρ tablet

1−ρc,σt

)
e(ρ

tablet−ρc,σt )

]
(13)

where, ρc,σt is the critical relative density at which the tablet starts forming and σt goes to zero.
The tensile strength at zero-porosity, σ0, is given by

σ0 =
σ0,φ

1+Cσ

with Cσ =
c

b1
l (γ+γ0)

b2

b3
(14)

and

ρc,σt =
ρc,σt,φ −ρc,σt,∞

1+Cρ

+ρc,σt,∞ (15)

where ρc,σt,φ , ρc,σt,∞, b1,b2,b3 are the fitting parameters (Razavi et al., 2018). σ0,φ and ρc,σt,φ

represents the tensile strength and critical relative density corresponding to no lubrication, Cσ = 0.
As the concentration or mixing time of Silica or MgSt increases in the formulation, softer tablets
with lower tensile strength are formed (Figure 4). The decrease in tensile strength of lubricated
tablets would be due to a combination of changes in physical properties of the blend, as well as
the increased elastic recovery of lubricated tablets. Whereas, the tensile strength of tablets formed
with Silica blends decreases solely due to changes in physical properties of blended material since
elastic recovery is independent of Silica mixing conditions.

4. Conclusion

The results of the experiments demonstrate that the glidant Silica affects the bulk density of the
blends, and the tensile strength, and consequently, the dissolution profile, of tablets. In particular,
bulk density increases with an increase in glidant concentration or mixing time, whereas tensile
strength decreases. However, interestingly, compaction force and elastic recovery show no depen-
dency on the mixing conditions of Silica. In contrast, the lubricant MgSt affects all the CQAs of
a tablet. Specifically, bulk density increases with an increase in lubrication, and tensile strength
decreases. The elastic recovery and compaction force increase with the increase in lubrication.
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Figure 4: Tensile strength decreases with increase in concentration or mixing time, for both Silica
and MgSt.

The effects of Silica and MgSt differ for compaction force and elastic recovery. The practical ap-
plication of mechanistic models is to use them as steady-state models in MHE-NMPC control of
rotary tablet press (Huang et al., 2021). Future work includes integrating the lubricant and glidant
feeder with the tablet press to control tablet properties. Additionally, Residence time distribution
models (RTDs) will be added to the MHE-NMPC framework to enhance real-time process control.
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Abstract
A health-aware controller (HAC) aims at finding the optimal trade-off between system
reliability and productivity. By considering the system health, the controller can avoid
unexpected equipment breakdown while improving the system economic performance.
In subsea oil extraction industry, new and more stringent environmental, safety, and reg-
ulatory requirements are imposed every year. Thus, this industry can benefit from the
implementation of this type of controllers for tasks such as equipment monitoring, or
flow assurance. One challenge when implementing a health-aware controller is to derive
models that represent the failure mechanism of subsea equipment using physics-based
relationships. An alternative is to use data-based models. Instead of relying on physical
knowledge, this type of models determine the input-output relationships using only data
observed experimentally. In this paper, we propose the use of a hybrid HAC, where first-
principles relations describe the mass and energy balances, while the system degradation
evolution is represented by a data-driven model. We test two different structures, a linear
regression and a neural network model. We investigate their performance in open-loop,
carrying out an uncertainty analysis on the predicted degradation variability, as well as
in closed-loop. The simulation results show that HAC’s performance is dependent on the
type of data-driven model used for predicting degradation, and the more complex model
does not necessarily give a better overall result.

Keywords: Model predictive control, Hybrid Modeling, Diagnostics and prognostics

1. Introduction

In subsea oil and gas extraction systems, unexpected breakdowns and maintenance inter-
ventions are very costly. In such systems, choke valves are critical for the process safety
because they are responsible for regulating the system pressure, and controlling the oil and
gas flows from the reservoir to the system. The useful life of the choke valves is severely
affected by sand particles, which are extracted from the reservoir together with the prod-
ucts of interest. The sand managing strategy is outlined early in the field development
to ensure appropriate selection of equipment as well as instrumentation for monitoring,
controlling and handling sand production. However, even with all these precautions, a
very conservative operational strategy is often adopted. Typically, the production strat-
egy is defined based on worst-case valve degradation scenarios, leading to sub-optimal
operation and potential profit loss (Verheyleweghen and Jäschke, 2018).
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Figure 1: Health-aware controller block diagram, adapted from Matias et al. (2020)

Hence, there is a trade-off between maximizing production and minimizing equipment
degradation in subsea production systems that needs to be addressed for optimal opera-
tion. Our paper uses a health-aware controller (HAC) (Escobet et al., 2012) strategy to
deal with this problem. In HAC, equipment health monitoring tools are integrated to the
control structure as illustrated in Fig. 1. The goal is to avoid conservative operation by
actively steering plant degradation and preventing unexpected breakdowns.

A HAC was already implemented in a simulated subsea oil well network in Matias et al.
(2020). The authors used the phenomenological model of DNV (2015) for erosive wear as
the “real” degradation mechanism. They assumed perfect knowledge of the choke valve
degradation evolution as well as of the current degradation state, which is unrealistic.
In turn, we propose the use a data-driven models of the system, which were obtained by
Jahren (2021), for inferring the current valve degradation (diagnostics) based on pressure,
flow, and temperature measurements along the wells. Then, we use the same model inside
the health-aware controller to predict the degradation evolution (prognostics).

2. Case Study: Gas-lifted oil well network

Figure 2: Gas lifted oil production system
(Verheyleweghen and Jäschke, 2018)

In subsea systems, wells connect the oil
and gas reservoirs to manifolds on the
seabed. Then, long pipelines called risers
direct the fluids to the topside facilities.
The main driving force of this process is
the reservoir natural pressure. However,
in some cases, this pressure is not high
enough to lift the fluids. One alternative
to solve this problem is to use gas lift.

In gas lifted wells, gas is injected through
an annulus, which is a void between the
well and its external casing. By injecting
gas, the fluid mixture density decreases.
Consequently, the hydrostatic pressure on
the reservoir outlet also decreases leading
to larger oil outflows. However, if too
much gas is injected, the pressure loss due

to friction overcomes the effects of the hydrostatic pressure difference, decreasing the
well oil production.

1160

J. Matias et al.1136



Health-aware control using hybrid models applied to a gas-lifted
oil well network

Therefore, for optimizing the production, we want to find the gas lift injection flowrate
that maximizes the oil flowrates. On the other hand, larger oil flowrates imply in a larger
sand outflow from the reservoir, which decreases the remaining useful life of the choke
valves. The degradation indicator here is the length of crack on the internal parts of the
valve caused by erosive wear of the sand particles. Hence, by applying a health-aware
controller to this system, we want to find the gas lift injection that optimizes this trade-off
between optimizing production and extending the valve’s remaining useful life.

3. Health-critical constraints and objective function

Oil production Q(t)

U
ti
li
ty

fu
n
ct
io
n
Φ
(t
)

δ(k) → 0
δ(k) → −1
δ(k) → 1

Figure 3: Exponential utility
objective function.

A challenge in the implementation of the health-aware
controller is how to represent the trade-off between pro-
duction and degradation, as well as defining health-
critical constraints. In Matias et al. (2020), the authors
represented the degradation threshold as a soft con-
straint, and then added slack terms in the objective func-
tion to penalize violations. This alternative presents two
shortcomings. First, the performance of the controller
is highly dependent on the weights of the economic and
slack terms of the objective function, and tuning them
is challenging. Second, from an operational point of
view, it is difficult to define a representative degrada-
tion threshold for the equipment health.

For handling these issues, we use an exponential utility
objective function Φ instead. It represents the trade-off
between the risk of the choke valves breaking down and the economic gains. In the subsea
oil well network of Fig. 2, the economic objective is to maximize the oil production of
the three wells (i.e. φ = ∑

3
i=1 Qo,i). Assuming that we know an acceptable range for

the degradation of the choke valves d, represented by [dL, dU ], the resulting exponential
utility objective function at time k can then be written as:

Φ(k) =

3

∑
i=1

(1− e−δi(k)Qo,i(k))

(δi(k)+ ε)
, where δi(k) =

di(k)−dL

dU −dL
(1)

where, ε is a small value added to avoid division by zero. The intuition behind this
choice is the following: let us assume that the gas lift injection in well i, Qgl,i, is chosen
such that the oil production Qo,i in the well increases. However, the contribution of this
gain to Φ depends on the normalized degradation δi, as illustrated by Fig. 3. Larger
degradation levels lead to a risk-averse operation, in which the controller would accept
lower levels of production rather than possibly breaking down the system. On the other
hand, for degradation levels equal or lower than dL, the controller would have a risk-taking
approach and always seek the largest production level as possible.

4. Choosing the data-driven model

Next, we explore the combination of two of the data-driven modeling strategies presented
in Jahren (2021) (linear regression (LR) and neural network regression (NNR)) with the
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Figure 4: Open-loop Analysis. The bottom plot shows the variability of the predicted
system degradation at k = 100 and k = 200 days.

health-aware controller. For training the models, the authors performed synthetic exper-
iments using the valve degradation model of DNV (2015) as the real system. Both LR
and NNR yielded very accurate predictions of the erosion rates on normalised unseen
test data. For defining which one should be combined with the controller, we propose
two different analysis, one in open-loop and another in closed-loop. In both cases, we
also consider the valve degradation model of DNV (2015) as the real system. The struc-
ture of the LN and NNR and details about their training and validation can be found in
Jahren (2021). The codes of all the simulations are available at https://github.com/
Process-Optimization-and-Control/Health-Aware-Controller.

4.1. Open-loop analysis: uncertainty propagation through the models

In the open-loop tests, we run an uncertainty analysis that aims at quantifying how the
variability of the model inputs affect the outputs of the data-driven models. The model
output of interest is the system degradation at time k, d(k), whereas the two model inputs
subject to uncertainty are the choke valve degradation at the beginning of a given interval
d0 and the manipulated variable sequence U:

d(k) = f (d0, U), where U = [u0, u1, · · · ,uk] (2)

Ideally, we would use historical data from operation under the influence of a health-aware
controller to determine the input uncertainty. Since these data may not be available before
implementing the controller, we use different probability density functions for represent-
ing our a priori knowledge/intuition about the operation. According to the results of
Matias et al. (2020), we assume that, at the beginning of the simulation, the manipulated
variables will be at the upper bound (i.e. trying to produce as much as possible). At
time td , the controller infers that the degradation will be out of the acceptable degradation
range if the production level does not decrease. Then, it starts changing u accordingly.
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The described situation can be represented by:

U= [u0, u1, · · · ,utd , utd−Δu1, · · · ,utd−
k−td

∑
t=1

Δut ], with u0 = u1 = · · ·= utd = umax (3)

In addition, we assume that the initial degradation d0 can be higher than zero. For repre-
senting the described uncertainty, we use the following probability distributions:

d0 ∼ 0.01Exp(1), Δut ∼ ΔumaxBeta(1,5), td ∼ 50Weibull(1,10) (4)

The histograms of d0 and td , as well as the resulting input trajectories U can be seen in
Fig. 4. For the open-loop analysis, we generate 200 samples of the distributions, feed
them to the model in Eq. 2, and integrate the system forward in time. The output uncer-
tainty is analyzed at arbitrary time instants k = 100 and k = 200 days (bottom plots). For
comparison, we also plot the “real” degradation uncertainty obtained with the model of
DNV (2015). Although both data-driven models represented the test data set accurately
in Jahren (2021), they were trained and validated in synthetic data generated randomly,
which did not correspond to the operation of a health-aware controller. When using data
that mimic the operation of a HAC, the neural network represents the output mean better
at the beginning; however, the prediction drifts with time. Regarding variability, the linear
regression shows a better approximation of the standard deviation at both time instants.
Since HAC is implemented in a receding horizon fashion, one may choose to combine
the neural network model to the HAC due to the smallest deviation of the mean degrada-
tion estimation in the short term. Moreover, due to the fact that its standard deviation is
smaller than the true process, the worst-case open-loop predictions of the neural network
is likely to be more conservative than the real one, which may be preferable.

4.2. Health-aware controller: Closed-loop results

Next, we run the hybrid health-aware controller in closed loop. The HAC has to manipu-
late the gas injection of three wells in order to maximize oil production, while prolonging
the remaining useful life of the valves as much as possible. The simulation setup is sim-
ilar to Matias et al. (2020). However, instead of defining a threshold for the degradation,
we define an acceptable range, with dL = 0 and dU = 0.6 mm. We also impose bounds
on the gas injection [0.5,2] kg/s. We use a prediction horizon of 50 days and a control
horizon of 20 days. We consider that the wells have a constant sand production. However,
well 1 produces less sand than the other wells, and wells 2 and 3 have exactly the same
sand production. We also assume that well 2 has a larger reservoir outflow. Therefore, the
choke valve in well 2 should have the smallest useful life. We also train the data-based
models in data only from well 1, leading to plant-model mismatch in wells 2 and 3.

The results are shown in Fig. 5. We assume that the valves break after the crack length
reaches the 0.65 mm threshold (which is unknown to the controller). Regarding the sys-
tem diagnostics (top plot in Fig. 5), the strategies show a significant underestimation of
the current valve degradation. We only show the value of well 2, which is the health-
critical well. By analyzing the manipulated variables (middle plots in Fig. 5), we see that
the NNR-based controller is not able to detect that the system will break until around 130
days. In turn, the LR-based starts to react around 80 days. We hypothesize that this un-
expected behavior comes from the fact that the NNR-based controller prediction is worse
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Figure 5: Closed-loop analysis. Plots on the left are related to the NNR-based HAC
and plots on the right to LR-based HAC. The LR-based hybrid controller has a total
production 25 % higher than the NNR-based. The breakdown time is 194 days for the
LR-based versus 151 for the NNR-based.

when the degradation levels are higher, as indicated in the open-loop analysis. The solver
then cannot properly extrapolate the system future behavior and fails to decrease the gas
injection. However, a rigorous analysis of the neural network prediction behavior is much
more challenging than the linear regression due to its black box nature.

5. Conclusion

The hybrid health-aware controller is applied to a synthetic case study of an oil and gas
well network with artificial gas-lifting. We test two different data-driven model struc-
tures, a simple linear regression and a neural network regression model. The proposed
controller is a possible alternative to find the optimal trade-off between increasing pro-
duction and prolonging equipment useful life. However, plant-model mismatch due to the
data-driven models for the diagnostics and prognostics steps had a detrimental effect on
HAC’s performance. The main conclusion is that HAC’s performance is dependent on the
type of data-driven model and the quality of its extrapolations capacity. Moreover, con-
trol strategies that rely on data-driven models should be tested in both open and closed
loop simulations before implementation. Finally, we showed that using an exponential
utility objective function in the health aware controller yields a good representation of the
trade-off between system reliability and productivity.
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Abstract 
A promising approach to reduce the time to market of chemical products is the application 

of modular plants, which are composed of standardized, previously developed Process 

Equipment Assemblies (PEAs). As this approach goes along with process intensification 

as well as continuous and highly autonomous operation, human operator performance 

might benefit from a more structured guidance to fully understand the system and interact 

with it whenever it is necessary. With the major goal of reducing human error, Vicente 

and Rasmussen (1990) introduced the Ecological Interface Design (EID), suggesting that 

an interface should provide a virtual ecology, connecting the work domain to the human 

operator. EID is based on Work Domain Analysis (WDA), which is a 2-dimensional 

Abstraction-Decomposition Space. The decomposition hierarchy in the horizontal 

direction gives information about the superficial structure of the plant; while, the 

abstraction hierarchy in vertical direction provides multi-level knowledge representation 

of how each component in the process is working.  

In this study, the effects of applying EID for modular plants is investigated. To this end, 

a pilot modular plant, namely Safety-Demonstrator (Pelzer et al., 2021), has been 

considered as the use case. It consists of a total of two PEAs: one for feeding the reactants 

and the other one for the reaction. At first, WDA has been done for this modular plant, 

and afterwards an EID has been developed. This approach not only helps operator 

understanding the system and making better decisions in challenging situations, but also 

shows potential to facilitate exploiting the changeability feature of MPs and selecting the 

best PEAs for a specific function of the process.  
 

Keywords: Modular Plants; Ecological Interface Design; Safety-Demonstrator Case 

Study  

1. Introduction  
The availability of many different alternative products in food, pharmaceutical, and 

chemical industries shortens the products’ lifecycles and results in volatile global market 

(Lier and Grünewald, 2011). To stay competitive in such a global market, companies 

should not only be able to produce the new demanded products in a shorter time, but also 

manage to change their production capacity based on the market. Moreover, to address 

the different global demands for a product, it is essential to develop mobile production 

technologies, allowing for the transport of a chemical plant from one location to another. 
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Designing Modular Plants (MPs) is a promising approach to fulfil these requirements 

(Holm et al., 2015).   

To facilitate flexible production, MPs are designed in a hierarchical structure. The lowest 

level of the hierarchy denotes to components, which are the non-separable, smallest units 

of a plant. A combination of components providing a specific process engineering 

function (e.g. heating) is called Functional Equipment Assemblies (FEA). Then one or 

more FEAs together build a Process Equipment Assembly (PEA) providing a procedural 

step (e.g. distillation). Each PEA has its own process automation allowing for 

decentralized operation. Exchanging information from one PEA to another and to the 

higher level control layer necessitates a standard data exchange format describing the 

PEAs. This standardized descriptive document is called Module Type Package (MTP). 

MPs are at the top layer of the hierarchy, including at least one PEA. To control the 

connections between PEAs, a superior automation layer, called Process Orchestration 

Layer (POL), is also considered. 

Considering the abovementioned features of MPs, they offer lots of important benefits. 

Apart from reducing the plant engineering time by a factor of 50% (Holm, 2016), they 

also increase the flexibility of production. In fact, not only the PEA change (inter-modular 

level) results in a new process, but also by changing FEAs (intra-modular level) the 

operating range can be modified (in the allowable range considered by the PEA 

manufacturer) (VDI 2776-1, 2020). Nevertheless, to help operators to deal with this 

complex system and exploit its outstanding features, the right information, with the best 

format should be provided to them. 

In the quest to develop better human-machine interactions, the concept of Ecological 

Interface Design (EID) was introduced by Vicente and Rasmussen in 1990 (Vicente and 

Rasmussen, 1990). EID is based on Work Domain Analysis (WDA), which is a two 

dimensional hierarchical space (abstraction hierarchy (AH) in vertical direction and 

decomposition hierarchy in horizontal direction), aiming at providing a formalism to 

represent the work domain. The categorized information in WDA is then visualized in an 

operator understandable way. This information flow from the work domain to the operator 

and vice versa is called EID.  

WDA and EID as a strong cognitive tool for visualization, has been used in many different 

fields, such as air traffic control (Ahlstrom, 2005), computer network management 

(Burns, Kuo and Ng, 2003), road transport structure (Salmon et al., 2019), and medicine 

(Hajdukiewicz et al., 2001). As a proof of concept, Jamieson and Vicente (Jamieson and 

Vicente, 2001) applied the EID to petrochemical process engineering. They applied the 

EID for the process of fluid catalytic cracking. Their results indicated that their developed 

EID can lead to higher operator adaptation, facilitate continuous learning, and assist 

distributed, collaborative work.    

Considering the complexity of MPs; and at the same time, the promising results from 

previous applications of EID for chemical processes has motivated us to investigate the 

application of EID for MPs. To this end, safety demonstrator (Pelzer et al., 2021), an 

experimental MP in Process to Order (P2O) lab in TU-Dresden has been considered as a 

use case. This MP consists of two PEAs for feeding and reaction, and each of them 

includes several FEAs. In the following subsections, at first, a WDA for this use case will 

be developed, and then, an interface will be suggested. 

2. Development of Work Domain Analysis  
Figure 1 illustrates the developed WDA for the safety demonstrator. As can be seen, the 

horizontal direction shows the part-whole relation (decomposition hierarchy) and for the 
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case of a MP, it can be considered as: MPPEAFEAComponents. While this

hierarchy deals with the superficial feature of the MP, the AH in the vertical line has a

more in-depth viewpoint and focuses on how the plant works. Indeed, as we go down the

AH, we are actually answering the question how the goals of previous layer are

achievable. As a result, each cell of this two dimensional space provides a model with

different amounts of details and yet complete for this work domain. It should be

mentioned that describing the WD in the upper layers of the AH is more useful in the top

layers of the part-whole hierarchy, and as we go down the AH, lower levels of part-whole

decomposition hierarchy tend to be more informative (Son et al., 2019). Each layer of the

AH is described in the following:

Goal (also known as functional purpose): this layer illustrates the purpose of the process

in the most abstract and therefore less technical way. As can be seen in Figure 1, in this

study, three major goals, i.e. 1) production of a chemical, 2) safety, and 3) flexibility of

MPs have been considered.

Function (also known as abstract function): this layer answers the question what are the

functions that we need to reach the goals of the previous layer. As Figure 1 reflects, this

layer of the AH involves the PEA, FEA, and components sections of the decomposition

hierarchy. In this study, the control function has been also considered and their

relationship between different sections of the process is identified. It should be mentioned

that the heat transferred between the process and the ambient has been ignored. As can

be seen, this layer does not contain any explanation of the technical terms or phenomena

taking place in each equipment. It is noteworthy to mention that in Figure 1 only PEA2

is shown.

Behavior (also known as generalized function): with the help of a causal graph, this layer

describes the phenomena taking place in the process. As can be seen in Figure 1, the

control functions of previous layer are shown as conditional statements and their

influence on each phenomena is clarified. To avoid a too complex graph, Figure 1 only

shows the causal graph of PEA 2.

Structure (also known as physical function): the phenomena considered in previous layer

are realized in this layer. Indeed, this layer relates the phenomena to the symbols of the

equipment in Process and Instrumentation Diagrams (P&IDs). This layer is not drawn in

Figure1.

Physical form: this layer is the closest to the reality and it can be a photo or a video of the

real plant, helping the operator making sure about the status of an equipment (e.g. looking

at the color of the flames of a flare). In this study, this layer has not been considered.
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Figure 1: WDA for the safety demonstrator. (The lines between layers shows how to relationship. 

Function layer: dark green boxes show the PEAs and FEAs, light green boxes are the control 

functions of the process, solid arrows are mass (black) and energy (red) input and outputs, black 

dashed arrows show the composed of relation, and orange dashed arrows show aggregation relation. 

Behavior layer: arrows have causal meaning (black: process related, red: control function related) 

3. Mock-up Interface Description  
Based on the previously mentioned WDA and to illustrate its specific features, a Human 

Machine Interface (HMI) has been designed. It is noteworthy to mention that Axure RP 
10 has been used to develop this mock-up interface. In the following subsections the 

specific features of the EID will be discussed.  

3.1. Different Views with Different Amounts of Details 
One of the most obvious and yet important characteristics of WDA is its ability to provide 

different layers of details. Figure 2 (A) demonstrates a general view of the safety 

demonstrator. In the case of this figure, the green checkmark at the corner of PEA 1 

indicates that it is working well; however, the red cross mark in the corner of PEA 2 

suggests that something is wrong or maybe some action is necessary in this PEA. 

Therefore, the operator can further investigate the issue by looking at more details of PEA 

2 (Figure 2 (B)). Moreover, different FEAs in a specific PEA are visualized in a 

categorized way (Figure 2 (B and C)). By using the home and upwards arrow buttons in 

the bottom of the page, one can respectively go to the overall view and one-layer upper 

view of the MP.  These different views of the process help the operator to find the root 

cause of an alarm much easier.  

3.2. Explanation of the automatic control system 
While there has been a great improvement in automatic processes and cyber-physical 

production systems, it is impossible to omit the operator. In fact, the control systems are 

getting more and more complex and so does the interaction with them. Hence, if the 

control system is able to explain how it works and why it is active, it would be a 

significant help for the operator to integrate with the system (Gil et al., 2019). In the case 

of this study, the consideration of the control functions (e.g. flooding protection) in the 

WDA offers an ability of the interface to explain the activated control function. For 

example, if the flooding protection control function of PEA 2 starts working, the interface 

should show a message that the liquid level in the reactor is higher than normal and 

therefore the valves in FEA1 and FEA2 are blocked (see Figure 2 (B)).    

3.3. Phenomena representation of the process  
Another very interesting feature of WDA is the behavior layer, in which the phenomena 

taking place in the process is explained in a machine-readable format (in this study with 

the aim of a causal graph (Figure 2 (D)). This representation of the process results in an 

ability of the interface to explain the effect of operator decisions on the performance of 

the process. For instance, there are three major phenomena occurring in the reactor of 

PEA 2: mixing, heat transfer, and reaction (see the row of behavior in Figure 1). If the 

operator decides to increase the mixing speed, the interface should be able to popup a 

message and tell him this action would result in more reaction and heat transfer. From a 

psychological viewpoint, these types of analysis involve the knowledge based behavior 

of the human operator (Vicente and Rasmussen, 1992; Jamieson and Vicente, 2001).  
In this study, we have only focused on the phenomena of one equipment. However, there 

is a possibility to use this approach and estimate the effect of changing one parameter on 
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the next steps of the process. This has a specific importance for MPs, as they are highly 

changeable and it would be very beneficial if the system is able to qualitatively comment 

on the influence of changing a FEA on the sequential steps of the process. It is noteworthy 

to mention that the MPs vendors do not produce a module (PEA, or FEA) only for one 

exclusive chemical media, but the aim is to build the modules for as many chemical 

systems as possible. Thus, it would be really beneficial to add the phenomena hierarchical 

structure (which is not specific to a chemical system) to the MTP of PEAs.   

 

 

 

Figure 2: EID for safety-demonstrator, A) overall view to the process, B) view of the PEA2 

(reaction), C) PEA2, FEA1, D) Phenomena representation of the CSTR in PEA2 

4. Conclusion 
In this study, the concept of EID has been investigated for MPs. For this purpose, safety 

demonstrator, an experimental MP built in P2O lab, has been considered as the use case. 

A 

B 

C 

D 
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At first, WDA for the use case has been done to represent not only the superficial features 

of the plant (decomposition hierarchy), but also its more in-depth features of how it works 

(abstraction hierarchy). Based on the developed WDA, an EID has been suggested for the 

use case. Notable among important characteristics of this interface are its ability to show 

different views of the process (with different amounts of details), explanation of the 

control system, and representation of the phenomena taking place in the process. A crucial 

future step would be to evaluate the effectiveness of the developed interface by 

interviewing some experts. This study also shows some promising start point for using 

phenomena representation in the MTP of MPs to distinguish the effect of changing one 

FEA on the subsequent process steps.  
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Abstract
Mathematical programs with complementarity constraints (MPCC) can arise in process models
that contain discrete decisions such as switches, phase changes, and flow reversal. Path-following
methods are an important part of advanced-step nonlinear model predictive control (NMPC) due
to the ability to deal with changes in the active-set of constraints. In this work, we introduce a
path-following algorithm for parametric MPCC demonstrated on a flash tank case study. We show
that this algorithm can successfully track the solution without the need for fine discretization or
identifying the exact points where active-set changes occur, which are important properties for
NPMC implementation.

Keywords: Mathematical programming with complementarity constraints, parametric sensitivity,
path-following

1. Introduction

Nonlinear model predictive control (NMPC) is a process control method that formulates and re-
peatedly solves an optimization problem using a nonlinear dynamic model representation of the
process as constraints. When configuring an NMPC problem, it is important to have a model
that can describe the process as accurately as possible within a defined range of the process vari-
ables, and that calculations can be performed during the time between two measurements, i.e.,
the optimization problem needs to be rapidly solved. Systems with switches, phase changes, or
flow reversal, for example, result in models with nonsmooth decisions, which make optimization
problems with dynamic models challenging to solve, especially with a limited time frame. For rep-
resenting such processes, complementarity constraints can be used: they specify the relationship
between two variables, enforcing that at least one of them must be at its bound. Optimization mod-
els with this type of constraint are called mathematical programs with complementarity constraints
(MPCC). These models are inherently non-convex and fail to satisfy the Mangasarian–Fromovitz
constraint qualification due to the complementarities, requiring reformulation strategies to handle
these constraints with standard NLP solvers (Baumrucker et al., 2008).

Advanced-step NMPC (asNMPC) is a real-time control technique that uses a prediction of the next
state variables based on the current control action as the initial values (here they can be seen as
parameters) to solve the optimal control problem in advance between the sampling times. When
the new sample is available, the solution is updated based on the sensitivity at the optimal solution
with respect to the initial state (Diehl et al., 2005; Zavala and Biegler, 2009). Hence, computa-
tional delay between sampling and implementing the control action is reduced. A limitation of
the original asNMPC is the assumption that the active-set of constraints does not change from the
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optimal to the updated solutions. Path-following algorithms can be employed to handle this issue,
since change in the active-set can be detected by discretizing the difference between the predicted
and sampled states or by using an active-set identification method (Kungurtsev and Jaschke, 2017;
Jäschke et al., 2014).

Literature on path-following of parametric MPCC (PMPCC) is scarce; to the best of the authors’
knowledge, the only investigation on the topic was conducted by Kungurtsev and Jäschke (2019).
They propose two algorithms: one is based on a penalty-term reformulation for MPCC (Baum-
rucker et al., 2008), while the other traces active-set bifurcations that stem from bi-active comple-
mentarity constraints, assuming that a reliable active-set method is available.

In general, PMPCCs pose a number of formidable challenges for numerical solution, arising from
the inherent combinatorical nature of the problem and the interaction with the parameter depen-
dence. Herein, we vastly simplify the problem by means of two key assumptions:

i due to the nature of NMPC, the exact locations of active-set changes are not required but
only determination of the solution at successively given values of a scalar parameter; and,

ii that we are considering MPCC such that each complementarity constraint can only be non-
simple (bi-active) at a small number of discrete points.

These two assumptions permit a much more straightforward handling of the problem yet still apply
to a selection of practical problems. For example, the second assumption will be valid for most
physical systems, whereby active-set changes occur only at a few discrete points (e.g. when phase
transitions occur). We focus on the demonstration of this method with a flash tank case study, in
which we obtain solutions for relevant points along the optimal path.

2. Background

In this section we present relevant definitions and concepts necessary for the algorithm described
in the next section. We begin with the definition of complementarity constraint, roughly following
the exposition in (Scheel and Scholtes, 2000). Consider a matrix-valued function F : Rn→ Rl×q,

F(w) :=

F11(w) . . . F1q(w)
...

. . .
...

Fl1(w) . . . Flq(w)

 (1)

with w ∈ Rn. A general complementarity constraint can be expressed as

F1k ⊥ F2k ⊥ . . .⊥ Flk, Fik ≥ 0, for i = 1, . . . , l and k = 1, . . . ,q (2)

i.e., at least one entry of each column in F is zero with the remaining assuming nonnegative values.
In practice, l is often equal to 2 and Fik mostly represent variable bounds.

A parametric MPCC (PMPCC) is an extension of traditional parametric NLP optimization models
in the sense that it contains at least one complementarity constraint and can be solved as a function
of one or multiple parameters. For a parameter vector p : R→Rr, we can define PMPCC(p(t)) as

min
w(p(t))

ϕ(w(p(t)), p(t)) (3a)

s.t. h(w(p(t)), p(t)) = 0 (3b)
g(w(p(t)), p(t))≥ 0 (3c)
F1k(w(p(t)), p(t))⊥ . . .⊥ Flk(w(p(t)), p(t)) for k = 1, . . . ,q (3d)

Fik ≥ 0, for i = 1, . . . , l and k = 1, . . . ,q (3e)
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where ϕ : Rn×Rr→R, h : Rn×Rr→Rs, g : Rn×Rr→Rq, and F : Rn×Rr→Rl×q are smooth
functions. Dropping explicit notation for dependence on t, the Lagrangian for Eqs. (3) is

L (w(p), p,λ ) := ϕ(w(p), p)−µ(p)T h(w(p), p)−ν(p)T g(w(p), p)−Γ(p)F(w(p), p) (4)

where λ = (µ,ν ,Γ) is arranged in the natural manner by reshaping the matrix Γ columnwise into
a vector. Γ(p)T F(w(p), p) is the inner product of the corresponding Γ with the F matrix.

The reason we define parametric optimization models is that we wish to map some interval It =
[ta, tb] to the solution curve (w∗(p(t)),λ ∗(p(t))), t ∈ It of PMPCC(p(t)) by calculating a piecewise
homotopy along t. Locally, this requires calculating the sensitivity of w∗ along t.

For the inequality and complementarity constraints, we define the corresponding g and F active-
sets at some point w(p) as Ag(w(p)) := {i : gi(w(p)) = 0} and AF(w(p)) := {(i, j) : Fi j = 0}.

Mirroring terminology used in eigenvalue analysis, a complementarity constraint F· j is considered
simple at point w if only one constraint in that column F· j is active. It is nonsimple if more than
one constraint in F· j is active. This latter situation is often termed ‘bi-active’ in the case of two
active constraints.

A point w(p) feasible to PMPCC(p(t)) is termed weakly stationary if there exists multipliers λ

such that, where ◦ is the Hadamard (elementwise) product,

∇wL (w(p), p,λ ) = 0 (5a)
ν(p)≥ 0 (5b)

ν(p)T g(w(p), p) = 0 (5c)
Γ(p)◦F(w(p), p) = 0. (5d)

A point w(p) which satisfies Eqs. (5) and further satisfies that Γik ≥ 0 if there exists some j ̸= i
such that Fik(w(p), p) = Fjk(w(p), p) = 0 is termed strongly stationary. In plain language, this
condition is stipulating that if F·k is simple then there is no restriction on the associated Lagrange
multiplier whereas if it is nonsimple then the associated Lagrange multipliers must be nonnegative.
Thus, we see that for strongly stationary points, a simple complementarity constraint behaves akin
to an equality constraint. The strongly active-set for g is defined as A+

g (w(p)) := {i ∈ Ag(w(p)) :
∃ νi > 0 satisfying Eqs. (5)}.

We now describe how we obtain the sensitivity of PMPCC(p(t)) with respect to t by reduction
locally to a parametric nonlinear program (PNLP). For t ∈ It , we assume that the F constraints
are nonsimple or strong complementarity of the inequality constraints fails only at a (small) fi-
nite number of discrete points so that It = {ta}∪ I1 ∪ I2 ∪ ·· · ∪ {tb}, say, where each Ii ⊂ It is an
open interval. Within each Ii, the complementarity constraints can then be considered as equality
constraints and strong complementarity of g holds, so the PMPCC reduces to a PNLP, which is
more amenable to known solution methods. Therefore, within each Ii, A+

F (w(p)) = AF(w(p)) and
A+

g (w(p(t))) is invariant. For PNLP(p(t)), t ∈ Ii, assume that ϕ(·, ·), h(·, ·), g(·, ·), and F(·, ·) are
twice continuously differentiable in a neighborhood of w∗(p(t)) satisfying the first-order optimal-
ity conditions, and that the linear independence constraint qualification (LICQ) and strong second
order sufficient condition (SSOSC) hold. For PNLP(t)|t=t0 , LICQ implies that the dual space is
a singleton (Kyparisis, 1985), i.e., the multipliers are unique. By taking the total derivative with
respect to t of the stationarity conditions and active constraints of PNLP, we obtain the following
linear system

∇2
wwL ∇wh ∇wgA ∇wFA

(∇wh)T 0 0 0
(∇wgA)

T 0 0 0
(∇wFA)

T 0 0 0


︸ ︷︷ ︸

M(w(p(t)),p(t))

[
ẇ
λ̇

]
︸︷︷︸
v̇(p(t))

=−


(∇2

wpL )ṗ
(∇ph)ṗ
(∇pgA)ṗ
(∇pFA)ṗ


︸ ︷︷ ︸
b(w(p(t)),p(t))

(6)
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where ṗ= dp
dt , ẇ=(∇pw)ṗ, λ̇ =(∇pλ )ṗ, gA includes only strongly active inequalities, Fa includes

only (simple) active F constraints, and parameter dependence has been omitted for brevity.

3. Methodology

For the algorithm, we require access to a robust active-set identification method; we used an adap-
tation of a method in (Oberlin and Wright, 2006) along with some custom heuristics. The essential
feature of the algorithm is to calculate a piecewise approximant v(p(t)) = [ w(p(t)) λ (p(t)) ]T

to the solution v∗(p(t)) by numerically integrating along the solution curve between active-set
changes. In the canonical formulation of a first-order initial value problem, this can be expressed
as v̇(p(t)) = f (t,v(p(t)) for v(p(t0)) = v0 where v0 is a known initial point. From Eq. (6) and
M(p(t)) invertible, f (t,v(p(t)) = v̇(p(t)) = M(w(p(t)), p(t))−1 b(w(p(t)), p(t)); in practice, a
linear solver is used to calculate f (t, ·). In our implementation, we used an adaptive stepsize
Runge–Kutta integrator, which maintains the truncation error within a predetermined bound by
adjusting the stepsize. Event detection is used periodically to check whether an active-set change
has occurred within the last integration step; this should not happen too often since the active-set
identification is a comparatively expensive calculation. If an active-set change has occurred then,
for the current t(k) held fixed, equality-constrained Newton iterations are performed with the new
active-set until the error in the approximant v(p(t)) is sufficiently small; the number of elements
in λ , and hence v, may also change if the cardinality of the active-set changes. The integration step
can loosely be considered a ‘predictor’ step whereas the Newton iterations are a ‘corrector’ step.
However, the error is nominally controlled by the adaptive stepsize numerical integration. Note
that if the active-set identification encounters a nonsimple complementarity constraint, by assump-
tion we can perturb t(k) by some small ε > 0 to again obtain simple complementarity constraints.
This ensures the algorithm can always calculate the sensitivity.

Algorithm 1 Path-following for PMPCC(t) for t ∈ It = [ta, tb]

τ is set to maximum active-set recalculation interval
t(0)← ta, ṽ(0) = [ w̃(0) λ̃(0) ]

T ← va where va is in a neighbourhood of the initial solution
Calculate A+

g,(0) = A+
g (w̃(0)) and A+

F,(0) = A+
F (w̃(0))

v(0)← Newton(ṽ(0),A
+
g,(0),A

+
F,(0))

k← 0, tAS← t(0)
repeat

k← k+1
Perform predictor integration step to obtain approximate (t(k), ṽ(k))
if t(k) > (tAS + τ) then

repeat
Calculate A+

g,(k) and A+
F,(k)

if A+
F,(k) nonsimple then
t(k)← t(k)+ εt

end if
until A+

F,(k) is simple
v(k)← Newton(ṽ(k),A

+
g,(k),A

+
F,(k)), tAS← t(k)

else
v(k)← ṽ(k)

end if
until t ≥ tb

It is immediately apparent that the relationship between integration stepsize t(k)− t(k−1) and the
active-set identification interval τ is important because it determines whether there will be any
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transient ‘overshoot’ of an incorrect solution.

4. Case Study

We use the same case study presented in Kungurtsev and Jäschke (2019), in which a flash tank
with a 3-component feed flow Q ∈ R and composition z ∈ R3 is simulated. We seek to analyze
how the split between vapor V ∈R and liquid L ∈R products with composition y ∈R3 and x ∈R3

respectively vary with temperature T ∈ R for a fixed pressure P ∈ R. For that, we set up the
following optimization model

min
1
2
(aQ−V )2dt (7a)

s.t. ∑
i∈C

zi(Ki−1)
1+at(Ki−1)

= 0 (7b)

Ki =
Psat

i
P

=
yi

xi
for i ∈ C (7c)

log10(psat
i ) = Ai−

Bi

T +Ci
for i ∈ C (7d)

L+V = Q (7e)
Lxi +V yi = Qzi for i ∈ C (7f)
a− sV + sL−at = 0 (7g)
0≤ sV ⊥V ≥ 0 (7h)
0≤ sL ⊥ L≥ 0 (7i)
0≤ a,x,y≤ 1 (7j)

K, psat ≥ 0. (7k)

Constraint (7b) is the Rachford–Rice equation, which calculates the fraction of the feed that goes
to the vapor phase, V/Q, represented by at ∈ R. K ∈ R3 is determined by Raoult’s law, given
by constraint (7c). Psat

i (T ) ∈ R is the vapor pressure of the pure component i ∈ C = {1,2,3} at
temperature T calculated using Antoine’s equation (7d), where Ai ∈ R, Bi ∈ R and Ci ∈ R are
constants for each compound i. Constraints (7e) and (7f) correspond to the total and component-
wise mass balances respectively. Constraints (7g)-(7j) are necessary to ensure that V/Q ∈ [0,1].
The Rachford–Rice equation results in negative values and values greater than one for at if T is
lower than the mixture’s bubble point or larger than its dew point respectively, which would be
physically impossible. Therefore, complementarity constraints (7h) and (7i) are considered; in the
form of Eq. (2), F11 = sV , F21 =V , F12 = sL and F22 = L. sL ∈R and sV ∈R are slack variables that
represent how much at is lower than 0 and larger than 1 respectively. Variable a ∈ R represents
the actual ratio V/Q, which is enforced by constraints (7g) and (7j). Note that a = V/Q is not
enforced as a hard constraint and, instead, is used as the objective function to be minimized. In
this problem, temperature is the only parameter; we use T (ta) = 380 and T (tb) = 400.

5. Results

For the results presented here, the following values were used: Q = 1 kmol/s, z = [0.5, 0.3, 0.2]T ,
P = 5 bar, A = [3.98; 4.00; 3.93]T , B = [1065; 1171; 1183]T , and C = [-41.14; -48.83; -52.53]T .
In Fig. 1a, the solution paths of primal variables L and V are shown. The maximum integration
stepsize and τ in this run was set small, at 0.1, so the active-set changes are detected almost
immediately after they happen. The corresponding complementarity slack variables sl and sv are
shown in Fig. 1b. For a larger maximum stepsize of 5.0, there is less certainty where the actual
active-set change happened and a jump is clearly visible, see Fig. 1d.
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(a) Solution paths of V and L (small path-following steps). (b) Solution paths of sl and sv (small path-following steps).

(c) Solution paths of V and L (large path-following steps). (d) A local region of (c) to show jump after active-set
change (large path-following steps).

Figure 1: Top row, stepsize of 0.1: (left) L (circle) and V (cross) solution paths; (right) sl and sv
paths. Bottom, stepsize of 5.0: (left) as above; (right) zoomed-in to region showing jump. Active-
set changes indicated in vertical dashed lines (yellow).

6. Conclusion
We have demonstrated on the flash tank case study that the presented algorithm is a suitable
method for path-following PMPCC. Since it does not require the identification of the exact lo-
cation of active-set changes and that relatively coarse discretization can be used, this algorithm is
a promising candidate for use in advanced-step NMPC of models with complementarities.

Acknowledgement: The authors acknowledge financial support from NRC (Norwegian Research
Council) through FRIPRO Project SensPATH.
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Abstract
Process industries frequently encounter oscillations in control loops. Oscillations present in con-
trol loops could be an indication of one or more faults in the process such as valve stiction and
controller tuning issues. These faults would negatively impact the performance of any process
by degrading the quality of the product/output, reducing average throughput, increasing energy
consumption etc. In this article, we propose a neural-network-based approach for oscillation de-
tection. Various feature engineering strategies based on domain knowledge are adopted to improve
the accuracy, precision and recall of oscillation detection while reducing the computational efforts.
Fast Fourier Transform (FFT) and FFT of ACF (Autocorrelation function) of the dynamic process
data are used as input features to the neural network. Feature selection based on peaks in the fre-
quency domain data (for both FFT and FFT of ACF) is used for reducing the number of features. A
sensitivity study on the variation of accuracy, precision and recall on the number of input features
is also part of this work. An 80% reduction in number of input features is obtained compared to
methods available in literature without compromising performance, and thus can be easily embed-
ded in chips for online implementation. An accuracy of 96% and a recall of 0.95 for oscillatory
data are obtained for the proposed algorithm.

Keywords: Oscillation detection, Feature selection, Feature engineering, Machine learning, Neu-
ral network, ACF, FFT

1. Introduction

The presence of oscillations in process data is a very common problem in industries. Oscillations
are one of the major causes that deteriorate the performance of any control loop in process indus-
tries Srinivasan et al. (2011); Jiang et al. (2007). The presence of oscillations in process variables
would result in poor product quality and production losses, and are not desirable. Oscillations
can be due to various reasons like stiction in valves, controller tuning issues or due to some ex-
ternal disturbances. Early knowledge of oscillations present in the data and possible cause for the
oscillations can help in mitigating its effect on the plant performance.

Although various techniques have been proposed in literature for oscillation detection (Thornhill
et al., 2003; Jelali and Huang, 2010; Dambros et al., 2019b; Venkatasubramanian et al., 2003), their
performance is poor for actual plant data. With the advent of machine learning, a few machine
learning (ML)-based techniques have also been proposed recently for oscillation detection and
diagnosis Dambros et al. (2019c,a). Although these techniques show high accuracy in detecting
oscillations, they rely on a large number of input features in the frequency domain (obtained from
FFT or Fast Fourier Transform of the time-domain signals). Dependency on a large number of
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input features may result in erroneous detection of oscillations especially in presence of noise and
may limit its industrial application. Moreover, the period and amplitude identification is poor.

This article proposes feature engineering and feature selection strategies based on domain knowl-
edge for improving neural network-based oscillation detection. The proposed approach helps to
reduce the number of features required for accurate detection of oscillations in process data.

2. Dataset available

The proposed approach was trained and validated using the synthetic dataset provided by Dambros
et al. (2019c). The dataset contains dynamic process data for 110,000 process variables that con-
tain non-oscillatory (43705 process variables), oscillatory (33174 process variables), and irregular
oscillatory variables (33121 process variables). Class 0 refers to non-oscillatory, class 1 refers
to oscillatory and class 2 refers to irregular oscillatory variables. Since this is a synthetic data,
we have the information on which variables are non-oscillatory/ oscillatory/ irregular oscillatory.
This is a multi-class classification problem. To avoid bias in oscillation detection due to varying
magnitudes, the data is normalized before sending them for oscillation detection.

3. FFT-based Neural Network Approach for Oscillation Detection

Dambros et al. (2019c) presented a deep feedforward neural network (NN) for automatic oscil-
lation detection using frequency domain data as input features. As different variables would be
sampled at different rates, the dynamic data would be of different lengths and cannot be used as
input features for NN directly. Hence, the dynamic process data was transformed to frequency
domain through Fourier transform such that each variable had a length of 4097 samples. Dambros
et al. (2019c) created a large synthetic dataset and the algorithm (after training) when tested on a
subset of this synthetic data (test set) showed a high accuracy of 97% in detecting oscillations.
However, the NN model uses 4097 input features and thus have a very large set of weights making
it a computationally expensive method. The need to process large number of features makes it
difficult to embed the algorithm in chip for online implementation. The proposed oscillation de-
tection algorithm in chips and Optimization of hyperparameters is also difficult due to large size
of the neural network. In this section, we discuss a Neural network model for oscillation detection
that uses a subset of frequency domain features selected based on the peaks in FFT spectrum.

Similar to Dambros et al. (2019c), the time-domain data is first converted to frequency domain and
the amplitudes corresponding to non-negative frequencies is chosen as FFT is symmetric. This re-
sults in 4097 amplitude values corresponding to 4097 frequencies for each variable. However,
instead of using the entire frequency domain data for NN model, we select a few significant fea-
tures based on domain knowledge. A peak in the FFT spectrum indicates presence of oscillations
in the data. Practically, we can only find the maximum value of the FFT spectrum. To see whether
the identified maxima is a peak, one has to rely on some heuristics based on adjacent amplitude
values and thus, are not very accurate. This is why we needed an alternate data-based method for
oscillation detection. Here, we use this idea that the maximum amplitude in FFT of the data and its
adjacent amplitude values (corresponding to adjacent frequencies) are the most significant features
in determining whether that variable data is oscillatory or not. A subset of significant features is
chosen by identifying the maximum amplitude and a small neighborhood around it. Considering
m amplitude values on both sides of the maximum value, the total number of input features will be
2m+1 including the maximum FFT value. We can alter the complexity of the network by varying
the value of m. Sensitivity analysis was performed to find the optimal value of m. Various values
of m are chosen and a neural network model (of same structure) is built for each m. This method
would be referred as Method 1 hereafter. The structure of the neural network model used and the
results obtained are described next.
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Table 1: Oscillation detection results and sensitivity studies when a subset of FFT of data is used
as input features

No. of
Features
(2m+1)

Confusion Matrix Accuracy
Precision Recall Computational

timeClass 0 Class 1 Class 2 Class 0 Class 1 Class 2

11
(m = 5)

3450 100 435
1158 1828 41
2035 58 895

 61.73% 0.519 0.92 0.653 0.866 0.604 0.299 14.1s

21
(m = 10)

3653 40 292
965 1992 70

1840 29 1119

 67.64% 0.566 0.966 0.755 0.917 0.658 0.374 14.5s

31
(m = 15)

3710 38 237
905 2086 36

1788 40 1160

 69.56% 0.579 0.964 0.810 0.931 0.689 0.388 15.8s

101
(m = 50)

3782 5 198
644 2314 69

1107 30 1851

 79.47% 0.684 0.985 0.874 0.949 0.764 0.620 17.1s

201
(m = 100)

3856 3 126
345 2616 66
596 51 2341

 88.13% 0.804 0.980 0.924 0.968 0.864 0.783 18.9s

401
(m = 200)

3945 6 34
147 2837 43
227 32 2729

 95.11% 0.913 0.987 0.973 0.990 0.938 0.913 20.6s

4097

3968 2 15
152 2810 65
201 52 2735

 95.13% 0.918 0.981 0.972 0.996 0.928 0.915 64.7s

3.1. Neural-network classifier

A three layer feed forward neural-network with neurons 400, 100 and 20 respectively in each layer
is used for detecting oscillations in data. This neural-network was implemented in Python software
by setting the hyperparameters ’batch size’ as 10000, ’activation function’ as ’Hard Sigmoid’, and
’Optimization algorithm’ as ’adamax’. The network is trained using a training dataset of 100,000
variables’ data. The remaining 10,000 variables’ data have been used for testing which contains
3985 non-oscillatory variables, 3027 oscillatory and 2988 irregularly oscillatory variables.

The results of oscillation detection for the test set using the trained model for various number of
input features are provided in Table 1. The confusion matrix provided is such that the rows rep-
resent the true classes and the columns represent the predicted classes. The variation of accuracy,
precision and recall with number of features is depicted in Figure 1. As the number of features
increase from 11 (m = 5) to 4097 (full data), accuracy monotonically increases from 61.73% to
95.13% on the test set. Note that there isn’t any significant improvement in accuracy by increasing
the number of features from 401 to 4097. At the same time, the model precision for classes 1
and 2, and recall for class 1 have reduced when number of features were increased from 401 to
4097. Further, model training time for 401 features was around 21sec whereas it took more than a
minute for training the model with 4097 features was around 65 sec for the training set. Note that
these computational times are reported without including the time required for hyper-parameter
optimization. This is because we have not performed hyper-parameter optimization since we are
using the same network structure for all m values. Hyper-parameter optimization would improve
the performance of each model.
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(a) (b) (c)

Figure 1: Variation of accuracy, precision and recall for the neural network classifier based on FFT
features

4. FFT of ACF as input features

Although we were able to obtain almost similar accuracy of the full model using reduced number
of features, another feature engineering strategy was attempted in search of an approach which
can provide better performance with reduced number of features.

Autocorrelation Function (ACF) provides the correlation of a signal to itself at different time
lags. It helps in finding repeating patterns in a signal. An important property of ACF is that it is
oscillatory for an oscillatory signal with the same period of oscillation as the signal. This domain
knowledge is used to extract useful features from process data. If the original variable data is
oscillatory, ACF of the data will also be oscillatory. Hence, the presence of peaks in FFT of ACF
of the data is an indication of oscillations in the original data. ACF shows noise free oscillations
even if the original data is noisy and thus can be used as a better tool to identify oscillations.

As a first attempt, instead of using FFT of data as features, FFT of ACF of the data was used as
input features for the neural network. The same approach as described in Section 3 is used to select
a subset of features from FFT of ACF. Maxima of FFT of ACF is identified for each variable and
2m+1 amplitude values in the neighborhood of maxima are used as features. For each m, the same
neural network structure as described in Section 3.1 is used. The network needs to be trained for
each value of m as the input features are different. The method of using a subset of features from
FFT of ACF of data is referred to as Method 2 hereafter. Depending on the value of m chosen, we
obtain different performance in detecting oscillations as shown in Table 2. Although we obtained
an accuracy greater than 90% for 401 features, we see that the performance is poorer than the
earlier case with FFT of data as input features (Method 1). However, the predictions showed that
we were able to correctly predict the class for some of the cases where Method 1 failed. Hence,
the algorithm was further improved by incorporating features from both FFT of data and FFT of
ACF of data.

The final method (Method 3) adopted for oscillation detection is a neural network that uses com-
bination of subsets of FFT of data and FFT of ACF of data as input features. Again, maxima of
FFT of data was identified and 2m+1 features in the neighborhood were picked. Similarly, 2m+1
features in the neighborhood of maxima of FFT of ACF of data were picked resulting in a total of
4m+2 input features. The results obtained for various values of m are provided in Table 3. Note
that the accuracy has been improved to 95.96% for 802 features which is better than the accuracy
obtained for Method 1 using 4097 features. Thus, a better accuracy is obtained with 80% reduc-
tion in the number of features. Computational time has also reduced. As the workstation used is
of high configuration, the reduction in computational time is not much. However, for a normal
desktop, computational time would be improved considerably with 80% reduction in number of
input features. Moreover, since the purpose of the algorithm is to detect oscillations, recall of
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Table 2: Oscillation detection results and sensitivity studies when a subset of FFT of ACF of data
is used as input features

No. of
Features
(2m+1)

Confusion Matrix Accuracy
Precision Recall Computational

timeClass 0 Class 1 Class 2 Class 0 Class 1 Class 2

11
(m = 5)

3046 481 458
699 2224 104

1492 271 1225

 64.95% 0.582 0.747 0.686 0.764 0.735 0.410 14.8s

21
(m = 10)

3582 194 209
800 2164 63

1687 124 1177

 69.23% 0.590 0.872 0.812 0.899 0.715 0.394 14.8s

31
(m = 15)

3781 67 137
818 2121 88

1708 63 1217

 71.19% 0.599 0.942 0.844 0.949 0.701 0.407 15.1s

101
(m = 50)

3842 4 139
332 2275 420
583 67 2338

 84.55% 0.808 0.970 0.807 0.964 0.752 0.782 17s

201
(m = 100)

3897 10 78
181 2575 271
397 117 2474

 89.46% 0.871 0.953 0.876 0.978 0.851 0.828 19.6s

401
(m = 200)

3899 12 74
121 2800 106
340 118 2530

 92.29% 0.894 0.956 0.934 0.978 0.925 0.847 21.2s

4097

3933 5 47
81 2737 209

194 90 2704

 93.74% 0.935 0.966 0.914 0.987 0.904 0.905 65.2s

classes 1 and 2 are more significant. Using methods 1 and 2, maximum recall obtained was 0.938
for class 1 and 0.913 for class 2. Using this approach, we are able to increase the recall to 0.95
for class 1 and 0.94 for class 2 using just 802 features. Also, with 8194 features, we are able to
achieve 96.61% accuracy. Note that these results are obtained using a neural network for which
hyper-parameter optimization have not been performed. Performance of the algorithm is expected
to increase with optimized hyper-parameters. On the other hand, with respect to Dambros et al.
(2019c), the work had been carried out using 4097 features of the FFT of the signal alone as the
input and had achieved an accuracy of 97% in their work. The proposed method, albeit having
80% less number of features, provides an accuracy of 96%.

Hence, from various feature engineering and selection strategies, it was found that a neural net-
work that uses 802 input features combined from FFT of data and FFT of ACF of data is the best
choice in terms of accuracy as well as computational time. It was also found that there is a trade-
off between accuracy and computational time. Based on application, if a lower computational time
is required, a lower number of features can be used at the cost of lesser accuracy.

5. Conclusions

Neural network-based algorithms for accurate and fast detection of oscillations in process data are
discussed in this article. Various feature engineering strategies based on domain knowledge have
been implemented to improve the accuracy and computational effort of the method. FFT of data
and FFT of ACF of data have been used as input features. To reduce computational complexity,
significant features are selected based on the peaks or maximas in FFT and FFT of ACF. It was
observed that neural network classifier performed better when a combination of FFT and FFT of
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Table 3: Oscillation detection results and sensitivity studies when a combinations of subsets of
FFT of data and FFT of ACF of data is used as input features

No. of
Features
(4m+2)

Confusion Matrix Accuracy
Precision Recall Computational

timeClass 0 Class 1 Class 2 Class 0 Class 1 Class 2

22
(m = 5)

3420 77 488
857 2109 61

1443 98 1447

 69.76% 0.598 0.923 0.725 0.859 0.697 0.484 28.9s

42
(m = 10)

3505 62 418
810 2139 78

1387 65 1536

 71.80% 0.615 0.944 0.756 0.880 0.707 0.514 31.7s

62
(m = 15)

3538 62 385
851 2145 131

1201 63 1724

 74.07% 0.633 0.945 0.770 0.888 0.686 0.577 30.1s

202
(m = 50)

3765 15 205
447 2347 233
650 53 2285

 83.97% 0.774 0.972 0.840 0.945 0.775 0.765 44.2s

402
(m = 100)

3845 18 122
201 2709 117
329 111 2548

 91.02% 0.879 0.954 0.914 0.965 0.895 0.853 41.1s

802
(m = 200)

3914 14 57
75 2876 76

115 67 2806

 95.96% 0.954 0.973 0.955 0.982 0.950 0.940 47.2s

8194

3961 5 19
82 2887 58

128 47 2813

 96.61% 0.950 0.982 0.973 0.994 0.954 0.941 174.7s

ACF features were used as input features rather than using FFT features alone or FFT of ACF
features alone as the input to the neural network. The performance saturates while computational
time increases with increasing number of features. The neural network classifier based on 802
input features (401 FFT and 401 FFT of ACF) was found to be a best compromise in terms of
accuracy/precision/recall and computational time. Efficacy of the proposed method on real plant
data needs to be tested. Prediction of amplitude and period of oscillation using the proposed
feature set would be attempted in future.
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Abstract 

In this paper we develop an advanced multi-parametric model predictive control approach 

for the control of an evaporation process in the pharmaceutical industry. The proposed 

strategies set the foundation for the development of controllers that aim to work with 

different molecules and different thermodynamic scenarios without repeating the process 

design and process control design steps. First, a comprehensive mathematical model of 

the process for one molecule type is developed and implemented within gPROMS. The 

model, along with its experimental set-up validation, is then used for the development of 

the advanced control strategies. Finally, the performances of the control strategies are 

validated against the original high-fidelity model, thus closing the loop. The simulations 

show good performances and satisfactory behavior. 

 
Keywords: multi-parametric/explicit model predictive control, pharmaceutical 

processes, evaporation process. 

1. Introduction 

Due to their complex nature, pharmaceutical plants are required to operate near 

operational constraints with very strict product quality specifications and deal with 

complex and highly integrated processes, varying production targets, raw material 

variability and process/model uncertainty (Ierapetritou et al. 2016, Su et al. 2019, Seborg 
et al. 2017, Rantanen and Khinast 2015). Using model based control approaches greatly 

affects the time and resource utilization for the development process; certain 

pharmaceutical process design problems, under assumptions, can be transformed into 

process control problems (Nascu et al. 2016, Politis et al. 2017, Wang et al. 2017). If we 

consider a pre-existing pharmaceutical process in which a new molecule comes in, i.e. in 

the form of a newly developed active pharmaceutical ingredient (API), the standard 

approach requires a series of Design of Experiments (DoE) to be performed for the new 

process to be designed. However, only information regarding the material properties of 

the new molecule are required. A model based, material properties aware controller can 

make the necessary adjustment to adapt to the new molecule thus alleviating the need of 

computationally expensive and time consuming DoE’s.  
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In this work we set the foundation for advanced multi-parametric model predictive control 

(mp-MPC) systems for a continuous evaporation process that are designed to work with 

different molecules without repeating the process design and process control design steps. 

The first step is to design a model of the process for one molecule type. This model will 

be then used to design advanced mp-MPCs for different molecules. Explicit/multi-

parametric model predictive control (mp-MPC), solves offline the optimization problem 

using multi-parametric programming and derives the control inputs as a set of explicit 

linear functions of the system states, disturbances, set-points, etc (Pistikopoulos et al. 

2002, Diangelakis et al. 2017). The performances and limits of the designed control 
schemes are tested on the model developed within the gPROMS platform for varying 

operating targets and process disturbances. The designed methodologies show good 

performances: fast settling time and no significant overshoot or undershoot. Moreover, 

this work represents the first step towards the development of advanced MPCs that are 

designed to work with different molecules and different thermodynamics scenarios 

without redoing the process design and process control steps. 

2. Theoretical background 

2.1. Process Description 
Evaporation is a unit operation that separates liquids from solids by means of heat transfer 

via vaporization or boiling. The purpose of evaporation is to concentrate a solution 

containing a non-volatile solute (e.g., solids) and a solvent (e.g., liquid). Evaporating a 

portion of the solvent concentrates the solute into a more viscous liquid product. (Bryan 

W. Hackett 2018, Govatsmark and Skogestad 2001, Bloore and O-Callaghan 2009). 

Evaporation may be carried out as a batch or continuous process. This work focuses on 

evaporation as a semi continuous process as presented in Figure 1, in which the feed 

streams are continuous and the product is pushed out every 10 minutes. 

 
Figure 1 Evaporator scheme 
 

The crude solutions (Feed 1 and Feed 2) are continuously pumped into the evaporator.  A 
calculated mass flow rate for Feed 1 solution is set to achieve a target mass feed rate of 

API. A calculated mass flow rate of solvent is also continuously pumped into the 

evaporator (Feed 2).  The vapour phase inside the evaporator consists of water and solvent 

only. The vapour condenses in the condenser and the excess distillate continuously flows 
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back into the evaporator as reflux.  The calculated mass flow rate of solvent, and the 

calculated distillate mass flow rate, are set to achieve a given target composition of API 

and water in the solution flowing from the evaporator into the crystallization process.   

The solution from the evaporator is transferred intermittently about once every 10 minutes.  

The two feed streams into the evaporator and the distillate exiting the evaporator have 

mass flow control with a Coriolis mass flow meter in the loop. The mass flow rate of 

concentrated API solution flowing out of the evaporator is indirectly controlled because 

it is a consequence of the three mass flow inputs.  Heat input to the evaporator is set at a 

constant amount which is higher than needed for the distillate mass flow.  
A Fourier Transform Infrared Spectrometer (FTIR) is installed into the bottom of the 

evaporator, measuring in real time the water and API content in the evaporator. 

2.2. Process Model 

The process model for the Evaporation process, presented in Figure 1 was adapted from 

the out-of-the-box evaporation model of gPROMS for the needs of this work. The model 

uses gSAFT thermodynamic package to model the thermodynamic properties. This model 

will be further used for the design of the control strategies as well as to test the 
performances of the designed controllers. It can operate regardless the choice of API and 

solvents (given thermophysical properties libraries). Moreover, the user can change the 

parameters of the two feeds, the rate of heat flow to the evaporator (Q - the amount of 

heat energy transferred to the evaporator per unit of time), the reflux constant as well as 

the configurations and initial conditions for the drum. The reflux constant is a value 

between 0 and 1 specifying the ratio in which reflux goes back in the evaporator. 

The inputs of the model are Feed 1 flow rate (API, Solvent, H2O), Feed 2 flow rate 

(Solvent), the reflux flow rate (Solvent, H2O) as well as the heat flow rate to the 

evaporator, (Q). The controlled variables are the concentrations of API and H2O. The 

measured variables for this process are the feed rates from Feed 1, Feed 2, reflux, 

temperature and the concentration of API, Solvent and H2O inside the evaporator. 

The model was tested for different APIs and different Solvents where open loop 
simulations were run for different initial conditions. The initial conditions are the same 

as the ones used in the real experiment. The flowrates variable are measured in [kg/sec], 

the concentrations for the feeds, the concentrations in the evaporator as well as the 

concentrations at the output of the evaporator are given in wt% and the input energy is 

given in [J/sec]. 

2.3. Multi-parametric Model Predictive Control 

The following mp-QP optimization problem is solved to obtain the control laws using 
the POP toolbox (Oberdieck et al. 2016, Pistikopoulos et al. 2015, Pistikopoulos et al. 

2007a, Pistikopoulos et al. 1999) and determine the controller: 
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where 𝑥 are the estimated states given by the state estimator, y outputs and u controls, w 

are the process disturbances and v the measurement noise, all (discrete) time dependent 

vectors. The subsets of output variables that get tracked have time-dependent set points 

yR. Finally, Δu are changes in control variables, Δu(k) = u(k) – u(k-1). The prediction 

horizon is denoted by N and control horizon by Nu. X, U are the sets of the state and input 

constraints that contain the origin in their interior. Both Q>0, the objective coefficient for 

the states and P>0, the terminal weight matrix for the states, are symmetric semi-positive 

definite matrices. The quadratic matrix for manipulated variables R>0 is a symmetric 
positive matrix, QR is the quadratic matrix for tracked outputs and R1 is a weight matrix 

for the control action changes (Δu). 

3. Results 

For the design of the mp-MPC controller the methodology presented in the previous 

section is used. The following tuning parameters are used: the objective coefficients for 

states (x), Q=0 when we have no state estimation and Q=1 in the case with state 

estimation, the control horizon Nu=1 and the prediction horizon N=20. The control 
actions for this process are in different ranges, for the first control action, Q, the nominal 

value is 45 while for the second control action the nominal value is 8.95e-6. Moreover, it 

can be observed from Figure 2 that the control action on Feed 2 is penalized more than 

the control action on Q, H2O concentration changes will be slower and API concentration 

changes will be faster. The higher the value of the weight factor, the more the command 

will be penalized. 

First the optimization problem (1) is solved offline using the POP toolbox which will 

result in a map of all possible solutions. Once the look-up table is obtained, the controller 

will only have to perform simple function evaluations to derive the optimal control action 

that will be given to the process to take it to the desired setpoint value. 

 

Figure 2. Closed loop response (mp-MPC). Step change on API and H2O concentration. 

-4.16% step change on H2O concentration and -5.7% API concentration. The H2O and 

API concentration is given in wt%, U control action Feed 2 is the flowrate in [kg/sec] 

and U control action Q is in [J/sec]. 

A step change of -5.7% is given to the API concentration set point and a step of -4.16% 

is given to the H2O concentration set point and the results are presented in Figure 2. The 
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designed controller due to its tuning parameters has a less aggressive behaviour, a fast 

enough settling time, and does not result in any undershoot/overshoot. 

It can be observed that the step on the API reference will also affect the H2O concentration 

and the H2O reference will affect the API concentration but the controller is able to deal 

with the step changes and bring both concentrations back to the setpoint values. 

To further test the performances of the designed controllers, a more realistic disturbance 

signal is designed as presented in Figure 3. The three different disturbance pattern signals 

are applied to the three concentrations of Feed 1: H2O, Solvent and API once the process 

reaches steady state. 

 

Figure 3. Realistic disturbance signal. The concentrations of API, Solvent and H2O are 

represented in wt% 

 

Figure 4. Closed loop response using a realistic disturbance signal 

 

From Figure 4 it can be observed that the mpMPC controller is able to compensate for 

the disturbances introduced by Feed 1 (H2O, Solvent, API). Since the mpMPC is 

multivariable, each control action will be responsible for both outputs. 

4. Conclusions 

In this paper we develop a multi-parametric model predictive control strategy for the 

control of the concentration inside of a continuous evaporation process. We start by 

developing a comprehensive mathematical model of the process for one molecule type 
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and implement it within the gPROMS platform. To analyze the performances the 

designed controllers are tested on the developed gPROMS model for:  reference tracking, 

step changes in references as well as disturbances on the input concentration. The 

developed strategies show good performances without having significant overshoot or 

undershoot as well as a fast settling time. Moreover, the controllers are capable of 

maintaining the desired setpoint values while rejecting disturbances. 
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Abstract
This paper investigates the flexible operation of a Continuous Oscillatory Baffled Reactor for the
hydrothermal synthesis of zeolites to find the economically optimal operating trajectory in the
presence of varying electric energy prices. The process and the rigorous dynamic model are intro-
duced. The performance of the dynamic optimization scheme is evaluated in simulation studies.
A clear benefit of the dynamic adaptation to the variations of the energy price is demonstrated.

Keywords: dynamic optimization, Continuous Oscillatory Baffled Reactor, energy price based
operation, demand side management

1. Introduction
The electric energy supply is in a transition towards renewable power sources. Due to their high
volatility, the inclusion of electric energy renewable sources is a major challenge for the process
industry. The fluctuating power supply and the largely steady demand of continuous processes
create a supply-demand mismatch. This leads to high variations in the electric energy prices,
which are expected to be amplified in the future as demonstrated by Göransson et al. (2019).

The ability to react to energy price variations, therefore, has two benefits, first an economic benefit
of using electric energy at low-price levels and second to increase the stability of the energy grid
by adapting the demand. The approach presented here dynamically adapts the throughput and the
heating duties to optimize the productivity of the process, while ensuring a mean production rate
and the specified product quality.

Similar approaches have already been reported in the literature for scheduling problems under
the headline of demand-side management (DSM) as presented by e.g. Leo et al. (2021) or Brée
et al. (2018). In these, the plant dynamics are neglected and steady-state models used instead.
However, with fast-changing prices of electric energy, the steady-state assumptions do not hold.
In those cases, calculated schedules using steady-state models can lead to suboptimal performance
or constraint violation as shown by Caspari et al. (2019). Therefore, the non-linear dynamic plant
model is used to calculate an optimal dynamic schedule.

The approach of an optimized time-varying continuous operation is investigated in this paper for a
hydrothermal production of zeolites in a continuous plant as presented in Ramirez Mendoza et al.
(2020). The production of zeolites is an energy-intensive process which is typically performed
in batch reactors. The shift to continuous operation has several advantages such as heat integra-
tion and lower variations of product quality. The sedimentation problem of the suspended solid is
solved by using the Continuous Oscillatory Baffled Reactor (COBR) concept. However, the adap-
tive flexible operation of the distributed continuous plant is a main challenge, which motivates this
paper.
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2. Process overview

heater 1heater 2

heater 3

feed

crystalline 
product

Figure 1: Schematic of the process

A schematic representation of the
process is shown in Figure 1. The
reactants are previously mixed and
fed as a suspension of amorphous
solids. The feed is preheated with an
integrated heat exchanger. The sus-
pension is fed into the Continuous
Oscillatory Baffled Reactor, which
is equipped with three direct electri-
cal heaters. The three heaters have
different lengths as shown in the
schematic. The heating duties of the
three heaters can be set individually.
Within the COBR reactor, the hy-
drothermal formation of zeolites is
performed at elevated temperatures,
the residence time is approximately
80 min. The suspension of crystalline zeolites leaves the reactor and is used to heat the feed
stream. The operational limits of the reactor are a minimal flow rate of 60 L/h and a maximum
temperature of 413.15 K of the reaction medium and of the reactor wall. The product requirements
are a minimum crystallinity of 98% and a fixed average throughput.

2.1. Model

The reactor dynamics are described with the partial differential equations (1).

ρcp∂tTw = Q̇E + Q̇H − Q̇Rw (1a)

ρcp∂tT =−uρcp∂zT +ρcp∂z[λ∂zT ]+ Q̇Rw/ρcp (1b)
∂tci =−u∂zci +∂z[D∂zci]+ ri (1c)
∂tn =−u∂zn+∂z[D∂zn]+G∂Ln+B (1d)

B = kn(T )(cI − cI,eq)cam (1e)
G = kg(T )(cI − cI,eq) (1f)

The energy balance of the wall temperature is shown in (1a) in which the effects of the heat transfer
to the reaction medium, the loss to the environment and heat input of the direct electrical heaters
are incorporated. The axial dispersion model for the energy and concentration balances of the
reaction suspension is shown in (1b),(1c). The reaction term ri describes the conversion from the
amorphous state via dissolved ions in the liquid phase to the crystalline product. The population
balance (1d) describes the particle density distribution (n) in size (L) with a heterogeneous nu-
cleation term (1e) and the size-independent growth model (1f). It is solved using the method of
moments. The spatial discretization is approximated using the finite differencing method on 30
grid points. The resulting non-linear ordinary differential equation model has 240 dynamic states.

2.2. Process economics

The profit of the process includes the influence of the product revenue, the reactant and energy
costs and the fixed costs as shown in (2).

Profit = PP · ṁ︸ ︷︷ ︸
product revenue

− PRs · ṁ︸ ︷︷ ︸
reactant cost

− PE · Q̇H︸ ︷︷ ︸
energy cost

− CFix︸︷︷︸
fixed cost

(2)
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The fixed costs can be neglected when optimizing the operating conditions since the additive term
in the objective does not influence the solution of an optimization problem. The other terms are
scaled with a reference operating point and divided by the (negative) net revenue. The scaled
operational cost is shown in equation (3), in which the parameter γ described the scaled price of
electric energy.

Φ(u,γ) =−ṁ/ṁre f + γ Q̇H/Q̇H,re f (3)

3. Optimization problem

3.1. Dynamic optimization problem

The formulation of the dynamic optimization problem of the flexible operation is shown in equa-
tion (4). The operation over one and a half day is minimized assuming perfect knowledge of the
future price of electric power.

min
u,x

∫ t f

0
Φ(u,γ(t))dt (4a)

s.t.: ẋ = f (x,u), (4b)
0 ≥ g(x,u) , (4c)
X̄ j ≥ 0.98 ∀ j ∈ [1,K] (4d)
¯̇Vj = V̇f ix ∀ j ∈ [1,K] (4e)∫ L

0
T (t f , ·)dz =

∫ L

0
T (0, ·)dz (4f)∫ L

0
m3(t f , ·)dz =

∫ L

0
m3(0, ·)dz (4g)

The objective (4a) is the scaled cost defined in (3). The dynamic process model is represented
by (4b). The process bounds defined in section 2 are represented by (4c). The restrictions on the
mean throughput and the mean product quality are included as averaging constraints (4d)-(4e) in
the dynamic optimization problem. These constraints must be met on three (K = 3) subsequent
averaging horizons which have the length of 12 h each. The specified crystallinity and the specified
throughput should be reached on average over 12, 24 and over 36 hours. This reduces the needed
storage capacity without losses of productivity. The optimization will be repeated after 24 h and
therefore the solution for the horizon between 24 h and 36 h will not be applied but in combination
with the endpoint hold-up constraints (4f),(4g), terminal sell-off effects can be reduced in this
manner which is further discussed in 4.1.

The resulting non-linear optimization problem was implemented using the software CasADi by
Andersson et al. (2018) and solved with the IPOPT solver. The ode model (4b) is solved us-
ing orthogonal collocation on two finite elements using second order Radau polynomials. The
optimization problem has 103.968 variables and is solved within 3-4 h.

3.2. Static optimization problem

Additionally, a static optimization problem is de-
fined in (5) which represents a scenario in which
the plant dynamics is infinitely fast. The objec-
tive function and process bounds are the same as
in (4). Constraint (5b) enforces a steady-state op-
eration, while the mean crystallinity and through-
put are enforced by (5d) and (5e).

min
ui,xi

N

∑
i=0

Φ(ui,γi) (5a)

s.t.: 0 = f (xi,ui), (5b)
0 ≥ g(xi,ui) , (5c)
X̄i ≥ 0.98 ∀i ∈ [0,N] (5d)
¯̇Vi = V̇f ix ∀i ∈ [0,N] (5e)
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4. Results

4.1. Terminal sell-off

The terminal sell-off commonly observed in economic MPC literature e.g. by Ellis et al. (2014),
is caused by the approximation of the infinite horizon optimization problem by a finite horizon
optimization problem which results in suboptimal performance for a continuous operation. The
results of the optimization problem (4) with a constant price of energy are shown in Figure 2. In
the second and third plot, the results with the end-point constraints (4f),(4g) are shown, while in
the first plot the results without end-point constraints are displayed. In the results from the first and
the second plot, one averaging horizon was used (K = 1), whereas in the third plot, two averaging
horizons were used (K = 2). The black dotted line represents the steady-state optimum. The

Figure 2: Optimal calculated flowrates for different number of averaging horizons and different
end-point constraints

influence of the final horizon can clearly be observed by the deviation of the dynamic optimization
results from the steady-state result. However, the effect is far more prominent in the first case
without terminal constraints. The terminal sell-off leads to a deviation even at the beginning of the
optimization horizon. Using the end-point constraints (4f),(4g) this effect is reduced. However, it
still leads to a deviation close to the end of the horizon. Using the end-point constraints and an
additional averaging horizon the deviation from the steady-state optimum is shifted to the end of
the second averaging horizon, whereas no deviation in the first horizon is observed. The solution
proposed in this work is similar to the approach in MPC, i.e. discarding the results for the final
horizon and re-solving the optimization problem with a shifted time frame.

4.2. Dynamic optimization

The results of the solution of the dynamic optimization problem (4) with a time-varying energy
price are shown in Figure 3. The variation of the energy price is assumed to be a square wave
with a relative amplitude of 0.56 and a frequency of 0.167 1/h which is displayed in the bottom
plot. The initial state x(t = 0) is the optimal steady-state for the specified production rate. The
temperature and the crystallinity at the reactor outlet are displayed in the upper two plots. The
corresponding inputs, the flow rate and the heating powers are shown below. The green solid line
in the plots represents the calculated optimal trajectory. In the fourth plot, the three areas represent
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the heating powers of the first, the second and the third heater. The coloured dotted line shows the
solution of the static optimization problem (5) for the given price variation while the black dotted
line is the optimal steady-state for the average production rate. The average values of the flow rate
and of the crystallinity are constrained. The deviation to these average values is shown with the
grey shaded areas. The vertical black lines show the end of the averaging horizons after 12 h, 24 h
and 36 h.

Figure 3: Result of the dynamic optimization with the a varying energy price

The periodic energy price variation leads to a periodic pattern of the operation of the COBR. At
a high price of energy, the flow rate is close to its lower bound and the heating power is small.
When the price of energy switches to a low value (e.g. after 13.5 h) the heating power of all
three heaters reaches a maximum, while the flow rate increases to the mean value. The extensive
heating reduces the drop of the product quality which is caused by the low energy input in the high
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energy price period. The usage of the third heater is detrimental from an energetic point of view
but is compensated by the savings due to the lower price of energy. The temperature is increased
and stays close to the steady-state level. One hour after the price change, the flow rate reaches a
maximum and slowly drops afterwards. Within that period, the first two heaters have a constant
value. The heat input of the third heater oscillates around the static value. The oscillation ends
with a maximum in order to store energy in the system before the increase of the price. After
the transition to high values of the price of energy, the flow rate is rapidly decreased to the lower
bound and the heaters are turned off. In this dynamic transition period, the residual heat is used.
Later, to ensure the desired crystallinity, the first heater is turned on again and operated close to
the steady-state optimum around the middle of the high energy price period. The variations of the
different periodic patterns from each other in the beginning and to the end are caused by the initial
and terminal constraints. The benefit of the shown operation in comparison to a static optimal
operation can be calculated as an energy cost saving of 32.4% for this scenario. The proposed
method is capable to calculate an optimal dynamic schedule assuming perfect knowledge of the
variation of electric energy price. The complexity of the calculated purely dynamic operation
of the COBR underlines the necessity for the inclusion of the full dynamic plant model in the
optimization. Using this method, the optimal operation schedule dependent on the variation of the
price of electric power can be investigated.

5. Conclusion

In this work, a flexible operation of a continuos zeolite crystallization process in a COBR is
demonstrated. The plant and the model are introduced and the resulting dynamic optimization
problem is described. The influence of the finite horizon approximation is further analysed and
its influence on the optimized schedule is minimized using end-point constraints and an extended
optimization horizon. The dynamic optimization results are presented which show a periodic pat-
tern of operation, following the variations of the price of electric power. The results show a large
potential of the adaptive dynamic operation. Further extensions of this work concern including
alternative electrical energy inputs, such as sonication or vapour compression technologies and
the handling of the uncertainty in the predictions of the variations of the price of energy similar to
the approach presented by Leo and Engell (2018) for scheduling problems.
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Caspari, A., Offermanns, C., Schäfer, P., Mhamdi, A., Mitsos, A., 2019. A flexible air separation process: 2. optimal

operation using economic model predictive control. AIChE Journal 65 (11).
Ellis, M., Durand, H., Christofides, P. D., 2014. A tutorial review of economic model predictive control methods. Journal

of Process Control 24 (8), 1156–1178.
Göransson, L., Lehtveer, M., Nyholm, E., Taljegard, M., Walter, V., 2019. The benefit of collaboration in the north

european electricity system transition—system and sector perspectives. Energies 12 (24), 4648.
Leo, E., Ave, G. D., Harjunkoski, I., Engell, S., 2021. Stochastic short-term integrated electricity procurement and

production scheduling for a large consumer. Computers & Chemical Engineering 145 (1), 107191.
Leo, E., Engell, S., 2018. Integrated day-ahead energy procurement and production scheduling. at - Automatisierung-

stechnik 66 (11), 950–963.
Ramirez Mendoza, H., Valdez, M. L. P., Van Gerven, T., Lutz, C., 2020. Continuous flow synthesis of zeolite FAU in an

oscillatory baffled reactor. Journal of Advanced Manufacturing and Processing 2 (2).

Acknowledgement

The project leading to this publication has received funding from the European Union’s Horizon 2020 re-
search and innovation programme under grant agreement No 820716.(project SIMPLIFY)

1194

1170



PROCEEDINGS OF THE 32nd European Symposium on Computer Aided Process Engineering  

(ESCAPE32), June 12-15, 2022, Toulouse, France  

L. Montastruc, S. Negny (Editors) 

© 2022 Elsevier B.V. All rights reserved.  

Leveraging Deep Learning for Efficient Explicit 
MPC of High-Dimensional and Non-linear 
Chemical Processes 
Ahmed Shokry a*, Mehdi Abou El Qassime a,b, Eric Moulines a,b 

aÉcole polytechnique, Route de Saclay 91128 Palaiseau Cedex, France 
bEmines School of Industrial Management, LOT 660 43150, Ben Guerir, Morocco 

*ahmed.shokry@polytechnique.edu 

Abstract 

This paper presents an efficient Deep Learning (DL) based method for explicit model 

predictive control (E-MPC) of high-dimensional and/or nonlinear chemical processes for 

which mathematical E-MPC approaches are difficult to apply. The method uses DL 

models for off-line development of control laws that accurately approximate the 

relationship between the optimal values of the control variables to be applied in the next 

sampling period (SP) as a function of the values of the state variables in the current SP. 

The training data are generated by solving the MPC problem considering different initial 

values of the state variables selected using design of computer experiments (DOCE) 

techniques. The obtained DL-based control laws are then integrated into a closed-loop for 

online control of the process. A numerical validation procedure is used to evaluate the 

performance of the developed control laws in terms of their accuracy and computational 

cost. The method is applied to case studies for which a “direct” application of 

mathematical E-MPC techniques is difficult due to their high dimensionality and 

nonlinearity. The results show a high performance of the proposed method and a 

reduction in the complexity of the solution procedure compared to mathematical E-MPC. 

Keywords: Control; Explicit MPC; Chemical Processes; Deep Learning; ANNs. 

1. Introduction 

MPC is one of the most widely used control methods in engineering because it can 

efficiently deal with multivariate systems, hard constraints on control and/or state 

variables, and different types of control objectives, e.g., economic objectives. However, 

MPC faces the challenge that its expensive online computations require high 

computational resources: at each SP, MPC solves a dynamic optimization problem (open-

loop optimal control) that requires repeated evaluation of a dynamic process model (Karg 

and Lucia, 2020). Therefore, MPC applications may be infeasible for processes 

characterized by high dimensionality, nonlinearity, and/or fast dynamics (Rivotti et al., 

2012). To overcome this challenge, E-MPC methods - also called MultiParametric MPC 

- have been developed to solve the MPC problem off-line, providing simple mathematical 

relationships that describe the future values of the optimal control variables as a function 

of the current values of the state variables, where each relationship applies only to a 

specific subregion of the state variables space, called critical region (Chen et al., 2018). 

These mathematical laws are then used online to drive the process, requiring very little 

computational time. Although E-MPC methods have been successfully applied in many 

cases in various engineering fields, they are limited to linear, discrete-time state-space 

models with moderate dimensionality (Rivotti et al., 2012). Recently, the use of machine 

1195

http://dx.doi.org/10.1016/B978-0-323-95879-0.50196-X 



 A. Shokry et al. 1172 

learning has been proposed to extend these limitations by exploiting their universal 

approximation and dimensionality reduction capabilities to develop accurate and 

computationally cheap data-driven control laws that approximate the relationship 

between the optimal future control values and the current state values. For example, 

Shokry et al. (2016) used multilayer artificial neural networks (ANNs) to develop explicit 

control laws and applied them to a simple continuous stirred tank reactor (CSTR). Chen 

et al. (2018) used constrained ANNs to develop control laws that explicitly learn the 

mathematical constraints of the MPC problem, and applied them to simple linear, 

discrete-time state-space models. Karg et al. (2020) used ANNs to approximate control 

laws and applied them to linear, discrete-time state-space models of mass-spring systems. 

However, most of these methods are tailored to the existence of simple linear discrete-

time state-space models to which mathematical E-MPC methods can be easily applied, 

and also require large amounts of training data. Therefore, in this paper, an efficient DL-

based method for E-MPC (DL-E-MPC) of high-dimensional and nonlinear chemical 

processes is presented, which uses DL models for off-line development of control laws 

that accurately approximate the relationship between the optimal values of the control 

variables to be applied at the next SP as a function of the values of the state variables at 

the current SP. The training data are generated by solving the MPC problem considering 

different initial values of the state variables selected by  DOCE techniques. The obtained 

DL-based control laws are then integrated into a closed-loop for online control of the 

process. A validation procedure is used to evaluate the performance of the control laws 

in terms of i) open-loop response accuracy (i.e., over a SP, without feedback), ii) closed-

loop response accuracy (i.e., over the entire control trajectory, with feedback), iii) state 

accuracy, and vi) online computational cost. The proposed method is applied to two case 

studies from the literature (Rivotti et al., 2012), to which a "direct" application of E-MPC 

methods is not possible due to their high dimensionality and/or nonlinearity. 

2. Problem statement 

In a generic MPC problem (Eqs. (1:3)), a process is controlled over a finite time horizon 

composed of a number  𝑁𝑓𝑛𝑙 of equal SP, relying on an accurate process model (Eq. (2)). 

At each SP 𝓀, 𝓀 =  1,2, … , 𝑁𝑓𝑛𝑙, the optimal trajectory of the manipulated inputs 

[𝑢𝑡+1
∗ , … , 𝑢𝑡+𝑁𝑝

∗ ] over a specific  prediction horizon 𝑁𝑝 is calculated by solving a dynamic 

optimization problem that considers a desired performance index 𝐽 (Eq. (1)) and subjected 

to a set of constraints 𝑔𝑙 , 𝑙 = 1, … , 𝐿 (Karg and Lucia, 2020). The measured values of the 

state variables at the previous SP, 𝑥𝓀−1, are used as the initial conditions for this 

optimization problem.  Then, only the values of the calculated optimal control profile 

corresponding to the first SP, 𝑢𝑡+1
∗ , are implemented in the real process, and so on. Notice 

that in Eq. (1),  𝑄 ∈ R𝑚×𝑚 and ℜ ∈ R𝑣×𝑣 represent weight metrics of the objective 

function 𝐽, while 𝑟̌ is the setpoint.   

𝑚𝑖𝑛
𝑢𝑡+1,…,𝑢𝑡+𝑁𝑝

𝐽 = ∑ (𝑥𝑡+𝑘 − 𝑟̌)′𝑄 (𝑥𝑡+𝑘 − 𝑟̌) 

𝑁𝑝−1

𝑘=1

+  Δ𝑢𝑡+𝑘
′  ℜ Δ𝑢𝑡+𝑘 

(1) 

𝑆. 𝑇.   𝑥𝑡+1 = 𝐹(𝑥𝑡 ,  𝑢𝑡) ,          𝑥 ∈ 𝑅𝑚 , 𝑢 ∈ R𝑣 (2) 

𝑔𝑙( 𝑥𝑡 ,  𝑢𝑡) ≤ 0 ,                  𝑙 = 1,2, … 𝐿 (3) 

𝑢𝑚𝑖𝑛 ≤ 𝑢𝑘 ≤ 𝑢𝑚𝑎𝑥,            𝛥𝑢𝑡+𝑘 = 𝑢𝑡+𝑘 − 𝑢𝑡+𝑘−1,  𝑘 = 1, … , 𝑁𝑝.  
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3. Proposed methodology 

Motivated by situations where 𝐹 (Eq.(2)) is a highly nonlinear and/or high-dimensional 

model that hinders the application of mathematical E-MPC methods, this paper proposes 

an efficient DL-E-MPC for such processes, consisting of the following steps: 

3.1. Sampling of the initial values of state variables 

In the first step, different 𝑛𝑡𝑟values of the initial state variables [𝑥0,𝑖], 𝑖 = 1, … , 𝑛𝑡𝑟 ,   𝑥 ∈

𝑅𝑚 are selected within their expected/feasible variability domain. The selection is done 

using a DOCE technique that covers the entire variability space of the state variables to 

obtain information about the control behavior over the whole state domain. In this work, 

we use a hybrid DOCE technique that combines Hammersley and fractional designs, 

which generates uniform sampling schemes with very low computational requirements.    

3.2. Training and testing data generation by solving the MPC problem 

In the second step, the MPC problem is solved 𝑛𝑡𝑟times as formulated in Eqs. (1:3) but 

only over a finite duration 𝑁𝑡𝑟𝑛 ≤ 𝑁𝑓𝑛𝑙, where in each time, one of the previously 

generated initial state values, 𝑥0,𝑖 , is considered as the initial conditions for the 𝑖 − 𝑡ℎ 

MPC problem. This allows to obtain the optimal closed-loop trajectories of the control 

inputs [𝑢1,𝑖
∗ , 𝑢2,𝑖

∗ … , 𝑢𝑁𝑡𝑟𝑛,𝑖
∗ ] and the associated trajectories of the state 

[𝑥0,𝑖 , 𝑥1,𝑖 , … , 𝑥𝑁𝑡𝑟𝑛−1,𝑖], 𝑖 = 1, … , 𝑛𝑡𝑟. Then, the 𝑛𝑡𝑟 pairs of control-state trajectories are 

folded into an input-output dataset in the form of  [𝑥𝑡,𝑖 , 𝑢∗
𝑡+1,𝑖], 𝑖 = 1, … , 𝑛𝑡𝑟 × 𝑁𝑡𝑟𝑛. 

Another testing dataset is generated in the same way, as described in Sections 3.1 and 3.2, 

but in this time, the MPC problem is solved over the entire time horizon 𝑁𝑓𝑛𝑙 to obtain 

𝑛𝑡𝑠 pairs of optimal closed-loop control-state trajectories, i.e., [𝑢1,𝑖
∗𝑡𝑠, 𝑢2,𝑖

∗𝑡𝑠, … , 𝑢
𝑁𝑓𝑛𝑙,𝑖
∗𝑡𝑠 ] - 

[𝑥0,𝑖
𝑡𝑠 , 𝑥1,𝑖

𝑡𝑠 , … , 𝑥
𝑁𝑓𝑛𝑙−1,𝑖
𝑡𝑠 ], 𝑖 = 1, … , 𝑛𝑡𝑠. These test trajectories are also folded into input-

output dataset in the form of  [𝑥𝑡,𝑖
𝑡𝑠 , 𝑢∗ 𝑡𝑠

𝑡+1,𝑖] , 𝑖 = 1, … , 𝑛𝑡𝑠 × 𝑁𝑓𝑛𝑙. The folded test 

dataset will be used to assess the open-loop accuracy of the control laws, while the 𝑛𝑡𝑠 

test pairs of control-state trajectories will be used to assess their closed-loop accuracy. 

3.3. Development of DL-based control laws 

In this step, the generated training data  [𝑥𝑡,𝑖 , 𝑢∗
𝑡+1,𝑖], 𝑖 = 1, … , 𝑛𝑡𝑟 × 𝑁𝑡𝑟𝑛 are used to 

develop a number of 𝑣 DL-based control laws 𝑢̂𝑖,𝑡+1
∗ = ℱ𝐷𝐴𝑁𝑁𝑖( 𝑥𝑡) 𝑥 ∈ 𝑅𝑚 ,   𝑖 =

1,2, … , 𝑣, where ℱ𝐷𝐴𝑁𝑁𝑖 is a feedforward deep ANN (DANN) for regression. The 

selection of the DANNs’ structure (number of hidden layers and their respective sizes, 

type of activation functions, training loss, etc.) and the training algorithm is done by a 

cut-and-try procedure that seeks for the best compromise between the prediction accuracy 

and the simplicity of the structure (Shokry et al., 2016). After training the control laws, 

their open-loop response accuracy is evaluated using the folded test dataset 

[𝑥𝑡,𝑖
𝑡𝑠 , 𝑢∗ 𝑡𝑠

𝑡+1,𝑖] , 𝑖 = 1, … , 𝑛𝑡𝑠 × 𝑁𝑓𝑛𝑙 generated in Section 3.2, and an accuracy measure, 

such as the Normalized Room Mean Square Error (NRMSE) (Eq. (4)), can be calculated 

for each of the 𝑣 control laws. 

𝑁𝑅𝑀𝑆𝐸 = 100 ×

√
1

𝑛𝑡𝑠 × 𝑁𝑓𝑛𝑙  ∑  (𝑢∗ 𝑡𝑠
𝑡+1,𝑖 −  𝑢̂∗ 𝑡𝑠

𝑡+1,𝑖)2
𝑛𝑡𝑠×𝑁𝑓𝑛𝑙

(𝑢∗ 𝑡𝑠
 𝑚𝑎𝑥 − 𝑢∗ 𝑡𝑠

𝑚𝑖𝑛)
  

(4) 

where 𝑢∗ 𝑡𝑠
 𝑚𝑎𝑥 and 𝑢∗ 𝑡𝑠

𝑚𝑖𝑛 are the maximum and minimum values of the control variables 

in the testing dataset, respectively. 
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3.4. Online (closed-loop) deployment of the control laws 

Finally, the control laws based on DL are integrated into a closed-loop to predict the entire 

control trajectory starting from arbitrary initial conditions of the state variables: at each 

SP, the real outputs measured from the process are sent to the control laws to calculate 

the optimal values of the control variables, which are sent to the actuators to implement 

them in the process, and so on. The closed-loop accuracy (in terms of NRMSE) of the 

control laws is evaluated using the 𝑛𝑡𝑠 pairs of optimal control-state trajectories generated 

in Section 3.2. This closed-loop NRMSE is calculated for each predicted trajectory 

individually and then averaged over the  𝑛𝑡𝑠 trajectories. A third NRMSE is calculated to 

evaluate the accuracy of the process state variables driven by the application of the 

predicted control trajectories compared to their exact values calculated by mathematical 

MPC. 

4. Applications 

4.1. Case 1: MPC of two connected CSTRs 

A series of two CSTRs is considered in which an irreversible reaction 𝐴 ⇒  𝐵  takes place 

(Rivotti et al., 2012), where reactant A is fed into the first reactor and the resulting mixture 

is then fed into the second reactor. A nonlinear model describing the dynamic 

relationships between six state variables and two manipulated variables is used to control 

the process. The state variables include the reactant concentration, temperature, and 

volume in each reactor, 𝐶𝐴1, 𝑉1, 𝑇1, 𝐶𝐴2, 𝑉2, 𝑇2, and the manipulated variables are the 

heat supplied to the first reactor, 𝜂, and the outlet flow from the second reactor, ω. The 

objective is to bring the controlled state variables, volume and temperature of the second 

reactor, to their setpoints  𝑉2 = 100 𝐿 , 𝑇2 = 463 𝑐𝑜 through manipulating the control 

variables within their allowable limits: 0.75 ≤ 𝜂 ≤ 1.1 and -0.75 ≤ ω ≤ 1.1, assuming 

that all state variables are measured and there are no external disturbances (Rivotti et al., 

2012). The problem is formulated as in Section 2 with 𝑄 = [1  0; 0  1], 𝑅 =
[0.05  0; 0  0.05], 𝑁𝑝 = 10 and 𝑁𝑓𝑛𝑙=200 SPs each of 0.1 min. 

The proposed method is applied as described in Section 3. A sampling plan of 𝑛𝑡𝑟 = 400 

value combinations of the initial state variables is generated, 

[𝐶𝐴1𝑜,𝑖 , 𝑉1𝑜,𝑖 , 𝑇1𝑜,𝑖 , 𝐶𝐴2𝑜,𝑖 , 𝑉2𝑜,𝑖 , 𝑇2𝑜,𝑖]400
, using the hybrid DOCE technique. Then the 

MPC problem is solved 400 times over the horizon 𝑁𝑡𝑟𝑛 = 10 to obtain the control 

trajectories [𝜂1,𝑖
∗ , 𝜂2,𝑖

∗ … , 𝜂10,𝑖
∗ ]

400
 , [ω1,𝑖

∗ , ω2,𝑖
∗ … , ω10,𝑖

∗ ]
400

and the associated state 

trajectories, which are then folded into the input-output training matrix 

 [𝐶𝐴1𝑡,𝑖 , 𝑉1𝑡,𝑖 , 𝑇1𝑡,𝑖 , 𝐶𝐴2𝑡,𝑖 , 𝑉2𝑡,𝑖 , 𝑇2𝑡,𝑖 , 𝜂∗
𝑡+1,𝑖

, ω∗
𝑡+1,𝑖]

4000
. Figure 1-(a) shows the input 

training data projected onto the space of two state variables, and Figure 1-(b, c) shows 

the distributions of the output training data, much of which lies at the extremes of the 

distributions. This is because the MPC problem is solved over a short period of time, 

𝑁𝑡𝑟𝑛, that represents the early period immediately after the initial state where the 

controller tends to apply allowable extreme control values to quickly stabilize the process.  

The training set is  used to build two DANNs 𝜂̂∗
𝑡+1

=

𝑓𝐷𝐴𝑁𝑁1
𝜂 (𝐶𝐴1𝑡 , 𝑉1𝑡 , 𝑇1𝑡 , 𝐶𝐴2𝑡 , 𝑉2𝑡 , 𝑇2𝑡) and  𝜔̂∗

𝑡+1 =
𝑓𝐷𝐴𝑁𝑁2

𝜔 (𝐶𝐴1𝑡 , 𝑉1𝑡 , 𝑇1𝑡 , 𝐶𝐴2𝑡 , 𝑉2𝑡 , 𝑇2𝑡). A number of 𝑛𝑡𝑠 = 30 testing optimal closed-

loop control profiles are generated, as described in Section 3.2, to evaluate the developed 

control laws. Table 1 shows the promising performance of the developed control laws in 

terms of accuracy, which is well below 1% of NRMSE in all cases (open-loop, closed-

loop, and states), and the very low online computational overhead required to predict the 
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control actions in each SP (0.015 s) compared to that of MPC (2.55 s). Figure 2-(a, b) 

shows the three predicted control trajectories with the highest closed-loop NRMSE 

(dashed lines) compared to their exact behavior (solid lines), while Figure 2-(c) shows 

the corresponding state trajectories. The figure again highlights the promising 

performance of the methodology.

Figure 1. Folded training dataset of the 2-CSTRs case study.

Figure 2. (a,b) Three predicted control trajectories compared to their exact values, and (c)

corresponding states trajectories, where squares are initial conditions and star is the setpoint.

4 .2 . Case 2 :   MPC of a distillation column

In this case, a distillation column consisting of 30 trays is considered, which is fed with 

liquid mixtures at the 17th tray (Rivotti et al., 2012). The system is represented by a 

differential model describing the dynamic relationships between 32 state variables, which 

include the liquid composition at each tray, 𝑦2, 𝑦3, … , 𝑦31, distillate composition, 𝑦1,

bottom-product composition, 𝑦32, and a control variable represented by the reflux ratio, 

𝛾. The goal is to maintain the purity of the distillate at the setpoint, 𝑦32 = 0.935, by 

manipulating the reflux ratio within its limits 0 ≤ 𝛾 ≤ 5. The parameters of the MPC 

problem are 𝑄 = 20, 𝑅 = 1 × 10−6, 𝑁𝑝 = 15, and 𝑁𝑓𝑛𝑙 = 200 SPs each of 0.1 min. The

method is applied as described in Sections 3 and 4.1 starting by the generation of a

sampling plan involving 𝑛𝑡𝑟 = 400 different initial state values [𝑦1𝑜,𝑖, … , 𝑦32𝑜,𝑖]
400

. The

MPC problem is, then, solved with 𝑁𝑡𝑟𝑛 = 40 to collect the control [𝛾1,𝑖
∗ , … , 𝛾40,𝑖

∗ ]
400

and 

the related state trajectories. The folded input-output training matrix 

[𝑦1𝑡,𝑖, … , 𝑦32𝑡,𝑖, 𝛾∗
𝑡+1,𝑖

]
16000

is  used to develop a DANNs -based control law 𝛾∗
𝑡+1

=

𝑓
𝐷𝐴𝑁𝑁1
𝛾 (𝑦1𝑡,𝑖, … , 𝑦32𝑡,𝑖), which is assessed using a number of 𝑛𝑡𝑠 = 30 testing control 

profiles. Table 1 and Figure 3 show the promising assessment results.
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Figure 3. (a) Three predicted control trajectories -with the highest closed-loop NRMSE-

compared to their exact values, and (b) corresponding states trajectories, where squares are initial

conditions and dotted line is the setpoint.

Table 1. Computational cost and accuracy of the developed DL-based control laws.

Off-line CPU time (s)* NRMSE (%)
Online CPU

time per SP

Training 

data

gen.

Testing 

data

gen.

DANNs 

training

Open-

loop

Closed-

loop

Final

states

DL-

E-

MPC

MPC

Case1
𝑓𝐷𝐴𝑁𝑁1

𝜂

5174 15135 65
0.023 0.066

0.051 0.015 2.55

𝑓𝐷𝐴𝑁𝑁2
𝜔 0.038 0.106

Case2 𝑓𝐷𝐴𝑁𝑁1
𝛾

65306 24124 2922 0.974 0.400 0.003 0.010 4.02

*Intel core (TM) i7-8565U CPU@  1.80GHz, 12GB RAM.

5. Conclusion

In this paper, we present an efficient DL-E-MPC method for highly nonlinear and/or high-

dimensional chemical processes, consisting of four steps and incorporating various tools 

and techniques, such as DOCE, state-of-the-art dynamic optimization methods, and 

machine learning techniques. The core of the method is the off-line training of DL models

to serve as accurate and computationally cheap control laws, which are then integrated 

into a closed-loop control scheme to predict the optimal control of the process online. The 

method is applied to two case studies for which direct application of mathematical E-

MPC is difficult. The results are very promising in terms of prediction accuracy (NRMSE 

less than 1% in all cases) and online computational cost (saving at least 99.4% of 

computational effort in all cases). Future work will investigate extending the capabilities 

of the method to handle state constraints, unknown disturbances, and process-model 

mismatches.
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Abstract
Monitoring and control of biological processes is still mainly limited to only a few physical and
chemical properties that can be measured online with relatively low efforts. Important parameters
and variables of a bioprocess are predominantly determined by offline sampling as they are diffi-
cult to accurately measure online. Therefore closed-loop control of those critical process variables
poses great difficulties to the bioprocessing industry. To overcome this challenge state estimation
techniques can be used. For their proper function they need observable process models, which
are still not available for every bioprocess. In this work a first principle based soft-sensor is pre-
sented, which allows for real-time estimation of biomass and specific reaction rates for cell growth,
substrate uptake, O2 consumption and CO2 formation in biotechnological production processes.
The proposed algorithm utilizes elemental balancing of the carbon flux alongside the degree of
reduction balance to incorporate gross error detection and data reconciliation between the two
balances. The functionality of gross error detection and data reconciliation strongly rely on the
errors of the used measurements. Most of the recent works employed elemental balancing for
state estimation considering only constant measurement errors over time. The high dynamic range
during fed-batch operation as well as the carbon evolution and oxygen uptake rates being calcu-
lated from several measurements necessitates a proper and dynamic error propagation procedure.
We successfully applied an adaptive propagation of measurement uncertainties to substrate lim-
ited fed-batch cultivations of recombinant Escherichia coli. The novel soft-sensor algorithm led
to a reduction of the biomass estimation error from formerly 10.8% to 5.3% NRMSE. Especially
the consideration of additional uncertainty derived from supplemented pure oxygen increased data
reconciliation effectiveness. In addition gross error detection is more sensitive to better indicate
sensor faults or mismatches between carbon and degree of reduction balances. Elemental balanc-
ing including true measurement errors and error propagation is a valuable tool to estimate biomass
and biomass specific reaction rates of microbial fed-batch processes. The basis on the law of mass
conservation rather than on very specific process models makes it a generically applicable soft-
sensor with reduced efforts for implementation and measurement needs that can also be used for
real-time control purposes.

Keywords: bioprocessing, soft sensor, process analytical technology, elemental balancing, error
propagation to measurement uncertainties
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1. Introduction

The Process Analytical Technology (PAT) initiative, which was introduced by the FDA in 2002,
should ensure the quality of bioprocesses not only for the end product but also throughout the
whole pharmaceutical manufacturing process. It facilitates modeling approaches as well as new
sensor technologies to monitor and control critical process parameters (CPPs) and critical quality
attributes (CQAs) during the process [Hausmann et al. (2017)]. Model-based methods are gaining
importance as they are able to increase process understanding and automation as well as guide
the decision making [Narayanan et al. (2020)]. A software sensor or short soft sensor is the
combination of one or several hardware sensors and a software model to derive new estimated
variables from those measurements that are hard or impossible to measure directly or measured
at too low frequency [Luttmann et al. (2012), Hausmann et al. (2017)]. Soft sensors can be used
to effectively monitor and control fermentation processes, estimate important variables that are
hard to measure and deal with the complex and strong nonlinear nature of a bioprocess [Zhu et al.
(2020)]. Recent works presented material balance based soft-sensor algorithms for growth rate and
biomass estimation [Wechselberger et al. (2013), Sagmeister et al. (2013)]. In simulation studies
it was already shown that propagation of uncertainties from the measurements to the conversion
rates is advantageous compared to an arbitrarily chosen static error assumption [Steinwandter et al.
(2017)]. In this contribution we incorporated a first order uncertainty propagation procedure into
an elemental balancing soft sensor and compared reaction rate and biomass estimation accuracies
to the static error consideration based on real experimental data of a typical fed-batch bioprocess.

2. Methods

Fermentations with a recombinant Escherichia coli BL21 (DE3) were carried out in 3.3 L Labfors
5 bioreactors (Infors, Bottmingen, Switzerland). A minimal medium according to DeLisa et al.
(1999) was used. The process design was composed of a batch phase with 10 gL−1 glucose as the
main carbon source, an uninduced fed batch phase with a predefined exponential glucose feed pro-
file to keep the specific growth rate qX at a constant level and a production phase with constant feed
rate, induction with 1 mM isopropyl β -d-1-thiogalactopyranoside (IPTG) and lowering of the tem-
perature from 37 °C to 30 °C. The pH was controlled with ammonia and H3PO4 to 7.0. For offline
biomass quantification the dry cell weight (DCW) and the optical density at 600 nm (OD600) were
determined. Glucose concentration was measured with the Cedex Bio HT and the Glucose Bio HT
photometric assay using hexokinase. Real-Time process control was realized through the Lucullus
Process Information Management System PIMS (Securecell, Urdorf, Switzerland) together with
MATLAB®. The soft sensor algorithm shown in chap. 3 was implemented in a Simulink® model
connected to the Real-Time environment. MATLAB® was also used for data preprocessing for the
soft sensor inputs and to compute important process variables. The substrate feed rate FR was cal-
culated by numeric integration of the feed weight signal combined with a Savitzky-Golay-Filter
approach [Savitzky and Golay (1964)]. The Jacobian matrix was also computed in MATLAB®

using the Symbolic Math Toolbox.

3. Soft sensor

3.1. Calculation of C-molar reaction rates from prime variables

The measured rate vector rm, which is composed of the rates for substrate uptake rS, O2 uptake rO2
and CO2 evolution rCO2, can be calculated according to the formulas below under the assumption
that the reaction rate is equal to the transfer rate measured. The formulas contain the aeration rates
for air FnAIR and oxygen FnO2, the substrate feed rate FR and the measured offgas mole fractions
of oxygen xOGout and CO2 xCGout . These are called the prime variables which are the inputs to
the soft sensor. xOGin and xCGin are the mole fractions of oxygen and CO2 respectively in the gas
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intake, which can be calculated from gas flow balancing. Parameters are VnM which is the molar
gas volume at standard temperature and pressure, cS, which is the substrate concentration of the
feeding solution and MS, which is the C-molar mass of the substrate used.

rCO2 =
FnAIR +FnO2

VnM
· (xCGout − xCGin) (1)

rO2 =
FnAIR +FnO2

VnM
· (xOGout − xOGin) (2)

rS =−FR · cS

MS
(3)

3.2. Unknown rate calculation

Essentially the material balance system can be compactly described in matrix form according to
eq. 4. E is the Elemental Composition Matrix where the rows represent the element contents (e.g.
carbon, hydrogen, oxygen, nitrogen) and the columns represent the metabolic compounds in the
process (e.g. biomass, substrate, metabolic products). r is the corresponding vector of reaction
rates. For the further analysis E and r are divided into measured rates rm with the corresponding
subset Em and non-measured unknown rates rc with Ec.

Er = Emrm +Ecrc = 0 (4)

The addition of the generalized degree of reduction balance (DoR) described in Roels (1983) to
the equation system leads to an overdetermined system. This enables besides the calculation of the
unknown rates also a data reconciliation approach where the accuracy of the calculations can be
increased in a least squares manner. For the use case of growth rate estimation in Escherichia coli
fermentations eq. 5 was derived as a special form of eq. 4 including the C-molar carbon balance
as well as the DoR balance yielding in an overdetermined system for growth rate estimation.

E · r =
[

1 0 1 1
4 −4 4.113 0

]
·


rS

rO2
rX

rCO2

= 0 (5)

Using the Moore-Penrose pseudoinverse of Ec, which can be calculated by E+
c = (ET

c Ec)
−1ET

c ,
the least-squares fit of the unknown reaction rate vector is given by:

rc = E+
c Emrm (6)

3.3. Data reconciliation

Before calculating the unknown rate vector rc from rm with eq. 7 a reconciliation procedure can
be applied to check the data consistency and detect gross errors. Inserting eq. 7 into eq. 4 leads
to eq. 8 with R being the redundancy matrix R = Em − Ec(ET

c Ec)
−1ET

c Em and Rr the reduced
redundancy matrix containing only the independent rows of R.

Rrm = 0 (7)

The optimal estimate for measured rates r̂m under rate uncertainty is then formulated with F being
the error variance covariance matrix and P being the variance covariance matrix of the residuals

1203

1179



described by P = RrFRT
r . I is the identity matrix. The detailed derivation of eq. 8 is described in

Stephanopoulos et al. (1998).

r̂m = (I −FRT
r P−1Rr)rm (8)

The test function h computed in eq. 9 provides information about the statistical significance of
the result, where h represents the sum of weighted squares of the residual vector ε = Rrrm. The
h-value is computed before the actual data reconciliation and can be evaluated against the χ2

distribution at the degrees of freedom of R to detect systematic errors in the data to a certain level
of confidence as described in Wang and Stephanopoulos (1983).

h = ε
T P−1

ε (9)

3.4. Dynamic propagation of uncertainties vs. static error assumption

The definition of the true error variance covariance matrix F reflecting the errors accurately is not
trivial. Often, the matrix is assumed to be diagonal with static relative error assumptions mean-
ing that the measurement errors are uncorrelated. However, in many cases the uncertainties are
actually correlated to each other resulting in a non-diagonal covariance matrix. A more accurate
description of F can be achieved by propagation of uncertainties from the prime variables, which
are in this case the inputs substrate mass flow rate FR, the aeration rates for air FnAIR and oxygen
FnO2 and the offgas measurements xOGout and xCGout . After computing the Jacobian matrix J of the
vector valued function, which describes the mapping from prime variables to the measured rate
vector rm, the first order propagation of uncertainty can be evaluated as shown in Madron et al.
(1977):

F = JFinJT (10)

with Fin being a diagonal error covariance matrix of the input prime variables mentioned above.
The uncertainties of the prime variables were derived from the specification data of the equipment
used, in particular the balances with an error of 0.1 g, the mass flow controllers with an error of
0.9Lh−1 +0.005x and offgas analysers with errors for O2 of 0.1%+0.03x and CO2 of 0.025%+
0.03x. x denotes the measurement value. In general, Jacobian calculation strongly depends on
model correctness and is sensitive to model uncertainties. Here, the model structure is solely
based on first principles with the parameters VnM and MS being well defined and the only source
of parameter uncertainty is the substrate concentration of the feed cS (chap. 3.1). cS should be
accurately measured before fermentation to ensure proper Jacobian calculation.

4. Results & Discussion

Both soft sensor approaches, that were described in chapter 3.4, have been compared on the data
of a typical fed batch fermentation with batch phase, uninduced exponential feed and constant
feed rate after induction with IPTG at 1.0 d. Fig. 1 shows the reconciled rate estimates for static
errors (left) and dynamic error propagation (right). It can be observed, that the growth rate rX is
shifting to negative values utilizing error propagation especially in the late production phase after
induction, although the noise level is considerably larger than under static error consideration. In
fig. 2 the process results are shown including the biomass measurements and estimates obtained
by integration of the growth rate rX for both approaches. While the biomass estimates in the early
growth phase do not differ significantly from each other, they start to deviate later in the production
phase where the static error assumption leads to a major discrepancy of estimation and measured
biomass with a NRMSE of 10.8% with respect to the DCW as the reference data. However, cal-
culating the biomass under dynamic error propagation leads to more accurate estimates especially
in the late production phase and a decrease of NRMSE to 5.3% corresponding to an increase of
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Figure 1: Reconciled rates are shown for both approaches from the start of the fed-batch phase.
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Figure 2: The left plot shows the measured concentrations of DCW and glucose as well as the
biomass estimates with static error assumption (NRMSE = 10.8%) and dynamic error propagation
(NRMSE = 5.3%). Biomass estimates are obtained by numerical integration of rX . The right plot
shows the value of the h-function for both approaches and the critical χ2 distribution of 3.84 at a
95% confidence level for a degree of freedom of 1.

Table 1: The error variance covariance matrices F [mold−1] are shown for both approaches at a
process time of 1.5 d.

Static Errors Dynamic Error Propagation

F =

0.485 0 0
0 0.301 0
0 0 0.273

 F =

2.6×10−5 0 0
0 3.686 −3.623
0 −3.623 3.728



accuracy over 50%, which is similar to the improvements observed in Steinwandter et al. (2017).
Fig. 2 also shows the h-function test described in chap. 3.3. Before induction the high static error
h-values above the critical χ2 indicate inconsistencies in between the balances. By incorporating
dynamic error propagation the h-value is well below the critical χ2 indicating a consistent closing
of the balances. This is probably because the variance covariance matrix F reflects the true errors
much better. A snapshot of both F matrices at the end of the process after 1.5 d is shown in tab. 4.
Obviously, assuming static errors, F is just a diagonal matrix with scaled versions of the values
itself, whereas covariances are present with error propagation. Here, the variance of rS is very low
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(2.6×10−5 mold−1) compared to rO2 and rCO2, such that rO2 and rCO2 are much more influenced
by the data reconciliation than rS.

5. Conclusion & Outlook
The goal of this contribution was to investigate, whether the dynamic propagation of measurement
errors has a positive impact on the accuracy of data reconciliation in a microbial fed-batch proc-
cess. We propose the usage of dynamic error propagation from prime variables in order to estimate
the reaction rates. The effectiveness of the data reconciliation procedure is increased as the error
variance covariance matrix reflects the true variances more accurately leading to better estimates
of the rates and biomass concentration. The prerequisite for that is, that the uncertainties of the
prime variables are known, which could be derived from the sensor and equipment specification
data. However, the soft sensor presented here has some limitations, that should be addressed. One
major limitation is the assumption of steady state substrate concentration, meaning that the whole
substrate feed is assumed to be taken up by the cells instantaneously neglecting potential substrate
accumulation. This steady state assumption holds well enough, when the specific substrate uptake
rate qS is significantly below the maximum substrate uptake capacity qSmax and the cell growth is
substrate limited. In the case of substrate excess, where cells take up substrate near at qSmax, the
C-balance does not close properly anymore and the rate estimates become inaccurate. Therefore,
the soft sensor is not applicable to the batch phase, to high feed pulses or whenever overfeeding
occurs. Furthermore, the soft-sensor is not considering cell death leading to overestimation of cell
mass especially in late production phase. Despite those limitations, we believe that elemental bal-
ancing is a solid foundation for soft sensors in bioprocessing. The generic first principle nature of
elemental balancing improves transferability and generalizability of the algorithms. Limitations as
mentioned above should be tackled by targeted and reasonable extensions of the elemental balance
system with reaction kinetics and model based state estimation techniques.
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Abstract
This study presents a novel application of multivariate iterative learning control (ILC) to the con-
tinuous, chromatographic ion-exchange purification of biopharmaceuticals for consistent and reli-
able production. The ILC algorithm used was based on a linearized model of the retention times of
two compounds as functions of the starting and ending values of a linear salt gradient. Simulations
of an ion-exchange purification process were used to identify the non-linear model behavior and
thus suggest an appropriate linearization of the model for use in the ILC. Two control configura-
tions were compared: one using direct inversion of the resulting linear model, and another using
a least-squares, quadratic-criterion objective function for optimal control in conjunction with the
model. The result was an ILC configuration based on a simple model with parameters that only
required 3 experiments to compute, that was capable of controlling the retention times of two
compounds simultaneously. This leads to more reliable and flexible operation of continuous and
integrated biopharmaceutical purification in the future, and serves as a foundation for further de-
velopment of other ILC-based control strategies within biopharmaceutical purification.

Keywords: preparative chromatography, ion-exchange, simulation, iterative learning control,
model-based control

1. Introduction

Production of biopharmaceuticals has traditionally been performed in batch mode. However, as
societal pressures for cheaper pharmaceuticals increase along with the need for faster development
of new pharmaceuticals, research within the field has shifted towards development of flexible, inte-
grated and continuous manufacturing processes that allow for consistent product quality (Zydney,
2015; Gronemeyer et al., 2014; Jungbauer, 2013). The purification, or downstream processing, of
biopharmaceutical manufacture is of particular importance due to the high requirements for purity
in the finished pharmaceutical, as well as the desire to recover as much of the desired product as
possible. This has given rise to a need for monitoring and control during continuous downstream
processing, so that a desired yield and purity of the biopharmaceutical can be maintained.

The core of many downstream processes for biopharmaceutical production is chromatography.
While it is inherently a batch process, chromatography has been adapted for continuous and inte-
grated processing in several ways, often operating in parallel with other chromatography columns
in a cyclic fashion (Jungbauer, 2013). This cyclic batch-wise operation makes iterative learning
control (ILC) a prime candidate for control of chromatography steps in continuous downstream
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processes. Hailing from the field of robotics, ILC is a control technique that is used to improve the
operation of processes that repeat over time based on the information gathered from previous pro-
cess runs (Moore, 1993). It has been successfully applied to control the temperature trajectory of
batch reactors (Lee and Lee, 2007), and more recently to single-input-single-output (SISO) control
of the retention time of a protein in an ion-exchange (IEX) chromatography column (Holmqvist
and Sellberg, 2016). In this latter study, an approach based on direct model inversion was used in
which the retention time was modelled as a function of the time duration of the elution step, where
the separation of the protein from other molecules takes place. Finally, another direct-inversion
SISO ILC application has been done on the loading of columns in periodic counter-current (PCC)
chromatography (Löfgren et al., 2020).

When separating a target protein from a known impurity by means of ion-exchange, it would be
useful to control the retention times of both the target compound and the impurity. This increases
the magnitude of the problem to a multiple-output system with increased complexity, which re-
quires a careful choice of model to obtain the desired control. The purpose of this study was to use
in-silico simulation of IEX chromatography to develop a control approach based on a linear model
of the retention times of two proteins as a function of a set of process inputs. The result was a
multiple-input-multiple-output (MIMO) ILC that made use of a quadratic-criterion objective func-
tion in conjunction with a linear map from beginning and ending values of a linear salt gradient,
to the retention times of the two proteins. The choice of ILC is motivated by the repetitious nature
of chromatographic purification steps, and by that ILC hinges on the process returning to its initial
conditions between each control action (Longman, 2000), which in this study was achieved by the
regeneration and equilibration steps following the elution. The efficacy of the ILC was demon-
strated by running a simulated sequence of chromatography processes and letting the ILC correct
for a simulated disturbance to the process inputs. To the authors’ knowledge, application of MIMO
ILC to chromatographic purification of biopharmaceuticals has not previously been presented.

In the following section, a brief background of the IEX chromatography process is provided along
with the strategy for formulation of a linear process model by means of in-silico simulation. This
section is followed by a description of the ILC algorithm and the least-squares, quadratic-criterion
objective function used in conjunction with the model, along with the results of the simulated
and controlled sequence of chromatography processes. Finally, some concluding remarks and
suggestions for future studies will be made.

2. Simulations and model formulation

In liquid chromatography, substances in a liquid, mobile phase, are separated based on interactions
with a solid, stationary phase. In ion-exchange chromatography, these interactions take place
between ionically charged substances in the mobile phase and ligands on the stationary phase.
Ion-exchange liquid chromatography with linear gradient elution is commonly performed in a five
step process, as illustrated by Figure 1. In the first step, the load step, a certain volume of a mixture
of a product and its impurities is loaded onto a chromatography column. The product binds to the
stationary phase along with any other ionically charged impurites. Any substance that does not
bind to the column is washed out in the wash step by a low salt concentration buffer solution,
hereafter called buffer A. In the elution step, the column is loaded with a mixture of buffer A and
buffer B, which is a solution with a high salt concentration. The percentage of buffer B in the
mobile phase is increased linearly over the duration of the elution step, and as the concentration of
salt in the column increases, the molecules bound to the column release and are eluted at different
rates. The result is that the substances in the mixture have different retention times. Following
the elution step, the column is regenerated by loading it with 100% buffer B and then equilibrated
with 100% buffer A, to ensure that the column is restored to its initial conditions before the next
sample is loaded and the process can be repeated.
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Figure 1: The ion-exchange purification process and its steps.

In an elution step with fixed time duration, the initial and final salt concentrations of the gradient
are what determine the retention times of the substances. In a real chromatography process, the
salt concentration during the elution step is controlled by two pumps, one each for buffer A and B,
and the percentage of the flowrate that is driven by each pump. The initial and final percentages
of buffer B, xB,i and xB, f , are thus directly manipulable values by the process and were chosen as
the control signals for this study. To control the retention times of the two compounds, tret,1 and
tret,2, using model-based ILC, a model using xB,i and xB, f as inputs was needed.

To evaluate the relation between the retention times and xB,i and xB, f , response surfaces were gen-
erated in-silico by modelling and simulating the mass transfer in a chromatography column. The
mass transfer along the column in the z-direction can be described with a convection-dispersion
model along with an adsorption term:

∂ci

∂ t
=− F

Aε

∂ci

∂ z
+Dapp

∂ 2ci

∂ z2 − (1− εc)

ε

∂qi

∂ t
(1)

where ci is the concentration of component i in the mobile phase, F is the volumetric flowrate of
the mobile phase, A is the cross-section area of the column and Dapp is the apparent dispersion
coefficient. ε and εc are the total porosity and column void fraction, respectively, and qi is the
concentration of component i in the stationary phase. The change in qi can, in turn, be modelled
by means of the Langmuir mobile phase modulator:

∂qi

∂ t
= kkin,i

(
Bicic−βi

s

(
1−

N

∑
j=1

q j

qmax, j

)
−qi

)
(2)

where βi is a parameter that describes the ion-exchange characteristics, cs is the salt concentration
in the mobile phase, q j is the concentration of compound j in the stationary phase and qmax, j is its
maximum possible concentration in the stationary phase. kkin,i and Bi are lumped parameters that
describe the adsorption kinetics and equilibria. (Karlsson et al., 2004)

The response surfaces were generated by creating lists of xB,i and xB, f ranging from 0 to 100
and recalculating them to salt concentrations cs. The above model was then simulated for each
combination of initial and final salt concentrations. The simulations were carried out in Python
by discretizing the space dimension (the length of the column) into 100 finite volumes, thus re-
formulating the partial-differential model into a system of ordinary differential equations (ODEs)
using the finite-volume method. The second-order derivative in space, i.e., the dispersion term,
was discretized using a 3-point central derivative approximation, while the first-order derivative in
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space, i.e., the convection term, was discretized using a 2-step backwards derivative approximation
(Shyy, 1994). The system of ODEs was then solved using the the backward-differential formula
(BDF) method in the Python SciPy library. The retention times were found by taking the solution
at the column outlet and finding the maximum values of the peaks using the first and second order
derivatives of the concentration data (Felinger, 1998).

As the response surfaces in Figure 2 show, the retention volumes for both peaks decreased as
both xB,i and xB, f increased. In particular, the response surfaces showed that the model could be
linearized in the zone 0 ≤ xB,i ≤ 40 and 20 ≤ xB, f ≤ 100 and yield marginal errors. Thus, the

model was linearized around a set of inputs xd
B =

[
xd

B,i,x
d
B, f

]T
that yielded a desired separation

between peaks, by means of a finite-difference derivative Jacobian matrix:

G =
∂F(u)

∂u
=




tret,1

(
xpert,1

B

)
−tret1(xd

B)
ε

tret,1

(
xpert,2

B

)
−tret1(xd

B)
ε

tret,2

(
xpert,1

B

)
−tret2(xd

B)
ε

tret,2

(
xpert,2

B

)
−tret2(xd

B)
ε


 (3)

where F denotes the non-linear model and G denotes the linearized model as a 2x2 matrix. xpert,1
B

and xpert,2
B each denote a set of inputs xB where either xB,i or xB, f are perturbed by a small value

ε . Smaller values of ε result in a locally more accurate G, but depending on the variations in
slope of the function F this may not be desirable. In this case, as seen in Figure 2, the slope is
almost linear in all directions in the zone of interest and thus the choice of ε was assumed to be
less important. For the controller as detailed in the next section, G was computed around the point
xB,i = 10, xB, f = 30 for ε = 3, which was deemed small enough since xB,i and xB, f range from 0
to 100. The retention times at this point were 19.7 and 25.8 minutes for the left and right peak,
respectively, and were used as set points for the controller.

Figure 2: Response surfaces (jet) from the simulations of the chromatography process. The re-
tention times of the first (left) and second (right) peak are plotted as functions of the initial (xB,i)
and final (xB, f ) proportions of buffer B in the linear gradient, along with the linearization (grey)
around the point xB,i = 10, xB, f = 30 (black).

3. Control algorithm
In order to maintain a desired process output yd in a repeating process, the following ILC algorithm
can be used (Lee and Lee, 2007; Holmqvist and Sellberg, 2016):

uk+1 −uk = Kek (4)

where the control inputs u on process cycle k are updated for the following cycle k+ 1 based on
the error ek = yd −yk, i.e., how the process output y deviates from the desired output. K, in turn,
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is a learning filter that can be designed in different ways depending on the system to be controlled.
In this study, the learning filter was designed using the model-based approach detailed by Lee and
Lee (2007), in which the following quadratic-criterion objective function is used:

min
uk+1

∥ek+1∥2
Q +∥∆uk+1∥2

R (5)

The objective function has a penalty term for changes in process input on cycle k + 1, and for
process errors ek, weighted by the positive-definite matrices Q and R. The solution to the objective
function becomes:

K =
[
GT QG+R

]−1 GT Q (6)

The benefit of using quadratic-criterion-based ILC, or Q-ILC, is that it becomes possible to apply
damping to the control action by penalizing changes to the process input, which in turn allows for
robust control of processes with less precise model estimations or with disturbances to the process
dynamics and outputs. For the purposes of this study, Q was selected to a 2x2 identity matrix I,
and R to rI, where r was a scalar value. With this selection of weighting matrices, the damping of
the controller could be increased by increasing the value of r, while the special case r = 0 resulted
in a direct inversion controller, K = G−1. This latter choice would result in a complete elimination
of the process error on the following cycle for perfect process models (Lee and Lee, 2007).

To test the proposed process control configuration, a sequence of 12 chromatography cycles were
simulated. On cycle 3, a disturbance to the process inputs was introduced by increasing the salt
concentration in buffer B by 10%. The sequence was run with both direct inversion (r = 0) and
Q-ILC (r = 0.5). The results, displayed in Figure 3, show that the direct inversion approach failed
to correct for the error on cycle 4, instead overshooting the set points. It failed to correct for the
overshoot perfectly on cycle 5 as well and undershot them, only landing stably on the set points
on cycle 6 and onwards. Even in an in-silico study with perfect repeatability, the direct inversion
controller proved to be slightly unstable due to the imperfect process model, which caused this
”bouncing” behavior.
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Figure 3: The 12-cycle controlled sequence. The direct inversion (left) sequence showed an over-
shoot when correcting for the disturbance on cycle 3, stemming from an imperfect process model
estimation. The Q-ILC approach (right) displayed no overshoot of the first peak, but instead
showed coupling behavior between the two peaks.
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Q-ILC with r = 0.5, on the other hand, proved to avoid the overshoot of the first peak, but took
2 cycles to restore to the setpoint. Additionally, it overshot the second peak on cycles 5 and 6.
This is likely due to coupling between the two retention times, and could be remedied by some
form of decoupling, i.e., by reparametrizing the control inputs into decoupled control inputs by
means of a decoupling matrix, D (Waller et al., 2003). If D is chosen carefully, this would make
it possible to adjust each peak individually without shifting the other. In a real case, Q-ILC would
be useful due to variations in the process dynamic caused by ambient conditions or human error,
or to compensate for stochasticity in the outputs caused by the UV detectors used to measure
the presence of biopharmaceuticals and impurities at the outlet of the column. Thus, decoupling
would also be crucial in a real case.

4. Concluding remarks

The successful application of multivariate, model-based ILC using a quadratic-criterion objective
function to a simulated chromatographic separation contributes to the field of biopharmaceutical
purification by providing a method of maintaining the desired separation when disturbances are
applied to the process. Of particular note is the simple model estimation, which resulted in a func-
tioning controller while requiring only 3 experiments to compute. For the purposes of this study,
a single model estimation was performed with three simulated experiments. This single model
estimation may be particularly suitable for repetitious chromatography steps in continuous down-
stream processes, where the goal is to improve the consistency of product quality and thus any
disturbances to the system can be expected to happen slowly and in the long term. However, the
model-based approach can be modified to fit any desired process and its dynamics, for example,
non-linear dynamics or additional process inputs/outputs. Thus, the proposed control approach
provides a solid starting point for control of other cyclically repeating process operations in bio-
pharmaceutical purification. To further examine the efficacy of the Q-ILC, practical studies are
required. Thus, the application of this controller to a real process is a natural next step.
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Abstract
This work presents the application of modifier adaptation with quadratic approximation (MAWQA)
to the production process of hydrophobically modified ethoxylated urethanes (HEUR) by reactive
extrusion in a simulation study. A plant-model mismatch in the conveying rate in the twin-screw
extruder model as well as a mismatch in the reaction kinetics are investigated. These uncertainties
result from a limited availability of experiments for the chemical system and the extrusion system
during the up-scaling to production size. It is shown that the application of MAWQA can drive
the plant to the true economic optimum after about 25 set-points and satisfy the constraints for
both cases even under the presence of noise in the inputs and measurements. These 25 set-point
changes take about 2 hours which makes this method applicable for frequent product changes.

Keywords: RTO, MAWQA, Reactive Extrusion, Model-Based Control, Plant-Model Mismatch

1. Introduction

Hydrophobically modified ethoxylated urethanes (HEUR) are a group of polymers mainly used as
rheology modifiers in paints and coatings as reported by Reuvers (1999). These rheology modi-
fiers are conventionally produced in batches of several cubic meters and directly formulated with
water within the same vessel. This production process takes multiple hours per batch. Within the
SIMPLIFY project, the transition to a continuous production of these paint thickeners by reactive
extrusion on a twin-screw extruder is investigated, which offer numerous advantages. This tran-
sition significantly reduces the time and costs associated with cleans and allows a fully electrified
production using renewable energy sources. To operate the process at the economic and ecological
optimum, an advanced process control strategy is required. Applying classical model-based con-
trol methods such as conventional real-time optimization would lead to suboptimal performance as
the optimal set-point of the model does not coincide with the optimal point of the real process due
to the plant-model mismatch. This plant-model mismatch is caused due to the limited availability
of experiments to determine the chemical and rheological system. Especially relevant in the case
of the production of HEUR is the high sensitivity to traces of moisture in the reaction system,
decreasing the reproducibility of the experiments. Considering the model of the extrusion system,
errors can occur during scale-up to a bigger extruder. To overcome this mismatch, we suggest the
application of modifier adaptation with quadratic approximation (MAWQA) for the reactive ex-
trusion process. This method extends the method of iterative optimization using plant and model
gradients Gao and Engell (2005) and Marchetti et al. (2009) by a quadratic approximation of the
cost and constraint functions (Gao et al. (2016)). This extension increases the robustness for noisy
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process data and simplifies the estimation of real plant gradients in practice. An example for a suc-
cessful implementation of MAWQA in an industrial environment was reported by Gottu Mukkula
et al. (2020). This method is suitable for the reactive extrusion process as the main requirements
are met: The process can be safely probed and exited, reaches steady state within five minutes
and the cost and constraint function can be measured. For the production of paint-thickeners, the
off-spec product produced during the probing phase can be blended in other products minimizing
waste. In the following the model for the twin-screw extruder, the chemical system and the applied
control method are presented. Afterwards the application of this method to the case of a plant-
model mismatch in the reaction model and a mismatch in the extruder model are investigated.

2. Models and Method
2.1. Twin-Screw Extruder Model

The extruder model used in this work is based on a mechanistic twin-screw extruder model de-
veloped by Eitzlmayr et al. (2014). The approach has been extended by a singular perturbation
approach for the pressure description by Cegla and Engell (2021) so that it can be used in effi-
cient optimization algorithms. This model accounts for different flow patterns within the extruder
caused by different screw geometries. It discretizes the extruder into finite volumes in which the
polymerization reaction is occurring, in this case 29. The finite volumes are connected by internal
flows caused by a pressure difference or by the rotation and geometry of the screw. The convey-
ing capacity for a given screw element must either be determined experimentally or approximated
from the knowledge of their geometry and therefore is prone to errors. With the progressing poly-
merization reaction in the extruder, the viscosity of the processed material increases, amplifying
the energy dissipation and affecting the internal flows. Due to this strong coupling of the states, the
model is highly non-linear. Furthermore, due to the high complexity of the switching of the model
when a section is entirely filled, it is not possible to transform the model into a steady state model.
Therefore, the steady state is computed by simulation of the model over a long time horizon. By
the nature of the model, input multiplicities are not possible. The extruder assumed in this work is
a Leistritz 18 mm ZSE MAXX extruder with a length to diameter ratio of 60. The screw concept
is consisting of double flighted conveying elements with a pitch of 20mm and a cylindrical die
with a diameter of 6 mm and a length of 40mm.

2.2. Kinetic Model

For the production polyurethane paint thickeners, initially a long chained polyethylene glycol
(PEG) is reacted with an aliphatic diisocyanate (ISO). Further along the extruder, a short chained
mono alcohol (A) is fed to stop the reaction and give the product the hydrophilic properties by end-
capping of the formed urethanes. The reaction kinetics are approximated by a differential equation
for the weight average molecular weight MW similar to Verhoeven et al. (2004) and extended by
an inhibition term by the reacted mono alcohol AR. The parameter MW,rep is the molecular weight
of a polymer repetition unit and is used to describe the stoichiometry of the end-capping. The
maximum achievable molecular weight for a given ratio between ISO and PEG is given by Mw,max
and can be calculated from the reaction stoichiometry. The parameter kinhib quantifies the effect
of reacted mono alcohol on the molecular weight. Transurethanisation is not observed in this
temperature range. The reaction system is described by:

dMw

dt
= k0 · exp

(
−EA

RT

)
· |

Mw,max −MW − [AR] · kinhib

MW,max − [AR] · kinhib
| (1)

d[A]
dt

=−d[AR]

dt
= [A] ·

(
2Mw,rep

Mw
− [AR]

)
· k0,alc · exp

(
−EA,alc

RT

)
(2)
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The melt behaves quasi-Newtonian. The temperature influence of the viscosity is described by
an Arrhenius approach, the influence of the molecular weight is described by a power law. The
exponent 3.4 is chosen as exponent as reported in literature being applicable for linear polymers
such as polyurethanes (Verhoeven et al. (2004)). Summarizing, the viscosity is described by:

η(T,MW ) = η0 ·M3.4
w · exp

(
−EA

RT

)
(3)

2.3. Modifier Adaptation with Quadratic Approximation

The basis for the MAWQA method is the extension of the steady state optimization problem by
contributions for the differences of the plant and model gradients multiplied by the change in
the input u for the objective function and the constraint function as proposed by Gao and Engell
(2005) and Marchetti et al. (2009). Fm denotes the plant model, J the cost function, G the constraint
function, y the model output, the indices m and p denote the model and plant respectively:

min
u

Jad,k
m (ŷ,u) (4)

s.t. ŷ = Fm(u) (5)

Gad,k
m (ŷ,u)≤ 0. (6)

The adapted cost function for the model Jad
m at the k-th time point is therefore:

Jad,k
m = Jm(ŷ,u)+(∇Jp(yk

p,u
k)−∇Jm(ŷk,uk))T (u−uk) (7)

and adapted constraint function for the model Gad
m :

Gad,k
m = Gm(ŷ,u)+Gp(yk

p,u
k)−Gm(ŷk,uk)+(∇Gp(yk

p,u
k)−∇Gm(ŷk,uk))T (u−uk). (8)

To robustly determine the plant gradients and to improve the optimization, Gao et al. (2016) pro-
posed the approximation of the plant cost and constraint functions Jm and Gm with the set of inputs
u by quadratic functions with the set of parameters P:

min
P

n

∑
i=1

(Jp(ui)− JQ(ui,P))2 JQ(u,P) =
nu

∑
i=1

nu

∑
j=1

ai jui j j +
nu

∑
i=1

biui + c. (9)

This two quadratic function can then be analytically derived with respect to the inputs to calcu-
late the plant cost gradient ∇Jp and plant constraint gradient ∇Gp for equation (7) and (8). The
prediction quality is described by ρk

m for the adjusted optimization problem (4) and by ρk
Q of the

quadratic approximation for both the cost and constraint function for a single constraint:

ρ
k
m = max

{
|1−

Jk
m − Jk−1

M

Jk
p − Jk−1

p
|, |1− Gk

m −Gk−1
m

Gk
p −Gk−1

p
|
}

ρ
k
Q = max

{
|1−

Jk
Q − Jk−1

Q

Jk
p − Jk−1

p
|, |1−

Gk
Q −Gk−1

Q

Gk
p −Gk−1

p
|
}

(10)

For the case that ρk
Q < ρk

m, the quadratic model is used to calculate the next input:

min
u

JQ(u,P) (11)

s.t. GQ(u,P)≤ 0 (12)

(u−uk)′ · cov(uk) · (u−uk)≤ γ
2 (13)

Equation (13) constraints the inputs to the validity range of the quadratic approximation to prevent
extrapolation and can be tuned by the distance parameter γ . For the case that the new input is an
exploration step and not improving the cost function, uk will not be updated.

1215

1191



M. Cegla et al.

3. Results

3.1. Initialization of the method

The method is initialized with 12 set-points which are distributed using Latin hyper cube sampling
and 3 set-points for the computation of the finite differences to get a good coverage of the search
space and to have (nu+1)(nu+2)

2 sample points as required for the quadratic approximation. The
nominal plant optimum is at a throughput of 20 kg/h, a rotation speed of 200 RPM and a barrel
temperature of 132 °C with a total specific energy demand of 163.36 kJ/kg. Gaussian noise with
a standard deviation of 0.25 kg/h is added to the throughput and with a standard deviation of 1.5
kg/mol on the measurement of the product molecular weight. The rotational speed and the indi-
vidual barrel temperatures are assumed noise free as these are precisely controlled by feedback
control. The throughput is bounded between 5 and 20 kg/h, the rotation speed between 200 and
600 RPM, and the barrel temperature between 120 and 160 °C. A combined economic and eco-
logical cost function is used aiming at the minimization of the energy input required to produce
a given quantity of product. The contributions to the energy inputs are the mechanical energy
input that is provided by the motor, the heat input provided by the heating blocks and the required
cooling energy provided by the cooling system of the block. The process constraint is a mini-
mum molecular weight of the product of 55 kg/mol to fulfil the desired rheological properties of
the HEUR. The validity range of the quadratic model is constrained with γ = 1 and the model is
trained on the 12 inputs closest to the last-set point.

3.2. Mismatch in the extruder model

In this section, an mismatch in the extruder model is assumed additional to the noise described in
the last subsection. The conveying capacity of all extruder elements is assumed to be 20% higher
in the model than in the plant. A higher conveying capacity causes a shorter residence time as less
material is present in the screw section and it is transported faster out of the extruder. This causes
the model optimum to be very conservative in the satisfaction of the molecular weight constraint.
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Figure 1: Results for the application of the method with an plant-model mismatch in the convey-
ing capacity of the screw. △ denotes the initial probing steps, o denotes improvement steps and
□ indicates exploration steps. The inputs are scaled within the bounds of the optimization prob-
lem. Filled symbols mark steps computed from the quadratic approximation, empty symbols mark
steps based on the extended model. Red indicates the molecular weight, blue the specific energy
consumption, green the throughput, magenta the rotation speed and black the barrel temperature.
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The results of the application of the MAWQA method are shown in in Figure 1. After the initial
probing, the method uses the gradients determined by finite differences in the extended optimiza-
tion problem to determine the first improving set-point. Both rotation speed and throughput are
set to the upper limit while the barrel temperature is set close to the optimum. Although the cost
function is improved, due to the high noise in the measurement the prediction of the finite differ-
ences for the constraint function, the resulting set-point does not satisfy the constraints. Therefore
from the next iteration on, the quadratic approximation is used for optimization and significantly
reduces the constraint violation. Between iterations five and ten, the method is driving the plant to
its true optimum by decreasing the rotation speed from the upper limit to the lower limit. These big
changes can be explained by the low sensitivity of the molecular weight and the specific energy
use to the rotation speed. This low sensitivity can be explained physically as with the screw design
used here, most of the residence for the reaction is generated by the back-pressure zone of the die
and not in the upstream screw elements. Furthermore in a 18mm extruder, the dominant introduc-
tion of energy is via the electrical heating, especially for polymers with a high melt flow index
like the investigated HEUR. At iteration 10 the true plant optimum is reached with satisfaction of
the constraints. As the presented method depends on the random initial probing, the method was
repeated 10 times showing similar or better performance.

3.3. Mismatch in the kinetic model

In this section, the method is applied for the case of a plant-model mismatch in the reaction ki-
netics. The same noise as in the first case is present. The pre-exponential factor k0 for the poly-
merization reaction is assumed to be 10% lower in the model. With this mismatch, the result
of a conventional steady state optimization would be very conservative as more residence time
would be provided and a more viscous product would be produced, increasing the specific energy
consumption. The results obtained using MAWQA for this case are shown in Figure 2.
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Figure 2: Results for the application of the method with an uncertainty in the reaction kinetics. △
denotes the initial probing steps, o denotes improvement steps and □ indicates exploration steps.
The inputs are scaled within the bounds of the optimization problem. Filled symbols mark steps
computed from the quadratic approximation, empty symbols are based on the extended model.
Red indicates the molecular weight, blue the specific energy consumption, green the throughput,
magenta the rotation speed and black the barrel temperature.
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After probing, the first evaluation is performed by solving the extended optimization problem with
the gradients computed by finite differences. Similar to the other presented case, the resulting set-
point results in a low specific energy use, but a very low molecular weight caused by moving the
temperature to the lower bound. As in the first case, after the first iteration the model quality of the
quadratic approximation was at every point superior to the extended model. In the following steps
the rotation speed is decreased and the barrel temperature increased. Worth mentioning here is
the fact that after the fifth iteration the constraints are fulfilled at a cost function value close to the
optimum, the next improvement is the 10th iteration. Therefore, it might be worthwhile to base the
evaluation process of a solution not only on the cost function but also on the constraint violation.
This change would influence the range of validity of the quadratic approximation in equation (13).

4. Conclusion

In this work, the benefits of the application of MAWQA to the production of HEUR in reactive
extrusion are shown. For both investigated cases of a mismatch in the structure of the model
as well as a mismatch in the reaction kinetic the controller drives the plant to the true optimum
after a maximum of 10 iterations. These 10 iterations and the 15 initial probed set-points in
total correspond to a total duration of about two hours operation time. This makes this method
suitable for a flexible production with frequent product changes. In the situation of few product
changes but a discontinuous production, which is the case for a day shift production, this method
can be initialized with the quadratic models of past shifts with a similar product. Using this
information, the required iterations can be reduced to a minimum and no further time consuming
initialization is required in the regular operation. Furthermore on a long term, the information of
the quadratic models can be used to detect and to quantify effects such as wear in the production
process. In our future work, we will experimentally apply the method proposed here to the real
reactive extrusion system. Furthermore, different approaches for the selection of the points for the
quadratic approximation and the use of more optimization variables will be investigated.
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Abstract 

Independently of the implemented heat exchange technology for industrial applications, 

it is necessary to apply an optimization routine to obtain the best heat exchanger design 

according to an objective function. This work presents a design and optimization 

environment for heat exchangers where the total annual cost is used as an objective 

function. Eight metaheuristic algorithms are employed to carry out the optimization 

procedure independently: Cuckoo Search, Differential Evolution, Grey Wolf Optimizer, 

Jaya Algorithm, Particle Swarm Optimization, Univariate Marginal Optimization 

Algorithm, and Whale Optimization Algorithm. Three different types of heat exchangers 

are contemplated: shell-and-tube heat exchanger, plate fin heat exchanger and plate heat 

exchanger. The performance of each optimization algorithm is assessed for each kind of 

exchanger. 

 
Keywords: heat exchanger optimization, optimization environment, metaheuristic 

optimization. 

1. Introduction 

Heat exchanger devices are applied to exchange thermal energy between two or more 

fluid streams or to supply heating and cooling services in industry. Different technologies 

are available, some examples of heat exchangers configurations include double pipe, 

shell-and-tube, finned-tube, plate-fin, plate or spiral plate (Thulukkanam, 2013). The heat 

exchanger technology is selected according to different criteria, such as, operational 

conditions, available space, physical properties of the fluids, among others.  

Three types of heat exchangers are considered: shell-and-tube heat exchanger (STHE), 

plate-fin heat exchanger (PFHE), and plate heat exchanger (PHE). STHEs are the most 

versatile, being able to operate at high temperatures and pressures. Also, they have a good 

heat transfer area-to-volume ratio. PFHEs are categorized as compact heat exchangers 

because of their high heat transfer area-to-volume ratio. They are conformed by a series 

of flat plates and layers of corrugated fins and its main use is in gas-to-gas systems. PHE 

are flexible devices; its heat transfer area can be modified by adding or removing plates.  

Regardless of the heat exchanger technology, it is necessary to produce an optimal design 

according to an objective function. Some common optimization objectives are the 

minimization of the heat transfer area, total annual cost, the entropy generation, or the 

maximization of the effectiveness. The optimization process is not a trivial task. All 

design methods available, independently of the heat exchange technology, contain non-
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linear, non-continuous and non-differentiable equations which results in complex 

optimization problems (Onishi et al., 2013). The resulting optimization problems depends 

on continue and discrete variables that increase the complexity. There is plenty of 

different gradient-based optimization algorithms. Gradient-based algorithms tend to fast 

converge, but most of times converge in a local optimum in non-convex optimization 

problems. On the other hand, metaheuristic algorithms employ two search mechanisms 

known as exploration and exploitation, increasing the probability to converge in the 

global optima (Yang, 2014). 

Metaheuristic optimization algorithms are employed to produce the best heat exchanger 

design. The user can choose between eight optimizer options; these are Cuckoo Search 

(CS) (Yang and Suash Deb, 2009), Differential Evolution (DE) (Storn and Price, 1997), 

Grey Wolf Optimizer (GWO) (Mirjalili et al., 2014), Jaya Algorithm (JA) (Venkata Rao, 

2016), Particle Swarm Optimization (PSO) (Kennedy and Eberhart, 1995), Univariate 

Marginal Optimization Algorithm (UMDA) (Larrañaga and Lozano, 2001), and Whale 

Optimization Algorithm (WOA) (Mirjalili and Lewis, 2016). The design and optimization 

environment is designed in a modular way, all the codification was done in Python. The 

total annual cost (TAC) is used as objective function. Specific constraints are employed 

for each type of heat exchanger. 

2. Heat exchanger design and optimization environment 

This section explains how the design and optimization environment works, which is 

designed in a modular way. Different modules that perform specific task interacts with 

each other to obtain the best heat exchanger design. Once the optimization procedure is

finished, the most relevant variables are shown. Six modules are involved, these are: the 

Main module, the Optimizers module, the OptProblem module, the DesignMethods

module and the Costing module. Figure 1 shows how the modules are interlinked. 

Figure 1. Modular configuration of the design and optimization environment.

2 .1 . Main module 

The Main module is the only one the user can directly interact with. The user provides 

the different parameters for the design and cost calculation of the heat exchanger, and for 

optimization procedure. The required parameters regarding the design of the heat 

exchanger are the type of heat exchanger (STHE, PFHE or PHE), the inlet and outlet 

temperatures of the cold and hot fluids, the physical properties of the fluids. For the cost 

calculation it is necessary to introduce the interest rate, the number of operating hours per 

year, the electricity cost per 1 kWh, the value of the Chemical Engineering Plant Cost 

Index (CEPCI), and the value of the factors for the construction and operating conditions. 

Regarding to the metaheuristic optimization routine, it is necessary to select the 

optimization algorithm to be used, indicate the upper and lower bounds for each decision 

variable, specify the number of iterations and individuals (solutions) produced per 

iteration, and the number of experiments (only if the user requires to obtain statistical 

information such as the standard deviation, median, mean, and minimum value). Once all 

this information is given, the design and optimization procedure can be carried out. 

Costing module. Figure 1 shows how the modules are interlinked. 
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All the information that the user provides is distributed to the other modules. The Main 

module directly interacts with the Optimizers module, which receives all the information 

regarding the optimization procedure.  

2.2. Optimizers module  

After the user introduce all the necessary information and runs the environment, the Main 

module calls the Optimizers module. The Optimizers module contains the codes of the 

eight metaheuristic optimization algorithms that can be employed to optimize the selected 

type of heat exchanger. The included metaheuristic algorithms are CS, DE, GWO, JA, 

PSO, TLBO, UMDA and WOA. The value of parameters used by Lara-Montaño et al. 

(2021) were employed in this work.  

This module generates all solutions according to the chosen optimization algorithm. It 

takes as inputs the parameters involved in the optimization procedure and is linked with 

the OptProblem module which in turn is linked to the DesignMethods and Costing 

modules. The outputs of the Optimizers module is the best solution i.e. the best heat 

exchanger design and its total annual cost (value of the objective function).  

2.3. Modules that define the optimization problem  

The module Optimizers contains the optimization problem that depend on the selected 

heat exchanger. This module takes as inputs the decision variables on which each 

optimization problem depends. The value for the objective function for each design is the 

output. The module is divided in two parts. In the first part a heat exchanger design is 

calculated from the decision variables provided by the Optimizers module, this occurs in 

the DesignMethods module. The second part consist of obtaining the value of the 

evaluation of the objective function for each heat exchanger design produced.  

The DesignMethods module contains the equations, variables and parameters involved in 

the design methods of STHEs, PFHEs and PHEs. The Bell-Delaware method is 

implemented to design STHEs, the details of this design methodology can be found in 

Shah and Sekulic (2003). The procedure to design PFHEs is taken from Mishra et al. 

(2009) and Rao and Patel (2010). Finally, the methodology to design PHEs is obtained 

from Kakaç et al. (2002).  

The Costing module receives information from the DesignMethods module and calculates 

the operating cost (Cop) given by the cost of pumping, and the fixed cost (Cf ) that mainly 

depends on the value of the heat transfer area. Then, the total annual cost, which is 

employed as objective function, is calculated by the addition of the (Cop) and (Cf ). The 

(Cop) is computed according to Towler and Sinnott (2012). The (Cf ) for STHEs and PHEs 

is calculated according to Smith (2005), whereas for PFHE it is computed as shown in 

Towler and Sinnott (2012). Also, the Costing module implements the constraints for each 

optimization problem and applies a penalization if any constraint is not satisfied. The 

value of the total annual cost is sent back to the Optimizers module that produce 

potentially new heat exchanger designs in each iteration. Once the optimization procedure 

finishes, the results are printed and exported. The results are the relevant variables and 

parameters of the heat exchanger design, the operation cost, fixed cost, total annual cost, 

the statistical results, and the best value of the objective function found. 

3. Case studies and optimization problems  

Two case studies are considered. The first case study, for STHE and PHE, involves 

methanol with a flow rate of 27.8 kg/s and inlet and outlet temperatures of 95ºC and 40ºC, 

respectively. The other fluid is sea water with a flow rate of 68.9 kg/s and inlet and outlet 

temperatures of 25ºC and 40ºC, respectively. In the second case study, for PFHE, both 
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fluids are air. The hot fluid has an input and output temperature of 240ºC and 171ºC, 

respectively and a flow rate of 0.8962 kg/s.  

The cold fluid has an input and output temperature of 4ºC and 79.5ºC, respectively and a 

flow rate of 0.8296 kg/s. A project lifetime of 20 years, an interest rate of 5%, 8,000 

operating hours per year, an electricity cost of 0.1 kWh and a CEPCI equal to 686.7 

(Jenkins, 2021) are used.  

Eleven decision variables are involved in the design of a STHE, seven in the PFHE and 

eight in the PHE. Upper and lower boundaries for continuous decision variables are 

shown in Table 1. The allowed values for discrete variables are shown in Table 2.  

For STHE the pressure drop in shell side, ∆Ps and tube side, ∆Pt must be lower or equal 

to 70,000 Pa. The fluid velocity in tubes must be found between 1 m/s and 3 m/s (Caputo 

et al., 2008). And the ratio between the inner diameter of the shell and the length of tubes 

(Ds/L) must be lower or equal to 15. For PFHE the maximum allowed pressure drop in 

hot side, ∆Ph, and cold side, ∆Pc, are 300 Pa and 2,000 Pa, respectively (Rao and Patel, 

2010). For PHE the maximum allowed pressure drop is 70,000 Pa in both sides.  

The three optimization problems were solved using all the optimization algorithms. In 

Lara-Montaño et al. (2021) it is determined through a sensitivity analysis that 50 

individuals are required, these are values for the number of individuals and iterations 

used. To obtain statistical information 30 experiments were run per optimization problem 

and optimization algorithm.  

Table 1. Bounds for continuous design variables. 

Heat exchanger  Design variable   Lower bound  Upper bound  
STHE  Diameter of shell Ds 300 mm  1,000 mm  

Baffle spacing at center Lbc 0.2Ds  0.55Ds 
Baffle spacing at the inlet and outlet  Lbo, Lbi  Lbc 1.6Lbc 
Tube-to-baffle diametrical clearance  δtb 0.01do  0.1do 
Diametrical clearance of shell-to-baffle  δsb 0.01Ds  0.1Ds 
Outer diameter of tube bundle Dotl 0.8(Ds−δsb) 0.95(Ds−δsb) 

PFHE  Heat exchanger length in cold size  Lcold  0.1m  1m  
Heat exchanger length in hot size  Lhot 0.1m  1m 
Height of fin H 2 mm  20 mm  
Fin thickness  Ft 0.1mm  2 mm  
Lance length of the fin  l 1mm 10 mm 

PHE  

 

Horizontal distance between ports  Lh  0.3m  0.7 m  
Vertical distance between ports  Lp  1.1m  2 m 
Port diameter Dp  0.1m  0.4 m  
Plate thickness  Pt 0.001m  0.0003 m  
Plate pitch  P 0.0015m  0.005 m  
Enlargement factor Ef 1.15m 1.25 m 

 
Table 2. Allowed values for discrete variables 

Heat exchanger Design variable  Allowed values 

STHE Outer and inner tube diameter do, di Taken from Flynn et al. (2019) 

Tube pitch Pt [1.25do, 1.5 do] 

Tube layout angle TL [30◦, 45◦, 90◦] 

Baffle cut Bc [25%, 30%, 40%, 45%] 

Number of tube passes s [1,2,4] 

PFHE Fin frequency n [200, 201, . . .,1,000] 

Number of fin layers in hot side Nh [2,3, . . . ,40] 

PHE Chevron angle D [30◦ ,45◦ ,50◦ ,60◦ ,65◦] 

Number of plates Np [2,3, . . . ,700] 
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4. Results 

Table 3 shows the statistical results after 30 experiments for each optimization problem 

and optimization algorithm. DE and GWO have the best performance in the design 

optimization of a STHE. These optimization algorithms produce the smaller SD, they can 

obtain the best design at least in one experiment, and according to the median in most of 

the experiment converge about the best design. WOA, PSO and UMDA present the worse 

performance according to the produced SD. PSO do not has a good performance, but it 

was able to find the STHE design with the minimum cost in at least one experiment.  

Table 3. Statistical results 
Heat 
exchanger 

Statistical 
variable 

CS DE GWO JA PSO TLBO UMDA WOA 

STHE 

Mean 
(USD/year) 

12,899.59 12,862.28 12,873.76 13,365.17 13,142.55 13,266.87 13,237.23 13,890.98 

Median 
(USD/year) 

12,892.48 12,860.52 12,862.92 13,178.23 12,931.32 13,174.19 13,120.50 13,294.01 

SD 
(USD/year) 

27.81 6.44 13.15 311.91 534.86 271.60 448.81 1,067.88 

Minimum 
(USD/year) 

12,866.71 12,860.34 12,860.64 12,871.41 12,860.31 12,951.26 12,865.27 12,892.19 

PHE 

Mean 
(USD/year) 

2,266.49 2,221.56 2,227.36 2,290.75 2,232.46 2,231.20 2,276.12 2,249.30 

Median 
(USD/year) 

2,271.82 2,222.59 2,226.54 2,289.67 2,304.05 2,227.85 2,299.17 2,402.80 

SD 
(USD/year) 

36.41 2.12 3.57 50.74 119.98 5.24 66.44 243.65 

Minimum 
(USD/year) 

2,225.11 2,221.19 2,221.19 2,231.03 2,221.19 2,221.19 2,237.31 2,221.19 

PFHE 

Mean 
(USD/year) 

3,969.98 3,969.97 3,969.97 3,969.97 3,995.01 3,969.97 3,997.30 3,969.97 

Median 
(USD/year) 

3,973.55 3,969.97 3,969.97 3,975.38 4,080.23 3,969.97 4,012.79 3,969.97 

SD 
(USD/year) 

7.76 0.00 0.00 9.51 447.08 0.00 35.96 0.00 

Minimum 
(USD/year) 

3,969.97 3,969.97 3,969.97 3,969.97 3,969.97 3,969.97 3,976.86 3,969.97 

Regarding to the optimization problem where the best design for a PHE must be obtained, 

PSO and WOA have the worst performance, but both algorithms are able to converge in 

the best solution in at least one experiment. DE, GWO and TLBO have the best 

performance, these algorithms produce the smaller SD, and their median is close to the 

minimum value for TAC found.  

Even though PSO and UMDA have the worst performance to find the best design of a 

PFHE, due their large SD, they can obtain the best design in at least one experiment. That 

is, in at least one experiment these algorithms converge in the neighborhood of the best 

solution. In this optimization problem all the algorithms can obtain the best design, and 

most of them have a produce a median close to the minimum value found for the TAC.  

The more complex optimization problem is the one that involves the design of a STHE. 

This optimization problem produces relatively large SD while using multiple 

optimization algorithms. The best overall optimization algorithms are DE and GWO. The 

values found of the decision variables for the best designs of the heat exchangers are 

presented in Table 4.  

5. Conclusion 

The presented design and optimization environment for heat exchangers can find the best 

design, using the TAC as objective function, for STHE, PFHE, and PHE. Currently, it is 

limited to heat exchangers with no phase change. Although multiple metaheuristic 

optimization algorithms are implemented, DE has the overall best performance 

independently of the heat exchanger that requires to be optimized. Thus, according to the 

results, DE is the most recommended optimization method for the non-linear mixed-

integer models representing the heat exchangers. The environment also supports the 
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execution and statistical analysis of multiple experiments as a tool of analysis for the 

obtained results.  
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Abstract 

The decarbonization of industrial utility systems is an important step to reduce 

greenhouse gas emissions. Decarbonization can be enabled by sector coupling, which can 

also enhance system flexibility of low-carbon utility systems. However, exploiting sector 

coupling efficiently for the design of low-carbon utility systems is complex and, 

therefore, best addressed by mathematical optimization. Recently, the open-source 

framework SecMOD was introduced for the linear optimization of multi-energy models 

with adjustable spatial and temporal resolution. SecMOD considers environmental 

impacts by fully integrating life cycle assessment. In this work, we optimize a sector-

coupled utility system supplying electricity, heating, and cooling. For this purpose, we 

extend SecMOD to allow mixed-integer decisions. Further, we investigate the benefits of 

a pumped thermal energy storage system consisting of a high-temperature heat pump, 

heat storage, and an organic Rankine cycle. We identify trade-offs in system design by 

comparing a least-cost design to a design with minimal greenhouse gas emissions. 

Combining heat pumps and heat storage is economically and environmentally viable and 

leads to synergies between sectors. However, the reconversion of stored heat to electricity 

cannot compete with alternatives, such as battery storage.  
 

Keywords: utility systems; decarbonization; MILP; pumped thermal energy storage; 

sector-coupling 

1. Introduction: Low-carbon industrial utility systems 

Industry significantly contributes to overall economic value added but is also subject to 

high greenhouse gas emissions, leading to an increase in climate change.  Hence, beyond 

the traditional search for cost reductions, improvements now also aim increasingly at low-

carbon energy supply (Ringkjøb et al. 2018). Integrating low-carbon electricity from 

renewable sources is vital to reduce greenhouse gas emissions. While renewable energy 

is increasingly integrated in the electricity sector, its contribution to supply heat has 

stagnated. Sector-coupling may help to bridge this gap and lead to synergy effects 

between sectors (Guelpa et al. 2019). 

Pumped thermal energy storage (PTES) systems can strengthen sector-coupling by 

addressing volatility in electricity supply to flexibly provide electricity and heat (Dumont 
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et al. 2020): During high feed-in of renewable energy converters, PTES systems convert 

electricity into heat and store heat that can not be used immediately. The stored heat can 

then either fullfill a heat demand or be re-converted to electricity at a later time. In this 

way, PTES systems can contribute to a secure and low-carbon energy supply. 

The need to consider volatile electricity supply of renewables, sectoral interaction, and 

environmental aspects leads to highly complex systems. To cope with this complexity, 

effective energy systems are usually designed based on mathematical modeling and 

optimization. Hence, the above-mentioned challenges need to be addressed when 

designing optimization methods and software frameworks. Although many models have 

been developed for the transition to low-carbon energy systems, reusability is limited 

when these models are not openly available (Pfenninger et al. 2018). Generalized and 

modular open-source software frameworks ensure reusability and, hence, contribute to 

accelerating transparent research. For this purpose, the object-oriented framework 

SecMOD was recently introduced that considers energy conversion, transport, and 

storage (Reinert et al. 2022).  

In this work, we apply SecMOD to a case study of an industrial utility system providing 

electricity, heating, and cooling. First, we introduce the general formulation of SecMOD 

and discuss how we integrate life cycle indicators as an objective function. To model the 

utility system as a mixed-integer linear program (MILP), we modify SecMOD to account 

for integer decisions, such as the modelling of part-load behaviour. We then identify 

trade-offs between the least-cost design and the design with the lowest overall greenhouse 

gas emissions. Two energy supply scenarios are considered: with and without grid supply. 

In these scenarios, we examine to what extent sector-coupling by a PTES system can 

contribute to the optimal design of the utility system.  

2. Method: Utility system optimization considering life cycle indicators 

In this Section, we present the general problem statement of SecMOD (Reinert et al. 

2022). We then discuss the integration of life cycle assessment (LCA) into the energy 

system optimization and further specify how SecMOD is implemented.  

Generally, the problem statement of SecMOD is as follows: Given 

• a potentially spatially and temporally resolved exogenous energy demand, 

• a set of components to convert and store energy, 

• and additional constraints (such as emission limits), 

find the energy system that minimizes the objective function (e.g., total annualized cost 

or overall annual global warming impact) and cover the energy demands in each time 

step. As decision variables, we consider the capacity expansion of energy converters and 

storage components and respective component operation. 

In this work, we extend the framework formulation to a mixed-integer linear program 

(MILP). The MILP optimization considers discrete component expansion and integer 

decisions, e.g., to model part-load behavior. We optimize and evaluate the system using 

the LCA methodology, standardized in ISO 14040:2006 and ISO 14044:2006. LCA 

quantifies the impacts of a component or system on the environment over the whole life 

cycle. In contrast to classical optimization of utility systems, we extend all component 

models by life cycle inventories (LCIs). Here, we employ the LCI database ecoinvent 3.5 

(Wernet et al. 2016). Each LCI quantifies the material and energy flows needed to build 

and operate the component. We model the direct inputs and outputs of component 

operation using piecewise-affine functions to reflect part-load efficiencies.  

For the optimization, the impacts of the infrastructure and operation are calculated by 

multiplying the LCIs with the respective environmental impact of each energy or mass 
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flow. The environmental impacts are determined using the Environmental Footprint 2.0 

methodology recommended by the European Commission (Joint Research Center 2010). 

Due to space limitations, this work only reports on the impact category “climate change”, 

quantifying the global warming impact (GWI).

The optimization problem is implemented in Python using Pyomo (Bynum et al. 2021; 

Hart et al. 2011) and is solved using Gurobi (Gurobi Optimization 2021), employing the 

branch-and-cut algorithm. The time-series aggregation module by Hoffmann et al. (2020)

is integrated to decrease the number of time steps for time-dependent variables. The 

SecMOD code and documentation are publicly accessible (Reinert et al. 2022).

3. Case Study: Integrating pumped thermal energy storage in a utility 
system

The utility system assessed in this study (Figure 1) was first published by Voll et al.

(2013) and extended by Baumgärtner et al. (2019). The system satisfies temporally 

resolved demands for electricity, heating, and cooling. Import is possible for grid 

electricity and natural gas, each associated with specific costs and environmental impacts. 

Overproduction of electricity may occur at no costs or revenues to account for 

curtailment. However, overproduction of heat or cooling is not allowed. 

Figure 1- Simplified structure of the utility system providing electricity, heating, and cooling supply 

(extending on Voll et al. (2013)). For chillers, boilers, and the combined heat and power engine, 

multiple units can be employed, accounting for scaling effects.

The utility system consists of the components shown in Figure 1. Combined heat and 

power engines (CHP) and the electricity grid provide electricity. We further add wind 

turbines, battery storage and photovoltaic systems, as modeled in Baumgärtner et al.

(2021). Heat can be provided by the CHPs, an electrode boiler, or a natural gas boiler. 

Cooling power is provided by absorption chillers or compression chillers, respectively. 

In addition to the existing components, we further model a PTES system as an emerging 

technology. The PTES system consists of a heat pump (based on Baumgärtner et al.

(2021)), sensible heat storage with water as storage medium (Baumgärtner et al. 2019), 

and an organic Rankine cycle (ORC) (based on Stoppato and Benato (2020), Tartière and 

Astolfi (2017), and Tillmanns et al. (2022)). The heat storage unit can supply heat directly 

or feed the ORC for the reconversion to electricity, thereby adding additional flexibility. 
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Scaling effects during sizing are taken into account by allowing small, medium, and large 

components for the chillers, boilers, and CHP.  The components have different specific 

costs and part-load behavior. For all units, sizing can be chosen continuously between the 

minimum and maximum component size. 

We consider one year of operation, aggregated to six typical days with hourly resolution. 

As clustering technique for temporal aggregation, we use k-medoids. We optimize the 

system for two scenarios: Firstly, we consider the system given above (current system) 

and optimize it by an economic and an environmental cost function. The economic cost 

function is the total annualized system cost. As environmental objective, we minimize the 

overall annual GWI. The annual GWI considers the whole life cycle of the system 

components. For this purpose, the impacts from construction are annualized over the unit 

life time without discounting. Secondly, we model the utility system as a stand-alone 

system where electricity cannot be imported from the grid to evaluate sector-coupling in 

volatile energy systems on a small scale.  

4. Results: Economically and environmentally optimal energy supply 
structure 

Figure 2 shows the annual supply of electricity, heating, and cooling for the current and 

 
Figure 2 Annual electricity, heating, and cooling supply and endogenous demand in the current and 

stand-alone utility system for the cost-optimal and environmentally optimal cases. All energy flows 

are normalized by the electricity flow in the case “current min cost”. Further, the annualized cost 

and global warming impacts (GWI) are shown normalized by the case “current min cost”. 

The current cost-optimal system provides electricity partly by the grid and partly by wind 

turbines. However, the minimal-GWI system fully relies on wind electricity. Except the 

current cost-optimal system, all systems store both electricity and heat to decouple supply 
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stand-alone utility system for all scenarios. The optimality gap is less than one percent. 



and demand. The PTES system as a whole is not used in any case: While some 

components of the PTES system - high-temperature heat pump and heat storage - are used 

in all systems to couple the electricity and heating sectors, the organic Rankine cycle is 

never used to provide electricity. Cooling is provided mainly by a compression chiller in 

all cases.  

The environmentally optimized designs are similar in the current and stand-alone 

systems, as the supply of grid electricity is associated with relatively high environmental 

burdens and therefore not used even when available. A comparison of the stand-alone 

systems shows that the environmentally optimal system is near-optimal regarding cost, 

as the cost are less than 2 % higher than in the cost-optimal case. However, their resulting 

utility supply is rather different: While heat provision is slightly cheaper by combining a 

heat pump and an electric boiler, the environmentally optimal system employs a heat 

pump only. Similarly, the cost-minimal system operates the absorption chiller, whereas 

the environmental optimization uses the compression chiller only. In the stand-alone cost 

minimization, stored heat is used to provide cooling by the absorption chiller, as storing 

heat and using the heat directly for cooling is cost-efficient. Alternative routes that exploit 

the low costs of heat storage are inferior, for example, to provide cooling by combining 

the PTES system and the compression chiller. Overall, the studied PTES system is 

outperformed by other available flexibility options and therefore not employed as a whole 

to flexibly provide electricity.  

5. Conclusions 

In this work, we optimize an industrial utility system using the SecMOD framework. To 

account for part-load behavior in utility systems, we extend SecMOD to a MILP 

formulation. We show trade-offs between economically and environmentally optimal 

designs for a grid-integrated and a stand-alone utility system. While a significant trade-

off is found between cost and GWI for the grid-integrated scenario, the trend is different 

in the stand-alone system: At comparably low cost, the environmentally optimal system 

has a five times lower GWI than the cost-optimal system.  

The results further confirm that sector-coupling and energy storage are essential for 

industrial decarbonization. Especially in the stand-alone scenario, we observe high 

synergies between sectors. Regarding pumped thermal energy storage as a system of 

components to enhance flexibility, we find that some components (heat pump and heat 

storage) of PTES system are economically and environmentally viable in all cases. 

However, reconversion to electricity is neither economically nor environmentally 

competitive for the studied system. 

We hope that our results can contribute to understand trade-offs in utility systems and 

hence help realizing environmental improvements that can be achived cost-efficiently. 
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Abstract 

The design and operation of distributed energy systems (DES) have often been modelled 

as linear optimisation problems. Although DES are increasingly connected to existing 

alternating current (AC) distribution networks, state-of-the-art DES modelling 

frameworks use oversimplified approximations which either exclude network constraints 

or overlook the inherent three-phase unbalance present in distribution networks. This can 

lead to poor designs which amplify network operational issues and result in greater costs 

to both the network and consumers/producers. This study presents a new modelling 

framework for DES design, which incorporates unbalanced optimal power flow within 

DES models for the first time. Furthermore, Robust Optimisation is included in this 

detailed modelling framework to ensure design feasibility under worst-case scenarios. 

Results show that previous frameworks tend to either overestimate or underestimate 

objectives when compared with the DES model combined with unbalanced power flow. 

Robust scenarios demonstrate that the new combined model is capable of closing the gap 

between objectives when compared with a linear DES-only model, albeit with different 

designs that do not violate grid constraints during baseline operation. These results 

suggest that this detailed framework can be utilised for DES design and network planning, 

as it produces more robust designs which can potentially help avert operational issues. 

 

Keywords: Distributed Energy, Distribution Network, Unbalanced Power Flow, Robust 

Optimisation, Nonlinear Programming. 

1. Introduction 

With persisting efforts to integrate more renewable energy resources and improve 

network resilience, a global growth in community DES and microgrids has been 

predicted. Designing DES requires the consideration of many constraints, and these are 

best assessed using optimisation models. Mixed-Integer Linear Programming (MILP) 

models have been commonly used to design DES. However, with the increasing 

integration of DES into existing AC distribution networks, the linear DC power flow 

approximations used in these models do not accurately represent complex network 

constraints. Several studies have attempted to bridge this gap by incorporating AC 

optimal power flow (OPF) models for balanced networks with DES design, which are 

labelled DES-OPF models (De Mel et al., 2021; Mashayekh et al., 2017; Morvaj et al., 

2016). Comparisons have shown that solutions from DES-only frameworks can be 

infeasible with respect to the network. Despite these efforts, all existing studies assume 

that the overall network is balanced, which is a characteristic of transmission networks. 

In reality, most DES are connected to unbalanced distribution networks, particularly in 

European radial distribution networks (Ma et al., 2020). The impacts of considering phase 
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unbalance in distribution networks and DES design simultaneously have not been 

investigated before, despite the potential implications on network longevity, integration 

of renewable resources, and costs to the prosumers. A few studies have incorporated 

network unbalance within DES operational models. However, the significant gap 

observed in DES design should also be addressed, as a robust DES design can help 

alleviate operational issues in advance. Furthermore, despite the growing number of 

studies on designing and operating DES under uncertainty using techniques such as 

Robust Optimisation (RO) and Stochastic Programming (Mavromatidis et al., 2018a), 

detailed DES-OPF models are notably absent from such frameworks. This could be due 

to the increased complexity of these models, both to formulate and solve. This study aims 

to bridge these gaps by advancing the modelling framework previously presented by the 

same authors (De Mel et al., 2021) to incorporate unbalanced power flows within DES 

design for the first time, and the uncertainty of key inputs using RO (Li et al., 2011). RO 

was chosen as it can assess worst-case scenarios without assuming probability 

distributions. Overall, the study contributes to more realistic DES design and operation 

by improving system feasibility and robustness. 

2. Methodology 

The bi-level model used in this study first determines the binary topology of the DES 

design using an MILP, followed by a nonlinear programming (NLP) model which re-

optimises the design under unbalanced network constraints (De Mel et al., 2021). Such a 

strategy is used as it avoids the need to solve a large, nonconvex Mixed-Integer and 

Nonlinear Programming (MINLP) model, which is difficult to converge and 

computationally costly. The combined model is labelled DES-UPF. The overall objective, 

which minimises total annualised cost for a DES with houses 𝑖 ∈ 𝐈 operating in time 𝑡 ∈
𝐓, is transformed to its robust counterpart (𝑍) to consider uncertainty in electricity and 

gas prices. A polyhedral uncertainty set (Bertsimas and Sim, 2004) has been chosen for 

its balanced conservativeness and linearity in the MILP, where an auxiliary variable 𝑣0 

and an adjustable sizing parameter Γ0 are introduced to the reformulation: 

min 𝑍 

𝑍 − (( ∑ 𝑎P̅t
grid

𝐸𝑖,𝑡

𝑖∈𝐼,𝑡∈𝑇

) + ( ∑ 𝑏C̅gas𝐻𝑖,𝑡   

𝑖∈𝐼,𝑡∈𝑇

) + 𝐶𝐼𝑁,𝑂𝑀 − 𝐼) − 𝑣0Γ0 ≥ 0 
(1) 

𝑣0 ≥ 𝑎P̂t
grid

𝐸𝑖,𝑡    ∀𝑖 ∈ 𝐈, 𝑡 ∈ 𝐓 (2) 

𝑣0 ≥ 𝑏Ĉgas𝐻𝑖,𝑡     ∀𝑖 ∈ 𝐈, 𝑡 ∈ 𝐓 (3) 

where 𝑎 and 𝑏 are scalars, P̅t
grid

 and C̅gas are nominal values of electricity and gas prices, 

P̂t
grid

 and  Ĉgas are their respective perturbations, 𝐸𝑖,𝑡 and 𝐻𝑖,𝑡 are variables for electricity 

and heat produced and/or bought, 𝐶𝐼𝑁,𝑂𝑀 represents all other investment and operational 

costs, and 𝐼 is the income generated. Uncertainty associated with demands and irradiance 

exist in the right-hand side coefficient of the associated constraints, and therefore can be 

represented by the following generalised counterpart: 

𝑥𝑖,𝑡 − 𝜀ĉi,t ≤ c̅i,t  ∀𝑖 ∈ 𝐈, 𝑡 ∈ 𝐓 (4) 

where 𝑥𝑖,𝑡 is a variable, c̅i,t is the nominal value of the uncertain parameter, ĉi,t is the 

perturbation, and 𝜀 represents the parameter controlling the size of the uncertainty, which 

is 𝜀 ∈ [0,1] for a polyhedral set with one uncertain parameter in the constraint. Note that 

the sizing parameters can be used to control the level of conservativeness in the decision, 

i.e., the higher the value taken by the sizing parameter, the more conservative the decision 

will be. As the upper bounds of the two sizing parameters, Γ0 and 𝜀, are different, Γ0 is 
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fixed to its upper bound and multiplied by 𝜀 to ensure that the conservativeness is varied 

by the same amount across the constraints. 

The NLP includes nonconvex constraints to calculate the active 𝑃𝑛
𝛼  and reactive 𝑄𝑛

𝛼  power 

at each phase 𝛼 = {𝐴, 𝐵, 𝐶} and node 𝑛 ∈ 𝐍, connected to branch (𝑛, 𝑚) ∈ 𝐋: 

𝑃𝑛,𝑡
𝛼 =  𝑉𝑛,𝑡

𝛼 ∑ ∑ 𝑉𝑚,𝑡
𝜑

(𝑔𝑚𝑛,𝑡
𝛼𝜑

cos(𝜃𝑛,𝑡
𝛼 − 𝜃𝑚,𝑡

𝜑
)

 𝜑∈{𝑎,𝑏,𝑐}𝑚∈𝑁

+ 𝑏𝑚𝑛,𝑡
𝛼𝜑

sin(𝜃𝑛,𝑡
𝛼 − 𝜃𝑚,𝑡

𝜑
)) ∀𝑛 ∈ 𝐍 , 𝑡 ∈ 𝐓 

(5) 

𝑄𝑛,𝑡
𝛼 =  𝑉𝑛,𝑡

𝛼 ∑ ∑ 𝑉𝑚,𝑡
𝜑

(𝑔𝑚𝑛,𝑡
𝛼𝜑

sin(𝜃𝑛,𝑡
𝛼 − 𝜃𝑚,𝑡

𝜑
)

 𝜑∈{𝑎,𝑏,𝑐}𝑚∈𝑁

− 𝑏𝑚𝑛,𝑡
𝛼𝜑

cos(𝜃𝑛,𝑡
𝛼 − 𝜃𝑚,𝑡

𝜑
)) ∀𝑛 ∈ 𝐍, 𝑡 ∈ 𝐓 

(6) 

where  𝑔𝑚𝑛
𝛼𝜑

 and 𝑏𝑚𝑛
𝛼𝜑

 are conductance and susceptance derived from the real and 

imaginary parts of the complex phase admittance matrix Y, as shown below: 

Y = [
𝑌11

𝐴𝐵𝐶 ⋯ 𝑌1𝑛
𝐴𝐵𝐶

⋮ ⋱ ⋮
𝑌𝑛1

𝐴𝐵𝐶 ⋯ 𝑌𝑛𝑛
𝐴𝐵𝐶

] (7) 

Each element of Y represents a 3 × 3 matrix, obtained using line parameters and the 

Approximate Line Model (Grigsby, 2018). The Y submatrices at the transformer primary 

and secondary connections have been obtained from Chen et al. (1991). The DES and 

UPF are linked at load (house) nodes, where active and reactive power injections occur 

at the respective phase, while injections at the other phases remain zero.  

3. Case study 

A modified version of the IEEE European Low Voltage Test Feeder (IEEE, 2020) has 

been considered as a realistic unbalanced three-phase test case. A reduced version of the 

906-node test feeder is used to demonstrate the proposed framework, as presented in 

Figure 1, with 22 of the 55 loads and associated key network connections. A Wye-Wye 

transformer is considered at the slack node, i.e., the point at which the local network is 

connected to the wider grid. It is assumed that all the consumers in this network are opting 

to install distributed energy resources, which include solar PVs, lithium-ion batteries, and 

boilers. All loads are assumed to have a constant power factor of 0.95.  

 

Figure 1. The subset of loads and branches from the IEEE European LV Test Feeder which are 

used in this study. Note the unequal number of loads connected to each phase. 
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Averaged demand and irradiance data for four representative seasonal days have been 

discretised into hourly timestamps. Other inputs include renewable energy generation and 

export tariffs, day and night electricity purchasing prices, available roof area (35 m2) for 

PV installation, available volume (0.5 m3) for battery installation, and technology 

performance parameters and capital costs. Solar irradiance, heat and electricity demand, 

and pricing are considered as the subset of uncertain inputs. These have been identified 

by Mavromatidis et al. (2018b) to have the most influence on model outputs, via Global 

Sensitivity Analysis. As the DES lifespan is considered to be 20 years, harsh daily and 

seasonal variations are likely to be dampened when averaged over several years. 

Therefore, overall uncertainty intervals of 20%, 10% and 25% have been assumed for 

demands, irradiance, and pricing, respectively. 

4. Results and Discussion 

The MILP and NLP models are solved on Pyomo (Hart et al., 2011) using CPLEX (IBM, 

2019) and CONOPT (Drud, 1985), respectively. The overall deterministic NLP contains 

386,404 continuous variables and 627,169 constraints, with 4,312 fixed binary variables 

determined by the MILP. 

4.1. Deterministic scenario 

Table 1 presents the results for the deterministic scenario, where four models are 

evaluated: 1) DES-only which represents the MILP, 2) DES-DPF containing the DC 

power flow approximation, 3) DES-OPF containing balanced AC OPF, and 4) DES-UPF 

with unbalanced optimal power flow.  

Table 1. Comparison of deterministic results for four models. 

Breakdown DES only (MILP) DES-DPF DES-OPF DES-UPF 

Objective (£) 21,297 21,297 23,692 21,840 

% Difference 

(Objective) 
- 0 11 3 

Grid electricity (£) 4,962 4,962 4,876 4,917 

PV investment (£) 19,422 19,422 17,789 18,915 

PV operation (£) 1,375 1,375 1,259 1,339 

Boiler investment (£) 3,359 3,359 3,359 3,359 

Boiler operation (£) 13,804 13,804 13,804 13,804 

Battery investment (£) 64 64 148 95 

Battery operation (£) 27 27 62 39 

Export income (£) 6,368 6,368 3,548 5,681 

Generation income (£) 15,348 15,348 14,058 14,947 

Time taken (s) 23 91 353 1,968 
 

Voltage violations are detected in both DES-OPF and DES-UPF as a consequence of 

higher power injections from the prosumer due to high generation. The DES-DPF fails to 

detect this due to the assumption that voltages always remain at nominal values. 

Significant differences in objective values and designs are observed in DES-OPF when 

compared with DES-UPF, suggesting that the former overestimates both cost and design 

for this type of network. This overestimation is a result of a higher number of violations 

detected in DES-OPF across the network, as all loads are assumed to be connected to a 

balanced network represented by a single phase. On the other hand, the unbalanced model 

is capable of distinguishing voltage violations at specific phases and remedying them, 

rather than reducing PV capacity across most of the network. While the DES-UPF 
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objective has a low percentage difference when compared with that of DES-only, more 

prominent design differences can be observed, especially with respect to battery 

investment as larger batteries reduce network violations. Note that the high computational 

time recorded in Table 1 for DES-UPF is mostly used for model building on Pyomo, 

while only approximately 20% of the total time is used by the solver. 

4.2. Robust scenario 

Figure 2 summarises the percentage differences observed between the DES-only (MILP) 

model and DES-UPF at different levels of conservativeness. As conservativeness 

increases, the objective values achieved become more similar, as seen in Figure 2a. 

Despite these small differences in total annualised costs, Figure 2b shows that differences 

in design remain prominent at each level. Further tests show that fixing the design as 

predicted by the MILP would result in greater costs when unbalanced network constraints 

are included, due to solar power curtailment resulting in loss of export income. The 

consistently higher battery capacities chosen by the DES-UPF once again help minimise 

costs while reducing network violations. It is evident that the differences in objectives 

between the MILP and fixed DES-UPF design reduce as the levels of conservativeness 

increase. This suggests that MILP designs, despite the lack of detailed network 

constraints, may be practically feasible with respect to the network if uncertainty is 

considered with high levels of conservativeness in these formulations, while being less 

computationally expensive.  

 

Figure 2. Percentage differences observed with respect to different levels of conservativeness (𝜀) 

in a) objective values, and b) installed battery and PV capacities. 

5. Conclusion 

The modelling framework proposed in this work incorporates more realistic power flow 

constraints associated with unbalanced distributed networks for the first time, to which 

DES have been increasingly connected. It also uses Robust Optimisation techniques to 

optimise under uncertainty, which has not been included in detailed and combined models 

before. The framework is tested using an unbalanced feeder and compared with state-of-

the-art models, including DES combined with balanced AC power flow (DES-OPF). 

Results demonstrate that assuming the network is balanced can lead to overdesigned DES, 

much higher capital costs, and less income. They also confirm the unsuitability of DC 

approximations, as this model fails to detect any network violations. It is evident that the 

DES-UPF framework proposed in this paper achieves more robust designs at a slightly 

higher cost when compared to the globally optimal DES-only model. Results also suggest 

that DES-only and DES-UPF solutions could converge at higher levels of 
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conservativeness, emphasising the need to consider uncertainty in the design phase. The 

significantly higher computational expense of this model, compared with state-of-art 

DES-OPF, poses a major limitation to evaluating larger and more realistic test cases with 

higher nodes and branches. Therefore, decomposition techniques would be essential to 

improve the efficiency of this framework and further increase its utility. Other 

improvements include the addition of more transformer connections and network 

infrastructure to study potential mitigation strategies at the operational stage.  Finally, the 

study emphasises the need for more investigations using high-fidelity models to obtain 

locally optimal but more robust DES designs while considering existing infrastructure 

and networks. This would give both network operators and prosumers greater confidence 

in implementing DES, and jointly address the need for more renewable energy resources. 
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Abstract 
This paper proposes a novel optimization algorithm for constrained black-box problems, 
where the objective function and some constraints are computed by a simulation code. 
The basic idea of the optimization algorithm, referred to as SCR (Surrogate-CMAES-
RQLIF), is to (i) build separate Kriging surrogates for the objective function and black-
box constraints, (ii) use the global search algorithm CMAES to find the global optimum 
region of the surrogate, (iii) use the recent algorithm RQLIF to refine the search locally, 
(iv) use all the points sampled by RQLIF and additional points within the optimal region 
located by CMAES to update the surrogate model. Tests on 46 constrained and 
unconstrained test problems show that SCR outperforms the benchmark algorithms in 
terms of fraction of problems solved, specially at low function evaluations (< 300). 
 
Keywords: process optimization, surrogate-based optimization, Black-box optimization, 
Global optimization. 
 

1. Introduction 
A vast range of process engineering and economic problems  [1] can be tackled as black 
box optimization problems where the objective function and the constraints are computed 
by a simulation code (e.g., flow sheeting software, CFD code, etc). The simulation code 
works as a noisy and computationally expensive black-box function called by the 
optimization algorithm. In such optimization problems gradient information are not 
available so gradient-based algorithms are not suitable, and it is necessary to rely on 
derivative-free methods [2]. Moreover, simulations codes are computational expensive 
making it necessary to reduce the number of black-box function evaluations. Thus, an 
efficient derivative-free algorithm is required to optimize these simulation codes with a 
limited number of function evaluations, this can be done by creating a surrogate model of 
the simulation code.  
The goal of this paper is to present a novel derivative-free, surrogate-based global 
optimization algorithm called SCR which is well suited for black-box problems with 
general nonlinear constraints. The problem that we consider is of the form 

min
𝑥𝑥∈ℝ𝑛𝑛

  𝑓𝑓(𝑥𝑥) 
𝑠𝑠. 𝑡𝑡. ∶    𝑙𝑙𝑙𝑙 ≤ 𝑥𝑥 ≤ 𝑢𝑢𝑢𝑢 
             ℎ(𝑥𝑥) = 0 
             𝑔𝑔(𝑥𝑥) ≤ 0  
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where lb, ub are the bounds, 𝑔𝑔 is the vector of inequality constraints, h is the vector of 
equality constraints and f is the objective function . One or all the functions may be 
nonlinear, nonconvex, computationally expensive, non-smooth and noisy black-box 
functions (e.g., computed by a process simulation code).  

2. SCR algorithm 
SCR (Surrogate-CMAES-RQLIF) is a surrogate based derivative-free optimization 
algorithm which is suitable for problems with expensive and possibly noisy black-box 
functions. The flowchart of SCR is provided in Figure 1 and summarized below in four 
steps.  

0) Initially 6n (where n is the number of optimization variables) random points are 
generated using latin hypercube. 

1) Separate Kriging surrogate models of the black box problem and its constraints 
are created using the Matlab based Kriging toolbox DACE [3].  

2) The surrogates of the objective function and constraints are then used by the 
evolutionary algorithm CMAES [4] to find the global minimum of the 
constrained surrogate model. The constraints and objective surrogates are 
combined in CMAES using the quadratic penalty approach.  

3) If the optimum found by CMAES is relatively close to the best solution found 
in the previous iterations (i.e., there is the need of performing a local search in 
that region), the local search algorithm RQLIF [5] is called with a limit of 3n 
black-box function evaluations. RQLIF is a hybrid implicit-filtering-model 
based (using a regularized quadratic model) algorithm specifically developed for 
expensive black-box functions and tested on a wide range of test and engineering 
problems.  

4) At the end of the RQLIF run, the surrogate models are updated by adding the 
points tested by RQLIF along with 3n new points found using latin hypercube. 
The algorithm stops if RQLIF reaches the convergence tolerance on the search 
step length, or the maximum number of black-box evaluations is reached. If none 
of these stopping criteria is met, the algorithm begins a new iteration from Step 
2. 

 

 

3. Assessment of SCR performance on test functions 
The Matlab implementation of SCR was tested in comparison with two well-known 
derivative free algorithms: NOMAD [6] and CMAES [4]. These algorithms were selected 
from many other alternatives (see [7]for a review) as they are widely used and very 
effective, as reported in literature [5] [8]. Furthermore, both these algorithms use different 
strategies, NOMAD samples points on an adaptive mesh grid using direct search methods 
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while CMAES uses an evolutionary optimization strategy with covariance matrix 
adaptation. 
The tests were carried out on 25 unconstrained nonlinear test problems taken from [9]
and 21 constrained nonlinear test problems taken from GLOBALLib and Floudas' 
Collection [10]. These test problems feature 2-13 real variables and up to 17 constraints. 
Each run of each algorithm was repeated ten times starting from initialization points was 
found using Latin Hyper Cube Method. The average results of the ten runs are used to 
plot the performance profiles reported in Figure 2. The performance parameter shows the 
fraction of problems solved within a certain tolerance “𝜏𝜏”, as defined by [11], with the 
maximum allowed budget of black-box function evaluations.
Figure 2 shows that SCR outperforms the benchmark algorithms in terms of fraction of 
problems solved for both constrained and unconstrained problems. The figure also shows 
that SCR performs quite well at low function evaluations (< 300) in terms of fraction of 
problems solved and solution quality. 

Figure 2: Comparison of SCR with benchmark algorithms

Figure 2 reports the performance of a modified version of SCR (called SCR-pen) which 
generates directly the surrogate of the penalized function (obj. function + penalty term 
proportional to the quadratic violation of constraints). Compared to directly generating
the surrogate of the penalized objective function (SCR-pen), the strategy of SCR of 
generating separate surrogates for the black-box function and each of its constraints (g
and h) leads to the following main advantages: (i) the surrogates are more accurate since 
the constraint functions do not have steep valleys/curvatures like those of the quadratic 
penalty term, (ii) the surrogate generation algorithm and the optimization algorithm do 
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not incur in ill-conditioning problems caused by the quadratic penalty term outside the 
feasible region. 

4. Optimization of a CO2 Purification Unit  
SCR was applied to the techno-economic optimization of a CO2 Purification unit (CPU) 
developed for the purification of CO2 captured from a Cement Plant [12]. The CPU 
scheme is reported in Figure 3 and it is based on a patent by Air Products [13], in the 
version published by [14]. The CPU model was developed in Aspen Plus® and its 
convergence needs 10-20 seconds depending on the input conditions. The optimization 
problem is to minimize the total annual cost (sum of annualized capital cost and operating 
costs) subject to four main nonlinear inequality constraints: (i) the recovery of CO2 should 
be greater than 95%, (ii) the purity of CO2 should be greater than 98%, (iii) the oxygen in 
the outlet stream should be less than 75 ppm, and (iv) the mole fraction of nitrogen in the 
outlet stream should be less than 3%.  

 
Figure 3: Scheme of CO2 purification unit (CPU) 

 
The process variables that are optimized (shown in green in Figure 3) are (1) pout, the 
compressor outlet pressure, (2) Q4, the heat absorbed by the liquid stream coming from 
the separator and going to the stripper, and (3) T2,out, the temperature of the inlet stream 
of the seperator. 
Figure 4 shows the convergence plot (objective function value of the best-found solution 
as a function of the number of simulation runs) of SCR and NOMAD. The figure indicates 
that SCR is able to find a good solution with only 50 simulation calls, and further 
improving it with the successive 150 calls. However, NOMAD was able to find a similar 
solution after 400 calls. The comparison of the yearly capital cost of each component and 
the total yearly operational cost of the CPU for the optimized case for SCR and NOMAD 
is provided in Table 1. The values of the main process parameters affected by the 
optimization process are shown in Table 1. 
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Figure 4: Comparison between SCR and NOMAD for the considered case study 

 
Table 1: Main process parameters and the yearly cost of CPU components optimized with SCR 
and NOMAD  

  SCR NOMAD 
pout (bar) 38.3 37.7 
T2,out (°C) -44.3 -44.6 
Q4 (kW) 564.8 562.3 
CO2 Recovery (captured CO2/inlet CO2) 95.00% 95.00% 
Purity (mol. conc. of CO2 in captured stream) 99.99% 99.99% 
Oxygen conc. in captured stream (ppm) 7.26 7.13 
N2+AR conc. in captured stream 2.95E-06 2.88E-06 
Total Area of main HX (m2) 892.6 948.2 
Compressor power (kW) 11206.2 11171.2 
Costs   
Annualized compressors cost (k€/year) 5678 5664 
Annualized Intercoolers cost (k€/year) 305 305 
Annualized Heat Exchanger cost (k€/year) 865 900 
Other Equipment cost (k€/year) 126 125 
Yearly Operational Cost (k€/year) 6453 6433 
Total yearly cost 13428 13428 

5. Conclusion 
SCR is a surrogate based derivative free algorithm which is well suited for black-box 
optimization problems with expensive function evaluations. SCR creates surrogate model 
of the black-box problem and its constraints to accelerate convergence and handle the 
noise. Performance profiles of SCR compared with two well-known optimization 
algorithms (CMAES & NOMAD) indicate that SCR provides good quality solutions in 
limited number of functional evaluations on a large set of benchmarking test problems. 
 
When applied to a real engineering black-box optimization problem, the optimization of 
a CO2 purification process, SCR needs about half simulation runs (about 200) compared 
to NOMAD to find the same optimum solution. 
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Abstract 

Due to the volatile nature of renewable energy sources, balancing electricity generation 
and consumption in electric power systems becomes more challenging with an increasing 
share of renewable generation technologies. A promising option to face fluctuations in 
the electricity grid is demand-side management (DSM), the adjustment of electricity 
consumption driven by varying electricity prices. To assess the environmental impacts of 
DSM, the holistic method of life cycle assessment can be applied. In literature, life cycle 
assessment of DSM receives increased attention. However, the goals of operating DSM 
are not consistently reflected in the definition of the functional unit. In our view, the goals 
of DSM include both the original products of a process as well as the flexible electricity 
consumption. So far, no approach exists that considers both goals in the functional unit. 

This work aims to close this gap by developing an approach that jointly considers 
products and flexibility in the functional unit of DSM. We compare DSM with a steady-
state operation of the process as a reference system, given that both systems provide the 
same products. Furthermore, we expand the reference system with energy storage 
technologies, which enable short- and long-term flexibility in electricity consumption. 
We demonstrate the proposed approach on the switchable chlor-alkali electrolysis, using 
hourly electricity prices and emission factors. Our findings show that comparing the 
switchable electrolysis to the reference system indicates only small differences in the 
environmental impacts. Thus, the results indicate that the flexible operation of the chlor-
alkali electrolysis has comparable environmental impacts as integrating electricity 
storage. 
 
Keywords: functional unit, flexibility, chlor-alkali electrolysis 

1. Introduction 
The integration of renewable energies into the electricity grid aims to reduce greenhouse 
gas (GHG) emissions. However, due to the volatile nature of renewable energies, the 
temporal mismatch between demand and supply of electricity is likely to increase. This 
mismatch can be reduced by demand-side management (DSM) - the load management of 
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processes or appliances to reduce the overall energy costs (Warren, 2014). To analyze if 
DSM is suitable to stabilize the electricity grid while avoiding significant environmental 
impacts, the environmental assessment of DSM is necessary. Currently, the 
environmental impacts of DSM receive increased attention in literature (e.g., Schäfer et 
al., 2020). For the environmental assessment of DSM, the method of life cycle assessment 
(LCA) can be applied. LCA is a holistic method, covering potential environmental 
impacts over the entire life cycle of a product system (International organization for 
standardisation, 2021). The LCA is conducted by comparing DSM with a reference 
operation mode. For this comparison, it is essential that both modes of operation provide 
the same functions, e.g., the production of a certain product. These functions are defined 
and quantified by the functional unit. However, concerning the environmental assessment 
of DSM, the functional unit differs in literature. Some studies focus on the products of 
the DSM and consider the flexible electricity consumption as a secondary benefit to 
reduce process costs (Walzberg et al., 2019). Other studies consider the grid service due 
to the flexible electricity consumption as the only function, especially when non-
industrial DSM is considered (Milovanoff et al., 2018). In the environmental assessment 
of industrial DSM, the products should be integrated into the functional unit since they 
are essential for downstream processes. Furthermore, considering the importance of 
system services to the electricity grid, the flexible electricity consumption of DSM should 
also be included in the functional unit.  
In this work, we present an approach to integrate both the products and the flexible 
electricity consumption in the functional unit of DSM. The approach is introduced and 
applied to the switchable chlor-alkali electrolysis, which is a potential DSM process in 
the chemical industry.  

2. LCA of demand-side management processes 
The proposed approach aims to assess environmental impacts of DSM via a comparative 
LCA, in which products and flexible electricity consumption are included in the 
functional unit. Since industrial processes usually supply downstream processes, we 
define a constant supply rate of the products in the functional unit. Therefore, the DSM 
system generally needs an additional product storage to enable a constant supply rate. The 
reference system for comparison comprises the conventional steady-state operation, 
providing a constant supply of products. However, since the steady-state operation cannot 
provide a flexible electricity consumption, the reference system is expanded with energy 
storage units. To consider different time periods of flexibility, short-term as well as long-
term storage technologies are used for the expansion. The power and capacity of these 
storage units depend on the flexibility defined in the functional unit. Since DSM is 
assessed, we define the flexible electricity consumption by the DSM as the required 
flexibility. But quantifying this flexibility is challenging because it depends on the 
flexible power that the DSM can provide and the duration of provided flexibility. Thus, 
we propose the following four-step approach to determine the environmental impacts of 
the DSM and the reference system while guaranteeing the same flexibility (Figure 1): 

1. To quantify the flexibility of the DSM, the operation profile of the process is 
required. For this, the operation of the DSM process is optimized while 
minimizing operating costs. The time horizon of this optimization covers one 
year so that seasonal variations in DSM are considered. The time resolution of 
the optimization should be defined in accordance with the ramping constraints 
of the DSM. From the results of this optimization, the electrical load profile of 
the DSM process is obtained. The derivative of this load profile, i.e., the 
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marginal electricity consumption, characterizes the flexibility of the DSM. In 
the functional unit, flexibility is defined as the potential to provide the same 
flexibility as the DSM, thus the potential to operate with the same marginal 
electricity consumption. 

2. In the reference system, the steady-state operation and the storage capacities 
need to be designed so that they can provide the products and flexibility as stated 
in the functional unit. For this, an optimization minimizing design and 
operational costs of the reference system is conducted. Since the reference 
system should provide the same flexibility as the DSM system, the derivative of 
the electrical load profile is predefined for the reference system by the derivative 
of the DSM system as obtained in Step 1. The same derivative results in the same 
shape of the electric load profile. Although the shape of electricity consumption 
is predefined, it does not restrict the total amount of consumed electricity, i.e., 
there can be a constant offset in electricity consumption between the DSM and 
the reference system. The amount of the constant offset depends on the process 
and storage efficiencies. Furthermore, the constant offset enables the assessment 
of different DSM types such as load shifting, peak clipping, or valley filling.  

3. Subsequent to the design optimization, the reference system can provide the 
same flexibility as the DSM. However, the restriction of the derivative of 
electricity consumption can lead to a suboptimal economic operation of the 
reference system. Economically, the reference system would probably be 
operated differently due to the diverse efficiencies and ramping constraints of 
the storage technologies. Thus, an optimization minimizing the operational costs 
of the reference system with the design results of step 2 is conducted while 
providing the same supply rate as defined in the functional unit. 

4. As a last step, the life cycle impact assessment of both systems is conducted. For 
this, the respective operation determined in Steps 1 and 3 is applied to calculate 
the environmental impacts in each time step. These impacts are accumulated for 
one year of operation. Furthermore, the construction and disposal impacts of the 
production and storage facilities are included to consider the complete life cycle 
of both systems. The construction impacts of each component are proportionally 

Figure 1: Life cycle assessment of demand-side management (DSM) with proposed 
four step approach. 
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allocated to one year, depending on the lifetime of the component. Finally, the 
impacts of operation and construction are added, and both systems are compared. 

3. LCA of the switchable chlor-alkali electrolysis 
The presented approach is applied for the environmental assessment of the switchable 
chlor-alkali electrolysis. Chlor-alkali electrolysis is an essential process in the chemical 
industry, producing the bulk chemicals chlorine and sodium hydroxide. The switchable 
chlor-alkali electrolysis can apply DSM by utilizing a bifunctional electrode which allows 
changing operation between two different modes (Brée et al., 2018). The standard mode 
converts a brine solution into chlorine, sodium hydroxide, and hydrogen (H2-mode). The 
typical electricity consumption ranges between 2.1 and 3.0 kWh per kg of produced 
chlorine. The second mode requires oxygen as an additional input and suppresses the 
hydrogen production (O2-mode). This mode consumes around 30% less electricity. When 
switching between these modes, cleaning the electrolysis cell is necessary to avoid 
oxyhydrogen reaction. The cleaning leads to downtimes in the production. Therefore, to 
enable a constant supply of products, the electrolysis is capable of overproduction, and a 
small intermediate storage for the products is integrated into the system. 
The mathematical model of the switchable chlor-alkali electrolysis is adapted from Roh 
et al. (2019). The model is formulated as a mixed-integer linear program (MILP). Since 
the downtimes due to the cleaning of the electrolysis cell do not represent the controllable 
flexibility of the DSM, the downtimes and the overproduction are neglected for the 
determination of the flexibility in the functional unit. The supply of products defined in 
the functional unit is 1 kg chlorine and 1.128 kg sodium hydroxide per hour over the time 
horizon of one year. The produced hydrogen is assumed to be burned for supplying heat 
to other processes, which is often applied in the chemical industry (Jörissen et al., 2011). 
Therefore, a heat supply is also defined in the functional unit by multiplication of the 
produced hydrogen and its lower heating value. 
In the reference system, the H2-mode is chosen as the steady-state process since it is the 
conventional process of the chlor-alkali electrolysis. Because the H2-mode consumes 
more electricity than the O2-mode, the DSM application represented by the switchable 
chlor-alkali electrolysis is peak-clipping. The short-term storage technology considered 
for the system expansion of the reference system is a vanadium redox flow battery. This 
type of battery was chosen because it allows a separate design of storage power and 
capacity. For long-term storage, the power-to-methane-to-power technology is 
considered. This technology consists of water electrolysis, a methanation plant, a methane 
storage tank, and a natural gas turbine. Although this technology is immature, it is one of 
the most promising options for long-term storage of electricity without being regionally 
bounded (Jülch, 2016). 
The exogenous electricity price is obtained from Bundesnetzagenur | SMARD.de (2020) 
and represents the German electricity prices on the wholesale market in 2019. The 
electricity price is increased by 1.5ct/kWh, representing levies and taxes for the energy 
intensive industry. For the environmental assessment, the hourly grid mix emissions are 
calculated with emission factors of the generation technologies provided by ecoinvent 3.6 
(Wernet et al., 2016) and the hourly mix of generating technologies, which is also 
obtained from Bundesnetzagenur | SMARD.de (2020). The environmental impacts of the 
chlor-alkali electrolyzer construction are integrated by the work of Jung et al. (2014). For 
the calculation of the vanadium redox flow battery's construction impacts, the modelling 
of Weber et al. (2018) is applied. Construction impacts of the water electrolysis are taken 
from Baumgärtner et al. (2021). All other construction impacts are modeled with the life 
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cycle inventory database ecoinvent 3.6 (Wernet et al., 2016). The considered life cycle 
impact assessment method is Environmental Footprint 2.0, which is recommended by the 
European Commission’s Joint Research Center (Sala et al., 2014).  

4. Results of the switchable chlor-alkali electrolysis 
The operational optimization of the switchable chlor-alkali electrolysis shows that the 
electrolysis operates more often in the H2-mode during the year (from 22.7% to 73.6% 
per month, 56.4% annual average, see Figure 2). The O2-mode is the preferred mode 
during January and February, since the electricity price in these months is higher than in 
the summer. The DSM results in a seasonal variation of electricity demand, which is 
represented in the functional unit and favors a system expansion with long-term storage 
in the reference system. Actually, the power-to-methane-to-power facility provides all the 
flexibility with a charging power of 0.47 kW, discharging power of 0.16 kW and a 
methane storage of 25.94 kg, representing an electrical storage capacity of 360.29 kWh.  

The results of the life cycle impact assessment show that DSM of the switchable chlor-
alkali electrolysis leads to similar environmental impacts compared to the reference 
system in all impact categories except human toxicity (non-cancer). The reasons for the 
similar environmental impacts are the high impacts of sodium chloride and electricity in 
the operation of the electrolysis. Impacts due to construction are mostly negligible in 
comparison to the impacts of process operation. However, the impact in human toxicity 
(non-cancer) is remarkably higher for the reference system, because of the high impact 
of storage construction in this category. As the results are mostly in the range of impact 
assessment uncertainties, no recommendations for operating the chlor-alkali electrolysis 
can be given. However, the results indicate that applying DSM for the chlor-alkali 
electrolysis has comparable environmental impacts as integrating storage technologies 
into the grid to match the electricity supply with its demand. 

5. Conclusions 
In this paper we propose an approach to assess the environmental impacts of DSM via 
LCA by integrating flexibility in the functional unit. The approach enables a comparison 
between applying DSM and the utilization of storage technologies to provide flexibility. 
We demonstrate our approach on the environmental assessment of the switchable chlor-
alkali electrolysis. The environmental impacts of the switchable chlor-alkali electrolysis 

Figure 2: Operation overview of the switchable chlor-alkali electrolysis for the complete year (top 
plot) and detailed operation for January and August (bottom plots). 
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and the reference system are mostly in the range of impact assessment uncertainties. 
However, the results indicate that applying DSM for the chlor-alkali electrolysis has 
comparable environmental impacts as integrating storage technologies. 
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Abstract 

This study presents a systematic methodology for process synthesis based on 

superstructure optimization, which identifies the optimal configuration of a biorefinery to 

produce high value chemical and biochemical products, by maximizing product profits 

and minimizing process energy costs and the investment costs. The case study employed 

agave bagasse as a feedstock. The results indicated that furfural production is the best 

option, followed by lactic acid production as the second best and, ethanol, ethylene glycol 

and diethylene glycol production was the third best option, relying on the objectives 

previously mentioned. The optimization was performed using a variant of genetic 

algorithms with multi-objective approach (Gamultiobj), through a COM® interface 

linking the computational tools such as, Aspen Plus and MATLAB, which allowed to 

perform a rigorous energy balance calculation employing the proper thermodynamic 

models. 
 

Keywords: superstructure, optimization, agave bagasse, genetic algorithms. 

1. Introduction 

The production of biofuels and/or high value chemical products derived from 

lignocellulosic biomass is one of the alternatives that has been studies and developed in 

recent years (Ren et al., 2009). These chemical compounds can be produced from a 

variety of non-food crops, such as lignocellulosic residues from agriculture, forestry, and 

food industry, which has a direct impact on reducing dependence on fossil resources. 

Lignocellulosic biomass is mainly composed by three biopolymers: cellulose, 

hemicellulose, and lignin. The cellulose and hemicellulose fractions can be subjected to 

diverse chemical and/or biological processes and a wide variety of compounds can be 

obtained. There is great interest in proposing new optimal industrial processes that use 

lignocellulosic biomass as feedstock, with the purpose of producing high value chemical 

compounds and/or biofuels, through production platforms called biorefineries. 

A superstructure represents all possible pathways by synthesizing distinctive alternatives 

at different stages of the processing network to optimize a series of possible processing 

approaches (Quaglia et al., 2015). This methodology has been widely used to optimize 

multi-criteria processing alternatives, for example, to select the optimal pathway for the 

conversion of microalgae to biodiesel (Rizwan et al., 2013), among others. Although the 

results were promising in terms of different parameters such as economic and 

environmental, the study did not cover other aspects, such as rigorous energy balances 
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analysis, which is a paramount aspect that must be included in the multidimensional 

analysis for finding optimal (bio)process routes.

The optimization task in process synthesis employing superstructures is another issue to 

solve. Some computer-aided tools have been employed to solve that kind of problems, 

but it is necessary to represent and develop the mass balance process model and most of 

the time, energy balance is rarely included (Rizwan et al., 2013). On the other hand, the 

use of ActiveX -OLE(COM)®  technology allows the implementation of an interface 

between MATLAB R2017a®  and Aspen Plus V.8.8®  (Darkwah et al., 2018; Ponce-

Rocha et al., 2021). The utilization of the NSGA-II algorithm is a well-established multi-

objective evolutionary algorithm, which has been successfully implemented in a wide 

range of applications (Punnathanam and Kotecha, 2016). Matlab ®  offers a suite focused 

on multi-objective optimization (Gamultiobj) to create a set of points on the Pareto front. 

Gamultiobj uses a controlled and elitist genetic algorithm (a variant of NSGA-II). 

Moreover, Aspen Plus®  provides a suitable environment for robust process simulation. 

Thereby, the objective of this research was to create and implement, a new methodology 

based on a genetic algorithm for the optimization of superstructures, integrating two 

computational programs through an interface: Aspen Plus (AP) and Matlab. This allowed 

the use of a rigorous thermodynamic approach by combining computer-aided tools, to 

find the best configuration of a biorefinery considering different processing routes to 

obtain high value biofuels and chemical products. Expanding how process synthesis has 

mostly been performed so far. 

2. Methodology

The proposed methodology includes the collection of data such as, potential process 

routes to transform lignocellulosic biomass. The methodology was used to identify the 

optimal route for processing one or several chemical products on a commercial scale from 

agave bagasse, since it is a natural residue from the production of tequila and mezcal in 

some regions of Mexico. The processed agave bagasse used in this study was 1000 

kg/day. The costs used in the economic evaluation were based on the current commercial 

price available (Alibaba, 2021). The thermodynamic model employed in this work was 

NRTL, while the parameters were obtained from Wooley and Putsche (1996). The 

compounds that were not found in the aspen plus database were generated using published 

experimental data and using group contribution approach.

2 .1 . Superstructure generation

Five major processing sections are included in the superstructure: feedstock, 

pretreatment, hydrolysis, fermentation, separation and/or purification (see Fig. 1). 

Fig. 1 Biorefinery superstructure to produce diverse chemical products.
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The different production routes of biofuels and/or chemicals from lignocellulosic biomass 

were developed and simulated in Aspen Plus® through a superstructure. Aspen Plus was 

selected for its versatility and thoroughness for obtaining the results of mass balances and 

energy requirements, in addition to the availability of appropriate thermodynamic models. 

Aspen Plus and Matlab were connected to use the optimization suites available in Matlab. 

The optimization technique used in this work was based on stochastic multi-objective 

evolutionary methods. 

2.2. Superstructure objective function 

The multi-objective optimization problem was formulated to maximize the profit per day 

(GAN) and minimize the energy consumption per day (Q), given by: 

 

min(−𝐺𝐴𝑁, 𝑄) = 𝑓(𝑥𝐵𝑀 , 𝑥𝑠𝑢𝑔𝑎𝑟𝑠 , 𝑥𝑠𝑒𝑐−𝑝𝑟𝑜𝑑𝑢𝑐𝑡)                             (1) 

𝐺𝐴𝑁 = ∑(𝑃𝑖 ∗ 𝐶𝑉𝑖) 

𝑛

𝑖=1

− 𝐶𝐵 ∗ 𝐵𝑀 −  ∑ 𝑀𝑃𝑗

𝑚

𝑗=1

                                 (2) 

𝑄 = ∑ 𝐶𝑣𝑎𝑝𝑜𝑟 ∗ 𝑄𝑖𝑛𝑘

𝑝

𝑘=1

+ 𝐶𝑤𝑎𝑡𝑒𝑟 ∗ 𝑄𝑜𝑢𝑡𝑘
                                           (3) 

where Pi is the amount of product obtained in kg/day, CVi are the selling prices of product 

obtained in USD/kg, CB is the cost of feedstock in USD/kg, BM is the processed biomass 

(1,000 kg/day) and MPi is the cost of reactants and additives of each process in USD/kg. 

Qin and Qout are the amount of energy to be supplied and removed from the equipment 

respectively in kJ/day, Csteam and Cwater are the cost of steam and cooling water, 

respectively, in USD/kg. 

The multi-objective function is formulated in terms of decision variables as the treated 

mass fractions distribution in each section considered in the superstructure, that is, the 

mass fractions of fed biomass, mass fractions of the pretreatment, enzymatic hydrolysis, 

and fermentation stages. Optimization of the superstructure was performed using a 

stochastic multi-objective evolutionary method (Gamultiobj®), where population sizes 

of 100 individuals, 15 generations, crossover fraction 0.8, and a feasible adaptive 

mutation fraction were used. The implementation of the COM® interface used the 

computational tools Aspen Plus V.8.8® - Matlab R2017a®. The investment costs 

estimation was also included as a decision variable and calculated with the Guthrie 

method, to obtain an approximate investment cost for each of the scenarios to be 

considered. So, this parameter will be a decision criterion for an optimal biorefinery route. 

3. Results 

3.1 Optimal product and its processing route. 

Table 1 presents a summary of the scenarios obtained by the optimizer, including GAN 

(product profit per day), Q (energy cost per day), IC (investment costs) and the result of 

the multi-objective function; in addition to the products obtained for each scenario, where 

the production of furfural is common for all the scenarios. Fig. 2a illustrates the optimal 

results in a 3D plot, Fig. 2b presents a ternary plot that illustrates the scenarios among the 

three objectives mentioned above. The optimal process flow diagram of the optimal 

processing route is shown in Fig. 2c. The results shown in Table 1 indicate that the 

processing route presented in Fig. 2c leads to the highest GAN (393.73 USD/day) of all 

the candidates, having a minimum cost of energy expenses (13 USD/day) and a minimum 

in the investment costs (3,230,000 USD). The optimal processing route for furfural 
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production consists of direct treatment of agave bagasse by acid hydrolysis with 

tetrahydrofuran.

Table 1 Results of superstructure optimization.

Scenario Multi-

obj ective 

function

GAN 

(USD/ day)

Q 

(USD/ day)

IC (USD) Products

A 1,114.47 1,237.51 123.04 150,744,112 furfural, HMF, FDCA

B 380.73 393.73 13.00 3,230,000 furfural

C 408.53 521.92 113.39 249,740,863 furfural, HMF, FDCA

D 575.94 692.92 116.98 143,792,625 furfural, HMF, FDCA

E 1,092.27 1,215.31 123.04 150,694,121 furfural, HMF, FDCA

F 467.48 582.63 115.15 249,740,863 furfural, HMF, FDCA

G 611.67 731.53 119.86 149,839,974 furfural, HMF, FDCA

H 894.81 1,016.99 122.18 146,775,251 furfural, HMF, FDCA

I 861.94 983.44 121.50 148,226,897 furfural, HMF, FDCA

Nomenclature: HMF =  hydroxymethylfurfural; FDCA =  2,5-Furandicarboxylic acid

a) b)

c)

Fig. 2. a) 3D plot of the optimal processing scenarios, b) Ternary plot of optimal processing 

scenarios, c) Optimal processing route for agave bagasse.

3 .2 Suboptimal products.

A subsequent optimization was performed not considering furfural production by acid 

hydrolysis with tetrahydrofuran in the superstructure, to find the second-best process 

configuration. Fig. 3a and 3b show the 3D plot and the ternary graph, respectively, where

the optimal scenarios are illustrated. The process flow of the optimal processing route is 

shown in Fig. 3c that correspond to lactic acid production. The process layout includes a 

steam explosion, enzymatic hydrolysis, fermentation and separation and purification 

stage. The results indicated that is possible to have a profit of 939.70 USD/day, energy 

expenses (Q ) of 26.13 USD/day and an IC of 6,187,109 USD.

In the same direction, a third optimal scenario was determined eliminating the furfural 

and lactic acid production processes of the superstructure. The results showed that the 

c)
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third best option was the production of ethanol, ethylene glycol and diethylene glycol,

including a pretreatment stage using steam explosion, followed by an enzymatic 

hydrolysis and fermentation stages. The profit (GAN) was 178.49 USD/day, with an 

energy cost (Q ) of 13.75 USD/day and an IC of 8,339,205 USD. Fig. 4a-4b shows the 

obtained optimal scenarios in a 3D and ternary plots, respectively. Fig. 4c illustrates the 

process flow diagram of the optimal processing route for ethanol, ethylene glycol and 

diethylene glycol production.

a) b)

c)

Nomenclature: LA=  lactic acid; HMF=  hydroxymethylfurfural; ET=  ethanol; EG= ethylene glycol; DIE=  diethylene glycol; 

PHB=  polyhydroxy butyrate; SA=  succinic acid.

Fig. 3. a) 3D plot of the suboptimal processing scenarios by eliminating the furfural production 

process, b) Ternary plot of the suboptimal processing scenarios by eliminating the furfural 

production process, c) Second optimal processing route for agave bagasse: lactic acid production.

a) b)

c)

Nomenclature: SA=  succinic acid; ET=  ethanol; EG=  ethylene glycol; DIE=  diethylene glycol; PHB=  polyhydroxy butyrate.

Fig. 4. a) 3D plot of the suboptimal processing scenarios by eliminating the furfural and lactic 

acid production process, b) Ternary plot of the suboptimal processing scenarios by eliminating the 

furfural and lactic acid production processes, b) Third optimal processing route for agave bagasse: 

ethanol, ethylene glycol and diethylene glycol production.

)
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4. Conclusion 

In this study, a new methodology for process synthesis with a superstructure approach 

was performed, in which different optimal process routes to produce high value chemicals 

were determined using agave bagasse lignocellulosic biomass as feedstock. The 

methodology involves a multi-objective optimization, maximizing profit, minimizing 

energy requirements, and including the lowest capital cost in the selection criteria. 

The integration of the Aspen Plus and Matlab computer-aided tools showed several 

advantages, one of them being that there was no need to explicitly introduce the equations 

representing each of the processes considered in the superstructure, such as mass and 

energy balances.  

In addition, the simulation of the superstructure in Aspen Plus allowed to calculate the 

thermodynamic properties, through equations of state and solution models that consider 

the non-idealities of the mixtures involved in the phase equilibria and the interactions of 

components; in this way, a rigorous approach was used, avoiding disregarding important 

data in the synthesis of processes. 

Different process scenarios were obtained in which the three decision criteria were 

satisfactorily fulfilled: maximization of total profit, minimization of energy expenses and 

the investment cost, permitting to obtain feasible process routes for the conversion of 

agave bagasse into a high value chemical product, such as the production of furfural, as 

first option, as second option the production of lactic acid and, as third option the 

production of ethanol, ethylene glycol and diethylene glycol.  
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Abstract 
District energy systems (DES) provide electric and thermal energy from a central plant to 
a developed area through underground distribution networks. Fossil fuels are widely used 
as a primary energy source in DES. In 2021, energy-related CO2 emissions from 
residential and commercial buildings reached 10% worldwide. In this paper, a 
renewables-based multigeneration system is proposed as a sustainable alternative for 
DES. The conventional system is based on a gas-fired combined cycle turbine and an 
absorption cooling system (ACS). The proposed renewables-based system utilises 
biomass and solar thermal energies and an ACS to provide district electricity, heating and 
cooling. A stochastic optimisation approach based on multi-objective generics algorithm 
(MOGA) is used to support the process modelling and identify the optimal pre-defined 
configurations based on their proximity to the Pareto curve. A techno-economic 
assessment is performed to compare the levelised cost of energy (LCOE) and evaluate 
the anticipated environmental footprint reduction. Results show that although the LCOE 
of the proposed system is higher than the conventional system, the reduction in CO2 
emissions converts directly into annual savings in districts covered by a carbon tax 
regime. 
 
Keywords: Carbon tax, Multigeneration, Optimisation, Renewable energy, Techno-
economic assessment. 

1. Introduction 
DES is one of the vital infrastructural elements of any modern urban development. It 
enables the efficient supply of critical utilities such as electricity, cooling and heating to 
contemporary residential and commercial districts. Conventional district supply entails 
fossil fuels as a primary energy source, such as coal, oil, and natural gas. Currently, 
residential and commercial buildings contribute 10% of the global carbon emissions. 
Therefore, renewable energy sources are now targeted for DES integration to enhance the 
environmental performance of the sector (Lake et al., 2017; IEA, 2021). Recently, several 
studies featured renewable energy integration into DES. Al-Obaidli et al. (2020) designed 
a renewables-based multigeneration system to supply electricity, heating, cooling and 
freshwater. The study's main objective was to assess the energetic and exergetic 
efficiencies of the system compared to conventional supply methods. Hou et al. (2018) 
evaluated expansion strategies for existing conventional DES through demand-side 
management efficiencies and the use of renewable technologies. The study found that a 
potential reduction in CO2 emissions between 6% and 8% was possible. Cheng et al. 
(2020) investigated the cost impact of CO2 emissions and renewable energy targets in two 
real-world districts in China using a mixed-integer linear programming model (MILP). 
The study found that the average cost of reducing carbon emissions by 40% is 66 $/tCO2, 
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while the average cost of achieving 25% renewable energy penetration is 65 $/MWh. 
Chen et al. (2021) proposed a 100% renewable energy DES for 30 different regions in 
China. The optimal portfolio for each district was determined based on economic 
performance and geographical features. The study identified the feasibility of the 
proposed system based on current market conditions with an average payback period of 
6 years. Whilst earlier studies may have looked at various indicators (cost, emissions, 
etc…) individually, they have not attempted to find the optimal solutions based on these 
indicators combined. 
 
This paper aims to develop a techno-economic assessment and optimisation tool for 
evaluating renewables-based DES compared to conventional supply systems. The MOGA 
process is used as a trade-off mechanism between LCOE and life-cycle emissions (LCE) 
and Net present project valuation (NPV) is performed subsequently for the identification 
of project profitability. The main objective is to couple the techno-economic evaluation 
and the trade-off analysis using MOGA in order to compare and evaluate the pre-defined 
configurations with the baseline for DES application. 

2. Methodology 
A case study was built for Al-Khor and Al-Thakira district, located in the North-East of 
Qatar. It is the closest residential district to the Ras Laffan industrial city (RLIC), which 
houses some of the world's most extensive natural gas processing and liquefaction 
facilities. Over the last 30 years, the district has witnessed cycles of growth and decline 
in both population and commercial activities due to peaking and diminishing project and 
construction work in the nearby RLIC. According to the 2020 census, the population total 
was 140,453, nearly 28% less than the population in 2010 (PSA, 2021). By dividing the 
total energy production over the total population, it is estimated that the average energy 
consumption per capita in Qatar is 17,307 kWh per annum. A DES is designed to supply 
electricity, heating and cooling for the district where commercial supply requirements are 
assumed to be equivalent to the residential energy requirements. Meanwhile, industrial 
requirements are excluded from this study. Table 1 provides the design specifications of 
the DES system.  
 
Table 1. Design specifications of DES system (EIA, 2020). 

Technology CF 
(%) 

Unit capacity 
(MW) 

Number of 
units 

Plant capacity 
(MW) 

CCGT 56.6 430 3 1,290 
PV 24.9 350 7 2,450 
CSP 43 900 2 1,800 
BIGCC 58.4 90 11 990 
BECCS 49.8 90 13 1,170 

 
Figure 1 depicts the DES system potential configurations. Renewables-based DES system 
using biomass and solar technologies is considered. Four technologies are envisaged: 
photovoltaics (PV) with battery storage, concentrated solar power (CSP) with thermal 
storage, a carbon-neutral biomass integrated gasification combined cycle (BIGCC) and a 
carbon-negative bioenergy with carbon capture and storage (BECCS) (Namany, 2019). 
A conventional system based on a natural gas-fired combined-cycle gas turbine (CCGT) 
is also included as a baseline configuration for comparison purposes. Since a PV-only 
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configuration cannot supply the required thermal energy for heating, a hybrid system will 
be considered and evaluated. 
 

 
Fig. 1. DES block diagram. 

 
A techno-economic assessment is performed based on the levelised cost of energy and 
life-cycle emissions. The LCOE is defined as lifetime costs over lifetime energy produced 
and is calculated using Eq. (1). 
 

𝐿𝐶𝑂𝐸 =
𝐶𝐶 + 𝑇𝑂𝐶 × 𝐷𝐹
𝐸+,-. × 𝐷𝐹

 (1) 

 
The capital cost (CC) is the product of the plant’s nameplate capacity by the capital cost 
rate, the total operating cost (TOC) is the sum of fixed (FOC) and variable operating costs 
(VOC), and Eprod is the annual energy production. The discount factor (DF) is determined 
using a facility lifetime of 24 years and a discount rate of 6.5%. Technology-specific cost 
and LCE parameters are listed in Table 2. Natural gas fuel cost is added to the VOC of 
CCGT only. 
 
Table 2. Cost and LCE data (EIA, 2020; IPCC, 2014; Namany, 2019). 

Technology CC rate 
($/kW) 

FOC rate 
($/kW) 

VOC rate 
($/MWh) 

LCE 
(gCO2eq/kWh) 

CCGT 1,084 14.1 2.55 490 
PV 1,755 31.27 - 48 
CSP 7,221 85.4 - 27 
BIGCC 4,468 132.82 - - 
BECCS 5,865 146.32 - (65) 

 
A multi-objective genetics algorithm is used to determine the optimal Pareto frontier. The 
two competing objectives of the optimisation problem are: 
 
𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒	5𝑐7𝑥7

7

  
 

Power Generation

Brayton Cycle

Rankine Cycle

Absorption ChillersDC-to-AC Inverters

Carbon Capture

Emissions

CCGT

BIGCC

BECCS

CSP

PV Chilled Water

Hot Water

Ekectricity

1257

1233



 H. Al-Obaidli et al. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒	5𝑒7𝑥7
7

  
 

 
where 𝑐7 is the unit LCOE per technology, 𝑒7 is the unit LCE per technology, and 𝑥7 is 
the technology fraction of the portfolio. The optimisation problem is subject to the 
following constraints: 
 
5𝑥7 = 1
7

	  

0 ≤ 𝑥7 ≤ 1  
 
The net present value is calculated using Eq. (2).  
 
𝑁𝑃𝑉 = −𝐶𝐶 + 𝐴𝑃 × 𝐷𝐹 (2) 

 
The annual profit (AP) is determined by subtracting the TOC plus carbon taxes from the 
annual revenues. 

3. Results and Discussion 
Average US wholesale electricity price, Henry Hub natural gas spot price, and EU ETS 
CO2 price data were used. Table 3 presents the LCOE for each of the configurations. 
 
Table 3. LCOE results. 

Configuration Power generation mix LCOE ($/MWh) 
A CCGT 48 
B PV 89 
C CSP 254 
D BIGCC 103 
E BECCS 153 
F 50% PV + 50% BIGCC 108 
G 50% PV + 50% BECCS 129 

 
Figure 2 presents the trade-off chart between LCOE and LCE. The different 
configurations create an artificial Pareto front. It is noted that the baseline configuration 
provided the lowest cost, and configuration E provided the lowest emissions. The points 
that lie on the Pareto front are considered "optimal", and the points that lie outside are 
considered “suboptimal” relative to the optimisation objectives at hand.  
 
From Figure 2, configuration E was chosen from the set of non-dominating solutions (B, 
F, D, G, and E) to perform the comparison with the baseline case. MOGA was applied, 
and 700 solutions were identified. Most of the MOGA solutions lie on and between 
configurations B and E, creating a Pareto front starting from configuration B through 
configurations F, D, and G to configuration E. This means that all of these configurations 
are optimal, and configuration C is suboptimal. Configuration A was not evaluated as part 
of the optimisation run and is only presented for comparison purposes. 
 
The wholesale electricity price follows the LCOE of the power mixture in the case of 
market equilibrium. This study assumed that the average wholesale electricity price 
would rise from 40 to 200 $/MWh. Figure 3 provides the NPV for all the configurations. 
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It is noted that configuration A provided the highest NPV, and configuration C provided 
the lowest NPV. It is also noted that the optimal configurations are not necessarily the 
configuration with the highest NPV.  
 

 
Fig. 2. LCOE and LCE trade-off chart. 

 

 
Fig. 3. Net present asset valuation results. 

 
A sensitivity analysis for the CO2 price is performed on the two profitable configurations, 
as shown in Figure 4. It is noted that when CO2 price exceeds 240 $/tCO2, the selected 
non-dominating optimal configuration also becomes the most profitable one since carbon 
taxes limit the profitability of configuration A as CO2 price increases. On the other hand, 
configuration E is positively influenced by rising CO2 market prices. 
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Fig. 4. Sensitivity analysis of CO2 price impact on NPV. 

4. Conclusions 
A techno-economic assessment was conducted to evaluate an alternative DES for Al-
Khor and Al-Thakira district in Qatar. The renewables-based configurations were 
compared to a conventional natural gas-fired combined cycle in terms of LCOE and LCE. 
The results were characterised by a Pareto front where CCGT had the lowest Levelised 
cost and BECCS had the lowest emissions. Several renewable energy configurations had 
the best trade-off between cost and emissions and only configuration C (CSP) was sub-
optimal. Moreover, carbon-neutral and carbon-negative configurations provide a 
significant advantage in carbon taxes compared to the conventional system especially in 
a volatile carbon market. NPV provides a good indication of project profitability; 
however, when it comes to emissions, CO2 prices would need to increase by more than 
six times the current levels for the renewable energy-based DES systems to present a 
more favourable NPV. 
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Abstract
Designing a new product requires information from the business and physical domains, which im-
plies integrating business decision tools with process and material simulation processes to form an
overall workflow. The integration involves coupling the business workflow management systems
with analysis tools, optimisation and decision support systems, which require process simulations
and an integrated data transfer service. The process simulation, in turn, will in general model
multiple layers of time scales and thus is also in need of data transfer between different solvers.
Here we discuss the main components in the light of a coating-design project.

Keywords: Computational engineering, multi-scale modelling, applied ontology

1. Project Background

The Horizon 2020 project VIPCOAT constructs an innovation platform for new active protective
coatings based on materials modelling and optimisation. The project’s application is coatings for
the aerospace industry, and its objective is to introduce novel approaches for corrosion protection
by active inhibiting pigments as nano-additives. VIPCOAT is to support end-users in developing
new and effective corrosion barriers for metal surfaces, deploying environmentally friendly tech-
nologies, and, in parallel, provide a decision support system for business integration. VIPCOAT
implements a multi-layer digital structure to enable the open innovation process of the production
processes and the design of value-adding product chains. VIPCOAT uses a conceptually new idea,
namely a Pareto chain along a value-adding B2B2B (business-to-business-to-business) sequence
enabling collaborative, transparent decision processes. The approach builds on multi-criteria op-
timisation (MCO) and implements a set of decision tools that allow for exploring the individual
Pareto fronts interactively.

Usually, coatings contain several components. Primarily the coating matrix is the material that
makes up the coating itself. In addition, several additives are mixed in, protecting from UV, giving
colour, and inhibiting corrosion in coating defects. When producing a paint, one has several objec-
tives: purpose-related performance, the toxicity of the involved materials, and costs of production
and application. Typically, these objectives are not possible to satisfy simultaneously. Also, with
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having different components, usually, several suppliers are part of the production process. There-
fore, it is natural that each member of the suppliers and customers has another set of objectives.
And each member is affected by all of those being close to them in the process. Consequently,
if one has to define optimality, one is confronted with multiple, incompatible business-related
objectives or KPIs (Key Performance Indicators). Hence, overall, one deals with two levels of
multi-objective optimisation problems: the lower one is the product, the upper the multi-player
business layer. The project will create a digital platform for coating formulation, development and
optimization, which could serve as a computational coating marketplace.

The VIPCOAT platform will comprise a collection of physics and data-based materials models, a
data space, and an associated ontology-driven service that enables a smooth and simple data trans-
fer between Business Decision Support Systems (BDSS), and the MoDeNa software orchestrator.
For this purpose, the team develops new semantic network-based technologies and approaches
to ensure an automatic data exchange for multi-scale simulations and multi-level material and
business software components. These semantic technology developments are aligned with the El-
ementary Multiperspective Material Ontology (EMMO), cf. Francisco Morgado et al. (2020), in
line with a series of efforts coordinated through activities of the European Materials Modelling
Council (EMMC ASBL) and the Innovation Centre for Process Data Technology (Inprodat e.V.).

2. Business-to-Business process level

Figure 1: Business-to-Business-to-Business approach implemented in VIPCOAT. Bilateral communication
starts the processes, followed by business internal developments and ending in an open access to Pareto-
optimal product variants to be used in decision making upstream the production chain.

The VIPCOAT approach supports collaborative decision making along with production and/or
value-added chains, using a conceptually new idea: the Pareto chain along Business-to-Business-
to-Business (B2B2B) value-added chains as pictorially presented in Figure 1. The value-added
chain goes from the bottom to the top. On the bottom, in VIPCOAT SmallMaTek (SMT) produc-
ing inhibiting pigments, Company C has some production capabilities associated with costs. As
high quality and low cost are almost always contradicting goals, the capabilities to deliver products
upstream the value chain are best described using a Pareto front of the best possible compromises.
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For a company B downstream, in VIPCOAT represented by AkzoNobel, the best possible com-
promises form a sub-space of the Companies B opportunities and thus enter their design space
for fabrication for company A, in VIPCOAT represented by Airbus. Therefore, we have a B2B2B
environment in which collaborative decision making on top of transparent decision processes will
make a lot of sense. In VIPCOAT, this is directly supported by the concept of a Pareto chain of
interactive decision tools, designed as interactive explorers of the individual Pareto fronts. One
Business executes a development and/or production process, supported by materials modelling to
be described next, internally. Thus the internal cost structure is kept confidential and the transpar-
ent part of the B2B2B relation is the Pareto front of prices and associated product variants.

3. Business internal process level
One of the project’s main objectives is to reduce the number of experiments, or in other words,
replace experiments with predictions based on a physical model of the experimental setup. The
first step is thus to design and discuss a model topology using the minimal graphical language
we defined (Preisig (2021, 2014)). The topology captures all the fundamental structural assump-
tions. It represents the physical process as a network of primitive capacities (base entities, control
volumes), a minimal set of extensive quantities and a set of mechanisms on how entities interact.
Since it is a hierarchical representation, it also shows the assumed mereology of the model. The
topology reflects all the main assumptions: what parts of the system are considered, which ones
exhibit capacity effects, if they show significant gradients in the intensive quantities, if they are
constant or dynamic or event-dynamic or not, how they link up to other capacities and exchange ex-
tensive quantity, what exchange is considered relevant, the exchange mechanism, and the resource
environment. It should be noted, that the topology does not include geometrical information, like
the shape of a capacity, also called a control volume.

Our Process Modelling software (ProMo) defines an application-focused ontology that defines
the fundamental entities and their mathematical representation. The mereological information is
encoded into the model’s hierarchical tree. The internal nodes in the tree, we term composite
entities. Replacing parts of the topology, usually composite entities, by surrogates generates the
skeleton of the workflow. In the case of the coating process, as shown in Fig. 2 it is the two
gray boxes that may be replaced by a surrogate solving the input relations in a separate task, a
PDE solver like OpenFoam, while the leaching process is solved involving molecular modelling
on which we do not expand in this exhibition. When running a workflow, the different tasks
do exchange data, in our case this would be reading salinity, but also transferring information
about the simulation of the coating and the simulation of the material and its inhibition. The same
applies with the interaction of the coating and the leaching process simulations. Since ProMo maps
information of the variables and the relations via OWL into a triple store, and the model provides
the vectors of information exchange between the blocks, the interoperability problem can be solved
using the approach described below. Finally, the task factory generates the simulation code for a
solver environment like MatLab or an orchestrator that executes the developed workflow.

The green area in Figure 2 is reflecting only part of the story. In ProMo the access to a data taken
from an external database is a controlled process. Figure 3 shows how ProMo maps the variables
and equations into an EMMO-extended ontology. Once the model is established, the intertask
communications is established over the SOFT/DLite interoperability framework. ProMo maps the
variables and equations into an EMMO-extended ontology. Once the model is established, the
intertask communications is established over the SOFT-DLite framework.

4. Interoperability
SOFT/DLite (Hagelien et al., 2017) (Mir et al., 2020) represents information exchange between
a data source and sink as a pipeline that process output data from the producer into a form that is
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Figure 2: A simplified topology of a coating with inhibitor-loaded nano particles. Replacing the two grey
boxes by surrogates providing an input/output solution in a separate task, one has the structure of the work-
flow.

Figure 3: The ProMo view on how the salinity is read from two data sources. The database a covers the first
part of the time period, while the database b is used to fill in the remainder.

suitable input to the consumer. Metadata schemas and ontologies capture the description of the
data’s intent and their meaning (semantics), which can be used in conjunction with specialised
data readers for data extraction (Schembera, 2021) (Fig. 4). The next step is to augment high-
level semantic artefacts with domain-specific knowledge. EMMO aligned mid-level and domain
ontologies can be employed to document concepts such as processes and properties/quantities
semantically (Horsch, 2021). Data and metadata need to be represented as knowledge graphs,
employing semantic technology standards such as RDF, RDFS, and OWL.

EMMO-aligned mid-level and domain ontologies can also support platform interoperability be-
tween VIPCOAT and other infrastructures, particularly those developed within H2020 NMBP
projects and, in the future, projects supported from the Horizon Europe CL4 resilience and data
lines of funding. Moreover, the EMMC ASBL focus areas and task groups help coordinate a series
of ongoing development efforts in this direction. This technology operates at a comparably high
level and requires at least the developers of platforms and tools to be familiar both with ontology-
based research data management and with the philosophy underlying the EMMO. In contrast, the
second line of development of semantic artefacts, equally endorsed by EMMC ASBL, operates at
a lower level and is more accessible to domain experts: Based on the terminology of the Review
of Materials Modelling (RoMM), the MODA (Model Data) describe simulation workflows, which
permits textual descriptions, and is supported by the OSMO’s ontology version of MODA (Horsch
et al., 2020, 2021). An alignment between semantic artefacts from these two lines of work is not
always straightforward because they rely on knowledge graphs that are differently structured. Pre-
vious work by Klein et al. (2021) discusses how graph transformation crosswalks can be used to
transpose MODA/OSMO representations of simulation workflows, for which annotation and data
ingest are comparably easy, into EMMO-aligned mid-level ontologies that are best suitable for
platform interoperability in line with EMMC ASBL recommendations.

In the present framework, the mapping property mapsTo ensures that the semantics of metadata
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Figure 4: Schematic overview. The key components of the semantic interoperability platform are business
data, a business data reader or writer, a metadata representation, domain ontologies, and interface transfor-
mations (equations) that connect different ontological concepts. The interoperability platform will analyse
the use case and give the user options to select between multiple semantic pipelines or manually manage the
pipeline pathways.

properties are aligned with domain ontology concepts, cf. Fig. 5. Similarly, a data model will
represent the schema of application-specific data input on the consumer side. A data ingest system
or file format generator using the metadata produces information that the data consumer can in-
terpret. Mapping the metadata schema to the domain ontology concepts captures the semantics of
the information. The SOFT/DLite generates the pipeline for the data transfer between the systems,
recognising the semantic interpretation and syntactic representations.

Figure 5: Data resources, data sinks, transformations and simulation packages connect to the Knowledge
Base via mappings between the metadata representation of the business data and domain ontology concepts.
Dependent on the data model on the receiving side of the information, a pipeline is constructed based on the
semantic knowledge of the data and transformations. A pipeline can be constructed from Data resource D1
in Wrapper W1 through the interface transformations (T1 and T2) to the construction of the syntactic input
representation for the simulation tool in W2: W1 → T1 → T2 → W2

In the trivial case, the pipeline will only transfer data only. In a more complex scenario, seman-
tic differences between data sources and data sinks require transformations to be taken from an
ontology. The ProMo software (see Section 3) is already aligning the equations and variables to
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EMMO domain ontologies and can therefore be plugged directly into the SOFT/DLite pipelines.
Graph-search algorithms find all possible paths that define the pipeline. The end-user is respon-
sible for selecting the most appropriate pathway if multiple exist, closing the connection through
mappings and defining new transformations. In addition, the interoperability platform also man-
ages the representation of the information in terms of differences in units (unit systems) and data
shape/dimensionality. Unit conversions transformations can usually be inferred automatically, but
strategies for managing differences in dimensionality (extrapolation, interpolation, averaging, ma-
chine learning-based methods, etc.) needs to be manually determined.

5. Conclusion

We demonstrate a new approach to a complex business-integrated product design on the example
of active-protective coatings for the aeroplane industry. We introduce a new approach to interre-
late three daisy-chained industries, two producers and one end-consumer. The new business-to-
business-to-business environment implements a complex two-level workflow that links the busi-
ness workflow with the physical simulation workflow, involving all three business partners in form-
ing the final product performance. On the business level, we employ business-process-modelling
(BPM) software Camunda and the NTNU’s Process Modelling suite (ProMo) to model and gen-
erate simulation workflows executed in the MoDeNa platform. The team approaches the data
integration of the various software using ontology-based technologies, generating the application
interfaces automatically for the different components, providing access to a shared data space and
Petri-net based technology for synchronisation.
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Abstract 

Livestock manure is one of the most abundant agro-wastes worldwide. Most of the 

manures are landfilled or composted to produce fertilizers, which raises concerns 

associated with the possible pollution of air and contamination of groundwater. 

Meanwhile, Hydrothermal liquefaction (HTL) is attracting growing attention to valorise 

wet wastes as an alternative to anaerobic digestion to produce value-added energy 

products. Livestock manures differ in terms of their composition, availability, and cost; 

therefore, an optimal blending of multiple livestock manures for liquefaction is expected 

to yield biocrude with distinct properties and contribute to process efficiency 

improvement. As such, this study evaluates the effect of different blending ratios of five 

typical livestock manures on the yield of biocrude and biochar, as well as the process 

environmental burden in terms of water consumption and CO2 emissions. Aspen Plus® 

software is used to simulate the liquefaction process and to develop a mathematical 

optimization model to determine the optimal blending scenarios that satisfy adopted 

technical and environmental preferences. A weighted normalised decision metric is then 

used to minimise the gap between the solutions for the multiple objectives. The model 

suggested the optimal manures blend to be (50%, 26%, 14%, 5%, 5%) for cattle, camel, 

horse, poultry, and sheep manures, respectively. This study provides an insight into 

enhancing HTL process efficiencies through a careful selection of feedstock blends. 

 
Keywords: Livestock manure, Liquefaction, Blending ratio, Biocrude, Simulation. 

1. Introduction 

Millions of tonnes of livestock manure are generated each year worldwide. While the 

uncontrolled decomposition of manure results in severe pollution of the environment and 

contamination of water resources. Meanwhile, Hydrothermal liquefaction (HTL) is 

becoming an increasingly attractive alternative to anaerobic digestion in terms of 

converting wet wastes into multiple fuels. In HTL, carbonaceous materials are converted 

to various energy products at high temperatures and pressure, just like crude oil is formed 

underground. The HTL process can directly liquefy manure into biocrude oil without the 

need for an energy-intensive drying procedure. HTL is typically performed at a 

temperature ranging from 250  °C to 400  °C, for a residence time of 15-60 minutes, and 

with an operating pressure ranging from 4 to 25 MPa (Chen et al., 2019). Biocrude is the 

major product of hydrothermal liquefaction. It is an oil with a lower oxygen content (10-

20%) and a higher net heating value than pyrolysis oil (Peterson et al., 2008). In addition 
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to bio-crude, the HTL process also produces an aqueous phase-rich liquid product, 

biochar, and syngas. 

There are significant differences in the composition of livestock manures, which have a 

direct significant impact on the biocrude characteristics and yield (Li et al., 2018). 

Livestock manures differ not only in composition, but also in availability and cost; 

therefore, an optimal blend of multiple livestock manures for liquefaction will likely yield 

biocrude with distinct properties and enhance processing efficiency. 

It has been reported previously that manure can be used to produce biocrude (Chen et al., 

2018; Xiu et al., 2010; Yin et al., 2010). However, the HTL of livestock manure blend is 

relatively new and requires thorough investigations to improve the process outcomes. As 

such, the purpose of this study is to explore the effects of different blending ratios of five 

typical livestock manure such as cattle, camel, horse, poultry, and sheep manures on the 

yield of biocrude and biochar, as well as the process’ environmental burden in terms of 

water consumption and CO2 emissions. Using Advanced System for Process Engineering 

(ASPEN PLUS) software, the liquefaction process is simulated, and a mathematical 

optimisation model is developed to determine the best blending scenarios that satisfy the 

adopted technical and environmental preferences. 

This research sheds light on possible means for the improvement of HTL process 

efficiencies by carefully selecting feedstock mixtures. The synergistic effect of animal 

manure blends in HTL demonstration projects would serve as a roadmap for future use 

of livestock manure blends. 

2. Methodology 

2.1. Process Modelling 

ASPEN PLUS V.10 is used to model a 250,000 tonnes/year hydrothermal liquefaction 

plant, considering isothermal and steady-state conditions. All manures are defined based on 

their proximate and elemental analyses as presented in Table 1 (Akyürek et al., 2021; Al-

Ansari et al., 2020; Chong et al., 2019; Whitely et al., 2006; Zhou et al., 2020). The manure 

streams are initially fed into a blending reactor, in which they are converted into 

conventional components based on their moisture and elemental composition using a 

Fortran code to ensure a mass balance of the conversion. The blended stream is then fed 

into a hydrolysis reactor along with additive water to create a slurry. For this purpose, a 

Fortran code is developed to estimate the amount of water required to dilute the solids mass 

concentration in the slurry to 20%. The mixture is then pumped to 100 bar using two 

consecutive high-performance pumps into the main HTL reactors, where the process is 

conducted at 100 bar and 350°C. 

Table 1. Proximate and elemental analyses of studied livestock manures. 

Analysis Camel 
manure 

Cattle 
manure 

Horse 
manure 

Poultry 
manure 

Sheep 
manure 

Moisture content (%) 58 85 40 40 50 

Fixed carbon (%) 22.74 10.11 12.06 13.31 15.56 

Volatile matter (%) 60.51 57.18 77.80 63.58 57.30 

Ash (%) 16.73 32.69 10.12 23.09 27.13 

Carbon (%) 37.11 27.61 39.53 36.67 33.14 

Hydrogen (%) 4.07 3.48 4.99 5.33 4.48 

Nitrogen (%) 2.27 1.88 0.70 3.54 2.65 

Sulphur (%) 0.24 0.41 0.47 0.73 0.37 

Oxygen (%) 39.54 33.91 44.16 30.61 32.21 
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In the first HTL reactor, the maximum biocrude yield and the minimum hydrochar yield 

are restricted using a Fortran code based on a correlation adapted from Zhong and Wei  

(2004) considering feedstock’s composition, while the composition of biocrude and 

hydrochar is adapted from Pedersen et al.  (2017) and Lentz et al. (2019) respectively. In 

the second HTL reactor, the composition of syngas is calculated based on thermodynamic 

approach via minimising Gibb’s free energy. Besides, a hydrocyclone is used to recover 

hydrochar, while fluids are separated using a three-stage flash unit obtaining syngas, 

biocrude, and an aqueous phase. A simplified HTL process flow diagram is illustrated in 

Figure 1 (Alherbawi et al., 2021) .  

The syngas composition is then calculated in an “RGibbs” reactor via the minimisation 

of the Gibbs’ free energy. The process is conducted at 350 °C and 100 bar (Al-Ansari et 

al., 2020). In addition, solids are collected using a hydro-cyclone, while a three-stage 

flash drum is utilised to split the remaining stream into three phases: gas, biocrude and an 

aqueous phase.  

 
Figure 1. A simplified HTL process flow diagram using manures blend. 
 

2.2. Optimisation Model 

A mathematical optimisation model is developed in ASPEN Plus using the objective 

functions illustrated throughout Equations (1-4) and the constraints in Equations (5-6). 

Four objectives are adopted to facilitate selecting the optimal blending ratios of the five 

different manures for the HTL process. The first two objectives concerning the technical 

aspect of the process aim at maximising the yields of biocrude and hydrochar, while the 

other two objectives concerning the environmental aspect aim at minimising the water 

consumption and CO2 emissions. In addition, the blending is constrained to satisfy 100% 

of the plant capacity, with a minimum of 5% of each manure utilisation and a maximum 

of 50% considering the possible limited supply of the manure. 
 

Objective functions: 

Total biocrude yield  (𝑍1) = Max ∑ 𝐵𝐶𝑖  𝑋𝑖
5
𝑖=1  

Total hydrochar yield  (𝑍2) = Max ∑ 𝐻𝐶𝑖  𝑋𝑖
5
𝑖=1  

Total water consumption  (𝑍3) = Min ∑ 𝑊𝑖  𝑋𝑖
5
𝑖=1  

Total CO2 emissions  (𝑍4) = Min ∑ 𝐸𝑖  𝑋𝑖
5
𝑖=1  

 

Constraints:  

∑ 𝑋𝑖 = 1

5

𝑖=1

 

 

0.5 ≥ 𝑋𝑖 ≥ 0.05 

 
 

(1) 

(2) 

(3) 

(4) 

 
(5) 

 
(6) 
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Where: 𝑋𝑖: blending ratio % of manure (i). 

𝐵𝐶𝑖: biocrude relative yield, in tonne per tonne of manure (i). 

𝐻𝐶𝑖: hydrochar relative yield, in tonne per tonne of manure (i). 

𝑊𝑖: water relative consumption, in tonne per tonne of manure (i). 

𝐸𝑖: process emissions, in tonne CO2 per tonne of manure (i). 

i=1-5 represent manure types, whereby: 1: Camel manure, 2: Cattle manure, 3: 

Horse manure, 4: Poultry manure and 5: Sheep manure. 
 

Each optimisation function is solved independently, whereas the normalised weighted 

decision metric presented in Equation (7) is used to achieve a solution that relatively 

satisfies the four adopted objectives. Solving the goal function facilitates minimising the 

gap between the initial solution and the optimal solution for the different objective 

functions. Whereby it deals with each objective function independently and generates a 

single solution, in contrast to multi-objective problems that generates multiple solutions 

through trade-off between objectives.   

𝐺𝑜𝑎𝑙𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑀𝑖𝑛 ∑ 𝜔𝑗 |
𝐼𝑗 −  𝑍𝑗

𝑍𝑗

|

4

𝑗=1

 
 

(7) 

Where, 𝐼𝑗  is the initial solution for objective (j) assuming 𝑋𝑖=100%, while 𝑍𝐽 is the optimal 

solution for objective (j) represented earlier in Equations (1-4). Besides, 𝜔𝑖 is the relative 

weight of objective (j), which is assumed to be equal for the four objectives in this study.  

3. Results and Discussion 

3.1. Model outputs 

The products yield and environmental burden of the process considering a single manure 

feed in each run are illustrated in Figure 2. The highest biocrude yield is achieved using 

horse manure feedstock with a relative yield of 0.23 tonne biocrude per tonne of wet 

feedstock, while the lowest biocrude yield is achieved using cattle manure, which is 

possibly due to its low volatile matter and the extremely high ash and moisture contents. 

However, the highest hydrochar yield is obtained when camel manure is used as feedstock 

as its fixed carbon is the highest overall. Nevertheless, the HTL of cattle manure does not 

require any additive water, whereby its moisture content is sufficient to create a slurry. 

Whereas both, horse and poultry manures required the highest amount of water with 2:1 

water to feedstock ratio. Besides, the HTL of horse manure is responsible of the highest 

CO2 release, which is possibly due to its high carbon and oxygen contents. 

 
Figure 2. HTL process yield and environmental burden for different manure feedstocks. 
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3.2. Optimisation model 

As indicated in the previous section, different livestock manure feedstocks are associated 

with distinct product distributions and exert different levels of burden on the environment. 

As such, considering the technical and environmental aspects of the HTL process, the 

optimisation model to investigate the optimal blending ratios of manures generated the 

results presented in Figure 3. 

 

 
Figure 3. Optimal manures blending ratio considering different objectives.  
 

As far as emissions reduction is concerned, cattle manure and sheep manure are granted 

50% and 35% shares, respectively. Whereas the remaining three manures are given the 

minimum 5% threshold blending ratio. While to minimise the water consumption, both 

cattle manure and camel manure were selected with 50% and 35% blending ratios, 

respectively. However, to fulfill the yield objective, the model suggested horse and 

poultry manures be mainly used to maximise biocrude yield, while the model suggested 

mainly involving camel manures and horse manures for optimal hydrochar generation. 

Nevertheless, the weighted normalised decision metric indicated an optimal blending 

ratio of 50%, 26%, 14%, 5%, and 5% for cattle, camel, horse, poultry, and sheep manures 

respectively, which is believed to relatively fulfill all four objectives. The said blending 

ratio results in 31,765 tonne/year of biocrude and 9,289 tonne/year hydrochar, while the 

system in this scenario consumes 184 ktonne of water and produces 18 ktonne of CO2. 

4. Conclusion 

In this study, the influence of different livestock manures feedstocks on HTL process yield 

and the environmental burden is modeled and studied in ASPEN PLUS. Whereas the 

optimal blend of different manures is investigated with respect to four objectives including, 

maximising biocrude and biochar yield and minimising water consumption and CO2 

emissions. The final weighted normalised decision metric suggested the optimal manures 

blend to be (50%, 26%, 14%, 5%, 5%) for cattle, camel, horse, poultry, and sheep manures 

respectively. While this study provides an insight on the impact of different feedstock on 

process efficiencies, it is to be expanded by considering the economic aspect of different 

blending scenarios, as well as the availability of different manures. 

35%
50%

26%

50%

50%

50%

50.0%

35%

14%
35.0%

35%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Emissions

minimised

WaterFP

minimised

Biocrude

maximised

Hydrochar

maximised

Normalised

decision

M
an

u
re

 b
le

n
d

in
g
 r

at
io

 (
%

)

Optimisation objective

Camel manure Cattle manure Horse manure Poultry manure Sheep manure

1271

1247 



 M. Alherbawi et al. 1248

References 

Z. Akyürek, R. Singh, V. Strezov, 2021. Synergetic Effects during Co-Pyrolysis of Sheep Manure 

and Recycled Polyethylene Terephthalate. Polym. 2021, Vol. 13, Page 2363 13, 2363. 

https://doi.org/10.3390/POLYM13142363 

T. Al-Ansari, A. AlNouss, N. Al-Thani, P. Parthasarathy, S. ElKhalifa, G. Mckay, M. Alherbawi, 

2020. Optimising Multi Biomass Feedstock Utilisation Considering a Multi Technology 

Approach. Comput. Aided Chem. Eng. 48, 1633–1638. https://doi.org/10.1016/B978-0-12-

823377-1.50273-1 

M. Alherbawi, P. Parthasarathy, T. Al-Ansari, H.R. Mackey, G. McKay, 2021. Potential of drop-in 

biofuel production from camel manure by hydrothermal liquefaction and biocrude 

upgrading: A Qatar case study. Energy 232, 121027. 

https://doi.org/10.1016/J.ENERGY.2021.121027 

C.H. Chen, Lin, Liu, C.H. Chen, Hung, C.H. Chen, Ong, W.H. Chen, Y.Y. Lin, H.C. Liu, T.C. 

Chen, C.H. Hung, C.H. Chen, H.C. Ong, 2019. A comprehensive analysis of food waste 

derived liquefaction bio-oil properties for industrial application. Appl. Energy 237, 283–291. 

J. Chen, L. Wang, B. Zhang, R. Li, A. Shahbazi, 2018. Hydrothermal Liquefaction Enhanced by 

Various Chemicals as a Means of Sustainable Dairy Manure Treatment. Sustain. 2018, Vol. 

10, Page 230 10, 230. https://doi.org/10.3390/SU10010230 

C.T. Chong, G.R. Mong, J.H. Ng, W.W.F. Chong, F.N. Ani, S.S. Lam, H.C. Ong, 2019. Pyrolysis 

characteristics and kinetic studies of horse manure using thermogravimetric analysis. Energy 

Convers. Manag. 180, 1260–1267. https://doi.org/10.1016/J.ENCONMAN.2018.11.071 

Z. Lentz, P. Kolar, J.J. Classen, 2019. Valorization of Swine Manure into Hydrochars. Process. 

2019, Vol. 7, Page 560 7, 560. https://doi.org/10.3390/PR7090560 

H. Li, J. Lu, Y. Zhang, Z. Liu, 2018. Hydrothermal liquefaction of typical livestock manures in 

China: Biocrude oil production and migration of heavy metals. J. Anal. Appl. Pyrolysis 135, 

133–140. https://doi.org/10.1016/J.JAAP.2018.09.010 

T.H. Pedersen, C.U. Jensen, L. Sandström, L.A. Rosendahl, 2017. Full characterization of 

compounds obtained from fractional distillation and upgrading of a HTL biocrude. Appl. 

Energy 202, 408–419. https://doi.org/10.1016/J.APENERGY.2017.05.167 

A.A. Peterson, F. Vogel, R.P. Lachance, M. Fröling, M.J. Antal, J.W. Tester, 2008. 

Thermochemical biofuel production in hydrothermal media: A review of sub- and 

supercritical water technologies. Energy Environ. Sci. 1, 32–65. 

https://doi.org/10.1039/B810100K 

N. Whitely, R. Ozao, R. Artiaga, Y. Cao, W.P. Pan, 2006. Multi-utilization of Chicken Litter as 

Biomass Source. Part I. Combustion. Energy and Fuels 20, 2660–2665. 

https://doi.org/10.1021/EF0503109 

S. Xiu, A. Shahbazi, V. Shirley, D. Cheng, 2010. Hydrothermal pyrolysis of swine manure to bio-

oil: Effects of operating parameters on products yield and characterization of bio-oil. J. Anal. 

Appl. Pyrolysis 88, 73–79. https://doi.org/10.1016/J.JAAP.2010.02.011 

S. Yin, R. Dolan, M. Harris, Z. Tan, 2010. Subcritical hydrothermal liquefaction of cattle manure 

to bio-oil: Effects of conversion parameters on bio-oil yield and characterization of bio-oil. 

Bioresour. Technol. 101, 3657–3664. https://doi.org/10.1016/J.BIORTECH.2009.12.058 

C. Zhong, X. Wei, 2004. A comparative experimental study on the liquefaction of wood. Energy 

29, 1731–1741. https://doi.org/10.1016/J.ENERGY.2004.03.096 

Y. Zhou, Z. Chen, H. Gong, X. Wang, H. Yu, 2020. A strategy of using recycled char as a co-

catalyst in cyclic in-situ catalytic cattle manure pyrolysis for increasing gas production. 

Waste Manag. 107, 74–81. https://doi.org/10.1016/J.WASMAN.2020.04.002 
 

1272



PROCEEDINGS OF THE 32nd European Symposium on Computer Aided Process Engineering  

(ESCAPE32), June 12-15, 2022, Toulouse, France  

L. Montastruc, S. Negny (Editors) 

© 2022 Elsevier B.V. All rights reserved.  

Systematic Pairing Selection for Economic-oriented 

Constraint Control 

Risvan Dirza, and Sigurd Skogestad* 

Dept. of Chemical Engineering, Norwegian Univ. of Science & Technology (NTNU), 

NO-7491 Trondheim, Norway 

sigurd.skogestad@ntnu.no 

Abstract 

This work considers the problem of minimizing economic losses due to system-wide 

production systems, where different subsystems share hard coupling constraints. The hard 

coupling constraints need to be tightly controlled, and it is important that it is done in a 

way that the overall system remains close to optimal in the time it takes for the much 

slower optimization layer to implement the required input changes. The particular 

application that we study is a large-scale subsea gas-lifted oil production network, where 

different subsystems have a local objective and the shared constraint can be a common 

compressor, but the method has general applicability to any system with time-scale 

separation between control and optimization layers.  
 

Keywords: Production Optimization, Self-optimizing Control, Active Constraint 

Control. 

1. Introduction 

Determining optimal operation of a large and complex process and production system, 

such as an oil and gas production system, is a challenging task. Decomposing the process 

into several subprocesses/subsystems is usually recommended since optimizing a small 

system is practically less complex. Thus, decomposition strategy requires each local 

process system/cluster/subsystem to have a local optimizer to ensure local optimal 

process operation. This decomposition strategy is also responsible for coordinating these 

subsystems to achieve system-wide optimal process operation. The optimal process 

operation involves making decisions in real-time to meet production goals. This is 

typically done in the context of real-time optimization (RTO) using process models and 

real-time measurements. RTO is developed based on mathematical concepts, and with it, 

production performance improved.  

In the 80s, there was an increasing interest in replacing model-based numerical solvers 

with a simple feedback loop, named feedback-optimizing control. The idea is to translate 

the economic objective into process control objective by finding a function of the 

controlled variables (CVs), and when it is held constant, it leads to the optimal adjustment 

of the manipulated variables (MVs) (Morari et al., 1980). Twenty years later, Skogestad 

(2000) introduced the concept of self-optimizing control (SOC). In SOC, when the 

optimum lies at some constraints, we use active constraint control where the available 

MVs tightly control the constrained variables. The idea of tight active constraint control 

is one of the primary motivations of this work to ensure the feasibility and obtain a (near-

) optimal process operation. 
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2. Problem Statement 

Consider the following steady-state optimization problem of 𝑁 different subsystems. 

min
𝐮

 𝐽(𝐮, 𝐝) = ∑ 𝐽𝑖(𝐮𝑖 , 𝐝𝑖)
𝑁

𝑖=1
 (1a) 

𝑠. 𝑡.  𝑔(𝐮, 𝐝) ≤ 𝟎 (1b) 

where 𝐮𝑖 ∈ ℝ𝑛𝐮𝑖  denotes the MVs for subsystem 𝑖, 𝑛𝐮𝑖
 is the number of MVs in 

subsystem 𝑖, and 𝐮 = [𝐮1 . . . 𝐮𝑁]T, 𝐝𝑖 ∈ ℝ𝑛𝐝𝑖  denotes the disturbances in subsystem 

𝑖, 𝑛𝐝𝑖
 is the number of disturbances in subsystem 𝑖, and 𝐝 = [𝐝1 . . . 𝐝𝑁]T, 

𝐽𝑖: ℝ𝑛𝐮𝑖 ×  ℝ𝑛𝐝𝑖 →  ℝ is a function denoting the local objective of subsystem 𝑖, 
𝑔: ℝ𝑛𝐮 ×  ℝ𝑛𝐝 →  ℝ𝑛𝑔is a function denoting the inequality constraints. 𝑛𝑔 is the number 

of constraints.  

The Lagrangian function of problem (1) is 

ℒ(𝐮, 𝐝, 𝜆) = ∑ 𝐽𝑖(𝐮𝑖 , 𝐝𝑖)
𝑁

𝑖=1
+ 𝜆𝑇𝑔(𝐮, 𝐝) (2) 

where 𝜆 ∈ ℝ𝑛𝑔 is the shadow price/ Lagrange multiplier of active constraints 𝑔(𝐮, 𝐝). 

The goal of problem (1) is to determine optimal MVs to achieve system-wide steady-state 

optimal operation. Our motivation is to solve problem (1) using a feedback control 

structure that handles changing active constraints.  

One possible approach is primal-dual feedback-optimizing control that can eliminate the 

need for a numerical solver (Krishnamoorthy, 2020; Dirza et al., 2021). Moreover, this 

approach is flexible in handling active constraint changes. This method has a central 

coordinator acting as a central constraint controller in a slow timescale in the upper layer.  

However, this approach has no near-optimal performance strategy due to the non-

performing upper layer. There are many practical reasons why the central constraint 

controller may fail to update the Lagrange multipliers. For example, when the disturbance 

occurs much faster than the sampling time of the central constraint controller. Another 

example is when constrained variables from a local system are not updated on time since 

the optimizer of the other local system may need a numerical solver. This solver requires 

time to solve the optimization problem. Having different types of local optimizers is 

normal since every subprocess is unique. In addition, having a central constraint 

controller in a very slow timescale leads to a longer transient. Constraint violation may 

occur during this transient. These imply that it is essential to have a good pairing of a 

(primal) MV to a constrained variable. Thus, “a systematic pairing procedure is 

necessary to determine which MV should be paired with a constrained variable such that 

the pairing minimizes the loss most (near-optimal performance)”. Finally, this procedure 

is necessary for selecting the primal MV in primal-dual with direct constraint control 

proposed by Dirza et al., 2022. 

3. Systematic Pairing Formulation 

To pair the constrained variables with the right MV, we propose a pairing procedure based 

on MV’s sensitivities to its local disturbances, assuming no saturation issues in the 

possible MVs, no back-off problem, and equal value of constraints - MVs gain. 
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Meanwhile, the remaining MVs control their self-optimizing control variables. To 

describe this proposal, we consider an Indirect control problem formulation. 

Without losing the generality, we consider a case where we have two MVs (i.e., 𝑢1 ∈ ℝ1 

and 𝑢2 ∈ ℝ1), and we want to control the gradient of the Lagrange function w.r.t its input, 

denoted by ℒ𝐮(𝜆, 𝐮) ∈ ℝ2×1, and the active constrained variable, denoted by 𝑔(𝐮) ∈ ℝ1, 

where 𝜆 is Lagrange multiplier for constraint function 𝑔(𝐮), and 𝐮 = [u𝟏 u𝟐]T. 

ℒ𝐮(𝜆, 𝐮) consists of ℒu𝟏
(𝜆, u𝟏) ∈ ℝ1 and ℒu𝟐

(𝜆, u𝟐) ∈ ℝ1. 

Assume that we want to control the constrained variables tightly with u𝟐, and we consider 

the disturbance, 𝐝 ∈ ℝ2×1, influences input u𝟐. It could be the local disturbance of 

subsystem 2 or a change of u𝟐 caused by setpoint changing. This setpoint change may 

occur due to the changes in subsystem 1. Since 𝜆 is constant (due to the non-performing 

upper layer), and gu𝟏
(u1) is also in many cases (i.e., resource allocation), we only need 

to control 𝐽u1
(u1). This formulation can be written as an indirect control problem as 

follows, 

𝐽u𝟏
(u1) = 𝐺11𝑢1 + 𝐺12𝑢2 (3a) 

𝑔(𝐮) = 𝐺21𝑢1 + 𝐺22𝑢2 (3b) 

𝑢2 = 𝐺𝑑𝑑 + 𝑢̂2 (3c) 

where 𝐺11 is the gain from 𝑢1to 𝐽u1
(u1), 𝐺12 is the gain from 𝑢2to 𝐽u1

(u1), 𝐺21 is the gain 

from 𝑢1to 𝑔(𝐮), 𝐺22 is the gain from 𝑢2to 𝑔(𝐮) and 𝐺𝑑 is the disturbance gain that 

influences 𝑢2.  

Fig. 1 illustrates this formulation, 

where we want to ‘tightly’ control 

𝑔(𝐮) to reference 𝑟2 directly using a 

direct constraint controller (DCC). In 

addition, we also want to find the right 

𝑢2 such that 𝑢2 can also contribute to 

controlling 𝐽u1
(u1) to reference 𝑟1 

indirectly or by pairing 𝑢2 with 𝑔(𝐮). 

This control structure has a better 

ability to control 𝐽u1
(u1) than the other 

possible structure. 

We assume that 𝐺22 is square and 

invertible. Otherwise, we can replace 

the solution with the pseudoinverse. By 

rearranging Eq. 1 and assuming a 

‘perfect’ control 𝑔(𝐮) ≈ 𝑟2, we obtain  𝐽u1
(u1) ≈ 𝐺12𝐺22

−1𝑟2. Thus, we must choose 𝑟2 

such that 𝑟2 ≈ 𝐺22𝐺12
−1𝑟1. According to Skogestad and Postlethwaite (2005), 𝐺12𝐺22

−1 

should be small. Usually, it implies that we need to select the pairing that gives the largest 

𝐺22, where 𝐺22 = ∇𝑢2
𝑔(𝐮). However, based on this formulation, selecting the pairing 

based on 𝐺22 is insufficient. This formulation shows that we should also consider small 

𝐺12 in addition to large 𝐺22 in the framework of primal-dual approach with direct 

constraint control, especially when we have faster disturbances (or non-performing upper 

layer). Selecting based on 𝐺12 is then essential and complementary to the common rule. 

 

Figure 1: Indirect control problem formulation 

for systematic pairing 
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We consider these rules as a near-optimal performance strategy for the primal-dual with 

direct constraint controls framework (Dirza et. al., 2022). 

Defining 𝑑̂ = 𝐺𝑑𝑑, then 𝐺12 ≈
∆𝐽u1

∆𝑢2
≈

∆𝐽u1

∆(𝑑̂+𝑢2)
. If one keeps 𝑢̂2 at the same value to 

control 𝑔(𝐮), then a change in 𝑑̂ can represent any change. Considering Eq. 1c, then 

𝐺12 ≈
∆𝐽u1

∆𝑑̂
. Furthermore, assuming that the stationary point is at the local optimum and 

knowing that 𝐽u1
is controlled by u1, and 𝐽u𝟐

 is uncontrolled, then any disturbance on 𝐽u𝟏
 

leads to ∆𝐽u𝟐
(ℒu𝟐

being drifted away from 0). It implies that any disturbance on 𝐽u1
leads 

to the total profit loss ∆𝐽. Therefore, we can estimate 𝐺12 as 
∆𝐽

∆𝑑̂
  (𝐺12 ≈

∆𝐽

∆𝑑̂
). 

4. Numerical Results 

We demonstrate the presented rules in a subsea gas-lifted oil production optimization 

problem with a fixed gas lift compressor described in Dirza et al. (2022). Moreover, we 

consider a subsea gas-lifted oil production well network that consists of two wells to 

provide a better demonstration. Fig. 2 illustrates the case study. 

The objective function is to maximize the oil production income while minimizing the 

cost of the gas lift. The optimization problem is as follows, 

min
𝐰𝑔𝑙

𝐽 =  ∑ (− 𝑝𝑜,𝑖𝑤𝑝𝑜,𝑖 + 𝑝𝑔𝑙,𝑖𝑤𝑔𝑙,𝑖)
𝑁

𝑖=1
 (4a) 

𝑠. 𝑡.   𝐟(𝐱, 𝐰𝑔𝑙 , 𝐝) = 𝟎 (4b) 

         𝐠(𝐱, 𝐰𝑔𝑙 , 𝐝) ≤ 𝟎 (4c) 

        𝐠s(𝐱, 𝐰𝑔𝑙 , 𝐝) = 𝑃𝑜𝑤𝑔𝑙 - 𝑃𝑜𝑤𝑔𝑙
𝑚𝑎𝑥 ≤ 0 (4d) 

where 𝑝𝑜,𝑖, 𝑝𝑔𝑙,𝑖, and 𝑤𝑝𝑜,𝑖 are the price of produced oil, the cost of gas-lift, and the oil 

production rate of well 𝑖, respectively. 𝑃𝑜𝑤𝑔𝑙  is 

the total power consumed by a fixed compressor 

to inject the sum of gas-lift rate 𝑖, and 𝑃𝑜𝑤𝑔𝑙
𝑚𝑎𝑥  

is the maximum available power. The vector 

𝐱 ∈ ℝ𝑛𝐱 , and 𝐝 ∈ ℝ𝑛𝐝  are the vectors of states, 

and disturbance (i.e., gas-oil ratio) for the entire 

system. 𝑛𝐱 is the number of states. 𝐰𝑔𝑙 ∈ ℝ
𝑛𝐰𝑔𝑙  

is the vector of inputs for the entire system, 

where 𝐰𝑔𝑙 = [𝑤𝑔𝑙,1 . . . 𝑤𝑔𝑙,𝑁]T. Constraint 

(4b) and (4c) represent model and physical 

constraints, respectively. We assume that 

Constraint (4c) is locally managed to maintain 

the focus of the discussion. Eq. (4a) is additively 

separable, and eq. (4d) is a linear and hard 

constraint. The total gas lift rate is supplied by a 

fixed-efficiency gas lift compressor.  

The simulation considers a case where we have 

a non-performing upper layer (𝜆 is not updated). We show the numerical results of the 

presented near-optimal performance strategy (Structure 1). As a benchmark, we also 

show the results of the asynchronous protocol (Structure 0), that the local controllers keep 

controlling the gradient of the Lagrange function w.r.t input to 0, given any value of the 

 

Figure 2: Field illustration 
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Lagrange multipliers from the central constraint controllers. In addition, we also show the 

results of another possible structure (Structure 2). 

We solve the steady-state optimization problem (4) to obtain the ‘true’ optimal cost for 

any considered disturbance cases. We assume that based on historical data, the largest 

possible error of the disturbance is ± 5%. The (profit-) loss is the difference between the 

steady-state cost of structure 𝑗 to the optimal cost, which can be expressed mathematically 

as ∆𝐽𝑗 = 𝐽𝑗 − 𝐽∗, where 𝑗 is the index of the structure (𝑖. 𝑒., 𝑗𝜖{0,1,2}).

First, we simulate for any possible largest error for Structure 0. The simulation shows that 

the above case study experiences the largest possible disturbance that happens 

sequentially starting from 𝐺𝑂𝑅1 + 5%, 𝐺𝑂𝑅1 − 5%, 𝐺𝑂𝑅2 + 5%, 𝐺𝑂𝑅2 − 5%, 

𝑃𝑜𝑤𝑔𝑙
𝑚𝑎𝑥 + 5%, and finally 𝑃𝑜𝑤𝑔𝑙

𝑚𝑎𝑥 − 5%.

As it can be seen in Fig. 3, Structure 0 fails 

to satisfy steady-state constraint when

either 𝐺𝑂𝑅1, 𝐺𝑂𝑅2, or 𝑃𝑜𝑤𝑔𝑙
𝑚𝑎𝑥 decreases 

5% (see time window 18-32 hr, 48-62 hr,

and 78-90 hr), which validates the 

necessity to have a near-optimal strategy 

in the primal-dual approach.

As mentioned in Section 3, the first 

general rule is pairing input and active 

constraint with the largest 𝐺22,𝑗 =

∇w𝑔𝑙,𝑗
𝐠s(𝐱, 𝐰𝑔𝑙, 𝐝). Based on this 

definition, 𝐺22,1 = 3.6740, and 𝐺22,2 =
3.6740, which corresponds to the 

assumption of equal value of constraints -

MVs gain. This also validates the necessity to have an additional rule to select the pairing 

that gives the most economic-oriented result.

The additional rule is pairing input and active constraint with the smallest 𝐺12,𝑗, which

one can estimate by calculating 
∆𝐽𝑗

∆𝐺𝑂𝑅𝑗
using the finite difference method. The obtained 

result is that the smallest 𝐺12,1 is 1.4441, and the smallest 𝐺12,2 is 1.4642. According to 

Figure 3: Steady-state constraint satisfaction

Figure 4: Left figure: Profit loss comparison. Right figure: Loss difference between 

Structure 1 and Structure 2.
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the presented method in Section 3, this result indicates that the most economic-oriented 

pairing is Structure 1, where we pair the active constraint with w𝑔𝑙,2.  

Fig. 4 shows the profit loss comparison between Structure 1 and Structure 2, and the right 

figure shows that, at any possible extreme disturbance, Structure 1 can minimize more 

the steady-state loss than Structure 2. Additionally, Tab. 1 shows the steady-state profit 

loss for 24 hours with different extreme disturbance cases. 

5.  Conclusion 

In this paper, we have shown that the proposed rule (smallest 𝐺12) is complementary to 

the existing pairing rule (largest 𝐺22), especially in the framework of the primal-dual 

approach. This systematic pairing selection procedure can assist the designer in pairing 

for economic-oriented constraint control in the primal-dual with direct constraint 

controls. In addition, this procedure can minimize steady-state loss in the primal-dual 

framework when we have a non-performing upper layer. 
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Abstract 
In modular plants, quality of methods and models must be specifiable, automatically 

testable and certifiable, if they are increasingly integrated into equipment as a product 

and an added value. Since the underlying processes are often not completely understood, 

hybrid and data-driven methods are a promising approach to combine process knowledge 

and process data for more reliable simulation models. In this paper, the conducted quality 

assessment utilizes the framework proposed by Mädler et al. (2021) for quality assurance 

applied to hybrid models. The quality model is revised to include quality factors, criteria 

and metrics for dynamic, hybrid semi-parametric simulation models. A state observer for 

the estimation of key process parameters during fermentation is presented as a use case. 

For this three hybrid models of the fermentation with differing levels of detail are 

identified and coupled with an extended Kalman filter (EKF). It was found that the quality 

model can successfully be used to assess quality differences in different types of state 

observers. The quality model allows a structured and quick assessment and is therefore 

able to show e.g. the performance improvement of the different hybrid models coupled 

with an EKF. With the transfer of the quality model to hybrid state observers a broader 

range of simulations models can be assessed within the framework. 

 

Keywords: Quality assessment, hybrid semi-parametric models, state observer. 

1. Introduction 
Simulation models as part of software and further as part of smart equipment are 

envisioned to become increasingly important for smart, modern plant as part of the 4 th 

industrial revolution. Soft sensors or model predictive controllers will be essentials parts 

of the process control and optimization (Kadlec et al., 2009). The quality of those 

simulation models must be specifiable, automatically testable and certifiable, if they are 

increasingly integrated into smart equipment. In this context, hybrid modeling approaches 

are an increasingly popular trend to combine knowledge- and data-driven modeling which 

makes the models more reliable and precise (Glassey & von Stosch, 2018). With this, it 

is not only important to assure the quality and correctness of the first principles approach 

but also process data has to be quality assured. 

The remainder of the paper is structured as follows. Section 2 introduces current methods 

for quality assessment of simulation models and applies it to hybrid, semi-parametric 

models. In section 3 the case study for the quality assessment in accordance to Mädler et 

al. (2021) is presented and evaluated in section 4. Section 6 provides a conclusion and 

further research potential. 

1279

http://dx.doi.org/10.1016/B978-0-323-95879-0.50210-1 



  I. Viedt et al.1256 

2. State of the Art  
2.1. Quality assessment of simulation models 
To assess the quality of simulation models, different strategies exist in literature (Murray-

Smith, 2015). The most commonly used ones are the methods for verification and 

validation (V&V) presented by Balci and Sargent (Sargent & Balci, 2017). Although the 

V&V methods provide a wide spectrum of assessment methods, they mainly focus on 

model accuracy. Sargent and Balci (2017) find that many simulation studies do not 

consequently apply V&V methods or even disregard them. Therefore, Mädler et al. 

(2021) discuss the applicability of quality assurance methods from software development 

to simulation models. To make software quality itself measureable and testable, quality 

assessment strategies from software development like test-driven-development and 

quality models in form of FCM models are applied. FCM stands for factor (F), criterion 

(C) and metric (M). Factors describe the desired abstract attributes of the software. 

2.2. Dynamic, hybrid semi-parametric models 
With the expansion of the framework presented in Mädler et al. (2021) to the field of 

hybrid state observers, a short introduction to gray-box modeling, and here specifically 

dynamic hybrid, semi-parametric models, is given. An overview on hybrid, semi-

parametric simulation is shown in Figure 1. Mechanistic models represent a broad class 

of more transparent models that are usually based on e.g. conservation laws (Glassey & 

von Stosch, 2018). In contrast, data-driven modeling represents a less transparent 

modeling framework based exclusively on process data (Glassey & von Stosch, 2018). 

 
Figure 1: Hybrid, semi-parametric models. 

Hybrid semi-parametric models are an example of those gray-box models and combine 

model structures that are parametric and non-parametric sub-models based on different 

knowledge sources. Hybrid semi-parametric models have several advantages over 

traditional mechanistic or data-driven modeling (Bae et al., 2020). Some widely 

recognized advantages in academia and industry are a broader knowledge base, the 

transparency of the modeling approach and cost-effective model development (Glassey 

& von Stosch, 2018). Especially for complex process simulation, a hybrid approach is 

able to achieve a more accurate and robust estimation (Bae et al., 2020). Existing process 

data can be used in gray-box models as ML or AI algorithms bridge gaps in the 

mechanistic modeling approach (Glassey & von Stosch, 2018). 

2.3. Functional quality assessment of hybrid, semi-parametric models 
When regarding the quality of hybrid semi-parametric models, the structure that combines 

aspects of parametric and non-parametric modeling has to be considered. So therefore not 

only quality and correctness of the first principles approach but also the data for non-

parametric components of the model have to be equally quality assured. In case of 

simulation model for smart equipment, the simulation models will rely on continuous 

integration and continuous deployment strategies (CI/CD) (c.f. Bruckner et al., 2020), 

which require a high level of transparency and an overview over the quality advancement 

with time. As presented in Mädler et al. (2021) the first step within the model 
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development should always be the specification of the purpose and the corresponding

requirements. In the next step, a generic FCM model must be adapted or modified

regarding the stated purpose. For this framework, the factors and criteria specified within

ISO/IEC 25010 are the basis for the generic FCM model. For hybrid models, the adapted

FCM model must contain factors, criteria and metrics to equally assess the parametric

and non-parametric sub-models (Bae et al., 2020). After determining the target ranges

and values for the metrics, the model building can begin. Using the FCM model, the

development and quality advancement of the model is tested continuously. If the

simulation model fulfills the targets, the user can exit model development successfully.

3. Case study
With the following case study, the framework for quality assessment of hybrid, semi-

parametric simulation models is evaluated. The underlying process of the simulation

model for the case study is a baker’s yeast fermentation and is used for online estimation

of biomass concentration 𝑐𝑥 and substrate concentration 𝑐𝑠 during the process (c.f. de

Azevedo et al., 1997) in form of a hybrid state observer.

3.1. Baker’s Yeast Fermentation
The underlying process for the use case is a baker’s yeast fermentation. The estimated

process parameters are in this case the biomass concentration. This process parameter is

good quality indicator for the biochemical process of fermentation (De Azevedo et al.,

1997). The mechanistic model for the baker’s yeast fermentation is obtained from mass

balances for all components. The relevant set of model equation for the process of

fermentation is shown in the following:
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Further, the model includes the oxygen transfer rate (OTR) and the oxygen uptake rate

(OUR). For the hybrid, semi-parametric approach of the use case of the case study two

different hybrid semi-parametric models are identified. These models combine the

parametric approach of the model equations (1) – (4) for the fermentation with a non-

parametric approach for the estimation of the specific growth rates (𝜇𝑆
0, 𝜇𝑆

𝑟, 𝜇𝐸
0). The

growth rates are estimated via existing process data.

3.2. Use case
The estimation of the biomass concentration is implemented as a soft sensor which is

structured as a non-linear state observer with the state tracking by means of an EKF with

the state transition achieved through the hybrid models presented (Auger et al., 2013) in

section 3.1. This soft sensor is envisioned to be used in a smart fermenter module during

the learning and application phase of the equipment and is shown in figure 2. The use

case is the process monitoring (PM) or possibly also online prediction (OP) (Kadlec et

al., 2009) of critical process parameters. To achieve the online estimation, the state

estimation algorithm of the EKF uses the online measurements of the oxygen
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concentration (c02) and the carbon dioxide evolution rate (CER). The hybrid state observer 

structure is shown in figure 2. 

 
Figure 2: Structure of the hybrid state observer for estimation of biomass concentration. 

To show how CI/CD in modular plants (MPs) is applied, the case study shows a fitting of 

the simulation model in an iterative identification process that represent different quality 

levels of the state observer. For this, the hybrid model is identified and further quality 

assessed. After that the actual performance of the soft sensor is compared to the prediction 

of the quality metric for the simulation model and adapted accordingly. The metrics are 

able to predict how good the soft sensor will be during operation. The individual cases of 

the case study are designed to emulate quality differences in the evaluated simulation 

models and are used to assess the usefulness and accuracy of the semi-automated 

assessment framework for hybrid semi-parametric simulation models. For the case study, 

Case 1 will be the version of the state observer that uses the first iteration of the hybrid 

model for the state transition in the EKF algorithm. To emulate quality differences in the 

models, different aspects of the model can be modified in the hybrid model. This can be 

achieved by increasing the noise in the data but also in reducing the size of the data sets 

or injecting faults into the sets (Kadlec et al., 2009), which affects the accuracy of the 

non-parametric estimation of the specific growth rates. Inaccurate model parameters, 

which in this use case is intentional, lead to a less accurate prediction of the model (Case 

2). In comparison, Case 3 shows the best quality hybrid model, after two iterations. 

3.3. Specified quality model and relevant metrics 
To evaluate the quality of the hybrid simulation model, the generic FMC model has to be 

adapted to the model use case (Table 1). The quality factor functional suitability is 

described by the criteria functional correctness, appropriateness and completeness. 

Relevant metrics for the criterion functional correctness are the coefficient of 

determination (R2) and the number of domain violations. Another important metric for 

state observers and is the difference between estimated and measured values (RMSE - 

Root Mean Square Error), which covers the criterion functional appropriateness. The 

criterion functional completeness is evaluated by the coverage metric and the model 

structure metric. The coverage metric describes how the modeling data covers the validity 

domain of the black-box sub-model and therefore the data quality (Mädler et al., 2021). 

For the factor reliability the criterion fault tolerance is considered. The corresponding 

metrics evaluate the model prediction. The metric outlier frequency describes the 

consistency of the estimated values, which is classified through MAD (Median Absolute 

Deviation) filter with moving window for more accurate detection. The metric tolerance 

to fault injection describes how the model reacts to incorrect inputs, which emulates 

fluctuations during the plant operation. For hybrid models, the metrics have to be able to 

evaluate both parts of the model. For example, the coverage metric and the data 

consistency metric can only be applied to the part of the model that is data-driven. Metrics 
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like the RMSE or R2 assess the overall quality of the simulation model by evaluating the 

entire model prediction. 

 Table 1: FCM model for the quality assessment of hybrid simulation models. 

Factor Criterion Metric Equation Classification Source 

Functional 

Suitability 

Functional 

Correctness 

Prediction 

consistency 

R2 (determination 

coefficient) 

Prediction 

quality 

Roungas et al, 

2017 

Domain 

violations 

Characteristic 

process boundaries 

Prediction 

quality 

Sargent & Balci, 

2017 

Functional 

Appropriateness 

Prediction 

accuracy 

RMSE (Root Mean 

Square Error) 

Prediction 

quality 

Montgomery & 

Runger, 2010 

Functional 

Completeness 

Coverage Convex hull 

criterion 

Data quality Mädler et al, 

2021 

Model 

components 

Model 

requirements 

Model structure 

quality 

Sargent & Balci, 

2017 

Reliability Fault Tolerance Outlier 

frequency 

MAD filter with 

moving window 

Prediction 

quality 

Roungas et al., 

2008 

Data 

consistency 

Error ratio Data quality Heinrich et al., 

2018 

Fault injection 

tolerance 

Tolerance to fault 

injection 

Prediction 

quality 

Roungas et al., 

2008 

4. Results and discussion 
The quality assessment framework was able to distinguish between the quality differences 

in the simulation model of the case study. The results, ratings from 0 (insufficient) to 10 

(excellent), for the considered metrics during assessment are shown in Table 2. 

 

Figure 3: State estimation of the four soft sensors resulting from Case 1 -3. 

The assessment shows that the quality model allows easy and automated quality 

assessment of different model types. With the assessed quality differences in the hybrid, 

semi-parametric models, the quality of the resulting soft sensor can be predicted. Figure 

3 shows the estimation of the biomass concentration with the resulting soft sensors in 

comparison to measured data. For now, the quality model for the quality assessment only 

considers the quality factors functional suitability and reliability. In further work it must 

be expanded to contain factors and criteria to assess attributes like portability, 

maintainability and performance efficiency of the simulation models to fit the use case of 

simulation models in smart equipment better. It is envisioned that those simulation 

models or software components are to be reused in different process scenarios with only 

minimal necessary adaption. 

Table 2: Results of the case study for the model quality. 
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Factor Criterion Metric Case 1 Case 2 Case 3 

Functional 

Suitability 

Functional Correctness Prediction consistency 8 7 9 

Domain violations 10 3 10 

Functional Appropriateness Prediction accuracy 8 6 10 

Functional Completeness Coverage 9 8 9 

Model components 10 10 10 

Reliability Fault Tolerance Outlier frequency 8 6 10 

Data consistency 8 4 9 

Fault injection tolerance 5 3 8 

Aggregated model rating 7,92 5,50 9,38 

5. Conclusion 
In this paper, the authors show how the in Mädler et al. (2021) presented framework for 

functional quality assessment can be transferred to dynamic, hybrid semi-parametric state 

observers. Additional requirements that are necessary for the assessment of dynamic, 

hybrid semi-parametric models were introduced into the framework. It therefore shows 

that the generic quality model can easily be adapted and expanded to a new use case and 

is able to show e.g. the performance improvement of a hybrid state observer over time 

when the EKF algorithm is coupled with hybrid, semi-parametric model. The flexibility 

of the generic structure of the quality model allows an easy combinations of metrics that 

target different parts of the simulation model and make an inclusive view on quality 

possible. In future work, the quality model must be expanded by further quality factors. 

The quality assessment must also include factors like portability, performance efficiency 

and compatibility to meet the requirements for the flexible MP structure. 
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Abstract
The optimal design of chemical processes is of essential importance for an increased sustainabil-
ity. However, the resulting non-convex mixed-integer nonlinear programming (MINLP) problems
cannot directly be solved to global optimality. Therefore, different alternatives have been pro-
posed, which either build on the application of a simulation-based optimization by means of a
metaheuristic or the global optimization of a surrogate model, both requiring extensive simula-
tions. The current work proposes a novel alternative approach for a surrogate-assisted hybrid
optimization, which exploits a local deterministic optimization of a full MINLP problem to gen-
erate a compact artificial neural network (ANN) model that allows for the direct optimization on
a reduced search space. In order to provide a sufficient accuracy of the ANN while targeting the
global optimum of the design problem, a tailored mixed adaptive sampling is introduced. Appli-
cation of the algorithm is illustrated for the optimal design of a distillation-based separation of
benzene, toluene, and xylene with different means for energy integration.

Keywords: optimization, artificial neural networks, distillation, energy integration, sampling

1. Introduction

Since downstream processes account for 40 - 90% of the overall expenditures of most chemical
plants (de Haan et al., 2020), notably optimization-based design methods for distillation-based
processes have received considerable attention. However, the resulting non-convex mixed-integer
nonlinear programming (MINLP) problems are usually solved by local optimization techniques,
especially in case of rigorous thermodynamic models. To overcome this limitation, different strate-
gies were recently reported, applying machine learning methods for the generation of accurate
surrogate models, such as Gaussian processes and artificial neural networks (ANNs), to replace
complex parts of the original process model (Nentwich and Engell, 2019) or the overall column
models (McBride et al., 2020). Global optimization of ANNs in a reduced-space formulation
allows for direct evaluation of full process flowsheets (Schweidtmann et al., 2019). Yet, the appli-
cation of such methods mandates numerically robust simulation models, some penalizing strategy
for constraint violations, and an efficient sampling of the search space, which usually requires a
significant number of samples.

The current contribution proposes a different application of ANNs to effectively exploit the re-
duced search space that is offered by the integration of an efficient local deterministic optimization
approach. The ANN creates a mapping of the initial values for a subset of the overall design vari-
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ables to verified local optima, which already satisfy all equality and inequality constraints. This
results in a significant contraction of the design space and allows for an effective search of the
global optimum. The applicability of the ANN-based approach with an adaptive sampling strat-
egy is first verified on several test functions, while the hybrid algorithm is successfully applied to
the design of a distillation-based separation of benzene, toluene, and xylene considering different
options for energy integration.

2. Methodology

Figure 1: Overview of the surrogate-
assisted optimization approach.

The novel surrogate-assisted optimization procedure
comprises a two-level hybrid approach. The lower level
is a local deterministic optimization, which solves a full
MINLP problem. The top level is an ANN including an
adaptive sampling procedure to ensure valid results as
well as few sampling points. The structure of the hybrid
approach builds on the concept of the memetic algorithm
proposed by Skiborowski et al. (2015a), which connects
an evolutionary algorithm (EA) and a local determinis-
tic optimization. An overview of the current procedure is
depicted in Figure 1, while the main parts are described
in the following subsections.

2.1. Artificial Neural Network

As ANN, a multilayer perceptron (MLP) is used to guide
the optimal selection of initial values for the local de-
terministic optimization. Therefore, the MLP maps the
initial values to the objective function of the local opti-
mization. In general, the MLP can treat continuous as
well as ordinal and nominal integer variables as a simple
input vector and processes these through the hidden lay-
ers towards a desired output. Since there is no ordered
relationship for nominal decision variables, a binary in-
put variable bi for each decision is considered, according
to the concept of one-hot encoding.

For the currently considered case study, which addresses
the optimization of a potentially energy-integrated direct
column sequence, the input variables comprise the initial
number of stages and the feed stage of each column in
the superstructure model for the local optimization as
well as the decision for the energy integration option, which is treated as four different binary
decision inputs (cf. Figure 2). The output represents the total annualized costs (TAC) of the
locally optimized process.

The MLP consists of two hidden layers with each neuron having a hyperbolic tangent sigmoid
transfer function. As training algorithm, the Levenberg-Marquardt algorithm with Bayesian regu-
larization is used. These specifications were derived based on preliminary tests with a test data set
for the column sequence case study. The training and sampling mechanisms, i.e., the top-level of
the hybrid optimization approach, are implemented in MATLAB® 2020b with the use of the Deep
Learning Toolbox™14.1.
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2.2. Mixed adaptive sampling

Figure 2: Superstructure of a direct column sequence for
three-product separation.

In this work, a mixed adaptive sam-
pling method is applied to generate
a reliable model based on the evalu-
ation of the local optimization prob-
lems. The overall goal is to gain
confidence in the generated results
by the local optimization and, at the
same time, reduce the number of
necessary function evaluations while
keeping an adequate model accu-
racy.

The initial sample points are deter-
mined by Latin hypercube sampling
(LHS). To ensure that feed locations
are within the selected number of
column stages, the latter are priori-
tized and the feed location is consid-
ered as a function of the total num-
ber of stages. Furthermore, the vertices of the design space are always included in the training
set while all other data points are randomly distributed to the training, validation, and test set, in
ratios of 80%, 10%, and 10%, respectively.

The subsequently applied mixed adaptive sampling approach successively adds a relative amount
of sampling points compared to the already existing samples to the set. In order to select new
sampling points, 10,000 candidates are generated by LHS and evaluated based on a combina-
tion of different evaluation criteria. The current approach combines the mixed adaptive sampling
approach of Eason and Cremaschi (2014), which considers the normalized Euclidean distance
(di/di,max) as a space filling metric and the normalized jackknife variance (si/si,max) as a mea-
sure for the model uncertainty, with a normalized expression of the expected improvement criteria
EInorm according to Jones et al. (1998), with

EInorm
i =

EIi −miniEIi

maxiEIi −miniEIi
, (1)

EIi = ( fmin − ŷi) ·Φ
(

fmin − ŷi

si

)
+ si ·φ

(
fmin − ŷi

si

)
, (2)

where fmin is the current minimal value of the sampling set, ŷi is the MLP output at point i, and si
is the jackknife standard deviation. Φ(·) and φ(·) are the standard normal distribution and density
function, respectively. The first contribution increases with decreasing predicted values ŷi while
the second contribution increases with increasing standard deviations si for the predicted values
(Jiang et al., 2020). The resulting combined evaluation criterion

ηi =
di

di,mnax
+

s2
i

si,max
+ ·EInorm

i (3)

provides an effective sampling with a balance between exploration and exploitation of the design
space.

The EI criterion favors minima of the predicted target function while maintaining a measure for
the prediction uncertainty. This ensures a sufficient accuracy of the surrogate model even if the
first two contributions of ηi get outweighed by the EI criterion. After each iteration of the adaptive
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sampling, the termination criteria of the algorithm are checked, i.e., the change in the objective
function of the sampling set, the maximum number of iterations, and the maximum number of
sample points.

2.3. Local deterministic optimization

By solving a local deterministic optimization problem instead of a simulation problem, the design
space of the upper ANN is effectively reduced. For this purpose, a superstructure optimization
problem needs to be solved to local optimality. For the current case study, an equilibrium-stage
column model with additional correlations for column sizing and costing is solved. The according
superstructure for the column sequence is illustrated in Figure 2. The corresponding MINLP
problem is solved as a series of successively relaxed nonlinear programming (NLP) problems
Skiborowski et al. (2015b) with additional modifications for heat integration, thermal coupling,
and an integration of the latter as dividing wall column Waltermann et al. (2020). The local
optimization model is implemented in GAMS 34.3.0 and the resulting NLP problems are solved
with SNOPT.

3. Results

Prior to the application for the process design example, the functionality of the mixed adaptive
sampling is evaluated for simple test functions. Subsequently, the results for the purification of a
mixture containing benzene, toluene, and xylene are presented.

3.1. Validation of sampling procedure

To evaluate the functionality of the mixed adaptive sampling approach, three test functions for
global optimization, i.e., the Ackley function (Ackley, 1987), MATLAB’s Peaks function (Eason
and Cremaschi, 2014), and the Six Hump Camel Back function (Floudas et al., 1999), are consid-
ered. All test functions have two input variables x,y ∈ [−2,2] and one output variable z. For this
purpose, a simple MLP is used with a single hidden layer with 15 neurons.

Figure 3: Response surface of the artificial neural network (ANN) representing the Peaks function
after five iterations including the sampling locations (left). To increase the clarity, the sample
points were added in the z = −10 plane and not on the response surface. Corresponding design
space representation with contour lines including sampling locations (right).
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The representative results for the Peaks function are illustrated in Figure 3. Similar to the work of
Eason and Cremaschi (2014), the initial sampling comprised 80 samples followed by a sampling
rate of 30% for all consecutive iterations. After five iterations, the response surface of the MLP
has an overall mean squared error of about 0.01 but shows a sufficient model accuracy. Especially,
the area of the global minimum is tightly covered, which is further highlighted in the contour plot
in Figure 3 focusing on iteration three and five. The global minimum is found with a deviation
of only 0.015%. Interestingly, a lot of samples are also located on the edges of the design space,
which is most likely caused by the tendency to reduce the model variance, while there is also
a persistent distribution of samples in a space-filling manner. In conclusion, the mixed adaptive
sampling procedures gives a good overall model regression while investigating areas around the
potential global optimum to increase the model accuracy in a close vicinity.

3.2. Purification of benzene / toluene / xylene

For demonstration of the approach to optimal process design, the purification of a mixture of
10 mol·s-1 with 30 mol% benzene, 30 mol% toluene, and 40 mol% xylene into streams with
purities of at least 99.5 mol% is investigated. The top-level ANN comprises eight input variables
(cf. Figure 2) with Ntotal,C1,Ntotal,C2 ∈ [20,80] and Nf eed,C1,Nf eed,C2 ∈ [5,Ntotal − 5], two hidden
layers with five and three neurons, and one output, resulting in 67 parameters (weights and biases).
The sampling procedure is carried out with 100 initial samples and a subsequent sampling rate of
25%. For the sake of clarity, Figure 4 (left) shows only the response surface in a reduced design
space, illustrating the best solutions in terms of the initial total number of stages in column 1
(Ntotal,C1) and column 2 (Ntotal,C2) for the heat-integrated process, which is determined as the
most economic process configuration. Figure 4 (right) illustrates the overall best solution found in
the locally optimized sampling set as well as the feature values and the output of the MLP.

Figure 4: Minimal response surface of the artificial neural network (ANN) for the heat-integrated
column sequence in a reduced design space of Ntotal,C1 ×Ntotal,C2 (left) and the corresponding in-
puts and output of the ANN for the best found sampling candidate and its locally optimal objective
value from GAMS (right).

As indicated in Figure 4 (right), the TAC of 151.32 ke/y determined from the ANN is only 0.02%
lower than the respective result of the local optimization. The global optimum of the response
of the MLP can be determined by a full enumeration of the design space, indicating a potentially
reduced objective function value of 149.94 ke/y, which is, however, less than 1% lower than the
previously described local optima in GAMS. In addition to this confirmation of the local optimum,
the response surface of the ANN also illustrates a flat optimum in the region of high initial tray
numbers, indicating a comparably good convergence of the local optimization approach. While the
presented approach does not provide a validation of the global optimum, the combination of local
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optimization and the ANN improves the coverage of the design space and strengthens confidence
in the quality of the determined solution. Furthermore, the evaluation of a total of 195 converged
samples represents only a tiny fraction of the overall number of combinatorial options, which sum
up to over 26 million considering the discrete design degrees of freedom that are represented by
the features of the MLP.

4. Conclusion

The current work presents a new approach for surrogate-assisted hybrid optimization, which ap-
plies an artificial neural network for the regression of a local deterministic optimization approach.
Combined with an effective mixed adaptive sampling based on the method of Eason and Cre-
maschi (2014) and the expected improvement criterion (Jones et al., 1998), an effective search for
the global optimum can be conducted for process design problems with MINLP characteristics.
The approach is successfully demonstrated for the optimization of a two-column process including
different means for energy integration.

Further work will focus on the tuning of the employed hyperparameters, e.g., the architecture of
the ANN, the termination criteria, the initial sampling as well as the sampling rate. Additionally,
the three parts of the evaluation criterion of new samples can be weighed to actively adjust the ratio
of exploration and exploitation in the progress of the iterations. An application to more complex
case studies can reveal further advantages and disadvantages of the method and will be part of
future research.
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Abstract 
Flexibility and mobility of modern value chains have created a need for continuous 
information exchange between involved chain parties. In such process industries, many 
companies share their manufacturing assets with each other and thereby allow partners to 
have control over them. In this way, some sensitive essential information about operations 
and control methods could be leaked from the asset supplier to the user and vice versa. 
Therefore, such information sharing raises confidentiality concerns between the service 
provider and its operator. The goal of this work is to apply and evaluate a confidentiality-
preserving information sharing model for a time series use case in process industries. 
There are various ways to maintain privacy of the sensitive information, such as 
anonymization and encryption. To preserve control for the user and to allow data 
gathering by the vendor about asset operation, homomorphic encryption methods could 
be implemented. Homomorphic encryption allows for the preservation of confidentiality 
of the data while enabling computations on the encrypted data. The main focus of this 
study is an investigation of homomorphic encryption schemes with multiplicative 
properties, such as RSA and ElGamal, which can be applied to process data within 
information exchanges. This research investigates the probabilistic and the deterministic 
homomorphic algorithms with respective differences in encryption and decryption 
speeds. This approach is based on the simulation of the use case between asset vendor 
and asset operator. The confidentiality model of the information exchange sustains the 
zero-knowledge proof between involved value chain partners. The result implies the 
adaptability of both methods within the privacy-preserving sharing model. This study is 
limited to a use case with the application of partial homomorphic cryptosystems in 
process industries. The outcome highlights the statistical justification of the application 
of multiplicative homomorphic encryption (MHE) for confidentiality preservation. 
 
Keywords: confidentiality, homomorphic encryption, value chains, process systems, 
secure information exchange 

1. Introduction 
Privacy and information security are crucial requisites in industrial systems. Many 
process systems, including networked and distributed control, could be subject to cyber 
security attacks. Through such attacks, the perpetrators seek to alter the measurements, 
steal transmitted information, cause harm to the system, or destabilize it. The perpetrators 
may also attempt to eavesdrop on time series data, what could help to identify the specific 
process and to develop an attack mechanism. Moreover, significant flows of sensitive 
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operation data transferred within supply chains via cloud networks between stakeholders 
can lead to breaches of information confidentiality. 
The purpose of the privacy protection methods is to make the data unreadable and 
incomprehensible to certain readers or the intruders, whereas the intended recipient is 
able to decrypt the message. Information confidentiality can be secured using 
cryptosystems. Key management, computational complexity and resource limitations, 
random number generation, and the encryption of dynamic data could be recognized as 
the main challenges of current cryptographic schemes. One group of encryption methods 
is homomorphic encryption, which can perform computations on the encrypted data 
without their prior decryption. Here the focus is placed on public key cryptography 
algorithms, which can solve the problem of key arrangement between the system actors 
present in symmetric cryptosystems. Two examples of homomorphic encryption with 
multiplicative properties are ElGamal and RSA cryptosystems. ElGamal public key 
cryptosystem is based on the complexity of computing logarithms (ElGamal, 1985), 
whereas RSA (Rivest et al., 1983) is based on the complexity of factoring large integers. 

2. Theoretical background 
2.1. Multiplicative homomorphic encryption 
Homomorphism refers to an encryption’s ability to combine the ciphertexts so that they 
decrypt as if the plaintexts were combined. The procedures for the two homomorphic 
encryption algorithms with multiplicative properties are described below. 
The Rivest-Shamil-Adlemean (RSA) is an asymmetric cryptographic algorithm that is 
widely implemented in privacy preserving applications and for authentication of the 
digital information (Boneh, 1999),  such as web traffic security, email encryption and 
signatures, electronic payment systems, etc. The algorithm is as follows. 
Key generation: 𝑛𝑛 = 𝑝𝑝 ∙ 𝑞𝑞, where 𝑝𝑝 and 𝑞𝑞 are random prime numbers. 
Totient: 𝜙𝜙(𝑛𝑛) = (𝑝𝑝 − 1)(𝑞𝑞 − 1). 
gcd�𝑒𝑒,𝜙𝜙(𝑛𝑛)� = 1 such that 1 < 𝑒𝑒 < 𝜙𝜙(𝑛𝑛) and 𝑒𝑒 is co-prime to 𝜙𝜙(𝑛𝑛). 
Congruence relation: 𝑑𝑑𝑑𝑑 ≡ 1 (mod 𝜙𝜙(𝑛𝑛)), or 𝑑𝑑 = (1 + 𝑥𝑥 ∙ 𝜙𝜙(𝑛𝑛))/𝑒𝑒 to be an integer. 
The public key is comprised of (𝑛𝑛, 𝑒𝑒). 
The private key consists of 𝑝𝑝, 𝑞𝑞, and 𝑑𝑑. 
Encryption: 𝑐𝑐 =  𝑚𝑚𝑒𝑒  mod 𝑛𝑛. 
Decryption: 𝑚𝑚 =  𝑐𝑐𝑑𝑑  mod 𝑛𝑛. 
The ElGamal encryption is a probabilistic algorithm of public key cryptography and is 
based on Diffie-Hellman key exchange. The protocol steps are listed below. 
Key generation: publish a large prime 𝑝𝑝 and the generator 𝑔𝑔 of the group 𝑍𝑍𝑝𝑝∗ . 
Compute 𝐴𝐴 =  𝑔𝑔𝑎𝑎 mod 𝑝𝑝, where 1 ≤ 𝑎𝑎 ≤ 𝑝𝑝 − 1. The public key is (𝑝𝑝,𝑔𝑔,𝐴𝐴). 
Encryption: choose 𝑘𝑘 from {1, … ,𝑝𝑝 − 1} to compute the ciphertext: 
(𝑐𝑐1 = 𝑔𝑔𝑘𝑘mod 𝑝𝑝, 𝑐𝑐2 = 𝑚𝑚 ∙ 𝐴𝐴𝑘𝑘mod 𝑝𝑝), where 𝑚𝑚 is a message and 1 ≤ 𝑚𝑚 ≤ 𝑝𝑝 − 1. 
Decryption: compute inverse 𝑥𝑥−1 of 𝑥𝑥 =  𝑐𝑐1𝑎𝑎  mod 𝑝𝑝, from which follows that  
𝑚𝑚 =  𝑥𝑥−1 ∙ 𝑐𝑐2 mod 𝑝𝑝. 
2.2. Related work 
One of the applications of ElGamal encryption was implemented in a networked control 
system for protecting confidential information passed through devices (Kogiso, 2019). 
The parameters and signals of a discrete-time linear controller were encrypted to prevent 
reverse engineering, damage, or information theft. As a result, due to the homomorphic 
properties of the cryptosystem, the controller could compute the output using encrypted 
input parameters. Asymptotic stability improvements were performed by adding a 
dynamic encoder and decoder to the cryptosystem (Teranishi et al., 2020). Another 
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proposal for implementation of an ElGamal cryptosystem for voting in elections is 
presented in (Mikhail et al., 2014). The main idea is the secrecy of individual votes while 
allowing each individual only a single vote. Moreover, the system can exclude non-
eligible voters and verify the real outcome. Thus, the tallying of votes can be performed 
using homomorphic encryption. Another application of MHE was found in protecting 
DNA data (Thangavel and Varalakshmi, 2018). The ElGamal cryptosystem is used to 
encrypt the data transmitted via cloud and manage the secure passing of keys between 
data owner and user. This enhanced implementation of the cryptosystem has an improved 
authentication and higher resistance to attacks. The RSA cryptosystems are used in cloud 
networks (Tebaa et al, 2012) and, despite its large computational time, the algorithm can 
maintain high levels of security. 
2.3.  Current contribution 
The application of multiplicative homomorphic encryption could prove useful for 
information exchange within value creating chains. Such transfers of information can be 
observed within collaborations between production process partners. In such interactions, 
the physical assets and production data could be shared. However, not all parties are 
willing to fully disclose their process data, operation conditions, and process dynamics. 
Therefore, to establish a trusted environment and maintain privacy protection of process 
data or confidential computational formulas, the application of homomorphic encryption 
is proposed. The implementation of RSA and ElGamal cryptosystems for a use case in 
process industries is described below. 

3. Methodology 
3.1. Use case for MHE 
Homomorphic cryptographic algorithms can be employed for confidentiality preservation 
of the information being computed, passed process inputs and outputs, and time-series 
data generated within production chain. 
Much of the data and information transmitted in the process industries can be described 
by models containing the multiplicative relationship between parameters and variables. 
The working use case was developed based on a simple multiplicative relationship 
between the volume of liquid in a tank and its density changing with temperature. To 
represent the application of homomorphic encryption with multiplicative properties, the 
use case of computing the liquid volume in the tank from the encrypted values of density 
is studied. The process equipment is provided by the supplier in a process chain, and it is 
operated by the user who desires to keep information about the physical properties of the 

process materials confidential. The supplier needs to collect essential operation 
information regarding the process equipment; however, the equipment user can share the 
information in an encrypted form. Thus, encrypted dynamic density values of the tank 
mixture are transmitted by the user, and the supplier utilizes them to compute the 

Figure 1. Use case example: information exchange 
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corresponding volume in the tank, which is necessary to calculate in order to avoid an 
overflow in the tank. The protocol of information exchange (Figure 1) between the user 
and the supplier must sustain a zero-knowledge proof. Using a key management party for 
generation of a one-time key for each dataset facilitates the confidentiality preserving 
transfer of data. Therefore, none of the parties are able to reveal the secrets of the other 
partners, for instance, density dynamics encrypted by the user or computation of the tank 
volume performed by the supplier. 
3.2. Simulation 
The data used for the use case are shown in Figure 2 and represent original values of the 
inverse density dependencies of four substances over temperature. The data used for the 
generation of the plots are provided by the Dortmund Data Bank (DDBST, 2022). The 
inverse of density was used to simplify the implementation of the encryption algorithm, 

and by directly multiplying the inverse of 
density by the mass of the liquid in the tank, 
the operation of division was avoided. To 
ensure fair evaluation of the encrypted 
distributions, the algorithms were run for 
100 cycles for each liquid and both 
encryption algorithms using different key 
generation and encryption constants. To 
conduct a comparison of the two encryption 
methods, the encryption parameters were 
chosen in a manner to have similar ranges 
of output magnitude. 

4. Results and discussion 
The goal of this analysis is to perform a statistical evaluation of the encrypted data by 
identifying patterns from the attacker’s point of view. Thus, this does not consider a proof 
of the strength of encryption algorithms from the perspective of randomness assessment. 
Instead, the applicability of MHE algorithms to value chains and process related 
information is analyzed, and the confidentiality level achieved through the 
implementation of these methods is evaluated. 
4.1. Analysis of encryption 
The liquids chosen for analysis have different ranges and distributions of density at 
different temperatures. Methanol has a strong increasing trend, whereas the profile of 
water has a normal pattern. The profiles of benzene and chloroform also demonstrate 
similar increasing trends, with a vertical shift between curves. The strategy for analysis 
of encoded inverse density profiles includes the use of statistical features that are used in 
similarity assessments of time series data (Nanopoulos et al, 2001). The chances of 
drawing correlation between encrypted and non-encrypted datasets and identifying the 
substances is examined based on statistical features. 
The comparison between the encrypted datasets for both RSA and ElGamal algorithms 
was performed using first and second order statistical features. Analyzed first order 
features include mean value, skewness, and kurtosis. Skewness depicts an asymmetry 
relative to mean, and kurtosis characterizes the tails of a distribution. Evaluated second 
order features contain co-occurrence features, such as energy, correlation, and 
homogeneity. The energy feature reflects the uniformity of the distribution, correlation 
measures the relationship between neighboring elements of the matrix, and homogeneity 
describes the probability of closeness to the diagonal in a co-occurrence matrix. 

Figure 2. Density inverse profiles 
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Figure 3. Statistical features of encrypted datasets with RSA algorithm 

Figures 3 shows the mentioned first and second order features for datasets encrypted with 
RSA and Figure 4 depicts the homogeneity of ElGamal implementation. Mainly, the first 
step in identification of the substances would be to correlate the sequences of distribution 
peak sizes with the sequence of original datasets from Figure 2. For the RSA encryption, 

Figure 3 (c) implies that a kurtosis feature applied to the 
encrypted datasets could reveal the order of liquids, 
meaning that lower density liquids have higher peaks at 
the kurtosis distributions. A similar observation could be 
made from Figure 3 (e) based on the area under the 
curves of the correlation feature. In comparison, the 
patterns for the features of datasets encrypted with 
ElGamal are observed to be different from those with 
RSA. However, the homogeneity feature in Figure 4 also 
shows the same arrangement of substances as in the 
original distribution of inverse densities. 

4.2. Inferential statistical comparison 
To conduct further evaluations of obtained distributions of statistical features for different 
substances, a t-test (with α = 0.05) was applied to pairs of samples on a per-feature basis. 
Since the datasets describing statistical features are mostly characterized by normal 
distribution, a t-test would allow comparison of distributions in each feature to determine 
whether they could be related to the same population. Table 1 shows the results of null 
hypothesis (h) and probabilistic significance value (p) for all datasets. When the value of 
h is 0, the null hypothesis is valid; otherwise, the value is 1. Value of p has a range [0, 1] 
and higher number designates validity of the null hypothesis. 
The t-test concluded that correlation feature distributions of datasets of chloroform 
density inverse values encrypted with RSA and homogeneity distributions of datasets of 
water profile encrypted with ElGamal reject the null hypothesis. However, unity values 
of h have very low probability p. Based on the overall results of t-test, the null hypothesis 

Figure 4. Homogeneity feature 
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was confirmed and it could be inferred that the statistical features are not distinguishable 
from each other. 
Table 1. Results of t-test for statistical features 

  M-B* M-W* M-C* B-W* B-C* W-C* 
  h p h p h p h p h p h p 

Mean RSA 
ElGamal 

0 
0 

0.76 
0.33 

0 
0 

0.96 
0.11 

0 
0 

0.94 
0.92 

0 
0 

0.79 
0.44 

0 
0 

0.81 
0.38 

0 
0 

0.98 
0.12 

Skewness RSA 
ElGamal 

0 
0 

0.33 
0.18 

0 
0 

0.76 
0.70 

0 
0 

0.66 
0.82 

0 
0 

0.48 
0.36 

0 
0 

0.11 
0.12 

0 
0 

0.40 
0.54 

Kurtosis RSA 
ElGamal 

0 
0 

0.56 
0.10 

0 
0 

0.64 
0.58 

0 
0 

0.82 
0.08 

0 
0 

0.89 
0.26 

0 
0 

0.72 
0.91 

0 
0 

0.81 
0.22 

Energy RSA 
ElGamal 

0 
0 

0.27 
0.17 

0 
0 

0.46 
0.05 

0 
0 

0.71 
0.38 

0 
0 

0.06 
0.52 

0 
0 

0.12 
0.72 

0 
0 

0.68 
0.37 

Correlation RSA 
ElGamal 

0 
0 

0.34 
0.60 

0 
0 

0.53 
0.55 

1 
0 

0.00 
0.99 

0 
0 

0.79 
0.25 

1 
0 

0.04 
0.58 

1 
0 

0.03 
0.52 

Homogeneity RSA 
ElGamal 

0 
0 

0.76 
0.70 

0 
1 

0.98 
0.03 

0 
0 

0.68 
0.59 

0 
1 

0.80 
0.04 

0 
0 

0.91 
0.35 

0 
1 

0.71 
0.01 

* M – methanol, B – benzene, W – water, C – chloroform 

5. Conclusion 
The aim of this work was to assess the applicability of the multiplicative homomorphic 
cryptosystems for confidentiality-preserving secret sharing of process-related 
information. Since RSA and ElGamal cryptosystems are considered to be secure tools for 
information exchange, they were implemented for the presented use case that includes 
multiplicative relations within mathematical models of the processes. The statistical 
features of the encrypted inverse density profiles for four liquids were compared with the 
original distribution patterns and several correlations between them were found. Some 
features were identified as revealing for both encryption methods. However, the result of 
inferential statistical analysis shows that the feature datasets of encrypted values could 
not be differentiated from each other, thereby proving the usability of multiplicative 
homomorphic encryption in process industries. 
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Abstract
In this paper, we describe the PPOPT (Python Parametric OPtimization Toolbox) solver, written
in Python. A general-purpose multiparametric package written in Python that features: (i) Effi-
cient and parallel implementations of common multiparametric programming algorithms (strong
scaling ≥ 25 cores), (ii) Problem reformulation to reduce the computational overhead and numeri-
cal stability, (iii) Multiparametric solution code generation to export solutions in C++, JavaScript,
Python, and MATLAB. The speed and scaling behavior of PPOPT are explored with computa-
tional studies on the POP problem libraries and with explicit MPC controller design. PPOPT is
compared to current state-of-the-art multiparametric solvers. Additionally, an exported solution is
benchmarked on various platforms, including embedded processors and desktop computers

Keywords: Multiparametric Programming, Parallel Programming, Explicit Model Predictive Con-
trol, Optimization, Operations Research

1. Introduction

We consider the following class of multiparametric programming problem 1, mutliparametric
Quadratic Programs (mpQP) and multiparametric Linear Programs (mpLP), where x ∈Rn, θ ∈Rk

and AE ,A,Aθ ,FE ,F,H are matrices of appropriate dimension and bE ,b,bθ are vectors of appro-
priate dimension. Constraint set eq. 1b defines the general equality constraints, similarly eq. 1c
defines the inequality constraints, and eq. 1d defines the inequality constrains on the uncertain
parameter θ , with eq. 1a defining the multiparametric objective.

min
x

f (x,θ) =
1
2

xT Qx+θ
T HT x+ cT x (1a)

s.t. AEx = bE +FEθ (1b)
Ax ≤ b+Fθ (1c)

Atθ ≤ bt (1d)

Multiparametric programming has found renewed interest due to the fact that the model predic-
tive controller (MPC) optimization problem can be reformulated into a multiparametric program
(Pistikopoulos et al., 2021). This allows for the generation of explicit MPCs that have found much
interest in process control applications (Kiparissides et al., 2011; Sakizlis et al., 2004; Dua et al.,
2006; Pappas et al., 2021). Morover, applications have also been found in scheduling (Burnak
et al., 2019), simultaneous design and control (Diangelakis et al., 2017), data science (Tso et al.,
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2020), multilevel optimization problems (Avraamidou and Pistikopoulos, 2019), and financial ap-
plications (Romanko et al., 2012).

Nearly all of the multiparametric algorithms in the literature are based on serial execution, i.e., the
tasks are processed sequentially only one execution thread. Current state of the art multiparametric
solvers do not utilize parallel programming techniques, and thus not taking advantage of modern
computational hardware. The development of parallel multiparametric algorithms and software
implementations has been investigated in the literature, with an initial study being conducted by
(Oberdieck and Pistikopoulos, 2016) showing that it is possible to create parallel multiparametric
algorithms. However, the scaling with core count was not promising for large core counts.

Motivated by these limitations, PPOPT was developed to scale on large core count systems (≥25
cores). Much care has been taken to develop the new parallel algorithms and implementations to
achieve good computational scaling. PPOPT has implemented parallel versions of the Combina-
torial algorithm, Connected Graph, and Geometric algorithms developed by (Gupta et al., 2011;
Oberdieck et al., 2017; Spjøtvold et al., 2006), respectively.

2. PPOPT Features

2.1. Key Points

2.1.1. Parallel Multiparametric Programming

The central feature of PPOPT is the efficient and scalable implementations of multiparametric pro-
gramming algorithms. Due to limitations of the serial nature of literature algorithms, these needed
to be reformulated in a way as to allow for the sub-tasks to be solved independently of each other
as well as modifying the data structures being used. The multiparametric programming problem
test sets MPQP1, and MPLP1 are used to assess the performance of the considered solvers, a more
detailed description for these problem sets can be found in (Oberdieck et al., 2016). A perfor-
mance comparison is performed in subsection 2.3 on the MPQP1 problem datasets. The scaling
of the combinatorial algorithm is studied in Subsection 2.2. In addition, a control application, the
generation of explicit MPC, is studied in Section 3.1.

2.1.2. Problem reformulation and Constraint Processing

Performance and robustness considerations require the removal of all redundant constraints at
solve time, so PPOPT has a robust set of tools for constraint processing. The primary focus is
the removal of strongly and weakly redundant constraints, as the solve time for multiparametric
programs with any algorithm scale with the number of constraints, and removing redundant and re-
peated constraints improves computational stability. Condition number of optimization problems
influence the problem (Ordonez, 2002). As the problem is stated ahead of time, various condi-
tioning methods can be applied that are not applicable for the online case, such as reformulating
mpQPs into equivalent multiparametric min-norm problems.

2.1.3. Solution Export

An important application of multiparametric programming is generating Explicit Model Predictive
Controllers for optimal control applications. However, there are very few solutions to export
explicit multiparametric solutions. This is addressed with PPOPT, as the package can generate
code based on the solution of the multiparametric problem. Currently, the solver can generate C++,
Python, JavaScript, and MATLAB code. The performance of the exported solutions is explored in
Subsection 3.2.

1298

1274



PPOPT - Multiparametric Solver for Explicit MPC

Figure 1: Comparison of single core and multicore solve times

(a) Ratio of Speed up v. Ideal Scaling (b) Solve time vs. number of Cores

Figure 2: Scaling Study of PPOPT on large scale mpQP

2.2. Case Study: Scaling Analysis of the Combinatorial Algorithm

The scaling behavior of the PPOPT parallel implementation of the combinatorial algorithm (Gupta
et al., 2011) is studied for the scaling behavior. A quadratic multiparametric problem was ran-
domly generated such that a solving with a single core becomes computationally burdensome, in
the order of an hour. This experiment was run on a single compute node in the Terra Supercom-
puter (dual Intel Xeon E5-2680 v4 2.40GHz 14-core, 64GB 2400MHz DDR4 RAM, CentOS 7).
Here we can see the strong scaling of PPOPT both in terms of scaling efficiency and in a speed-up
factor as a function of core count. The multiparametric programming problem considered here has
eight optimization variables, four uncertain parameters, and 52 non-redundant affine constraints.
This problem took 66 minutes to solve with the PPOPT solver utilizing a single core. In Figure 2b,
we see the time scaling behavior of the parallel implementation, scaling nearly ideally with good
strong scaling performance, and in Figure 2a, we see the ratio of ideal scaling and observed scaling
for this problem, this again show nearly constant strong scaling behavior after 12 cores. With an
overall speed-up of 22.7x, the total solve time was reduced to 2.9 minutes from 65.8 minutes, with
all 28 cores being used.
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A scaling study was carried out on the MPLP1 test set to show scaling performance on solving
multiparametric problems with respect to problem-solving time. In Figure 1, It can be seen that
problems take less than 1 second to solve that the speed-up factor is less than one. This is due to a
fixed overhead of creating multiple python processes to solve the problem in parallel. In the case
of solving many simple multiparametric programs, it might make sense to increase parallelization
granularity over entire problems instead.

2.3. Case Study: Benchmark Performance on mpQP problems

The performance of PPOPT is tested on the MPQP1 problem sets. Each problem set contains
100 multiparametric problems, each of wide degrees of computational difficulty, with different
numbers of constraints, parameters, and optimization variables. A full description of the problem
sets can be found in Oberdieck et al. (2017). Here PPOPT will be compared against the POP and
MPT3 solvers for the relevant algorithms (Oberdieck et al., 2016; Herceg et al., 2013). This ex-
periment was run on a single compute node in the Terra Supercomputer (dual Intel Xeon E5-2680
v4 2.40GHz 14-core, 64GB 2400MHz DDR4 RAM, CentOS 7). With PPOPT parallel algorithms
using all 28 cores, Strong Performance can be observed for PPOPT in Figure 3.

Figure 3: MPQP1 Test Set Performance of PPOPT, MPT3, and POP

3. Applications

3.1. Case Study: Explicit Model Predictive Control

Explicit model predictive control (eMPC) is one of the central applications of multiparametric pro-
gramming, and thus focus is applied to this application. A computational study is where an explicit
model predictive controller is generated for a system with four states, one input, and two outputs
with parametric set points with constraints on the state, output and input. The computational study
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Table 1: Timing Results of Exported Solution

C++ Python Matlab JavaScript

ESP32 47 uSec N/a N/a N/a
Teensy 4.0 5 uSec N/a N/a N/a
i5-8600K .3 uSec 8.2 uSec 410 uSec 5 mSec

is the time to solve increasingly larger eMPCs by increasing the control horizon of the eMPC. As
can be seen in Figure 4, for larger problems, PPOPT is significantly faster, with a speed-up factor
of approximately 15x. Indicating that for the generation of eMPCs, the PPOPT solver would be
the faster choice. This computational study was performed on a four core desktop with an i7-4770
with 16 GB of RAM on a Python 3.8 environment for PPOPT and MATLAB 2019a environment
for POP and MPT3.

3.2. Case Study: Benchmarking the Real Time Performance of the Exported Solution

Figure 4: eMPC comparison with PPOPT and MPT 3.1.2

PPOPT can export the solution to a
multiparametric program as source
code with a small included li-
brary to run the code. The lan-
guages currently supported are C++,
Python, JavaScript, and MATLAB.
This method was chosen to maxi-
mize the portability of the exported
solution and allow for modifications
in how the solution integrates into
the specific environment. A prob-
lem with 4 optimization variables, 2
uncertain parameters, 45 constraints,
and 87 critical regions was used to
benchmark the performance of the
exported solution. The exported so-
lution is evaluated on the follow-
ing hardware: an ESP32, 240Mhz
Xtensa LX6 with 520 KiB SRAM,
a Teensy 4.0, 600MHz ARM M7, and 1 MiB Ram, and on a desktop 6 core Intel i5-8600k with
32GB DDR4 RAM. As a reference, with Gurobi in Python 3.8 on the desktop system, it takes 800
uSec to solve. Results are summarized in Table 1.

The C++ exported solution is quite fast across all of the hardware evaluated. This is applicable for
hard real-time computing optimization problems, even with embedded processors. The indices in
the table labeled as N/a cannot be run on the platform, such as MatLab on the embedded processor.
While a performance regression was observed for the exported JavaScript solution, the indented
application is integrated into a web framework, allowing the end-user to utilize optimization meth-
ods without needing an optimization package or license.

4. Conclusions

In this paper, we described PPOPT, the Python Parametric OPtimization Toolbox. PPOPT has
state-of-the-art implementations of the multiple algorithms implemented to utilize many-core
computers to speed up solving multiparametric programming problems. With strong results com-
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pared to the state-of-the-art multiparametric solvers. Computational studies on the mpQP1 prob-
lem set show superior performance than POP and MPT3. An explicit MPC case study shows an
approximate 15x speed up with solving explicit MPCs compared to MPT3. The parallelism scal-
ing of the combinatorial algorithm was explored on large-scale problems showing excellent strong
scaling with core count with large scale problems. Additionally, the performance of the exported
solution for multiparametric programs was studied on an example solution with different hardware
systems showing strong results.

We hope to contribute to many aspects, such as developing and then implementing new scalable
algorithms for mpLPs, mpQPs, and the mixed-integer variations of these problems. In addition to
completely solving multiparametric programs, a problem type of interest is partially solving the
multiparametric program and using this information to speed up the online computational results
for large-scale problems.
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Abstract 

Sequential least squares programming (SLSQP) algorithm has been shown to be useful 

for driving the feasible path algorithms for process optimisation. However, the existing 

SLSQP algorithms still need many function evaluations for computationally challenging 

process optimisation problems. In the current work, we propose several novel strategies 

to improve both the efficiency and convergence of the SLSQP algorithm. Solving a large-

scale process optimisation problem indicates that the algorithm can save computational 

times by 10-90% with better solutions generated. 
 

Keywords: process optimisation, SLSQP, line search, feasible path, numerical errors. 

1. Introduction 

Optimisation is a powerful tool to design the best chemical process with the lowest cost 

or highest profit while satisfying the production requirements and restrictions at the same 

time (Biegler, 1993). To get optimisation results that can match the real-world production 

well, it is highly desirable to use rigorous unit operation models. However, this often 

leads to strongly nonlinear, non-convex or even ill-conditioned large-scale nonlinear 

programming (NLP) problems, which is hard to solve (Pattison and Baldea, 2014).  

The feasible path algorithm is widely used to solve process optimisation problems due to 

its good convergence, which divides the entire process optimisation problem into a small-

scale optimisation problem in the outer level and a large-scale process simulation problem 

in the inner level (Parker and Hughes, 1981). However, for feasible path algorithms, the 

simulation needs to be conducted in each iteration, which may suffer from divergence if 

the models are strongly nonlinear. To tackle with this problem, the pseudo-transient 

continuation (PTC) modeling approach has been introduced for process simulations, 

which was reported to be able to improve the convergence of simulations and 

optimisations significantly (Pattison and Baldea, 2014). However, PTC simulations are 

much slower than steady-state simulations, making feasible path algorithms less efficient. 

To improve the efficiency, we proposed a hybrid steady-state and time-relaxation-based 

optimisation algorithm in our previous work, which combines PTC simulations and 

steady-state simulations to reduce the times of implementing PTC simulations without 

degrading the convergence of simulations and optimisations (Ma et al., 2020).  

The hybrid algorithm in our previous work (Ma et al., 2020) is driven by a sequential least 

squares programming (SLSQP) algorithm (Kraft, 1988) that is potential to be more stable 

than sequential quadratic programming (SQP) algorithm under numerical noise 

(Schittkowski, 1982). However, due to the lack of wide research, the existing SLSQP 
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algorithm is less efficient and may generate ascent directions due to the numerical errors 

in the least squares (LSQ) solver (Lawson and Hanson, 1995) adopted.  

With above in mind, in this work, we will develop an improved SLSQP algorithm to drive 

the hybrid steady-state and time-relaxation-based algorithm. The proposed algorithm uses 

a formula to initialize the step length during the line search instead of always using full 

step length as initial values to achieve higher efficiency. Also, some strategies are 

proposed to improve the convergence of the SLSQP algorithm, such as revising the search 

directions with a new LSQ solver and relaxing the line search criteria in some iterations. 

The computational results from solving a challenging large-scale process optimisation 

problem in the literature indicates that the improved SLSQP algorithm usually generates 

a better solution with 10-90% less computational time required, compared with an 

existing SLSQP algorithm. 

2. Problem Statement 

The NLP problem solved in the current work can be stated as follows: 

 min 𝑓(𝑥)  (NLP) 

𝑠. 𝑡. ℎ(𝑥) = 0 

  𝑔(𝑥) ≥ 0 

 𝑥 ∈ 𝑅𝑛, 

where 𝑓: 𝑅𝑛 → 𝑅, ℎ: 𝑅𝑛 → 𝑅𝑚𝐸 and 𝑔: 𝑅𝑛 → 𝑅𝑚𝐼  are all twice continuously 

differentiable functions. We assume both the function values and first-order derivatives 

are available. When applying the developed SLSQP algorithm to the feasible path 

algorithm, function values and gradients can be got from equation-oriented simulators.  

3. Improved Sequential Least Squares Programming Algorithm 

3.1. Sequential least squares programming algorithm 

The SLSQP algorithm was proposed by (Schittkowski, 1982), which is to solve a 

constrained LSQ subproblem in each major iteration to generate a descent direction. The 

LSQ problem solved at iteration 𝑘 is shown as follows, 

 min 
1

2
‖𝑅𝑘𝑑𝑘 − 𝑞𝑘‖2  (LSQ) 

𝑠. 𝑡. ∇ℎ𝑘𝑇
𝑑𝑘 + ℎ𝑘 = 0 

  ∇𝑔𝑘𝑇
𝑑𝑘 + 𝑔𝑘 ≥ 0, 

where 𝑑𝑘 is the search direction to be solved. 𝑔𝑘 and ℎ𝑘 are values of constraint functions 

at iterate 𝑥𝑘, while ∇𝑔𝑘and ∇ℎ𝑘 are current gradients of inequalities and equalities. 𝑅𝑘 

and 𝑞𝑘 are least squares matrix and observation vector respectively, which are updated 

during optimisation according to the BFGS formula and an LDL updating algorithm 

(Fletcher and Powell, 1974). 

Line search can be used to guarantee the global convergence of SLSQP algorithm, which 

is to get a step length 𝛼 providing a sufficient decrease for the merit function 𝑀(𝑥) along 

the search direction 𝑑𝑘. After a 𝛼 is obtained, the iterate can be updated using Eq. (1), 

𝑥𝑘+1 ← 𝑥𝑘 + 𝛼𝑑𝑘.  (1) 
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A frequently used condition to guarantee the sufficient decrease for constrained NLP is 

the Armijio condition (Armijo, 1966) as shown in the following Eq. (2), 

𝑀(𝑥𝑘 + 𝛼𝑑𝑘) ≤ 𝑀(𝑥𝑘) + 𝛼𝜌𝐷𝑀𝑘(0),  (2) 

where 𝐷𝑀𝑘(0) is the directional derivative of 𝑀(𝑥𝑘 + 𝛼𝑑𝑘) along 𝑑𝑘 at 𝛼 = 0, and 𝜌 ∈
(0, 0.5) is a constant. The region of 𝛼 satisfying the Eq. (2) is shown in Fig. 1. 

 

Figure 1 Zones of 𝛼 in Armijio conditions and Armijo-Wolfe Conditions 

The framework of a line search and merit function-based SLSQP algorithm can be 

described as follows: 

Algorithm 1: SLSQP 

Step 1: set 𝑘 ← 0; give 𝑥0 and evaluate 𝑓0, 𝑔0, ℎ0, ∇𝑓0, ∇𝑔0, ∇ℎ0; assign initial 𝑅𝑘 

and get 𝑞𝑘; 

Step 2: solve LSQ subproblem for 𝑑𝑘 and check NLP convergence condition. If the 

solution is found, go to Step 5; 

Step 3: conduct line search to get 𝛼 satisfying Eq. (2) and to get 𝑥𝑘+1; 

Step 4: evaluate 𝑓𝑘+1, 𝑔𝑘+1, ℎ𝑘+1, ∇𝑓𝑘+1, ∇𝑔𝑘+1, ∇ℎ𝑘+1, 𝑅𝑘+1, 𝑞𝑘+1 at 𝑥𝑘+1; set 

𝑘 ← 𝑘 + 1, then go back to Step 2; 

Step 5: return 𝑥𝑘, 𝑓𝑘. 

3.2. A new line search algorithm 

The backtrack method is usually used for the line search in Step 3 of Algorithm 1, where 

a full step length is adopted at first and then reduced if it doesn’t satisfy Eq. (2). This can 

achieve superlinear convergence around the optimal point. However, when 𝑥𝑘 is far from 

the solution, the step length satisfying Eq. (2) may be much smaller than one especially 

for strongly nonlinear problems, so it possibly leads to many unnecessary function 

evaluations to use full step lengths as initial values for the line search in all iterations. In 

this work, a formula Eq. (3) from (Fletcher, 2008)  that is shown to be efficient for 

unconstrained optimisation is used here for the constrained NLP problem,  

𝛼0 = 𝑚𝑖𝑛 (1,
2𝛥𝑀𝑘

−𝐷𝑀𝑘(0)
),  (3) 

where Δ𝑀𝑘 is the predicted decrease of the merit function in the current iteration 𝑘, which 

is estimated as 𝑀𝑘−1 − 𝑀𝑘, the decrease of the merit function in the preceding major 

iteration. The second term in the right hand side of formula (3) is obtained by assuming 

that the merit function is quadratic with respective to the step length 𝛼, while its first term 
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is to avoid a step length larger than 1. For unconstrained optimisation, 𝛼0 from Eq. (3) 

will be always 1 when 𝑥𝑘 is sufficiently close to solution 𝑥∗ for a superlinear convergence 

algorithm, so the superliner convergence rate of the original algorithm will not be 

degraded (Fletcher, 2008). For constrained optimisation, although there haven’t been a 

similar proof yet, 𝛼0 are indeed frequently one when 𝑥𝑘 is close to optima and not 

dominated by numerical noise according to our observation.  

However, for strongly nonlinear problems, the predicted 𝛼0 from Eq. (3) may be over 

small and far from the local minimum of the merit function along 𝑑𝑘 when 𝑥𝑘 is distant 

from the solution (such as point 𝐴 in Fig. 1). In such case, if the frequently-used backtrack 

line search is used and the step length is accepted immediately when it satisfies the Eq. 

(2), the optimisation may be slow down and/or the approximate Hessian matrix may be 

polluted by large numerical noise, deteriorating the optimisation. Thus, the Wolfe 

condition Eq. (4) (Wolfe, 1971) is introduced to avoid an over small 𝛼 to be accepted, 

𝛻𝑓(𝑥𝑘 + 𝛼 𝑑𝑘)𝑇𝑑𝑘 ≥ 𝜎 𝛻𝑓(𝑥𝑘)𝑇𝑑𝑘,  (4) 

where 𝜎 ∈ (𝜌, 1) is a constant. The region of 𝛼 satisfying both Eq. (2) and Eq. (4) is 

shown in Fig. 1, which indicates a 𝛼 satisfying Armijio condition but not Wolfe condition 

needs to be increased (Step 3.6 in the following Algorithm 2). However, it needs more 

function evaluations to find a point satisfying both conditions compared with the 

algorithm enforcing the Armijio condition only. Theoretically, the Wolfe condition 

doesn’t have to be satisfied in the SLSQP algorithm as it is not used in the proof of the 

global convergence. Thus, we will not check the Wolfe condition if the 𝛼 satisfying the 

Armijio condition is not over small judged by Eq. (5),  

𝛼 ≥ 𝜏 𝛼𝑢𝑝, (5) 

where 𝛼𝑢𝑝 ∈ (0, 1] is the smallest 𝛼 not satisfying Eq. (2) (such as the point 𝑈 in Fig. 1) 

and will be updated during the line search. 𝜏 ∈ (0, 1) is a constant to allow some gap 

between 𝛼 and 𝛼𝑢𝑝, which is set as 0.1 in this work. Overall, the proposed line search 

algorithm applied to a major iteration 𝑘 of Algorithm 1 is shown as follows. To avoid the 

abuse use of indices, we get rid of the index 𝑘 and use the index 𝑖 only to represent the 

iteration in the following Algorithm 2. 

Algorithm 2: line search with 𝜶𝟎 predicted and Wolfe condition checked 

Step 3.1: given 𝑥0; set 𝑖 ← 0, 𝛼𝑢𝑝 ← 1, 𝜌 ∈ (0, 0.5), 𝜎 ∈ (𝜌, 1), 𝜏 ∈ (0,1), 𝛾 > 1; 

get an initial step length 𝛼0 from Eq. (3); 

Step 3.2: set 𝑥𝑖+1 ← 𝑥𝑖 + 𝛼𝑖𝑑, and evaluate the merit function 𝑀(𝑥𝑖+1); 

Step 3.3: if Eq. (2) is satisfied, go to Step 3.5; otherwise, set 𝛼𝑢𝑝 ← 𝛼𝑖; 

Step 3.4: generate an 𝛼𝑖+1 smaller than 𝛼𝑖; set 𝑖 ← 𝑖 + 1, then go back to Step 3.2; 

Step 3.5: if 𝛼𝑖 ≥ 𝜏 𝛼𝑢𝑝 or 𝛼𝑖 satisfies Eq. (4), go to Step 3.7; 

Step 3.6: generate 𝛼𝑖+1 = 𝛾 𝛼𝑖, set 𝑖 ← 𝑖 + 1, then go back to Step 3.2; 

Step 3.7: return 𝛼𝑖, 𝑥𝑖+1. 

The constants used are 𝜌 = 0.1, 𝜎 = 0.9, 𝜏 = 0.1, 𝛾 = 10. 

3.3. Other improvements 

In the existing SLSQP algorithms (Kraft, 1988; Schittkowski, 1982), a powerful 

algorithm called LSEI (Lawson and Hanson, 1995) are used to solve LSQ subproblems. 

Although the LSEI algorithm usually works very well, it may generate ascent directions 

due to numerical errors, which would cause failure of the optimisation. To avoid 
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divergence, we solve the LSQ subproblem based on a robust commercial solver Gurobi 

(Gurobi Optimization, 2020) once the LSEI algorithm generates an ascent direction, 

while in all the other cases, the LSEI algorithm are still used as we find it leads to better 

performance compared with many other QP and LSQ solvers. 

Second, even if a descent direction is generated from an LSQ subproblem, the line search 

may still fail to find a 𝛼 satisfying the Armijio condition as function values generated 

from process simulations suffer from numerical noises. In such case, to continue the 

algorithm and step out of the noisy region for a better solution, we allow the largest step 

length 𝛼 satisfying the following Eq. (6) is accepted, 

|𝑀(𝑥𝑘+𝛼 𝑑𝑘) − 𝑀(𝑥𝑘)|

𝑀(𝑥𝑘)
≤ 𝑛𝑡𝑜𝑙, (6) 

where 𝑛𝑡𝑜𝑙 is a small value to tolerate noise, which is 104 here. Eq. (6) is to guarantee 

the accepted step length will only increase the merit function slightly while the algorithm 

can still have some progress to have the chance to leave the numerically noisy region. 

Such condition will only be applied for limited times (here, five times) to avoid the 

algorithm to run forever when the optimisation cannot escape the region anyway. 

4. Case Study 

The optimization of a dimethyl ether (DME) production process intensified by dividing 

wall column (DWC) is used to validate the proposed algorithm, which was first optimized 

by (Pattison et al., 2016) and later by (Ma et al., 2018; Ma et al., 2020) with better 

solutions. The problem has 12151 equalities, 17 inequalities and 13661 decision variables 

in the full model, while it has 122 decision variables, 17 inequalities and one equality in 

the reduced space when solved by the feasible path algorithm. The objective function to 

be minimized is a penalty of the cost without a specific unit. The problem is rather 

challenging to solve not only because of its nonlinearity but more because of its 

intrinsically ill-conditioning evidenced by that the condition number of the approximate 

Hessian matrix ranges from 1010 1014 in most iterations. In (Ma et al., 2018), an SQP 

solver was used and the problem has to be scaled by trial and error to be solvable. 

However, in (Ma et al., 2020), the problem could be solved directly without scaling using 

an existing SLSQP solver (Kraft, 1988). For a detailed comparison between the existing 

SLSQP algorithm (Kraft, 1988) (notated as slsqp) and our improved algorithm (notated 

as i-slsqp), we conduct the optimisation using slsqp and i-slsqp from six different initial 

points on a desktop with 3.20 GHz Intel i7 CPU and 16 GB RAM running 64-bit Windows 

operating system. The computational results from both algorithms are shown in Table 1. 

Table 1 Comparative results from the hybrid algorithm of Ma et al. (2020) and the proposed 

algorithm 

Initial point 1 2 3 4 5 6 

Time/s 
slsqp 4415 2003 6264 1496 2563 2408 

i-slsqp 469 1173 976 1263 989 2032 

Number of 

simulations 

slsqp 2259 923 2373 754 1337 969 

i-slsqp 287 701 527 871 696 1190 

Objective 
slsqp 125689 125713 125715 125711 125695 125701 

i-slsqp 125708 125687 125712 125705 125683 125690 
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As can be seen from Table 1, our improved SLSQP algorithm always needs 10-90% less 

computation time from different initial points than SLSQP. Especially, for the 

optimisation starting from the first initial point, the computational time is reduced by 

around one order of magnitude. This is partially because less function evaluations are 

used in our algorithm as shown in Table 1. The time reduction is also because small step 

lengths are used during the line search, leading to better convergence of steady-state 

simulations and hence less number of expensive PTC simulations required. Furthermore, 

it can be seen that our algorithms usually get better solutions except for the optimisation 

starting from the first initial point, and the best solution with an optimum of 125683 is 

also generated from the new algorithm. 

5. Conclusion 

In this work, we proposed an improved SLSQP algorithm for process optimisation using 

rigorous models. In the improved algorithm, the initial step length during the line search 

was calculated from a formula to reduce the number of function evaluations. The Wolfe 

condition was introduced into the line search to avoid over small step length, but it was 

not enforced when the step length satisfying Armijio condition was large enough to avoid 

additional function evaluations. For a better convergence, the LSQ subproblem was 

solved by our customized solver when the existing LSQ algorithm generated ascent 

directions. Also, the line search is allowed to accept some step lengths which increase the 

merit function slightly to tolerate numerical noise from process simulations. One large-

scale process optimisation problem from literature shows that the improved algorithm can 

save computational time by 10-90% with better solutions generated.  
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Abstract
In a smart chemical plant, knowing the process state at any moment is crucial with impact on
aspects such as economic, safety, or control. The information is collected by sensors distributed
throughout the plant, responsible for measuring and transmitting the values of temperature, hu-
midity, pressure, among others. The set of devices used in the measurement is called the sensor
network (SN). Consequently, their design optimization implies importance and huge capital cost.
We propose an intelligent optimization solver based on a Parallel Hybrid Simulated Annealing
(PHSA) to solve it. The parallelism is applied at the algorithmic level, following a cooperative
model. Among the migration parameters, the replacement criteria have an important role in the
PHSA performance. Our main objective is to analyze the PHSA behavior by considering different
replacement criteria. The results obtained by PHSA achieve the best-known solution for large and
complex SN cases. Furthermore, the parallel HSA exhibits efficient scalability to solve the SN
distribution problem.

Keywords: Simulated Annealing, parallel computing, sensor network design; combinatorial
optimization; metaheuristics

1. Introduction

In the last decade, the integration of the process control, the operation of the entire plant, and the
corporation’s business system have been a tendency, which is possible thanks to the rapid advances
in cybernetic infrastructure and communications technology that allow the flow of information in
real-time. The so-called smart plant aims to maximize the economic profitability of the activity
with social responsibility, complying with strict standards on environmental care, occupational
health, and safety. Christofides et al. (2007) mention the design of the sensor network (SN) as a key
issue to make the smart plant a reality since it provides comprehensive knowledge of the process’s
current state. The systematic design of the SN in a plant, formulated as an optimization problem,
is known as sensor network design problem (SNDP) and consists in determining whether or not
each variable should be measured while optimizing the performance. Performance criteria can be
classified as criteria associated with the performance of the sensor system itself (Carnero et al.
(2018); Kotecha et al. (2008)) or related to indicators of the process for which the instrumentation
is designed (Sen et al. (2016); Paul et al. (2015); Sambito (2021)).

The number of possibilities regarding how many variables to measure and the type of the desired
performance can achieve a very high order even for small-size plants. Therefore, an important
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aspect is related to the choice of the resolution methodology, which can be classified into two
main groups: exact methods and heuristics. The analysis of the performance exhibited by exact
algorithms (Zhang and Chmielewski (2017); Nguyen and Bagajewicz (2011)) shows that their be-
havior is very dependent on the particular design problem and its size. In this sense, they are not
robust enough to solve a wide range of specifications, nor do they have the possibility of scal-
ing. The most notorious disadvantage is that the optimality guarantee cannot be achieved in many
cases, given the excessive computation time they require. This limitation comes mainly from the
combinatorial nature of the problem, which results in the impossibility of having polynomial-time
algorithms for the cases of practical interest. Therefore, heuristic optimization methods emerge
as the most feasible solution alternative to address higher dimensional designs (Hernandez et al.
(2019); He and Ma (2014); Panizo et al. (2018)). When many variables have to be measured, the
SN design process optimization runtime has been reduced. Consequently, parallelization tech-
niques on the heuristic methods (Talbi (2009)) are used, achieving a substantial improvement in
the optimization performance.

In this work, a parallel Simulated Annealing (SA) (Kirkpatrick et al. (1983); Cicirello (2017)) al-
gorithm is proposed to optimize the SNDP. In this model, many hybrid SA algorithms (Hernández
et al. (2020)) are launched in parallel and exchanges information to improve the quality solutions
and enhance efficiency. Consequently, the main contribution of our research is to develop an in-
telligent solver based on a parallel HSA algorithm, named PHSA, which intends to support the
decision-making during the design of complex sensor networks in a chemical plant. The focus is
to increase the efficiency of this solver when large and complex SN cases are addressed. Hence,
we formulate the following research questions (RQs): RQ1) Does the parallelization of HSA in-
crease its efficiency when we deal with large SN cases?; RQ2) What parametric configurations
should be used in the proposed parallel algorithm to enhance the solution quality?; and RQ3) Is
our PHSA design efficient to solve the SNDP?. To answer these RQs, we conduct experiments by
applying PHSA to different case studies of incremental size,including a well-known problem in
chemical engineering literature.

The remainder of this article is structured as follows. Section 2 explains the SNDP. Section 3 ex-
plains our algorithmic proposal. Then, we describe the experimental design and the methodology
used in Section 4. We analyze and compare the HSA behavior when solving the SNDP problems
in Section 5. Finally, the most important conclusions and future research lines are presented in
Section 6.

2. Sensor Network Design Problem

The SNDP is summarized as a problem of finding the minimum cost network that satisfies preci-
sion and estimability constraints. Formally, a SNDP solution has to satisfy these constraints for
a set of key variable estimates, as stated by Eq 1, where q is an n-dimensional vector of binary
variables such that qi = 1 if variable i is measured, and qi = 0 otherwise, cT is the cost vector;
σ̂k is the estimated standard deviation of the k-th variable in Sσ obtained by a data reconciliation
procedure (Bagajewicz and Sanchez (2000)), and El stands for the degree of estimability of the
l-th variable in SE . Furthermore, Sσ and SE are the set of key process variables with requirements
in precision and ability to be estimated, respectively.

min(cT q) s.t

 σ̂k(q) ≤ σ̂∗
k (q), ∀k ∈ Sσ

El ≥ 1, ∀l ∈ SE
q ∈ {0,1}

(1)

In this formulation, it is assumed that a linearized algebraic model represents plant operation,
measurements are subject to noncorrelated random errors, there is only one potential measuring
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Figure 1: PHSA scheme under ring topology.

device for each variable, and there are no restrictions for the localization of instruments. Regard-
ing degree of estimability constraint, if El=1, the feasibility of the constraint can be checked by
executing a variable classification procedure, which can be accomplished by matrix projection, QR
decomposition, or matrix co-optation (Romagnoli and Sanchez (2000); Narasimhan and Jordache
(2000)).

3. PHSA solver

In this work, we propose an intelligent parallel solver to optimize the Sensor Network Design
problem in chemical plants. This solver is based on the hybrid SA (HSA) introduced in Hernan-
dez et al. (2019). HSA works as the main metaheuristic with a subordinated ad hoc local search,
inspired in tabu search with strategic oscillation technique (SOTS), giving rise to the Hybrid Simu-
lated Annealing algorithm. We refer readers to Hernandez et al. (2019) for more HSA details. The
proposed parallel HSA (PHSA) follows an Algorithmic-Level Parallel Model (see Talbi (2009)).
The PHSA consists of n HSA solvers that are launched in parallel and exchange information to im-
prove the quality solutions and enhance efficiency. Hence, the PHSA design follows a cooperative
search strategy. Each HSA solver generates its initial solution S0 and run an independent HSA.
The HSA solvers exchange information related to the search to compute better and more robust
solutions regarding migration frequency. Different topologies can be used to do this interchange,
but we focus on the ring topology, arising the PHSA ring (see Figure 1), therefore the HSA solvers
are arranged in a logic unidirectional ring. The ith HSA solver sends its current solution S1 to their
(i+ 1)th neighbor solver in the ring with a certain frequency and following an asynchronous ex-
change. When the target HSA solver receives a solution (S2), a replacement criteria is used. In this
work, we consider three different approaches: RC1) S2 is accepted with the Boltzmann probability,
RC2) S2 is accepted if it is better than the current solution (S1), RC3) S2 is accepted if it is better
than the best-found local solution (Sb).

4. Experimental Design

The PHSA ring performance is evaluated considering chemical processes of high complexity and
size. As a first case study, a simplified ethylene plant was addressed, consisting of 47 units and
82 streams, whose operation is only represented through global mass balances. Secondly, the
Tennessee Eastman Process (TEP), Downs and Vogel (1993), a widely considered problem in
the chemical process monitoring and control literature was used. Both global and component
mass balances are considered in the TEP. The complete system comprises 42 equations that were
linearized around the operating point, and a total of 78 variables. Interested readers can gain access
to the file containing information about the case studies and the complexity of the set of constraints
imposed on all case studies at https://www.ing.unrc.edu.ar/archivos/sndp cases.doc. In case study
1, a set of 14 required variables with precision constraints on 6 of them is studied. The second case
study considers a set of 24 required variables, all of them with precision restrictions. The standard
deviation of flow meters is 2% of the corresponding true flow rates for both cases.
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Table 1: Solution cost values obtained by PHSA ring, considering the replacement criteria and
#HSA solvers.

Replac. #HSA Case Study 1 Case Study 2

Criteria Solvers Min Mean±SD %Hits Min Mean±SD %Hits

RC1

4 50845.16 53322.67±2056.84 13.33% 25280.00 26624.92±575.98 1.69%
8 50845.16 51809.13±1775.61 23.33% 25590.00 26495.79±506.05 0.00%

12 50845.16 51121.21±1047.35 30.00% 25280.00 26334.80±527.87 4.00%
16 50845.37 51121.41±1047.30 13.33% 25290.00 26139.17±451.25 0.00%

RC2

4 50845.16 52497.10±2056.96 26.67% 25470.00 26502.98±543.85 0.00%
8 50845.16 51946.90±1856.73 20.00% 25430.00 26458.53±584.39 0.00%

12 50845.16 51259.02±1259.56 10.00% 25690.00 26557.24±420.38 0.00%
16 50845.16 51258.93±1259.59 20.00% 25600.00 26355.22±425.04 0.00%

RC3

4 50845.16 51120.79±1047.33 56.67% 25280.00 25707.11±367.96 2.22%
8 50845.16 51396.31±1427.24 23.33% 25280.00 25756.00±340.43 2.86%

12 50845.16 51258.48±1259.51 43.33% 25290.00 26008.00±354.51 0.00%
16 50845.16 51258.61±1259.58 36.67% 25280.00 25941.67±397.60 2.78%

To study the performance of this PHSA ring, we configure each HSA solveri as is suggested
in Hernandez et al. (2019). Consequently, we use an initial seed temperature Ts = 900, the RAND
cooling scheme, and the adaptive Markov Chain Length MCLa1. The stop condition of the
PHSA ring is to reach 1,250 iterations. Four PHSA ring scenarios with 4, 8, 12 and 16 HSA
solvers are assessed. Moreover, the three replacement criteria explained in Section 3 are used, and
the migration frequency is calculated as a 10% of the HSA solveri iterations (1250/#HSA solvers).
At least 30 independent executions for each instance and PHSA’s configuration and parallel sce-
narios are necessary due to the stochastic nature of the HSA solver, giving a total of 720 executions
(30 runs × 2 instances × 3 replacement criteria × 4 parallel scenarios). This big experimentation
allows us to gather meaningful experimental data and apply statistical confidence metrics to val-
idate our results and conclusions. Before performing the statistical tests, we first check whether
the data follow a normal distribution by applying the Shapiro-Wilks test. Where the data are dis-
tributed normally, we later apply an ANOVA test. Otherwise, we use the Kruskal–Wallis (KW)
test. This statistical study allows us to assess whether or not there are meaningful differences be-
tween the compared algorithms with α = 0.05. To determine these algorithm pairwise differences
is by carrying out a post hoc test, as is the case of the Wilcoxon test if the KW test is used.

5. Result Analysis

The solution quality and efficiency of the proposed parallel HSA are assessed taking into account
two different stopping criteria: one is based on a maximum number of evaluations (predefined
effort), while the other consists in running the PHSA ring until a given solution is found or the
maximum number of evaluations is reached (predefined solution quality). Considering a prede-
fined effort first, we study the PHSA ring’s performance under each replacement criterion in the
four parallel scenarios. For a fair comparison, all algorithms used the predefined effort as a cut
point. Second, we analyze the parallel performance. We focus on the number of optimum values
the PHSA configurations found. Then, we measure the speedup between the serial time (PHSAs
using one processor) against the parallel time (PHSAs using 4, 8, 12, and 16 processors) because
they run the same underlying algorithm, following the speedup definition given in Alba (2002).

At the beginning, we present the results for both case studies. Table 1 shows the minimum and av-
erage solution cost values, the respective standard deviation (SD), and the percentage of times that
the best-known solution is found (%Hits) for the PHSA ring, considering the three replacement
criteria and the four parallel scenarios (number of HSA solvers). We observe significant different
PHSA ring’s behaviors since only for case study 1 every PHSA ring variant finds the best-known
solution. Furthermore, for this case, the %Hits varies in [10,56.67], while for the second case,
the range is [0,4]. This difference suggests that the second case needs a bigger predefined effort

1312

1288



Table 2: Total execution times consumed by PHSA ring,
considering the replacement criteria and #HSA solvers.

Replac. #HSA Case Study 1 Case Study 2

Criteria Solvers Min Mean±SD Min Mean±SD

RC1

4 180.55 197.23±23.64 157.14 163.92±3.06
8 56.16 68.06±12.06 47.22 49.47±0.92
12 33.37 39.12±6.69 27.75 28.99±1.31
16 25.03 31.82±4.28 21.43 25.67±4.05

RC2

4 185.88 197.57±25.57 154.97 162.86±3.38
8 57.33 66.70±11.01 47.70 49.29±0.99
12 33.12 42.2±6.81 27.60 28.92±0.55
16 24.76 31.52±4.40 21.79 25.22±3.99

RC3

4 185.28 216.40±36.96 154.42 160.42±3.31
8 57.42 65.16±9.79 47.43 48.96±0.78
12 33.37 41.98±7.08 27.89 28.87±0.55
16 24.95 29.81±4.72 21.58 24.44±3.27

Figure 2: SpeedUp values for
PHSA ring, considering both case
studies.

to reach the best-known solution. We follow with the study about the influence of replacement
criteria and parallel scenarios from a solution quality point of view. On one side, a statistic and
significant difference is observed when the replacement criterion RC3 is used to solve the two case
studies, since the incoming solution is only accepted if it is better than the best local solution. Un-
der this criterion, the lowest cost averages of the solution are found, observing the lowest standard
deviations and the highest %Hits. On the other hand, statistically similar behavior is detected when
the four parallel scenarios are evaluated. Consequently, the RC3 enhances the solution quality in
every scenario, becoming the best replacement choice for PHSA ring. In this way, we answer the
second research question (RQ2).

Now, we proceed with the computational effort through the run-time analysis. Table 2 presents
the minimum and average of total execution times and their standard deviations (SD) consumed
for the PHSA ring considering the three replacement criteria and the four parallel scenarios. For
both case studies, no statistically significant differences are observed when the total execution time
is analyzed, considering the replacement criteria. In other words, the replacement selection only
depends on the required solution quality. However, when the parallel scenarios are regarded for
this analysis, the reduction in total execution time is noticeable when the number of HSA solvers
increases. This reduction loses inertia when going from 12 to 16 solvers since the communication
times for 16 HSA solvers are more time-consuming than the search process. A good trade-off
between quality and run-time is achieved by PHSA ring with the RC3 executed using 8 or 16
HSA solvers to solve complex SNDP cases, answering affirmatively the RQ3.

Until now, a predefined effort is given to each algorithm to determine the best one. But from now
on, a different scenario is faced in which the computational effort of the algorithms is measured
to locate a preset solution. Therefore, the same target solution quality is used as the stop criterion
in all algorithms for any given case study. The target cost value depends on the SN case, and
their best-known costs are selected for each one as the stopping value for the PHSA ring variants,
to offer a nonbiased scenario produced by an ad-hoc value. This allows to measure the PHSA
efficiency through the speedup values, shown in Fig. 2, which are close to linear, showing the
efficiency of PHSA to solve the SNDP and answering affirmatively RQ1.

6. Conclusions

In this work, we have presented a Parallel Hybrid Simulated Annealing (PHSA) to optimize the
design of sensor networks in chemical plants, facilitating the decision-making by providing com-
prehensive knowledge of the process’s current state. The basic underlying search model of the
devised PHSA ring is a set of HSA solvers connected in a ring topology. The availability of
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different HSA solvers by cooperating in the process search allows obtaining a powerful parallel
algorithm that leads to accurate solutions.

The objective behind the experimentation carried out using sensor networks of different charac-
teristics was to answer our research questions. The objective of RQ1 was to study the SNDP
solution quality. We observed that our PHSA solver found the best-known solution costs. As a
consequence, a model based on cooperative self-contained HSA solvers at the algorithmic level
resulted in an excellent option to solve this problem. The RQ2 suggested an analysis of the effect
of several parametric configurations on the solution quality. In this sense, different statistical tests
proved that the RC3 allowed significantly enhancing the solution quality. Finally, the RQ3 led us
to assess the PHSA efficiency, considering hit rates and speedup measures. Hence, we confirmed
that PHSA held the scalability property because its performance was improved by increasing the
number of HSA solvers and the speedup values were close to linear.

Future work will address the resolution of SNDP, where the plant operation model is represented
by a set of nonlinear equations. This introduces an additional difficulty to the problem since the
feasibility of the solutions is determined by a simulation procedure that involves solving nonlinear
optimization problems at a second level. In this scenario, a parallelization strategy turns out to be
one of the most promising solving tools.
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Abstract
In this paper, a surrogate model is developed from a first-principles model constructed for phos-
phate ore digestion with a phosphoric acid solution. This model is based on sparse multivariate
polynomial interpolation. The main motivation is to reduce the computational time of the first
principles model while preserving its properties, namely the monotonicity and positivity of the
outputs. The temporal profiles of the concentrations of the different components involved in the
liquid phase and in the ore particles, the particle radius and the thickness of the liquid film sur-
rounding the particles are estimated by the developed surrogate model. The inputs to the model
are the particle size distribution, the initial acid concentration and the hydrodynamic conditions.
A design of experiments method is used to generate the sample points required for the surrogate
model and several simulations are performed in the MATLAB environment. Comparison of the
predictions of the surrogate model with those obtained by the first-principles model demonstrates
the high performance (accuracy and computation time) of the developed surrogate model.

Keywords: Digestion, Shrinking core model, Surrogate model, Sparse polynomial interpolation.

1. Introduction

In process optimization, the mathematical formulation of the problems is very often based on a
model described by momentum, heat and mass balance equations as well as thermodynamic and
kinetic equations. This first-principles model must be identified and validated with experimental
measurements in order to accurately predict the performance of the process to be optimized.
However, the process model usually involves many ODEs and PDEs that take time to integrate,
making the optimization algorithm very slow when it converges. Therefore, to overcome these
problems, high-fidelity surrogate models that compute the required outputs from the inputs faster
than the phenomenological model are needed.
In this paper, the objective is to develop an accurate surrogate model from a first-principles model
of phosphate ore dissolution in the digestion tank of an industrial phosphoric acid production
process (Elmisaoui et al. (2021b)). More precisely, the model allows us to calculate the time-
varying profiles of (i) the concentrations of the different components involved in the liquid phase
and in the ore particles, (ii) the radius of the particles, (iii) and the thickness of the liquid film
surrounding the ore particles. The spatio-temporal profiles of the concentrations in the liquid film
are also calculated from the main inputs of the model, i.e., particle size, initial acid concentration
and hydrodynamic conditions. The approach used to develop the surrogate model is based on
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sparse multivariate polynomial interpolation (Rabhi et al. (2018)) generalized to approximate the
variables of interest with vectors of time-dependent values.

2. First-principles modelling of phosphate ore digestion

In order to evaluate the performance of the surrogate modelling approach, the phosphate ore dis-
solution model previously developed in (Elmisaoui et al. (2021a)) is used. From an industrial
perspective, two main phenomena are involved in the digestion tank of the phosphoric acid pro-
cess: the dissolution of the phosphate ore particles, and the crystallization of gypsum. The last
phenomenon is not considered since only pure tri-calcium phosphate (TCP) particles are used.
They are attacked with a phosphoric acid solution to produce mono-calcium phosphate (MCP)
according to the following reaction:

𝐶𝑎3 (𝑃𝑂4)2 +𝐻3𝑃𝑂4 −→ 3𝐶𝑎(𝐻2𝑃𝑂4)2 (1)

The conversion rate of the reaction depends on the operating conditions, namely the temperature
of the reaction medium, the initial concentration of phosphoric acid, the porosity and size of the
phosphate ore particles, the solid/liquid ratio, the hydrodynamic conditions, and the residence time
in the digestion tank. In this paper, we set three target parameters: particle size, initial phosphoric
acid concentration, and tank stirring speed. It should be noted that a shrinking core model is
adopted to describe the dissolution phenomenon where three phases are involved, i.e., the liquid
bulk, the liquid film surrounding the particles and the solid phase (Elmisaoui et al. (2021a)). The
model is based on the following assumptions: (i) diffusional limitation of the MCP product, (ii)
spherical shape of the TCP particles, (iii) reaction occurs on the surface of the particles, (iv) only
diffusion takes place in the liquid film. The model equations are presented in Table 1.

Table 1: System of equations describing the dissolution model
Solid phase 𝑑𝑋

𝑑𝑡
=

3𝑀𝑇𝐶𝑃𝐷𝑀𝐶𝑃

𝑥𝑇𝐶𝑃𝜌𝑠𝑅0 𝛿
(1− 𝑋) 2

3
(
C𝑀𝐶𝑃 |𝑟=𝑅 −𝐶 ′

𝑀𝐶𝑃

)
Liquid film 𝜕𝐶𝑖

𝜕𝑡
= 1

𝑟2
𝜕
𝜕𝑟

(
𝐷𝑖𝑟

2 𝜕𝐶𝑖

𝜕𝑟

)
; 𝑖 = 𝐻3𝑃𝑂4, 𝑀𝐶𝑃

𝑟 = 𝑅 − 𝐷𝑖
𝜕𝐶𝑖

𝜕𝑟

���
𝑟=𝑅

= 𝑣𝑖𝑘𝑟𝐶𝐻3𝑃𝑂4

��
𝑟=𝑅

𝑟 = 𝑅 + 𝛿 C𝑖 |𝑟=𝑅+𝛿 = 𝐶 ′
𝑖

Film thickness 𝛿 𝛿 = 𝑅

[
1+𝛼

(
𝑅
𝑅0

)8/9
𝐷

−1/3
𝑀𝐶𝑃

]−1

Liquid bulk 𝐶 ′
𝑀𝐶𝑃

=
3𝑛0

𝑇𝐶𝑃

𝑉𝐿
and 𝐶 ′

𝐻3𝑃𝑂4
= 𝐶0

𝐻3𝑃𝑂4
− 4𝑛0

𝑇𝐶𝑃

𝑉𝐿

𝑚𝑠 and 𝑅 are the mass and the radius of phosphate ore particles, respectively. 𝑥𝑇𝐶𝑃 is the mass
fraction of TCP in the phosphate ore used, 𝑀𝑇𝐶𝑃 is the molecular weight of TCP, 𝐶𝑀𝐶𝑃 |𝑟=𝑅 and
𝐶 ′
𝑀𝐶𝑃

are the concentrations of MCP at the solid surface and in the liquid bulk, respectively. 𝑘𝑟
is the rate constant, 𝐷𝑖 and 𝜈𝑖 are the diffusion coefficient and the stoichiometric coefficient of
component 𝑖, respectively. 𝑛0

𝑇𝐶𝑃
is the initial number of moles of TCP in the solid, 𝑉𝐿 is the liquid

volume in the tank, 𝛼 is a hydrodynamic parameter calculated from the stirring speed of the tank.
Several simulations are performed under the same operating conditions as those used in (Sinirkaya
et al. (2010)). Assuming a uniform particle size distribution, the surrogate model will express the
conversion rate 𝑋 (𝑡) as a function of the target variables, namely the initial radius of the phosphate
ore particles 𝑅0, the hydrodynamic parameter 𝛼, and the initial concentration of the phosphoric
acid solution 𝐶0 as detailed in the next section.
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3. Surrogate modelling framework

Black box (non-intrusive) methodology of surrogate modeling consists in performing as few
simulations of the system as possible, at well-chosen instances of the three input parameters, then
construct a high-fidelity response surface for the outputs. This is done here by means of hierarchical
multivariate polynomial interpolation. For example, we denote 𝑋 (𝑡) (a function of 𝑅0, 𝛼, and 𝐶0)
the response surface for the conversion rate output 𝑋 (𝑡). Basically, 𝑋 (𝑡) is a linear combination
of 𝑅0

𝑝1𝛼𝑝2𝐶0
𝑝3 for prescribed exponents 𝑝1, 𝑝2, 𝑝3 of small values 0,1,2, . . . . The process we

used is adaptive because the exploration of the parameters space is not predefined in advance. We
describe it in its generality for 𝑑 input parameters in [−1,1]𝑑 . Application to general domains is a
simple matter of scaling.

We let 𝑆 = (𝑠 𝑗 ) 𝑗≥0 be abscissas in [−1,1] defined by the following recursion:

𝑠2 𝑗−1 =

√︂
𝑠 𝑗 +1

2
, 𝑠2 𝑗 = −𝑠2 𝑗−1, 𝑗 ≥ 2. (2)

and (𝑠0, 𝑠1, 𝑠2) = (1,−1,0). The sequence 𝑆 is called an ℜ-Leja sequence (Chkifa et al. (2014)).
In particular, it satisfies 2 𝑠2

2 𝑗−1 = 𝑠 𝑗 for all 𝑗 ≥ 2. Thanks to this "binary" feature, it is highly
relevant for hierarchical polynomial interpolation. Given 𝑓 continuous on [−1,1] that we can
query on 𝑠0, 𝑠1, . . . one query at a time, we can approximate 𝑓 using interpolation polynomials
𝐼0 [ 𝑓 ], 𝐼1 [ 𝑓 ], . . . , with

𝐼𝑛 [ 𝑓 ] =
𝑛∑︁

𝑘=0
𝑑𝑘 [ 𝑓 ] 𝑊𝑘 , 𝑑𝑘 [ 𝑓 ] :=

𝑘∑︁
𝑗=0

𝜏𝑘, 𝑗 𝑓 (𝑠 𝑗 ), (3)

where 𝑊𝑘 are Newton’s polynomials associated to 𝑆 properly normalized, 𝑑𝑘 [ 𝑓 ] ∈ R are the
associated Newton coefficients, and 𝜏𝑘, 𝑗 ∈R are the so-called barycentric weights, all defined below.
Polynomial 𝐼𝑛 [ 𝑓 ] is the unique polynomial of degree less than 𝑛 interpolating 𝑓 at 𝑠0, . . . , 𝑠𝑛. We
note that this interpolation scheme is hierarchical, i.e., going from 𝐼𝑛 [ 𝑓 ] to 𝐼𝑛+1 [ 𝑓 ] requires only the
additive update 𝑑𝑛+1 [ 𝑓 ]𝑊𝑛+1, which involves a new query of 𝑓 at 𝑠𝑛+1. For instance, 𝐼0 [ 𝑓 ] = 𝑓 (1),
𝐼1 [ 𝑓 ] (𝑥) = 𝑓 (1) + ( 𝑓 (1) − 𝑓 (−1)) (𝑥−1)/2, 𝐼2 [ 𝑓 ] (𝑥) = 𝐼1 [ 𝑓 ] (𝑥) + ( 𝑓 (0) − 𝐼1 [ 𝑓 ] (0)) (1−𝑥2). It is
easily established that this scheme is numerically stable and insensitive machine precision.

Newton polynomials 𝑊𝑘 are defined by 𝑊0 = 1 and

𝑊𝑘 (𝑥) :=
𝑘−1∏
𝑗=0

[2(𝑥− 𝑠 𝑗 )], 𝑘 ≥ 1, (4)

The double sequence of barycentric weights (𝜏𝑘, 𝑗 )0≤𝑘,0≤ 𝑗≤𝑘 is defined by

𝜏𝑘, 𝑗 =
2

𝑊 ′
𝑘+1 (𝑠 𝑗 )

, 𝑘 ≥ 0, 𝑗 = 0, . . . , 𝑘, (5)

where 𝑊 ′
𝑘+1 is the derivative of 𝑊𝑘+1. Such polynomials and weights can be easily computed by

recurrence (see Appendix).

The generalization of the interpolation scheme to a multivariate setting is straightforward. We
simply use tensor product constructions. More specifically, we are given 𝒇 : [−1,1]𝑑 continuous
which can be queried on any 𝒙 in [−1,1]𝑑 , and then we approximate using 𝑰Λ [ 𝒇 ], with

𝑰Λ [ 𝒇 ] =
∑︁
𝒌∈Λ

𝒅𝒌 [ 𝒇 ] 𝑾𝒌 , 𝒅𝒌 [ 𝒇 ] :=
∑︁
𝒋≤𝒌

𝝉𝒌 , 𝒋 𝒇 (𝒔 𝒋), (6)
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where Λ ⊂ N� are sets of indices. The interpolation nodes � � , the Newton polynomials �� , and
the barycentric weights �� , � are now indexed in N� and defined by:

� � := (� �1 , . . . , � �� )
�� (�) :=��1 (�1) × · · · ×��� (��)

�� , � := ��1 , �1 × · · · × ��� , ��

,

� = ( �1, . . . , ��)
� = (�1, . . . , ��)
� = (�1, . . . , ��)

, (7)

where �, � ∈ N� and � ∈ R� . The nodes � � are in [−1,1]� , the polynomials �� are multivariate,
and for �� , � , it is assumed that � ≤ � coordinate-wise.

The multivariate polynomial �Λ [ � ] is the unique polynomial of the form
∑

�∈Λ ���
� (with �� ∈ R

and �� := �
�1
1 . . . �

��
�

) interpolating � on the grid {� �} �∈Λ. Only one condition has to be assumed
on Λ, it is lower, i.e. if � ∈ Λ and � ≤ � then � ∈ Λ (Figure1). The interpolation scheme is
hierarchical, the change from �Λ [ � ] to �Λ∪{� } [ � ] only requires the additive update �� [ � ]�� which
involves querying � at the new interpolation node �� . Of course, we assume that the lower structure
of Λ is preserved by considering only eligible � ∉ Λ. The design of experiments and the response
surface are entirely determined by Λ that, in practice, we construct one multi-index � at a time.
We start with Λ = {0}, �0 [ � ] = � (1, . . . ,1) (we recall that �0 = 1) and �Λ [ � ] = � (1, . . . ,1), then
enrich Λ by exploring the eligible indices � and adding the most appropriate one.

Figure 1: Schematic representation of
the interpolation algorithm

Eventually, the �Λ [ � ] proxy of � will consist on a list of
values {�� [ � ]}�∈Λ associated to keys � in Λ. Any query
� (�) of � is simply replaced by the proxy �Λ [ � ] (�) =∑
�∈Λ �� [ � ] �� (�).

This scheme is fast and easy to implement for the fol-
lowing reasons: (i) the ��, � weights (see Eq. (5)) can be
computed in an offline step, (ii) the weights �� , � are fast
to compute once ��, � are known, (iii) the queries � (�� )
of � are computed as needed, then stored, (iv) the coeffi-
cients �� [ � ] are computed as needed, then stored, (v) the
Newton polynomials are fast to compute for any �. The
generalization to vector-valued functions � is straight-
forward. Given � : � ∈ [−1,1]� → R� , the analysis and
formulas above are unchanged, the only difference being that �� [ � ] is a vector in R� and no longer
a scalar.

4. Application of sparse polynomial interpolation in dissolution modelling

To build the surrogate model, sparse polynomial interpolation is implemented within the algorithm
developed by (Chkifa et al. (2014)). Having previously fixed the bounds of the parameters, which
constitute the domain of the surrogate model, the first step corresponds to the generation of the
sampling points. These are chosen to be sufficiently distributed by means of a design of experiment
(���) approach. Thus, the sparse polynomial interpolation model is fitted to the first-principles
model.

To ensure the accuracy of the surrogate model, a comparison between its predictions and those
produced by the first-principles model is performed using the root mean square error (RMSE). The
rest of the construction of the surrogate model depends heavily on the accuracy of the validation.
Indeed, if the accuracy of the surrogate model is good enough, then we can stop the procedure.
Otherwise, an increase in the number of sample points is necessary, and the previous steps must
be repeated. It is noteworthy that sampling points are generated and distributed by a max-min
approach, while the min and max values correspond to the limits set previously (Quirante et al.
(2015)).
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Figure 2: (a) Conversion rate versus initial concentrations at different dissolution times, (b)
Comparison of the models’ predictions

5. Results and discussions

To use the ��� to generate the sampling points, the input data intervals �0,�0 and � were
defined, with respect to the operating conditions as follows: [���� = 500, ���� = 1000]�, [�0��� =
100,�0��� = 750]���/�3 and [���� = 2.7, ���� = 4.3]. The values of the target variables are
then converted to be between -1 and 1, with respect to the ranges set previously. Thus, the
surrogate model developed to describe the conversion rate can be expressed in a [−1,1]3 domain as
� (�0,�0, �) = 
 (����� ,����

(�0), ��0��� ,�0���
(�0), ����� ,����

(�)), where � is the affine function
used to reduce the variable intervals to the interval [−1,1], i.e., ��,� (�) = −1+ 2(� − �)/(
 − �).
The MATLAB environment is used to construct the polynomials of the substitution model. Figure
2 (a) shows the conversion rate profiles at various initial concentrations and different dissolution
times predicted by the surrogate model using ten sampling points. The values of the remaining
target variables are taken as the mean values of the considered intervals, i.e., � = 3.9225, and
�0 = 750	�. Figure 2(b) shows the comparison between the first-principles predictions and those
of the surrogate models.

It is found that the surrogate model predicts the conversion rate very well at various initial con-
centrations and time points. Moreover, the predicted conversion rate increases with the initial
concentration of phosphoric acid, and as the dissolution mechanism progresses, the conversion
rate also increases. Furthermore, the average error between predicted values is negligible, demon-
strating that the surrogate model accurately captures the behavior of the first-principles model.

To assess the accuracy of the surrogate model, the RMSE is calculated for different numbers of
sampling points generated and used in the interpolation. It is worth noticing that for the three
target variables considered, the RMSE values decrease with increasing number of sampling points.
A high precision of the model can therefore be easily obtained (i.e., large number of sampling
points) while guaranteeing a very low computation time. The latter is about 13 times lower for
the surrogate model with ten sampling points than for the first-principles model. This ratio can be
even higher when all side reactions and components involved in the digestion of ore particles are
taken into account.
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Table 2: Values of RMSE for the conversion rate
Sampling points 𝑅0 𝐶0 𝛼

5 2.0110−2 1.0410−2 6.8810−5

10 2.4510−4 5.4210−5 6.7310−5

100 1.9510−4 2.4410−5 4.8710−5

6. Conclusions
In this work, the development of a surrogate model for a phosphate ore digestion model was
presented and simulated in the MATLAB environment. The high-dimensional adaptive hierarchical
polynomial interpolation used demonstrated its reliability and efficiency in predicting the target
variables, namely, the phosphate ore conversion rate, the concentration of reactants in the liquid
phase and in the liquid film surrounding the particles. This modelling approach was able to
correctly capture the behavior of the dissolution mechanism with high accuracy and a significant
reduction in computational time, demonstrating the power of the surrogate modelling approach.
Future work will focus on the development of surrogate models for the overall digestion tank
model (coupling of dissolution and crystallization models) and their use in real-time optimization
of phosphoric acid process performance.

Appendix : Newton polynomials and barycentric weights
Intrinsically, computing sequence 𝑆 (see Eq.(2)) is straightforward, 𝑆 = (1,−1,0,cos(𝜋/4),−cos(𝜋/4),
cos(𝜋/8),−cos(𝜋/8),cos(3𝜋/8),−cos(𝜋/8), · · · ). Evaluating the Newton polynomials 𝑊𝑘 (𝑥)
(see Eq.(4)) and computing barycentric weights 𝜏𝑘, 𝑗 (see Eq.(5)) is fast (logarithmic complex-
ity in 𝑘). We have 𝑊1 (𝑥) = 2(𝑥 − 1), 𝑊2 (𝑥) = 4(𝑥2 − 1) and 𝑊3 (𝑥) = 8(𝑥2 − 1)𝑥. In general,
we use 𝑊2𝑁−1 (𝑥) = 𝑊𝑁 (2𝑥2 − 1)/(2𝑥) and 𝑊2𝑁 (𝑥) = 2(𝑥 − 𝑠2𝑁−1)𝑊2𝑁−1 (𝑥) for any 𝑁 ≥ 2.
Then, by simple derivation rules, it can be verified that 𝜏0,0 = 1, (𝜏1,0, 𝜏1,1) = (1/4,−1/4) and
(𝜏2,0, 𝜏2,1, 𝜏2,2) = (1/8,1/8,−1/4). Then given 𝑁 ≥ 2,

• for 𝑘 = 2𝑁 −1,

𝜏𝑘,0 = 𝜏𝑁,0 (𝑠𝑘 +1)
𝜏𝑘,1 = 𝜏𝑁,0 (𝑠𝑘 −1)
𝜏𝑘,2 = 𝜏𝑁,1 2𝑠𝑘

������ 𝜏𝑘,2 𝑗−1 = 𝜏𝑁, 𝑗 (𝑠𝑘 − 𝑠2 𝑗 )
𝜏𝑙,2 𝑗 = 𝜏𝑁, 𝑗 (𝑠𝑘 + 𝑠2 𝑗 )

𝑗 = 2, . . . , 𝑁
(8)

• for 𝑘 = 2𝑁 ,

𝜏𝑘,0 = 𝜏𝑁,0/2
𝜏𝑘,1 = 𝜏𝑁,0/2
𝜏𝑘,2 = 𝜏𝑁,1

������ 𝜏𝑘,2 𝑗−1 = 𝜏𝑁, 𝑗/2
𝜏𝑘,2 𝑗 = 𝜏𝑁, 𝑗/2

𝑗 = 2, . . . , 𝑁
(9)
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Abstract
This work explores data analytics in the development of optimization methodology for global opti-
mization, as applied through decomposition methods and cutting plane algorithms. Cutting planes
are treated as data populations, generated at each iteration, population elements are renewed based
on the incumbent solution. The current contribution explores qualitative aspects studied in the
previous, essentially attempting to expand the affinity norm to temporal sets of data in full and low
dimensional spaces. The separation problem is examined using clustering techniques and is tested
against a library of quadratic and box constrained optimization problems, that feature varying
sparsity and density patterns. The affinity metric was formed, to efficiently evaluate overlapping
cutting planes, noting significant improvement in performance. In continuation of these results,
normal vector clustering examines the direction of the hyperplanes, by utilizing the cosine similar-
ity of the normal vectors. Temporal data approach aims to prevent repetitions of chosen sub spaces
within rounds. Temporal data outperformed the affinity metric approach on the largest problem
tested, for tight elimination criteria. Normal vector clustering accelerated the algorithm beyond
previous work, in the first round, but failed to further close the duality gap. Overall, analytics are
found to dramatically improve the duality gap and the quality of the solution, consistently in all
the problems tested. In conclusion, the geometrical interpretation of the dual space holds the most
promising lines for future work.

Keywords: global optimization, cutting planes, cut selection, data analytics

1. Introduction

Convergence to the global optimum in non-convex quadratic programming, at a large scale is an
NP-hard problem, and an ongoing challenge in the field of optimization, with various applications.
State-of-the-art global solvers employ the Branch&Cut algorithm, with additional classes of com-
putationally light relaxations. Polyhedral relaxations are commonly fused with strong quadratic
ones, such as semidefinite and co-positive relaxations. Innovations by Baltean-Lugojan et al.
(2019) focus on a generic and effective outer approximation method, suitable for semidefinite re-
laxations. Their work tackles the computational complexity of the semidefinite relaxation, through
the use of low dimensional cutting planes, while maintaining tight bounds. The key element
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of the referenced work is the decomposition of high-dimensional cutting planes into their low-
dimensional counterparts, taking advantage of the problem’s sparsity pattern. This results in a
combinatorial explosion of available cutting planes for the separation problem and thus novel se-
lection measures were introduced, based on feasibility violation and improvement of the objective
function.

2. Problem description and mathematical formation

The optimization problem consists of a non-convex quadratic boxed function and its linear con-
strains.

zqp = min
x
{xT Qx+ cT x | Ax ≤ b, x ∈ [0,1]N} (1)

where N-variable vector x,A ∈ R p×N and Q ∈ R N×N represents an indefinite symmetric matrix.
Relaxations and reformulation techniques are employed, to tackle Eq(1), as proposed in Sherali
and Fraticelli (2002). A new symmetric matrix Xi j∀i, j (lifted variable) is formed to replace the
quadratic term xix j. The lifted variable is defined as X = xxT and the quadratic term transforms to
Q•X = Tr(QT X) = ∑

i, j
Qi jXi j. Then zqp is lower bounded by,

zqp(B) := min
x,X

{Q•X + cT x | Ax ≤ b, x ∈ [0,1]N and (x,X) ∈ B} (2)

parametric on any convex set B, which includes all sets of (x,X), that add valid constrains to
the zqp(B) relaxed quadratic problem. The positive semidefinite constraint (PSD), used to create
new cuts, derives from the semidefinite relaxation (SDP) X = xxT to X ≥ xxT , or equivalently[

1 xT

x X

]
≥ 0, Sherali and Fraticelli (2002); Qualizza et al. (2012). The reformulation-linearization

technique (RLT) compliments the SDP relaxation, by adding linear, triangular constrains to the
optimization problem, Anstreicher (2009), for 0 ≥ Xi, X j ≤ 1. In the first round, convex set B,
consists of just the RLT constrains. For (X∗, x∗), being the initial solution of the relaxed problem,

the augmented matrix
[

1 x∗T

x∗ X∗

]
is formed. Applying eigen-decomposition, provides violations

of the feasible set. The number of feasibility violating cuts t, is equal to the negative eigenvalues of
the matrix and each violation corresponds to a PSD constraint that is added to the Master problem

vT
k ·
[

1 xT

x X

]
· vk ≥ 0, ∀k ∈ {1, . . . , t}.

Baltean-Lugojan et al. (2019), introduced low-dimensional approach for lighter linear relax-
ations, to overcome the problem of generating only one dense cut per negative eigenvalue of
full-dimensional matrix, building on prior work of Qualizza et al. (2012). With ℘ denoting the
power set of the vertex set V : {1, . . . ,N} and ρ ∈℘(ρ ⊆V ) any arbitrary index subset, let xρ ∈ℜ|ρ|

and Xρ ∈ ℜ|ρ|×|ρ|. For any subset of ℘ the following semidefinite relaxation is introduced,

(∀F ⊆℘)℘(F) := {(x.X)|∀ρ ∈ F :
[

1 xT
ρ

xρ Xρ

]
≥ 0, Xi j ≤ xi∀ i ∈ ρ} (3)

For n, (n = |ρ|) being the dimension of the subsets, the cardinality of ℘n is determined in a

naive way by the combination
(

N
n

)
. In practice, chordal extensions are used, to exploit the

density pattern of the problem, for smaller |℘n|. Still, the number of subproblems is such, that
a separation issue arises, for the selection of the most informative underestimators. In feasibility
strategy, cutting planes are selected based on most negative eigenvalues of the augmented matrix.
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3. Metrics and analytics in selecting cutting planes
The motivation behind integration of data analytics, in the separation problem, through the affinity
clustering was the notion that qualitative and geometrical aspects matter. Data technology is sub-
sequently applied to measure fathom and screen planes, also to represent data spaces of the dual
problem. Research was expanded, by testing this theory on full and low dimensional spaces with
the use of normal vector clustering and temporal sets method.

3.1. Affinity metric

The initial approach to the separation problem employed data analytics, in order to select the most
informative cutting planes for the reconstruction of the convex space, with encouraging results.
The key element of this approach was the formation of a custom metric; the affinity metric. The
rationale behind the affinity metric was to prevent the proliferation of sub-spaces with very sim-
ilar or identical pattern of variables. Sub-spaces featuring common dimensions (affine sets), are
considered to hold similar information and could consequently be curtailed. The initial linear
constrains, used in Eq. (2), include just the RLT constrains. When the solution is reached, de-
composition follows, providing low-dimensional SDP cuts to choose from. Population of cuts is
then ordered by means of feasibility and cuts that satisfy the feasibility condition λρ ≤ 0 constitute
the power set ℘ used for the analysis. The metrics that best described the correlations among the
population were found to be the Euclidean distance and the custom affinity norm da(x, y), that is
defined below. The affinity norm serves the purpose of exploring the projection space by map-
ping the created cuts and revealing overlaps of the sub-spaces. That is achieved with the use of
common clustering technics, such as Kmeans and agglomerative clustering, for varying number
of clusters. Hybrid methods were tested to explore sequential implementations of Euclidean and
affinity metrics. The affinity metric is defined by,

da(x, y) :=
N

∑
i=1

1−g(xi, yi), where g(xi, yi) =

{
1 if xi = yi

0 if xi ̸= yi
(4)

The proposed approach achieves significant gap closures that are especially evident in problems
of higher complexity.

3.2. Full-dimensional sparse cutting planes: Normal vector clustering

On a new perspective on the reconstruction of the convex space, the low dimensional projections
are transferred to the full-dimensional space in sparse form. Working in the original space instead
of projections of it, favors the use of dynamic sets for the recovery of unselected planes, in the
following rounds. Cuts not added as SDP constrains, could potentially result in loss of valuable
information for the duality gap closure. Dynamic sets enable the retrieval of such cuts, by adding
part of unselected cuts to the population, prior clustering. Memory limitations prevent the ap-
plication of dynamic sets in normal vector clustering. The motivation behind this method is to
include diversity in orientation of the hyperplanes, in cut selection. The feature of orientation is
portrayed through the formation for the normal vector α . Parallel cutting planes are considered to
hold similar information and thus are clustered together, based on the cosine similarity of their nor-
mal vectors. The ranking criteria are enhanced by considering the search space each hyperplane
excludes.

The SDP relaxation of the referenced work in Eq.(3) is reformulated in full dimension. Sparse
solutions xρ,s ∈ ℜN , Xρ,s ∈ ℜN×N are formed, for every subset of ℘, from vector slices xρ ∈ ℜ|ρ|

and sub-matrix slices Xρ ∈ ℜ|ρ|×|ρ|.

Sparse eigen-decomposition is applied to each sparse augmented matrix
[

1 xT
ρ,s

xρ,s Xρ,s

]
, generating

N + 1 cutting planes. For feasibility violations, the normal vector of every hyperplane is formed
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from the eigenvectors, according to Eq.(8). All violated cuts (λρ,s ≤ 0 ) are added to the popula-
tion, in contradiction to prior work, where one out of |ρ| cuts was chosen per subset, according
to feasibility measure (|λρ |max). The normal vectors are clustered with of-the-shelf clustering
algorithm measuring cosine similarity. The PSD relaxation is as follows.

vT ·
[

1 xT
ρ,s

xρ,s Xρ,s

]
· v ≥ 0, ∀ρ ∈ F | (F ⊆℘) (5)

where, v ∈ ℜN+1. The normal vector of each hyperplane is generated from the linear form of
Eq.(6).

N

∑
i=1

2v1vi+1 · xi +

(
N

∑
i=1

N

∑
j=i

j=i

v2
i+1 +

N

∑
i=1

N

∑
j=i

j ̸=i

2vi+1v j+1

)
·Xi j + v2

1 ≥ 0 (6)

a = [2v1v2 2v1v3 ... v2
2 v2v3 ... v2

N+1] (7)

Cosine similarity measures the cosine of the angle between two normal vectors in the multi-
dimensional space.

CS(α1,α2) = cosθ =
α1 ·α2

∥α1∥ · ∥α2∥
(8)

The corresponding cutting planes, of the clustered normal vectors are ordered by means of ex-
cluded search space. The magnitude of the part of the convex set, that is removed by a hyperplane
(λρ,s ≤ 0), is connected to the minimization of the constant term v2

1 in Eq.(7). The first eigenvector
for every ordered cluster is selected and added as a PSD constraint to the Master problem.

3.3. Temporal sets in the low-dimensional space

The rationale behind this method is to compliment cutting plane algorithms, by conveying valu-
able information from previous rounds to the cut selection. In affinity clustering, the selection
criteria include feasibility measure, as well as geometrical features of the population. With tem-
poral sets, "memory" of used cuts is introduced, preventing the reselection of triplets, with respect
to feasibility measure. This line of work aims to limit the deceleration of the algorithm, when
reaching a plateau, hence achieving further closure of the duality gap, in large, dense problems.
The proposed algorithm follows these basic steps.

1. Solution of Master problem with just RLT constrains
2. Formation, clustering and evaluation of 3-D cuts, according to feasibility measure
3. Scanning and removal of repetitive triplets
4. Selection of top-rank element and renewal of list of used cuts

Integration of temporal sets in cutting plane selection algorithms was most efficient for conven-
tional Kmeans clustering, for euclidean distance, with weak elimination criteria, strong tolerance
and for application after clustering. Diverse versions of temporal set algorithms were tested,
through various rounds of experiments, without noting similar results.

• Elimination criteria
Strong: Eliminate triplets that share 3 dimensions with previously selected 3-D cuts
Weak: Eliminate triplets that share at least 2 dimensions with previously selected 3-D cuts

• Tolerance
Tight: Allow the minimal number of repetitions in triplets, so as to comply with the 100
cuts per round requirement
Loose: Allow sufficient number of repetitions, for the activation of the temporal set con-
strains
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• Elimination step
Prior clustering: Discard used triplets from a raw population
After clustering: Discard used triplets at each cluster

The intuition behind the experiment design is to test performance of key combinations on basic
algorithm alterations, regarding elimination criteria, tolerance and the elimination step. Tolerance
was manually adjusted to problem size and to cut round.

4. Results

The test set of box quadratic problems (BoxQP) used in the experiments was provided by Baltean-
Lugojan et al. (2019). For all computational experiments the dimensionality of the cutting planes
is set to |ρ|= 3 and the cut selection measure is feasibility. The number of iterations and cuts are
dictated by literature, so as to compare the proposed approach with the referenced algorithm (Rf1).
The number of rounds is set to 20, the added cuts for each round are set to 100. In coordinance with
Baltean-Lugojan et al. (2019), the convergence limit is achieved when rounds are 40 and selection
of cuts is 5% of the available sub-problems. The computational experiments are carried in python
3.5 using cplex 12.8 python API solver and scikit-learn v0.2 (Pedregosa et al., 2011) package
for k-means and agglomerative clustering. Results are evaluated based on the convergence of the
algorithm and the final solution

4.1. Normal vector clustering

Normal vector clustering was tested against conventional Kmeans clustering and the original ref-
erenced algorithm, for feasibility measure. A hybrid version was formed, to test complementarity
with conventional clustering algorithm, were 50% of the cuts were produced by each method, in-
dependently. Two examples of small non-convex QPs were studied, due to memory limitations.
Evidently, a problem of N=70, 50% dense, consists of 6608 sub-problems, while each element of
the population has a dimensionality of 70. Eigendecomposition of 71x71 augmented matrix takes
place, producing 71 eigenvectors of 71 dimensionality, each corresponding to a 2555-D normal
vector.

Figure 1: Progression of performance in duality gap closure, across 20 cut rounds, calculated for convergence limit of
referenced algorithm. Cuts are selected for min(v2

1) and must violate feasibility (λρ,s ≤ 0).

Initially, NVC is consistently preeminent for the test sets examined. Acceleration succeeded in the
first cut round is dominated in the following rounds, resulting in a gap closure below the standards,
set by previous algorithms. Hybrid version, is deprived of the for-mentioned edge in the fist round
and does not appear to complement conventional clustering. The large resource requirements,
complicate further research, on NVC with temporal sets.
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4.2. Temporal sets

Temporal sets noted the best performance, for
tight elimination criteria, that loosen as the al-
gorithm progresses, indicating the contribution
of geometrical complementarity in the separa-
tion problem. Improvement was marginal on
the small problems, but significant on the bigger
ones, where population of violating cuts is vast
and there was a significant duality gap left open
from the referenced algorithm. This method ap-
pears to complement most, conventional cluster-
ing with euclidean metric, among similar algo-
rithms tested.

Figure 2: Comparison of% gap closure across different test
problems

Figure 3: Comparison of% gap closure across 20 cut rounds,
for largest test set (N=100, 75% dense)

Performance is enhanced in large sets of sub-
problems, where tight elimination criteria can
be applied, without exhaustion of available cuts.
Temporal sets were also applied to Affinity clus-
tering, without noting comparable results, pos-
sibly due to similar approach to the separation
problem. The progress made by the utilization of
data analytics is most evident for the largest test
problem in Figure 3. Affinity clustering starts off
comparably better, but is dominated by the tem-
poral sets method after cut round 5.

5. Conclusion
Temporal approach on low-dimensional spaces appears to benefit acceleration of bigger and denser
problems. In the largest test problem, the temporal approach outperformed Affinity clustering.
Algorithms with tighter elimination conditions performed the best, indicating the importance of
geometrical diversity over feasibility measure on cut selection. Computational time improves in
comparison to conventional clustering algorithm, but still exceeds that of the referenced algorithm.
Normal Vector Clustering did not improve the overall performance of the algorithm. From a theo-
retical point of view, a consistently significant acceleration in the first cut round could potentially
benefit a hybrid algorithm. Memory limitations prevent application in bigger and denser prob-
lems, as well as further efforts to incorporate dynamic methods. Computational time and resource
requirements are restricting.

6. Acknowledgments
Prof. Kokossis is indebted to Prof Kevrekidis at Johns Hopkins University for his continuing
encouragement to explore data analytics and machine learning in decomposition algorithms. He is
also grateful to Prof Ruth Misener at Imperial College London who shared benchmark problems
and her relaxed (sparse and dense) cutting plane approximations used in the experiments.

References
K. M. Anstreicher, Nov. 2008. Semidefinite programming versus the reformulation-linearization technique for nonconvex

quadratically constrained quadratic programming. Journal of Global Optimization 43, 471–484.
R. Baltean-Lugojan, P. Bonami, R. Misener, A. Tramontani, 2019. Scoring positive semidefinite cutting planes for

quadratic optimization via trained neural networks.
A. Qualizza, P. Belotti, F. Margot, Nov. 2011. Linear programming relaxations of quadratically constrained quadratic

programs. In: Mixed Integer Nonlinear Programming. Springer New York.
H. D. Sherali, B. M. P. Fraticelli, 2002. Enhancing rlt relaxations via a new class of semidefinite cuts. Journal of Global

Optimization 22 (1/4), 233–261.

1326

1302



PROCEEDINGS OF THE 32nd European Symposium on Computer Aided Process Engineering  

(ESCAPE32), June 12-15, 2022, Toulouse, France  

L. Montastruc, S. Negny (Editors) 

© 2022 Elsevier B.V. All rights reserved.  

A systematic approach for the processing of 

experimental data from anaerobic syngas 

fermentations 

Eduardo Almeida Benalcázar a,b, Henk Noorman b,c, Rubens Maciel Filho a, 

John Posada b 
a Department of Product and Process Development, Faculty of Chemical Engineering, 

State University of Campinas, Av. Albert Einstein 500, 13083-852, Campinas – SP, 

Brazil. 
b Department of Biotechnology, Faculty of Applied Sciences, Delft University of 

Technology, Van der Maasweg 9, 2629 HZ, Delft, the Netherlands. 
c DSM Biotechnology Center, A. Fleminglaan 1, 2613 AX, Delft, the Netherlands.  

Abstract 

This study describes a methodological framework designed for the systematic processing 

of experimental syngas fermentation data for its use by metabolic models at pseudo-

steady state and at transient state. The developed approach allows the use of not only own 

experimental data but also from experiments reported in literature which employ a wide 

range of gas feed compositions (from pure CO to a mixture between H2 and CO2), 

different pH values, two different bacterial strains and bioreactor configurations (stirred 

tanks and bubble columns). 

The developed data processing framework includes i) the smoothing of time-dependent 

concentrations data (using moving averages and statistical methods that reduce the 

relevance of outliers), ii) the reconciliation of net conversion rates such that mass balances 

are satisfied from a black-box perspective (using minimizations), and iii) the estimation 

of dissolved concentrations of the syngas components (CO, H2 and CO2) in the 

fermentation broth (using mass transfer models). Special care has been given such that 

the framework allows the estimation of missing or unreported net conversion data and 

metabolite concentrations at the intra or extracellular spaces (considering that there is 

availability of at least two replicate experiments) through the use of approximative kinetic 

equations. 

 

Keywords: Syngas fermentation, experimental data processing, fermentation data 

reconstruction, data reconciliation. 

1. Introduction 

The development of a new fermentation technology starts at the laboratory where the 

chemostat is one of the main tools for studying microbial behavior. The chemostat is a 

fermentation setup where the concentrations of substances and cells are maintained nearly 

constant, and therefore a pseudo-steady state is reached at the intra and extracellular 

spaces (Noorman et al., 1996; Villadsen et al., 2011). The chemostat serves for gaining 

insights on the steady-state regulations of, on one hand, the whole metabolism such as the 

growth rate dependencies on substrates and products concentrations or the substrate 

requirements for maintenance, and on the other hand, the intracellular reaction rates that 
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allow cells to exhibit their behavior expressed as net conversion rates, or q-rates, as well 

as through the rates of growth and decay.  

The measurements of substance concentrations is the main source of information about 

the state of a fermentation process. The net conversion rates are estimated from these 

measurements. The substances that are generally measured are the carbon and the electron 

sources, the excreted products, cells, oxygen (in aerobic fermentations), CO2, H+ ions and 

the nitrogen source, (Stephanopoulos and Tsiveriotis, 1989). Yet, measurements are 

commonly prone to errors, both random and systematic (van der Heijden et al., 1994b). 

The reconciliation process is an adjustment of the measured rates aimed at improving 

their accuracy, such that they fulfill constraints formulated by, for instance a black-box 

description, which contains the energetic as well as the elemental balances of carbon, 

hydrogen, oxygen, nitrogen and charge (Noorman et al., 1996, 1991; van der Heijden et 

al., 1994a). In underdetermined systems, the reconciliation may allow the estimation of 

unmeasured quantities, whereas in overdetermined systems, the reconciliation allows to 

assess the consistency of the collected data and the identification of gross measurement 

errors (Stephanopoulos and Tsiveriotis, 1989; van der Heijden et al., 1994b, 1994a).  

The development and up-scaling of the anaerobic syngas fermentor requires the design 

of mathematical models that are able to reproduce the i) characteristics of mass transfer 

from the gas to the liquid and the ii) microbial metabolic responses to the stimulus 

provided by the extracellular environment. The models on the side of the microorganism 

are much nurtured by the adequate collection and processing of experimental information. 

In this document we describe a systematic methodological framework we developed to 

process the experimental metabolite concentrations and conversion rates from syngas 

fermentation experiments. We have previously used the proposed framework for 

assessing the performance of the reported and own fermentation experiments in terms of 

the distribution of carbon and electrons among the fermentation products, as well as for 

the parameterization of metabolic models at pseudo-steady state and transient state. 

The following pages describe the methodological framework formed by: i) data curation 

and smoothing, ii) reconciliation of net conversion rates and iii) reconstruction of missing 

concentrations of the dissolved gases.  

2. Data curation and smoothing 

In general, the curation and smoothing of the experimental data is useful for the design 

of kinetic expressions and the early assessment of trends. The use of curated and 

smoothed data is however not recommended for the parameterization of models because 

such procedure may introduce errors or may lead to the negligence of exceptional 

phenomena producing outliers in the data trends. 

Curation is here referred to the process of filling missing concentration data in time points 

where samples have been withdrawn and for any particular reason the concentration of 

one or more substances have not been able to be measured or the measurements fell below 

the equipment detection limits. In either of the two cases the empty data points may be 

filled using the overall trends of the data as reference. For instance, if the missing data 

correspond to points where low concentrations are expected, as the low points in the 

oscillatory data collected by (Mahamkali et al., 2020), then the missing data can be 

replaced by values somewhere around the detection limit of the measuring equipment. If 

the missing data is instead expected higher than the detection limits of the measuring 

equipment, their estimation may be supported on the overall trend, where spline 

interpolation may be far more useful than linear interpolation. The maintenance of the 

trends in the time derivatives may also be used as a strategy for selecting the interpolation 
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method. Time derivatives of experimental concentrations (𝐶𝑗) may be estimated using 

forward, central and backward differentiation for the first, middle and last points in a time 

series, respectively. Table 1 shows the equations applicable to the three mentioned 

differentiation methods. 
 

Table 1 Equations used for the estimation of the concentration gradients with the 

experimental data 

Type of differentiation Equation nr. 

Central 
d𝐶𝑗

d𝑡
≈

Δ𝐶𝑗

Δ𝑡
=

𝐶𝑡+1 − 𝐶𝑡−1

2 ∙ Δ𝑡
 (1) 

Forward 
d𝐶𝑗

d𝑡
≈

Δ𝐶𝑗

Δ𝑡
=

𝐶𝑡+1 − 𝐶𝑡

Δ𝑡
 (2) 

Backward 
d𝐶𝑗

d𝑡
≈

Δ𝐶𝑗

Δ𝑡
=

𝐶𝑡 − 𝐶𝑡−1

Δ𝑡
 (3) 

 

Smoothing is here referred to the reduction of the noise in the trends of dynamic 

experiments. The earliest smoothing method to be tried may be moving averages. 

However, the higher and lower points in oscillatory data, as in (Mahamkali et al., 2020), 

may be neglected by moving averages. As more refined alternatives, the smoothing may 

be done using  local regression methods that use weighted linear least squares or 1st 

degree polynomial models that assign lower weight to outliers in the regression. The last 

two methods may be found coded into MatLab’s ‘smooth’ function as the algorithms 

‘lowess’ and ‘rlowess’, respectively. In any case, the selection of smoothing algorithm 

may be, as described for the curation of data, supported on the trends of the time 

derivatives and on trends from a second experiment, provided it is available.   

3. Reconciliation of net conversion rates 

In general terms, the reconciliation process consists on the minimization of the mismatch 

between the reconciled data and the raw experimental data while closing the carbon, 

hydrogen, oxygen, nitrogen elemental balances as well as the charge balances. Prior to 

describing how the minimization problem is created, it is necessary to provide an 

introduction on how the mass balances are structured for the fermentation of syngas.    

The fermentation of syngas employs the ability of diverse types of bacteria and archaea, 

often called as acetogens, to harvest the electrons from CO and H2 and the carbon from 

CO and CO2. CO, H2 and CO2 can be the sole sources of energy and carbon for these 

microorganisms. Acetic acid, ethanol and 2,3-butanediol are the most common native 

products of acetogenic microorganisms. The first step on the processing of experimental 

data is the establishment of stoichiometric relations between electron and energy sources, 

the products and cells. Equations 4 – 9 in Table 2, show the stoichiometries of the 

reactions leading from CO and H2 towards acetic acid, ethanol and 2,3-butanediol. In 

equations 4 – 9, the amount of electron donor required to generate each product is 

calculated by balancing the degree of reduction (or the amount of electron available for 

redox exchange (Heijnen, 2002)) between the donor and the catabolic product; CO2 is 

added to balance the carbon, H2O balances the oxygen atoms, and H+ ions balance the 

hydrogen atoms. If the balancing is made correctly, in the mentioned order of steps, the 

charge should also be balanced with no additional modifications to the stoichiometry.  

For simplicity, here we show only apparent species. CO2, acetic acid and potentially the 

nitrogen source have different forms depending on the pH. More thorough descriptions 

can include these species and their equilibrium relations to improve accuracy.    
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The complexity of the sequence of reactions leading to the production of cells, or 

anabolism, may also be summarized using two equations, one for each electron donor 

(see equations 10 and 11 in Table 1). The derivation of the stoichiometry of the anabolic 

reaction follows the same steps as described previously. 

In theory, the catabolic reactions of any syngas fermentation process where CO and H2 

are consumed and where acetate, ethanol and 2,3-butanediol are the main products should 

be described by a combination between equations 4 – 9. The same is applied to the 

anabolic reaction, which is derived from a combination between equations 10 and 11. The 

resulting catabolic and anabolic reactions may be joined to form one metabolic reaction 

using the biomass yield, which can be estimated using thermodynamics (Heijnen and van 

Dijken, 1992).       

   

Table 2. Common reactions in syngas fermentations 

Part of 

metabolism 
Reaction nr. 

Catabolism 

from CO as the 

electron donor 

−4CO − 2H2O + C2H3O2
− + 2CO2 + H+ (4) 

−6CO − 3H2O + C2H6O + 4CO2 (5) 

−11CO − 5H2O + C4H10O2 + 7CO2 (6) 

Catabolism 

from H2 as the 

electron donor 

−4H2 − 2CO2 + C2H3O2
− + 2H2O + H+ (7) 

−6H2 − 2CO2 + C2H6O + 3H2O (8) 

−11H2 − 4CO2 + C4H10O2 + 6H2O (9) 

Anabolism 
−2CO − 0.25NH4

+ − 0.5H2O + CH1.75O0.5N0.25 + CO2 + 0.25H+ (10) 

−2H2 − 0.25NH4
+ − CO2 + CH1.75O0.5N0.25 + 1.5H2O + 0.25H+ (11) 

 

Going back to the structuring of the minimization problem for reconciling the net 

conversion rates, the mismatch between the reconciled and the experimental rates is the 

objective function; the mismatch may be quantified by the sum of the squared differences 

divided by the standard deviation (Villadsen et al., 2011). The reconciled net conversion 

rates for CO, H2, CO2, acetate, ethanol, 2,3-butanediol, biomass growth, water, nitrogen 

source and H+ ions may be used as decision variables. The elemental balances may be 

used as constraints. Additional constraints may also be applied for improving the 

precision; for instance, the mass balances of the different species in the two phases of the 

bioreactor, the liquid and the gas phases. The experimental preference for CO and H2 

uptake and for product generation may also be used as additional constraints.    

It is standard procedure to fix the allowed variations of the experimental q-rates according 

to the error in the experimental data (known using data from multiple experiments at the 

same conditions); however, if that error is not reported in the source of experimental data, 

one may assume a percent variation of maximum 10 – 20 % for each reconciled rate. In 

this case, the use of additional constraints become very helpful to guide the reconciliation 

to values that are consistent not only with elemental balances but also with time dependent 

or independent balances of species.  

4. Calculation of the dissolved gas concentrations 

Techniques for in-line measurement of the dissolved concentrations of CO, H2 and CO2 

have been developed (Mann et al., 2021; Mislov et al., 2015). However, it is rare to find 

reports that describe the use of such techniques in syngas fermentations. The calculation 

of the dissolved concentrations of CO, H2 and CO2 is therefore often necessary. This 
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calculation can be done using two approaches that are different if the experimental data 

can be assumed at steady state or at transient state.  

If the experimental data is likely at steady-state, the time gradients are assumed equal to 

zero and the mass balances of CO and H2 in the gas and the liquid phases, one overall 

CO2 mass balance and one summation for the composition of the off-gas (see equations 

12 - 17) may be enough to estimate the unknown concentrations of CO, H2, CO2 in the 

liquid phase, as well as the molar fractions of CO and H2 in the off-gas and their flow 

rates. If CO2 is a product of the fermentation, it can be assumed that it is saturated in the 

liquid, thus Henry’s law may be applied to find its fraction in the gas phase. 
 

CO in the liquid 

phase 
0 = 𝑞𝐶𝑂 ∙ 𝐶𝑥 + 𝑘𝐿𝑎𝐶𝑂 ∙ (𝐶𝐶𝑂

∗ − 𝐶𝐶𝑂) − 𝐶𝐶𝑂 ∙ 𝐷 (12) 

H2 in the liquid 

phase 
0 = 𝑞𝐻2

∙ 𝐶𝑥 + 𝑘𝐿𝑎𝐻2
∙ (𝐶𝐻2

∗ − 𝐶𝐻2
) − 𝐶𝐻2

∙ 𝐷 (13) 

CO in the gas 

phase 

0 = 𝐹𝐺,𝑖𝑛 ∙ 𝑦𝐶𝑂,𝑖𝑛 − 𝐹𝐺,𝑜𝑓𝑓 ∙ 𝑦𝐶𝑂,𝑜𝑓𝑓 − 𝑘𝐿𝑎𝐶𝑂 ∙ (𝐶𝐶𝑂
∗ − 𝐶𝐶𝑂)

− 𝐶𝐶𝑂 ∙ 𝐷 
(14) 

H2 in the gas phase 
0 = 𝐹𝐺,𝑖𝑛 ∙ 𝑦𝐻2,𝑖𝑛 − 𝐹𝐺,𝑜𝑓𝑓 ∙ 𝑦𝐻2,𝑜𝑓𝑓 − 𝑘𝐿𝑎𝐻2

∙ (𝐶𝐻2

∗ − 𝐶𝐻2
)

− 𝐶𝐻2
∙ 𝐷 

(15) 

CO2 overall 
0 = 𝐹𝐺,𝑖𝑛 ∙ 𝑦𝐶𝑂2,𝑖𝑛 − 𝐹𝐺,𝑜𝑓𝑓 ∙ 𝑦𝐶𝑂2,𝑜𝑓𝑓 + 𝑞𝐶𝑂 ∙ 𝐶𝑥 ∙ 𝑉𝐿 − 𝐶𝐶𝑂2

∙ 𝐷 ∙ 𝑉𝐿 
(16) 

Summation of gas 

phase composition 
1 = 𝑦𝐶𝑂,𝑜𝑓𝑓 + 𝑦𝐻2,𝑜𝑓𝑓 + 𝑦𝐶𝑂2,𝑜𝑓𝑓 (17) 

 
The saturation concentrations of the gases (𝐶𝐶𝑂

∗ , 𝐶𝐻2
∗  and 𝐶𝐶𝑂2

∗ ) may be estimated using 

Henry’s equation (a list of coefficients is given by (Sander, 2015)). Moreover, the 

estimation of the mass transfer coefficients (𝑘𝐿𝑎) requires making several assumptions 

about the fermentation broth, the dimensions of the bioreactor vessel and the dimensions 

of the stirrer; unfortunately, these details are commonly not reported. The calculation of 

𝑘𝐿𝑎 may be based on the power input by the stirrer (𝑃𝑆 in equation 6) and by the gas 

sparging (𝑃𝑆𝐺  in equation 7). Note that equation 18 and 19 were developed for the transfer 

of oxygen to pure water at 20 °C; therefore 𝑘𝐿𝑎 may be further corrected for the process 

temperature and the specific gas through their the film diffusivity (ᴆ) of CO and H2 in 

pure water compared to that of O2 (see equation 20). Equation 20 also contains a 

correction factor for the mass transfer coefficient (𝑓𝑘𝐿𝑎), which may account for other 

differences in the experimental set-up and liquid phase composition compared to the ideal 

case for which equation 18 - 20 were initially constructed and parametrized.  
 

𝑃𝑆 = 𝑁𝑃 ∙ 𝜌 ∙ 𝑁3 ∙ 𝐷𝑆
5 (18) 

𝑃𝑆𝐺 = 𝑃𝑆 ∙

[
 
 
 
 

0.1 ∙ (
𝑁 ∙ 𝑉𝐿

𝑉̇𝐺

)

1
4

∙ (
𝑔 ∙ 𝐻𝑆 ∙ 𝑉𝐿

2
3 

𝑁2 ∙ 𝐷𝑆
4 )

1
5

]
 
 
 
 

 (19) 

𝑘𝐿𝑎𝑗 = 𝑓𝑘𝐿𝑎 ∙ [1.022(𝑇−293.15)] ∙ [0.002 ∙ (
𝑃𝑠𝐺

𝑉𝐿
)
0.7

∙ 𝑣𝐺𝑠
𝑐 0.2

] ∙
ᴆ𝑂2

ᴆ𝑗
 (20) 

   

If the experimental data is instead expected to be at transient state, the concentration 

gradients represent one more unknown variable per each gas in the balances. The 

additional equations needed may be formulated using kinetic equations linking the net 

conversion rates of CO, H2 and CO2 to their dissolved concentrations. Mechanistic or 
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approximative formats may be used (Heijnen, 2005; Rizzi et al., 1997). The combination 

between both formats has been useful in our work. 

To improve the accuracy of the reconciliation of the ten conversion rates, the calculation 

of dissolved gas concentrations may be done simultaneously by including the unknown 

𝐶𝐶𝑂, 𝐶𝐻2
 and 𝐶𝐶𝑂2

 , 𝑦𝐶𝑂,𝑜𝑓𝑓 , 𝑦𝐻2,𝑜𝑓𝑓 and 𝐹𝐺,𝑜𝑓𝑓  among the decision variables list.  
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Abstract 

The present study is inspired by our current research work concerning the development 

of innovative solutions for the optimal use of resources in the industry in the context of 

circular economy. The outcome of the research is expected to be the development of a 

framework including prototypes and models for the process and manufacturing industry 

in order to make the optimal use of resources in the entire life cycle of materials and 

products. These prototypes and models, including materials reuse, water recovery and 

reuse, products remanufacturing, waste minimisation, all relevant to minimizing resource 

consumption and environmental impacts, will be implemented integrating industry 4.0 

technologies, optimisation models, feasibility studies and life cycle analysis to support 

Circular Economy practices.  

In the above context, the present paper introduces our wider research issues and 

parameters and describes the significant role of Process Systems Engineering in the 

Circular Economy context of the above industrial problems. In parallel, the importance 

of a new field of PSE tools implementation and expansion emerges as an outcome of the 

work providing very interesting and challenging perspectives in addition to their existing 

fields of application. 
 

Keywords: PSE prospects, modelling and optimisation in circular economy. 

1. Introduction and Rationale of the work  

Many organisations, academics, companies and policymakers have acknowledged the 

circular economy as an opportunity for more sustainable industrial models and strategies. 

According to this viewpoint, companies can achieve substantial cost savings and 

additional revenues by adopting circular business models.  

As sustainability gains more attention and is being used by industries, governments and 

academic cycles, there has been a considerable effort in moving towards sustainable 

development not only for environmental and societal needs but also as an important 

economic activity. A comprehensive framework to accomplish this is shifting to the 

principles of the so-called circular economy (CE), that is attracting more and more 

attention as a way to face materials scarcity and the growing demand for resources in 

general (e.g. water, energy, land).  

The European Union defines Circular Economic as a model where the value of products, 

materials and resources is maintained in the production and use cycle for as long as 

possible, and waste generation is minimised. The Ellen MacArthur Foundation (2013) 

expanded this definition by stating that the Circular Economy is a systemic approach to 

economic development designed to benefit businesses, society, and the environment. In 

contrast to the ‘take-make-waste’ linear model, CE aims to develop design and operation 

of production systems that gradually decouple growth from the consumption of finite 

resources.  

The concept recognises the importance of the economy needing to work effectively at all 

scales for big and small businesses, for organisations and individuals, globally and 

locally, based on three principles (1) minimisation of waste and pollution, (2) extension 
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of products and materials life and (3) regeneration of natural systems (Ellen MacArthur 

Foundation, 2013) thus setting the CE concept with the potential to generate economic, 

environmental and social benefit.  In line with the previous principles, the European 

Union (EU) adopted an action plan in 2015 where the value of products and materials is 

maintained for as long as possible, bringing thereby significant economic, social and 

environmental benefits by making its members' states pioneers in making policies and 

framework to promote the CE in industries, businesses, and services.  

In quantitative terms, according to the European Commission more efficient use of raw 

materials and resources throughout the supply chain materials could reduce the need for 

new raw material of 17% -24% by 2030, with savings for European industry estimated at 

630 billion Euro per year. Several studies on the potential of circular economy indicate 

that European industry, thanks to substantial savings on the cost of raw materials, could 

push the growth of European GDP by about 3.9% and create a very large number of new 

jobs. (https://www.cesme-book.eu/] 

2. Process Systems Engineering and the Circular Economy  

On the other hand, Process Systems Engineering practice started from the need to define 

and solve increasing complexity problems in technical systems, understand and control 

these systems' characteristics as a whole. The PSE is focused on the integrated design and 

operation of complex technical systems. PSE relies on systems thinking, feature very 

essential to the Circular Economic approach.  

Decision-making for supply chains and understanding Circular Economy and the 

transition from linear to circular models makes PSE a fundamental part of the CE as a 

solution (Falk et al., 2016, Walmsley et al., 2019, Dantas et al., 2021).  

According to Reichel et al. (2016) and Avraamidou et al. (2020), the critical 

characteristics of CE, which also fall under the Ellen MacArthur Foundation (2021) goals, 

are (1) minimise the use of natural resources: less import dependence on natural resources 

by efficient use of natural resources, (2) increase of renewable recourses and energy: 

substituted conventional resources to renewable and minimizing the virgin materials, (3) 

minimisation of emissions levels: reduction of pollutants through clean material cycles, 

(4) less material losses/residuals: waste minimisation through the recovery and recycling 

of materials and products, (5) manage resources to preserve value: promote the 

development of business models to increase the value of products in redesigning and high-

quality recycling. Figure 1 shows indicative research fields with potential use in achieving 

CE goals (Avraamidou et al 2020).   

 

Figure 1: Indicative research fields with potential use in achieving CE goals (Avraamidou et al 

2020).  

As process systems engineering has become one of the first to acknowledge 

sustainability, it has become the leading model in process design. Even though the 

rationale to transform into a sustainable process may have been essentially economic, 

through the years, this notion changed as more industries wanted their process systems to 

not only see the economic value but also how the entire system interacts with the 
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environment (Silk et al., 2019). Their research discovered that in any attempt in modeling 

or optimizing circular economy, the most common approach to attain sustainability in a 

process design is through Life Cycle Assessment, which is a way of comparing different 

process design alternatives. Thus, Life Cycle Assessment (LCA) is being employed 

within the PSE community for years. The process systems engineering tools may enable 

a practical way for analyzing performance and improvement in a sustainable way within 

industries. The reason for this is that LCA quantifies all relevant issues related to the 

products or services and could evaluate sustainable development, making it a handy tool 

for CE. 

In the present research LCA is one of the main tools to create and evaluate alternatives. 

Additionally, process optimisation, which relies on mathematical optimisation, gains 

more attention in the circular economy notion to industries as it can be used as a 

methodology for minimizing or maximizing suitably defined objectives and goals in the 

whole life cycle in a sustainable way (Kristoffersen et al., 2020). From the process 

systems engineering view, the progress of efficient design and state-of-the-art 

mathematical tools to support quantitative methods in the process optimisation 

applications with sustainability in mind has been growing in the academic cycles and 

industries. Besides, when circular economy and sustainability in supply chains are 

combined, it must include optimisation of supply chain industries to have efficient and 

circular systems that assist the progress of reducing, reuse and recycling and emphasise 

environmental, social, and economic demands. This implementation requires adjustment 

in design management by optimizing all factors to minimise resource consumption and 

maximise circular economy on materials, products and systems. As a result, circular 

supply chains management, information and knowledge issues are organised and planned 

to optimise resource allocation, increase benefits and achieve the circular economy 

notion. Optimisation model’s development is a core issue in our in-progress research. 

3. Research gaps and expected added value  

In the industrial community a lot of attention has been given to the sustainability issues. 

According to Bjørnbet et al. (2021), there is a promising future in transitioning towards 

CE in the manufacturing community through circular business models. Thus, acquiring 

experience in modeling such industries that are yet fully discovered by PSE is essential 

in modeling and optimizing the CE through supply chains. Making the resources use 

circular could increase their productivity in recovering an immense amount of those from 

being employed in manufacturing. Thus, circular economy could contribute to changing 

even the synthesis of the production system at the first place. In this manner, designing 

industries for availability, sustainability, and of course including design in reusing and 

remanufacturing will gain more attention and become vital.  However, success in moving 

towards a circular economy depends on whether industries understand the importance of 

changing into it for efficient planning and management over time.  

Industry is a very wide and complex system and certainly there is no unique or generic 

approach towards circular economy in this sector. It is important at this point to emphasise 

that circularity is a wider term and is not identical to sustainability, although most 

methods and approaches converge to that. 

Therefore, more specific models expressing different industrial characteristics, objectives 

and constraints depending on the type of industry as well as its crucial issues in terms of 

circular economy principles need to be developed. As Pistikopoulos et al, (2021) mention 

the Circular Economy will be the framework and the context of Process Systems 

Engineering in the next years. Therefore, modeling will definitely play a crucial role in 

achieving CE goals, along with other tools such as Life Cycle Analysis and feasibility 

studies, that will lead to the economic evaluation of proposed measures and interventions.  

4. Research questions, methods and tools  

The suggestions – referring to each industrial type under consideration - extend from 

materials reuse, water recovery, products remanufacturing, waste minimisation, all 

relevant to minimizing resource consumption and negative environmental impacts.  
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The main research questions / objectives of the proposed work are (also shown 

schematically in Figure 2): 

• To investigate the potential and the methods for the industry to use less resources and 

produce less waste when producing materials and products  

• To identify the methods and tools and to develop the relevant models that will enable 

circularity in the manufacturing and process and manufacturing industry  

• To focus on the recovering and reprocessing of materials and products that will lead 

to the optimisation of resources exploitation  

• To develop advanced techno-economic modelling, life-cycle assessment and 

optimisation models, in order to predict/determine which technologies, both 

established and new, will perform best at scale and enable circularity. 

• To investigate the suitability of the above methods and tools depending on the type of 

industry, i.e. determine the matching between methods/tools and sectors for modelling 

the industry innovation for circular economy 

• To create certain specific models and paradigms and the relevant specific results to 

the selected sectors,  

• To extend the scope of the models and paradigms to other industrial (and non-

industrial sectors, such as the energy.  
 

 
Figure 2: Main scope of the proposed research (figure inspired by The EIB Circular Economy 

Guide,  https://www.eib.org/attachments/thematic/circular_economy_guide_en.pdf)  

The expected outcome of the study is the specific recommendation of circular 

(technoeconomic, optimisation) prototypes and models for the process and manufacturing 

industry in order to make the optimal use of resources in the entire life cycle of materials 

and products. This will be implemented exploiting PSE existing tools, optimisation 

models, feasibility studies and life cycle analysis to support CE practices.  

The main methods, tools and models for the assessment of different aspects of the circular 

economy for the industry, include advanced techno-economic modelling, life-cycle 

assessment, systems engineering models and tools and optimisation methods and tools 

(mathematical optimisation, multicriteria analysis). Forecasting work has already taken 

place concerning the evolution of circular economy on the industry (Angelopoulou, 

Kondili, July 2021). Furthermore, continuous collaboration with industrial partners for 

detailed description of cases and paradigms has been established.  
 

The classification of the industries (sectoral classification) according to their suitability 

in one of the following basic axes of circular economy (as shown in Figure 2 above).  

• The waste reprocessing and reuse  

• The minimisation of resources utilisation  

• The design of materials and products according to the main eco-design 

principles.  
 

Currently, having completed the existing background work, a classification of the 

industrial sectors under consideration is taking place according to the resources where 
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each sector is intensive (metals, energy, water, land, other materials, etc.) as well as its 

classification according to the potential of materials and products remanufacturing and 

reuse.  

5. Industry 4.0 and PSE  

Today the model development based on these new business models is also linked to the 

Industry 4.0 (I4.0) paradigm, the fourth industrial revolution in production systems using 

a higher level of digitalisation. The core idea of Industry 4.0 is to use emerging 

technologies so that business and engineering processes are integrated by making 

production operate in a flexible, efficient, and sustainable way. (Singh et al., 2019, Rajput 

& Singh, 2020, Jamwal et al., 2021). Industries cannot prevent themselves from applying 

I4.0 systems, and the fundamental contribution of I4.0 is digitalizing CE practices through 

different forefront technologies. Industry 4.0 creates abundant opportunities for industries 

to improve circular performance and evolve ethical principles of social responsibility by 

optimizing the usage of resources with the improvement of the lifecycle of products 

(Rajput & Singh, 2020). 

The problem considered here is of implementing Industry 4.0 along with Process Systems 

Engineering considering circular economy. There is an excess of research studies 

associated with industry 4.0, smart manufacturing, and the Internet of Things in 

industries. However, the combination of process systems engineering that focuses on 

circular economy is limited, with most researchers addressing real-time data availability, 

computing, and big data. It was proposed that industries adopt more model-driven and 

object-orientated information-driven models for increased optimisation, better efficiency, 

and circular economy support in an Industry 4.0 approach.  

Thus, in order to be successfully implemented, as far as the supply chain management is 

concerned, Rajput & Singh (2020) proposed the CE principles that reduce, reuse, recycle, 

recover, remanufacture and redesign materials and products and life cycle analysis as 

possible solutions to this integration. Nevertheless, there is a need to quantify the 

relationships between Industry 4.0 in the industry’s management, performance, and 

sustainability to identify specific stages of product life extension through optimisation. 

Thus, by adopting and implementing strategies with quantitative and real-time data about 

Industry 4.0, there is a need for new sustainable manufacturing practices and combining 

all, Industry 4.0 knowledge and process system engineering could create effective results 

in not only overall firm performance but also industry performance (Walmsley et al., 

2019, Rosa et al., 2020, Bag et al., 2021). This is another important research objective of 

the present work.  

6. Conclusions 

Many comprehensive works have been developed concerning the theoretical background 

and the principles of Circular Economy. Concerning the process and manufacturing 

industry, there is a wide scope for the development of practical and implementable 

solutions that will have a real and measurable benefit to the industrial units. There is a 

need to step forward to establish new frameworks that, together with adequate data and 

actions in the notion of the CE in industries, could fulfil the CE goals. Enabling circular 

economy requires changing the business models from selling products to delivering 

services and from a linear system lifecycle to a circular one. Thus, there is a need for 

collaboration between the academic community, industries, and society. There has to be 

a better understanding of the implications of CE and how this can work together with I4.0 

by examining case studies and using the appropriate PSE methods and tools as those could 

help in the whole notion of the CE.  
 

In the present work the basis has been set for the identification of how CE models may 

be developed and solutions suggested by using PSE methods and tools.  
1. The development of relevant integrated models to use less resources or use resources more 

efficiently when producing materials and products will enable circularity in the 

manufacturing and process industry focusing on the recovering and reprocessing of 

materials and products that will lead to the optimisation of resources exploitation. The 

work will highlight the real potential of the PSE tools for circular economy and at the same 

Process Systems Engineering prospects in Circular Economy implementation
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time establish PSE in the context of circular economy, thus revealing an interesting field 

for expansion, application of PSE tools and developing excellent prospects in the field.  

References 

S. Avraamidou, S.G. Baratsas, Y. Tian, E.N. Pistikopoulos, 2020, Circular Economy - A 

challenge and an opportunity for Process Systems Engineering, Computers and Chemical 

Engineering, 133 

S. Bag, G. Yadav, P. Dhamija, K.K. Kataria, 2021, Key resources for industry 4.0 adoption and 

its effect on sustainable production and circular economy: An empirical study. Journal of 

Cleaner Production, 281 

M.M. Bjørnbet, C. Skaar, A.M. Fet, K.Ø. Schulte, 2021, Circular economy in manufacturing 

companies: A review of case study literature, Journal of Cleaner Production, 294 

CESME White book, https://www.cesme-book.eu/, 2021 

T.E.T. Dantas, E.D. de-Souza , I.R. Destro , G. Hammes, C.M.T. Rodriguez, S.R. Soares, 2021, 

How the combination of Circular Economy and Industry 4.0 can contribute towards achieving 

the Sustainable Development Goals, Sustainable Production and Consumption, 26, 213–227 

Ellen MacArthur Foundation, 2021, Universal Circular Economy Policy Goals, 

https://ellenmacarthurfoundation.org/ 

D. Falk, B.G. Steiber, 2016, Systems Engineering for a Circular Economy, 26th Annual INCOSE 

International Symposium (IS 2016) Edinburgh, Scotland, UK, July 18-21 

A. Jamwal, R. Agrawal, M. Sharma, A. Giallanza, 2021, Industry 4.0 Technologies for 

Manufacturing Sustainability: A Systematic Review and Future Research Directions. Applied 

Sciences, 11, doi:10.3390/app11125725 

E. Kristoffersen, F. Blomsma, P. Mikalef, J. Li, 2020, The smart circular economy: A digital-

enabled circular strategies framework for manufacturing companies, Journal of Business 

Research, 120, 241–261 

Pistikopoulos, E.N, Barbosa-Povoa A., Lee, J.H., Misener, R., Mitsos A., Reklaitis G.V., 

Venkatasunbramanian V., You F., Gani R., 2021, Process systems engineering – The 

generation next?, Computers and Chemical Engineering, 147, 107252. 

S. Rajput, S.P. Singh, 2020, Industry 4.0 Model for circular economy and cleaner production, 

Journal of Cleaner Production, 277 

P. Rosa, C. Sassanelli, A. Urbinatia, D. Chiaroni, S. Terzi, 2020, Assessing relations between 

Circular Economy and Industry 4.0: a systematic literature review, International Journal of 

Production Research, 58, 6, 1662–1687. 

S.P. Singh, R.K. Singh, A. Gunasekaran, P. Ghadimi, 2019, Supply Chain Management,Industry 

4.0, and the Circular Economy, Resources, Conservation & Recycling, 142, 281–282 

D. Silk, B. Mazzali, I.A. Udugama, K.V. Gernaey, M. Pinelo, J. Woodley, S.S. Mansouri, 2019, 

Systematic decision-support methodology for identifying promising platform technologies 

towards circular economy, Proceedings of the 29th European Symposium on Computer Aided 

Process Engineering June 16th to 19th, 2019, Eindhoven, The Netherlands. 

S. Sitter, Q. Chen, I.E. Grossmann, 2019, An overview of process intensification methods, 

Chemical Engineering,  25,87–94 

T.G. Walmsley, B.H.Y. Ongb, J.J. Klemeša, R.R. Tanc, P.S. Varbanov, 2019, Circular Integration 

of processes, industries, and economies, Renewable and Sustainable Energy Reviews, 107, 

507–515 

 K. G. Stylianopoulou et al.



PROCEEDINGS OF THE 32nd European Symposium on Computer Aided Process Engineering  

(ESCAPE32), June 12-15, 2022, Toulouse, France  

L. Montastruc, S. Negny (Editors) 

© 2022 Elsevier B.V. All rights reserved.  

Incremental financial analysis of black liquor 
upgraded gasification in integrated kraft pulp and 
ammonia production plants under uncertainty of 
feedstock costs and carbon taxes 
Meire Ellen Gorete Ribeiro Domingosa,c, Daniel Flórez-Orregob, Moisés Teles 

dos Santosa, Silvio de Oliveira Júniorb, François Maréchalc 
aPolytechnic School, University of Sao Paulo, Department of Chemical Engineering, 
Sao Paulo 05508-000, Brazil. 
bPolytechnic School, University of Sao Paulo, Department of Mechanical Engineering, 
Sao Paulo 05508-030, Brazil. 
cÉcole Polytechnique Fédérale de Lausanne, Valais-Wallis, 1951 Sion, Switzerland 
meireellengorete@usp.br / meire.ribeirodomingos@epfl.ch 
 

Abstract 
In this work, the conventional scenario of the black liquor (BL) concentration and 

combustion is compared with the BL upgrading gasification process for ammonia 

production. The chemical processes synthesis, modeling and simulation are performed by 

using Aspen Plus® software. The determination of the heat recovery and the solution of 

the energy integration problem is handled by a mixed integer linear programming model. 

An incremental financial analysis incorporates the uncertainty related to the acquisition 

and selling costs of the feedstock and fuels produced and carbon taxation by using the 

Monte Carlo method. As a result, the incremental financial analysis found that only the 

integrated pulp and ammonia production route with partial electricity import may 

economically outperform the conventional kraft pulp mill for moderate carbon taxations 

(40-90 EUR/tCO2), depending on the interest rate adopted. In this regard, middle-to-high 

carbon taxations may render ammonia co-production attractive in the Brazilian context 

of a highly renewable electricity mix. 

Keywords: Black liquor, Kraft process, Uncertainty, Ammonia, Decarbonization. 

1. Introduction 
Ammonia is one of the most demanded bulk chemicals in the world, mainly for the 

production of fertilizers for the agricultural sector. In 2016, the ammonia production 

reached 175 million tons, and the trend from 2006 to 2016 shows a growth rate of 1.9% 

per year (YARA, 2018). The ammonia synthesis is also the largest carbon dioxide 

emitting chemical industry process, responsible for about 1.8% of global carbon dioxide 

emissions (Royal Society, 2020). Thus, several efforts are being made towards the 

decarbonization of the ammonia production supply chain and the mitigation of the 

environmental impacts of this sector. The thermochemical conversion routes for 

hydrogen production are among the proposed alternatives, which can also capitalize on 

the underexploited biomass potential in tropical countries with a well-established biomass 

conversion expertise, such as Brazil. This work proposes to produce ammonia by using 

the syngas coming from the gasification of black liquor (BL), a byproduct of the kraft 
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pulping process. The incremental financial analysis under uncertainty are considered as 

criteria for assessing the potential to implementing this technology under volatile market 

conditions. 

2. Methods 

2.1. Process modeling and optimization problem definition 
Figure 1 illustrates the integrated system for ammonia production via black liquor 

gasification. First, the weak black liquor is dried in a mechanical vapor recompression 

system. Subsequently, the strong black liquor is gasified in a pressurized system using 

oxygen. The syngas obtained need to be treated, purified and its composition should be 

adjusted before enters the ammonia loop. To this end, autothermal reformer, water gas 

shift, CO2 capture and methanation systems are required. Finally, ammonia is purified 

before follow to its end-use. This process is modelled in the Aspen Plus® software and 

the detailed description of the processes conditions is reported in (Domingos et al., 2021). 

The integration of the ammonia plant to the existing kraft pulp mill creates new utility 

demands. So, the determination of the minimum energy requirements (MER) and the 

solution of the energy integration problem is handled by the OSMOSE Lua platform. 

Three scenarios are considered: i) conventional: recovery boiler application, with only 

pulp production; ii) mixed: based on both chips fuel and electricity import, with ammonia 

and pulp production; and iii) autonomous: only chips import and cogeneration system 

enabled, with ammonia and pulp production. The market costs and selling prices for 

feedstock and products that are considered for the optimization problem solution are: 

wood 0.013 €/kWh; chips 0.016 €/kWh; oil 0.018 €/kWh; electricity 0.06 €/kWh; pulp 

0.144 €/kWh; ammonia 0.098 €/kWh; and CO2 0.0084 €/kg, as reported in (Domingos et 

al., 2021). 

 

 
Figure 1. Integrated flowsheet of pulp and ammonia production. 

2.2. Economic evaluation  
The capital expenditure (CAPEX) is calculated using the methodology described in 

(Turton et al., 2018), in which actual costs are correlated to the cost of a reference 

equipment capacity using scaling factors. Equation 1 is used to estimate CAPEX of the 

black liquor gasifier, air separation unit, autothermal reformer, water gas shit reactors, 

CO2 capture unit, and methanation, according to the data reported in (Larson et al., 2000, 

Williams et al., 1995, Hamelinck and Faaij, 2002, Holmgren, 2015), and corrected for 

inflation using CEPCI index (Jenkins, 2020).  
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where S0 represents the reference capacity with known capital cost C0; S1 represents the 

actual capacity for which the capital cost C1 is unknown; and r is the power scaling factor 

which varies between 0.5 and 0.9 depending on the type of process considered. Also, the 

kraft pulp mill investment costs are scaled (0.6 factor) as per (Börjesson, 2015). A lifespan 

of 20 years is assumed for cash flow calculations. Besides, the total capital expenditure 

is divided between the first (60%) and second (40%) years. A decommissioning cost of 

6% of the overall CAPEX is assumed. The operating costs (OPEX) are assessed using the 

methodology proposed by Turton et al. (2018), except for the kraft pulp mill, in which 

OPEX is assumed as 4% of the CAPEX as per (Kangas et al., 2014). A contingency cost 

increment of 20% is considered by reason of the technological risk level (Turton et al., 

2018). 

2.2.1. Incremental financial analysis 
An incremental approach is proposed to compare the economic attractiveness of the 

integrated ammonia plant (Fig. 1) and the conventional process. This comparison is based 

on the incremental net present value (INPV), defined by Eq. (2) (Blank, 2011): 
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where (Rev-Exp) is the net cash flow (i.e. revenues minus expenses), calculated at each 

(n) of the N yearly periods, during which both the new (B) and the reference (A) 

configurations should operate. Besides, i is the average interest rate. 

A sensitivity analysis of the variation of the INPV as a function of the carbon taxation (0-

100 €/tCO2) and the interest rate (0-21%) is performed. This analysis aims to consider the 

scenario of rigorous environmental regulations and the increased perception of the risks 

associated with these technologies. 

Also, an incremental financial analysis that incorporates the uncertainty related to the 

acquisition and selling costs of the feedstock and fuels produced is performed through 

Monte Carlo method, by simulating the stochastic variation of the commodities price 

profiles. A normal distribution with mean prices as those reported in section 2.1 and a 

standard deviation of 30% is considered for the commodities prices. 

As a result, the INPV of the integrated chemical plants can be calculated along the 

lifespan of those facilities and the so-called ‘likelihood of loss’, which measures the 

probability of achieving a negative incremental net present value, can be determined. 

Accordingly, three hypothetical scenarios are considered: 

i) Scenario DCTIR_SC: deterministic carbon taxes (0-100 EUR/tCO2) and interest rates 

(0-21%), along with stochastic prices of the commodities; 

ii) Scenario LCT_DIR_SC: linearly-increasing carbon taxes over the lifespan (0-100 

EUR/tCO2), along with deterministic interest rates (0-21%) and stochastic prices of 

commodities; 

iii) Scenario SCTC_DIR: stochastic carbon taxes and variable prices of the commodities, 

along with deterministic interest rates (0-21%). 

3. Results and discussion 
The breakdown of the capital expenditure for both scenarios of the integrated ammonia 

plant (Fig. 2) suggests that the operation under the autonomous mode requires larger chips 

furnaces and Rankine cycle based power plants for supplying the utilities demands. 
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Figure 2. Capital expenditure breakdown. 

According to Figure 3, the ammonia production route with partial electricity import 

(mixed case in Figure 3a) may economically outperform the autonomous setup, 

depending on the interest rate adopted, for moderate carbon taxations (40-90 EUR/tCO2), 

such as those reported for Norway or France (World Bank, 2021).  

 
Figure 3.  Contour plots of INPV (Euro) variation for integrated ammonia production 

via BL gasification under: a) mixed and b) autonomous operation modes. 

The heat maps given in Tables 2 and 3 summarize the results obtained for the scenario 

DCTIR_SC. Table 2 suggests that, for the integrated plant co-producing pulp and 

ammonia while operating under the mixed mode, and for a region of middle to stringent 

carbon taxations (60-100 EUR/tCO2), there exists a large probability of the INPV being 

positive, depending on the interest rate adopted. On the other hand, for the autonomous 

mode (Table 3), presents relatively unfavorable INPVs, regardless of how low interest 

rates become. 

Meanwhile, the heat map shown in Table 4 summarizes the results obtained for scenarios 

LCT_DIR_SC and SCTC_DIR. For both scenarios, similarly to the previous analysis, 

only the integrated chemical plant producing NH3 while operating under mixed mode 

presented more favorable results in terms of likelihood of loss, which may render NH3 

co-production attractive in the Brazilian context of a highly renewable electricity mix.  
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Table 2. Probability that INPV is negative (likelihood of loss in %) for scenario 

DCTIR_SC - ammonia production under the mixed operation mode. 
CO2 tax  

(EUR/tCO2) → 0 10 20 30 40 50 60 70 80 90 100 
i 

(%
) 

0% 100.00 100.00 99.90 95.43 63.84 14.94 0.81 0.01 0.00 0.00 0.00 

3% 100.00 100.00 100.00 99.56 89.46 44.89 7.41 0.21 0.00 0.00 0.00 

6% 100.00 100.00 100.00 100.00 98.59 81.91 34.00 4.64 0.10 0.00 0.00 

9% 100.00 100.00 100.00 100.00 99.86 96.60 71.81 26.74 3.46 0.10 0.00 

12% 100.00 100.00 100.00 100.00 99.97 99.60 93.54 65.03 22.91 2.70 0.13 

15% 100.00 100.00 100.00 100.00 100.00 99.94 99.04 89.60 58.84 19.20 2.31 

18% 100.00 100.00 100.00 100.00 100.00 100.00 99.90 97.50 83.99 50.23 15.59 

21% 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.59 96.14 76.60 42.90 

 

Table 3. Probability that INPV is negative (likelihood of loss in %) for scenario 

DCTIR_SC - ammonia production under the autonomous operation mode. 
CO2 tax  

(EUR/tCO2)→ 0 10 20 30 40 50 60 70 80 90 100 

i 
(%

) 

0% 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.91 97.26 71.91 22.76 

3% 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.96 97.39 74.66 

6% 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.94 98.41 

9% 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

12% 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

15% 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

18% 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

21% 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

 

Table 4. Probability that INPV is negative (likelihood of loss in %) as a function of the 

interest rate for LCT_DIR_SC and SCTC_DIR scenarios.  
  LCT_DIR_SC SCTC_DIR 
  NH3 mixed NH3 auto NH3 mixed NH3 auto 

i 
 (

%
) 

0% 15.84 100.00 20.10 100.00 

1% 31.53 100.00 28.29 100.00 

2% 52.40 100.00 37.50 100.00 

3% 73.21 100.00 47.47 100.00 

4% 88.21 100.00 58.83 100.00 

5% 95.64 100.00 69.59 100.00 

6% 98.61 100.00 78.37 100.00 

7% 99.57 100.00 86.01 100.00 

8% 99.94 100.00 90.56 100.00 

9% 99.99 100.00 94.61 100.00 

10% 100.00 100.00 96.59 100.00 

11% 100.00 100.00 98.34 100.00 

12% 100.00 100.00 99.11 100.00 

13% 100.00 100.00 99.30 100.00 

14% 100.00 100.00 99.57 100.00 

15% 100.00 100.00 99.80 100.00 
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16% 100.00 100.00 99.89 100.00 

17% 100.00 100.00 99.97 100.00 

18% 100.00 100.00 100.00 100.00 

19% 100.00 100.00 100.00 100.00 

20% 100.00 100.00 100.00 100.00 

21% 100.00 100.00 100.00 100.00 

4. Conclusion 
The incremental financial analysis under uncertainty of feedstock costs and carbon taxes 

allowed to understand the behavior of the integrated systems proposed by considering 

different market flutuations. As a result, positive INPVs are achieved when moderate 

carbon taxes (40-90 EUR/tCO2) are considered, provided that greener electricity import 

from the grid is enabled. Even when the system is subject to linear-increasing or stochastic 

carbon taxes, the scenario operanting under the mixed mode points towards a great 

potential of decarbonization. The carbon taxation is reported as an effective measure to 

reduce CO2 emissions, however other measures should be adopted, such as more stringent 

regulatory commitments, attractive fiscal incentives, and investments towards the 

equipment maturation and deployment. 
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Abstract
During the design of a process, the most economically impactful choices are often taken with
limited data and details available on the specifics of unit operations. Despite this fact, the effect
some of these choices have on the final economic performance of the plant can be dramatic and
far more influential than later decisions. The availability of fast and reliable preliminary cost
estimations based on few key design parameters for the most common units can go a long way in
improving flowsheet design. Due to the early design stage, these estimates don’t need to be very
accurate since errors in the range of 50% are admissible as long as the estimation requires few input
data. Automating the costs computation process and making the interface with the most common
simulation packages standardized and easily accessible for users not accustomed to programming
languages is very important in speeding up the cost evaluation of the plant and reducing the human
resources tied to this task. These concepts stand at the core design of the CAPEX OPEX Robust
Optimizer (CORO) developed in this work. Aspen HYSYS serves as the commercial simulation
package to estimate the input variable of the economic libraries. Excel is used both as a GUI
and as a data extraction tool from Aspen HYSYS due to its widespread diffusion in industry and
versatility provided by Visual Basic for Applications. The CORO code is detached both from
Excel and HYSYS and interacts only with a standardized xml data sheet to allow for in-house
expansions to other simulation packages. The long-term development goal is a generalized CAPE-
OPEN interface working with every commercial software that supports the interface. In the current
CORO release, the interface can interact only with Aspen HYSYS. This paper will showcase
the economic libraries implemented in CORO, the mathematical C++ optimization libraries, the
overall structure of the tool, planned future expansions, and customization options.

Keywords: Economics, Aspen HYSYS, Simulation, Optimization

1. Introduction

As pointed out by Martin et al. (2007) during the conceptual design stage decisions have the most
impact on the final capital expenditure of the project. At the same time, changing these decisions
is rather cheap as there has been no concrete financial commitment yet. For this reason there is
a strong incentive to estimate the costs as early as possible in the design phase of a new project
to weed out the less competitive solutions. The issue lies with the limited data available on the
units and the reliability of their estimation. While this might have been a bottleneck in the past,
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modern commercial simulation packages allow for the development of process designs with low
human and financial resource commitment and ever growing prediction precision. The automated
development of process layout is still in the early phases of development, but the automation
of cost estimation has already some commercial solutions implemented in simulation software
such as Aspen One. The inherent design flaw with this solutions is that their extreme flexibility
leads the correlations to some hard failure condition whenever the characteristic dimension of the
unit is outside the boundaries of the correlation used for the cost estimation, or industry specific
designs for unit operations are used (LNG, cryogenic equipment). Since the economic estimation
package comes in a commercial solution the parameters and correlations are protected and not
customizable by the user if not only in a limited way. Moreover, certain units will lead the cost
estimation routine to fail and return either an error or a zero cost estimation. In this conditions
the deep integration between the cost estimation libraries and simulation software does not allow
for new unit operations to be integrated in the cost estimation routines. Here a new structure to
deal with the cost estimation is presented as a detached structure from the specific commercial
simulator interfacing with it only with a standardized .xml structure. This approach however has
its own drawbacks;

• A specific add-on to write and read the .xml file must be developed for each simulation
software

• The information required by the .xml file might not be available in the simulation software
• More human resources have to be invested in the development phase of the project

[noitemsep, nolistsep] the detached structure however also offers some opportunities:

• Once the interface between the commercial software and optimization package has been
developed no further development is necessary beyond cross-release updates, on the long
term, this will lead to less resources used in the cost estimation process

• The standard correlations used in literature can be heavily customized both in terms of fitting
parameters and model variables

• Internal company database can be used and automatically digested by the software to refit
the correlations for specific applications (Ammonia production, small scale plants, cryo-
genic operations)

• Unconventional units can be modeled using conventional simulation blocks (such as using a
Gibbs reactor to model a Furnace, and later evaluate the furnace cost using the MW leaving
the Gibbs reactor)

Critical to the success of such a solution is ease of use and low back-end responsibilities from
the end user. In a long term vision this project should be included in a rigorous interface using
the CAPE-OPEN protocol logic. This approach would allow the data extraction and writing to
be inherently cross platform and use an already standardized protocol. However, the feasibility
of this solution is still being investigated and, as a temporary solution for a proof of concept ap-
plication, this application was specifically developed for the Aspen HYSYS package. The choice
of the software comes from the availability of a functional library in VBA that makes interfacing
data with HYSYS easy and fast. Moreover, it provides Excel as a versatile interface. From a
theoretical point of view the structure of the solution is not impacted as well as its effectiveness. It
is however marginally impacted in the performance, since data extraction and writing in Excel is
not optimized for effective data transfer between software. At the current state of development the
main aim is investigating the feasibility and convenience of such a solution, while optimization is
left for later stages.
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2. Methods
The automation process is based on three modules; the simulation package, the evaluation pack-
age, the optimization library. Each covers a standalone role and operates completely detached
from the others except for a single file collecting the data in input and output of the module.
The simulation package has the role of modeling the physical and chemical problem as well as the
characteristic dimensions of the unit and process flowsheet with a consolidated structure. Along-
side this feature, already included in all commercial packages, the simulation package must also
have an add-on to condense the relevant data in a standardized format and read data from the same
format. This add-on could be developed using the CAPE-OPEN protocol and work for most of the
currently popular commercial simulation packages, but conceptually, even a non-standard, stan-
dalone physical model of the system developed outside of the CAPE-OPEN framework could be
optimized using the same library.
The evaluation package role is to provide a performance indicator for the optimization routine to
use. The evaluation package used as a case study here is a financial key performance indicator: the
Payback time of the process. In order to evaluate the payback time of the process an estimation of
both CAPEX and OPEX is necessary. Operative expenditure estimation is rather straightforward
since it can be estimated looking at input and output energy and material streams of the process
and associating a price to each stream. Capital expenditures on the other side involve a much more
complex and widespread set of information that will be discussed in a dedicated section.
The optimization library role is the robust search of the minimum or maximum of the performance
indicator in the system domain. The function it covers is strictly numerical and does not involve a
physical model which is instead kept separated in the simulation package.

2.1. The simulation package: Aspen HYSYS

The simulation package chosen for the conceptual design is Aspen HYSYS V10 release. The ease
of use and already included macro-enabled library for Microsoft Excel VBA allowed to develop
the data extraction and writing add-on in a limited amount of time exploiting Excel spreadsheets
for user data input and plotting of the results. All the data necessary for the evaluation library
are organized in and eXtensible Markup Language file (.xml). The xml file is structured data file
organized in nodes to facilitate accessibility. For this specific case study the nodes are organized
as follows:

• Options: this attribute includes the economic library used for the estimation, its parameters,
and the units of measure

• Streams: this attribute includes child nodes corresponding to the single material stream and
the thermodynamic properties of each

• UnitsList: this attributed groups all the supported unit operations of the simulation
• Utilities: this attribute groups all non material streams to be associated with operative ex-

penditures
• Specifications: this attribute groups all the degrees of freedom used for each unit operation

in the simulation

The combination of Aspen HYSYS and the Excel workbook managing the data processing is
responsible for the description of the physical system.

2.2. The evaluation library: Capex/Opex estimation

The data extracted from the simulation into the xml file are read by the Capex/Opex estimation
libraries implemented in C++. The economic libraries included in the software reach a study
estimate precision on the final cost estimation with an estimated error ranging from +30% to -25%.
For the sake of direct comparison two different libraries are included: the Peter and Timmerhaus
(2001) library based on percentage of delivered equipment cost and the Guthrie (1974) and Turton
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(2012) approach based on the bare module cost. The detailed discussion on this costing approaches
is not the topic of this paper and can be explored in detail in . Both costing methods include in the
Capital expenditure estimation:

• ISBL: Inside Battery Limits cost include purchasing and shipping costs of equipment, pip-
ing, catalysts, and any other material needed for final plant operation, or construction of the
plant. ISBL costs also include any associated fees with construction such as permits, insur-
ance, or equipment rental; even if these items are not needed once the plant is operational

• OSBL: Off site battery limits are defined as utilities, common facilities, and other equipment
and components not included in the ISBL definition

• Engineering and Construction: indirect expenses associated with the actual building of
the plant such as supervision, engineering and legal expenses.

• Working Capital: is defined as the money required to start and run the already constructed
plant until income can be obtained from the products

• Contingency: allows for variation from the predicted cost estimate

The logic behind the Timmmerhaus library is based on the assumption that each term of capital
investment can be estimated as a proper percentage of the delivered equipment cost. By applying
proper multipliers to the cost of the delivered equipment the overall cost of the plant can be esti-
mated with accuracy in the +/- 25% range, but for similar plant configurations it can go as low as
+/- 10%.
The Guthrie method operates by computing the cost of a single equipment in standard conditions
and then, using appropriate cost factors, it scales the price of the equipment for actual operating
conditions accounting for temperature, pressure, material, piping, contingency etc.
When the conventional approach to cost estimation fails due to out of boundary values then each
library falls back to less precise, but more versatile methods such as the sixth tenth’s rule. While
this estimations have errors that be be as high as +100% it is still preferable to completely ne-
glect unit costs. Moreover, different exponents are implemented according to the specific unit as
recommended by Turton et al. (2018)

Operative expenditures are managed separately and divided as follows:

• Direct manufacturing costs: this are the cost that vary with production rate
• Fixed manufacturing costs: this costs are independent from production rate
• General expenses: this costs are typically not related to production and include expenses

such as marketing, management, financial investments and so on

Operative expenditures are known once cost of labor, cost of raw materials, cost of waste manage-
ment, cost of utilities and fixed capital investment costs are known.

2.3. Robust Optimization: BzzMath library

The optimization problem is carried out by the BzzMath library developed by Buzzi Ferraris
Buzzi-Ferraris and Manenti (2014) in C++. The library, developed in house at Politecnico di
Milano offers a wide variety of numerical tools for the solution of linear and non-linear complex
problems common in the chemical industry. The optimization variable chosen for the economic
optimum design is the Payback time defined as:

Payback Time =
Total Initial Capital

Average Annual Cash Flow
(1)

the optimization routine task is to look for the design and operating conditions minimizing this
value. The convergence iterative procedure is reported in Fig 1. Excel covers 2 main functions:
interacting with Aspen HYSYS, and acting as a GUI in which the user can input and visualize data
necessary for the computations.
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Figure 1: Iterative convergence structure

The xml files act as a buffer between the physical problem and the economic/mathematical one
which are both implemented using C++. During the first iteration the data from a converged
simulation is extracted into the Excel workbook and divided in Spreadsheets each containing the
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information contained in a xml node.
The first spreadsheet contains the directory path to the simulation, the units of measure desired,
the economic library of choice. The data extraction routine collects information into separate
spreadsheets. The Material streams are organized together and their mass, molar flow as well as
temperature and pressure are extracted. In a separate spreadsheet all the material streams are re-
ported again and categorized by the user as raw material stream, process stream, waste stream,
product stream or utility stream and associated with a price or value. Moreover, they can be re-
ported as ’degree of freedom’ allowing the optimization routine to act on them. If this option is
chosen then boudary conditions must be provided by the user.
Following the material spreadsheets are the ones for the unit operations currently supported; com-
pressor, heater, cooler, air cooler, LNG plate exchanger,Pump, Valve, Distillation column, Sep-
arator, Absorber, CSTR, PFR, Conversion Reactor, Equilibrium reactor. In each spreadsheet the
unit operations of that category in the simulation are grouped and their characteristic dimension
is reported and the user can choose the design of unit (i.e. Centrifugal, volumetric, axial for a
compressor), the material (Carbon Steal, Stainless Steals of different grades, etc...), whether the
unit operation must be optimized, and the optimization variable (output pressure for a compressor)
with the possibility to provide upper and lower boundaries. Finally the last spreadsheets contain a
set of parameters to customize the economic libraries changing the multiplication factors of both
the Turton and the Timmerhaus methods.

3. Conclusions

The overall structure of a robust optimization toolbox was presented in its overarching logical or-
ganization discussing the advantages and disadvantages of a compartmentalized optimization rou-
tine and presenting each of its modules functions and purpose. This package has been developed
using VBA and C++ to interface it with a commercial simulation software as a proof of concept
and tested. The program is now entering the testing phase in its alpha version and being tested
on custom made simulations. Further development is intended to generate another module to in-
terface with the optimization routine capable of digesting data from the industry to automatically
perform a regression on a Guthrie style equation to predict the cost of units for which extended
historical data are available.
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Abstract 

 This article presents a mathematical model of the soybean´s supply chain for Argentina 

where the different stakeholders and the material flows among them are represented. 

The transport used in this sector are trucks, trains, and river ships. The objective is to 

analyze the emissions of greenhouse gases (GHG) generated by the transportation in 

this sector using electric trucks as an alternative to biodiesel ones.  

The model generated is a mixed multi-period / multi-objective linear integer model, 

destined at minimizing operating and GHG emissions cost. The accuracy of the model 

is compared against two statistical studies made by the Transport Agency of Argentina 

in 2014 and 2017 regarding the soybean transportation. The results show a good fit with 

those reports. Two scenarios are compared, in the first one only biodiesel trucks are 

used for transportation, while in the second one trains, barges and electric trucks are 

included. Results show the tradeoff between investment costs and reduction of 

emissions where it is possible to achieve a 60% GHG decrease, which is far to 

compensate for the investment cost. 
 

Keywords: soybean, supply chain, emissions, transportation 

1. Introduction 

Argentina has an important role as a privileged supplier of food to the whole world, it is 

the world's leading exporter of soybean meal, for other grains, such as corn and 

sunflower, it is among the top five exporters. Therefore, the agri-food sector has an 

important weight in the Argentine economy, both in production and in employment. It is 

the most important sector that generates foreign exchange and makes an enormous 

contribution to geographical equality given its wide territorial presence in the country 

[1]. Due to its importance, it is of great interest to study agri-food supply chains (SC), it 

is necessary to generate strategic information on market trends, their operating 

dynamics, the characterization of their main actors and production strategies [2]. 

There are works in the literature related to the proposal of this article. For reasons of 

space, we are only going to mention some of them. Courtonne et al. [3] carry out an 

analysis of the flow of materials in the cereal supply chain in France. The authors apply 

a material flow analysis (AFM) which is a systematic evaluation of flows and link them 

to the stock of materials in space and time. Mogale et al. [4] study the problem of 

storage and transportation of wheat in bulk in India, in a two-stage supply chain 

network that depends on the Public Distribution System (PDS) of that country. To do 

this, they develop an integer mixed non-linear programming model (MINLP), whose 

objective is to minimize the transportation, storage, and operating cost of food grain 

from producing states to consuming states. They employ a heuristic algorithm based on 

Taboo Search to solve the problem. He and Li [5] address the problem of harvesting and 
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transporting wheat in China, they propose a joint optimization framework and a general 

algorithm to optimize the wheat harvesting and transportation problem considering 

fragmented farmland. 

Our approach proposes to analyze the soybean supply chain, its logistic from the 

harvesting to the industrial transformation in conjunction with the generation of 

greenhouse gases involved in the transport. A real-world representation of the soybean´s 

supply chain is made. The objective is to evaluate economic and environmental issues, 

for this purpose, different transportation media are included in the model: diesel and 

electric trucks, trains and barges. The purpose is to provide an analysis tool for the 

optimization of the chain's operation. A MILP model (a linear mixed-integer program) 

was generated. Unlike the proposals of other authors mentioned, our model is a 

deterministic one, and there are no known cases involving an economic and GHG 

emission analysis of a real-world agro-industrial supply chain. 

2. Methodology 

2.1. Description of the problem  

To reproduce the operation of the soybean supply chain, an important amount of data is 

collected from different public and private sources regarding the sowing, harvesting, 

production, transportation and export of soybeans and by-products. For our model, a 

three-level supply chain is proposed: the first corresponds to the production areas (i), 

where the soybean grain is harvested, the second level is formed by the stockage of 

grains in silos (j) from where grains are sent to the third level which corresponds to the 

destination zones (k) where the soybean grain is demanded for grinding or exportation. 

In Fig. 1 you can see the operation of the chain and its flows from production to its 

destination. The largest percentage goes to the industrial sector to produce flours and 

oils for exportation purposes. 

 

Fig. 1: Soy supply chain and flows between the different levels. 

In Fig. 2, the map on the left shows the location of soybean production and the 

industrial establishments that process it in Argentina, on the right a graph of Argentine 

soybean production in millions of tons per year between years 2006 and 2018 and the 

percentage rate of change with respect to the previous year. 

The most important assumption made in the model is that both the production, stockage 

and the final destinations areas are divided into different regions, each one composed of 

a centroid. To measure the circulation between the different levels of the soybean 

supply chain, the distances traveled between these centroids and the numbers of trips 

made between them are measured. The model is multiperiod one with 15 time periods, 

covering five years (from 2016 to 2020) corresponding each one to a four-month period. 
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To deal with economic and environmental objectives, the weighted sum method is used, 

to combine both objectives into one objective function. For this purpose, an economic 

value of the GHG emissions is set based on the value proposed by the Interagency 

Working Group on Social Cost of Greenhouse Gases [7].  

 

Fig. 2: (a) Map of soybean production, storage, and industries areas. (b) Soy production in annual 

tons from 2006-2018. 

The decision variables of the model are soybean flows, in tons per time t, sent by using 

trucks from i to j and from j to k the flows delivered by different transports (trucks, 

trains and river ships), the number of trips made between the different levels and the 

transports used for each time t, the stock of soybeans (in ton) for each time t at location j 

and the amount of GHG emissions measured in equivalent tons of CO2. 

2.2.  Formulation of the Model  

For space reasons, in this section only the most important constraints of the problem are 

included so that the work done can be visualized, some logical and bounding constraints 

are omitted. 

Eq. (1) and (2) establish that if there is a flow (𝐸𝐼𝐽𝑐𝑖𝑗𝑡) of soybeans with the type of 

truck c from production area i to stockpile j at time t, for which the binary variable 

(𝑦𝑐𝑖𝑗𝑡) must be equal to 1, the flow must be less than or equal to (Eq. 1) the number of 

trucks ( 𝑁𝐶𝐼𝐽𝑐𝑖𝑗𝑡) times their maximum capacity (𝐾𝐶𝑀𝐴𝑋) or greater than or equal to 

(Eq. 2) to the number of trucks times their maximum capacity (𝐾𝐶𝑀𝐼𝑁). Two types of 

trucks 𝑐 (1: using biodiesel 80-20 and 2: electric) are considered. 

𝐸𝐼𝐽𝑐𝑖𝑗𝑡≤𝑁𝐶𝐼𝐽𝑐𝑖𝑗𝑡∗𝐾𝐶𝑀𝐴𝑋+𝑀∗(1−𝑦𝑐𝑖𝑗𝑡) ∀𝑐, ∀𝑖, ∀𝑗, ∀𝑡    (1) 

𝐸𝐼𝐽𝑐𝑖𝑗𝑡≥𝑁𝐶𝐼𝐽𝑐𝑖𝑗𝑡∗𝐾𝐶𝑀𝐼𝑁+𝑀∗(1−𝑦𝑐𝑖𝑗𝑡) ∀𝑐, ∀𝑖, ∀𝑗, ∀𝑡    (2) 

Similar restrictions are used for truck, train, and barge shipments from silos storage to 

consumption areas. These last two transports have limited origin and destination zones 

compared to those carried out by truck. 

Eq. (3) corresponds to the material balance of the silos stockage by time (𝐼𝑗𝑡), where the 

inventory at time t is equal to the inventory at time 𝑡−1 (𝐼𝑗𝑡−1), plus the shipments 

received of the production area (ΣΣ𝐸𝐼𝐽𝑐𝑖𝑗𝑡−1𝑖𝑐) minus the flows sent by different 

transports to the consumption areas, both at time 𝑡−1. 

𝐼𝑗𝑡=ΣΣ𝐸𝐼𝐽𝑐𝑖𝑗𝑡−1𝑖𝑐−ΣΣ𝐸𝐽𝐾𝑐𝑗𝑘𝑡−1𝑘𝑐−Σ𝐸𝑉𝐽𝐾𝑗𝑘𝑡−1𝑘−Σ𝐸𝐵𝐽𝐾𝑗𝑘𝑡−1𝑘+𝐼𝑗𝑡−1  

∀𝑗, ∀𝑡,𝑡>1         (3) 

In Eq. (4) the inventory is limited according to the storage capacity of silos. 

𝐼𝑗𝑡≤𝐾𝐴𝐶𝑘 ∀𝑗, ∀𝑘,∀𝑡        (4) 

Eq. (5) indicates that the sum of all shipments from all stockpiles to each destination 

area in time t must equal to or exceed its demand(𝐷𝑆𝑘𝑡). 
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ΣΣ𝐸𝐽𝐾𝑐𝑗𝑘𝑡𝑗+Σ𝐸𝑉𝐽𝐾𝑗𝑘𝑡𝑗+Σ𝐸𝐵𝐽𝐾𝑗𝑘𝑡𝑗≥𝑐𝐷𝑆𝑘𝑡 ∀𝑘, ∀𝑡    

 (5) 

Eq. (6) indicates that 10% of the truck fleet is changed annually (according to statistics 

of the trucks market), translated into 3.33% percent for time t. The model allows the 

purchase of new biodiesel or electric trucks from the first period. At the beginning of 

the time horizon electric trucks are 0, only biodiesel´s are available. The differences are 

that electric cars are more expensive than biodiesel ones, but CO2 emissions are zero. 

We also consider that a truck can make up to 20 trips per time. 

𝑁𝐸𝑊𝑇𝑐𝑡=0.033∗𝐼𝑁𝐼𝑇𝐼𝐴𝐿𝑇 ∀𝑐, ∀𝑡       (6) 

𝑁𝑇1𝑡=𝑁𝑇1, 𝑡−1+𝑁𝐸𝑊𝑇1,𝑡−1−Σ𝑁𝐸𝑊𝑇𝑐𝑡−1𝑐 ∀𝑡,𝑡>1    (7) 

𝑁𝑇2𝑡=𝑁𝑇2𝑡−1+𝑁𝐸𝑊𝑇2𝑡−1 ∀𝑡, 𝑡>1      (8) 

𝑁𝑇𝑐𝑡∗20≥ΣΣ𝑁𝐶𝐽𝐾𝑐𝑗𝑘𝑡𝑘𝑗 ∀𝑐, ∀𝑡       (9) 

2.2.1. Objective function 

The objective function (10) is the minimization of the total costs which is function of 

transportation (𝐶𝐼𝐽+𝐶𝐽𝐾), storage (𝐶𝑆), investment (new trucks) (𝐶𝐼) and emission (𝐶𝐸) 

costs. 

𝐶𝑇=𝐶𝑆+𝐶𝐼𝐽+𝐶𝐽𝐾+𝐶𝐼+𝐶𝐸        (10) 

Eq. (11) represents inventory costs where CI is the financial cost of having the stock. 

Eq. (12) is the transportation cost from harvesting areas i to the storage location j, which 

corresponds to the summation of the transportation cost per km (CAR) times the flow 

𝐸𝐼𝐽𝑐𝑖𝑗𝑡 and the distance between i and j (𝐷𝐴𝑖𝑗). Similarly, Eq. (13) calculates the costs 

associated with shipping from the silos j to destination areas k. The first term of Eq. 15 

represents a fixed cost of the delivery, the second term is a variable cost depending on 

the flow and the distance traveled. Then the costs of rail transport are added, 

corresponding to the train a cost per ton (𝐶𝑅) times the flow of the shipment 

(𝐸𝑊𝐽𝐾𝑗𝑘𝑡), and the last term is the river transportation, composed by the ton cost per 

barge (CB) multiplied by the quantity shipped(𝐸𝐵𝐽𝐾𝑗𝑘𝑡). 
𝐶𝑆=ΣΣ𝐼𝑗𝑡𝑡𝑗* CI         (11) 

𝐶𝐼𝐽=ΣΣΣΣ𝐶𝐴𝑅∗𝐸𝐼𝐽𝑐𝑖𝑗𝑡∗𝐷𝐴𝑖𝑗𝑡𝑗𝑖𝑐       (12) 

𝐶𝐽𝐾=ΣΣΣΣ(CFK∗𝑁𝐶𝐽𝐾𝑐𝑗𝑘𝑡+CVK∗𝐸𝐽𝐾𝑐𝑗𝑘𝑡∗𝐷𝐴𝑗𝑘) 𝑡𝑘𝑗𝑐 

+ΣΣΣ(CR∗𝐸𝑊𝐽𝐾𝑗𝑘𝑡+CB∗𝐸𝐵𝐽𝐾𝑗𝑘𝑡) 𝑡𝑘𝑗      (13) 

Eq. (14) corresponds to investment cost where CIT is the cost per truck multiplied by 

the amount purchased per time t. Lastly, Eq (15) calculate the costs of CO2 emission 

where CTE is the cost per ton of CO2, NTE is the amount of CO2 emitted per 

truck/(km.ton), similarly for trains (NWE) and barge (NBE). 

𝐶𝐼=ΣΣ𝑁𝑇𝑐𝑡∗ 𝐶𝐼𝑇𝑐𝑡𝑡𝑐        (14) 

𝐶𝐸=𝐶𝑇𝐸∗(ΣΣΣ𝑁𝑇𝐸∗𝑡𝑗𝑖𝐷𝐴𝑖𝑗∗𝐸𝐼𝐽𝑐𝑖𝑗𝑡+ΣΣΣ𝐷𝐴𝑗𝑘∗(𝑁𝑇𝐸∗𝐸𝐽𝐾𝑐𝑗𝑘𝑡+𝑡𝑘𝑗𝑁𝑊𝐸∗𝐸𝑊𝐽𝐾𝑗𝑘𝑡
+𝑁𝐵𝐸∗𝐸𝐵𝐽𝐾𝑗𝑘𝑡)        (15) 

CAR and CVK costs are $ 0.072 per ton kilometer of soybeans shipped, data extracted 

from the Rosario Stock Exchange report [6]. For the cost of CO2 emissions (𝐶𝑇𝐸), a 

value of 56 dollars per ton is taken from a report of the Social Cost of Carbon, Methane, 

and Nitrous Oxide, United States Government [7]. The purchase cost of a biodiesel 

truck for Argentina is about $ 80,000, while for electric ones the cost reported 

internationally is about $ 160,000. 

2.3.  Results  

As a first step, the accuracy of the model was tested by solving two examples. Their 

results are compared with two statistical works [8-9] carried out in 2014 and 2017 by 

the Secretary of Cargo Transportation Planning and Logistics of Argentina. In Fig. 3 

you can see the comparison between the results of the model and the government's work 
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for the year 2017, measured in number of trips among centroids. The model presents a 

very good approximation considering that the government work uses real data from 

“consignment notes'' in the whole year, while in our case the results are provided by the 

execution of the model 

The model is a multiperiod multiobjective mixed integer linear programming problem 

(MILP) that was posed in GAMS [10] system and solved with CPLEX 12.6.3 on a PC 

with an Intel i7 processor with 12 GB of RAM. The model consists of 127,249 

equations, 204,581 variables, and 105,504 discrete variables solved in 80 seconds of 

CPU time 

To achieve this result, the trucks were loaded with 28 tons. of soybeans on average, the 

lower bound is 25 tn, while the upper one is 30 tn. 

 
Fig. 3: Comparison of total trips by area between real data and model results for the year 2017. 

We have executed two scenarios, in the first one only biodiesel truck are used for 

transportation and purchasing new ones. Then, scenario 2 includes the use of the 

railroad and barges for transportation from the silos to the destination areas, and the 

model considers the possibility of purchasing electric trucks for transportation. 

Table 1 shows the results obtained from both scenarios, based on the costs and 

emissions. In Fig. 4, it can be seen the scenario comparisons. 

As can be seen scenario 2 is more expensive in costs than the first one due mainly to the 

increase in investment costs of electric trucks, although the emissions are lower by 

about 60%. The cost of the emissions per ton of CO2 equivalent, taken from the USA 

government report, is too low to compensate for the investment cost in electric trucks. It 

means that the purchase of electric trucks must have incentives to diminish its price or 

to force its use. 

Table 1: Cost and emissions comparison 
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Fig. 4: Cost and emissions comparison 

2.4. Conclusion  

In this work, the objectives were met in two stages, initially with a model of the supply 

chain of soybean cultivation for Argentina. The model corresponds to a multiperiod 

multiobjective linear integer mixed mathematical program (MILP) to represent the 

supply chain in three levels: production area, silos, and destination areas. Although in 

our country the soybean industry has been studied from different perspectives, 

according to the knowledge of these authors, there is no proposal that models the CS 

and the flows of materials, their transport and GHG emissions with a mathematical 

program.  

The scenarios executed by the models have shown that the investment costs in electric 

trucks does not compensate for the lower emissions obtained with their use. Therefore, 

in case of seeking the viability of the electric truck, the government should propose an 

incentive system that can level the difference in costs and thus promote better care for 

the environment.  

In addition, this work only considers the use of trucks for transporting soybeans only, 

but the truck fleet is used for many other products that are transported in large volumes 

throughout the country, its analysis is part of a future work.  
 

References  
1. Ódola A., Morra F.,Picon N. Año 2020 “Cadenas de valor agroalimentarias”.Recuperado de 

https://www.argentina.gob.ar/sites/default/files/cadenasagroalimentarias-febrero2020.pdf.  

2. Giancola S.I, Salvador M.L, Covacevich M,Iturrioz G.”Analisis de la cadena de soja en la 

Argentina”, Instituto Nacional de Tecnología Agropecuaria, ISSN 1852-4605, (2009).  

3. Courtonne J., Alapetite J., Longaretti P., Dupré D. y Prados E. “Downscaling material flow 

analysis: The case of the cereal supply chain in France”. Ecological Economics 118, p.67, (2015).  

4. Mogale D.G., Krishna Kumar S., García Márquez F.P. y Tiwari M.K. “Bulk wheat 

transportation and storage problem of public distribution system” Computers & Industrial 

Engineering 104, p. 80–97, (2017).  

5. He P. y Li J. “A joint optimization framework for wheat harvesting and transportation 

considering fragmental farmlands” Information Processing in Agriculture” 8, 1, p- 1-14, (2021).  

6. Julio Calzada, Blas Rozadilla. “The heavy weight of bulk trucker freight continues over long 

distances.”, Year XXXVII, Issue No. 1937, (2020). Retrieved from.  

7. Technical Support Document: Social Cost of Carbon, Methane, and Nitrous Oxide Interim 

Estimates under Executive Order 13990. Interagency Working Group on Social Cost of 

Greenhouse Gases, United States Government. February 2021.  

8. Matrices origen y destinos de cargas 2014. Ministerio de transporte de la Argentina, 2014.  

9. Transporte Terrestre de Cereales y Oleaginosas-2017. Ministerio de transporte de la Argentina, 

2019.  

10.  Brooke A., Kendrik D., Meeraus A., Raman R. and Rosenthal R.E. GAMS A User’s Guide; 

GAMS Development Corporation: Washington,DC, 1998. 

1356



PROCEEDINGS OF THE 32nd European Symposium on Computer Aided Process Engineering  
(ESCAPE32), June 12-15, 2022, Toulouse, France  
L. Montastruc, S. Negny (Editors) 
© 2022 Elsevier B.V. All rights reserved.  

Ontology for Enhanced Industrial Process Control 
 
Renata Samara Rodrigues de Sousa,a  Song Won Park a 
a Polytechnic School. University of São Paulo. Av. Luciano Gualberto 380. São Paulo 
05508010 Brazil. 
renatasousa@usp.br 
 

Abstract 
The cyber-physical integration in the sense of industry 4.0, applied to industrial process 
control, needs to develop new methodologies. Both top-down hierarchies of commands 
for Enterprise Resource Planning, Optimization, Advanced Control, Local Control, and 
bottom-up flux of information from the plant floor to control system, optimization level, 
and planning strategy are dissolved, aiming to enhance the vertical and horizontal 
integration and flexible operability. Even though this is a requirement for Cyber-Physical 
Systems, it would be merely a coexistence of advanced optimization IoT technologies 
states of art. Therefore, there is a need for a new architecture of a functional system. Since 
it works essentially as an event-based system, ontology plays a key concept in the 
practical working of the new process control. First, an overview of the general ontologies 
framework applied in Industry 4.0, and on the other hand, some ontologies published for 
chemical process design are discussed extensively here. Then the practical ontology and 
taxonomy needed for industrial process control are discussed. Here is presented how to 
recover the functional layers to each specific application of former traditional hierarchy 
top-down and bottom-up, now named as semantic layers. A description’s language 
development for process control using this ontology is another challenging task, also 
proposed. A case based on the transition of the traditional batch reactor process to modern 
industry 4.0 application illustrates the change of the operation mode. Finally, the potential 
gains and technology limitations are analyzed as a critique as the enabling technologies 
(or pillars) of Industry 4.0 to show what concepts apply to this enhanced process control. 
It also compares and analyzes this modern approach in the manufacturing process and the 
difference with the industrial process control. The construction of a complete system 
based on ontology and description language ready for application is an impressive task to 
be developed further. The main objective of the work, for now, is to clarify the concepts 
and show the methodology with its practical application, discussing limitations.  
 
Keywords: Cyber-Physical Integration, Industry 4.0, Ontology, Process Control. 

1. Introduction 
The storm of technological advances driven by the German initiative Industrie 4.0 (I4.0), 
induces process system engineering to absorb a new format, where evolutions will be 
leveraged by intelligent production systems, vertically and horizontally integrated 
(Schwab, 2017). With event-driven architecture, microservices, and componentization of 
software elements there is a need for new methodologies aimed to apply industrial process 
control for digital transformation, where ontologies are a fundamental part of information 
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reuse and system interoperability. There are several frameworks and reference 
architectures proposed for the I4.0 scenario. The architectural proposal IMC AESOP 
(Karnouskos et al., 2014) is an example that offers an extension to the traditional model 
found in the ISA95 IEC 62264 standard for well-defined implementation of a network-
structured modularized architecture. Kumar et al. (2019) discusses important aspects for 
I4.0 and survey the ontologies, considering the effort and importance of standardization 
in the scenario.  
To consider the historical evolution of information technology and ontology design for 
chemical processes is a great path to understand PSE for I4.0 and industrial process 
control. Batres (2017) provides an ontology review for process systems engineering, 
discussing the use of different ontologies for various purposes in PSE: Multipurpose 
Ontologies, such as OntoCAPE (Ontology for Computed Aided Process Engineering), 
and ISO 15926, and discusses some methodologies for proposals to develop the well-
designed ontology. See also Morbach et al. (2007), Schneider et al., (2019), Johnsson and 
Brandl (2021), Burns et al. (2019), Guarino (1997), and Lin and Harding (2007). 

2. What you should know about Ontology Design in PSE 
2.1. Before you start 
There are no rules when choosing a method to engineer an ontology, and there is no 
explicit method that is better than others. On the other hand, there are some good practices 
that one should follow to build an ontology.  
Ontology design must go from its idealization, through the definition of the scope, to the 
definition of classes, subclasses, their hierarchy, the definition of properties and their 
restrictions and definition of instances, and not just representing something through a 
drawing. Furthermore, the designer should try it on the domain of application and, using 
reasoners and validating test the consistency ontology. This session suggests a train of 
thought aiming to help those who would like to design an ontology for process system 
engineering. 
2.2. What is an Ontology? 
An ontology is a formal representation of something that exists in the real world (Gruber, 
1995). As it happens when different people try to describe something, particular aspects 
likely appear in the same domain depending on the expertise of the ontology designer. To 
design a great ontology, one must be familiar with this concept.  
In terms of knowledge domain representation, an ontology defines the concepts for 
entities present in a given domain and their relationships. As such, a great way to manage 
knowledge and enable flexibility and interoperability between systems through formal 
semantics (Yang et al., 2019). Arp et al. (2015) explain interesting concepts for ontology 
design. 
2.3. Know your Domain 
In the case of chemical processes, there is a tendency to think of a chemical process as a 
set of domains grouped by their characteristics (unit operations), which overturns a 
definition of classes, subclasses, and information, in a certain intuitive way. To build a 
great ontology, one should remember to define its scope well, raise questions that need to 
be answered by such ontology, and answer them. Also, one should keep in mind that this 
is an iterative process and that you can and should use methodologies to find 
inconsistencies (Abburu, 2012) (Chen, 2020) (Geng, 2018).  
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2.4. Reuse if it is possible 
In addition to knowing your domain, designers should choose to reuse ontologies to avoid 
redundancies. The idea is to consult known ontologies with potential applications for the 
desired domain, try to use it, and propose an expansion, if applicable. An ontology aims 
to promote interoperability between systems with heterogeneous data. Therefore, reuse is 
something that, by its nature, must be considered (Wang et al., 2020). 
2.5. Define Classes and Subclasses and Specify the Taxonomic Hierarchy 
As mentioned in item 2.1, there is not a single methodology to structure classes and 
subclasses. On the other hand, the most common approaches are: top-down, when the 
reasoning goes from the most general concepts to their specializations, bottom-up, reverse 
process to the previous one, where you start from the more specific concepts and 
combination, highlighting the most salient ones and then generalizing and specified 
according to their nature. 
2.6. Formalize Slots and Facets 
One must define properties (slots) and slot restrictions (facets) for your ontology. 
Through the process control perspective, we can denominate properties accordingly to 
the variables involved in a given domain and its facets according to the boundary 
conditions (constraints) that each variable must-have for that process to run under its 
proper operating conditions. 
2.7. Create Instances 
After formalizing slots and facets, the next step is to set individual instances of classes in 
the hierarchy. One must choose a class and then create an individual instance in order to 
fill the slot values and the possible restrictions. Noy and McGuiness (2001) propose a 
guide for beginnings in the subject matter. 

3. Case of Study: Batch Reactor Plant for I4.0 
The semantic abstraction layers metamodel foundations of OntoCAPE were applied, see 
more in section 3.2. As presented by Engel et al. (2018), this article considers three 
abstraction layers: Upper Layer, Domain Layer, and Application Layer. On the other 
hand, we aim to focus on the approach of the control processes so that the batch reaction 
takes place. In the following sessions, the authors describe the design methodology in the 
mentioned domain. 
3.1. Domain Description 
The authors chose a classic batch reactor control scheme proposed by Zoss (1979). The 
intent is to represent this classic scheme in new ways, illustrating the change in the 
operating model and the transition from the traditional batch process to Industry 4.0. 
(Figure 1). 
3.2. Designing the Ontology 
The Rbatch domain, which represents the entire batch system (considered in this article 
as a part of OntoCAPE’s Chemical Process System Partial Model), has four subclasses, 
classified in this article as Chemical Process System functions or CPS_function. Three of 
them according to the type of control we found in the example: I/O (interlocks and 
security alarms), Scheduling (Routine of reactor operation batch), and 
Split_Range_Control (temperature control through the reactor jacket). The reaction 
process is represented by Reaction (A+B à C). Considering each of these subclasses, we 

1359

1335



 

break the application layer into processes (Chemical Process System Realization) that 
happen during the operation. 
 

 
Figure 1: RBatch Domain. 

 
3.3. Ontology Application 
In order to apply the ontology in the RBatch domain, the authors chose Protégé, a software 
for ontology design, as in Figure 2. Furthermore, the ontology format is in OWL 
(Ontology Web Language) following Antoniou and Van Harmelen (2004). 
The recommended practices follow McGuinness and Van Harmelen (2004). OWLViz 
and OntoGraph were used for ontology visualization as in Figure 3. The ontology 
modeling contemplates the representation of different control layers associated with the 
domain. The validation of restrictions of property values and the respective bindings were 
tested using the HemiT reasoner. The authors are working on an orchestration algorithm 
so that the ontology could be used in a proper way to facilitate interoperability for level, 
temperature, and reactor operating scheduling controls, considering alarms for level and 
temperature. 
 

 
Figure 2: OntoGraph Visualization for class hierarchy view. 
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Figure 3: Inferred Hierarchy on OWLViz. 

4. Conclusions 
The conversion of the classic batch reactor control into an interoperable and flexible 
environment can be found elsewhere. Industry 4.0 as a concept of the IIoT evolves to 
Digital Transformation and Cyber-Physical Integration. Beyond the “enabling 
technologies” (Big Data & Artificial Intelligence, Cloud & Fog Computing, Vertical & 
Horizontal Integration, Virtual & Augmented Reality, Industrial IoT, Additive 
Manufacturing & 3D Printing, Autonomous Robots, Digital Twins, Cybersecurity, and 
so on), nowadays the “pillars” of more organizational concepts such as Technology and 
Business Transformation, Analytics and Information Management, Intelligent 
Automation, and Business Planning and Execution emerge with great interest. 
So, ontology as formal representation plays a key role in Product Design and 
Development, Process and Plant Design, Safer Processes and Plants, Supervision and 
Control, Work Processes, Process Systems Modeling. 
The construction of a complete system based on ontology and description language ready 
for application is an impressive task to be developed further. Hence, the main objective 
of the work is to clarify the concepts and show the methodology with its practical 
application. There are no fully automatized constructions of Ontology for Process 
Control. Although OWL provides powerful help for the construction of formal 
ontologies, the propagation or chaining of properties in the multiple hierarchies 
interoperating in process control requires more direct experience in the practical 
applications than theoretical methodologies. Considering the use of the nomenclature 
Domain, Reusability, Classes and Subclasses, Taxonomic Hierarchy, Properties, 
Restrictions, and Instances, more familiarity with real control applications will organize 
the practical differences of ontology application in the PSE domain from Semantic Web 
Ontology. 
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Abstract 

Countries around the world strive to diversify their energy portfolio with a suitable and 

sustainable alternative to fossil fuels, whilst achieving the reduction in environmental 

impacts from released wastes. The co-conversion of biomass wastes and natural gas (NG) 

has received much attention due to the potential improvement in downstream power and 

production of fuels, while minimizing greenhouse gas (GHG) emissions. This study 

explores the optimal blending of synthesis gas generated from biomass wastes and NG 

feeds. Aspen Plus is utilized to develop the models of biomass and NG steam gasification 

considering Qatar’s biomass and NG characteristics. Three types of biomass wastes; date 

pits, sludge and manure are gasified to generate the H2-rich syngas which is blended later 

with the NG-driven syngas. The simulated flowsheets have then been used to optimize 

the blending of downstream generated syngas by means of manipulating the biomass 

wastes and NG feeds. The optimization problem is constrained by the downstream quality 

of produced syngas to be utilized for the generation of power and fuels. Typically, the 

generation of syngas involves high-cost subsequent purification prior to the production 

of downstream value-added products. However, the optimization attained in this study 

lowers the requirement of further syngas purification and waste removal, through the 

blending of NG and biomass-driven syngas and minimization of gasifying agents. This 

requirement can be further reduced by manipulating reaction agents and process 

conditions. The result of the optimization problem demonstrates an increase in biomass 

wastes utilization with the increase in syngas quality constraint. Dates pits biomass 

dominated the biomass utilization with a lower contribution from sludge and manure 

wastes. 
 

Keywords: Natural Gas, Biomass, Co-Conversion, Optimization, Syngas, Blending. 

1. Introduction 

There is continuous growing demand for energy and conversion of natural gas (NG) into 

downstream value-added products given the large reserves of fossil-fuels worldwide. This 

is coupled with the growing need of utilizing renewable energy sources in the global 

energy mix to support environmental protection, and reduce the harmful emissions 

associated with fossil fuel burning. Therefore, the concept of complementing natural gas 

utilization networks with renewable energy sources has gained global attention within  

sustainable development and natural resources preservation targets (M. Wright et al., 

2015). Biomass gasification as a renewable process has the potential to contribute in the 

downstream production of power and fuels and minimization of harmful emissions 

(Shahbaz et al., 2021). This study investigates the optimal co-conversion blends of 

biomass wastes and NG to meet the downstream quality of syngas. Aspen Plus is utilized 
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to develop the models of biomass and NG steam considering Qatar’s biomass and NG 

characteristics. Three types of biomass wastes; date pits, sludge and manure are gasified 

to generate the H2-rich syngas, which is blended later with NG-driven syngas. The 

simulated flowsheets are then used to optimize the blending of downstream generated 

syngas by means of manipulating the biomass wastes and NG feeds. Moreover, the 

quantities of gasifying agents required to convert the biomass and NG feedstock into 

syngas are minimized. The ultimate aim is to maximize the syngas production, while 

reducing the consumption of NG and gasifying agents and the process environmental 

emissions. The attention on this topic has been increasing recently with focus on the 

enhancement of process efficiency and reduction of environmental impacts. Wright et al. 

(2015) studied enhancing biofuels production from biomass with NG feedstock and using 

the Fischer–Tropsch (FT) technology. The study demonstrated the contribution of NG in 

enhancing FT biofuel production through achieving required H2:CO ratio while reducing 

the requirement for water gas shift. However, the NG contribution had to be limited to 

19% to eliminate the increase in process emissions. Caligiuri et al. (2021) explored 

experimentally the impact of completing bio-syngas in spark ignition engines with NG 

on the process efficiency and emissions. The experimental results demonstrated the 

impact of different feedstock blends on the power derating, where increasing syngas 

quantity in the mixture decreases power output by 2-6% in addition to NOx and THC 

emissions. Hence, only minor power derating is anticipated considering the significant 

reduction in volumetric energy density. Zhang et al. (2018) investigated the techno, 

economic and environmental benefits from the co-processing of NG and biomass 

feedstock to produce liquid fuels. The results demonstrated that coupling biomass with 

NG increases the economic profitability of producing liquid fuels production, albeit with 

higher environmental impacts. A maximum NG limit of 28% was determined to meet 

sustainability targets with a minimum selling price of $2.75 per gallon gasoline 

equivalent. 

This study applies a unique optimization nature problem to identify the optimum blends 

of various biomass feedstock and NG to meet multiple end-use downstream options of 

H2–rich syngas. The biomass gasification model has been detailed in an earlier study that 

utilizes oxygen and steam as gasifying agents (AlNouss et al., 2020), utilized to address 

energy-water-food nexus applications (AlNouss et al., 2019b), generate value-added 

products while involving captured CO2 (AlNouss et al., 2021), and solve the 

superstructure optimization of downstream syngas utilization (AlNouss et al., 2019a). 

The optimization attained in this study is deployed to reduce the requirement of further 

syngas purification and waste removal, through the blending of NG and biomass-driven 

syngas and minimization of gasifying agents. 

2. Methodology 

Aspen Plus software has been utilized to develop the flowsheets of biomass and NG steam 

gasification as illustrated in Figure 2. The flowsheets are simulated under steady state and 

isothermal operation, neglected tar formation, char as a pure carbon (C), atmospheric 

pressure and negligible pressure drop. The fuel-bounds of chlorine, sulphur and nitrogen 

are converted to hydrogen chloride, hydrogen sulphide, and ammonia, respectively. The 

simulation model employs Peng-Robinson equation of state with Boston-Mathias 

modifications to account for the nonpolar and real components. The various biomass 

feedstock are blended in a mixer and fed to a drying and decomposition step to yield the 

conventional components from the non-conventional attributes of the three biomass 

wastes presented in Table 1. The effluent stream is purified from ash and a small portion 
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of char utilized to supplement the gasifier with heat through combustion. The purified 

stream enters the gasifier along with steam to yield syngas which is then mixed with the 

syngas generated from the steam reforming of NG fed according to the compositions in 

Table 2. 

 
Figure 1: Overall block diagram of NG and biomass co-processing. 

Table 1: Attributes of biomass wastes (AlNouss et al., 2018). 
Biomass Date Pit Waste Dried Sewage Sludge Manure 

Moisture (wt %) 5.0 8.3 27.4 

Proximate analyses (dry basis, wt %)    
Ash 1.0 71.8 21.6 

Volatile matter 81.8 8.8 65.0 

Fixed carbon 17.2 19.4 13.5 
Ultimate analyses (dry basis, wt %)    

Ash 1.0 71.8 21.4 

S 0 0.1 0.5 
Cl 0 0 1.0 

N 4.5 1.1 3.7 

H 6.8 2.3 5.1 
O 37.9 5.7 31.4 

C 49.8 19.1 37.1 

 

Table 2: NG feedstock compositions 
Component N2 CO2 CH4 

Composition (mol.%) 9 1 90 

 

The simulated flowsheets are used to optimize the blending of downstream generated 

syngas by means of manipulating the biomass wastes and NG feeds. The optimization is 

constrained by the potential H2:CO ratios for further utilization of the generated syngas 

in different downstream applications. In this study, the downstream applications 

considered are ammonia/urea production (H2:CO = 3),  Fischer-Tropsch liquid fuels 

production (H2:CO = 2), aldehydes production (H2:CO = 1) and methanol production 

(
𝑦𝐻2  − 𝑦𝐶𝑂2

𝑦𝐶𝑂 + 𝑦𝐶𝑂2

= 2). This is reflected in the formulation of the optimisation problem 

presented in Eqs. 1-7. Moreover, the quantities of gasifying agents required to convert the 

biomass and NG feedstock into syngas have been minimized. The ultimate aim is to 

maximize the syngas production while reducing the consumption of NG and gasifying 

agents and the process environmental emissions. 
 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ 𝑥𝑖 ∙ 𝑆𝑦𝑛𝑔𝑎𝑠𝑛
𝑖=1 − 𝑆𝑡𝑒𝑎𝑚𝑁𝐺 − 𝑆𝑡𝑒𝑎𝑚𝐵𝑖𝑜𝑚𝑎𝑠𝑠 

    ∀ 𝑖 ∈ 𝐵𝑖𝑜𝑚𝑎𝑠𝑠 𝑎𝑛𝑑 𝑁𝐺 𝑆𝑜𝑢𝑟𝑐𝑒𝑠  Eq.(1) 
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𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑥𝑖 = 1𝑛
𝑖=1 Eq.(2)

𝑦𝐻2 ∙ 𝑆𝑦𝑛𝑔𝑎𝑠

𝑦𝐶𝑂 ∙ 𝑆𝑦𝑛𝑔𝑎𝑠
= 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑢𝑛𝑖𝑞𝑢𝑒 Eq.(3)

𝑚𝑖 ≤ 2,000
𝑘𝑔

ℎ
Eq.(4)

𝑚𝑆𝑡𝑒𝑎𝑚𝑁𝐺
≤ 5,000

𝑘𝑔

ℎ
Eq.(5)

𝑚𝑆𝑡𝑒𝑎𝑚𝐵𝑖𝑜𝑚𝑎𝑠𝑠
≤ 4,000

𝑘𝑔

ℎ
Eq.(6)

𝑦𝐻2 − 𝑦𝐶𝑂2

𝑦𝐶𝑂 + 𝑦𝐶𝑂2

= 2 (methanol production case) Eq.(7)

Where, steam is the mass flowrate of gasifiyng agent, Syngas is the mass flowrate of the 

produced H2-rich gas, yCO, yCO2 & yH2 are molar fractions of carbon monoxide, carbon 

dioxide and hydrogen, m is the mass flowrate of NG and biomass wastes, and x is the 

blending fraction of NG and biomass wastes.

3. Results and discussion

The results considered for the optimization problem and compared with the base case are:

1. Optimization of feedstock blending;

2. Optimization of gasifying agent;

3. Optimization of feedstock blending and gasifying agent.

The results of the base case are summarized in Table 3 with the equal contribution of 

biomass and NG feedstock presented in Figure 2.

Table 3: Base case data.

S/B 

Ratio

S/NG

Ratio

Syngas 

yield H2/CO

CO2% in 

syngas

0.74 3 2.08 4.59 9%

Figure 2: Base case feedstock blending.

Figure 3: Case 1 results.
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The results of case 1 presented in Figure 3 demonstrate the domination of dates biomass 

feedstock for the generation of H2:CO ratios of 1 and 2. Whereas, the H2:CO ratio of 3 

presented the contribution of manure and dates mainly in the blended feedstock, while 

NG is only contributing in the CO2 ratio case. The syngas yield is reduced slightly from 

the base case while the CO2 emissions increased. The requirement of steam for biomass 

gasification is reduced compared to base case. For case 2, the results presented in Figure 

4 demonstrate the contribution from NG and different biomass wastes in the feedstock 

blends. The syngas yield is increased slightly compared to case 1 while the CO2 emissions 

are reduced. The requirement of steam for biomass and NG gasification is increased 

compared to case 1.

Figure 4: Case 2 results.

Figure 5: Case 3 results.
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The results of case 3 presented in Figure 5 demonstrate equal contribution from NG and 

different biomass wastes in the feedstock blends. The syngas yield is similar to case 1, 

while the CO2 emissions are reduced. The requirement of steam for biomass and NG 

gasification is decreased as compared to case 2. 

4. Conclusion 

The concept of complementing the natural gas utilization networks with renewable 

energy sources contributes to various sustainable development goals in parallel. This 

study applies a unique optimization problem to identify the optimum blends of various 

biomass feedstock and NG to meet multiple end-use downstream options of H2–rich 

syngas. The outcomes of the optimization problem demonstrates an increase in biomass 

wastes utilization with the increase in syngas quality constraint. Dates pits dominated the 

biomass utilization with a lower contribution from sludge and manure wastes. 
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Abstract 

The chemicals industry is facing a highly dynamic environment. Demand is continually 

fluctuating, and the pressure for new sustainable processes and products is rising. New 

environmental regulations are always expanding and becoming less harmonized globally, 

and customers are demanding sustainable products that are friendly to the environment. 

To follow all the market changes and remain competitive, companies need to invest to 

develop new processes and products. However, since it´s a capital-intensive industry, new 

investments need to be carefully managed. 

Today, companies need to find ways to be more efficient in the execution of engineering 

projects. One way is to compress engineering cycles and adapt processes and products to 

comply with sustainable Key Performance Indicators and new demands. The Unified 
Engineering methodology is one option enabled by the latest technologies and tools 

available. The data-centric approach is the first step to apply the Unified Engineering 

methodology, which will evolve later to the plant Digital Twin. The Unified Engineering 

methodology uses a single source of information that is available for all the teams 

involved in the project. Engineers become more efficient and work with reliable 

information as documents and models are updated in a controlled way as soon as any 

change is made. 

Unified Engineering reduces capital project costs, risks, and delays enabling shorter 

engineering cycles required to deliver new sustainable projects. By minimizing 

engineering errors and accelerating project execution, companies can get 5% reduction in 

Total Installed Cost. 

 

Keywords: sustainability, compressed engineering cycles, unified engineering, process 

engineering 

 

1. Introduction 

As an industrial software provider, we support chemical companies achieve superior 

performance in their quest to make sustainable products, align with the circular economy 
and demonstrate product stewardship throughout the product life cycle. By digitally 

connecting assets, process, and people, our solutions empower companies to run safe and 

responsible operations, mitigating EHS risks (Environmental, Health, Safety), and 

moving toward more circular systems, while remaining profitable.  

 

With more than 50 years of industrial software innovation, AVEVA enables 13 of top 15 

chemical companies and most of the world's petrochemical crackers, with the most 

comprehensive portfolio that ties profitability to sustainability goals. 

Research typically identifies the following Critical Sustainability Drivers: 
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• Demand higher transparency on a company’s Environmental, Social & 

Governance (ESG) performance by stakeholders 

• Manage a complex environment and provide safety to employees, processes, 

products and local communities. 

• Minimize energy and utilities consumption, so as emissions. 

• Manage liquid effluents, waste and suppliers, seeking the circular economy. 

• Commitments to global and local regulations 

• Portfolio management towards innovation and sustainable products 

 

Today´s technology allows suppliers to develop better solutions to those markets that are 

in constant change. The Digital Twin technologies, initially adopted mainly by the 

automotive and aerospace industries, are now promoting big changes in how chemical 

plants are operated and managed. This type of technology can change the decision-

making process since more reliable information is available in real time.  

 

Significant step was taken recently in terms of process simulation driven by two major 

sustainability industry trends. For the circular economy industry trend, chemical 
companies are developing new chemical processes that yield materials that can be 

recycled rather than used one time. For the hydrogen economy industry trend, companies 

will substitute hydrogen fuels to reduce CO2 emission into the atmosphere. Both the 

chemical and hydrogen economy trends lead to corresponding advancement in process 

simulation including modeling and thermodynamics. 

 

Now it is possible for the engineering and operating companies to build the Digital Twin 

of the process plant. The Digital Twin is built on a simulation platform that will support 

the entire plant lifecycle, from design to operation, while also addressing new hydrogen 

and circular economy requirements. 

2. The Digital Twin 

The new generation of process simulation uses a platform approach that evolves the 

simulation model from the conceptual engineering to the operation optimization. It allows 

a new approach to be implemented so companies can transition from the conventional 

scenario to the use of the process simulation Digital Twin, expanding benefits to the entire 

plant lifecycle. The same platform is used for process simulation and process utilities 

(cooling water, flare, steam and others), allowing engineers to further evaluate how each 

system impacts the other. Heat and material balances can be re-evaluated after equipment 

and pipeline sizing, since that information is in the simulation from the beginning, as a 
result, little or no extra engineering effort is required. Once sizing is validated, the 

simulation is switched to dynamic mode, in which control loops are included to the 

simulation model to validate the process control strategy. As it is easier to shift the 

simulation to dynamic mode, rather than build a completely new model using the 

conventional approach or converting a model that cannot be taken back to the steady state 

mode, dynamic studies are performed earlier in the project lifecycle. This promotes 

savings in equipment acquisition and in operating costs, since control logic responses are 

evaluated in earlier stages. Plus, when something doesn´t respond as expected, simulation 

is taken back to steady state mode, for re-evaluation of heat and material balance and re-

sizing. The ability to go back and forth between steady state and dynamic modes is critical 
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to increase efficiency in the project lifecycle, leading to huge savings in engineering 

effort.  

According to DECHEMA, one major obstacle for digital transformation is the division of 

process simulators into single-purpose point solutions. Today, separate models are 

created – often in different tools – for process design, control strategy design, operator 

training simulation, performance monitoring and online optimization. This drives up the 

total cost of modelling to a degree that can become prohibitively expensive. One single 

model should be able to cover the entire plant lifecycle from idea to operations. 

3. Unified Engineering 

Companies are beginning to make progress on their digitalization journey, finding the 

right applications for digital transformation and seeing increasingly better returns on their 

investment. While the age-old market environment challenges (such as supply and 

demand, cost and price) haven’t gone away, competitive pressures are making the digital 

transformation opportunity more pressing than ever. Many have already started to 
leverage the latest data-centric technology and work processes for their workforce to 

collaborate and take control of their data, reducing the risk for errors, delays and increased 

project cost throughout the asset lifecycle. By doing so they are in a stronger position to 

become more competitive, increase their margins and win new business. 

 

As outlined by an AVEVA whitepaper (2019), Unified Engineering is a new proposition 

to break down the silos between FEED and Detailed Design to minimize risk and 

maximize return on Capital Investment, Unified Engineering enables global multi-

discipline teams to work concurrently in a common data-centric environment, controlling 

and managing change across the entire project. This breaks down the silos between FEED 

(Front End Engineering and Design) and detailed design. The simulation data created in 

FEED is readily available for use in detailed design and is checked and validated in real-
time, increasing efficiency, minimizing risk, and maximizing return on investment on 

your Capital Projects. 

 

Never have the stakes been higher for companies when it comes to making improvements 

to their engineering work processes to maximize Return on Investment (ROI) on Capital 

Projects. Productivity has not developed in decades – the average Capital Project schedule 

lags by 20 months and goes over budget by 80%. These are results that have been shared 

by Jayanth (2017) during the Rice Global E&C Forum Roundtable. 

 

In many of today’s Capital Projects, there is a disconnect between FEED and Detailed 

Design. In response, AVEVA are the first industrial software provider to pioneer a new 
solution to break down the silos between these project phases and engineering disciplines. 

 

Unified Engineering consists of two main components, the Unified Lifecycle Simulation 

Platform (one model), and Integrated Engineering and Design (one database). The bi-

directional integration of a steady state and dynamic process model with an engineering 

database makes the process seamless and eliminates the need for Microsoft Excel or other 

intermediate steps to transfer information between tools, enabling one single version of 

the truth to be kept ever up to date. 
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4. Process Simulation Lifecycle 

Process simulators are irreplaceable tools for every process engineer. Since the nineteen 

seventies, process simulators have found widespread adoption within operating 
companies in oil & gas, refining and chemical industries, as well as the engineering 

companies and equipment manufacturers that service these industries. The tools available 

in the market today have incrementally improved over the years to provide more features 

and functionality. However, they trace their origins to legacy architectures, operating 

systems and aftermarket user interfaces, which create inherent limitations, see 

DECHEMA Tutzingen Thesen for more details. Today’s simulators typically only 

support a single phase of the lifecycle and are often based on thermodynamics of different 

simulation vendors and different calculation methods. This not only leads to lack of trust 

in the results but causes substantial rework by having to build a new simulation model in 

each new tool. And the results are hard to compare.  Willetts and Depew (2020) describe 

in detail the current challenges and how a Process Digital Twin will significantly help 
improve efficiency and drive increased sustainability. 

 

Global competition, pricing pressure and energy alternatives are now driving the need for 

a new approach. The oil & gas industry has seen high volatility and the lower price level 

of today is seen as the “new normal”. The chemicals industry has a continuous need to 

innovate for greater agility and lower costs.  

 

The next generation of workers also expects a modern, scalable and easy to use solution 

with technology they now take for granted – high speed internet access, mobile devices, 

touch screens and virtual reality. New concepts like the Industrial Internet of Things 

(IIoT), Industry 4.0, and Artificial Intelligence have created greater opportunities with a 

new next generation platform that provides a “Digital Twin” of the plant through the 
process lifecycle that cannot be provided with today’s tools. 

 

A next generation process simulation platform 

means that one process model is extended 

throughout the entire lifecycle of the plant, from 

concept through to operations. This requires a 

process design mode, a fluid flow/rating mode 

and a dynamic mode, in combination with the 

ability to toggle back and forth between modes. 

Optimization may be provided to any mode.  

 
A single, easy-to-use simulation platform will 

allow engineers to move seamlessly between 

questions of design, analysis, and optimization. 

Engineers will be able to assess the impact of 

design and specification changes quickly and 

with a holistic view of multiple disciplines. 

Intensive collaboration becomes commonplace. In this environment, organizations will 

be able to adopt agile engineering workflows based on smaller pieces of work with 

continuous integrated testing to reduce development cost while eliminating surprises at 

the end of the project. Further details can be found in C. Depew’s Digital Transformation 

of Process Engineering presented during the 16th GCPS AIChE Spring Meeting in 2020. 

Figure 1: Next Gen Simulation Platform 
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5. Process Simulations for Sustainable Technology 

Physics-based, first-principles models are a critical component of the asset digital twin. 

As industry develop new process technologies to serve sustainable industry trends such 
as the circular economy and the hydrogen economy, process simulation programs must 

adapt to become useful tools for process engineers to design sustainable processes. While 

academia research how to simulate model reactions or chemical thermodynamics, this 

modeling and thermodynamics must be integrated within industrial simulation products 

so that the unified engineering workflow may be applied to develop the digital twin of 

plants as they are engineered. The AVEVA whitepaper (2021), Take the first step to the 

circular economy with AVEVA™ Process Simulation, Top 5 reasons to adopt a 

transformational approach, further explains how modern technology allows to truly 

transform an organization and its outputs by speeding up the FEED stage by 50%, 

generating more options in less time, allowing for a more optimized process and more 

informed decision making as well as increasing engineering efficiency by 30%. 
 

There are many Hydrogen-based projects under consideration around the world. Blue, 

Green, and Gray Hydrogen projects need common process simulation advancement that 

need to be modeled in processes that support the hydrogen economy. 

Green hydrogen is produced by the electrolysis of water. Process simulators will include 

new electrolyzer equipment models. The Digital Twin for the operation of these plants 

may use an integrated model to optimize the use of wind and solar power generation for 

electrolysis. 

 

Blue and gray hydrogen is produced by splitting the methane in natural gas into Hydrogen 

and CO2 by steam methane reforming or auto thermal reforming. Development of 

integrated process plant simulation is required for removal of the CO2 for capture and 
storage to produce blue hydrogen. New membrane adsorption models will separate 

hydrogen for greater purity for blending with natural gas. The carbon dioxide created 

must be removed using new generation of amines thermodynamics for CO2 capture by 

companies that manufacture the amines and companies that use the amines for the 

separation of CO2 for carbon capture. 

 

Due to the low volumetric energy density of gaseous hydrogen when used as a fuel, plants 

must liquify the hydrogen to use it as a transportation fuel. Process simulators will include 

thermodynamic models appropriate for cryogenic hydrogen. In addition, ammonia is used 

as a transition fuel with models and thermodynamics required for ammonia pipelines and 

hydrogen conversion. 
 

Circular economy trends are driving chemical companies to produce materials that may 

be recycled more readily. This drives the development of new thermodynamic methods 

and component data to study new process simulation. Chemical and energy companies 

are replacing fossil based raw materials with renewable feedstocks driving research and 

development of new reaction technology. 

 

Finally, to make all processes more sustainability by reducing their energy consumption 

footprint, new simulation products will include the ability to calculate the cost of utilities 

such as steam, cooling water, and electricity, to minimize operating costs. 
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6. Conclusion 

Lifecycle process simulation has been a vision for process simulation providers and their 

customers for a long time. Today’s simulators cannot leverage the rapid developments 
occurring in the software industry due to legacy architecture. 

 

Looking at the industry’s increasing demand for higher transparency, this can only be 

achieved using a data-centric Digital Twin approach. This data-centricity enables an ideal 

platform for new product and process development to create new models and include the 

management of complex environments bringing together both steady-state and dynamic 

simulation with constant iteration and constant solving capabilities. 

 

The integration of the process analysis and simulation with other disciplines also allows 

to breakdown the silos that were typically existing previously. Connecting and remotely 

controlling previously unconnected processes will increase sustainable operations and 
improve business efficiency in a sustainable environment. Over the long term the impact 

will drive resilience and sustainable performance through technologies. 
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Abstract 
The supply of marine lubricants to vessels can be arranged by multinational companies 

(majors) or local suppliers (locals) who have interactions and contract agreements 

between them. The challenge of the paper has been to use game theory to analyze the 

market share that is attributed to each supplier and who it is connected to the level of 

interactions, the market constraints and how they can affect the overall profitability for 

each player. The paper presents the framework of players interactions that it formulates 

as a bilevel optimization problem with major (leader) and local players (followers) 

assigned to the outer and inner problems. The model is used to assess threats and 

promises. The bilevel approach can be used to calculate parameter sensitivity and key 

aspects to retain market balance and profit share. The approach has been validated with 

real data in which the analysis achieved to predict the actual market and profit share using 

the model-based approach. Model extensions subsequently test parameters responsible 

for system stability and player options that address threatening moves from other players. 

 

Keywords: marine lubricants, multinational companies, local suppliers, game theory, 

bilevel approach  

 

1. Marine lubricants and game theory  
Lubricants are necessary for the proper operation not only of the main engine (cylinder 

oil, trunk piston oil and system oil) but also of other vessel’s systems (hydraulic fluids, 

gear oil, turbine oils, greases and other). They may be classified into automotive, 

industrial, process, and marine oils. Even though marine oil lubricants make up a small 

percentage of lubricants consumed worldwide, the study of this market has a great deal 

of interest, as the global seaborne trade is projected to rise. According to recent studies, 

the global marine lubricants market size was valued at USD 8.01 billion in 2018, and it 

is estimated to reach USD 9.47 billion by 2026, with a CAGR (Compound Annual 

Growth Rate) of 2.13% over the forecast period.[1] Furthermore, around of 90% of 

world’s trade is carried through maritime transport.  

In the 1950-70s the supply of marine lubricants was controlled by the so-called "Seven 

Sisters" (BP, Shell, Gulf, Chevron, Exxon, Mobil Texaco). [2] Following acquisitions of 

the above companies and the fact that new local suppliers entered the market gaining 

market share, the market divided to major suppliers such as BP, Shell, Exxon-Mobil, 

Total and local suppliers such as Sinopec (China), Nippon (Japan), Petrobras (Brazil), 

Gazprom (Russia) and others. The level of equilibrium in the market is differentiated 

depending on the port and is worth studying as it can easily be modified by changing the 
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players' strategy. These changes can create threats and opportunities to the profitability 

for both suppliers. 

The blending conditions of marine lubricants varies depending on the port. In key ports, 

such as Singapore, the ports of America or Belgium, both players have their own 

refineries to blend their lubricant, in which case the locals have a very small share of the 

market. Lubricants’ quality for majors and locals is considered equal as the products of 

both players hold all the compulsory approvals for the utilization of oils. However, the 

extensive experience of the multinational companies as well as their strong R&D 

department helps them to design lubricants with special features such as their slowest 

consumption, which gives them another lead over the local companies.  

The marine lubricants market constitutes a duopoly market, in which the multinational 

companies are “the leader”. Due to their worldwide brand awareness and their long-term 

agreements with several shipping companies around the world, they can reassure the 

majority of market share without the followers to be able to compete them. On the other 

hand, the local firms, “the followers”, have a better knowledge of their domestic market, 

thus they can be more flexible and provide more expeditious services. Furthermore, it is 

considered that selling price of the lubricant is the same for both suppliers. 

The use of game theory holds an apparent and promising potential to better understand 

the context behind such developments. Still, it has never been tried, mainly due to the 

overall scepticism on whether such an approach could deliver realistic results and 

recommendations. The purpose of the paper has accordingly been to test the potential of 

game theory in real ports with a further view to postulate critical parameters and review 

stakeholder interactions. The paper first explains the application context, defines the 

problem, and next applies a mathematical approach for analysis using bilevel 

optimization.    
 
2. Market and problem description  

This study examines cases of peripheral ports such as Greek or Egyptian ports, where 

multinational companies do not have a physical presence and blend lubricants by utilizing 

locals’ third-party blending plant. Under this conditions, major suppliers are charged from 

local suppliers with an additional fee know as premium, so to be able to blend their 

lubricants under their name and their specification standards. Both majors and local firms 

gain benefit from this cooperation since they manage to reduce productions costs. Major 

firms are willing to pay a premium fee to locals to avoid installation costs, while local 

firms reduce their own production costs by achieving economies of scale. Local firms 

pursed to keep premium mark up at low levels in order maintain the cooperation. As a 

result, both players can be considered as interconnected. Such players can also be 

characterized as connected, as they face several common threats and opportunities based 

on their price levels. By setting a high price level, the players maximize their profit. 

However, as the price for the same lubricant differs between ports, players risk losing 

business for vessels that may be supplied at a next port with more competitive price levels. 

On the other hand, low price levels may be beneficial for both players as the port will 

increase its demand but may also cause a loss of maximum profits. Although the selling 

price range is a common challenge for both players, they still compete each other. 

Strategic decisions leading to a change in each optimal production quantity and the market 

share gained create opportunities for one player that pose a threat to the other. For 

instance, a decision of locals to offer more competitive prices than multinational 

companies or the decision to increase premium price can be an opportunity for them, as 

they can gain a larger share of the market. This opportunity constitutes a threat to majors, 
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who should respond to avoid losing market share. The use of game theory is certainly 

justified even though never applied as the markets are not ideal and the terms of elasticity 

are discontinuous functions. 

The cylinder oil accounts to approximately 50,31% of the requested lubricants. Market 

data collected for the study concern volumes of cylinder oil consumed in Greece and in 

Singapore in 2018 and relative price from both major brands (BP, SHELL,MOBIL) and 

local brands (AVIN, ELIN, ENOC, SINOPEC).  

Fig 1 and 2 present market data for Piraeus and Singapore, the two cases studied in this 

paper. Major firms blend a quantity 𝑞1 and local firms blend a quantity 𝑞2 , while the 

selling price P is the same for both suppliers. Both suppliers produce lubricants under the 

same refinery of the local supplier, with the leader being charged a premium by the local. 

According to the Greek market data, the total domestic marine lubricants market was 

31,30 million litters in 2018 [3]. They suggest that leaders and followers play on different 

terms in the markets: major players benefit from special relationships winning customers 

at lower volumes; locals compete at larger volumes with lower costs. Modelling market 

data constitute a challenge as they are scattered, and linear models may certainly not 

perform reliably.  

In the Singapore market figure, the points collected and plotted were 26 for major 

suppliers and 11 for local suppliers, while in the Greek market, 12 data points were 

gathered and plotted for major suppliers and 6 data points for local suppliers. 

 
Figure 1: Indicative prices (USD) and Quantities (liters) for cylinder oil in Singapore ports in 2018 

 
Figure 2: Indicative prices (USD) and Quantities (liters) for cylinder oil in Greek ports in 2018 
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Let majors and locals be respectively leaders and followers in a context of Stackelberg 

duopolies [ 4] . Stakeholders interactions are sketched in Fig 3: 

Figure 3 :  Marine Lubricants supply in peripheral ports

The purpose of the paper would then be to: (a) develop a game model based on Fig 3 

accounting for the presumed interactions of stakeholders, (b) use market data of Fig 2 and 

3 to assess equilibrium states comparing them with real-life market shares, and (c) 

evaluate market parameters and interactions holding significance to retain equilibrium.

3. Methodology and mathematical model
A leader-follower relationship is modelled as a bilevel optimization problem where the 

follower’s lower-level program is embedded in the leader’s upper-level program. Such 

problems are formulated as

𝑀𝑎𝑥𝑥 𝐹(𝑥, 𝑦) 𝑠. 𝑡 𝐺 (𝑥, 𝑦) ≥ 0
𝑤ℎ𝑒𝑟𝑒 𝑦 𝑠𝑜𝑙𝑣𝑒𝑠 𝑀𝑎𝑥𝑦 𝑓(𝑥, 𝑦) 𝑠. 𝑡 𝑔(𝑥, 𝑦) ≥ 0

x denotes upper-level variables; y: lower-level variables; F: the upper-level objective 

function; f: the lower-level objective function; G: the upper-level contains, g: the lower-

lever contains [ 5] .

Given a market of two players, 𝑄 = 𝑞1 + 𝑞2 (1). Each firm aims to maximize profit. The 

profit of each player is: 𝛱𝑖 = 𝑃(𝑄) ∙ 𝑞𝑖 − 𝑐𝑖 ∙ 𝑞𝑖, where 𝑐𝑖 is the cost of each player. The 

total cost of the leader is the cost of production plus the premium, while that for the 

follower is only the cost of production.

𝛱1 = 𝑃(𝑄) ∙ 𝑞1 − (𝐶 + 𝑚) ∙ 𝑞1 (2)

An additional amount 𝑞1 ∙ 𝑃 is added to the follower' s profit function (𝛱2).

𝛱2 = 𝑃(𝑄) ∙ 𝑞2 − 𝐶 ∙ 𝑞2 + 𝑚 ∙ 𝑞1 (3)

Concerning 𝑃(𝑄) (4), one could argue that this is not a function but rather a bounded 

domain that contains market data. In the study we have attempted (a) linear and nonlinear 

approximations [ 6] , and (b) convex relaxations. Using, 

( i) linear approximations, 𝑃(𝑄) = 𝑎 ∙ 𝑄 + 𝑏; For Greek port 𝑎 = −2 ∙ 10−15, 𝑏 =
1.5687

( ii) Nonlinear elasticity functions,  𝑃 = 𝑎 ∙ 𝑄−𝑏: Greek ports 𝑎 = −4.501, 𝑏 =
−0.128; Singapore port 𝑎 = 1.57, 𝑏 = −0,039

( iii) Convex relaxations for the best fit of the market function 𝑤 = 𝑃 ∙ 𝑄:
𝑤̃ ≥ 𝑄𝐿 ∙ 𝑃 + 𝑄 ∙ 𝑃𝐿 − 𝑄𝐿 ∙ 𝑃𝐿; 𝑤̃ ≥ 𝑄𝑈 ∙ 𝑃 + 𝑄 ∙ 𝑃𝑈 − 𝑄𝑈 ∙ 𝑃𝑈;
𝑤̃ ≤ 𝑄𝑈 ∙ 𝑃 + 𝑄 ∙ 𝑃𝐿 − 𝑄𝑈 ∙ 𝑃𝐿; 𝑤̃ ≥ 𝑃𝑈 ∙ 𝑄 + 𝑃 ∗ 𝑄𝐿 − 𝑄𝐿 ∙ 𝑃𝑈 [ 7]

with 𝑤̃ = 8268; 𝑃𝑈 = 1,23; 𝑃𝐿 = 1,99; 𝑄𝑈 = 24000; 𝑄𝐿 = 4000
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Premium (𝑚) is also a parameter affecting results. The production cost (𝐶) is common 

assuming the use of the same refinery. Sale prices are also identical for both players. 

Production costs account to 90% of the average sales price of supplies in local firms. Fair 

bounds on profitability are set at 30%; the maximum premium is set by market practices 

at 1%. The quantity produced is identical to the quantity sold. The bilevel problem is 

formulated using EMP of GAMS and solver Conopt. The variables of the upper level 

problem include the leader’s quantity (𝑞
1
) and profit (𝛱1), the leader’s cost of production 

(𝐶); premium (𝑚) is a sensitivity parameter. The variables of the lower level problem 

include the follower’s quantity (𝑞
2
) and profit (𝛱2), and the follower's cost of production 

(𝐶).   

 

4. Results 
4.1 Sensitivity analysis 

Production cost and the premium are parameters whose values are derived from the 

market study. Sensitivity analysis for the two parameters led to the conclusion that the 

most premium is the most sensitive parameter; even a change by 1% may affect 

equilibrium. Changes in the premium do not affect both players equally. An increase in 

the premium increases the share of the follower in the market. Although sensitive, the 

cost of production has an equal impact on the players. An increase in the production cost 

leads to the reduction of supplied quantities. A decrease in the cost raises the profitability 

of both players 

4.2 Market shares and profitability  

Results for different types of approximation have apparently revealed different market 

shares for the players. Linear approximations concluded to market shares 65% (major), 

and 35% (local suppliers); profitability shares are respectively estimated at 59% and 41 

%. Nonlinear approximations concluded to market shares 53% (major), and 47% (local 

suppliers); profitability shares are respectively estimated at 48% and 52%. Convex 

relations finally estimated market shares 44% (major), and 56% (local suppliers); 

profitability shares are respectively estimated at 39% and 61%. 

4.3 Equilibrium as key or peripheral port 

In key ports both local and major suppliers have their own refineries; peripheral ports use 

only local suppliers. Game theory has set 30% as a profitability threshold for peripheral 

ports. In the case of Singapore, the market share corresponding to major suppliers is 

computed at 83% and 16% for local suppliers. The major’s profitability rate is 78% while 

the local’s is 22%. These numbers are not close to the threshold hinting that Singapore 

will not retain equilibrium unless the premium is 200% higher (leading to splits 67% and 

32% for major and local players), a rather uncommon case for existing markets. Instead, 

the case for Piraeus suggests a peripheral port. 

 

5. Discussion 
5.1 Sensitivity analysis  

Sensitivity analysis around the premium revealed that its increase would be beneficial to 

the local. However, this is also a threat to the major, that, to avoid losses, could consider 

alternative scenarios and options to discontinue the cooperation with the local refinery 

and opt to (a) import their own stock from a majors’ refinery located in other regions, (b) 

alliances with local suppliers of nearby ports utilizing those refineries as third-party 
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blending plant, or (c) install a new refinery on the site. These options create a threat to 

the locals and the premium can be set on the feasibility that such other options can prevail. 

The sensitivity analysis related to production costs leads to common threats and 

opportunities for both parties. Consequently, they both should aim at reducing the cost 

price to the minimum possible level.  

5.2 Market share and profitability  

The equilibrium numbers calculated by the game theory model can be compared with the 

real-life data for Piraeus. The latter suggest that a split of 54% and 46% for major and 

local, also a profitability split between 52% and 48%. The numbers are extremely close 

to the nonlinear approximation (53% and 47%); linear models and convex 

approximations appear to overestimate the share of the local players: they respectively 

predict 11% and 7% off the actual data. 

5.3 Key ports  

The model further confirms that Piraeus suits a profile of a peripheral port as profit/market 

shares and premium values fall within bounds. It also validates that ports such as 

Singapore assume profiles of key ports as the share for equilibrium falls outside bounds 

unless the premium is very high for common practices. However, such high premia are 

not usually acceptable by multinational companies, which, having the largest market 

share opt to expand and own refineries. 

  

6. Conclusion  
Game theory has proved instrumental to analyse marine lubricants markets. Bilevel 

optimization, even in considering the basic set of constraints outlined in the paper, 

constitute a useful resource for suppliers to review their status in the market, understand 

actions to secure and increase profits, also to prepare for competitors’ actions. The model 

presented in the paper has been validated by the state of a large Greek port (Piraeus), both 

with respect to its status (peripheral port) as well as its equilibrium share. By a similar 

token, another large port (Singapore) has been validated as a key port where equilibrium 

is achieved once major players undertake third party blending plants. 
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Abstract 

Property prediction models based on the principle of a quantitative structure-property 

relation (QSPR) such as the group contribution models are an important tool that provides 

a quick, simple, and costless evaluation of various thermophysical properties of chemicals 

for various applications such as P-V-T calculations and product design. These models 

rely heavily on the interplay between the chosen descriptor (molecular information), the 

chosen mathematical formulation (to relate the descriptor to the target property), and the 

data used to produce such models. Therefore, such models suffer heavily if the quality of 

experimental data is low (inaccurate) or if there are discrepancies in the descriptors used 

or the mathematical representation chosen. In this work, we apply a systematic 

methodology to detect and treat outliers on 18 thermophysical properties and showcase 

the model improvements across various statistical metrics. This results in significant 

improvements across all property models illustrated through an increase in the coefficient 

of determination (R2), the standard deviation (𝜎), and the mean absolute error (MAE). 

 

Keywords: Outlier Treatment, Group-Contribution models, Thermophysical properties, 

Property Prediction, Quantitative Structure-Property Relations (QSPR) 

1. Introduction 

Knowing the properties of a chemical plays an important role in various chemical 

engineering disciplines and applications such as risk assessment, process design, and 

product design. In fact, some of these disciplines would be impossible without this 

knowledge. These properties can either be related to the thermal properties (normal 

melting point, critical temperature), physical properties (molar volume, critical volume), 

flammability properties (lower flammability point and auto-ignition temperature), or the 

enthalpic properties (enthalpy of formation, enthalpy of fusion) of a compound. These 

properties are usually determined either directly from experiments or derived from other 

closely related experimental measurements. Some of these experiments can be 

cumbersome in terms of the resources needed to conduct them especially with regards to 

time and the experimental setup needed to provide accurate results. Large collections of 

experimental data for such properties are scarce and few in numbers. This creates a need 

for alternative approaches to explore the chemical design space to direct future 

experimental efforts towards the most promising chemicals for a given application. One 

way to do this is to correlate the molecular structure to the target property of interest 

through what is known as Quantitative structure-property relations (QSPR)(Austin et al., 

2016). These models take a numerical translation of the molecular structure as input (also 
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known as descriptors) to a mathematical model that relates these inputs to the target 

output. An example of such models is the group-contribution (GC) type of model where 

the model is described in terms of small fragments of functional and structural groups. 

The success of these models heavily depends on the interplay between the chosen 

descriptor, the mathematical model, and the equality of data used for the regression 

(Gasteiger, 2016). In this study, we apply a systematic methodology for outlier treatment 

to increase the models' predictive power. This methodology is applied to a group-

contribution type of model and 18 different property datasets and is benchmarked against 

previously published results to highlight the effect of the outlier treatment. 

2. Methods 

2.1. Group-Contribution models  

The molecular descriptor employed in this study is the group fragments defined by 

(Marrero and Gani, 2001), where the molecule is described through three levels of 

complexity with increasing resolution on the molecular structure. In total, the method 

defines 220 first-order groups, 130 second-order groups, and 74 third-order groups 

through which, a molecule can be described by an occurrence vector that indicates the 

number of time each fragment occur in the molecule. The generic form of a GC model is 

shown in Eq (1), where 𝑓(𝑋) is functional transformation in order to make the right hand 

side of Eq (1) linear, 𝑐𝑦
(𝑥)

 and 𝑛𝑦
(𝑥)

are the contributions and occurrence of group y of order 

x respectively. Alternatively, the equation can also be represented in matrix format where 

G is the group occurrence matrix and 𝜃 are the corresponding group contributions. The 

left hand side of Eq (1) is determined by visual inspection of the trend of the property at 

increasing carbon number for various homologous series. On overview of the structure of 

these transformations can be seen in (Hukkerikar et al., 2012). 

 

𝑓(𝑋) =  ∑ 𝑐𝑖
(1)

 𝑛𝑖
(1)

220

𝑖=1

+ ∑ 𝑐𝑗
(2)

 𝑛𝑗
(2)

130

𝑗=1

+ ∑ 𝑐𝑘
(3)

 𝑛𝑘
(3)

74

𝑘=1

= 𝐺 𝜃 

 

(1) 

 

2.2. Parameter Fitting and Outlier Treatment 

A systematic method has been developed by (Frutiger et al., 2016) to perform parameter 

fitting, outlier treatment, and uncertainty estimation. The same methodology with few 

modifications is applied in this work and is illustrated in Figure 1. The method is 

explained in the following: 

Step 1 (S1): The exact form of the function is determined by inspecting the trend of the 

property with increasing carbon numbers across the homologous series. 

Step 2 (S2): By taking advantage of the matrix representation of the GC model, an initial 

guess for the parameters can be produced by applying linear Algebra as seen in Eq. (2).  

 

𝜃0 = (𝐺𝑇𝐺)−1 ⋅ 𝐺𝑇 ⋅ 𝑓(𝑋) (2) 

 

Step 3 (S3): The parameters are estimated sequentially based on their order: first-order 

groups are estimated first. Whatever the model fails to describe using only first-order 

groups is then rectified by adding the second-order groups and estimating the parameters 

for these while keeping the parameters for the first-order fixed. The same reasoning goes 

for third-order groups. For each group order, the parameters are first estimated using the 

simplex method to provide a good initial estimate for the gradient-based optimization 
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using the Levenberg-Marquardt (LM) algorithm. The optimization problem is shown in 

Eq (3), where 𝑦𝑖
𝑒𝑥𝑝

 and 𝑦𝑖
𝑝𝑟𝑒𝑑

 are the experimental and predicted property values. 

𝜃∗ = arg min ∑(𝑦𝑖
𝑒𝑥𝑝

− 𝑦𝑖
𝑝𝑟𝑒𝑑

)
2

𝑖

 
(3) 

Step 4 (S4): All parameters are allowed to vary during the simultaneous parameter fitting. 

In this step, only the simplex method is used. This ensures that the parameter fitting is 

more stable and less prone to diverge due to the large number of parameters. 

Step 5 (S5): Outlier detection is done by constructing the empirical cumulative 

distribution function (ECDF) of the prediction errors. The ECDF aims to estimate the true 

underlying distribution of the residuals making it a suitable method for detecting the 

outliers without the need for any assumption related to the distribution of these residuals 

(Frutiger et al., 2016). Data for which the residuals are below the 2.5% and above the 

97.5% probabilities are considered outliers and are thus removed from the dataset. 

Step 6 (S6) & Step 7 (S7): Sequential and simultaneous parameter estimation is 

performed on the remaining data using the previously optimized parameters as an initial 

guess. 

Step 8 (S8): Although not discussed in this work, uncertainty analysis is also performed 

using the maximum likelihood estimation (MLE) by assuming that the measurement 

errors follow a Gaussian distribution white noise and are independently distributed 

(Frutiger et al., 2016). This is done by linear propagation of error through asymptotic 

approximation of the parameter covariance matrix shown in Eq (4). SSE is the sum of 

squared errors, DoF is the degrees of freedom while J is the Jacobian. The (1-𝛼𝑡) 

confidence interval for the prediction is calculated using Eq (5) assuming a student t-

distribution. 

𝐶𝑂𝑉(𝜃∗) =
𝑆𝑆𝐸

𝐷𝑜𝐹
 (𝐽(𝜃∗)𝑇𝐽(𝜃∗))

−1
 

(4) 

𝑦1−𝛼𝑡

𝑝𝑟𝑒𝑑
= 𝑦𝑝𝑟𝑒𝑑 ± √𝑑𝑖𝑎𝑔(𝐽(𝜃∗)𝐶𝑂𝑉(𝜃∗)𝐽(𝜃∗)) ⋅ 𝑡(𝐷𝑜𝐹, 𝛼𝑡/2) 

(5) 

 

Step 9 (S9): The final model performance is evaluated by calculating various statistics 

such as the coefficient of determination (R2), the standard deviation (𝜎), and the mean 

absolute error (MAE) shown in Eq (6), Eq (7) and Eq (8) respectively. 

𝑅2 =
∑ (𝑦𝑖

𝑒𝑥𝑝
− 𝑦𝑖

𝑝𝑟𝑒𝑑
)

2

𝑖

∑ (𝑦𝑖
𝑒𝑥𝑝

− 𝑦̅)
2

𝑖

 

 

 

(6) 

𝜎 =
1

𝑁 √∑(𝑦𝑖
𝑒𝑥𝑝

− 𝑦𝑖
𝑝𝑟𝑒𝑑

)
2

𝑖

 
 

(7) 

𝑀𝐴𝐸 =
1

𝑁
 ∑|𝑦𝑖

𝑒𝑥𝑝
− 𝑦𝑖

𝑝𝑟𝑒𝑑
|

𝑖

 
(8) 

 

The main modification compared to the methodology proposed in (Frutiger et al., 2016) 

is that the simplex algorithm and the Levenberg-Marquardt algorithms are used 

alternatively during the sequential parameter estimation and that the final simultaneous 

parameter estimation is only conducted using the simplex methods. This was shown to 

provide more stability to the parameter estimation procedure as well as faster convergence 

and robustness towards the initial guess (starting point of the regression). 
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Figure 1: Systematic approach for parameter fitting and outlier treatment (rhombus shape 

signifies technique or method applied)

2 .3 . Property Data

The methodology is applied to 18 property data covering: the normal boiling point (Tb), 

the critical temperature, pressure and volume (Tc, Pc, and Vc respectively), the normal 

melting point (Tm), the Gibbs energy of formation (Gf), the enthalpy of formation (Hf), 

the enthalpy of fusion (Hfus), the Octanol-water partition coefficient (logKow), the 

Hansen solubility parameters (𝛿𝐷, 𝛿𝑃 and 𝛿𝐻), the enthalpy of vaporization at 298K (Hv), 

the enthalpy of vaporization at the normal boiling point (Hvb), the entropy of vaporization 

(Svb), the Hildebrand solubility parameter (𝛿), the acentric factor (𝜔) and the molar 

volume (Vm). All data are retrieved from the CAPEC database (Nielsen et al., 2001).

3. Results

An example of model prediction and outlier detection can be seen in Figure 2. An

overview of the results and model statistics can be seen in Table 1. The improvement of 

each metric compared to the result in (Hukkerikar et al., 2012) is also provided in Table 

1. Note that for R2, the improvement is illustrated by an increase (+), whole for 𝜎 and 

MAE is illustrated by a reduction of the metric (-).
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Table 1: Performance statistics of the new models and their improvements compared to 

benchmark model (in parenthesis is the improvement compared to (Hukkerikar et al., 2012)) 

Property Unit N R2 𝜎 MAE 

Tb K 3,510 0.99 (+0.00) 5.77   (-2.13) 4.63   (-0.15) 

Tc K 858 0.99 (+0.00) 6.34   (-4.43) 4.57   (-3.15) 

Pc bar 852 0.99 (+0.02) 1.06   (-1.32) 0.74   (-0.66) 

Vc cc/mol 797 0.99 (+0.00) 9.26   (-2.39) 6.58   (-1.39) 

Tm K 5,183 0.97 (+0.02) 17.25 (-1.91) 14.47 (-1.52) 

Gf kJ/mol 749 0.99 (+0.00) 4.79   (-3.57) 3.02   (-2.22) 

Hf kJ/mol 882 0.99 (+0.00) 4.41   (-3.33) 2.92   (-2.11) 

Hfus kJ/mol 764 0.95 (+0.12) 2.38   (-2.78) 1.72   (-1.07) 

logKow  - 12,193 0.92 (+0.05) 0.49   (-0.15) 0.39   (-0.09) 

𝛿𝐷 MPa1/2 1,037 0.92 (+0.20) 0.50   (-0.58) 0.37   (-0.23) 

𝛿𝑃 MPa1/2 1,017 0.85 (+0.10) 1.51   (-0.69) 1.16   (-0.65) 

𝛿𝐻 MPa1/2 1,016 0.93 (+0.06) 1.13   (-1.67) 0.83   (-0.45) 

Hv kJ/mol 705 0.99 (+0.02) 1.04   (-1.30) 0.71   (-0.58) 

Hvb kJ/mol 512 0.98 (+0.02) 0.88   (-0.54) 0.63   (-0.32) 

Svb J/mol K 512 0.95 (+0.10) 1.54   (-1.46) 1.05   (-0.67) 

𝛿 MPa1/2 1,384 0.93 (+0.10) 0.99   (-0.64) 0.72   (-0.36) 

𝜔 - 1,723 0.97 (+0.07) 0.05   (-0.05) 0.03   (-0.02) 

Vm cc/kmol 1,056 0.99 (+0.00) 0.00   (-0.00) 0.00   (-0.00) 

 

Figure 2: Parity plot for Hf before (left) and after (right) outlier removal 

4. Discussion 

Outlier treatment greatly improved the performance of the GC model across all datasets 

without exception compared to the results obtained in (Hukkerikar et al., 2012). Most 

significant improvements are seen for Hfus, 𝛿𝐷, 𝛿𝑃, 𝑆𝑣𝑏 and 𝛿, where the R2 increased 

between 0.1 and 0.2. The same effect is also observed on the standard deviations and the 

mean absolute error. Although the method does indeed improve the model performance, 

it is also important to note that the method does provide a drawback. The outlier deletion 

results in the removal of some groups for which a contribution will not be available. This 

reduces the chemical design space it can explore especially in the absence of any proven 
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method to predict the contribution of groups not present in the dataset. In fact, a vast 

majority of groups are not present in every dataset. Despite limiting the domain of 

exploration of the model, the method reinforces the accuracy for the compounds that 

remain after outlier deletion and thus increases the reliability of the model within the 

domain of applicability set by the present groups after outlier deletion. Furthermore,  the 

outliers are defined based on the model performance, thus potentially more informative 

descriptors or a better mathematical model will result in identifying different outliers and 

thus the reason for identifying a given compound as an outlier cannot only be attributed 

to the quality of data but also the model and the descriptor in this case. Important to note 

is that GC type of models are additive models and thus might struggle for highly non-

linear properties as seen e.g. Hfus, and various solubility parameters, additionally they do 

not capture any proximity effects e.g. arrangement of the groups does not affect the 

prediction. Advanced models capable of capturing highly non-linear trends such as deep 

neural networks could provide an alternative to the mathematical presentation and thus 

potentially provide more accurate predictions (Aouichaoui et al., 2021). 

 

5. Conclusion 

 

In this study, we demonstrated that a systematic approach to treating outliers greatly 

improves the models' predictive performance by narrowing the domain of applicability 

and increasing the reliability of the model within this domain. One major drawback is, 

however, that some descriptors are lost in the process of data deletion which reduces the 

portion of chemical space that the model can explore. Further work will explore the 

analysis of outliers using different modeling approaches including machine learning and 

deep learning approaches such as deep neural networks and graph neural networks. This 

is needed to better understand what causes a data point to be an outlier: a) measurement 

error or b) a modeling error. In the latter case, the outlier is an observation that provides 

an opportunity to develop new models. 
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Abstract 

Monitoring and optimization of flow regimes in aerated stirred tanks is crucially 

important for process efficiency and product quality. To date, experimentally generated 

flow maps and correlations are mostly used to classify flow regimes. However, such an 

approach is highly limited in terms of scalability and transferability. We propose a model 

for a soft sensor to classify flow regimes of aerated stirred tanks based only on image 

data. To select an architecture for the model, we compared various modern architectures 

including LeNet, VGG16, MobileNetV2, Dense121. Of these, LeNet-5 and custom CNN 

show the best performance. Furthermore, we tested how disturbances of process and light 

conditions, and the fill level in the reactor affect the classification performance. 
 
Keywords: stirred aerated tank, flow regime classification, computer vision, CNN. 

1. Introduction 

Monitoring and optimization of flow regimes in aerated stirred tanks is crucially 

important for the process efficiency and product quality. The flow regime has a direct 

impact on the spatial distribution and size of gas bubbles inside the reactor, which affects 

overall mass transfer rate. Operating the aeration process in an efficient and safe manner 

demands a comprehensive understanding of the occurring flow regimes (distribution of 

liquid and gas phases in the mixing process) and their classification. According to (Wang 

et al., 2017) the recognition and classification of flow regimes in general has a research 

gap. Stirred tanks in particular require special attention (Khopkar et al., 2005; Liu and 

Bai, 2019). Currently, manually generated flow maps and correlations are mostly used 

for this purpose. Boundaries between flow regimes are specified by substance properties, 

reactor geometry as well as process conditions such as temperature, fill level, flow rate 

of gas, stirring velocity and geometry of reactor and stirrer. However, such an open-loop 

approach has decisive drawbacks (Liu and Bai, 2019; Torisaki and Miwa, 2020). Pre-

defined flow maps are inflexible regarding uncertainties and variance in substance 

properties and process conditions. Thus, creation of flow maps itself might be an 

extremely time intensive task for which effort is proportional to the number of possible 

parameter combinations. The use of a soft-sensor that could provide the information about 

the flow regime for a closed-loop control strategy independently of process conditions 

and the substances used is beneficial in terms of robustness, flexibility, and scalability. 

Among measurement-based in-line and on-line techniques, image analysis is the only 

low-cost, non-invasive approach which works with transparent media regardless of their 

physical properties and process conditions (Bowler et al., 2020). In recent years, artificial 

intelligence and particularly the use of Convolutional Neural Networks has indicated an 

enormous potential for solving image classification tasks (LeCun et al., 1998; Liu et al., 

2020; Redmon and Farhadi, 2018; Shin et al., 2016; Zhang et al., 2019). The goal of this 
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paper is to examine the potential of CNNs for solving the flow regime classification 

problem in aerated stirred tanks with transparent liquids. The input basis for the 

classification is image data only.

2. Problem description and test set up

Aeration processes in stirred tanks is usually a two-phase problem with a goal to intensify 

the mass transfer from the gas phase into the liquid phase. Depending on the volume ratio 

of the two phases, different interface patterns (or flow regimes) can be observed (Pal et 

al., 2019). According to (Majumder, 2016), a flow regime depends on the following 

factors: dynamic process parameters, geometry of the reactor and agitators, 

thermodynamic variables, and physical properties of both phases.

This work focuses on bubbly flows, i.e. a continuous liquid phase with bubble inclusions.

We consider only flow regimes in a vertically positioned cylindrical stirred tank equipped 

with a Rushton turbine, the standard type of the reaction equipment for biochemical and 

pharmaceutical processes. According to (Paglianti et al., 2000) there are three main flow 

regimes in such reactors: flooded, loaded and completely dispersed (see Figure 1).

Specifically, the optically visible pattern of gas bubbles in the reactor is proposed as

distinguishing criterion for the classification of the flow regime. Stainless steel industrial 

bioreactors of up to 200 L usually have a single viewing port through which the aeration 

process can be inspected. Because of this limitation, unlike the cases with glass 

bioreactors, only image data with a limited view on the process can be used for modelling.

We used a 30 L Stedim Biostat®  D-DCU bioreactor (D= 290 mm, H= 640 mm) 

manufactured by Sartorius. The reactor is equipped with three flat blade turbine impellers 

(D= 95 mm, H= 20 mm) and a ring sparging system for aeration using normal air. The 

vessel is filled with water at the level of 30 L. A single light source is installed in the lid 

of the bioreactor. For image acquisition we used a Fujifilm X -T20 (aperture F4.5, 

resolution 1080p, ISO 12800, and shutter speed 1/1250 s).

To cover the operating range of the bioreactor, rotation speed of the stirrer and gas flow 

rate were varied from 50 to 600 rpm and 5 to 50 nlpm accordingly. Overall, about 10,000 

images were collected with 70 combinations of parameters. Figure 2 shows sample 

images of different flow regimes.

Additional images were collected to test derived models against previously unexposed 

data where combinations of process parameters, lighting conditions and fill levels were

slightly different from those in the training data set. In this way, we wanted to investigate 

the effect of disturbances that commonly occur in production plants.

Figure 1: Flow regimes in the stirred tank (Paglianti et al., 2000): 
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3. Data preparation 

To ensure that the data set includes only viable images, we manually removed blurred 

images, or images taken when the stirrer was not running. 

The flow regime was determined for each agitator and gas flow setting by visual 

observation, and images were manually labelled accordingly. To validate the labels, a 

flow map was created. The position on the flow map, which results from the gas flow 

number and the Froude number, was used to determine whether the images were marked 

with the correct flow regime. Clearly incorrect flow regime labels, especially when single 

images of one class are surrounded by images of another class, were corrected. 

Next, image preprocessing techniques were applied. They can improve image detection, 

for example, by using filters to increase contrast or applying thresholds. Independent A/B 

tests were carried out for each image preprocessing method and the effect on the model 

performance was evaluated. The following preprocessing algorithms were tested: 

Gaussian Blur, Sharpening Filter, Histogram Equalizer, Adaptive Thresholding, Scharr 

Operator, and Sobel Operator. Additionally, the effect of cropping and converting the 

color image to grayscale was tested. It was found that the following steps provided the 

best results: conversion to grey-scale color map, sharpening kernel filter (3x3), and 

padding with pixels of zero intensity. Data augmentation was carried out using the Keras 

data generator. During our experiments, we found that random translation, rotation, and 

horizontal mirroring of the input experimental image provided better results.  

4. Modelling 

Since there is no previous work about identification of flow regimes with a comparable 

setup, different CNN models were tested to determine which architecture is the most 

appropriate. The CNN models were implemented in Python programming language, 

using the TensorFlow and Keras libraries. 

First, we chose the LeNet-5 model (LeCun et al., 1998) due to its simple architecture that 

has been used for image recognition for years and can be trained very quickly. LeNet5 

consists of 5 layers: two convolutional layers, followed by one max pooling layer each. 

Finally, a fully connected layer and a SoftMax classifier are attached. For the activation 

we chose the state of the art ReLu function instead of the originally used tanh function. 

The LeNet model is designed for input data of a dimension of 28x28 pixels. We 

implemented LeNet additionally for images with 56x56 and 112x112 pixels. All three 

models were trained for 20 epochs with a learning rate of 0.001 and the Adam Optimizer. 

Next, we trained more sophisticated networks to compare. VGG16 (Simonyan and 

Zisserman, 2014), MobileNet (Howard et al., 2017) and DenseNet (Huang et al., 2016) 

were selected because they have very compact architectures and therefore relatively few 

parameters to train. For this reason, they have a higher potential for success with the 

relatively small dataset. For the implementation we used the models from the Keras API 

with average pooling, Softmax classifier, Adam optimizer and a learning rate of 0.0001. 

The input shape of the images varied from 56x56 to 224x224 pixels. 

Last, we designed custom CNNs. Since smaller models consisting of only a few layers 

gave better results than larger ones, the LeNet architecture was used as basis: two groups 

of convolutional layers, ReLu activation, batch normalization and max pooling layer, 

followed by a fully linked dense layer, a dropout layer and the SoftMax classifier. 

In order to find the best set of model parameters, we performed hyperparameter 

optimization with the hyperband approach using the Keras Tuner tool. The kernel size of 

the convolutional layers and the max pooling were kept at 3x3 and 2x2. The size of the 

convolutional layer filters, the size of the dense layer and the learning rate were varied. 
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We trained the model for 20 epochs with a batch size of 32. This approach resulted in a 

model with convolutional filters of size 48 and 32, a 768 size Dense Layer and a learning 

rate of 0.001 (CNN_48_32_768). 

In addition, we designed a model consisting of four convolutional layers. The developed 

model has convolutional filters with the sizes 48, 16, 64 and 128, a 512 large dense layer 

and a learning rate of 0.001 (CNN_48_16_64_128_512). 

The performance of the models and the overall F1-scores are shown in Table 1.  

Table 1: Model overview (Prec – Precision, Rec – Recall) 

Architecture Input Shape Flooded Loaded Fully dispersed Overall 

F1-

score 
Prec Rec Prec Rec Prec Rec 

LeNet (28,28,1) 96% 89% 82% 95% 98% 89% 91% 

LeNet (56,56,1) 99% 100% 96% 92% 94% 97% 96% 

LeNet (112,112,1) 100% 100% 100% 100% 100% 100% 100% 

VGG16 (56,56,1) 100% 30% 21% 23% 53% 100% 48% 

MobileNetV2 (160,160,3) 0% 0% 36% 100% 0% 0% 37.5% 

MobileNetV2 (56,56,1) 0% 0% 30% 100% 0% 0% 29.3% 

DenseNet121 (224,224,3) 100% 13% 15% 1% 32% 100% 35.7% 

CNN_48_32_768 (56,56,1) 100% 100% 96% 92% 92% 96% 96% 

CNN_48_16_64_128_512 (56,56,1) 100% 100% 95% 93% 93% 95% 96% 

 

The LeNet models achieve relatively high F1-scores of over 90% while the other standard 

CNN models do not exceed values of 90% and therefore do not classify the images with 

sufficient accuracy. The possible reason is more complex architecture and therefore a 

higher demand on the training dataset size. 

The performance of the implemented LeNet models were compared with an additional 

test data set. This data set consists of the images taken at different lighting and operating 

conditions to which the models had not previously been exposed. The results show that 

the 56x56 resolution images allow for the highest F1-score. Both custom designed CNNs 

achieved F1-score values of 96%, the same as the LeNet model did. 

5. Evaluation and discussion 

The best performing models (LeNet with 56x56 resolution and both custom CNNs) were 

evaluated visually, using saliency maps after (Simonyan et al., 2013). Figure 2 shows a 

visualization of the training images along with saliency maps for three classes of the 

56x56 LeNet model. The relevant pixels are displayed with increasing importance from 

blue (irrelevant) to red (most relevant). It is apparent that the model focuses on the area 

where the agitator blades are. This proves that the model detects pixels that are relevant 

for classification from a chemical engineering point of view. According to (Nienow et al., 

1985) exactly the area near agitators provides the most information about current flow 

regime because cavities build there. 
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The performance of all three models with the test dataset (10% of original dataset) is

about 96%. The examination of precision and recall from LeNet for the different flow 

regimes shows that the flooded regime is identified very reliably (precision 99%, recall 

100%). The other two regimes, which resemble each other visually, were more frequently 

misclassified, where images of loaded regime were classified as completely dispersed. 

This results in a lower recall for loaded regime (92%) and lower precision (94%) in 

completely dispersed regime. A similar phenomenon can be observed with the custom 

CNNs.

Two additional datasets, consisting of images taken under different lighting and operating 

conditions (different rotational speeds and gas flow rates) show the difference between 

the models: an F1-score of 73% for LeNet, achieves an 71% for CNN_ 48_ 32_ 768, and 

77% for CNN_ 48_ 16_ 64_ 128_ 512. In order to compare the performance of the 

classification without using context data (parameters such as stirrer rotation speed and 

gas flow rate), 200 images were classified manually in the same test data set. Here, an 

F1-score of 85% was achieved, only slightly outperforming automatic classification.

Another realistic use case is different filling levels of the reactor, which is why we made 

an additional data set with levels of 28L and 26L (compared with 30 L for the standard 

training set). Using the models trained with the standard filling level, the models achieve 

96% - 100% on the test dataset. This shows that the filling level has no relevant influence 

on the accuracy with a relatively small change of 2 to 4L.

6. Conclusion

When comparing various model architectures (LeNet, VGG16, MobileNetV2, Dense121

and custom LeNet alike architecture) for the flow regime classification problem in stirred 

aerated reactors, our results indicate that shallow networks in general perform better. 

LeNet and custom CNNs achieved F1-Scores of almost 100% on test dataset and up to 

77% on a dedicated test dataset that includes combinations of process parameters to which 

the models were not exposed during training. Against fluctuation of fill level (up to 4L

less) the models showed little or no decrease in performance (96% to 100%).

Acknowledgement: The authors acknowledge the financial support by the Federal 

Ministry of Economic Affairs and Energy of Germany in the project KEEN (project 

number 01MK20014T).

Figure 2: Image samples from collected dataset and corresponding saliency map of trained LeNet

56x56 (2 – completely dispersed, 1 – loaded, 0 – flooded)
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Abstract 

Recent research with artificial neural network (ANN)-based predictive model has 

emerged as a solution to reduce the number of trial and error effectively. However, it is 

still challenging to develop a high-performance model using a sparse dataset. Especially, 

the high-dimension and the small number of polypropylene composite’s (PPC’s) material 

data make it difficult to develop a predictive model. In this study, we proposed the ANN-

based predictive model using principal component analysis (PCA) to predict the physical 

property of PPC with the high performance. The optimal dimension reduction of the raw 

dataset was suggested by the proposed framework to overcome incomplete dataset of PPC 

materials including the zero values. The dimension reduced dataset was used to develop 

the ANN-based model for physical property prediction of PPC. As a result, the model 

accuracy based on the reduced dataset is 0.9061, and 4.6% higher than the model using 

the raw dataset. This result demonstrates that ANN-based model with dimension 

reduction improves the prediction performance by reducing the sparsity of PPC material 

data. Moreover, the proposed model is expected to reduce the number of trial and error in 

the PPC development process. 
 

Keywords: polypropylene composite, principle component analysis, artificial neural 

network 

1. Introduction 

Accompanying the advancement of data science, many data-mining methods have been 

developed for the purposes of prediction. One such representative data mining method is 

an artificial neural network (ANN), which has been widely used to develop data-driven 

models owing to its high performance and effectiveness. An ANN analyzes the 

relationships between a dependent variable and independent variables, updates the 

relationships by minimizing the error, and calculates a dependent variable using such 

relationships when unknown independent variables are given. A data-driven model using 

an ANN, called an ANN-based model, has been applied to many fields to reduce the trial 
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and error required, which is one of the major issues in numerous industries, by replacing 

experimental values with predicted values. However, if an ANN-based model is 

developed with a sparse dataset where a higher percentage of the variable cells do not 

have actual data, the predicted values cannot be used owing to the reduction in the model 

accuracy.  

This problem often occurs during the development of polypropylene composites (PPCs). 

Because many industries require the specific physical properties of PPCs for engineering 

applications, numerous experiments on their physical properties have been conducted to 

satisfy such requirements. Although the number of experiments should be reduced to 

increase the efficiency, it is difficult to reduce it using data-driven modeling because of 

the sparse dataset of recipes, which indicates the combination and ratio of raw materials 

used in PPCs. In addition, although the recipe dataset is composed of 90 types of raw 

materials, not every type of raw material is used in a recipe at the same time. Normally, 

only 12 types of raw materials at maximum are blended for a PPC. For this reason, the 

dataset includes many zeros values, becomes sparse, and decreases the performance of 

the data-driven model. Hence, a dimension reduction has to be applied when an ANN-

based model is developed with a recipe dataset for a prediction of the physical properties. 

This study proposes a data-driven model for the prediction of the physical properties of 

PPCs using an ANN and a principal component analysis (PCA). Figure 1 shows an 

overview of the study. First, data sparsity was found, and the sparsity problem was solved 

through a dimension reduction process. Among the dimension reduction methods, a PCA, 

a representative method, was applied. The explained variance ratio was calculated to 

select the optimal number of dimensions. Second, to validate the dimension reduction 

method, two ANN-based models were developed using the original and reduced datasets. 

The performance of the models was then evaluated and compared with R2.  

The novelty and contributions of this paper are as follows: 

 This is the first study to apply an ANN and a PCA to a polypropylene composite 

(PPC) dataset used in the commercial chemical industry. 

 This study improves the model performance of an ANN-based model for a 

physical property prediction through a dimension reduction. 

 This study demonstrates that the ANN-based model with a PCA is a powerful 

data-driven model for reducing the amount of trial and error required during the 

PPC development process. 
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Figure 1 Overview of the present study 

2. Method 

2 .1 . Data Analysis 

Figure 2 shows the PPC dataset used in this study. The dataset contains information on 

1001 recipes, which consist of 90 materials including polypropylene (P), filler (F), rubber 

(R), and other additives (OTH), as well as the tensile strength. Most importantly, each 

recipe has many zero weight percentage because only 12 types of materials are used in 

the recipe at maximum, which means that each recipe has 78 zero values at minimum. 

The number of zero values determines the data sparsity and has an impact on data-driven 

modeling. Therefore, the analysis of data sparsity is crucial before modeling. 

To analyze the number of zero values, the percentages of zero values in different 

materials are calculated using. In the PPC dataset, the percentages are distributed from 

31.3% to 99.9%. This result shows that both popular and unpopular materials exist in the 

PPC development. For example, the minimum percentage of zero values (31.3%) is for 

OTH4, which means that 314 of 1001 recipes do not contain OHT4. By contrast, the 

maximum percentage of zero values (99.9%) is for P013, which means that 1000 of 1001 

recipes do not contain P013. For these reasons, the PPC dataset is sparse owing to the 

existence of many zero values, and thus the number of zero values must be reduced for 

data-driven modeling. 

Figure 2 PPC dataset used in this study 
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2.2. Principal Component Analysis 

The sparsity of the dataset can be solved using dimension reduction methods. One 

popular method is a principal component analysis (PCA), which has been a powerful 

method since its initial development. PCA transforms a large set of variables into a 

smaller set that still contains most of the information in a large set. The information is 

usually defined as a variance of variables, which cannot be maintained when the number 

of dimensions is too small. Therefore, selecting the optimal number of dimensions is 

important when reducing the number of dimensions to maintain the variance properly. 

 

2.3. Artificial Neural Network  

Among various data mining methods, artificial neural networks (ANNs) have been 

widely used for data-driven modeling due to their high performance. ANN consists of 

three layers: an input layer, a hidden layer, and an output layer. Each layer contains nodes 

and edges that contain mathematical relations with weights and biases. An ANN 

minimizes the error by updating the weights during model training, and the developed 

model estimates an unknown dependent variable from the known input and output pairs, 

including the mathematical relations.   

 

3. Results and discussions 

3.1. Selecting the number of dimensions 

The variance ratio explained is calculated to select the optimal number of dimensions in 

the PCA. Figure 3 shows a PCA scree plot of the PPC dataset, with the blue bars 

representing the explained variance ratio. The ratio represents the variance explained by 

each of the principal components, starting with the first component, which is the principal 

component that explains most of the variance. When the ratios are summed, the total value 

is equal to 1, indicating that the 90 components together explain 100% of the variance of 

the dataset. More usefully, the variance ratio explained is used as a cumulative sum, such 

as indicated by the red curve in Figure 3. In this study, we found that 58 components are 

required to explain at least 85% of the information in the dataset from the cumulative 

explained variance. Hence, 90 types of materials were replaced with 58 principal 

components. 

 

Figure 3 PCA scree plot of PPC dataset 
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3.2. Development of ANN-based models  

After a dimension reduction, we developed ANN-based tensile strength prediction 

models using two datasets: the original dataset with 90 types of materials and the reduced 

dataset with 58 components. An ANN-based model uses weight percentage of 90 types 

of materials as inputs, whereas the other model uses the values of 58 components as inputs. 

The two datasets were randomly split into 60% training, 20% validation, and 20% test 

datasets. Although the training and validation datasets were used for data-driven 

modeling, the test dataset was used to evaluate the models. The performance of the 

models is evaluated using R2, which is a representative evaluation criterion for regression 

and is calculated through Eq. (1).  

𝑅2 = 1 −
∑ (𝑆𝑖𝑎 − 𝑆𝑖𝑝)

2𝑁
𝑖=1  

∑ (𝑆𝑖𝑎 − 𝑆𝑖̅𝑝)
2𝑁

𝑖=1  
 (1) 

In the above equation, N denotes the number of data, Sia denotes the ith actual value, and 

Sip denotes the ith predicted value of the model. 

The ANN used in this study has one input layer, one output layer, and two hidden layers 

consisting of 30 nodes, an Adam optimizer, and ReLU as an activation function for each 

layer. Namely, the hyperparameters of the two ANN-based models are identical, except 

for the number of nodes in the input layer.  

Although the ANN hyperparameters are fixed, because R2 depends on the datasets 

(training dataset, validation dataset, and test dataset), ten case studies were conducted. 

Each case consists of a comparison of the two ANN-based models after the random data 

split. Table 1 shows the results of the case studies. The average R2 of the ANN-based 

model using the original dataset was calculated as 0.8662, whereas the average R2 using 

the reduced dataset was calculated as 0.9061. This difference demonstrates that a 

dimension reduction contributes to the improvement of the model performance. The R2 

of the model increased by 4.6% after the dimension reduction in this study. 
 

Table 1 Results of ten case studies 

 R2 of ANN-based model 

using the original dataset 

R2 of ANN-based model 

using the reduced dataset 

Case 1 0.82931 0.93247 

Case 2 0.84299 0.85808 

Case 3 0.89898 0.91378 

Case 4 0.79735 0.91785 

Case 5 0.89373 0.90737 

Case 6 0.93614 0.93069 

Case 7 0.90797 0.91807 

Case 8 0.77613 0.91948 

Case 9 0.87827 0.92202 

Case 10 0.90079 0.84131 

Average 0.8662 0.9061 

In addition, we analyzed the interquartile range, called IQR, of the results, as shown in 

Figure 4. The ANN-based model using the original dataset was unstable because the 

model had a wide range of R2 values of 0.77613 to 0.93614. However, the ANN-based 

model using the reduced dataset was more stable than that using the original dataset 

because the range of R2 was from 0.84131 to 0.93247. While the model using the original 

dataset is able to be tested with different inputs because maximum 12 materials are used 
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in 90 types, the model using the reduced dataset is tested with same inputs because the 

dataset is not sparse. Therefore, the sparsity in the dataset should be reduced before data-

driven modeling when using sparse data. Consequently, a dimension reduction is required 

not only to improve the performance but also the robustness of the data-driven model. 

 

Figure 4 IQR graph of the R2 of the two ANN-based models using the original and reduced datasets 

 

4. Conclusion 

In the PPC development process, an ANN-based prediction model is suggested to reduce 

the amount of trial and error required. However, the sparsity of the PPC dataset hinders 

the development of the prediction model. In this study, we proposed an ANN-based model 

for the property prediction of PPC using a PCA. A total of 58 components were selected 

as the optimal number of dimensions. To compare the performances of the proposed 

model using 58 components and the original model using 90 types of materials, two ANN-

based models were developed with the same hyperparameters and evaluated based on the 

R2. The results illustrate that the proposed model outperforms the original model and is 

more robust than the original model. Thus, this study proved that a dimension reduction 

is essential for data-driven modeling when using sparse datasets. 

The proposed model is expected to be applied to the other fields handling sparse datasets 

as a powerful solution to reduce the amount of trial and error, such as blending processes. 

In future studies, we will compare the use of a PCA with other dimension reduction 

methods and extend this study to other properties of PPC. 
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Abstract 

The present work aimed the modelling and optimization of the Wastewater Treatment 

Plant (WWTP) operation based on predicting its energy and quality performance indices 

using Artificial Neural Networks (ANNs). The best model architecture and structure were 

searched among three different ANN types, with different topologies. A standard dataset 

originating from the plant calibrated first-principle model (FPM) data was used to develop 

the ANN models. Their performance was evaluated by the coefficient of determination 

and mean squared error (MSE) values, first at testing and subsequently at the prediction 

performed for a new input dataset. Using the most promising identified ANN types and 

topologies, two ANN structures were investigated, one with three single output neural 

networks and another one with a single network with three outputs for predicting WWTP 

performance indices: aeration energy, effluent quality and pumping energy. The 

analytical model and the two ANN structures were used in the study of the aeration 

optimization of the WWTP, for finding the optimal air distribution in the aerated reactors. 

The obtained results were tested and compared taking into account the performance index 

values as well as the required computation time. The developed ANN models showed 

similar results to the FPM in terms of performance indices, while the required 

computation time was reduced by several orders of magnitude. 
 

Keywords: artificial neural network, wastewater treatment plant model, aeration 

optimization 

1. Introduction 

Artificial Intelligence (AI) techniques are gaining popularity in Waste Water Treatment 

Plant (WWTP) modelling, optimization and control due to their simplicity compared to 

the analytical models. The well-known Activated Sludge Models (ASMs) describe tens 

of subprocesses, leading to numerous model components and coefficients [1-4]. Relying 

on the complex ASM models used in operation optimization of the WWTP proves to be 

a demanding task for the model development [5], but also for the computing resources 

and time [6]. AI techniques present an alternative approach, as they have proved their 

applicability in the field of chemical and environmental engineering [7]. ANNs are widely 

used to develop data-driven models, and these networks are capable of modeling 

nonlinear processes, such as those specific to the WWTP, and also show adequacy for 

forecasting or classification tasks [8]. 

Several studies focused on developing ANN models for applications in WWTP 

modelling. Such networks determined the required alum dosage [9], or estimated plant 

costs [10]. ANN modelling was used in various areas of WWTP modelling, the focus 

being on effluent modelling and prediction. These studies successfully emerged in models 

capable of accurate predictions of the effluent variables, such as: Total Suspended Solids 

1399

http://dx.doi.org/10.1016/B978-0-323-95879-0.50230-7 



 1376 

(TSS) [11]; Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD) [12]; 

and pH, total nitrogen and COD [13]. Control of the effluent COD level was also 

implemented using ANN based predictions [14]. The aforementioned steady-state studies 

revealed that most often a simple ANN structure is sufficient in providing accurate results. 

The studies regarding the implementation of dynamic neural networks for prediction the 

dynamics of the WWTP effluent variables are scarcer, a representation being the network 

developed for the diagnosis of a biological wastewater treatment process that removes 

organic carbon residuals [15]. Another research showed that recurrent neural network 

models (RNN) are suitable for working with time series data and temporal changing 

behavior [16].  

This work proposes to design, train and use the most suitable dynamic ANN model for 

the purpose of WWTP aeration optimization. 

2. Methodology 

The basic data and methods used for the development of the ANN models is shown next.  

2.1. Data collection and ANN structure 

Multiple ANN types were studied with the aim of finding the most efficient networks to 

be used for making predictions. Based on the proposed training methodology and best 

ANN results, new ANN models can be directly developed using exclusive industrial plant 

data. The data used for training was obtained from simulations with a calibrated FPM of 

a municipal WWTP, based on ASM1 (first from its family). Dynamic simulations on 458 

days provided the database for the development of ANNs and data were collected with a 

sampling time of 0.5 hours. Simulation scenarios were selected using a full factorial 

Design of Experiment method, having 4 levels for each of the three gain factors of the air 

flowrate distribution in the aerated reactors, and resulting in a total 64 different simulation 

scenarios. This approach provided a statistically comprehensive training dataset. 

The following WWTP influent variables (as mean values during each sampling period) 

were taken from plant measurements: chemical oxygen demand (COD), NH4
+ & NH3 

nitrogen (NH) concentration, volumetric flow (Q) and temperature (T). The outputs of 

the networks were chosen as the three WWTP performance indices: aeration energy (AE), 

effluent quality (EQ) and pumping energy (PE), computed according to equations (1)-(3).  

𝐴𝐸𝑖 =  
𝑆𝑂𝑠𝑎𝑡

1.8∙1000∙𝑡𝑠
∙ ∫ ∑ 𝑉 ∙ 𝐾𝐿𝑎(𝑡)𝑑𝑡

𝑡𝑖

𝑡𝑖−1
             (1) 

𝐸𝑄𝑖 =
1

1000∙𝑡𝑠
∙ ∫ [𝑃𝑈𝑇𝑆𝑆(𝑡) + 𝑃𝑈𝐶𝑂𝐷(𝑡) + 𝑃𝑈𝐵𝑂𝐷(𝑡) + 𝑃𝑈𝑇𝐾𝑁(𝑡) + 𝑃𝑈𝑁𝑂(𝑡)] ∙ 𝑄𝑒(𝑡)𝑑𝑡

𝑡𝑖

𝑡𝑖−1
    (2) 

𝑃𝐸𝑖 =
1

𝑡𝑠
∙ ∫ [0.004 ∙ 𝑄𝑁𝑅(𝑡) + 0.008 ∙ 𝑄𝑅𝐴𝑆(𝑡) + 0.05 ∙ 𝑄𝑤(𝑡)]𝑑𝑡

𝑡𝑖

𝑡𝑖−1
           (3) 

The AE index is calculated based on the oxygen transfer coefficient (KLa), the volumes 

of the aeration tanks (V) and the saturated oxygen concentration (SOsat). The EQ index 

considers for computation the effluent concentration of total suspended solids (TSS), 

COD, biological oxygen demand (BOD), total Kjeldahl nitrogen (TKN), nitrate and 

nitrite nitrogen (NO) concentration and effluent flow rate (Qe). The PE is computed based 

on the nitrates recirculation (QNR), return activated sludge (QRAS) and waste (Qw) flow 

rates. The performance indices were computed at each point in time ti by integration over 

period ti-1 to ti and considering the sampling time ts. Two main structures were designed 

for each type of investigated ANN, one multiple input multiple output (MIMO) structure 

with a single network trained to predict all outputs and a multiple input single output 

(MISO) structure with 3 parallel networks, each trained for predicting one of the ANN 

outputs. Three ANN types were considered: Time Delay Neural Network, Recurrent 

Neural Network and Generalized Regression Neural Network.  
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2.2. ANN type and architecture 

All of the investigated networks were trained using past and present data to obtain suitable 

models for time-series prediction. In each case, the inputs for point ti in time consisted of 

the influent variables and output(s) past values, from points ti-12 to ti-1 in time, and the 

influent parameters at point ti in time. They served to compute the output(s) at point ti. 

2.2.1. Time delay neural network 

Time Delay Neural Networks (TDNNs) are feed-forward neural networks that have a so-

called tapped delay line block between the inputs and the first hidden layer, allowing the 

networks to work with data from several past time moments. In our study the number of 

sampling time delays for the input data was chosen as 12. The dataset was divided into 

three separate subsets: training, validation and testing subsets. The training subset 

amounted to 70% of the total data, while the other two subsets amounted to 15% each. In 

order to find the best ANN architecture, the number of hidden layers and the number of 

neurons in each of the hidden layers were varied. 

2.2.2. Recurrent neural network 

Recurrent Neural Networks (RNNs) have a similar construction to the above mentioned 

TDNNs. These networks also contain the tapped delay line. However, the subset of inputs 

consisting in the past values of the outputs is directly fed by feedback from the network’s 

own outputs. In this case only the number of neurons in the hidden layer was varied. The 

dataset was also divided in 70% used for training, while 15% and 15% was used for 

validation and testing. 

2.2.3. Generalized regression neural network 

The Generalized Regression Neural Networks (GRNNs) have two layers. The first one is 

a radial basis layer, while the second is called a special linear layer. The weights of the 

input layer consist in the transposed matrix of the input training dataset, while the weights 

matrix of the second layer is the matrix composed of the target training vectors dataset. 

As a result, this type of ANN is easily developed and has very good function 

approximation performance. The available data was divided in two subsets, 70% for 

training and 30% for testing. The GRNN spread parameter was varied from 0.1 to 2. 

2.3. Selection criteria for the best ANN models 

Two criteria were taken into consideration when selecting the best ANNs: the coefficient 

of determination (R2) and the mean squared error (MSE). At the testing step they were 

used to select the best model from the different explored topologies. Then, these networks 

were used for predicting the performance indices for the next 7 days, using a new and not 

yet known set of ANN input data. In this process, the developed networks worked 

similarly to RNNs, i.e. their own computed outputs were used as inputs for the next time 

step prediction.  

For this comprehensive testing procedure, all of the models were evaluated again for the 

prediction performance by calculating the R2 and MSE given in equation (4), in order to 

assess the fit between the ANN predicted outputs and targets: 

𝑀𝑆𝐸 = ∑
(𝑥𝑖−𝑦𝑖)2

𝑁

𝑁
𝑖=1         (4) 

where N is the number of data points, yi is the desired output and xi is the model output. 

2.4. Optimization procedure 

The optimization aims to find the optimal gain factors values for the airflows entering the 

three aerated reactors, taking into account the general objective function consisting in the 

sum of the averages of the three WWTP performance indices (AE, EQ, PE). 

ANN design, training and optimization were carried out using Matlab and Simulink software 

environment. 
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3. Results and Discussion 

3.1. ANN type and architecture 

The results of the ANN model performance and selection criteria based on R2 and MSE 

are presented in Table 2, both for the testing and prediction steps.  

Table 2. Testing and prediction performance of the ANN models 

ANN 

topology 

No. of 

hidden 

layers 

Output 
Testing 

step 

Prediction 

step 

      R2 MSE*10-3 R2 MSE*10-3 

TDNN 1 AE 1.00 10.7 0.91 169 

TDNN 1 EQ 1.00 0.16 0.93 1144 

TDNN 1 PE 1.00 4.57E-04 0.96 2.83 

TDNN 1 All 1.00 3.78 0.99 906 
RNN 1 AE 0.99 32.0 0.97 75.3 
RNN 1 EQ 1.00 1.77 0.89 2199 
RNN 1 PE 1.00 0.21 0.82 21.8 
RNN 1 All 1 18.55 0.99 587 
TDNN 2 AE 1.00 12.5 0.94 113 
TDNN 2 EQ 1.00 0.11 0.93 1199 
TDNN 2 PE 1.00 3.21E-04 0.97 2.43 
TDNN 2 All 1.00 3.87 0.97 1893 
GRNN 2 AE 0.97 128 0.94 159 
GRNN 2 EQ 0.97 381 0.92 1319 
GRNN 2 PE 0.99 0.54 0.93 13.8 

GRNN 2 All 1.00 166 0.99 477 

3.1.1. Time delay neural network 

In case of the TDNN models with a single hidden layer, the number of hidden neurons 

was varied from 2 to 20. The 7-16-1 network proved to be the best from all of the MISO 

models for predicting EQ. 

For the TDNN with 2 hidden layers the number of hidden neurons were varied from 1 to 

15 for each layer. This 7-15-15-1 MISO architecture showed the best prediction results 

for PE, among all the designed and trained networks. 

3.1.2. Recurrent neural network 

The number of neurons of the hidden layer was varied from 2 to 20. In this case the best 

ANN model had 10 neurons and it presented the best results at the prediction step for AE. 

3.1.3. Generalized regression neural network model 

At training, the spread design parameter was varied from 0.1 to 2 by increments of 0.1. 

The best prediction results were achieved for the MIMO model with 0.7 value of the 

spread. 

3.2. Selection criteria for the best ANN 

Selection of the best networks was based on the R2 and MSE results at the prediction step. 

Accordingly, the best MISO architecture was the one of the RNN type for AE prediction, 

the TDNN type with one hidden layer for EQ prediction, and the TDNN type with two 

hidden layers for the PE prediction. When all AE, EQ and PE aggregated indices were 

considered, the GRNN with multiple outputs showed the best results and this architecture 

was chosen as the MIMO model to be further used. The ANNs prediction and target series 

are shown in Figure 1 for the three best MISO (3MISO) and MIMO models respectively. 

It can be observed that MISO ANNs perform better at predicting the AE and PE values, 

while both MISO and MIMO ANN structures perform similarly for EQ prediction.  
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Figure 1. ANN predictions and targets for a) 3MISO and b) MIMO models 

3.3. Optimization procedure 

Optimization of the WWTP aeration was carried out for three different cases. The 

objective function was the sum of the averages of the WWTP performance indices for the 

investigated time period of 7 days, as shown in eq. (5).  

𝑓𝑚𝑖𝑛 =
∑ 𝐴𝐸𝑖

𝑁
𝑖=1

𝑁
+

∑ 𝐸𝑄𝑖
𝑁
𝑖=1

𝑁
+

∑ 𝑃𝐸𝑖
𝑁
𝑖=1

𝑁
      (5) 

The optimization was performed for each of the three different cases using NOMAD 

algorithm [17]; firstly, with the FPM, secondly with the best ANN 3MISO models, and 

lastly with the best GRNN MIMO model. The WWTP performance simulation results 

with the optimized air distribution gain factors, for each of the cases, were compared and 

the computation times (Compt. time) for optimization is also shown in Table 2. 

Table 2. Optimization results 

Model 

Case 

Gain

1 

Gain

2 

Gain

3 

Compt. 

time [s] 

AE 

[kWh/day] 

EQ 

[kg/day] 

PE 

[kWh/day] 

FPM 0.80 0.41 0.38 56,460 16,616 16,572 1,602 

3MISO 0.80 0.40 0.34 3.554 16,791 16,474 1,560 

MIMO 0.95 0.40 0.40 1,719 16,794 16,473 1,584 

All three types of models led to similar results. The structures based on ANNs succeeded 

to reduce the EQ and PE indices, while the FPM found the best solution for reducing the 

AE index. But notably, we may observe that the differences in computation time are much 

more significant than those of the WWTP performance indices. While the optimization 

took nearly 16 hours using the FPM, it concluded in a few seconds employing the 3MISO 

model, and took about half an hour for the MIMO structure. The difference in the 

computation time between the ANN structures can be attributed to the differences in their 

construction. TDNNs and RNNs were implicitly designed to work in a recurrent design, 

while this was added for the GRNNs as a extra task at each iteration. It is also worthy to 

mention the downside of the TDNNs and RNNs consisting in the typically large time 

duration needed for their training, when compared to the much faster training of GRNNs. 

4. Conclusions 

In this paper, the design and training ANN dynamic models for predicting the WWTP 

AE, EQ and PE performance indices are presented, with the aim to be further used for 

optimization of the WWTP aeration. Two ANN structures were taken into consideration, 

a mix of three different types of networks which showed the best results for the single 

a) b) 
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output predictions and the network that had the lowest error values when predicting all 

three WWTP performance indices. The R2 of the designed ANNs was in the range of 

0.93-0.99 and demonstrated very good prediction accuracy. Optimization performed 

using these ANN models revealed similar results to those obtained using the first principle 

analytical model. But the duration of the optimization time is dramatically reduced when 

ANN models were used. The MIMO structure was more than 30 times faster, while the 

optimization based on the 3MISO structure finished more than four orders of magnitude 

faster. The results prove the potential and applicability of these ANN models for the real 

time WWTP optimization aiming its operation improvement. 
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Abstract 
Among the high-dimensional methods for process monitoring, the most widespread and 

researched are those belonging to the class of latent variable approaches. As more 

variables are continuously gathered, the existing latent variable methods start to 

experience difficulties in maintaining their good monitoring properties. Of particular 

importance is the decreased sensitivity in detecting localized faults through the Q statistic 

as the accumulation of residuals over a very large number of variables masks the 

deviations due to faults affecting one or a small number of sensors. To overcome this 

limitation, we propose the use of the truncated Q statistic. This statistic has the ability to 

identify the relevant residuals before summing them, by comparing their magnitude 

against a statistically motivated allowance threshold. Only the residuals beyond the 

threshold are kept and used to compute the truncated Q statistic (this step is then repeated 

for each new observation). The performance of the proposed statistic was analyzed 

through Monte Carlo simulations of several latent variable processes with 5 000 to 20 000 

variables. Process monitoring was performed by replacing the Q statistic in the standard 

combination of T2 & Q of MSPC-PCA, but other latent variables monitoring methods can 

benefit from this proposal as well. The results obtained clearly show that MSPC-PCA 

with the truncated Q statistic becomes much more sensitive than the original formulation; 

for instance, it can detect faults with a magnitude of 2 standard deviations more than 90 % 

of the times, whereas MSPC-PCA with the standard Q statistic only detected faults with 

a magnitude of 4 standards deviations less than 40 % of the times. This methodology was 

also applied in a real world process to monitor more than 17 000 variables associated to 

printed circuit boards (PCB) produced by Bosch Car Multimedia Portugal. For this case 

study, the proposed truncated Q statistic was able to identify 17 abnormal PCBs while the 

standard Q statistic only detected 5 PCBs. 
 
Keywords: Statistical Process Monitoring; Latent variables; High-dimensional 

processes. 

1. Introduction 
As the number of monitored variables increases, the classic Statistical Process Control 

(SPC) methodologies start to lose sensitivity in detecting localized faults. This is more 

critical for the residual statistics since they accumulate the model’s residuals over a very 

large number of variables, which effectively raise their basal level during normal 

operation conditions. Thus, faults are only detectable if they surpass not only the normal 

operation variation of the faulty variables, but also the sum of all irrelevant residuals, 
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which may be considerably high in very high-dimensional systems. To address this

limitation, we propose the use of a truncated Q statistic that, for each new observation,

screens for the relevant residuals before summing them.

This problem is here illustrated for the Q statistic of principal component analysis

(MSPC-PCA) (Jackson et al., 1979, Jackson, 1959) since it is the most well-know and

widespread methodology. Nevertheless, the proposed methodology can also be applied

to other methods such as those based on artificial intelligence (Y in et al., 2019, Y an et

al., 2019) or machine learning (Lee et al., 2020, Ge et al., 2017, Rato et al., 2017).

Furthermore, the Q statistic of MSPC-PCA is equivalent to other residual statistics, such

as the Tr statistic of canonical variate analysis-based monitoring (Jiang et al., 2015), the

CVD index of Canonical variate dissimilarity analysis (Pilario et al., 2018), the SPE

statistic for (non-linear) manifold-based SPC (Li et al., 2015), and the SPE statistic for

nonlinear process monitoring based on kernel global-local preserving projections (Luo et

al., 2016). As the proposed methodology effectively screens for the relevant residuals

before applying the standard monitoring statistic, any monitoring methodology based on

the analysis of residuals may potentially benefit from this proposal.

The rest of this paper is organized as follows. In Section 2, the proposed truncated Q
statistic is described. In Section 3, the results for two case studies are presented and

discussed. Finally, a summary of the conclusions is provided in Section 4.

2. Methodology
The standard Q statistic of MSPC-PCA directly sums the squared residuals over all

variables. Thus, for very high-dimensional systems, deviations in a single sensor or a

small set of sensors can be masked by the noisy residuals generated by normal variables.

Instead of summing all residual, it is here proposed to screen, in each observation, for the

relevant residuals, namely using a proper threshold,  . Afterwards, only the residuals

that were found to be relevant are used to build the so-called truncated Q statistic.

To define the subset of relevant residuals, they are first standardized as:

,

NOC
j j

j NOC
j

e e
e

s




j j

j NONON

ejej ejejejej s


 (1)

where, je je is the standardized residual for the j-th variable,
NOC
je and

NOC
js are the sample

mean and standard deviation of the j-th residual under normal operation conditions.

Afterwards, the absolute value of the standardized residuals is compared against a

threshold and those found to be below it are set to zero. Therefore, they will not impact

the value of the truncated Q statistic. The threshold can be defined by the user. We

propose to set 3  , representing the typical “3-sigma” limits (Cinar et al., 2007). As the

significant residuals (in absolute value) are always larger than  , they are further

corrected by subtracting this constant. This operation is analogous to that performed by

the cumulative sum (CUSUM) control chart (Montgomery, 2008), and corresponds to

save only the deviations beyond an allowance threshold. The aforementioned operations

can be performed through a soft thresholding function  x with parameter  :

 
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if ,

0 if

x x

x x x
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Following these definitions, the truncated Q statistics is computed as:

  
2

1

,
m

j
j

Q e



  
2

,je jej (3)

where m is the number of variables. The control limits for Q
can be determined by

adjustment of the empirical distribution obtained from normal operation conditions or by

a kernel density estimator.

3. Results

3.1. Simulated Case Study
To evaluate the performance of the proposed truncated Q statistic, a series of very high-

dimensional processes were simulated. For each process, a matrix of measured data (X)

is generated through a latent variable structure defined by,

T ,s X TA E (4)

where T is a (n × p) matrix of latent variables, A is a loadings matrix with orthogonal

columns randomly generated, E is a (n × m) matrix of residuals and s is a scaling factor.

Furthermore, n is the number of simulated observations, m is the number of variables and

p is the number of latent variables. In this study, T and E are generated through random

realizations of the standard normal distribution. The scaling factor (s) is tuned so that the

error component represents about 5 % of the total variation of X.

The data generation procedure was run with p = 10 latent variables and for four very high-

dimension process with 5 000, 10 000, 15 000 and 20 000 variables (m). For each of the

four very high-dimension scenarios, the data generation procedure was repeated 100

times. In each replicate, a calibration dataset with 1 000 observations is generated to train

the PCA model. Similarly, a validation dataset with another 1 000 observations is

generated to establish the control limits of the monitoring statistics.

Faulty datasets with 1 000 observations each were generated by introducing a step

deviation in the first variable of the measurement matrix (i.e., on the first column of X).

The magnitude of this fault is defined as k times the in-control standard deviation of the

affected variable. Note that since the loading matrix is randomly generated, the index of

the affected variables has no consequence. Faults are generated for k between 1 and 10.

For each fault, the true positive rate (TPR) was computed as the number of faulty

observations correctly declared as an alarm by either of the monitoring statistics, divided

by the total number of faulty observations.

Two monitoring schemes are considered in this study. The first monitoring approach

corresponds to the standard implementation of MSPC-PCA and is composed by the

standard T2 & Q statistics. In turn, the second monitoring scheme uses the T2 to monitor

the score subspace and the proposed truncated Q statistic to monitor the residuals

subspace. Both monitoring schemes were set to an overall false detection rate of 1 % .

The average TPR along with their interquartile range are represented in Figure 1. These

results clearly show that the truncated Q statistic leads to significantly higher TPR,

regardless of the number of variables involved. In all cases, the proposed monitoring

scheme can detect faults with a magnitude higher than 2 standard deviations. In contrast,

the standard monitoring scheme only detects faults with 4 standards deviations less than

40 % of the times. In other words, faults with a magnitude twice as large are detected less

than half of the times. It is also observed that the sensitivity of the standard monitoring

scheme decreases with the increase of the number of monitored variables.
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
Figure 1 True positive rate (TPR) for processes with: (a) 5 000 variables; (b) 10 000 variables; (c) 

15 000 variables; (d) 20 000 variables. 

To exemplify the masking effect caused by summing several (irrelevant) residuals, the 

residuals obtained for a process with 20 000 variables with a fault of k = 1 standard 

deviation in one variable is represented in Figure 2. From visual inspection of Figure 2 (a) 

it is verified that the residual of the faulty variable is completely undistinguishable since 

several unaffected variables have either similar or even higher residuals. By summing the 

squared residuals, it is further verified that the contribution of this variable to the Q 

statistic is less than 0.1 %. 
(a) 

 
(b) 

 

Figure 2 Residuals for a deviation of k = 1 standard deviation in the 1 000th variable (marked 

with a circle) for a process with 20 000 variables: (a) original residuals used by the Q statistic; (b) 

truncated residuals used by the truncated Q statistic. 
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On the other hand, with the proposed truncated Q statistic, the truncated residuals 

presented in Figure 2 (b) are obtained. In this case, the PCA residuals are firstly auto-

scaled by their in-control sample mean and sample standard deviation. Afterwards, the 

allowance threshold is subtracted from the scaled residuals. The truncated residuals lower 

than zero (i.e., bellow the allowance threshold) are set to zero. Following these operations, 

the irrelevant residuals are removed from analysis, while the fault’s effect is highlighted. 

In this case, the contribution of the faulty variable to the truncated Q statistic is 45.6 %. 

Therefore, the fault has a significantly higher contribution to the monitoring statistic, 

which in turn improves the detection capability. 

3.2. Real Case Study: Monitoring of Printed Circuit Boards 
To further validate the proposed methodology, it was applied to an industrial Surface 

Mount Technology (STM) process of Bosch Car Multimedia Portugal. The process 

concerns the printing of solder paste deposits in copper pads of printed circuit boards 

(PCB). In this process, each PCBs has 3 507 copper pads and measurements for the (i) 

area, (ii) height, (iii) volume, (iv) offset in the x-coordinate and (iv) and offset in the y-

coordinate are taken for each solder paste deposit. Therefore, each PCB comprises 

17 535 variables. 

The dataset used in this case study is composed by 3 747 PCBs. Most of these PCBs are 

within specifications, but a few of them have significant deviations. A training dataset 

was built by randomly selected 2 000 normal PCBs from the raw dataset. This dataset 

was split into a calibration dataset and a validation dataset with 1 000 PCBs each. The 

calibration dataset was used to train the PCA model, while the validation dataset was used 

to set the control limits of the monitoring statistics. The control limits were determined 

by takin the (1 - α/2) × 100 % upper percentile of each monitoring statistic computed on 

the validation dataset. The significance level α was set to 0.01. The remaining 1 747 PCBs 

were used as a test dataset. 

The test dataset was monitored by the standard of T2 & Q of MSPC-PCA, and the 

proposed T2 & Q∆. The obtained Q and truncated Q statistics are presented in Figure 3. 

From these results it is verified that the standard Q statistic only detects 5 PCBs as faulty. 

On the other hand, the proposed truncated Q statistic signals 17 PCBs as abnormal. These 

detections include 3 PCBs there were already detected by the Q statistic and 14 additional 

PCBs that were not detected before. In turn, 2 of the PCBs detected by the Q statistic are 

considered normal by the truncated Q statistic. These PCBs have relatively low deviations 

in a few pads, and even the standard Q statistic is only slightly above the control limits 

(see PCBs #518 and #1046 in Figure 3 (a)). Therefore, it is concluded the truncated Q 

statistic led to a significant improvement in the detection of faulty PCBs. 

  
(a) (b) 

Figure 3 Monitoring statistics for the real case study: (a) Q statistic; (b) truncated Q statistic. 

1409

The truncated Q statistic for Statistical Process Monitoring of 
High-Dimensional Systems

1385



 1386 

4. Conclusions 
The standard Q statistic of MSPC-PCA is prone to sensitivity deterioration as the number 

of monitored variables increases. This is a consequence of summing the contributions of 

irrelevant residuals, raising the basal level of the Q statistic and masking the deviations 

due to faulty variables. To address this limitation, it is proposed to screen for the relevant 

residuals in each observation and then build a truncated Q statistic using only the relevant 

residuals. This methodology was tested on a Monte Carlo simulation study and a real case 

study from an industrial Surface Mount Technology (STM) process. The results show 

that MSPC-PCA with the truncated Q statistic is much more sensitive than the original 

formulation, leading to the detection of 14 additional PCBs that were not signaled by the 

standard Q statistic in the real case study. 

The proposed methodology is expected to also improve the detection performance of 

other monitoring methodologies that monitor the residuals of high-dimensional processes. 
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Abstract
In this paper we present a study for the development of a predictive emission monitoring sys-
tem (PEMS) through hybrid modeling. The system was built by coupling a thermodynamic
equilibrium model based on the minimization of the Gibbs energy and machine learning (ML)
models, such as artificial neural networks (ANN) with different architectures, supporting vector
machines (SVM), decision-tree ensembles using histogram-based gradient-boosting (HGB) algo-
rithms, among others. The ML models were trained with real operation data of a gas turbine from
one of the three largest thermoelectric power plants in Brazil. The main goal of this study was
to generate accurate NOx prediction models in order to replace the current continuous emission
monitoring system (CEMS) in operation. In the hybrid framework, the data-driven models were
used to estimate the error of the theoretical model, then, the prediction of pollutant levels was
made by the sum of both results. An analysis was made with 6,513 samples split between training
and validation sets. Three key performance indicators: (i) maximum absolute error (MAE), (ii)
average relative error (ARE) and (iii) the correlation coefficient were evaluated and the results
have shown that the hybrid approach can be overall more accurate than the single models alone, at
least for the gas turbine in study.

Keywords: PEMS, Machine learning, Hybryd models, Gas turbine

1. Introduction

The climate change debate has promoted a growing collective awareness about the impacts of
emissions on the quality of life in general population. Because of that, many governments have
created legislation mechanisms in order to monitor, reduce or even prevent the accumulation of
environmental hazardous gases in the atmosphere. In this context, stationary emission sources
such as thermoelectric power plants are targeted and rigorous monitoring methodologies based
on expensive gas analyzers, known as continuous emissions monitoring system (CEMS), have
been implanted on site. In order to mitigate those economic impacts, nowadays many countries
have regulations for the implementation of virtual monitoring approaches such as the predictive
emissions monitoring system (PEMS), a model-based software that can estimate emission levels
using common measured process variables, as a less expensive alternative to the CEMS technology
(Hadjiski et al., 2005).
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Thermoelectric power plants, which, in most cases use natural gas as fuel in gas turbines, still
represent around 8.3% of the overall Brazilian power generation. The main concern of local
environmental agencies is the release of greenhouse gases to the atmosphere, such as the CO2, and
other pollutants as the NOx. Because of that, the national air quality control program (PRONAR)
establishes the emission tolerance levels and requires their constant monitoring.

Many successful case studies of PEMS application, mostly using data-driven models, have already
been presented in literature, a full-detailed review can be found in Si et al. (2019). However,
the major challenge that still persists is the (high) dependence on industrial data for the model
development. In many plants, for example, it is impossible to collect an ideal and rich data-set due
to safety and operational constraints or even a flawed controlling system.

Despite being a low-complexity equipment, gas turbines have several design specifications that
vary according to each manufacturer. Because of that, most of the commercially available PEMS
use data-driven models in their conception (Allaire et al., 2007). It is undeniable that data-driven
models such as neural networks are, by far, easier to obtain and to use in real-time industrial pro-
cesses than first-principles ones. However, the quality of the prediction system becomes strongly
dependent on the quality of the data used in the modeling. This could be a problem, especially in
poorly instrumented factories where data reliability is a real issue.

We present, in this work, a hybrid approach for the NOx emission modeling in a gas turbine
fed with natural gas from a large thermoelectric industrial unit. This approach is based on the
coupling of: (i) a thermodynamic equilibrium model obtained through the minimization of Gibbs
free energy of the combustion reaction system; and (ii) machine learning models such as neural
networks of several architectures, supporting vector machines, and decision-tree ensembles used
to predict the phenomenological modeling error. Those ML models were built with a limited set
of real operation data, as described in the following section. A more detailed review on hybrid
modeling can be found in Sansana et al. (2021).

2. Methodology

2.1. The case study

The present case study focuses on a single gas turbine from the Termorio power plant, which has
a total production capacity of 1,058 MW. The gas turbine in analysis operates around 100 MW
through a combined cycle (see Figure 1), that is, the residual heat from the natural gas combustion
is recovered in a boiler to produce steam. Then, the steam is sent to a steam turbine generating
additional power. In this particular case, there is no supplementary combustion in the boiler.

Figure 1: Combined cycle for power generation.
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2.2. Thermodynamic model

The Gibbs free energy minimization is a classic approach for equilibrium calculations in chemical
reactions. The problem can be formulated as

min
n∈N

G(T,P,n) (1)

subject to the following equality constraints, corresponding to the atomic balances:

∑
j

ai, j(n j−n f , j) = 0 (2)

where G is the Gibbs free energy, T and P are the temperature and pressure in the combustion
chamber, n is the equilibrium composition (in moles), n f , j is the feeding composition, and ai, j are
the coefficients of the atomic balances matrix; i represents an atom in a species j. The optimization
problem in Equations (1) and (2) can be solved with the Lagrange multipliers method, resulting in
the non-linear algebraic problem (Smith et al., 2001):

[
ΔGo

f , j +RT ln(φ j)+∑i λiai, j

∑ j ai, j(n j−n f , j)

]
= 0 (3)

where ΔGo
f , j is the Gibbs free energy of formation of the species j calculated from the database

available in McBride et al. (2002), φ j is the fugacity coefficient calculated by the SRK equation
of state, and λi are the Lagrange multipliers. The system in Equation (3) was implemented in the
process simulator EMSO (Soares and Secchi, 2003).

2.3. Machine learning models

Figure 2: Structured neural network used within
the hybrid modeling framework.

Several machine learning models were used
within the hybrid modeling framework. They
were built considering the same ten input vari-
ables (features): (i-ii) temperature and pres-
sure; (iii-vii) the fuel composition (methane,
ethane, propane, nitrogen and CO2); (viii) fuel
flow rate; (ix) overall flue gas flow rate; and
(x) output turbine power. The predicted output
variable (label) is the NOx concentration in the
flue gas. It is worth pointing out that each ar-
chitecture was trained 10 times, and only the
best results of each kind were used for results
comparison.

A total of 6,513 sampling points split between
training and validation sets were used. The
data were obtained directly from the indus-
trial unit data historian within the period from
Jan/2015 to Dec/2015. A minor data cleaning
was performed to remove inconsistent sam-
ples. The training set was created with the first 70% of the samples (January to mid-September),
and the validation set with remaining 30% (mid-September to December).

Among the different ML models, we highlight the structured neural network (SNN) in Figure 2.
The SNN has two hidden layers, each one with 10 and 9 nodes, respectively. Because the turbine
output power is strongly correlated with the NOx concentration, we chose to bypass the hidden
layers and connect it straight to the output layer, thus, giving more weight and relevance to the
neural network parameters associated with this input. The SNN was built in Python with the
PyTorch library.
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2.4. Hybrid model

The hybrid model architecture is presented in Figure 3. In this framework, the ML models are used
to make predictions on the phenomenological modeling error, instead of the NOx concentration
itself. Then, the output of both models are combined in order to make the actual prediction:

ypredicted = ymodel +σML (4)

Figure 3: Architecture of the hybrid model predictor.

The model was built in two steps:
(i) the thermodynamic simulations
to obtain the baseline prediction (us-
ing only the information on the input
variables); and (ii) the ML training
with the same input variables, and
the modeling error as the output vari-
able.

2.5. Accuracy evaluation

Three main performance indicators
that are required by the US legisla-
tion were used to evaluate overall ac-
curacy of the models, which are: the
maximum absolute error (MAE)

MAE = max
i∈[1,N]

(|yp,i−ym,i|) (5)

The average relative error (ARE)

ARE =
1
N

N

∑
i=1

|yp,i− ym,i|
ym,i

(6)

and the correlation coefficient (CC)

CC =
∑N

i=1(yp,i− ȳp)(ym,i− ȳm)√
∑N

i=1(yp,i− ȳp)2
√

∑N
i=1(ym,i− ȳm)2

(7)

where yp and ym are the predicted and the measured values, respectively, and N is the number of
samples.

3. Results and Discussion

The time window with the training and test data sets used for the ML models is presented in
Figure 4. The data was split congruently because our main concern was the extrapolation potential
of such models, and not the interpolation one. The prediction results for all of the models using
the test set are presented in Figures 5 and 6 for: (a) the Gibbs model; (b) a neural network like
the SNN, but without the bypass; (c) the SNN; and (d) the hybrid model coupling Gibbs and
SNN models. The performance indicators are presented in Table 1. It can be seen, in the time
series of Figure 5, that the hybrid model (5d) can capture better the data tendency in comparison
with the other models (5a-5c). The accuracy can be more easily perceived in the histogram of
Figure 6, as one can observe that the distribution of the absolute errors for the hybrid model is
more concentrated in the range of 0 to 1 ppm than the other models.
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Figure 4: Training and test data sets.

Table 1: Performance indicators for some
of the built models1.

Model MAE ARE (%) CC (%)

Gibbs 5.26 6.30 21
SVM 5.77 5.94 19
HGB 4.20 6.19 64
NN 4.08 4.20 27
SNN 3.87 4.01 54
Hybrid 3.62 3.91 69

Figure 5: NOx predictions: Time series for (a) Gibbs model, (b) Neural network model, (c)
Structured neural network model, and (d) Hybrid model (Gibbs + SNN).

Those results show that the Gibbs model, despite being oversimplified, can describe reasonably
well the levels of NOx concentration, even though it has no estimated parameters, with an average
error of 6.3%. However, it cannot capture the modulation of the output variable (it has a correlation
of only 21%). This is probably due to the existence of three-dimensional temperature gradients
inside the combustion chamber, forming different equilibrium regions, while only one temperature
is specified on the model (the turbine output temperature).

Analyzing the two neural networks, we can see that the bypass used in the SNN improved its pre-
diction capacity (its error is 5 to 6% smaller). The main reason for SNN’s increased performance
is that the parameters associated with the most correlated variable has more meaning, as the phys-
ical relation between the input and output is more preserved, improving the network awareness, as

1Due to the lack of space, additional results for the SVM and HGB models will not be discussed in this paper.
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shown by the correlation coefficient that is twice the NN’s value.

Figure 6: Histogram of the absolute errors for the analyzed models.

Then, we have the hybrid model using the SNN, which was chosen for being the best tested ML
model. It can be seen that it is more accurate than the models alone, reducing the SNN’s MAE
by 6% and Gibbs’s by 32%. However, the greatest improvement is in the correlation coefficient,
that is three times higher than Gibbs’s and 27% better than the SNN’s. Although those correlation
values can still be considered low, taking into account the high quantity of noise in data and the
low variability in the turbine’s range of operation, the results obtained so far are very promising,
as the errors are also low, and visually the model can represent data tendency.

4. Conclusion
A hybrid approach for the modeling of NOx emissions on gas turbines was presented. The hybrid
predictor built with neural networks and thermodynamic equilibrium equations proved to improve
the overall accuracy of each model considered alone, having errors up to 37% smaller and correla-
tion coefficient up to three times higher. The quality of the industrial data is a key factor to improve
the prediction potential, as the low variability and high quantity of noise reduce the quality of the
data-driven modeling.
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Abstract 

Artificial intelligence-based models (AI) and in particular Graph Neural Networks (GNN) 

are considered a more promising approach for modeling molecular properties compared 

to the use of traditional descriptor-based models due to their enhanced ability to express 

the structural information and their ability to better generalize to unseen data. However, 

their 'black box' nature and the lack of transparency and interpretability could hinder their 

wider acceptance and usage. In this work, we combine knowledge-based molecular 

descriptors and two AI-based concepts, the junction tree model and the attention 

mechanism to produce an interpretable model. The model is trained on the enthalpy of 

formation of organic compounds and the insights gained are highlighted and compared to 

the insights gained from models with a higher level of interpretability such as the group-

contribution models. The results obtained show consistency with the insight gained in the 

form of the relative importance of the molecular sub-structures to the overall property. 

 

Keywords: Molecular Property Prediction, Quantitative Structure-Property Relations 

(QSPR), Machine-Learning (ML), Graph Neural Networks (GNN), Interpretability 

1. Introduction 

Integrating AI-based approaches into molecular property prediction models such as deep 

neural networks (DNN) has recently gained popularity. These models relate the structural 

information to desired property numerically are called quantitative structure-property 

relations (QSPR). An example of such a model is the graph neural network (GNN), which 

represents atoms and bonds by a set of nodes connected through edges respectively in the 

graph. However, despite these models achieving state-of-the-art for many properties, a 

major drawback is their black-box nature and the absence of interpretability. In this 

context, interpretability can be defined as insight into the relative importance of the 

molecular substructures towards the target property.  

 

The aspect of interpretability should be considered significant to the scientific 

understanding of the parts of the molecule (substructure or functional group) that 

influence a specific property and evaluate whether the insights provided from the model 

coincide with those obtained from knowledge. (Coley et al., 2017) compared molecular 

representation obtained from DNN with another known descriptor extended circular 

fingerprints (ECFP4), claiming there is a mapping relation between atoms and indices in 

representation. Accordingly, the most critical fingerprint indices can be found by 

estimating these mapping coefficients. But in classic GNN, the architecture would 

aggregate all nodes, eliminating the contributions from individual atoms. 
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The attention mechanism has since become a significant concept in neural networks, 

where importance weights are learnable through the backpropagation, enabling the model 

to focus on a specific part of the knowledge gained. (Veličković et al., 2018) successfully 

introduced a self-attention mechanism into a classical GNN, updating the target node by 

summing up neighborhood nodes with attention weights. The attention mechanism has 

also been incorporated on a graph level (molecular level) to produce a learnable readout 

function by considering the molecule as a virtual node into which all node information is 

aggregated, e.g. AttentiveFP developed by (Xiong et al., 2020). 

 

In this work, we combine the original AttentiveFP with group-fragments from the well-

known MG group-contribution models (by (Hukkerikar et al., 2012)) to build a new 

architecture with an increased prediction accuracy and with the ability to show the 

importance of each fragment simultaneously. The insights gained are then compared to 

those gained by group-contribution models where the magnitude of the group 

contribution reflects the relative importance of the groups towards the overall property. 

2. Method 

2.1. AttentiveFP 

The Attentive Fingerprint (AFP) by (Xiong et al., 2020) is employed to illustrate the 

importance of single atoms to the target property in molecule-scale. The application of 

the attention mechanism makes this model capable of calculating the weights of 

information and assigning importance to each node (atom) w.r.t. the prediction. The 

aggregation or pooling employed differs from those usually used in other GNNs (based 

on summation or min-max pooling), the predicted context 𝐶𝑙 at layer 𝑙 in AttentiveFP is 

derived from a weighted summation readout operation as seen in E.q.1. 

𝐶𝑙 =∑𝛼𝑖
𝑙 ⋅ ℎ𝑖 

(1) 

 

In E.q.1 αi
l refers to the coefficient weight of atom feature hi at layer, l contributing to the 

property prediction. The implementation of the softmax function as an activation function 

to compute attention weights, normalizes the values into a range from 0 to 1, representing 

the degree of importance of every single atom. 

2.2. Group contribution models and molecular Fragments  

Group-contribution models use an occurrence vector/matrix to represent the molecule 

where each element indicates the number of times a specific fragment/substructure is 

present in the molecule. The fragments or groups considered in this work consists of the 

first-order groups developed by (Hukkerikar et al., 2012). These fragments present no to 

little overlap and are mostly defined based on chemistry and thermodynamic knowledge 

rather than heuristics. Property models based on the group contribution model have a 

generic form as shown in Eq.2, where𝑐𝑦
(𝑥)

 and 𝑛𝑦
(𝑥)

 are the contributions and occurrence 

of group y of order x respectively. 

𝑦̂ = ∑𝑛𝑖
(1)𝑐𝑖

(1)

220

𝑖

+∑𝑛𝑗
(2)𝑐𝑗

(2)

130

𝑗

+∑𝑛𝑘
(3)𝑐𝑘

(3)

74

𝑘

 

 

(2) 

As mentioned earlier, the first-order groups defined are the most knowledge-rooted 

groups out of all three scales (orders). If one specific motif (or group) has higher 

contributions to the target property, it is fair to assume that this group is overall more 

important compared to other present groups. The values of contributions are accessible in 

1418



On The Interpretability of Graph Neural Networks in QSPR Modeling  1395

previous work presented by (Hukkerikar et al., 2012). Since sequential regression of the 

group orders is used to obtain the group contribution, the property is described well 

enough using the first-order groups only and the higher orders can be considered as a 

correction to the approximations gained by the first-order term. 

2.3. Junction Tree 

(Vats and Nowak, 2014) proposed the junction tree algorithm (also called 'Clique Tree') 

consisting of a method for extracting modified graphs (or sub-graphs) from an original 

graph by branching the supernodes into different smaller nodes, similar to a tree. (Jin et 

al., 2021) used this concept to build a tree-structured architecture to aggregate features of 

some particular nodes into bigger super-nodes. In this work, the fragment-based networks 

use this tree structure to build a new graph for further training, as shown in Figure 1, the 

tetranitromethane molecule can be split into four supernodes (S1, S2, S3, S4) consisting of 

their corresponding structures in the original graph. 

2.4. Architecture 

The architecture of the new model is depicted in Figure 1. The original molecular graph 

is broken down into fragments and then fed in as features into the prediction model. Here 

some prior knowledge for division is introduced to guide the fragmentation process. 

Therefore, a junction tree (tree-structured scaffold over fragments) can be generated 

automatically, where the features in supernodes and original nodes are regarded as the 

root and branches respectively during back-propagation. The prepared super nodes 

features from the first block are used as the initial states for the node features in the last 

block. Note that the features of the edge connecting each of the fragments in the original 

graph are kept as attributes of the new edge between supernodes in situ. In the last step, 

the new graphs are forwarded to an AFP block to compute the importance of each 

fragment to the predicted property. Due to the employment of prior knowledge on group 

contribution, the model is named Attentive Group Contribution (AGC) Model. Similar to 

the attentions in AFP, the atom feature hi in Eq.1 can be replaced by the fragment feature 

Si  obtained from the junction tree, thus the new attention weights αi
l can then represent 

the degree of importance of fragments instead. 

 

Figure 1: Illustration of Attentive Group Contribution (AGC) workflow for tetranitromethane 

2.5. Data 

The models were trained on the enthalpy of formation of 741 organic compounds obtained 

from the AICHE DIPPR database (Wilding et al., 2017). The property was chosen as it 

exhibits a linear trend for the homologous series and thus the relative importance of the 

group fragments obtained here can be readily compared with the relative contribution of 

these fragments in the group-contribution model developed in (Hukkerikar et al., 2012). 

2.6. Visualization 

In addition to visualizing the relative comparison between different atoms/fragments, the 

relative attention α̂ is introduced instead of weights obtained directly to overcome the 
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potential issue of bad distinction when all attention weights are lower than 0.5 and to 

account for the relative size of the molecule. 

𝛼𝑖̂ =
𝛼𝑖 − 𝛼𝑚𝑖𝑛

𝛼𝑚𝑎𝑥 − 𝛼𝑚𝑖𝑛

 
 

(3) 

αmin and αmax are the maximum and minimum of attention weights computed in a single 

molecule. A blue-red sequential color map is used to visualize the relative importance of 

atoms/ fragments to molecules, the motifs marked with red refers to high significance 

(1 > αî > 0.5) while blue tells the specific motifs are not critical (0 < αî < 0.5). Darker 

colors represent the importance closer to 0 (least important) or 1 /most important). 

3. Results and Discussion 

The models obtained all provide good predictions on the data. The R2 and mean absolute 

error (MAE) of AGC are 0.99-0.99-0.99 and 18.4-27.4-22(KJ ⋅ mol−1) respectively across 

training, validation, and testing (8:1:1 ratio). Meanwhile, the AFP achieves 0.99-0.99-

0.99 and 21.2-23.2-28.7(KJ ⋅ mol−1) respectively for the three data folds. 

 

To provide insights into the interpretability of the models, five case studies were selected 

to inspect and compare the computed importance of fragments obtained from the 

AttentiveFP model and the AGC model. These case studies include a diverse set of 

molecular families such as carboxylic acids, halohydrocarbons, benzylamines, acetylenes, 

and nitrate-esters. The visualization of atoms' importance (relative attention weights 

α̂calculated by AttentiveFP is demonstrated in Figure 2.I, while the relative attentions of 

fragments with AGC are shown in Figure 2.II. 
 

The importance weights considered are those from the final layer (in terms of the AFP 

model terminology, the last time-step), the corresponding visualization can be seen in 

Figure 2.I. The area surrounded by a dashed ellipse is the most significant group based 

on the scheme defined by (Hukkerikar et al., 2012) and will be considered in this work 

as the benchmark with respect to the importance of the fragment towards the property 

value. As seen in Figure 2.I, the AFP model fails to reproduce the fragment importance 

of the GC models for all cases. Furthermore, the atom importance of the same functional 

groups is inconsistent and changes with increasing carbon chain length for carboxylic 

acids. For instance, C=𝑂 in the carboxyl group shown in butyric acid is more important 

than the same substructures in acetic acid and propanoic acid, despite only adding CH2 to 

the molecules, unlike the true insights of the property. Similar issues also appear when it 

comes to the rest of the straight-chain aliphatic hydrocarbons, where their corresponding 

importance/coefficients are consistent neither in the same molecule nor in different 

compounds among the same family. In both cases of acetylene and nitrate-ester, this 

model succeed to detect the different substructures like triple bonds and ONO2 

respectively, but the prediction of importance does not adhere to insight obtained from 

GC models. When predicting hexafluoroethane and chloropentafluoroethane, the relative 

importance of carbon to fluorine are in contradiction. 

 

The AGC model developed seems to provide insights that are overall in line with those 

obtained from the GC models. Considering the first set of molecules are carboxylic acids, 

as shown in Figure 2.II, the red fragments refer to the acid group 𝐶𝑂𝑂𝐻. In all carboxylic 

groups tested, the importance of this fragment always shows the highest significance. The 

raw attention weights reported in Table 1 also confirm this. Note that the parenthesis 
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marked by †  denotes there are multiple of the same groups in the molecule. It is a 

remarkable fact that the attention weights are not the proportion of groups in a molecule, 

they instead represent how important these fragments are to the overall structure. 

Therefore, it is not straightforward to compare them parallel to others in different 

molecules, especially molecules of different sizes. However, the results obtained here are 

enough to extract the important part considering every single molecule individually. In 

the GC method, the absolute contribution of 𝐶𝑂𝑂𝐻 is higher than the other two groups 

CH2 and CH3, which is consistent with the result we obtained here. 

 

Figure 2:Visualization of atom significance by AFP (I) and AGC (II) for Carboxyl acids (a), 

Halohydrocarbons (b), Benzylamine (c), Acetylene (d), and Nitrate-esters (e) 

Table 1: Raw attention weights of each fragment to final prediction on carboxylic acids 

First-Order Groups Acetic acid Propionic acid n-Butyric acid 

COOH 0.6275 0.5365 0.4830 

CH2 - 0.2397 (0.1702, 01782)† 

CH3 0.3725 0.2238 0.1685 

 

The second set of molecules shows the different fragments of CF3 and CClF2, where the 

only difference is the halo-atoms connected to carbon. Unlike the prediction done by the 

AFP model and seen in Figure 2.II, the architecture successfully detects the equal 

importance of fragments and highlight the more significant contribution from the group 

CF3 than CClF2. The raw attention weights of these two are reported in Table 2. 

Table 2: Raw attention weights of each fragment to final prediction on halohydrocarbon 

First-Order Groups Chloropentafluoroethane Hexafluoroethane 

CClF2 0.3412 - 

CF3 0.6588 (0.5, 05)† 
 

The third and fourth sets are the representations of aromatic amines and carbon-carbon 

triple bonds respectively. In both cases, the new model manages to most distinguish 

fragments circling by dashed cycle. Meanwhile, it fixes the predictions of the same atoms 

at the same location in different molecules. In other words, the common part of various 

derivatives is expected to be extracted by similar contributions. The last set depicts the 

ONO2 groups in nitrate-esters not only have equal contributions in the same molecular 

but also highlight this fragment as the most significant group. 
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The hybrid combination with group contribution theory adds a layer of interpretability 

compared to a purely data-driven approach, establishing the visualization of prediction 

on basis of chemists' knowledge on property prediction. However, due to the limitation 

of techniques, such interpretation can only be presented in the form of case studies and 

not in a general fashion. It is expected to obtain the influence of every single part on the 

overall prediction, and then it has a chance to reveal the structures of neural networks by 

adding or masking particular segments. 

4. Conclusions 

The combination of attention mechanism and prior knowledge adds a level of 

interpretability to AI-based models compared to a purely data-driven approach, 

establishing the visualization of prediction on basis of chemists' knowledge on property 

prediction. In this work, several cases are considered to test the performance and 

interpretability. By doing this, it is expected to get the effect of each part to the final 

prediction. Unlike the weights computed by the original AFP, AGC is able to present 

results better in accordance with a chemists' intuition. Moreover, the insights provided 

through the relative importance of the various molecular fragments are consistent with 

insights gained through the widely-accepted group-contribution models. This work can 

be beneficial to improve the transparency of models and overcome the possible objection 

from communities towards these data-driven methods. However, the extent of 

interpretability must be further tested on other linear and non-linear properties to assess 

the true extent of interpretability provided by the model developed herein. There will be 

one day a universal framework instead of isolated case studies can be developed to 

interpret the inner side of neural networks in the field of chemistry. 

References 

Coley, C.W., Barzilay, R., Green, W.H., Jaakkola, T.S. and Jensen, K.F. (2017) ‘Convolutional 

Embedding of Attributed Molecular Graphs for Physical Property Prediction’, Journal of 

Chemical Information and Modeling, 57(8), pp. 1757–1772. 

Hukkerikar, A.S., Sarup, B., Ten Kate, A., Abildskov, J., Sin, G. and Gani, R. (2012) ‘Group-

contribution + (GC +) based estimation of properties of pure components: Improved property 

estimation and uncertainty analysis’, Fluid Phase Equilibria, 321, pp. 25–43. 

Jin, W., Barzilay, R. and Jaakkola, T. (2021) ‘Chapter 11: Junction Tree Variational Autoencoder 

for Molecular Graph Generation’, RSC Drug Discovery Series, 2021-Janua(75), pp. 228–249. 

Vats, D. and Nowak, R.D. (2014) ‘A junction tree framework for undirected graphical model 

selection’, Journal of Machine Learning Research, 15, pp. 147–191. 

Veličković, P., Casanova, A., Liò, P., Cucurull, G., Romero, A. and Bengio, Y. (2018) ‘Graph 

attention networks’, in 6th International Conference on Learning Representations, ICLR 2018 

- Conference Track Proceedings. 

Wilding, W.V., Knotts, T.A., Giles, N.F. and Rowley, R.L. (2017) ‘DIPPR® Data Compilation of 

Pure Chemical Properties’, Design Institute for Physical Properties, AIChE. 

Xiong, Z., Wang, D., Liu, X., Zhong, F., Wan, X., Li, X., Li, Z., Luo, X., et al. (2020) ‘Pushing the 

boundaries of molecular representation for drug discovery with the graph attention mechanism’, 

Journal of Medicinal Chemistry, 63(16), pp. 8749–8760. 

1422

F. F et al. an 



PROCEEDINGS OF THE 32nd European Symposium on Computer Aided Process Engineering
(ESCAPE32), June 12-15, 2022, Toulouse, France
L. Montastruc, S. Negny (Editors)
© 2022 Elsevier B.V. All rights reserved.

Predictive Maintenance in the Digital Era
Aaron S. Yeardleya, Jude O. Ejeha, Louis Allena, Solomon F. Browna and Joan
Cordinera*

aDepartment of Chemical and Biological Engineering, University of Sheffield, Sheffield, S1 3JD,
United Kingdom
j.cordiner@sheffield.ac.uk

Abstract
With the advent of Industry 4.0, predictive maintenance is becoming increasingly popular. It has
the potential to improve manufacturing capabilities by identifying equipment faults and prevent-
ing the shutdown of the production process. The shear popularity of predictive maintenance has
caused an abundance of research into developing new classification algorithms to successfully
predict faults. However, more work is still required in the physical application of predictive main-
tenance to full industrial plants than in the development of new algorithms using single machines.
This work focuses on the application of machine learning for predictive maintenance by prioritis-
ing a robust comparison of methods to investigate the accuracy of readily available classification
methods. To achieve this, we used a large Fischertechnik (FT) model factory as a realistic and
challenging case study to provide data rich with sensors and actuators such as that found in a cyber-
physical production plant. We present a rigorous approach to compare and evaluate classifiers by
analysing various error metrics. It was found that the Quadratic Discriminant Analysis (QDA)
classifier performed the best with respect to the FT model factory dataset. The significance of the
results provide validation that readily available machine learning methods are accurate enough to
provide predictive maintenance and offer vital analytics. It further proves its suitability for robust
maintenance scheduling in many industrial plants. It is expected that, the integration of machine
learning and maintenance can significantly improve process safety and save money.

Keywords: predictive maintenance, machine learning, process safety, classification models

1. Introduction
Machine maintenance is of paramount importance to the process industry with regards to both
safety and effectiveness. A poor maintenance system can be catastrophic to an organisation in
terms of both performance and safety as it has a direct impact on costs, productivity, quality and
accidents. It is thus common practise for companies to actively engage in maintenance activities
for equipment items within the plant. This is mainly managed through three types of maintenance
(Carvalho et al., 2019):

1. Corrective maintenance - maintenance tasks are conducted when a machine fails.

2. Preventative maintenance - maintenance tasks are conducted on a periodic schedule, also
known as scheduled maintenance.

3. Predictive maintenance - uses techniques to estimate when maintenance is required.

Predictive maintenance is becoming increasingly popular with the transformation towards Industry
4.0 where process automation and digitisation are becoming the norm (Gilchrist, 2016). One of
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the key advantages that Industry 4.0 presents is the abundance of data, which can be used in the
control and operation of a plant, improving production efficiency and managing process safety.
Predictive maintenance enables the estimation of when maintenance is required on a machine by
continuously monitoring sensor information over time (Yan et al., 2017). The implementation
of predictive maintenance has the potential to improve manufacturing capabilities by identifying
equipment faults and preventing the shutdown of the production process. Currently, Industry
4.0 (Lee et al., 2014) is advancing due to Internet of Things (IoT) technologies providing many
sensors that records data enriched by the control commands of actuators. This is transforming
manufacturing environments into complex cyber-physical production systems (Gunes et al., 2014).
The data measured by these sensors provides an invaluable resource that can be used to train
a machine learning method to detect and predict failures. Predictive maintenance improves the
decision-making process in manufacturing environments as faults can be predicted before they
occur.

Machine learning methods have been increasingly applied to predictive maintenance applications
(Carvalho et al., 2019). The most common method uses classification to predict a fault or fail-
ure occurring (Susto et al., 2015). Additionally, regression techniques have been used to predict
Remaining Useful Life of machines (Van Horenbeek and Pintelon, 2013) and forecast industrial
aging processes (Bogojeski et al., 2021). A systematic literature review by Carvalho et al. (2019)
showed that the most common machine learning algorithms used are Random Forest, Neural Net-
works, Support Vector Machine and k-means clustering. Additionally, they found each machine
learning method proposed was applied to a specific piece of equipment, for example turbines (Ku-
mar et al., 2018), motors (Dos Santos et al., 2017) and compressors (Prytz et al., 2015). For this
reason, it becomes difficult to compare various machine learning algorithms as each study uses
vastly different data for validation. Additionally, Industry 4.0 is evolving at such speeds, applying
predictive maintenance to just one piece of equipment is not useful when the data collected enables
analysis on the whole production plant. As such, further research that compares proposed predic-
tive maintenance strategies instead of developing novel machine learning algorithms is necessary
(Carvalho et al., 2019). There is also an abundance of research solely concentrating on developing
new machine learning techniques that use historical data to predict when maintenance is required,
the integration of predictive maintenance remains briefly addressed in literature.

As noted, more work is required to apply predictive maintenance to full industrial plants and then
to integrate it as a method to improve site maintenance. Therefore, this paper focuses on addressing
the first issue applying predictive maintenance techniques to a large cyber-physical production
system. We present an investigation into readily available classification algorithms for predictive
maintenance by using them on a large collection of machine sensor data. We then consider the
prospect of implementing the results as an initial tool in a promising application to develop robust
maintenance scheduling in an industrial plant. Further, this study provides a rigorous approach
to compare and evaluate the classification models, analysing various error metrics and ultimately
choosing a machine learning method which can be used for further analysis.

2. Case Study Data

The comparison of predictive maintenance techniques requires the availability of historical main-
tenance and complex sensor reading data related to an industrial plant. However, the availability
of real-data from industry is extremely limited due to confidentiality issues. For this reason, this
study uses data provided by a cyber-physical production system developed by Klein and Bergmann
(2019). The large Fischertechnik (FT) model factory records sensor readings enriched with control
commands providing a realistic and challenging case study for detecting faults. The production
plant consists of five workstations as described in an ontological knowledge base (Klein et al.,
2019). Altogether, the FT plant consists of 14 machines which use 61 sensor readings indirectly
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Table 1: A summary of the data used to train and test predictive maintenance techniques

Machine No. Train Test
No Fault 22,763 3,233

1 9 2
2 14 24
3 207 234
4 21 6
5 23 27
6 7 2
7 28 45
8 105 97
9 36 31

10 16 11
11 13 20
12 42 34
13 6 0
14 13 4

Total 23,303 3,770

related to each machine. Classification machine learning models are applied to the data providing
an insight into the promising tools readily available to prevent failures in industry.

The large FT plant provides a realistic and challenging case study for detecting faults on 14 ma-
chines using the 61 sensor readings as input variables for predictive maintenance. Table 1 shows
the raw data which is generated by multiple run-to-failure simulations where the sensor read-
ings and the corresponding classes are recorded. Altogether, the data includes 27073 data points
recording 28 different types of faults such as driveshaft slippage in the conveyor. In this work,
the type of fault itself is not important as the objective of the predictive maintenance it to predict
which machine a fault occurs on.

An investigation of this type requires a consistent methodology to compare each classification
models used on the FT simulation data. Therefore, the full data is divided into training and test
data based on complete simulations from start to finish. Each individual simulation that leads to
a fault is included in either the test data or the training data (Klein and Bergmann, 2019). This
means a fault that continues for multiple time steps will not be found in both training and test data.
A summary of the classification data is shown in Table 1, where the clear split between training
data and test data can be seen for each of the 15 classes.

3. Predictive Maintenance Methodology

This work compares five supervised classification techniques using the Python library, Scikit Learn
(Pedregosa et al., 2011). The data described in Section 2 is used as a case study to test the following
classification algorithms:

1. Decision Tree (DT) (Breiman et al., 2017)

2. Random Forest (RF) (Breiman, 2001)

3. Neural Network (NN) (He et al., 2015)

4. AdaBoost (AB) (Hastie et al., 2009)
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5. Quadratic Discriminant Analysis (QDA) (Friedman, 1989)

The classification models are tested using the case study data and by calculating error metrics.
These enable a robust comparison of prediction techniques by comparing the predicted labels to
the true observed labels.

The Precision (P) score is defined as a ratio from the number of true positives (Tp) over the number
of true positives plus the number of false positives (Fp):

P =
Tp

Tp +Fp
(1)

The Recall (R) score is also a ratio. However, for this metric it is the number of true positives over
the number of true positives plus the number of false negatives (Fn):

R =
Tp

Tp +Fn
(2)

To combine both the Precision and the Recall, the F1-Score weights both Recall and Precision
together as a harmonic mean:

F1 = 2
PR

P+R
(3)

Finally, the Accuracy (A) is the total number of true predictions (both true negatives (Tn) and Tp)
as a percentage to the total number of predictions:

A = 100%×
Tp +Tn

Tp +Tn +Fp +Fn
(4)

4. Results

4.1. Comparison of Classifiers

Figure 1 shows the QDA achieving the highest accuracy of 88.3% and all the other classification
methods achieved scores above 85%. However, predictive maintenance data commonly shows
a significant imbalance between classes and the same is true for the FT model factory. Out of
a total of 3,770 data points, 3,233 are in the class ”No Fault”, therefore, constant predictions
of ”No Fault” would achieve an accuracy score of 85.8%. Table 2 show the weighted averages
obtained for the Precision, Recall and F1-Score. Once again, we found that the QDA performed
the best achieving the highest scores all round. Statistically, the significance of the results provide
validation that the QDA is the best choice of method for this given dataset.

The results for all five machine learning models are satisfactory, but to get the best from predictive
maintenance, trust in the predicted faults is of highest priority. This work has shown a methodol-
ogy for analysing machine learning models to robustly choose the best method. For the given case
study, the QDA was the chosen classification model for predictive maintenance.
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Figure 1: The accuracy score measured for the different classifiers.

Table 2: Resulting diagnostic values from the predictive maintenance

Precision Recall F1 Score
Decision Tree 0.839 0.878 0.838

Random Forest 0.735 0.858 0.792
Neural Network 0.788 0.861 0.799

AdaBoost 0.736 0.858 0.793
Quadratic Discriminant Analysis 0.880 0.883 0.877

Table 3: A confusion matrix showing the condensed results from the QDA.

True Label
No Fault Fault Total

QDA Predicted No Fault 3086 95 3181
Label Fault 147 442 589

Total 3233 537 3770

4.2. QDA Results

For predictive maintenance, a closer inspection of the label ”No Fault” is important because incor-
rectly predicting a healthy state for all the machines would lead to undetected faults. Conversely,
incorrectly predicting a fault (irrelevant to which machine it is on) would result in unnecessary
maintenance. Table 3 shows the QDA results in a confusion matrix focusing on the class label
”No Fault” by grouping the 14 machine fault classes into just one class, called ”Fault”. The con-
fusion matrix shows the amount of predicted labels that were in the correct and incorrect label.

Previously, the accuracy of the QDA was given in Figure 1 with the QDA making 441 false pre-
dictions out of 3770 data points. Table 3 shows the QDA predicted 95 ”No Fault” which were
actually ”Faults”. Additionally the QDA falsely predicted 147 ”Faults”. This means 45.1% of the
original false predictions (199 out of the 441 false predictions) did correctly predict a fault but on
the wrong machine. Altogether, the QDA performed well, correctly predicting a fault 442 times
out of 537 total faults and correctly predicting no fault 3086 times out of 3181. Therefore, when
considering the class ”No Fault” only, the QDA achieved an accuracy score of 93.6%. Showing
the good performance from the QDA in terms whether a fault has occurred or not.

5. Conclusion

In this paper, we analyse classification models to be used for predictive maintenance in a cyber-
physical production system. Confidentiality issues cause a lack of real-data. Hence, we conducted
the robust comparison of machine learning classifiers using a case study from a Fischertechnik
(FT) simulation model (Klein and Bergmann, 2019). Results showed that the machine learning
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methods adopted were accurate in predicting faults, and suitable for predictive maintenance. The
QDA classifier was also shown to be the best for this given dataset, achieving an accuracy of
88.3%. Although, when considering the class label ”No Fault”, the QDA achieved an accuracy of
93.6%, showing good performance from the algorithm for predictive maintenance.

In conclusion, this study investigated the performance of predictive maintenance on a complex
cyber-physical production process. Accurate results from all five classifiers have shown that the
machine learning algorithms are capable of predictive maintenance in Industry 4.0 when larger
amounts of sensors are being used to analyse plant performance.

Future work could use the chosen predictive maintenance classifier to provide a route for robust
maintenance scheduling by using it within maintenance workflow. Integrating machine learning
techniques such as predictive maintenance, time estimation and schedule optimisation will enable
smart maintenance policies to be implemented. This could provide a successful route for many
industrial plants to significantly improve process safety and save money.
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Abstract 
An evolutionary framework has been developed for techno-economic assessment at a 

decision-making level. A Master-Worker strategy based on Genetic Algorithms is 

proposed. It was enhanced with an ad-hoc chromosome redefinition, exclusively designed 

for techno-economic optimization. Specialized crossover and mutation operators were 

implemented so that the decision-maker places value on the economy of scale and the 

efficiency in logistics. The methodology enables to tackle systematically changes in the 

supply of raw materials and market demand altogether. By way of illustration, the 

eventual natural gas (NG) winter scarcity in Argentina, where industrial plants are forced 

to work under low-supply conditions, is discussed. For this case, efficient tactical 

planning was achieved by means of the optimization of the plants’ on/off status, together 

with the assessment of the weekly NG amounts to be individually provided. 

 

Keywords: Techno-economic assessment, Optimization, Genetic algorithm, Planning 

1. Introduction 
Increasing productivity is a key issue in Industry 4.0. From this perspective, 

methodologies to achieve operational excellence with further cost reductions have been 

gaining importance. Decision-making can be facilitated by merging both the production 

and market scenarios. In an Industry 4.0 environment, techno-economic assessment is 

crucial in order to achieve a competitive advantage. Its benefits go beyond saving money 

since it also comprises sustainable actions towards environmental protection. 

In this century, interest is focused on the simultaneous improvement of both energy 

consumption and production. For the operational planning of petroleum supply chains, 

Neiro and Pinto (2004) applied a large-scale mixed-integer nonlinear programming 

(MINLP) model. He optimized techno-economically a real-world corporation through the 

adoption of different strategies. Nowadays, an integrative strategy called enterprise-wide 

optimization (EWO) is being explored. It deals with the optimal operation of 

manufacturing facilities, which includes planning, scheduling, real-time optimization and 

inventory control. In particular, electrical supply-chain management under economic 

crisis was addressed by Manenti (2013), who proposed a MINLP optimization 
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methodology that merges enterprise-wide and operational aspects to plan the production 

of complex networks under a low energy offer for high demand. For EWO, Scholz Dias 

(2019) recently proposed a combination of data-driven methods and classical 

optimization techniques, partially incorporating artificial intelligence to the analysis. 

Techno-economic optimization problems can be challenging to solve, due to their 

complexity, nonlinearity and potentially high dimensionality. Then, it is worthwhile to 

devise alternative techniques that deal with complex optimization problems with 

complicated constraints. Nature-inspired metaheuristic algorithms have demonstrated 

some promising results in diverse applications where the optimization problems are 

tough. In particular, genetic algorithms (GAs) tend to be flexible, efficient, highly 

adaptable and easy to implement. Moreover, GAs can efficaciously be applied in broad 

practical issues by tailoring both the individuals and the genetic operators to the specific 

combinatorial problem under study.  

2. Problem statement 
Throughout history, there have been circumstantial cuts in the supply of non-renewable 

energy sources, mainly caused by restrictions on the supply side. In this sense, the global 

recovery in the post-pandemic demand for goods and services was not matched by an 

equivalent increase in energy supply. In particular, production companies have had their 

NG supply reduced. Moreover, given the excessive demand in winter seasons (Shuquan 

et al., 2018) and the lack of investment in infrastructure and production (De Meio 

Reggiani et al., 2019), both residential and industrial consumption will have to confront 

higher bills and/ or reductions in NG supply. Therefore, it becomes necessary to optimize 

the distribution of available NG with a business-planning approach. 

It is challenging to expand the scope of evolutionary strategies to be able to exploit them 

in this complex context. In this paper a metaheuristic methodology is proposed in order 

to address the particular case of industrial plants that have to face the conditions of scarce 

NG supply. The adopted test case represents a Gas Supply Problem (GSP) that has 

recurrently occurred in Argentina since 2005 (De Meio Reggiani, 2018). In this design, a 

Central Planner optimizes techno-economic aspects, simultaneously considering both the 

NG demand by industrial plants and the costs associated with transmission.  

3. Fundamental modelling 
A metaheuristic approach based on Genetic Algorithms (GA) was designed. It is a parallel 

implementation of a Master-Worker architecture that performs collaborative 

optimizations. A module (GA-M) is executed by the Master, while the others (GA-W) 

are executed by the Workers. Both are standard GA procedures that not only differ in the 

fitness assessment, but in the genetic operators as well. Given a prospective scenario, GA-

W is in charge of evaluating its NPV based on NG availability for each plant’s production 

(𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑊). In turn, GA-M employs a comprehensive objective function that takes into 

account both plant-processing NPV and transmission costs (𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑀). 

The Master generates at random the prospective scenario for each Worker, which is 

defined by some binary values. Then, the Worker executes a GA-W in order to find the 

best individual. As soon as he has found a candidate solution, he reports it to the Master, 

who uses GA-M to optimize all the scenarios. In this way, every Worker is simultaneously 

looking for a good solution, while searching for the most promising places in the space 

of prospective scenarios. Parallel programming was implemented so that the Workers can 

simultaneously explore different instances. Thus, many cases are solved as quickly as 

possible to give effective support to the decision-making task. 
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As to the representation of the solutions, a dual structure of the phenotype was adopted, 

where boolean and real genes are combined in a single chromosome. In this way, a wide 

variety of decision-making variables is included for a rolling horizon comprising H 

weeks. The chromosome structure is exemplified in Fig. 1. A single chromosome is 

divided in groups corresponding to the weeks in the rolling horizon H. Each of these 

groups (𝑊𝑖) contains the information that corresponds to the i-th week. They consist of a 

set of tuples 𝑊𝑖 = {𝑆𝑖 , 𝑃𝑖} with 𝑖 = 1 … 𝐻, where 𝑆𝑖 defines a global scenario through p 

boolean genes from 𝑔1
𝑖  to 𝑔𝑝

𝑖 , and 𝑃𝑖 contains (𝑛 − 𝑝) real-valued plant features included 

in the genes ranging from 𝑔𝑝+1
𝑖  to 𝑔𝑛

𝑖 . A weekly NG provision has to be distributed among 

p plants. Each plant is characterized by 𝑓 features. Hence, 𝑛 = 𝑝 + 𝑓𝑝. 

The example given in Fig. 1 corresponds to the GSP. A total NG provision of 32 Mm3/day 

for the first week, where this amount has to be distributed among 6 plants with the 

corresponding NG feed as a single feature (𝑓 = 1). According to the binary string 𝑆1, it 

is proposed that the third plant will be stopped, i.e. 𝑔3
1 = 1 and 𝑔9

1 = 0.  

Both the chromosome choice and the fitness function design are determined largely by 

the nature of the specific problem that is being tackled. In particular, our goal is to prevent 

economic losses when the weekly supply of operating industrial gases is forcefully 

restricted to a lower quantity 𝑄ℎ
𝑆. Therefore, Eq. 1 must be fulfilled for a time horizon H.  

                                 𝑄ℎ
𝑆 ≥ ∑ 𝑄𝑖,ℎ

𝑝
𝑖=1         ∀ ℎ = 1, 𝐻                                       (1) 

For this problem, the optimization variables comprise the amount to be provided 𝑄𝑖,ℎ for 

𝑖 = 1, … 𝑝. Let us consider that there are p plants, where 𝑄𝑖,ℎ
𝑏𝑎𝑢𝑑 is the business-as-usual 

demand for the i-th plant and the h-th week. Besides, all plants require a minimum amount 

𝑄𝑖,ℎ
𝑚𝑖𝑛. Then, the constraints in Eq. 2 have to be incorporated into the formulation, which 

aims at finding the optima 𝑄𝑖,ℎ.  

          {𝑄𝑖,ℎ
𝑚𝑖𝑛 ≤ 𝑄𝑖,ℎ ≤ 𝑄𝑖,ℎ

𝑏𝑎𝑢𝑑}  ∪ {𝑄𝑖,ℎ = 0}                            ∀ 𝑖 = 1, 𝑝; ∀ ℎ = 1, 𝐻      (2) 

The Net Present Value (NPV) approach was adopted to assess the objective functions. It 

is the summation of the difference between the present value of the expected income and 

costs, which is discounted at a rate r that represents the opportunity cost of capital.  

Each Worker calculates his own fitness function 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑊 related to plant processing 

(Eq. 3), where 𝐼𝑖,ℎ, 𝑉𝐶𝑖,ℎ, and 𝐹𝐶𝑖,ℎ are the average processing income, variable and fixed 

costs, respectively. The summation is discounted at the weekly interest rate 𝑟. 

             𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑊  = ∑ ∑ (  𝐼𝑖,ℎ × 𝑄𝑖,ℎ − 𝑉𝐶𝑖,ℎ × 𝑄𝑖,ℎ − 𝐹𝐶𝑖,ℎ)(1 + 𝑟)−ℎ𝐻
ℎ=1

𝑝
𝑖=1               (3) 

In turn, the Master evaluates the corresponding global NPV by using an aggregation 

method (Eq. 4) with user-defined weights 𝑤1 and 𝑤2. In the first term, the scenario is 

pondered using information about the NG transmission costs 𝑇𝐶𝑖,ℎ. The boolean 

 

Figure 1. Conceptual representation of a single individual. 

 

1431



 1408 

𝛿𝑖,ℎ specifies the on/off status of the i-th plant during the h-th week, where 𝛿𝑖,ℎ = 0 means 

the plant has stopped and 𝛿𝑖,ℎ = 1 indicates that the plant is working. Moreover, it is 

mandatory to incorporate a Shutdown Constraint. To avoid too short shutdown periods, 

which would be techno-economically infeasible, a single plant is not allowed to stop more 

than once during the rolling horizon. 

 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑀 = −𝑤1 ∑ ∑ 𝑇𝐶𝑖,ℎ(𝑄𝑖,ℎ
𝑏𝑎𝑢𝑑 − 𝑄𝑖,ℎ)𝛿𝑖,ℎ + 𝑤2𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑊

𝐻
ℎ=1

𝑝
𝑖=1            (4) 

Fig. 2 summarizes the algorithmic approach. In the first place, the Master’s goal is to 

intelligently select new starting locations. Then, he assigns them to a single Worker, who 

starts working from the suggested chromosome to breed the optimal child for the 

suggested scenario. As soon as possible, all Workers both reject infeasible scenarios and 

inform the Master about their candidate solution. Notice that there are separate assessment 

fitness functions: a Central-Planner one (Eq. 4 in GA-M) and a Plant-wide one (Eq. 3 in 

GA-W). The Master is in charge of judging the global appeal of the results. He ponders 

the candidate solutions by applying the aggregation method in order to assess the 

individual’s global fitness. The Master rejects poor solutions and ranks the good ones. 

The process iterates until the outcome is judged to be good enough. Finally, the Master 

reports the definitive solution. 

Since production usually involves temporal dependency among processes, crossover and 

mutation operators were properly adjusted for GA-W, where the operations are on real-

coded strings. A specialized crossover operator was designed on the basis of a real-coded 

Simulated Binary Crossover operator (Deb and Agrawal, 1995). It uses specific 

information about the problem’s constraints to make sure that all ensuing individuals were 

feasible. Moreover, the use of standard mutation operators was prone to create non-

feasible individuals quite frequently. It should be noted that a single chromosome 

comprises time-ordered information corresponding to a rolling horizon, thus including 

 

           Figure 2. General framework for the techno-economic Master-Worker optimizer. 
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the state variables for various points in time. Since annual information should not be 

freely swapped, a mutation operator that always performs permutations within the same 

year was incorporated, based on a polynomial mutation approach (Deb and Deb, 2014).  

In contrast, a customized two-point crossover was implemented for the GA-M, where a 

binary approach with a Shutdown Constraint is necessary. This variation consists in 

randomly choosing a period of time and exchanging the genes between parents only 

within that time range. When a portion of each parent is swapped, there is a frequent 

violation of the constraint that requires that each plant should only stop once in the entire 

period H. After eliminating repetitions in the non-swapped sections of the children, the 

Shutdown Constraint is finally fulfilled. This strategy is complemented with a two-stage 

mutation operator. Firstly, the genes valued 1 are randomly converted to zero. Then, the 

bits valued 0 are randomly switched to 1, which are carefully assigned to only one plant.  

4. Main results 
Both technical and economic data for 10 plants of different capacities were considered 

for this GSP. These plants are located in various regions and the gas shortage lasted for 3 

weeks. During this period, the total gas supply had to be reduced with respect to the usual 

demand in 65%, 55%, and 65% each week, respectively. The hyperparameters for both 

GAs are reported on Table 1. Since the GA-M model required greater diversity to succeed 

in finding the optimal pattern, higher population and mutation rates proved to be more 

effective in the Master’s algorithm rather than in the Worker’s. 

Fig. 3 shows the performance of the optimization method. The parallel GA approach 

proved to be efficient because function evaluations could be distributed to different 

processors in order to be completed concurrently. Fig. 3.a depicts the speed-up evolution, 

showing a satisfactory growth of this ratio with the use of a higher number of cores. A 

sequential model needed approximately 30 min to find the best solution to this NP-Hard 

problem, while a 6-core implementation delivered the same result in 8 min. The curve 

slope implies that there is still room for speed improvement by adding new cores.  

Moreover, a well-known limitation of the traditional genetic algorithms is that they may 

fall into local optima quite easily. An alternative to overcome this limiting issue is to opt 

for methods based on game theory. In this context, parallelism allows the implementation 

of game operations. Thus, a more accurate and robust optimizer could be achieved. 

Fig. 3.b shows the best 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑊 at each iteration and the corresponding 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑀, 

where 𝑤1 = 𝑤2 = 1. GA-M stopped when no significant improvements in the best fitness 

were detected in the last 20 iterations. When the Master stopped, he had found that 3 

different plants should shutdown each week, yielding a maximum NPV of U$S 

99.972MM. 

 

 

 

 

 

GA Population 
Crossover 

Rate 
Mutation 

Rate Rank Choice η 

Master (GA-M) 100 1 0,2 0,8 - 

Worker (GA-W) 50 1 0,05 0,8 15 

Table 1. GA parameters. 
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5. Conclusions 
Techno-economic assessment can provide energetic and economic incentives and reduce 

environmental impact when production is carefully optimized. In particular, a 

metaheuristic methodology based on GA is proposed in order to tackle low-demand 

conditions. This decision-making approach can anticipate future strategies aiming at NPV 

maximization. Suitable variants for both mutation and crossover operators were designed 

to guarantee feasible individuals. Testing on several realistic scenarios has shown that it 

is useful to make satisfactory comprehensive financial decisions, yielding economically 

viable scenarios when resource constraints have to be faced. At present, this software 

product can be considered as a lab-scale prototype, whose basic components have been 

integrated and computationally tested. The next step is to validate the actual system by 

testing its operation over a full range of Argentinian environmental conditions. 

As to new ways of solving the GSP, it may be profitable to try a game-theory strategy, 

where population diversity is promoted by letting subgroups compete against each other.  

Future work should also focus on the incorporation of the metaheuristic approach in a 

comprehensive EWO framework, not only as a tactical planning methodology, but also 

at all levels of the decision-making hierarchy. It would also be interesting to determine 

the extent of model inaccuracies by incorporating uncertainties in the GA strategy. 
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Abstract 

Anthropogenic CO2 emissions reinforce global warming. The most mature technology to 

capture post-combustion CO2 is the absorption with aqueous monoethanolamine (MEA) 

in spray or packed columns. However, this process is not considered economically viable. 

One reason for this hindrance is the low overall mass transfer coefficients (𝐾𝐺𝑎) resulting 

in large process volumes that are high in capital and operating costs. Spray columns offer 

some advantages over the packed columns such as the lack of expensive column internals, 

low pressure drop and higher 𝐾𝐺𝑎. Although several spray columns have been 

investigated experimentally, there are only a few efforts to model this process. Because 

of the high intercorrelation between the process variables, modelling is a complex task. 

Machine learning techniques have shown great accuracy in modeling this kind of systems 

using large amounts of data. Artificial neural network (ANN) is one of the most promising 

and highly modular techniques in this field. The aim of this work is to find the ANN 

structure with higher accuracy and generalization capabilities to model the 𝐾𝐺𝑎 for CO2 

absorption in spray columns using aqueous MEA. The ANN is trained using the back-

propagation algorithm. The structure with higher accuracy and generalization properties 

is searched by a Bayesian optimizer. The trained model has a coefficient of determination 

(R2) of 0.98, and a mean squared error (MSE) of 7.89e-4 on the validation set. It returns 

prediction errors below 20%. The optimizer found that the autoencoder structure had the 

higher prediction accuracy and generalization capabilities. This shape has great feature 

importance extrapolation capabilities, allowing the ANN to have a high prediction 

accuracy. The proposed procedure can be applied also for other processes where transfer 

coefficients need to be estimated and optimized. 

Keywords: CO2 capture, artificial intelligence, artificial neural network, absorption, 

spray columns 

1. Introduction 

Global warming is one of the main challenges that humanity needs to tackle soon. The 

anthropogenic CO2 emissions reinforce it. Several strategies are available to reduce the 
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CO2 footprint such as electrochemical separation, oxyfuel technologies, pre-combustion 

capture and post-combustion capture. Among these technologies, post-combustion 

capture requires little modification to the currently available processes (Luis, 2016). The 

most mature technology for the post-combustion CO2 capture is the chemical absorption 

using aqueous monoethanolamine (MEA) solutions as absorbents (Luis, 2016; Wang et 

al., 2017). This process is often run in spray and packed columns. Although this is the 

most mature technology, it is not economically viable due to the high operating and 

capital investments required (Li et al., 2016). A strategy towards boosting the 

applicability of CO2 capture processes is to increase the overall mass-transfer coefficient 

(𝐾𝐺𝑎) to enable compact processes which are easier and cheaper to retrofit on existing 

point carbon sources. 𝐾𝐺𝑎 in a gas-liquid column is a combination of liquid-phase and 

gas-phase mass transfer resistances. Based on the two-flux theory (Afkhamipour and 

Mofarahi, 2017), KGɑ can be calculated from the inlet and outlet CO2 concentration and 

the inert gas flow rate as shown in (1).  

𝐾𝐺𝑎 =
𝐺𝑖𝑛𝑒𝑟𝑡  ∙  (𝑌𝐶𝑂2,𝑖𝑛  − 𝑌𝐶𝑂2,𝑜𝑢𝑡)

𝑍 ∙  𝑃 ∙  (𝑦𝐶𝑂2
 − 𝑦𝐶𝑂2

∗ )
𝑙𝑚

 (1) 

where Ginert is the inert gas velocity (kmol*m-²*h-1), P is the total pressure (kPa), Z is the 

height of the reactor (m), YCO2 the mole ratio of CO2  to N2 in the gas (YCO2=nCO2/nN2), 

yCO2 is the mole fraction of CO2 in the gas phase and yCO2
* is the mole fraction of CO2 in 

equilibrium with the liquid phase which is assumed to be zero due to the fast reaction 

between MEA and CO2. 

An accurate prediction of KGɑ is crucial in the design of the absorption columns. Packed 

columns have been widely used in post-combustion CO2 capture. For this case, several 

empirical and semi-empirical correlations for the prediction of KGɑ have been proposed 

(Wang et al., 2005). To the best of our knowledge, there are no empirical equations 

proposed to predict the KGɑ in spray columns for CO2 capture. It is also not clear if an 

empirical correlation proposed for a specific column with a specific nozzle applies also 

to a different column and spray configuration. Therefore, more advanced prediction tools 

are needed to accurately estimate the KGɑ. 

Machine learning (ML) techniques have shown great capabilities in modelling complex 

systems with high intercorrelation and interdependency between the process variables 

(Schweidtmann et al., 2021). They build statistical models starting from a dataset by 

capturing the correlations between the input and the output variables available in it. 

Among the various ML techniques, artificial neural networks (ANNs) are very promising 

and modular (Lee et al., 2018). Their structure is a composition of an elementary unit 

called neuron. The neurons within the network are organized in layers; each layer takes 

as input information coming from the layer before, and its outputs are sent to the layers 

after it. At a given structure, the training of an ANN consists in finding the set of weights 

for each neuron that return the lower prediction error. Beside training of the neuron 

weights, number of layers and number of neurons per layer are critical hyper-parameters 

for the model that require an optimization to increase the performance of the network. 

The search of best structure is often carried out using the Bayesian optimizer (BO) (Snoek 

et al., 2012). The optimizer utilizes the previous experiences on the system to map the 

cost function to optimize it. Thus, the search of the best network is influenced by the past 

optimization attempt made by the optimizer. 

In this work, we applied ML modelling with the aim to predict the 𝐾𝐺𝑎 in a spray column 

for CO2 capture with MEA solution from process parameters (liquid flowrate, gas 
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flowrate, CO2 concentration in the gas, CO2 concentration in the liquid, MEA 

concentration in the liquid and nozzle diameter). ANNs were trained on a dataset obtained 

from literature. ANN structure was optimized and tested. The search was performed using 

the BO.  

2. Dataset description and data preprocessing 

The data to train the model were obtained from the paper from (Kuntz and Aroonwilas, 

2008) and (Wu et al., 2018). In both the papers, the authors employ single fluid nozzles 

to atomize the liquid. They reported the value of the 𝐾𝐺𝑎 as function of the process 

variables, namely (1) the flowrate of the absorbent liquid, (2) the flowrate of the flue gas, 

(3) the concentration of the CO2 within the gas, (4) the concentration of the sprayed MEA 

solution, (5) the concentration of CO2 within the absorbent solution and (6) the diameter 

of the nozzle. These parameters were used as inputs of the model while the output was 

the 𝐾𝐺𝑎 of the system.  The dataset utilized was composed by 180 experimental points. 

To robustly evaluate the model performances, a cross-validation strategy was applied. 

From the original dataset, three sets were extracted: the training, the test and the validation 

sets. The training set contained 100 points and was used to train the neural network. The 

test set had 48 points. The MSE on this set was as loss function of the BO. The BO aims 

to minimize the MSE. The validation set contained by 32 points and used to benchmark 

the performance of the most performant network on the test set proposed by the BO. Prior 

the model training, the data were scaled in the range [0,1] to improve the performances 

of the optimizer. 

3. ANN optimization description 

The weights of the neurons composing the ANN were trained using the back-propagation 

algorithm. The Adam optimizer was employed (Kingma and Ba, 2014) and the mean 

squared error (MSE) between the prediction and the experimental value was used as loss 

function. In addition, Lasso (l1) and Ridge (l2) regularizations were applied on the 

training to avoid overfitting. The parameter for the l1 regularization was set to λ1=1e-5 

and the parameter for the l2 regularization was set to λ2=1e-4. Each network structure was 

trained twice to reduce the impact of the initial guesses on the training performances as 

more repetition did not change substantially the result. The training returning the lower 

loss value on the training set was selected.  

The BO algorithm implemented in Keras-tuner 1.0.1 was utilized in this study. It was 

employed to search the network structure with the lower MSE on the test set. To perform 

the search, we utilized 20 iterations of the algorithm. This value was experimentally 

observed to be a good balance between computational time and model efficiency. The 

BO could perform the search in the range [0,12] for the hidden layers number and [5,30] 

with a step of 5 for numbers of neurons per layer. These ranges were obtained 

experimentally. We gradually increased the size of the search space until the network 

found by the optimizer returned prediction with MSE<1e-3 on the test set. The neurons 

contained in the internal layers of the network utilized LeakyReLU activation function. 

The output layer employed Sigmoid activation function. The capabilities of the obtained 

network are a-posteriori evaluated on the validation set. The lower the MSE on the 

validation set the higher are the generalization capabilities. 
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4. Results 

4.1. Prediction accuracy of the best model 

Figure 1 shows the prediction capabilities of the model structure with higher accuracy on 

the validation set identified by the BO. This figure reports the prediction performances 

both on the training set and on the validation set. In this figure all the points are clustered 

around the ideal prediction line with a narrow dispersion. In fact, both the prediction on 

the training and the validation points report error lower than 20% with only few 

exceptions. The coefficient of determination (R2) on the validation set is 0.98 and the 

MSE is 7.89e-4. This proves the high prediction accuracy and generalization capabilities 

of the most performant network identified by the BO. In addition, from Figure 1, one can 

detect how the dataset used in this study had an unbalanced output. Most of the 

experimental data points were clustered at middle values of the output with only few data 

points at the extreme values of 𝐾𝐺𝑎. In open literature, it was shown that this data 

configuration decreased the accuracy of the predictions in the area where the data were 

rarer (Ribeiro and Moniz, 2020). The accurate prediction of the values located at high 

output rates was a crucial task when the aim of the model was process intensification. The 

prediction at high 𝐾𝐺𝑎 had errors below 20% without any sensible bias, contributing to 

the high R2 of this model. This is an important feature that allows the utilization of the 

model for design, control and optimization tasks. On the contrary, the model shows poor 

prediction capabilities at the extreme lower values of 𝐾𝐺𝑎. 

 

Figure 1: Prediction plot of the model with the higher accuracy on the validation set proposed by 

the optimizer. Most of the validation points are within the 20% error bend with only few 

exceptions. The only points with lower accuracy are located at lower output values where the 

points are rarer. 

4.2. Analysis of the best structure  

The optimizer identified the autoencoder structure to be the one with the higher accuracy 

on the test set (Figure 2). The first part of the optimal network is composed by one layer 

employed for the feature extraction in order to augment the input information (Layer 2 in 

Figure 2). The features extraction layer is followed by the autoencoder structure (from 

Layer 3 to Layer 7 in Figure 2).  This structure is well known and applied in other fields 

(Bank et al., 2020). This network identifies the most important combinations of variables 

for the process and code them into internal variables of the network. This procedure is 
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done in the encoder of the network. For the case in analysis, the encoder terminates with 

10 nodes encoding 10 internal variables (Layer 5 in Figure 2). This is the minimum 

amount of information that the network needs to perform the computation. Then, the

information coded in the encoder are interpret in the decoder. The decoder is composed 

by two layers (Layer 6 and Layer 7 in Figure2) where the information is expanded and 

converted to the final output. Using this structure, the network returns low loss function 

values and very accurate predictions. From Figure 2 one can detect how some of the 

connections have the weight set to zero or its value is negligible compared to the other 

connections. This happens especially for the last two layers of the encoder (Layer 3 and 

Layer 4 in Figure 2). In addition, the optimizer chose 7 hidden layers even if the maximum 

allowed was 12. This avoided the overfitting on the training data and increased the 

generalization capabilities of the model. Moreover, the network reported in this study is 

quite deep and the amount of dataset used for its training could be not enough. However, 

the accuracy and the generalization capabilities of the model are ensured from the 

regularization and the cross-validation strategies employed for the training.

Figure 2: The network structure with the higher accuracy on the validation set proposed by the 

optimizer. It has the autoencoder structure. In this figure the darker is the color of the connection

and the higher is the absolute value of the weight associated to it. The training has a major impact

on the encoder. This allows a high selection of the variables used to encode the problem. One can 

detect how come of the connections have the weight set to zero or its value is negligible compared 

to the other connections.

5. Conclusions

In this work we proposed a network to predict the overall mass-transfer coefficient in a 

spray column for CO2 capture into monoethanolamine. The best model structure returns 

highly accurate predictions with an R2= 0.98 and remarkable generalization capabilities. 

The network was trained using a Bayesian optimizer to search the best network structure. 

The Bayesian optimizer identified the most proficient structure in the autoencoder. The 

network showed noticeable internal features selection to accomplish the prediction task. 

This methodology is a useful tool to predict internal parameters (such as the 𝐾𝐺𝑎 as in 

this case) of first-principle models. It is a straightforward way to identify the best network 

structure and it is applicable to predict other process parameters using historical data.

regularization and the cross validation strategies mployed for the training.
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Abstract 
With the continuous growth of data collection systems, even the state-of-the-art 

multivariate Statistical Process Monitoring (SPM) methods face difficulties in detecting 

localized faults, whose signatures easily pass unnoticed due to the large normal 

background noise associated to the many sensors under analysis. These methods are 

mostly non-causal and do not take into account the inner relationships between the 

variables or process units. In this work, we propose a new hierarchical monitoring 

approach based on a functional decomposition of the system’s causal network. The 

methodology consists in finding the natural functional modules of the causal network, by 

exploring its graph topology and identifying the strongly linked “communities”. Two 

hierarchical monitoring schemes (aggregating information from the modules and their 

interactions) are then applied to monitor the overall state of the process. In this way, as 

the dimensionality of the modules is smaller, the sensitivity of the distributed system to 

small or localized faults is preserved. Furthermore, the causal nature of the method 

facilitates fault diagnosis, especially for sensor faults. However, the overall false alarm 

rate of the methodology must be controlled, which may take away some of the sensitivity 

of the proposed method. We report results that demonstrate a robust increase in the fault 

detection sensitivity of the proposed methodologies when compared to methods that 

monitor the complete causal network. The proposed approach also led to a more effective 

and unambiguous complementary fault diagnosis activity. 
 

Keywords: Statistical Process Monitoring; Causal Network; Hierarchical Monitoring; 

Community Detection; Distributed Monitoring 

1. Introduction 

Causal networks hold a large amount of information on how process variables relate to 

each other. Nevertheless, most of the current Statistical Process Monitoring (SPM) 

methodologies, such as those based on Principal Component Analysis (PCA), Partial 

Least Squares (PLS) and Independent Component Analysis (ICA) (Ge et al., 2013; Qin, 

2012), are non-causal and do not account for this inner system structure. This not only 

reduces their ability to detect faults, but also impacts fault diagnosis due to a smearing-

out effect that propagates the fault through non-causal related variables. 

As an alternative, causal SPM methodologies have been proposed. One example, also 

adopted in this work, is the Sensitivity Enhancing Transformation (SET) method (Rato 

and Reis, 2014). SET uses the causal network to build a whitening filter that decorrelates 

the variables based on their inner relationships. If the relationships of the inferred causal 

network are still valid, the filtered variables should remain confined within a Normal 
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Operating Region (NOC). SET also facilitates fault diagnosis since a deviation on a 

filtered variable signals a change in the inferred relationships between the original 

variable and its causal parents. 

However, the aforementioned methodologies (including those based on causality, such as 

SET) lose detection sensitivity with the increase of monitoring dimensionality (i.e., the 

number of process variables to monitor). To overcome this limitation, decentralized 

monitoring methodologies have been proposed to segment the process variables into 

several modules and then perform local monitoring of each module (Ge et al., 2010; Ge 

and Song, 2013; Tian et al., 2019). 

To combine the advantages of causal-based and decentralized monitoring, we propose 

two hierarchical monitoring schemes (CNET-C: Causal Network-Centralized, and 

CNET-D: Causal Network-Distributed) based on the functional decomposition of the 

causal network. In the proposed methodologies, the process variables are divided into 

modules (defined as communities) of closely related variables and then each module is 

monitored by the SET monitoring methodology. The subdivision into communities can 

be made based on the process and instrumentation diagram or analysis of the causal 

network through a community detection algorithm that evaluates the network topology 

and the density of associations between variables or process units (Masooleh et al., 2021; 

Javed et al., 2018; Harenberg et al., 2014). As process monitoring is done at the 

community level, which aggregate subsets of the original variables, the proposed 

monitoring methodologies become more sensitive to localized fault affecting one or a few 

variables. Likewise, fault diagnosis also capitalizes from the decorrelation properties of 

the SET. 

This article is organized as follows. In Section 2, the proposed monitoring methodologies 

are briefly described. Then, in Section 3, we report the results for a simulated case study 

that compared the proposed methodologies against two monitoring benchmarks. The 

results are discussed in Section 4. Finally, we present our conclusions in Section 5. 

2. Methodologies 

2.1. Fault Detection 

The proposed centralized (CNET-C) and decentralized (CNET-D) hierarchical 

monitoring schemes are based on the functional decomposition of the causal network. 

The first modelling stage of both methodologies is the same. In this stage, the network is 

inferred by use of partial correlations (Rato and Reis, 2017) and the dominant causal 

directions are determined through analysis of the cross-correlation or Granger causality 

(Yuan and Qin, 2012). Afterwards, the variables are divided into communities using an 

algorithm that analyses the topology and density of the network. This division into 

communities effectively reduces the dimensionality of system, and improves the 

sensitivity to localized faults. To account for inter-community associations, each 

community is expanded to also include the Markov-blanket of each causal parent in the 

community. In the next stage, a SET model is built for each community. The SET model 

consists of a whitening filter that accounts for the causal structure of the data. The SET 

model is obtained by regressing each variable onto its causal parents (Markovian 

approach) (Rato and Reis, 2017). The filtering operation of the SET also produces 

uncorrelated variables, which improves the diagnosis task discussed in Section 2.2. 

Afterwards, for each community, the SET filtered variables are monitored through a 

Hotelling’s T2 statistic (T2
SET,i, for i = 1, 2,…, c, where c is the number of communities). 

The difference between the two proposed methodologies lies in the way the information 

coming from the communities (i.e., the T2
SET,i statistics) is aggregated. 
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In the decentralized CNET-D, the T2
SET,i are monitored separately and aggregated through 

a “OR gate”. In this approach the control limits are established at the T2
SET,i level, with 

the significance level corrected to control the false alarm rate due to the use of multiple 

monitoring statistics. The global alarm of the CNET-D is then triggered if at least one 

community has a monitoring statistic above its control limit. 

In turn, for the centralized CNET-C, the T2
SET,i of all communities are concatenated to 

build a single monitoring statistic (Equation 1): 

    𝑇𝑆𝐸𝑇𝐶𝑁𝐸𝑇−𝐶
2 = (𝐭𝑗  − 𝐭̅NOC)

T
 𝐒NOC

−1 (𝐭𝑗  − 𝐭̅NOC),       ( 1 ) 

where 𝐭𝑗  = [𝑇𝑆𝐸𝑇,1
2 , 𝑇𝑆𝐸𝑇,2

2 , . . . , 𝑇𝑆𝐸𝑇,𝑐
2 ]  is vector that concatenates all T2

SET,i at observation 

j, 𝐭̅NOC is a vector with the sample means of T2
SET,i in normal operation conditions (NOC), 

and  𝐒NOC is the sample covariance matrix of the T2
SET,i in NOC. For CNET-C, a global 

alarm is triggered if 𝑇𝑆𝐸𝑇𝐶𝑁𝐸𝑇−𝐶
2  is above its control limit. 

2.2. Fault Diagnosis 

The fault diagnosis is performed in two levels. In the first diagnosis level the communities 

with abnormal variables are identified. Afterwards, in the second diagnosis level, the 

abnormal communities are inspected to identify the abnormal variables within them. 

In the CNET-D methodology, the first diagnosis level is direct. Since fault detection is 

carried out at the community level, it suffices to observe which communities triggered an 

alarm in the logical “OR gate”. In turn, in the CNET-C methodology, the first diagnosis 

level is performed by assessing the contributions of each community to the 𝑇𝑆𝐸𝑇𝐶𝑁𝐸𝑇−𝐶
2  

statistic. After identifying the abnormal communities, the second diagnosis level is run to 

evaluate the contributions of each variable to the T2
SET,i statistics of the abnormal 

communities. At this point, the contribution of each variable is compared against a control 

limit, and those above it are deemed to be related with the fault’s root cause. 

3. Results 

To study the performance of the proposed methodologies, a static linear causal network 

simulator with 16 variables (Rato and Reis, 2014) was used to generate NOC and faulty 

data. In this study we considered process, sensor, and correlation faults in several 

variables, but for the sake of space, only one case is reported here. Each failure magnitude 

was replicated 100 times to account for variability. The replicated simulations have 5000 

observations each. As this work is not focused on network inference, for the proposed 

monitoring methodologies it was assumed that the causal network was inferred 

accurately. Furthermore, the causal network was divided into 3 communities by an 

algorithm based on network density and topology applications. All monitoring 

methodologies were set to a false alarm rate of α = 0.01 (with Bonferroni correction), by 

taking the (1 - α/N) ⨯ 100 % upper percentile of the monitoring statistics in NOC data 

(where N is the number of monitoring statistics in the monitoring scheme). 

3.1. Fault Detection 

Figure 1 shows the fault detection sensitivity study (True Positive Rate (TPR) versus 
Fault Magnitude) of the proposed methodologies against two benchmark methodologies 

(SET-Hotelling-T2 and PCA) for a process fault in variable 1. This figure clearly shows 

that CNET-C and CNET-D have significantly higher TPR than the benchmarks. This 

improvement is a result of the functional decomposition into communities as it increases 

the sensitivity to localized faults. 
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Figure 1: Median true positive rate and interquartile range for a process fault in variable 1. The fault 

magnitude is defined as k times the standard deviation in NOC. 

3.2. Fault Diagnosis 

To demonstrate the fault diagnosis capabilities of the proposed methodologies a process 

fault in variable 1 with a failure magnitude of 1 standard deviation was chosen. Fault 

diagnosis was performed by use of contribution plots for PCA (Qin et al., 2001) and the 

contributions to the SET-Hotelling-T2 (Rato and Reis, 2017). In Figures 2 and 3, the root 

cause diagnosis for the two benchmark methodologies is graphically represented. Figure 

4 shows the two diagnostic levels of the proposed CNET-C methodology. For this case, 

only SET-Hotelling-T2 and CNET-C (as well as CNET-D) provide an unambiguous 

diagnosis, correctly identifying variable 1 in all replicates. 

  

Figure 2: Percentage of times that each variable is significant to the SET-Hotelling-T2 methodology 

monitoring statistics. Process fault located in variable 1 with a magnitude of 1 standard deviation. 

 

Figure 3: Percentage of times that each variable is significant to the PCA-based methodology 

monitoring statistics. Process fault in variable 1 with a magnitude of 1 standard deviations. 
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Figure 4: Percentage of times a community is significative for the CNET-C methodology 

monitoring statistic (first diagnostic level; on top), and the percentage of times a variable is 

significant for each community’s T2
SET,i monitoring statistic (second diagnostic level; on bottom). 

Process fault in variable 1 with a magnitude of 1 standard deviations. 

4. Discussion 

Regarding fault detection, the results show that methodologies based on the causal 

network have greater sensitivity in most scenarios. The causal network functional 

decomposition into communities reduces the system monitoring dimensionality, which 

makes the proposed methodologies, CNET-C and CNET-D, to always have greater 

sensitivity when compared to the benchmark methodology that uses the complete causal 

network (SET-Hotelling-T2). 

The proposed methodologies have similar performances in terms of fault detection 

capabilities. Nevertheless, CNET-C tends to perform better in process and correlation 

failures, while CNET-D is generally better on sensor failures. 

CNET-D can lead to sensitivity loss when applied to high dimensional systems due to the 

correction of the control limits. In this scenario, the high number of communities 

effectively increases the number of monitoring statistics, and their corrected significance 

level will tend towards zero. To overcome this limitation, we propose to correct the 

control limits using methods that control for the false discovery rate (Glickman et al., 
2014), instead of the Family Wise Error Rate (such as the Bonferroni correction). 

For fault diagnosis, the introduction of the causal network into the monitoring schemes 

increases the diagnostic capacities compared to the conventional non-causal PCA 

(Figures 2 to 4). Figure 3 shows that the PCA diagnosis is ambiguous and inconclusive, 

i.e., it does not diagnose only the variable at fault. In contrast, the SET-Hotelling-T2, 

CNET-C, and CNET-D have a conclusive diagnosis and identified the correct variable in 

all replicates, while the other variables are identified less than 2% of the times. 

The developed methodologies include two hierarchical diagnosis levels. The first 

diagnosis level identifies the communities with abnormal variables. Afterwards, the 

second diagnosis level identifies the abnormal variables within the communities 

diagnosed in the first level. This greatly reduces the monitoring burden requested to 

process operators.  

As the communities were extended to also include the Markov-blanket of the causal 

parents in each community, some variables may belong to more than one community. If 
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a fault occurs in these variables, then more than one community may be identified at the 

first diagnosis level. In these situations, the second diagnosis level is able to identify the 

correct root cause within the affected communities. Figure 4 represents a scenario where 

this situation happens: the faulty variable is correctly diagnosed in two communities, 

proving the good detection performance of the developed methodologies. 

5. Conclusions 

Causal networks contain information about systems that is typically not used in standard 

SPM methodologies. The introduction of causal structure into the monitoring 

methodologies leads to sensitivity gains in fault detection and diagnosis compared to 

conventional methodologies. Furthermore, the proposed causal network functional 

decomposition into several communities reduces the system dimensionality, and further 

increasing the sensitivity to localized faults. The application of the Markov-blanket to the 

causal parents in each community also allowed for inter-community associations to be 

included in the models. Fault diagnosis is also made on a reduced set of variables, which 

improves fault isolating, and leads to a conclusively and unambiguously diagnosis. 

The CNET-C and CNET-D methodologies demonstrated better performance in fault 

detection and diagnosis than their PCA and SET counterparts. 
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Abstract 

Crystallization is a separation and purification process applied in many industrial sectors. 

The unit operation aims to achieve desired crystal size and shape distribution, making 

process control a key tool for its success. Despite the importance of controlling batch 

crystallization processes, there is still a lack of studies applying neural network-based 

control strategies. Therefore, this work aims to model a crystallization process to predict 

the moments of the particle-size distribution with neural networks used as the internal 

model in the predictive controller. Four different neural networks paradigms were 

considered: a classic single Multilayer Perceptron (MLP) network, a set of four MLP 

networks in series, and two recurrent networks, the Echo State Network (ESN) and the 

Long Short-Term Memory (LSTM). The dataset used for training and testing applied a 

co-teaching learning algorithm, which utilizes simulated and experimental data. The 479 

experimental values of concentration, and particle number, length, area, and volume were 

obtained for several temperatures and ten different batch experiments of potassium sulfate 
(𝐾2𝑆𝑂4) crystallization. The 9000 simulated data were generated using a population 

balance model for the system. First, the four network structures were trained to predict 

the moments of the particle size distribution values one step ahead, using the current 

temperature and moments values as feed. As a result, all strategies were successful, 

achieving values of R-squared of about 99% for the test samples. Then, the network’s 

predictive performance was studied for larger prediction horizons. The ESN had the best 

performance, achieving values of R-squared above 90%, for eight out of 10 experiments 

and up to five steps ahead prediction. In comparison, the other strategies reached values 

below 90% for more than two experiments. Finally, a Nonlinear Model Predictive 

Controller (NMPC) based on the selected ESN was successfully applied to the batch 

crystallization process to maintain crystal size distribution on their desired trajectories by 

manipulating the operating temperature. The controller behavior was studied for four 

reference trajectories: constant, 1st order, 2nd order, and adaptive 1st order. As a result, the 

ESN-based NMPC presented better results, both in terms of performance and 

computational demand, than an NMPC based on the classic MLP, evidencing the 

potential of the proposed strategy.  

Keywords: Crystallization, Neural Networks, Echo State Network, LSTM, NMPC. 

1. Introduction 

Crystallization is a purification and separation process applied in many industrial fields, 

such as the food and pharmaceutical sectors. This unit aims to generate a solid crystalline 
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product with high purity and desired crystal size and shape distribution, making process 

control a vital tool for its success [1]. In this way, model predictive control appears as a 

possible strategy for controlling of a crystallization unit. 

Crystallization processes are usually modeled by population balances to predict the size 

and shape of the particles. One of the reasons for its use is the existence of an established 

kinetic model [1]. However, neural networks have been applied to model many chemical 

processes, and there is a lack of application for the modeling and control of crystallization 

processes. 

This work aims to model a crystallization process to predict the moments of the particle-

size distribution with neural networks. Four different structures of neural networks were 

considered: a classic single Multilayer Perceptron (MLP) network, a set of four MLP 

networks in series, and two recurrent networks, the Echo State Network (ESN) and the 

Long Short-Term Memory (LSTM). Also, the dataset used for training and testing applied 

a co-teaching learning algorithm, which utilizes experimental and simulated data [2]. The 

four networks were compared based on their five steps ahead prediction performance, and 

finally, the best option was used as an internal model in a Nonlinear Model Predictive 

Controller (NMPC).  

2. Neural Networks 

Neural Networks are a paradigm belonging to the class of machine learning techniques; 

they learn new patterns when presented to new data. The MLP is a feedforward network 

composed of fully connected neurons. Therefore, each neuron performs a weighted sum 

of inputs, and this result minus a bias value is sent to an activation function, such as a 

hyperbolic tangent. The result obtained by the activation function is used as the input for 

the subsequent neurons. Then, adjusting the weights and biases, the network seeks to learn 

the general function that relates the inputs and outputs of the given data. MLP is a 

feedforward network commonly used in the literature. 

Recurrent Neural Networks (RNN) are a different kind of neural network created to 

represent sequential data. The difference between RNN and the feedforward networks is 

that they contain a feedback loop where data can be fed back to previous layers before it 

is fed forward again for further processing. This kind of structure gives the network the 

capability to simulate time-series and understand the dynamic behavior. LSTM and ESN 

are two different kinds of RNN. The first one presents a cell structure composed of three 

gates: forgot, input, and output. These gates have the function of controlling the flow of 

information inside the network [2]. On the other hand, ESN comprises an input layer, a 

dynamical reservoir, and an output layer. The reservoir layer is the recurrent part, where 

the outputs of the reservoir and output layers are feedback. Moreover, the weights of the 

reservoir layer are not trained but randomly fixed, avoiding local minimum problems. 

Four different neural networks paradigms were studied to be used as the model for the 

controller. These networks structures were a single MLP, four MLP in series, ESN, and 

LSTM. The moments µ and temperature values in a time k were used as the inputs of the 

networks to predict the moments’ values one step (i.e., one sampling time) ahead. Then, 

the network’s capacity to predict the moments’ values more steps ahead was studied, and 

all models were compared. Also, the dataset used for training and testing applied a co-

teaching learning algorithm. The 479 experimental values of concentration and particles 
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number, length, area, and volume were obtained for several temperatures and ten different 

batch experiments of potassium sulfate (𝐾2𝑆𝑂4) crystallization. The 9000 simulated 

samples were generated from the Population Balance (PB) Model developed by Moraes 

et al. [1], of which 3000 were used as test samples. The training dataset used data from 

one experiment and 6000 simulated data. For test samples, the dataset was composed of 

the other experimental data and three simulations. Each simulation was composed of 1000 

data and used different initial conditions. 

First, a single MLP network was designed using the temperature and the moments as 

inputs to predict the future values of the moments. This network structure was composed 

of a single hidden layer with 400 neurons. Also, a batch size of 350, Relu as the activation 

function, and the solver Adam were applied.  

The second structure is composed of four MLP networks in series. The first network 

receives temperature and 𝜇0 values to predict 𝜇0 one step ahead. The prediction of the 

first network is used as input of the next one with the temperature and 𝜇1 at the same time 

to predict 𝜇1 one step ahead. The other two networks apply the same methodology, but 

the third one uses temperature, 𝜇1 and 𝜇2 to predict 𝜇2 one step ahead, and the last one 

uses temperature, 𝜇2 and 𝜇3 to predict 𝜇3 one step ahead. All four networks used the same 

specifications, which was one hidden layer with 195 neurons. Moreover, a batch size of 

50, Relu as the activation function, and the solver Adam were applied.  

The recurrent networks used the same inputs and outputs as the single MLP. For the ESN, 

a single reservoir and Identity activation function for the output layer and the output 

recurrence were used. For the LSTM, one LSTM layer with 120 cells and hyperbolic 

tangent as activation function were employed. Furthermore, sigmoid as a recurrent 

activation function, a batch size of 250, and the solver Adam were adopted. 

3. Model Predictive Controller Design 

The optimization problem considered as controlled variables 𝜇0, 𝜇1/𝜇0, 𝜇2/𝜇0, and 

𝜇3/𝜇0. The manipulated variable 𝑢 is the process temperature. The MPC goal is to 

minimize the process performance index 𝐽, the objective function of the problem shown 

in Equation 1. The parameters 𝛿(𝑖) and 𝛾 are the weights of the outputs and the increment 

input, respectively; 𝑦𝑖(𝑘 + 𝑗) is the ith predicted output at time k + j and 𝑦𝑖
𝑟(𝑘 + 𝑗) its 

reference value. For the ESN, 𝛿(𝑖) was defined as 32 for 𝜇0, and 5 for the other variables. 

For the MLP, 𝛿(𝑖) was defined as 45 for 𝜇0, 30 for 𝜇2/𝜇0, and 15 for the other variables. 

The input increment is defined by ∆𝑢(𝑘) as a control horizon of 1 was assumed. P is the 

prediction horizon, which was chosen as 5 sampling intervals. 

𝐽 =  ∑ ∑ 𝛿(𝑖)[𝑦𝑖(𝑘 + 𝑗) − 𝑦𝑖
𝑟(𝑘 + 𝑗)]2

𝑃

𝑗=1

+ 𝛾[∆𝑢(𝑘)]2

4

𝑖=1

                                                  (1) 

 

The optimization constraints are given by Equations 2-4, where C is the concentration of 

the solute, and 𝐶𝑒𝑞  is the concentration of the solute in equilibrium. 

                                                         −1 ≤ 𝑢(𝑘) − 𝑢(𝑘 − 1) ≤ 1                                             (2) 
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𝐶(𝑘)

𝐶𝑒𝑞(𝑘)⁄  ≥ 1                                                        (3) 

                        𝐶𝑒𝑞(𝑘) = −686.2686 +  3.579165𝑢(𝑘)  −  0.00292874𝑢(𝑘)2            (4) 

4. Results and Discussion 

First, all four structures were tested to make predictions one step ahead, achieving an R-

squared value of 99% for test and training samples. Then, each network’s performance 

was studied for predictions two and five steps ahead, and the results for predictions five 

steps ahead are illustrated in Figure 1. As a result, the ESN presented the best 

performance, reaching an R-squared higher than 75% for all experiments. 

 

Figure 1: Performance of all neural networks for predictions five steps ahead. 

After studying all neural networks behavior, the ESN was chosen to be the model for the 

predictive controller because it presented the best performance. However, the network’s 

design had to be modified to achieve better control results. Therefore, one ESN was used 

to predict each moment with the same specifications as the design for four outputs. All 

four networks presented a performance very close to the other ESN design.  

Using the ESN as the model, the controller’s performance was compared to a more 

traditional control approach, using an MLP network. For this second case, four MLP 

networks were used to predict each moment value with the specifications presented in 

Table 1, in which T is the temperature. Also, a single hidden layer, Relu as activation 

function, and the solver Adam were adopted for all four cases. Both strategies predicted 

the moments five steps ahead and used the same inputs and outputs. 

Table 1: Specifications for each MLP used in the MPC. 

Inputs T, 𝜇0   T, 𝜇0, 𝜇1   T, 𝜇1, 𝜇2   T, 𝜇2, 𝜇3   

Outputs 𝜇0   𝜇1   𝜇2   𝜇3   

Number of neurons in the hidden 

layer 
50 295 300 300 

Batch size 20 50 50 50 
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The proposed scheme for the control loop is illustrated in Figure 2. The process was 

modeled by the PB Model, and the optimizer used the Successive Quadratic Programming 

to find the optimum temperature value for each sampling. Also, a sampling time of one 

minute and the initial conditions of one experiment were chosen. 

 

Figure 2: Control loop scheme. 

The first reference trajectory tested was a constant trajectory, using the 𝜇
𝑖
 value at the end 

of the chosen experiment to define it. Then, a first-order dynamic reference trajectory was 

studied. This trajectory is described by Equations 5 and 6, which 𝝁
𝒊
(𝒕𝒆𝒏𝒅) is the moment 

value at the end of the experiment, and 𝜸 is a constant equal to 0.9.  

𝜇𝑖
𝑅𝑇(𝑡0) =  𝜇𝑖0                                                                                                                                (5) 

𝜇𝑖
𝑅𝑇(𝑡) =  𝛾𝜇𝑖(𝑡 − 1) + (1 − 𝛾)𝜇

𝑖
(𝑡𝑒𝑛𝑑)                                                                                (6)  

A 2nd order reference trajectory was modeled as shown in Equation 7 for each 𝝁𝒊. The 

parameter 𝜏𝒊 was calculated for each case, reaching the values 21.1, 20.4, 17.5, and 16.4 

for 𝜇0, 𝜇1, 𝜇
2
 and 𝜇

3
, respectively.  

𝜇𝑖 =  𝜇𝑖0 +  (𝜇
𝑖
(𝑡𝑒𝑛𝑑) −  𝜇𝑖0) (1 −  (1 +  (

𝑡 −  𝑡0

𝜏𝑖

)) 𝑒−(𝑡− 𝑡0) 𝜏𝑖⁄ )                                 (7) 

Finally, another trajectory was defined, which is similar to the 1st order trajectory but is 

named adaptive, as it departs from the actual system state at each time step. 

 

1451

1427



 F. A. R. D. Lima et al. 1428 

 

Figure 3: Simulation of the control loop for a 1st order trajectory. 

After analyzing the controllers, both structures were efficient for a constant, a 1st order, 

and an adaptive 1st order reference trajectory, but had some issues for the 2nd order 

reference trajectory. The ESN had a better performance than the MLP because the 

calculated overall (considering all the trajectories and all the normalized variables)  mean 

squared error (MSE) was 1.806 for ESN, while this value was 2.018 for the MLP. The 

results for both networks for a first-order reference trajectory are shown in Figure 3. 

5. Conclusion and Prospects 

In this work, an MPC controller was developed using a neural network approach to model 

the process. Four different neural networks designs were studied to predict the moments: 

a single MLP, a set of four MLP networks in series, LSTM and ESN. The dataset used 

for training and testing applied a co-teaching learning algorithm, using experimental and 

simulated data. As a result, the ESN presented the best performance to predict the 

moments, achieving values of R-squared higher than 75% for predictions five steps ahead. 

The ESN was chosen to be the model of the controller, and its behavior was compared to 

a traditional approach, using MLP as the model. The controller based on the ESN 

produced better results than the one using the MLP, presenting a lower value of MSE. 

Four different reference trajectories were analyzed: a constant, a 1st order, a 2nd order, and 

an adaptive 1st order. Therefore, both structures were efficient for a constant, a 1st order, 

and an adaptive 1st order reference trajectory but had some issues for the 2nd order 

reference trajectory.  

Finally, it is suggested to try different approaches of neural networks to model this 

process, such as Gated Recurrent Unit. Also, this same application could be tested on a 

continuous crystallization process. 
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Abstract 
Materials design for functional applications carried out using conventional trial and error 

methodologies is expensive and time consuming. Machine learning techniques can be 

used to design materials suitable for functional applications and discover materials for 

specific applications from existing literature. This study demonstrates a machine learning 

approach where a combinatorial analysis was used to design perovskite structures and a 

novel methodology was devised to calculate descriptor values which were used for 

property prediction of the designed perovskites. Further, natural language processing 

(NLP) technique was used to obtain word embeddings of perovskite materials. The 

obtained embeddings were used to identify perovskites that could be used as 

electrocatalysts. The candidate materials predicted by the NLP algorithm have been 

investigated for their electrochemical properties and they could be tried as electrocatalysts 

for the reactions discussed in this study.   

Keywords: Machine Learning, Natural Language Processing, perovskite, electrocatalyst 

1. Introduction:  
Lithium-ion batteries (LIBs) have played a huge role in enabling the digital revolution. 

The technology has established itself as a reliable energy storage mechanism over the past 

20 years. Over the past decade they have become popular for vehicular applications. With 

increasing energy demand there is a need to look beyond the lithium-ion technology alone 

to meet the future requirements for energy storage. 

Some of the other popular battery chemistries include, lithium-sulphur batteries, lithium-

air batteries, zinc-air batteries, etc. Of specific interest is the lithium-air battery. This 

battery has much higher gravimetric energy storage density compared to all other 

chemistries (Girishkumar et al. 2010). Because of this it is being researched for use in 

vehicular applications where weight of the battery system is important. The usable energy 

density of gasoline for automotive applications is approximately 1700 Wh/kg (Richter et 

al. 2008). For the present lithium-ion battery technology to achieve this there needs to be 

a 7-fold increase in the energy density. This warrants a change of approach, which is to 

look at other battery chemistries. The oxidation of lithium provides 11,680 Wh/kg of 

energy which is quite close to that of gasoline. This potential of the lithium metal could 

be made use of by using the lithium-air battery. The working mechanism of the lithium-

air battery involves an oxygen reduction reaction (ORR) in the cathode while discharging 
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and an oxygen evolution reaction (OER) during charging cycle. The performance of the 

battery is dependent on how efficiently these redox reactions happen. Electrocatalysts are 

used to facilitate these reactions. The state-of-the art electrocatalysts for these reactions 

are precious metals or their compounds such as Platinum for ORR, Iridium oxide for 

OER, etc (Wang et al. 2020). Due to the cost and rarity of these materials there is a 

growing search for non-precious metal-based catalysts. 

This study investigates the use of perovskites as electrocatalysts for the ORR and OER 

reactions. Transition-metal oxides, and in particular perovskite oxides, with a general 

formula ABO3, where A is a rare-earth or an alkali and B a transition metal, have been 

investigated as alternatives to the precious metal-based catalysts. They have emerged as 

a new category of highly efficient non-precious metal catalysts for both OER and ORR 

in alkaline solutions. This study demonstrates an ML based rational design methodology 

using which suitable alternate perovskite oxide electrocatalyst - electrolyte systems 

exhibiting high electrochemical activities for both OER and ORR could be identified. The 

descriptors (structure property relationships) required to predict the electrochemical 

activities are derived from open-source materials databases and quantum electrodynamic 

calculations. The experimental electrochemical activities are obtained from various 

published literature. Downstream tasks were devised to predict the activities for 

perovskite - electrolyte combination using well known machine learning techniques. 

Word embeddings obtained from SciBERT language model in an unsupervised manner, 

have been used in this study to identify perovskites which can be used as electrocatalysts. 

2. Methodology: 
A combinatorial analysis was carried out to obtain a list of the possible perovskites with 

the structure ABO3. Descriptors such as M-O bond distance (distance between B-site 

element and oxygen), M-M bond distance (distance between A-site and B-site metal 

atoms), B-site valence, A-site valence, Delta oxygen value, number of d-electrons, eg 

electrons, eg optimality, Magnetic moment of B-site, Ionization energy, Formation 

energy, Stability, Oxygen vacancy formation energy, Deviation-tolerance, Madelung-

potential for B-site atom, Madelung potential for Oxygen, Hubbard energy and Charge 

Transfer energy were obtained for each perovskite from the PyMatGen (Rong et al. 2016) 

repository. For a particular double-perovskite, if the descriptor values were not available, 

the perovskite was decomposed into simpler perovskites and the descriptors were 

calculated for each of the perovskite. A weighted average of these values was computed 

and the descriptor value for the perovskite was obtained.  

 

 

Fig. 1. Dataset preparation methodology. 
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Fig. 2. Descriptor preparation methodology. 

The descriptors calculated were then used as features for the machine learning model to 

predict catalyst activity values which are used to evaluate the suitability of the perovskite 

to be used as an electrocatalyst. Fig. 1 and Fig. 2 show the methodology for dataset 

preparation and descriptor calculation. The activity values are reported in different 

metrics. The details of the metrics are given in the following section. 

2.1. Metric transformation and conversion: 

Given the widespread scientific reporting of activity results in current as well as voltage 

units, and the absence of a universal metric to report OER/ORR performance, simple 

transformations were used to facilitate comparison of activities reported using different 

metrics. The conversions used for the different metrics are given below. 

a. Overpotential measurements: The potential values were considered in their native 

measurements in the case of ORR. For OER, the potential values were converted to 

negative scale after conversion to overpotentials.  

b. Current density measurements: For both OER and ORR, the current density values 

were converted to log scale. 

c. Experimental data reference compounds: All the activity values were taken as 

relative percentage changes with respect to LaCoO3 and LaMnO3 for OER and ORR 

respectively. The choice of selecting LaCoO3 and LaMnO3 is justified by the fact 

that they were the most widely reported perovskites for OER and ORR reactions. 

d. Activity data transformations: To account for the difference in spread resulting from 

difference in units, each group was normalized by its respective standard deviation. 

2.2. Machine learning models and validation techniques: 

Different machine learning models such as Ordinary least squares (OLS), Ridge 

regression (Ridge), Lasso regression (Lasso), Elastic net regression (11 ratio set as 0.25 

[EN025], 0.5[EN05] and 0.75[EN075]), Random-forest regression (Random_Forest), 

Gradient boosting regression (gbr), Huber regression, Least angle regression (LARCV), 

Support vector regression (SVR) and Principal component regression (PCA_CV) were 

employed for modeling the data and obtaining predictions. Four different validation 

techniques were used and mean squared error (MSE) was the primary metric used to 

assess model performance. The best model found using validation was used to give 

predictions on different unknown A, B combinations of perovskite oxides. The validation 

techniques are described below. 

a. K-fold cross validation: 5-fold validation was used to evaluate the model 

performance on multiple hyperparameters. 
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b. Blind A-blend: Model is trained on perovskite data discarding a certain A-element 

(e.g., La). Whereas, model performance is evaluated using that discarded unseen A-

element. Averaging the model performance for different A-elements can be good 

metric for model validation. 

c. Blind B-blend: Model is trained on perovskite data discarding a certain B-element 

(e.g., Ni) and model is evaluated using that discarded unseen B-element. 

d. Blind Combination (AB): Combination (combo), here refers to a specific 

combination of A-site blend and B-site blend. The model was trained on perovskite 

data discarding a certain AB combination (e.g., SrCaMn) and model is evaluated 

using that discarded AB combination. 

2.3. Materials selection using SciBERT embeddings: 

SciBERT (Beltagy, Lo, and Cohan 2020), which is a language model developed based on 

BERT framework is pretrained on scientific literature across multiple domains. This 

model was developed to improve performance of BERT framework on downstream 

scientific NLP tasks. However, the SciBERT model is not trained in the domain of 

perovskites or electrocatalysts. To get over this hurdle, the model was retrained in these 

domains using abstracts form Springer and Elsevier journals. 102,260 abstracts were 

obtained by querying the keywords ‘electrocatalyst’ and ‘perovskite’ directly. The corpus 

prepared from the abstracts was pre-processed to remove Chinese texts and subsequently 

the model was trained. Embeddings of perovskites of type ABO3 were obtained from the 

trained model. The obtained word embeddings were used to identify candidate 

electrocatalysts by obtaining the cosine similarities of the perovskites with the keyword 

‘electrocatalyst’. 

3. Results: 
3.1. Machine learning model predictions: 

Fig. 3 shows the results obtained from training and validating OER dataset using various 

machine learning models. The train test split was chosen as 80:20. Test_MSE is test data 

mean squared error, CV_MSE is 5-fold cross validation mean squared error. A_MSE, B 

MSE, AB_MSE are blind A, blind B and blind AB validation mean squared errors 

respectively. From the results it can be seen that the Gradient boosting regression has 

outperformed all the other models. gbr is an ensemble learning method. In gbr, while the 

decision trees are built, each new tree corrects the errors made by the previously trained 

Fig.  SEQ Figure \* ARABIC 3. Machine learning model validation results for OER 
dataset. 

Fig. 3. Training and validation results for OER dataset. 
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trees. This feature enhances the accuracy of the model. The validation of activities 

predicted using gbr is shown in Fig. 4.

Fig. 4. Validation for OER activities predicted using gbr model, a. Validation using blind 

combination, b. Validation using blind A-blend, c. Validation using bind B-blend, d. Validation 

using 5-fold cross validation.

Scatter plot of blind A-blend validation has lesser MSE compared to blind B-blend 

validation. This suggests that blinding A element did not affect the model performance 

whereas blinding B element did. According to the results obtained from the study it can 

be said that B elements are more important in finding the OER activity of a perovskite. If 

we blind a random B element and train the model the model fails to predict the activity 

accurately (for most of the perovskites considered in the plot) for the B element which is 

blinded. This demonstrates the importance of B element. Table 1 shows the top 4 

perovskites ranked based on scaled activities. These perovskites can be seen as candidates 

for non-precious metal based electrocatalysts. Similar analysis was carried out with ORR 

dataset and the candidate materials obtained are shown in Table 1.

3.2. SciBERT embedding predictions:

The SciBERT language model, unlike other language models (Skip-gram, CBOW, etc.) 

is a context-dependent model and is trained on scientific text. The word embeddings are 

computed taking into consideration all the words in a sentence along with their position 

in the sentence hence are better than the embeddings obtained from other models.

predicted using gbr is shown in Fig. 4.

a

.
b

.

c

.

d

.
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The top 8 perovskites predicted by computing cosine similarity with the keyword 

‘electrocatalyst’ are shown in Table 2. Cosine similarity measures the cosine of the angle 

between two vectors projected in a multi-dimensional space. Vectors oriented in similar 

direction will have a high cosine similarity. A literature review of the predicted materials 

revealed that some of these materials have already been studied for their electrochemical 

properties (e.g., LaCoO3, SrCoO3, SrCo0.7Ni0.3O3, etc.). One of the most popular 

electrocatalyst for OER and ORR is platinum. It was observed that the cosine similarities 

of ‘Pt’ with ‘electrocatalyst’ and ‘LaCoO3’ with ‘electrocatalyst’ were alike (0.095 for 

‘Pt’ and 0.102 for ‘LaCoO3’). These prove that the predictions are consistent with existing 

scientific knowledge and are capable of possibly identifying newer materials. 

Table 1. Top 4 perovskite-based electrocatalysts for OER and ORR predicted from ML analysis. 

OER ORR 

Perovskite Scaled activity Perovskite Scaled activity 

Sr0.5Ba0.5Fe0.5Co0.5O3 2.113 Sr0.5Sm0.5Cu0.5Ni0.5O3 0.200 

Sr0.5Ba0.5Fe0.5Mn0.5O3 2.105 Ca0.5Sm0.5Cu0.5Ni0.5O3 0.197 

Ce0.5Ag0.5MnO3 2.091 Ca0.5La0.5Cu0.5Ni0.5O3 0.197 

SrFe0.5Mn0.5O3 2.085 Sr0.5Y0.5Cu0.5Ni0.5O3 0.192 

Table 2. Top 8 perovskite-based electrocatalysts predicted using word embeddings 

Rank Perovskite Rank Perovskite 

1 LaCoO3 5 Nd0.5Ba0.5CoO3 

2 Ca0.1Ba0.9SnO3 6 Ce0.8Sr0.2Co0.6Ni0.2Fe0.2O3 

3 SrCo0.7Ni0.3O3 7 Sm0.8Sr0.2Fe0.8Co0.2O3 

4 AuWO3 8 SrCoO3 

4. Conclusion: 
This study demonstrated a ML based approach for materials design and an NLP based 

approach for materials discovery. Through the ML based methodology, perovskites of a 

certain structure were generated and their electrochemical activities were predicted. The 

designed perovskites could be seen as novel materials that could be synthesized. The NLP 

results clearly demonstrate the usefulness of the methodology for materials discovery. 

This technique shows how existing knowledge can be analyzed in a better way. Since the 

volume of scientific literature is growing by the day, this approach can be seen as a 

paradigm shift in the way literature has been analyzed and assimilated. 

5. Future work: 
Following the extraction of the embeddings for the perovskites, they will be subsequently 

used as features for training the ML model along with the already present descriptors. 

Research is in progress to develop newer descriptors and metrics. 
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Abstract 

Modular plants provide the opportunity to increase flexibility and reduce time-to-market 

in the process industry. Process validation is time-consuming and limits the realization of 

this potential. Therefore, it should be supported efficiently. Smart process equipment 

assemblies (sPEAs) built from the real module, a digital twin (DT), and suitable methods 

and algorithms provide high potential to do so. In this paper, we investigate how a suitable 

DT should look like to support the process design phase in process validation. Therefore, 

the semantics and information demand of different relevant simulation and optimization 

problems are analyzed. We reason that the DT should combine structural information like 

engineering data, e.g. through DEXPI, and behavioral models in form of simulation 

models. Furthermore, it should provide the descriptive capability to capture the semantics 

of different application cases like e.g. design of experiments. We suggest a linked-data-

based architecture to meet these requirements. The simulation models are semantically 

lifted into linked data through an information model describing its purpose, quality and 

variables. The approach provides the potential to reduce manual effort of the user since 

information is interconnected, accessible and processible automatically. 
 

Keywords: Modular plants, smart PEA, digital twin, linked data, process validation 

1. Introduction 

Modular plants (MPs) built from process equipment assemblies (PEAs) strive to reduce 

time-to-market and increase production flexibility in the process industry. Therefore, this 

technology is attractive for industry sectors with small product charges and short product 

life cycles like the pharma industry. This industry is highly regulated and requires a rigid 

process validation (Katz and Campbell, 2012). The MP concept accelerates construction 

and automation of process plants. To develop MPs into highly flexible and smart 

production systems, process validation should be efficiently supported as well. 

Process design is the first stage in process validation (Katz and Campbell, 2012). In recent 

years, the quality by design (QbD) approach is adopted in the pharma industry to set a 

sound scientific foundation in this stage. The approach emphasizes knowledge 

management, risk-based approaches, and design of experiments. We are convinced, that 

smart PEAs built from the real PEA, its digital twin (DT) and tailor-made methods and 

algorithms can reduce manual efforts of the owner/operators (O/Os) and therefore 

accelerate process validation. Thus, this paper aims to answer the question how a DT of 

a sPEA should be structured to support the process design phase in process validation and 

the solution of related simulation and optimization problems as efficiently as possible. 

Simulation and optimization methods (e.g. black-box optimization methods) for systems 
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with distributed knowledge are not considered 

in this publication. The remainder of the paper 

is structured as follows: section 2 introduces an

illustrative example; section 3 reviews the DT

and key simulation and optimization problems 

to derive requirements to the DT for process 

validation; section 4 presents a concept for a

linked-data-based DT of sPEAs to integrate 

structural and behavioral information for

process validation; section 5 provides a

conclusion and further research potential.

2. Illustrative example

Let us assume that an O/O aims to carry out an irreversible, exothermic reaction A → B. 

The quality target product profile (Q TPP) requires the concentration of component A cA

to sink below 1 mol/L in the product stream F, while the process must not reach a 

temperature T above 80 ° C in the vessel. The educt stream is expected to vary in volume 

flow Fin, concentration cA,in and temperature Tin in the production. The O/O chooses the 

stirred tank reactor (STR)-PEA in figure 1 to carry out the process. The PEA can control 

the product volume flow (VV02, PL01) and the cooling water flow (VV03). Furthermore, 

it provides a service to open the valve VV01 to receive any process stream provided to it.

The PEA has sensors to measure the temperature T, the level in the tank L, the 

concentration cA, and the flows Fin and F. Assuming constant physical property 

parameters, the following model equation system can be derived:

( ) ( )

( ) ( ) ( )

in
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p p

A in A J J
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We assume that the O/O already knows about the density ρ and specific heat capacity cp

and did choose a suitable kinetic model. Y et, the O/O has only rough estimations of the 

kinetic parameter values k0 and EA as well as the reaction enthalpy λ. The sPEA now shall 

provide a DT, and methods and algorithms to support the O/O to identify the model more 

precise and derive the design space (DS) of the process.

3. Requirements analysis

3 .1 . A digital twin for smart PEAs

Smart PEAs are envisioned to support their user in application beyond the capabilities of 

current PEAs. Therefore, it is necessary to extend their descriptive capabilities. The DT 

concept provides a far superior form of description to sPEAs. Currently, descriptions to 

PEAs focus on single aspects. For example, the module type package (MTP) describes

the automation interface of a PEA (VDI/VDE/NAMUR, 2019), or DEX PI which

describes piping and instrumentation (Wiedau et al., 2019). Boschert et al. (2018) define 

the DT as a ‚linked collection of […] engineering data, operation data and behavior 

descriptions via several simulation models‘. These simulation models are use case 

specific and therefore of varying, suitable fidelity (Boschert et al., 2018). Networking 

structural models from the planning phase, such as the MTP and DEX PI, was considered 

in preliminary work (Rahm et al., 2021). For the DT of our illustrative example, the MTP 

would e.g. describe the services controlling the control loops and the input valve. To 

Figure 1: P&ID of a simple STR-PEA

1460



A digital twin -concept for smart process equipment assemblies supporting 
process validation in modular plants

1437

support process validation, the DT of a sPEA must additionally integrate behavioral 

models to capture process behavior. Furthermore, it must integrate with simulation and 

optimization methods, which accelerate process validation through an increased degree 

of automation and reduced manual efforts. In addition, an integration of structural models 

describing process validation data like e.g. the Q TPP would provide an added value.

3 .2 . Quality by Design methods for smart PEAs

Design space identification is an important task in process validation. Von 

Stosch et al. (2020) argue that a dynamic DS can provide increased process flexibility. 

Thus, a dynamic model should be used to capture the process behavior. Since, smart PEAs 

will be reused in different application scenarios, they can be expected to become pre-

characterized. Therefore, model-based design of experiments (MBDoE) and system 

identification approaches should be foreseen to identify the dynamic model. Finally,

Ochoa et al. (2021) did consider flexibility analysis (FA) for DS identification from static 

simulation models. This approach can be extended applying the dynamic flexibility

analysis developed by Dimitriadis and Pistikopoulos (1995).

3 .2 .1 . Dynamic modeling for behavioral models

As derived above, the DT of a sPEA should provide dynamic behavioral models of the 

PEA and the process happening within the PEA. Differential algebraic equation systems 

(DAEs) of the following form provide a well-known form of dynamic model:

( )

( )

0 0, ( ), ( ), ( ), ; ( )

( ),

t t t t t

t

= =

=

0 f x x u θ x x

y g x θ

, ( ), ( ), ( ), ; ( ), ( ), ( ), ( ), ; ( ), ( ), ( ), ( ), ; ( )0 f x x u, ( ), ( ), ( ), ; ( ), ( ), ( ), ( ), ; ( )t t t t t, ( ), ( ), ( ), ; ( )0 f x x u, ( ), ( ), ( ), ; ( )t t t t t, ( ), ( ), ( ), ; ( ) (2)

Herein, t represents the time, x are the differential and algebraic states, x0 are the initial 

states of the DAE-system, xx denote the derivatives of the differential states, u are external

inputs, y are the outputs, and θ are equipment or physical property data related 

parameters. These variables are defined in the mathematical domain. In our illustrative

example e.g. the external inputs u have to be mapped to the input mass flow Fin, Tin, cA,in

and the input information flows F and FJ. Thus, PSE software defines a semantic layer 

upon the mathematic model, which allows to differentiate between these input types.

Meanwhile, the semantic meaning of a variable can often be related to information in 

other structural models. E.g., equipment properties like the volume of the jacket VJ are 

described in DEX PI. In a DT, potentially conflicting descriptions of the same quantity

should be prevented. Therefore, the behavioral model should be integrated into the 

structural model. But since the semantic is usually proprietary to a software, a digital 

connection between the behavioral model and the structural model is often not established

yet. Our new DT concept must overcome this obstacle. Furthermore, the DT must provide 

meta information on the purpose and quality of a simulation model and describe the 

relationship between different simulation models which are part of the DT.

3 .2 .2 . Simulation and optimization problems applying the digital twin

In the following, the optimization problems MBDoE and FA are analyzed as examples. 

MBDoE is an optimal control problem. It is applied to design highly informative 

experiments. An example are D-optimal experiments. The related optimization problem 

can be formulated as follows:
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Herein, FIM denotes the Fisher information matrix, θCP the capability property

parameters (cf. Bamberg et al., 2021), θTP the transformation property parameters, σ are 

the variances of the different measurement signals and S denotes the parameter 

sensitivities of the measurements. Firstly, it is important to recognize the ‘factors’ of the 

experiments are formed by the information flow and mass flow related inputs u and the 

initial state x0. In our illustrative example, these are the information flows F, FJ along 

with the mass flow related variables Fin, cA,in, Tin and the initial states VR, cA,0, T0 which

might be adjustable under experimentation conditions. The parameter vector θ must be 

split into capability property parameter θCP, which characterize the sPEA capabilities and 

are known beforehand, and the transformation property parameters θTP, which are related 

to varying substance systems processed by the PEA. In the illustrative example, θCP the 

variables VJ, UAJ, ρJ and cp,J are capability parameters, while ρ, cp, k0, EA and λ are

transformation parameters. The parameter sensitivities S are not provided by the model 

according to equation (2). For this purpose, numerical differentiation might be applied or 

a related model including the sensitivity equations might be included in the DT. The 

simulation model must be considered for nonlinear equality constraints. Furthermore, 

inequality constraints might be provided through information from a structural model like 

e.g. a maximal operation temperature of an equipment.

FA can be used to calculate the design space (Dimitriadis and Pistokopoulos, 1995):
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(4)

In process validation, critical material attributes (CMAs), critical process parameters 

(CPPs) and critical quality attributes are differentiated (CQ As). FA can be used to check 

if the CQ As can be met under varying CMAs adjusting the CPPs. CMAs and CPPs are 

both related to the input variables u. Thus, the optimization problem requires an adjusted 

semantic. In our illustrative example, CMAs could be related to the variables describing 

the feed mass flow Fin, cA, Tin, which are dictated by a prior process step in the MP, while 

potential CPPs are FJ and F. In addition, a connection to structural models describing 

process validation quantities like requirements to the CQ As could provide added value.

In summary, (1) the DT of a sPEA should be built from integrated structural and 

behavioral models to provide networked information spaces and hence make information 

accessible more easily or even automatically. Furthermore, (2) the DT should provide the 

capability to describe and connect the different semantic contexts to make it 

understandable. In addition, (3) the DT should be extendable easily, allow the integration 

of new information models, and be adjustable to different PEA configurations easily.

4. A linked-data-based digital twin concept for smart PEAs

Over the life cycle of a PEA, different domain-specific models emerge that have specific 

views of a PEA (Wiedau et al., 2019). The systematic networking of models is an essential 

prerequisite for a smart PEA. Existing information relationships can thus be used directly. 

In addition, the networking is a basic prerequisite for the synchronization of the models, 

so that all models are always free of contradictions regarding defined rules (Rahm et al., 

2021). Graube et al. (2012) developed a concept using linked data that meet the 

requirements for a shared and distributed information space in industry. The basis are 

graph-based structures that are described using the Resources Description Framework 

(RDF) (Graube et al., 2012). The SPARQ L query language can be used to retrieve the 
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information. Behavioral models like simulation models must be semantically lifted into 

the graph-based structure to unlock the descriptive power of linked data for the DT. 

We suggest defining an additional structural model in linked data which describes meta 

information of simulation models (see figure 2). This structural model relates simulation 

models to variables, a purpose specification, and a quality specification (cf. Mädler et al., 

2021). This paper does focus on the variables. The most important attributes of a variable 

are the type and the index. These are used to relate the variable to the characterizing 

vectors of a simulation model according to equation (2). The type might therefore be 

‘input’, ‘output’, ‘state’, ‘initial state’, or ‘parameter’. The index attribute provides the 

index of a variable in the vector. The further attributes provide information on the 

semantic meaning of the variable e.g. in the DoE context. Therefore, the DoEType might 

be ‘dynamic factor’, ‘constant factor’, ‘measurement’ or ‘none’. These types do not force 

the user to use a variable as factor, but rather indicate its sematic meaning. In addition, 

the variable can have relationships into other information models like DEX PI. In this 

case, an additional attribute to a variable must indicate the relation, point to the node in 

the foreign information model and name the related attribute. In this way, the semantic 

lifting of simulation models into linked data permits the connection of the considered 

quantities in a simulation model with several other information spaces (see figure 3). 

Firstly, e.g. variables representing quantities related to a sensor might point to the 

particular sensor in DEX PI. Secondly, the same variables could become directly or 

indirectly connected to digital representations of equipment data sheets. Thirdly,

information models describing the knowledge space of process validation including 

process design, process qualification and continued process verification might be 

integrated. Finally, meta information models for experiments in linked data can be 

envisioned. This would allow to relate time series data to digital data sheets of the sensors 

and to the outputs of the simulation model. The combination of a linked data information 

space for structural models, a repository for behavioral models and a time series database 

for experimental data does provide a well-suited containment for each type of data and 

its semantic interconnection. SPARQ L queries can be used to set up simulation and 

Figure 3: Information architecture for the digital twin of smart PEAs

Figure 2: Information model for simulation models in linked data
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optimization problems by asking the DT for simulation models of suitable purpose 

specification and quality specification. Furthermore, the information model provides 

knowledge on the semantic structure of the simulation model. 

5. Conclusion 

This paper aimed to answer the question how a DT for the support of process design in 

process validation in sPEAs should be constructed. It was reasoned that the DT should 

include and interconnect structural and behavioral models to provide information for 

different simulation and optimization tasks. We suggested a linked-data-based 

architecture to build a digital twin integrating structural models like engineering data, 

behavioral models like simulation models and time series data. The simulation models 

are semantically lifted into linked data using a descriptive information model. This 

reduces manual efforts for the O/O since information becomes digitally interconnected, 

accessible, and automatically processible. In future work, this approach must be extended 

to include the purpose specification and quality specification of simulation models. 

Furthermore, the relationship between different simulation models for the same PEA 

should be added to the information model. Finally, the information models related to 

digital datasheet, experimental data and process validation must integrated. 
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trum Jülich GmbH, 52425 Jülich, Germany
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Abstract
Pressure swing adsorption (PSA) can remove CO2 from flue gases. The full potential of the
technology can only be exploited if the optimal combination of adsorbent material and process
is identified. This identification requires screening the large database of adsorbent materials by
performing computationally intensive process optimizations. To ensure a suitable compromise
between accuracy and computational lightness, the PSA process can be described by reduced-
order models. However, those models might involve several discrete states making the objective
function discontinuous and not continuously differentiable, challenging gradient-based methods.
The selection of suitable optimization methods is therefore an open issue. This study compares
three optimization algorithms, Bayesian optimization, NOMAD and KNITRO, for two cases and
adsorbent materials.
For the tested cases and adsorbent materials, none of the three algorithms is clearly superior to the
other. Bayesian optimization (BO) needs fewest function evaluations and computational time to
converge and outperforms the other two for one case. However, BO is less reliable than NOMAD
and KNITRO for the other case tested.

Keywords: pressure swing adsorption, CO2 capture, techno-economic optimization, Bayesian
optimization

1. Introduction

Rigorous pressure swing adsorption (PSA) models consist of a set of partial differential and alge-
braic equations and are thus computationally intensive to solve. In addition, the performance of a
PSA cycle must be assessed at cyclic steady state, which requires to simulate several cycles. Rig-
orous PSA models are discontinuous and are not continuously differentiable. An overview of the
related challenges, with a focus on efficient simulation and optimization strategies for the design
of PSA systems, is provided by Biegler et al. (2004).
A key for the design of an efficient PSA process is the choice of the adsorbent (Farmahini et al.,
2021). To maximize the economic efficiency of a PSA process, adsorbents have to be assessed
using a thermo-economic process metric. However, the impact of the adsorbent properties on
the economic performance is challenging to predict (Leperi et al., 2019). To address this chal-
lenge, a techno-economic framework is developed to screen thousands of absorbent structures for
PSA processes and rank them for a given set of process metrics (Riboldi et al., 2020). For effi-
cient screening, fast and robust process optimization is essential. In this study, a reduced-order
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PSA model is used (Riboldi et al., 2020) and linked to a Bayesian Optimization algorithm (BO).
BO uses Gaussian Process (GP) regression to identify a surrogate model of the original objective
function and optimizes the surrogate to find the next evaluation point in each iteration. GP is a
probabilistic, non-parametric modelling technique well known in the machine learning community
(Rasmussen and Williams, 2006). The advantage of using GP regression is that it is not bounded
by specific model structures as e.g. parametric models. Consequently, it can identify the surrogate
model in a flexible manner (de Avila Ferreira et al., 2018). We compare the BO algorithm to two
optimization algorithms from the literature, namely an algorithm implemented in the software li-
brary KNITRO (Byrd et al., 2006) and the blackbox optimisation software NOMAD (Abramson
et al., 2021), and discuss their performance in terms of objective function value, computational
time and how reliable they converge to the same optimum.

2. Optimization algorithms
2.1. Bayesian Optimization

BO minimizes a function f (x). For this purpose, a probabilistic model for the function f (x) is con-
structed using Gaussian process regression, which is used to decide where to evaluate the function
next. Thus, BO is a sequential approach in which first a regression model is trained as surrogate
model, which is then minimized instead of the original function f (x). The optimum of the sur-
rogate model is evaluated using the original function f (x), the surrogate model updated, and the
optimization repeated. BO is especially powerful when function evaluations are computationally
expensive (Snoek et al., 2012) as it is the case for the investigated PSA model.
Gaussian Processes (GP) are non-parametric, probabilistic kernel methods (Rasmussen and Williams,
2006) and aim to identify a function f , which describes a data set. The noisy observations of f (x)
are given by

y = f (x)+ν , (1)

where the noise ν is Gaussian with zero mean and variance σm and x is the input vector. Smooth-
ness properties of the underlying function f (x) are enforced by choice of mean and covariance
function without relying on parametric assumptions (Snelson and Ghahramani, 2006). In this arti-
cle, a zero-mean function and the automatic relevance squared-exponential covariance are chosen.
The performance of the GP depends on the hyperparameters Φ, which are commonly unknown
and need to be inferred from data. The hyperparameters are the noise variance, signal variance
and the values in the scaling matrix of the covariance function. Here, the marginal likelihood is
used to estimate the hyperparameters.
An important choice for BO is the formulation of the acquisition function. The acquisition func-
tion is used to determine the next point to evaluate. In this work, we test two acquisition functions:
First, the GP lower confidence bound (GP-LCB) is chosen

xi+1 = argmin
x

(µ(x;{xi,yi},Φ)−κσ(x;{xi,yn},Φ)) , (2)

where µ and σ mean and variance of the GP regression model. The observations are in the form
{xi,yi}N

n=1 and κ is a parameter balancing exploitation against exploration (Snoek et al., 2012).
The second acquisition function tested is maximizing the expected improvement (GP-EI) over the
current best.

xi+1 = argmax
x

(σ(x;{xi,yi},Φ)(γ(x)Ψ(γ(x))+N (γ(x);0,1))) , (3)

where Ψ is the cumulative distribution function of the standard normal and γ(x) is defined as:

γ(x) =
f (xbest −µ(x;{xi,yi},Φ)

σ(x;{xi,yn},Φ)
. (4)
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2.2. NOMAD

NOMAD is a blackbox optimization tool suited for difficult problems with a small number of
variables. NOMAD uses Mesh-Adaptive-Direct-Search to perform the optimization, which is a
gradient-free optimization method (Le Digabel, 2011). In this work, NOMAD version 4 is used,
which is available from the website (Abramson et al., 2021).

2.3. KNITRO

KNITRO is a commercial optimization software library for solving nonlinear mathematical opti-
mization problems (Byrd et al., 2006). The library contains several local optimization solvers and
algorithms for continuous and discrete problems with and without constraints. KNITRO allows
for gradient-based or derivative-free and black-box optimization. In this work, we use KNITRO
version 12.3.For a description of the used settings, please see Section 4.1.

3. PSA model

The PSA model builds on an approach presented in the literature (Maring and Webley, 2013),
which assumes local equilibrium, i.e., CO2 gets instantaneously adsorbed on the adsorbent ma-
terials. The PSA model is customized to simulate a 4-step cycle process (adsorption, blowdown,
evacuation, light product pressurization) (Riboldi et al., 2020). The model includes a realistic rep-
resentation of the operation of vacuum pumps, based on the work from Maruyama et al. (2020).
The model has four optimization variables: the minimum, intermediate and maximum pressure
and the adsorption temperature and two constraints, purity and recovery. A techno-economic
analysis (TEA) framework is integrated into the PSA model enabling the consideration of the CO2
avoidance cost (CAC) as objective function of the optimization. The TEA model is based on rig-
orous simulation of PSA (Subraveti et al., 2021) and adapted for utilization in the reduced-order
model. The model embeds external models and functions, so the optimization algorithm must be
able to handle blackboxes. Two adsorbent materials are investigated in this study: a zeolite 13X
(Haghpanah et al., 2013) and a metal-organic framework (MOF) UTSA-16 (Agueda et al., 2015).
The competitive adsorption isotherms are described by the dual-site Langmuir model. The CO2
emission intensity of energy demands and reference processes is taken from ecoinvent version
3.7.1, using the impact assessment method ”Environmental Footprint 2.0” and allocation at the
point of substitution (Wernet et al., 2016).

4. Case study

4.1. Setup of the optimizations

Each algorithm is tested 20 times considering randomly generated initial values. For NOMAD
and KNITRO, the same 20 initially generated initial values are considered. In contrast, the BO
needs an initial set of several function evaluations to create the first GP regression model. The size
of the initial set is set to ten. Each initial set contains the initial value of NOMAD and KNITRO
of the corresponding test run and additionally nine randomly generated evaluations. The BO does
not evaluate gradients of the original function, but only of the surrogate. Therefore, BO is termi-
nated if the maximum amount of function evaluations is reached, which is set to 56. In addition,
BO is terminated if the constraints are satisfied, and the last iterations is within 1% of the best
previously obtained objective function value and the scaled inputs (between 0 and 1) of these two
points have a distance of less than 0.015. A large exploration factor prevents quick convergence
towards the same region and premature termination of the optimization. A multi-start gradient-
based optimization is used to maximize the marginal likelihood to estimate the hyperparameters
and optimize the acquisition function.
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The NOMAD algorithm terminates when the maximum amount of function evaluations are reached.
We test a maximum amount of 100 and 150 function evaluations. The constraints are handled with
a progressive barrier approach. Therefore, constraints must just be satisfied at the solution.
For KNITRO, we performed a parameter study to identify the solver setting resulting in a good
compromise between accurate gradients and reliable convergence due to discontinuities of the
model. From this study, we chose the Active Set algorithm to solve the problem. The gradients of
the objective and constraints are approximated using forward finite differences and the Hessian of
the Lagrangian by (dense) quasi-Newton BFGS Hessian. To account for the discontinuities in the
objective function, constraints and gradients, we select a comparatively high relative step size of
0.05 for finite-difference gradients.

4.2. Cases

The performance of the two adsorbent materials is tested on the adsorption of CO2 from flue gas
for two relevant industries, namely a cement kiln and a natural gas (NG) offshore combined cycle
power plant. The two cases are representative of rather different CO2 concentrations (25% and
4% of CO2 in N2, respectively). The power required by the PSA process is drawn from the grid
for the cement case while internally generated in the case of the NG offshore combined cycle.

5. Result

The optimization algorithms are compared in Table 1. For the cement case, BO achieves the
smallest average CAC with the smallest computational time. In addition, it reaches the same op-
timum with high reliability. KNITRO achieves a similar objective function value in case of the
zeolite 13X adsorbent but requires more function evaluations and thus, computational time. For
UTSA-16, the mean objective function value differs by 10% for both of KNITRO and NOMAD
100/150 from the mean CAC obtained with BO. Moreover, the maximal difference in the objective
function value is 39% and 24% for NOMAD 150 and KNITRO, respectively, while it is only 14%
and 15% for BO EI and BO LCB, respectively. For the cement case, BO is also about twice as
fast compared to the other algorithms. The optimal values of two of the four process degrees of
freedom are at the bounds. This result is identified consistently by the BO, while KNITRO and

Table 1: Comparison of optimization algorithms based on 20 tests. The CAC, the elapsed time,
the number of PSA function evaluations and the maximal difference in the objective function
over the 20 tests are displayed. The best values are indicated by bold font.

Case Adsorbent Method CAC Elapsed in s # Evals Max diff.
CAC in %Mean Std Min Mean Std Mean Std

C
em

en
t

ze
ol

ite
13

X NOMAD 100 33.4 2.1 31.2 62.2 1.2 100 0 23.6
NOMAD 150 32.2 0.9 31.2 93.2 1.5 150 0 12.4

KNITRO 31.4 0.4 31.1 48.1 10.5 86.0 18.6 5.4
BO LCB 31.3 0.2 31.1 27.1 6.6 36.2 8.0 3.3

BO EI 31.4 0.3 31.2 28.8 8.6 40.9 12.4 2.9

U
T

SA
-1

6 NOMAD 100 37.5 3.1 33.1 62.4 1.6 100 0 39.4
NOMAD 150 36.6 3.1 33.1 93.6 1.2 150 0 39.1

KNITRO 37.0 2.6 33.2 61.1 12.1 108.5 20.5 24.4
BO LCB 33.7 1.1 33.3 33.9 7.1 45.0 8.6 15.4

BO EI 33.8 1.0 33.2 26.8 8.2 35.8 10.4 13.6

N
G

of
fs

ho
re

ze
ol

ite
13

X NOMAD 100 566.5 51.2 539.3 63.0 1.5 100 0 42.6
NOMAD 150 549.3 25.8 536.8 93.71 1.1 150 0 22.9

KNITRO 542.3 5.3 535.4 63.6 14.1 109.8 22.3 3.3
BO LCB 567.8 30.1 538.5 39.2 7.1 53.2 8.6 18.4

BO EI 547.8 11.5 537.0 45.9 4.04 56 0 7.3

U
T

SA
-1

6 NOMAD 100 622.4 6.3 612.4 62.9 1.0 100 0 3.0
NOMAD 150 617.9 4.8 609.2 93.7 1.5 150 0 3.8

KNITRO 626.5 9.7 612.3 61.9 9.1 109.3 15.8 6.7
BO LCB 642.5 21.7 612.2 40.6 5.4 54.3 6.1 13.1

BO EI 629.9 28.8 610.0 40.9 8.1 50.8 9.7 17.8
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NOMAD converge to sub-optimal solutions in some test runs, where these variables are not at the
bounds. Nevertheless, all algorithms converge to the same optimum in at least one run. Therefore,
the best achieved objective function values are almost identical.
For the NG offshore case, KNITRO achieves the best mean objective function value for the zeolite
13X adsorbent and NOMAD 150 for the UTSA-16 adsorbent. BO still needs less computational
time than the other algorithms but is less reliable for this case. In one to two of the 20 test runs, the
maximal difference in the objective function is 18% for BO. For these cases, at least one optimiza-
tion variable gets stuck close to or at a bound. The BO LCB is more prone to this behavior than
the BO EI. The BO EI has a stronger focus on exploring the optimization region, which improves
converging to the global optimum when many local solutions exist. Nevertheless, the best function
value achieved by every algorithm over the 20 tests is very similar.
The optimization time mainly results from evaluating the PSA model. BO needs fewest function
evaluations but needs more overall optimization time per function evaluation than the other algo-
rithms. The time difference per function evaluation between BO and KNITRO is about 0.2s. BO
optimizes hyperparameters of three surrogate models (objective function plus two constraints) and
minimizes the surrogate model in each iteration, which causes the larger time consumption per
function evaluation.

6. Discussion

For the considered cases and adsorbents, none of the optimization algorithms can be recommended
unconditionally. The discontinuities in the PSA model result in many local optimal solutions mak-
ing it difficult for the optimization algorithm to converge consistently to the global optimum. The
BO is the fastest algorithm. For the BO algorithm, the user has to choose the covariance function,
the maximum allowed function evaluations and the termination criteria. More function evalua-
tions improve the reliability but lead to unnecessary function evaluations around the optimum.
The maximum number of function evaluations chosen in this work balances reliability of finding
a solution close to the global optimum and computational time. The chosen criterion to terminate
the BO before reaching the maximum allowed function evaluations decreases the number of iter-
ations by about 15 in the cement case, while it almost never triggered in the NG offshore case.
Defining a suitable termination criterion for BO can be challenging. However, without additional
termination criterion, the computational time of the BO for the cement case would just increase by
about 10 s. For the BO, a squared exponential covariance function is chosen, which expects a cer-
tain smoothness of the system. The convergence might be improved by a less smooth covariance
function, for which a suitable optimization method has to be chosen to optimize the Gaussian Pro-
cess regression model, e.g., a gradient-free optimization method. For GP-LCB, we choose κ = 16
to focus on exploration since the BO-LCB tends to converge to local optima if κ is too small. The
main reason for choosing the LCB acquisition function is to avoid exploring likely uninteresting
regions, which is counteracted by a large κ . The EI acquisition function is easier to apply for this
case, which does not contain a tuning parameter.
For NOMAD, a maximum of 100 and 150 function evaluations are tested. For these investigated
cases and adsorbents, fewer than 100 function evaluations are not recommended without the risk
of significantly degrading performance. 150 function evaluations increase the reliability but also
the computational time. The advantage of the NOMAD is the easy applicability and the conver-
gence to the global optimum giving enough function evaluation. Similar to BO, KNITRO achieves
a good balance between reliability and computational time. However, a detailed study of the user
options has to be performed in advance (e.g., algorithm, methods for gradients and Hessian or step
size of finite differences) to tackle the challenges of the discontinuities of the model. A combi-
nation of BO and KNITRO, where BO provides the initial values for KNITRO, could reduce the
computational time of KNITRO.
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7. Conclusions
A Bayesian optimization algorithm is tested for optimizing the carbon-avoidance cost of a PSA
process for two adsorbent materials and two industry cases and compared to two optimization
algorithms from the literature. For the investigated cases, BO shows a good balance between com-
putational time and reliability and is thus a promising option for adsorbent screenings. However,
no algorithm outperforms the others in all investigated cases. Each optimization algorithm is at
least for one case/adsorbent combination less reliable than the other algorithms. Consequently,
in future work, a detailed comparison of the algorithms has to be performed for more cases and
adsorbent materials.
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Abstract 

As electric vehicles (EVs) become popular, the use of lithium-ion batteries is increasing. 

However, it is difficult to ensure the reliable use of the battery because the state of charge 

(SoC) of a lithium-ion battery cannot be measured directly. SoC estimation is necessary 

to ensure the safety of battery systems by preventing over-charge and discharge of the 

battery and to extend battery life through efficient use. The optimal battery balancing 

strategy, estimation of the remaining driving range of EV, and Vehicle to Grid strategy 

can be developed through accurate SoC estimation. Therefore, it is necessary to study 

how to estimate the SoC of the battery in real-time. As methods for estimating SoC, 

equivalent circuit model, electrochemical model, and recently artificial neural network-

based model are being studied. The electrochemical model is not suitable for real-time 

use due to its high computational complexity. Artificial neural network-based models 

require a large amount of data for learning, but most of the data is collected in the lab, 

which can lead to a lack of data and is difficult to ensure accuracy in such cases. 

In this study, a surrogate model based on electrochemical models for SoC estimation is 

developed to solve computational complexity problems of electrochemical models and 

the accuracy problems of data-driven models due to data dependence. Based on the 1C 

discharge experimental data, parameter identification of the electrochemical model was 

performed using a Genetic Algorithm. Output variables such as Li-ion amount in the 

negative electrode and voltage for various drive cycle loads are derived from this model 

to create a sufficient amount of data for model training. The surrogate model is trained 

using these output variables and compared with data-driven models in terms of accuracy 

and computational complexity. Based on the Long Short Term Memory (LSTM) 

architecture, the artificial neural network-based model was trained gradually with driving 

cycle data and then compared with the surrogate model at each step. As a result, the 

surrogate model based on an electrochemical model using fewer data showed feasible 

computational complexity and high accuracy. Through the proposed method, it is 

expected to accurately estimate battery SoC in real-time and make the battery use 

efficiently. 

 

Keywords: Lithium-ion battery, Battery modelling, State-of-Charge 
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1. Introduction  

As electric vehicles(EVs) become popular, the importance of lithium-ion battery 

management is increasing. However, it is impossible to accurately monitor the 

electrochemical behavior in a lithium-ion battery, so it is very difficult to estimate the 

State of Charge(SoC) required for optimizing the use of the battery. Representative 

methods used to estimate SoC include the Coulomb Counting Method, the Open Circuit 

Voltage Method, the electrochemical model based method, and the data-driven model 

based method. The Coulomb Counting Method measures the current of the battery and 

integrates the current over time. The limitation of this method is that when the battery is 

used for a long time without being fully charged or discharged, errors accumulate, making 

it difficult to accurately estimate SoC. The open circuit voltage method uses the SOC 

versus OCV curve. However, to measure the relaxed OCV, the battery has to reach 

equilibrium, so it is difficult to use it in real-time because it takes several hours. The 

electrochemical model based method uses the electrochemical model to simulate the 

electrochemical behavior inside a battery. This method shows very accurate performance, 

but the model is so complex that it is difficult to use in real-time. The data-driven model 

based method is training and using artificial neural networks with sufficient data. If the 

data is sufficient, it shows high performance, but if the data is insufficient, the reliability 

of the model decreases. 

Chemali et al. introduced a deep neural network to map battery signals directly to SoC. 

Chemali et al. used the Long Short Term Memory (LSTM) based artificial neural network 

model to estimate SoC. Jiao et al. introduced a GRU-based artificial neural network to 

estimate. Dawson-Elli et al. developed the surrogate model of P2D by using machine 

learning techniques such as a random forest, decision tree, and gradient boosted machine. 

Tian et al. employed an adaptive cubature Kalman filter to reduce the fluctuation of 

LSTM network estimation. In this study, the LSTM-based data-driven model, the P2D 

model, and the P2D model-based surrogate model are compared and analyzed in terms of 

accuracy and calculation time. 

 

2. Datasets 

This research uses a dataset obtained from a Panasonic 18650PF cell. The battery is 

described in Table 1. The dataset involves 1C discharge data, HPPC(Hybrid Pulse Power 

Characterization) data, drive cycle data at ambient temperatures 25 ∘C 

 

Table. 1. Panasonic 18650 Cell Parameters 

Nominal Open Circuit Voltage 

Capacity 

Min / Max Voltage 

Mass / Energy Storage 

Minimum Charging Temperature 

Cycles to 80% Capacity 

3.6V 

Min. 2.75 Ah / Typ. 2.9 Ah 

2.5V / 4.2V 

48g / 9.9Wh 

10 

500 (100% DOD, 25) 

 

3. Method 

As methods for estimating SoC, the performance of the data-driven model, 

electrochemical model, and surrogate model is compared in terms of accuracy and 

computation time in this study. A flowchart representing the methodology is shown in 

Figure 1. 
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Fig. 1. Process Flowchart for Developing Models (a) Data-driven model (b) P2D 

model (c) Surrogate model based on electrochemical model

3 .1 . Data-driven model 

LSTM is introduced to solve the performance degradation of RNNs in long-term 

sequences. Fig. 2 presents the structure of LSTM, in which 𝑥, ℎ are the input of the 

network at time step 𝑘; 𝜎 is sigmoid function and 𝑡𝑎𝑛ℎ is hyperbolic tangent function. 

There are three gates in LSTM to capture long-term dependencies. The input gate, output 

gate, and forget gate allow the LSTM to forget or memorize newly acquired information 

to the memory cell. The LSTM model is trained on 9 drive cycle data. Of the ten drive 

cycle datasets, 80% of 9 datasets are used for training and 20% for validation. The model 

was tested with the remaining dataset. The exponential weighted moving average filter is 

used for smoothing input data.

Fig. 2 Structure of the LSTM

used for smoothing input data.
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3 .2 . Electrochemical model

The pseudo-two-dimensional(P2D) model, also called the Doyle-Fuller-Newman(DFN)

model, is based on the porous electrode theory and the concentrated solution theory. Table. 

2 shows nonlinear partial differential equations that represent mass balances, charge 

balances, electrochemical reaction kinetics. The 1C Discharge data is used to identify the 

parameters for the P2D model by Genetic algorithm.

Fig. 3 Schematic of P2D Model

Table. 2 Governing Equations of P2D Model
Region Governing equations

Charge Conservation in the 

solid particles 𝜎𝑒𝑓𝑓,𝑠,𝑖
𝜕2𝜙𝑠,𝑖

𝜕𝑡
= 𝑎𝑠𝑒𝑝,𝑖𝐹𝑗

Mass Conservation in the solid 

particles

𝜕𝑐𝑠,𝑖
𝜕𝑡

=
1

𝑟2
𝜕

𝜕𝑟
(𝐷𝑠,𝑖𝑟

2
𝜕𝑐𝑠,𝑖
𝜕𝑟

)

Charge Conservation in the  

electrolyte
−𝜎𝑒𝑓𝑓,𝑠,𝑖

𝜕𝜙𝑠

𝜕𝑥
− 𝜅𝑒𝑓𝑓,𝑖

𝜕𝜙𝑙

𝜕𝑥
+
2𝜅𝑒𝑓𝑓,𝑖𝑅𝑇

𝐹
(1 + 𝑡+)

𝜕 ln 𝑐

𝜕𝑥
=
𝐼𝑎𝑝𝑝

𝐴

Mass Conservation in the 

electrolyte
−𝜀𝑙,𝑖

𝜕𝑐𝑙
𝜕𝑡

= 𝐷2

𝜕2𝑐2
𝜕𝑥2

+ 𝑎𝑠,𝑖(1 − 𝑡+)𝑗

Intercalation at the particle 

surface
𝑗 = 2𝑘𝑖(𝑐𝑠,𝑖,𝑚𝑎𝑥 − 𝑐𝑠,𝑖|𝑟=𝑟𝑖)

0.5(𝑐𝑠,𝑖|𝑟=𝑟𝑖)
0.5(𝑐𝑙)

0.5sinh (
0.5𝐹

𝑅𝑇
(𝜙𝑠 − 𝜙𝑙 − 𝑈𝑖 − 𝐹𝑅𝑆𝐸𝐼𝑗))

3 .3 . Surrogate Model

The Surrogate model was trained in the same way as the Data-drive model using 

simulated data. The current datasets of  nine drive cycles are used for the P2D model. It 

is different from the data-driven method in that it is trained using simulation data, not 

actual measurements. Based on the P2D model in which parameters are identified using 

1C discharge data, the voltage dataset for training can be generated using any current 

dataset, which can be used if the measurement dataset is insufficient.

4. Result

The SoC estimation results of each method are shown in the Table. 3. The algorithms are 

executed on Core i7 4.0 GHz processor with 16 GB RAM. The surrogate model showed 

competitive performance without experimental data. Figure. 4 presents the graphs of the 
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estimated and actual values. In Fig. 5 below,  the Mean Absolute Error(MAE) of the data-

driven model becomes lower than the MAE of the surrogate model.

Table. 3. SoC estimation results

Model MAE(%) Computation time(s)

Data-drive model 1.21 1.02

P2D model 0.72 103.74

Surrogate model 2.01 0.77

Fig. 4. SoC estimation results of models (a) data-driven model; (b) electrochemical 

model; (c) Surrogate model based on electrochemical model

Fig. 5. MAE of the data-driven model

5. Conclusion

The P2D model estimated the SoC most accurately, but the computation time took the 

longest. The surrogate model and the data-driven model show similar computation times. 

The  MAE of the data-driven model is lower than the surrogate model after training 5 

drive cycles datasets. If data is insufficient, the Surrogate model could be an alternative 

to the data-driven model. The surrogate model also can be trained using more simulated 

data from the P2D model. If the battery condition changes by aging, it is difficult to gather 

sufficient data to train the data-driven model. However, simulated data can be gathered 

after the parameter identification of the P2D model. It is considered to be an advantage 

of the surrogate model for real-time SoC estimation rather than the data-driven model, 

which requires a lot of data when the battery condition changes.
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Nomenclature 

𝑖= (𝑝, 𝑠𝑒𝑝, 𝑛) 
𝑝= positive electrode 

𝑠𝑒𝑝= separator 

𝑛= negative electrode 

𝑠= solid phase 

𝑙= liquid phase 

𝜅𝑒𝑓𝑓= effective conductivity of the electrolyte [S/m] 

𝜙= electrical potential [V] 

𝜎= electronic conductivity [S/m] 

𝜎𝑒𝑓𝑓= effective electronic conductivity [S/m] 

𝜖 = volume fraction [·] 

F= Faraday constant [C/mol] 

R= ideal gas constant [J/mol·K] 

𝐼𝑎𝑝𝑝= current applied to the lithium-ion battery [A] 

𝑇=ambient temperature [K] 

𝐴 = cross section [m2] 

𝑐 = lithium concentration [mol/m3] 

𝐷 = diffusivity of lithium ion [m2/s] 

𝑗 = the rate of lithium ion flowing out of a particle across a 

boundary between the solid and the electrolyte [mol/m2·s] 

𝑘 = intercalation/deintercalation reaction-rate constant 

[m2.5/mol0.5·s] 

𝑟= radius of particle [m] 

𝑅𝑆𝐸𝐼= resistance of SEI layer [Ω/m2] 

𝑡+= transference number in the electrolyte [·] 

𝑈 = Open circuit potential [V] 
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Abstract 
Ionic liquids (ILs) is an organic salt in the liquid state, which have an excellent property 

as a favorable solvation for a range of polar and non-polar compounds. Recently, a 

number of ILs have been widely used for a chemical separation, e.g., extraction of 

aromatic and aliphatic compounds from hydrocarbon mixtures, due to its high-energy 

efficiency compared to conventional separation processes that requires a considerable 

thermal energy or electricity. One of critical properties forward a wide application of ILs 

is the infinite dilution activity coefficient (IDACs) of solutes and the equation of state 

(EoS) parameters. However, the discovery of a perplexing principle of ILs behaviors 

requires highly sophisticated experiments on a number of solutes. 

Moreover, the validity of conventional property models such as UNIFAC, Abraham and 

COSMO-RS for predicting IDACs show some limits in that only few solutes are 

applicable within a certain range of operating temperature. Therefore, in this work, we 

aimed to propose the machine learning (ML) based IDAC prediction model to rapidly 

provide precise properties and parameters of ILs separation process. First, ILs 

experimental data and their physicochemical features are collected from the literature. 

We then developed an IDACs prediction model using artificial neural networks (ANNs) 

and validated the model with accuracy metrics such as coefficient of determination (R2) 

and root mean square error (RMSE). Finally, the capability (accuracy and quantity) of the 

ML-based prediction model is discussed by comparing conventional models. As a result, 

it was revealed that the ML-based approach shows higher accuracy (approximately 

10~50%) compared to conventional property models. A database of predicted properties 

based on data-driven strategy could lead to wide applications of ionic liquids in separation 

technique. From proposing a strategy for ILs utilization, the ML-based approach was able 

to provide the essential information on the ILs design and promote the future 

environmental-friendly separation processes. 

Keywords: Ionic Liquids; Infinite-dilution activity coefficients; Machine-Learning. 

1. Introduction 
Ionic liquids (ILs) are the green solvents, which receive the great attention as replacement 

for conventional separation media. Since ILs could bring the significant economic and 

environmental benefits, the potential of ILs in industrial deployment has been proven 

(Urszula et al., 2010, Pablo et al., 2019, Siliang et al., 2020).  
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While ILs are indeed a promising separation technology, there are obstacles delaying the

real-world deployment. The precise modelling of ILs process is the one of the most

difficult problems. Conventionally, the ILs behavior is largely understood by the

thermodynamics such as the equation of state (EoS). Even though such empirical

approaches have described the principle of solute-solvent interactions in ILs, identifying

critical parameter for EoS such as infinite dilution activity coefficient (IDACs) are

extremely difficult. Because the experiments take time and trial-and-errors, which

eventually became a bottleneck of ILs application.

Machine learning (ML) has been a practical tool for discovering and understanding the

perplexing patterns in chemical domain. Especially, artificial neural networks (ANNs)

have successfully assisted wide range of chemical engineering R&Ds including novel

catalyst discovery, battery lifecycle prediction, and metal-organic-framework candidate

material screening.

Fabian et al. utilized the matrix completion method (MCM) to develop ML-based activity

coefficients prediction model (Fabian et al, 2020). Although such an approach

successfully analyzes the mixture behavior of the 240 solutes and 250 solvents, the

accuracy of the proposed model is a limitation for generating reliable prediction data.

Therefore, we propose the ML-based IDAC prediction model for the precise and rapid

modelling of ILs process. To implement such data-driven method, the ILs experiment

datasets and solute-solvent property descriptors are collected. Then, ANNs were

exploited to develop the ML-prediction model. Finally, from comparing to the

conventional IDAC prediction model, the reliability of ML-based IDAC prediction model

is evaluated.

2. Data and method

2.1. Overview

• Solute, solvent, and condition
data collection via literatures

• Critical descriptor identification
and DB generalization

Data Collection

Correlation Analysis

Feature Engineering/Data preparation

• Hyperparameters optimization
• Accuracy improvement

Model feedback/update

Model validation

• Accuracy comparison (ML
prediction model – Conventional)

Prediction model development Advanced ILs Understanding

ILs design/operation
strategy

Accurate separation
modelling

Figure 1: ML-based IDAC prediction model development overview

The main step of ML-based model development is described in Figure 1. It is composed

of three steps: Feature engineering and data preparation, Prediction model development,
and Advanced ILs understanding. Firstly, at Feature engineering and data preparation
step, ILs synthesis and operation data are collected via literature survey (Urszula et al.,

2009, Li et al., 2011). Since defining the chemical dimension of ILs process is important

to develop highly-reliable prediction model, the most meaningful descriptor is extracted

by using correlation analysis. As generalized ILs database is constructed, the datasets are

randomly divided into two different datasets, which are for the model train and model

validation. In this case, 70% of total datasets are used for model train and 30% are used

for model test. Then, by using model train data, artificial neural networks (ANNs) develop

the IDAC prediction model. To develop the accurate prediction model, the model
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hyperparameters are optimized through a manual search technique. Also, the accuracy of 

the prediction model is evaluated by Pearson coefficient of determination value (R2). 

Finally, by comparing the accuracy of ML-based prediction model and conventional 

prediction model (UNIFAC), the merits of ML-based prediction model are argued. 

2.2. ILs separation data acquisition 

As shown in Table 1, there are 9 types of solute and 7 types of solvent are used. Also, in 

Table 2, the properties and conditions of solvent and solute are described. Property 

descriptors include the thermodynamical-, physical-, electrochemical-, and interaction 

property. Firstly, thermodynamic properties at critical point (critical temperature, 

pressure, volume) and acentric factor are collected since it is important for navigating the 

phase change. Physical properties include the molecular weight, density, and viscosity. 

Electrochemical properties (dipole moment, Kamlet-Taft parameters) are also collected 

since the separation principle using ILs rely on different electric interaction property of 

substances in the mixture (Lee at al., 2008). Interaction property indicates the 

Hildebrand’s solubility parameter, which determines the solubility and structural affinity 

of a solute-solvent couple (Marciniak, A., 2010). As a result, 1679 datasets with 14 

descriptors are comprised. 

Table 1: Solvent type and solute type of ILs separation data 

Solute type 

n-Pentane n-Hexane n-Heptane 

n-Octane n-Nonane n-Decane 

Benzene Toluene Ehylbenzene 

Solvent type 

[BMPYR][CF3SO3] [EMIM][TCB] [4BMPy][NTf2] 

[EMIM][TFA] [BMIM][CF3SO3] [BMIM][SCN] 

[3BMPy][SF3SO3]   

 

Table 2: ILs separation process descriptor 

Data description 
Descriptor type Descriptor Name Unit 

Solute property 

Critical temperature K 

Critical pressure bar 

Critical volume cm3/mol 

Dipole moment D 

Molecular weight g/mol 

Acentric factor - 

Solvent property 

Molecular weight g/mol 

Density kg/m3 

Viscosity m∙Pas 

Hildebrand’s solubility parameter Mpa0.5 

Kamlet-Taft parameters, α - 

Kamlet-Taft parameters, β - 

Kamlet-Taft parameters, π* - 

Operating conditions Temperature K 

Outcome 
Natural logarithm of infinite- dilution of 

Activity Coefficients 
- 
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2.3. Prediction model development 
 

Figure 2 (a) and (b) show the topology of ANNs and activation function used in this model. 

The optimal topology (50-100-150-200-250-150-100-50) is found by the manual search 

technique. Datasets were normalized for preventing the over-fitness of model. The 

activation function of ANNs is ‘swish’ function (in figure 2 (b)), which is well-known to 

outperform other activation functions in training deep neural networks.  

-5
-4
-3
-2
-1
0
1
2
3
4
5

-5 -4 -3 -2 -1 0 1 2 3 4 5

swish function

… 

Solute descriptors

Solvent descriptors

Operating condition

Deep hidden networks
(50-100-150-200-250-150-100-50)

Output 
layer(1)

Input 
layers
(14)  

     
 

(a) (b)

 
Figure 2: ANNs prediction model development details 

Validation of the model was performed in the leave-one-group-out cross-validation 

(LOGOCV) method. LOGOCV is a cross-validation scheme which holds out the samples 

according to third-party provided array of integer groups. In order to numerically 

represent the reliability of models, the Pearson correlation coefficient (R2) is employed. 

 

2.4. Results 

From developing more than 100 models while diversifying topologies, the final model is 

finally gathered. The train/test set validation of IDAC prediction model is described in 

Figure 3. For the accuracy evaluation, experimental IDACs and predicted IDACs are 

measured by R2 value and compared to each other. Note that R2 value above 0.95 means 

high accuracy. In Figure 3 (a) and (b), the prediction accuracies of training data sets and 

test data sets are almost perfect (R2 = 0.984 and 0.974, respectively). Also, small 

difference between two accuracy means that the model overfitting is quite unlikely. Since 

the ML-based prediction model shows the high accuracy and secure from the overfitting, 

the capability of this model is further investigated. 
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(b) Prediction: Test datasets
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Figure 3: Predicted result and accuracy of training datasets and test datasets
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Figure 4. Accuracy comparison of the ML-based prediction model and UNIFAC

The accuracy of the ML-based prediction model and the conventional prediction model

(UNIFAC, Thomas et al., 2019) is compared in Figure 4. Each model predicted the IDAC

of test data sets where random solute and solvent combinations are given. Note that two

types of point are the predicted results of each model (ML model – O, UNIFAC – X ). In

result, the ML-based model shows better prediction accuracy with higher R2 value (0.999).

It is interesting that the ML-based prediction model produces a relative confident result

over 95% level in all prediction cases. In such event, it could be concluded that the ML-

based model successfully found the IDAC patterns of ILs process. On the other hand,

UNIFAC produced a result of relative high variance. Even though many predictions show

a high accuracy, there are unignorable numbers which show incorrect prediction.

3. Conclusion
In this study, we developed and introduced the ML-based IDAC prediction model for ILs

process applications. By collecting and defining the critical descriptors, the preliminary

chemical dimension of ILs process is constructed. As descriptors, the thermodynamical,
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physical, electrochemical, and interaction properties of solute and solvent are utilized. In 

result, the ML-based IDAC prediction model successfully achieved the high accuracy 

(R2>0.95) and secured from overfitting problem. Also, from comparing the ML-based 

IDAC prediction model to the conventional IDAC prediction model, it is concluded that 

the ML-based model is more precise and understood the solute-solvent interaction trend 

in ILs process. Based on this work, it is able to i) suggest the proper ILs design and 

operation strategy, ii) provide the efficient and clean separation method from promoting 

and facilitating the real-world deployment of ILs. 
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Abstract
In order to reduce CO2 emissions, electricity networks must increasingly integrate renewable en-
ergies. Microgrids are distributed electrical networks with their own generation and load, often
supported by an electrical storage system. It can be connected to the external electrical network or
isolated. Since electricity consumption, price and renewable production are stochastic phenomena,
the control of microgrids must adapt to uncertainties. Data-driven models and in particular rein-
forcement learning (RL) have become efficient algorithms in high-level microgrid control. RL are
agent-based algorithms, which interact with their environment and learn with a numerical reward
signal. A certain behavior can implicitly be expected when the reward system is formulated. For
example, a reward system that encourages the agent to interact as little as possible with the external
network will explicitly increase the autonomy of the microgrid. Implicitly, it can be expected to
schedule the battery to maximize the ratio of renewable energy used to the amount producible. Q-
learning algorithm has been used due to its performance in discrete action space, which simplified
the benchmark complexity. An agent is trained with different reward functions commonly found
in the literature related to data-driven microgrid control algorithms. The agent parameters do not
vary from one case study to another. Indicators are set up to evaluate the agent behavior. They
are based on implicit behavioral criteria in the definition of the reward system such as the ratio of
renewable energy used, the amount of energy stored during peak hours, etc. This study enables to
find a way to rationalize the choice of a reward system to control in a near-optimal way microgrid
while meeting implicit secondary objectives. It could lead to a choice on weighting coefficient in
a combination of reward functions.

Keywords: Microgrid, Reinforcement Learning, Control, Reward

1. Introduction
1.1. Electricity storage scheduling with reinforcement learning

To remain reliable despite uncertainties in renewable electricity production and consumption, mi-
crogrid control must be efficient. Bidram and Davoudi (2012) has distinguished 3 categories of
control. The first 2 categories are frequency and voltage regulation with very low time scale. The
third category is what is called high-level control in this study. It concerns power flow long-term
planning with higher time granularity (minimum 15 minutes). This high level planning can be done
with several methods (Abdelhedi et al. (2018)): rule-based, optimization-based or learning-based
methods are efficient. However, with uncertainties of electricity consumption, price and renewable
generation, complete physical model based approaches are inappropriate. Thus, optimization-
based methods will have difficulties to achieve optimal planning without predicting the future
values of the stochastic variables. Data-driven methods are proven to be efficient in this context.
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Especially, reinforcement learning (RL) algorithms (Sutton and Barto (1995)) learn policies given
an environment and objectives. A RL agent makes decisions in its environment using Markov
decision processes, the environment responds and the agent receives a reward signal, indicating if
the reached environment state is suitable or not in respect to the objective. With this signal, it learns
to value states or actions taken in specific states and thus can build a control policy according to
the defined reward system.

High-level control can focus on every microgrid unit, including consumption (demand side man-
agement), controllable production (unit commitment) and electricity storage scheduling. This
study aims to provide a view of the impact of the choice of reward signal in storage scheduling
with respect to implicit indicators.

1.2. Case Study

The system studied is a simulation of a microgrid composed by photovoltaı̈c (PV) panels for
electricity production, a point of consumption, an electrochemical battery for short-term storage
system and hydrogen storage for long-term electricity storage. This simulation has data-driven
units (electricity consumption and PV production) and analytical models (storage). Both data and
short-term storage characteristics are taken from François-Lavet et al. (2016). The microgrid has
two operation modes: connected to the main grid and isolated.

Some simplifications were made: The maximum power of the battery is not taken into account,
the power to be supplied is multiplied by its efficiency and it automatically balances the network
provided that its energy capacity is high enough. The RL agent controls the hydrogen storage
system. Its maximum power is 1.1kW, its electrolyser efficiency is 0.65 and its fuel cell efficiency
is 0.5. No maximum storage capacity is considered. The data are two years of PV production data
in Belgium and consumption data respectively. When the net demand for electricity cannot be
supplied, the short-term storage is discharged and charged when there is a surplus of energy. The
main goal here is to test different reward functions to observe their effects on in behaviors that are
implicitly expected from the agent. These behaviors are tracked with indicators.

The RL algorithm used is Deep Q-learning (Mnih et al. (2013)). The agent receives continuous
state values that are the electricity consumption, the PV electricity production and the short-term
battery state of charge (SOC). All these values are normalized between 0 and 1. The actions
that are available for the agent at each timestep are the operating mode of the hydrogen storage
system. These actions are discrete, the first action available uses electricity to charge the long-
term storage with electrolysis at maximum power if possible. The second action discharges the
hydrogen storage with fuel cell at its maximum nominal power (if enough energy is stored). The
agent can also choose to do neither. Thus, its action space is composed of three actions.

2. An introduction to Q-learning and deep Q-learning

2.1. Q-learning

The objective of a RL algorithm is to find policies (i.e. probability to take one action from a given
state) that maximize the rewards received in an episode (i.e. a series of interaction within the
environment). To decide between several actions, the agent values state and action pairs through
the rewards following the choice. These pairs are called Q-values and denoted Q(s,a), a stands
for action and s for state. The idea behind building an efficient policy is to select the action that
maximizes this value from the state in which the agent is located. However, in order to value these
pairs, the agent has to explore states and values to sample rewards. A Q-learning agent uses a
behavioral policy to sample actions and a learned policy to update the different pairs value. With
this algorithm, only the immediate reward perceived by the agent after his action and the following
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action (from the next state) that brings to the maximum Q-value are taking into account to update
the learned policy.

Q(St ,At)← Q(St ,At)+α
[
Rt+1 + γmax

a
Q(St+1,a)−Q(St ,At)

]
(1)

This update rule for Q-value mapping is shown in Equation 1, with γ ∈ [0;1] the discount factor
to level out the extent to which future actions are considered in the estimation of a Q-value. Once
the agent is trained, an estimate of every Q-values is stored in a table. The agent can then choose
every action that maximizes immediate and future reward directly according to this table.

2.2. Deep Q-learning

With Q-learning, the main drawback is from the use of a table, which implicitly requires countable
and therefore discrete spaces. Also, wide spaces lead to long computations before the agent is
trained.

Figure 1: Visual comparison between Q-learning
and deep Q-learning

With Deep Q-learning, the table is replaced
by a neural network (NN). In deep learning,
the target of a NN has to be stationary. Here,
as showed in Figure 1, the target value the
NN must predict Q-values, the second part of
equation 2 (which the same equation as 1 but
factorized in an different way).

Q(St ,At) = (1−α)Q(St ,At)

+α × (Rt + γ ×maxaQ(St+1,a)) (2)

With these Q-values, the problem is that a part
of the target, maxaQ(St+1,a)) (with St+1 the
state at time t + 1 and a the action that can be
taken from state St+1) depends on the NN that
is updated. To solve this problem, an other NN
with the same parameters is used to estimate
Q(St+1,At+1). These parameters are frozen
and actualized slowly. Another reinforcement
learning problem is the influence of the output on the next input. This problem is solved with a
ReplayMemory that injects randomly a sample of state, action, reward, next state and next action
into the NN. In this way, the impact of previous prediction is negligible for incoming output and
the idea of transition in the system is kept.

3. Analysis on the impact of reward shaping on implicit indicator
Each and every microgrid system is built with a particular objective. Isolated microgrids follow
the objective to be autonomous for example. Some have diesel generator as support electricity
production (Kofinas et al. (2018)), and the objective can be to supply users autonomously without
this support. Grid-connected microgrids can minimize operation cost or emissions for exemple.
Even though objectives and therefore reward systems can be different, whoever made them implic-
itly expects awaited behaviors. In the case study microgrid presented in 1.2, whether the reward
system depends on autonomy or operating cost, the system is expected to buy less energy from
the main grid. Of course, in an isolated grid that aims to be autonomous, the equivalent of buying
electricity from the main grid to compensate the grid imbalance is poor quality electricity or even
blackout periods. Thus, this need of extra energy can be penalized the same way for these very
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different systems. Also, systems aims to be energy efficient. Electricity production can not much
exceed consumption, or else equilibrium is lost. However, it is important to get as much electricity
as possible from the PV panels, whatever the objective. When the system does not need electricity
(consumption is supplied, battery is fully loaded and long-term storage is supplied at maximum
power), the remain production is extra-energy and lost. Another implicit objective in every case is
to minimize excess of electricity.

3.1. Methodology

Every hour, the agent makes a choice in its microgrid. It can charge or discharge the long-term
storage, or do nothing. Its action is perceived as an extra electricity demand or production, if
the long term storage is charged or discharged respectively. In order to underline the impact of
reward shaping, deep Q-learning agents are trained with different reward systems and indicators
are identified. First, in an objective of operating cost minimization, different microgrid configu-
rations are tested. The microgrid buys electricity from the main grid at a price of 2e/kWh. As
the time granularity of the simulation is one hour, the agent perceives a −2 reward in this case.
It occurs when the microgrid net demand (electricity demand action minus electricity production)
including additionnal production or consumption from agent action (hydrogen storage charge or
discharge perceived as consumption or production) is positive and superior to the electrochemical
battery capacity. On the opposite, when this net demand is negative and the extra energy exceeds
electrochemical battery capacity, the remaining produced energy is wasted.

Whatever which mode (isolated or grid-connected) is selected, this system is adopted, and the
negative reward for buying electricity is applied to penalize isolated microgrid instability (in this
case, no electricty is bought, but the simulation is similar). In the grid-connected mode, three
configurations are tested, with the objective of reducing operating cost:

Case 1 The system can not sell energy to the main grid. With the operating cost reward system, the
only perceived rewards are negative and correspond to the electricity purchased from the
main grid.

Case 2 The system can sell energy to the main grid, without power constraint at the common cou-
pling point (the electricity exchange point between the micorgrid and the main grid). In this
configuration, agent can receive rewards from selling extra-energy to the main grid. In this
specific case, it is impossible to waste energy and PV panels produce 100% of what they
should. The electricity sold is four times cheaper than the bought electricity.

Case 3 The system can sell energy to the main grid, with a power constraint at the common coupling
point. The agent sells its extra energy and receives positive rewards in this case. However,
this amount of sold energy is limited by a power constraint and so is the reward.

In isolated microgrid, as the main objective is to be autonomous, a negative reward for system
instability is applied. It is exactly the same system configuration as the first case listed above.

What if the reward system is explicitly giving the agent penalities for wasting excess energy ? To
analyse this situation, the first and last configuration are adopted with an extra negative reward
equal to the wasted electricity. Again, it has no sense to use this reward system on the second
case because no energy waste is allowed. At last, the energy excess negative reward will be
applied without the energy bought negative reward to know how the system behave with only this
objective.

A comparison of the quantity of excess energy and bought energy from the main grid will be done
in the next section.
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3.2. Results and analysis

Agents were trained in every case, with three reward systems for each except the second case in
which extra energy does not exist. It means seven agent were trained. The convergence of obtained
rewards converged at approximately 30 episodes for every agent. Once the training is over, data
of their control behavior in the last training episode (1 year) are collected to analyse results.

3.2.1. Excess energy and purchased energy

Surprisingly, there is very little variation in excess energy between the reward systems for each
case.
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Figure 2: Smooth curve of hourly bought energy
in the 3 reward systems

The same pattern is observed with some small
variations. Obviously, this amount is smaller
when only excess energy governs the agent’s
reward system. It is larger when reward sys-
tem only considers operating cost. This has
many common features with the purchased en-
ergy curves. As shown in Figure 2, more en-
ergy is brought from the main grid in winter.
The agent tends to buy more energy when its
reward system penalize it.

3.2.2. Correlation between variables

Correlation matrices between exogenous variable have been made. It gives important information
on how the agent behaves.
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1 with only excess energy considered in reward system

Figure 3a shows that rewards are negatively
correlated with net demand when operating
cost defines reward system. Of course, pur-
chased energy is negatively correlated with
rewards. Net demand is the only parame-
ter affected by the agent decision. To in-
crease net demand, the agent has to discharge
the long-term storage. In order to do that,
the hydrogen storage can not be empty. The
agent’s game would therefore be to charge
and discharge the hydrogen storage at the
right time, so that it can discharge when the
purchase of electricity is necessary, to alle-
viate the negative reward. On the contrary,
Figure 3b shows that rewards are positively
correlated with net demand when excess en-
ergy penalizes the agent. The agent’s ac-
tion must therefore charge the hydrogen stor-
age when the PV production exceeds the con-
sumption. He can buy energy without be-
ing penalized and emptying the storage (infi-
nite in capacity) does not increase his reward.
The graph of stored energy (Figure 4) is in-
teresting, it underlines the fact that long-term
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storage is used as short-term storage to to increase the rewards when buying and selling energy
define the reward system. What was observed in the correlation matrix is confirmed in the agent
behavior, giving penalities only for excess energy tends to make the agent store bigger hydrogen
quantity when it is possible. When both excess energy and operating cost are considered, the agent
also tends to store hydrogen the way expected in Case 3. Net demand is hightly correlated with
PV production and very little correlated with consumption. This is because PV energy production
has a range of values that can go very high when non-zero, compared to the consumption which is
more constant and low.

2010-01 2010-03 2010-05 2010-07 2010-09 2010-11 2011-01
Date

0

20

40

60

80

100

120

Hy
dr

og
en

 st
or

ed
 (k

W
h)

Hydrogen storage during the last training episode
Case 1, reward: -operating cost
Case 2, reward: -operating cost
Case 3, reward: -excess energy
Case 3, reward: -operating cost
Case 1, reward: -excess energy
Case 3, reward: -operating cost -excess energy
Case 1, reward: -operating cost -excess energy

Figure 4: Energy stored in long term storage dur-
ing the last training episode in every cases

When PV panels produce a lot of electric-
ity (between July and September), it may be
more attractive to store energy to avoid big ex-
cess energy penalities rather negative reward
for energy bought. In Case 3, the stored en-
ergy can be selled to the main grid in winter.
This explains why the agent prefers to store
energy in summer in Case 3 rather than in Case
1 (where energy can not be sold) with multi-
objective reward system.

4. Conclusion

The reward functions defines the behavior of a RL based control algorithm in microgrid. Making
explicit certain implicitly expected behaviors changed totally the decisions. The multi-objecitive
reward system seems more interesting for the microgrid control in this case study. However, the
way to modelize electrochemical battery and hydrogen storage was too simplistic. The sizing of
the storage systems and PV panels was arbitrary, as was the price of energy both when purchased
and when sold to the main grid. In these simulation conditions, the sensibility study of the defined
reward system can not be unbiaised. However, it highlighted a behavioral difference of the agent
on how to store hydrogen. With a robust sizing of the system and a good storage systems modeling,
optimal weights for reward systems can be found throught sensibilization analysis on different
criteria.
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Abstract 
This work proposes a systematic method consisting of state-of-the-art text processing 
approaches and human-machine interaction for the extraction of useful sentences and data 
in tabular, graphical, and numerical form, containing information particularly relevant for 
hybrid modelling. It is applied to the domain of acute aquatic toxicity of chemicals, which 
is particularly relevant for the safety, health, and environmental hazard assessment of 
chemicals. Nearly 400 papers from 2000-2021 were identified and processed with the 
proposed method. The results indicate that the vast amount of knowledge can be 
efficiently processed in orders of magnitude faster than conventional methods without 
loss of detail and interpretation depth. The information is in a form that can be useful in 
hybrid modelling with respect to model and predictor selection, prioritization, and 
constraints, addressing data gaps, and validating and interpreting model performance. 
 
Keywords: machine learning, text mining, sustainability 

1. Introduction 
Properties of molecules lie in the heart of any sustainability assessment method. 
Predictive models, developed via typical statistical regression or advanced machine 
learning (ML) approaches, reduce the amount of experimental testing but strongly depend 
on availability of pre-existing data. Limitations on data often hinder the development of 
robust models, leading often to overfitting of model parameters and decreasing their 
applicability domain (Galushka et al., 2021). This can be, for instance, of great 
importance during computer-aided design of novel materials. An approach combining 
ML methods with knowledge existing in the field, typically called hybrid modelling, 
might be one of the solutions to this problem (Willard et al., 2020). However, the amount 
of work required to process the enormous volumes of information might hinder the 
utilization of the existing knowledge. In different disciplines the expertise has been 
accumulated for years in form of scientific publications. The enormous volumes of 
information exist in almost every domain and researchers have been striving to reduce 
the amount of manual work required to process this information (Shahid et al., 2020). 
Nevertheless, systematic and to the extent possible fast methods of knowledge extraction 
from the vast amount of scientific literature are still lacking.  
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This work aims to explore knowledge existing in the field of acute aquatic toxicity based 
on a semi-automated text mining method aided by human-machine interaction. Being part 
of the PBT (Persistency, bioaccumulation in the environment and toxicity) assessment of 
chemicals, acute aquatic toxicity is an essential element of environmental hazard and risk 
assessment. For instance, automated assessment of chemicals in computer-aided 
molecular design requires the computation of acute aquatic toxicity values for new 
chemicals not empirically tested, thus demanding the existence of quantitative structure-
activity relationship (QSAR) models with adequately populated training sets
(Papadopoulos et al., 2020). Therefore, the development of reliable, preferably easy to 
interpret, acute aquatic toxicity prediction models is required to perform an environmental 
hazard assessment of compounds early in the design phase. This can be achieved via 
hybrid modelling. Thus, this work focuses on the step of knowledge structuring, 
accelerated by a semi-automated literature review, to be further used for hybrid modelling 
purposes. The study intends to reduce the time for accessing and extracting knowledge 
from the primary source of information by orders of magnitude. In this way, more 
information can be accessed compared to a formal review without severe loss of detail, 
without requiring the same level of expertise in the investigated domain. 

2. Methods
2.1. Primary text collection
The primary text collection was performed on the basis of scientific articles collected 
from ScienceDirect, Pubmed, and Web of Science. “Aquatic toxicity” and articles with 
titles related to predictive ecotoxicity, QSARs, information on the aquatic toxicity of the 
separate chemical classes (groups), and modes of action were collected. Studies on 
inorganic, metals, and metallorganic compounds, ionic liquids, epoxides, peroxides, and 
mixtures were excluded, due to the inability of software to compute descriptors and/or 
read SMILEs (simplified molecular-input line-entry systems) of specific chemical 
classes, while chemicals with rapidly degrading groups like peroxides and epoxides are 
very reactive under environmental conditions, and it is recommended to consider the 
breakdown products instead.

Figure 1: Term co-occurrence map (minimum co-occurrence =  10). 

breakdown products instead.
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This step resulted in the identification of around 400 publications. Analysis of 
bibliometric information of the collected articles is presented in Figure 1 using a term 
map for words with minimum co-occurrence equal to ten. The map is based on text data 
of titles and abstracts of the articles. The larger the circle the more frequent the term is. 
More correlated terms have a shorter distance between the circles. The lines between the 
terms represent co-occurrence links. The earlier studies seem to be dealing with modes 
and mechanisms of toxic action, analysis of the relationships between structure, 
molecular descriptors, and toxicity. The later publications are addressing prediction 
models and their performance. Overall, model-related topics also seem to dominate the 
research area of the collection of articles.  
2.2. Text mining 
A python-based package was developed containing several modules that automate the 
text mining step consisting of three main parts: extraction of article texts and single 
sentences, key phrase extraction, and extraction of the relevant sentences. Single 
sentences were identified and checked for completeness using the library for natural 
language processing spaCy (https://explosion.ai/blog/introducing-spacy). From the 
complete sentences relevant sentences were extracted on the basis of reader-provided 
input. First, main terms were used to reduce the number of sentences to those that include 
any main terms. Then, key phrases were extracted from this reduced set of sentences using 
the open source python-based “pke” package (Boudin, 2016) with the implemented 
graph-based key-phrase extraction model SingleRank (Wan and Xiao, 2008). The 
sentences whose key phrases contain the main words and the connection words were 
extracted as relevant sentences. The main terms included words such as “toxicity”, 
“acute”, “LC50”, “EC50”, while the connection words such as “increase”, “decreas”, 
“relat”, “correlate”, “structure”, “fragment”, “class”, “significant”, “high”, “affect” etc. 
2.3. Analysis of results and secondary text screening 
The extracted set of the relevant sentences was then inspected based on human expertise 
to identify useful sentences. The potential use of the extracted knowledge defines the 
usefulness of the sentence. In this study, a sentence was considered useful if it contained 
information that could be used in hybrid predictive modeling. The useful sentences were 
collected either as directly extracted knowledge or used to identify articles and parts of 
the text for additional manual screening. The article screening was also performed to 
extract tables, figures, and equations since it was not yet possible to retrieve all of them 
automatically in a readable format. The analysis of the extracted sentences and/or article 
screening can be iterated based on altered input parameters (e.g., main terms, connection 
words, addition of articles). The information retrieved in this step in the form of useful 
sentences, models, figures, and tables was used for structuring knowledge in the next step. 
2.4. Knowledge collection 
The information extracted from the articles published in 2000-2014 (225 articles) was 
used to develop the initial knowledge structuring. The information extracted from the rest 
of the articles (165 articles) was used to demonstrate an update procedure (Figure 2). The 
newly extracted information is considered to compete with the previously collected if it 
provides the same type of information (e.g., a QSAR for the same species and class of 
chemicals using the same molecular descriptors as predictor variables). When this kind 
of information improves the results of the previous studies (e.g., a QSAR model with 
better performance based on a larger dataset), then the newly acquired knowledge 
replaces the previously collected one, otherwise it can be discarded or stored depending 
on the purpose of the classification. The new information could also contradict the 
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previously extracted one, for instance when the descriptors of the QSAR model are 
reported to have a positive correlation with the toxicity endpoint instead of a negative one 
reported by the information analyzed earlier. In that case, the decision can be to either 
replace the previously collected knowledge (e.g., if the new information is supported by 
more extensive experimental work), not to replace it but store the new information (e.g.,
a new and sufficiently diverse argument is provided that still lacks extensive experimental 
evidence) or completely discard it. If the new information complements the previously 
extracted information by providing additional depth (e.g., QSAR for the same class of 
chemicals but based on a different set of molecular descriptors or species), the new
information is added to the previously collected information. If the new information does 
not satisfy the criteria to be considered competing or complementary knowledge, then the 
information is collected under a new classification category.

Figure 2: Update mechanism for knowledge collection and classification.

3. Results and Discussion
The method resulted in a significant reduction of text for initial reading (> 85%). Most of 
the sentences extracted by the proposed method are directly useful for hybrid modeling
or indicate to certain parts of the initial article for the manual screening. The collected 
knowledge was first classified to quantitative and qualitative information. The 
quantitative knowledge was further classified to QSAR models and experimental data and 
the qualitative knowledge in general statements (20) and key aspects, trends and patterns
(650), single feature and structural alerts and multi-feature and combinatorial alerts (240). 
The QSAR models were further classified depending on the functional form (430 linear, 
180 non-linear), the descriptors (600), the interspecies relationships (50), and the endpoint 
metric for specific species (50). Then, with respect to the applicability domain, 
quantitative and qualitative classes of the collected knowledge were further associated 
with the mode of action (i.e., narcosis, reacting, specifically acting, unidentified) and the 
chemical classes (40, i.e., aliphatic, aromatic, cyclic aliphatic, and application based such 
as pharmaceuticals, pesticides, surfactants). Most of the QSARs applied linear modeling 
due to its simplicity and interpretability. The nonlinear models often showed an increased 
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accuracy. The nonlinear models included most frequently support vector machine (SVM), 
k-nearest neighbors, neural networks, tree-based methods or gradient boosting. Examples 
of the extracted quantitative knowledge are presented in Table 1. 
 
Table 1: Examples of quantitative knowledge extracted with respect to mode of action. 

 Model type Endpoint Descriptors Performance 

Nonpolar narcosis Interspecies 
relationship 

log(1/LC50) 
Pimephales 
promelas 

log(1/LC50) 
Oncorhynchus mykiss 

n=19, R2=0.96 

Reactive 
chemicals 

Linear modeling log(1/EC50) 
Pseudokirchnerie
lla subcapitata 

nN>0:  

GATS1e, 𝑉𝑉�+
S, 

SpMin1_Bh(p) 

nN=0, n(C=O)=0: 
logKow 

n=10, R2=0.89  

 

n=9, R2=0.80 

Specifically 
acting chemicals 

Linear modeling log(1/LC50) 
Poecilia 
reticulata 

Ea(max),  
∑Ca, Nv1 

n=31, R2=0.77 

 
It is generally accepted that acute toxicity is defined by the mode of toxicological action 
and chemical characteristics. Higher molecular toxicity values were often associated with 
increased lipohilicity. Most toxic compounds are related to hydrophobicity and their 
behavior as hydrogen-bonding or electron-acceptors. Specific functional groups like 
cyano, isothiocyanate, halogens were reported to enhance the toxicity of molecules, 
depending also on the molecular structure and position of the group in the molecule. 
Halogens are reported to increase toxicity. However, the contribution is more significant 
if the halogen is activated. Examples of qualitative knowledge are presented in Table 2. 
 
Table 2: Examples of qualitative knowledge extracted with respect to molecular features 
reported to increase or decrease toxicity. 

 Toxicity increase Toxicity decrease 

Property Lipophilicity, hydrophobicity, electrophilicity 
increase 

LogPo/w < 2 and ∆E (LUMO-
HOMO) > 9 eV 

Structure Cyano, isothiocyanate, halogens (enhanced by 
activation (e. g., adjacent to an ester or other 
unsaturation)), amino group, nitro group, nitrile, 
disulfide, phosphoric acid derivatives, pyrazolyl 
group, formamide groups, ring aromaticity, sulfur, 
aromatic esters vinyl moiety, double and triple 
bonds, acrylate, carbamate groups  

Higher polarity substitution of a 
hydrophobic group 

Presence of nitrogen in sp2 state 

Simultaneous presence of Sulfur 
together with double bond 

 
The extracted knowledge can guide predictor variables selection, prioritization, or even 
identify which new predictor variables may add valuable information. Experimental data 
collected from various studies can serve for training or external validation of the 
developed models. Interspecies correlations can be used for closing the data gaps in a 
toxicity dataset of certain species. Data on the species’ sensitivity, outliers could be used 
to explain the results of the prediction or deviations in the predictions. QSAR equations 
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or alerts could be directly integrated into the training phase of the data science models. 
The previously observed aquatic toxicity trends and patterns could be helpful for the 
evaluation of the results obtained by the developed models. Table 3 conceptually 
summarizes examples of the potential use of the extracted knowledge. 
 
Table 3: Examples of potential use of the extracted knowledge. 

 Model 
parameter 
selection 

Predictor 
selection 

Model 
constraints 

Addressing 
data gaps 

Model 
validation 

Interpretation 
of results 

QSAR 
models 

√  √  √ √ 

QSAR 
descriptors 

 √    √ 

QSAR 
statements 

√ √   √ √ 

Interspecies 
relationships 

   √ √ √ 

Experimental 
data 

√   √ √  

Alerts 
 

 √ √   √ 

Applicability 
domain 

     √ 

 

4. Conclusions 
The work performed the extraction and collection of knowledge existing in the field of 
acute aquatic toxicity. The procedure reduces the amount of manual work required to 
process a high number of scientific articles while extracting both generic and case-
specific models, statements and alerts. The overall collected knowledge and its 
classification could be useful in hybrid modelling studies with respect to model and 
predictor selection, prioritization, and constraints, addressing data gaps, and validating 
and interpreting model performance. Thus, this work demonstrates one more aspect of 
digitalisation in PSE, in particular regarding knowledge about sustainability related 
properties, which is indispensable for multicriteria evaluation of process design. 
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Abstract
In this work, the use of ML methods for the prediction of the enthalpy and entropy of forma-
tion of molecules is investigated on the basis of different molecular and structural properties of
these molecules, also known as ”descriptors”. Accordingly, different families, containing between
19 and 247 molecules, are extracted from the DIPPR (Design Institute for Physical Properties)
database and used to train Support Vector Regression (SVR) models. 5666 molecular descriptors
are calculated using dedicated software and a preliminary data preprocessing work is also carried
out. The first results are very promising for the prediction of the enthalpy of formation of al-
most all the considered families of molecules, while the trained models for the prediction of the
entropy of formation display lower accuracy and higher variations among the different families.
This work, which is still under development, is carried out within the framework of a larger project
aiming at the design and discovery of new molecules that meet specific requirements for use in
thermodynamic cycles.

Keywords: machine learning, enthalpy of formation, entropy of formation, molecular descriptors,
feature selection

1. Introduction

In recent years, machine learning (ML) methods have shown very good performance in tackling
particularly complex problems, extending beyond the domains of computer science and automatic
recognition. In this sense, they represent an interesting alternative to commonly employed quan-
tum chemistry (QC) or group contribution (GC) methods, for the prediction of the thermochem-
ical properties of molecules. Indeed, although QC and GC methods have been largely employed
to calculate these properties due to their accuracy and low computational cost respectively, their
applicability is often limited to small or simple molecules. QC methods see their computational
cost increase drastically with the size and/or complexity of the molecules. With GC methods,
on the other hand, the main difficulty lies in the decomposition of large or complex molecules
into known (i.e., already identified) groups as well as in the necessity to account for important
interactions (Li et al. (2021)). Inversely, data-driven ML methods have already demonstrated their
ability to tackle complex problems in other fields, when classical approaches fail or are ineffi-
cient (Trinh et al. (2021)). Additionally, the use of diverse approaches (QC, GC, ML...) can also
be proven extremely valuable in confirming the validity and reliability of the predicted values in
the absence of relevant experimental data. Several works have already been published on the use
of ML methods for the prediction of thermochemical properties of molecules (Yalamanchi et al.
(2019, 2020); Dobbelaere et al. (2021); Plehiers et al. (2021)). However, these works are often
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focused to specific families and/or properties of interest. The present work, investigates the use
of ML methods for the prediction of both the enthalpy and entropy of formation of molecules
from a large number of different families. In this respect, an exhaustive analysis of different even-
tual dimensionality reduction approaches, for the optimal selection of the most relevant molecular
characteristics for each property, is carried out and several regression techniques are tested. The
work is part of a larger project aiming at designing reactive working fluids for thermodynamic
cycles. Since the work is still ongoing, this paper describes the implemented methodology along
with some preliminary results, as well as the envisioned future steps for model improvement.

2. Methods

2.1. Data set

Public data from the Design Institute for Physical Properties database (DIPPR), containing 2230
molecules in SMILES notation and classified in different families and subfamilies, were used to
train different ML prediction models. In particular, this work was focused on alcohols, alkanes,
alkenes, alkynes, aromatics, esters, ethers, halogen compounds and sulfur compounds, as these
families present a specific interest with respect to the objective of discovering molecules for im-
plementation in thermodynamic cycles. The number of molecules per family varied significantly
(i.e., between 19 and 247 molecules), as shown in Table 1, which can significantly affect the choice
and performance of the ML technique. As for the enthalpy and entropy of formation, they have an
average uncertainty of respectively 3 kJ/mol and 7 J/mol/K, for the considered molecules.

Table 1: Classification of DIPPR molecules per family
Family Alcohols Alkanes Alkenes Alkynes Aromatics Esters Ethers Halogen Sulfur

compounds compounds

Molecules 168 171 144 19 153 213 67 247 99

2.2. Descriptors calculation

The molecular descriptors are different properties, characteristic of the molecular and topological
characteristics of the different molecules, that are commonly employed in similar regression stud-
ies. They can be calculated by means of different software tools, such as PaDEL (Yap (2010)),
RDKit (Landrum (2021)), CDK (Steinbeck et al. (2003)) or AlvaDesc (Mauri (2020)), on the ba-
sis of a standardised description of the molecules, such as their SMILES (Simplified Molecular
Input Line Entry System) notation. In this work, two free-source (PaDEL and RDKit) and one
closed-source (AlvaDesc) tools were tested. Among them, AlvaDesc was finally retained on the
basis of different factors, such as the number of calculated molecular descriptors (i.e., 5666 de-
scriptors were provided by AlvaDesc), the robustness in the provided results, the execution speed
and the proposed documentation and support. Note that, some geometrical descriptors required
information that cannot be provided via the SMILES notation (i.e., related to the 3D conforma-
tion of the molecules). It was therefore necessary to convert the molecules’ SMILES notation to
a ”MDL MOL” standard, prior to importing them into AlvaDesc, which was realized using the
RDKit ETKDG method for conformer generation (Riniker and Landrum (2015)). The ETKDG
method, which is a stochastic method using knowledge-based and distance geometry algorithms,
is considered to be an accurate fast conformer generation method, especially for small molecules
(Hawkins (2017)).

2.3. Data preprocessing and feature selection

The use of well-curated data sets is of profound importance to the implementation of any data-
driven technique. In this sense, an important step of this study consisted in preparing the data
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(e.g., removal of molecules or descriptors with missing values) and selecting relevant molecu-
lar descriptors (i.e., features influencing the targeted thermochemical properties) for the different
molecules. This step is crucial as using data with missing, constant, redundant or irrelevant values
can affect significantly the performance of the ML algorithm. For example, constant descriptors do
not display any effect on the target property and, thus, should not be considered by the algorithm.
In addition, the selection of only a subset of the most relevant descriptors will help to decrease the
computational effort and prevent overfitting phenomena (Bommert et al. (2020)).

Accordingly, the first step of the performed data preparation procedure was to remove molecules
with missing property values as well as descriptors with missing, constant, or quasi-constant values
(i.e., when at least 95% of their values were identical). Finally, Pearson correlation coefficients
were calculated for all descriptors and the ones that were correlated to more than 98% to another
descriptor were removed. For the family of alkanes, the final number of descriptors obtained after
the implementation of the aforementioned steps was reduced from 5666 to 586.

Following these initial data treatment steps, the implementation of feature selection methods is
necessary to further reduce the number of descriptors and assess their effect on the targeted prop-
erties. Feature selection refers to a class of dimensionality reduction techniques, consisting in
identifying a subset of the initial features that best represent the property of interest. These meth-
ods can be classified into different groups (i.e, filter methods, wrapper methods and embedded
methods) (Danishuddin and Khan (2016); Saeys et al. (2007)), according to the adopted statistical
tests and to whether the correlation between the features and the performance of the algorithm is
taken into account. For example, filter methods rely only on the intrinsic properties of the data and
use feature relevance score to identify the most significant features while wrapper methods select
the relevant features by calculating the feature impact on the performance of a learning algorithm
(Danishuddin and Khan (2016)). In the context of this work, the implementation of several feature
selection techniques is investigated. This work is currently underway.

2.4. Training, hyper-parameters optimization and performance evaluation

An initial test of the implementation of a regression technique was performed on the data after
the pretreatment steps described in the previous paragraph. Support Vector Regression (SVR) was
selected as it can perform with high precision and generalization with a small number of training
samples, high dimensional and noisy data (Trinh et al. (2021)). Prior to the implementation of
SVR, the data within each family of molecules was randomly shuffled (i.e., due to the fact that
the original data from DIPPR where grouped into sub-families, within each family). The data
was then partitioned into distinct groups, following a k-fold cross-validation principle (with k=5),
where for each fold k, the kth data subset served for testing the performance of the algorithm, this
latter trained on the basis of the remaining k-1 groups. This procedure ensures a representative use
of the data and allows assessing the average overall regression performance of the trained model.
The value for k was selected so that 20% of the available data, for each family, is implemented
for testing within each fold. Generally, k=5 or k=10 ensures a good trade-off between low com-
putational cost, low bias and low variance for the evaluation of the model performance (Kohavi
(1995)).

In parallel to the training of the SVR model, a set of hyperparameters (i.e. kernel function, box
constraint, kernel scale, epsilon, kernel polynomial order, etc.) of the algorithm were optimized
within each fold (i.e., using the OptimizeHyperparameters option of the fitrsvm funtion of the
Matlab toolbox). A more detailed description of the hyperparameters can be found in Vapnik
(1995). In this sense, within the k-1 data sets, used for model training, a secondary j-fold partition
took place (with j=5) for further identifying and separating a validation data set, serving for the
identification procedure of the algorithm hyperparameters. The performance of the algorithm was
evaluated in terms of the typically employed performance indexes (i.e., RMSE, MAE and R²).
Matlab was used for all the above developments.
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3. Results and discussion

The obtained performance results and the corresponding optimized hyperparameters at each fold
for the SVR algorithm, as implemented for the prediction of the enthalpy of alkanes, is given
in Table 2. As can be seen, the mean value of the coefficient of determination R2 for training-
validation and test data sets are both quite satisfactory as they are respectively equal to 0.999 and
0.984.

Table 2: Performances for enthalpy prediction for alkanes for each fold k and with the associated
optimized hyperparameters.

Table 3: Performances for enthalpy prediction for different families of molecules and their com-
bination (color code for R2: green:> 0.96; red:< 0.90; orange:in between).

Table 4: Performances for entropy prediction for different families of molecules and their combi-
nation (color code for R2: green:> 0.96; red:< 0.90; orange:in between).

The overall performance of the models trained for enthalpy and entropy of formation prediction,
for the different families of molecules as well as for the combination of all of them, is shown in
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Tables 3 and 4. For the prediction of the enthalpy of formation, the performance of the models on
all the molecule families, except that of esters, displayed a value for the determination coefficient
superior to 0.96. On the other hand, the predictive capabilities of the trained SVR models for
the entropy of formation was satisfactory only for the families of alkanes, alkenes, alkynes and
halogen compounds, while some families (i.e., esters) displayed a significantly low model predic-
tive capacity. However, it was more generally observed that considering the molecules per family
resulted in better prediction performances. Note that, these are only preliminary results obtained
using a single regression ML technique and after only a preliminary data pretreatement step. In
addition, some families (e.g., esters) contain some very large molecules (e.g., glycerides such as
tripalmitin or tristearin) for which the conformer generation is quite complex, introducing addi-
tional uncertainty in the descriptors calculation step, which needs to be further analyzed (Wang
et al. (2020); Cleves and Jain (2017)).

Finally, some preliminary tests on the implementation of some feature selection methods were
implemented to identify the most influencing descriptors for the family of alkanes. The tested
methods are: univariate feature ranking for regression using F-tests, importance ranking of pre-
dictors using RReliefF algorithm, Pearson correlation coefficient (between a descriptor and the
target) and low-variance. The two first methods were available as Matlab functions and were cho-
sen according to the supported problem and data type while the two other methods are commonly
encountered feature selection techniques (Pedregosa et al. (2011); Mangal and Holm (2018)). The
top 5 ranking descriptors with highest scores, resulting from these different filter techniques, are
presented in Table 5. It can be observed that very different descriptors have been identified by the
different techniques. Although filter techniques are simple and fast to implement, their drawback
is that they rank features independently from the ML algorithm. Conversely, the comparison with
wrapper methods (such as forward selection or backward elimination) could be very interesting.

Table 5: Top 5 descriptors with highest scores using different filter techniques (the bold italic
indications correspond to the descriptors category as defined by AlvaDesc).

4. Conclusions

In this work, SVR data-driven models were developed to predict the enthalpy and entropy of
formation for different families of molecules, each one containing between 19 and 247 molecules
extracted from the DIPPR database. 5666 molecular descriptors were calculated using dedicated
software and some preliminary work was done on the data preprocessing and feature selection.
The obtained results are especially promising for the prediction of the enthalpy of formation for
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the majority of families, whilst the prediction of the entropy of formation displays higher variations
between the different molecular families. Further work is currently underway for the improvement
of the model performance, especially in terms of a more thorough analysis of feature selection,
model selection and hyperparameter optimization. More generally, this work is carried out within
the framework of a long-term project, whose ultimate objective is to employ the developed ML
models for the design and discovery of new molecules that meet specific requirements for use in
thermodynamic cycles.
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Abstract 

In this contribution, we propose a new CAMD approach for solvent design by combining 

machine learning with deterministic optimization. Variational autoencoder (VAE), a 

powerful generative machine learning method, is used to transfer a molecular structure 

into a continuous latent vector with an encoder and to convert the latent vector back to 

the molecule with a decoder. Solvent properties of interest are estimated by a feedforward 

neural network (FNN) using the latent vector as input. Through the joint training of the 

VAE and FNN-based property model with collected data, a continuous latent design space 

can be constructed for the optimization-based solvent molecular design. Specifically, 

nonlinear optimization is first performed to identify optimal latent variables featuring 

desirable solvent properties based on the established property prediction model. Knowing 

the optimal latent vector, the corresponding target molecule is then generated by the pre-

trained VAE decoder. The separation of 1-butene and butadiene is used as an example to 

investigate the reliability of the proposed design method. A set of solvent candidates 

showing superior separation performance are generated. To further filter suitable solvents 

for industrial applications, additional analyses on molecular synthesizability are 

conducted. 

Keywords: molecular design, solvent discovery, machine learning, variational 

autoencoder, nonlinear optimization 

1. Introduction 

The selection of suitable solvents is of central importance in separation processes, such 

as gas purification and extractive distillation, for achieving a high product purity and 

reducing energy consumption. High-throughput computational screening can help 

discover solvent candidates showing desirable properties. Unfortunately, the huge 

number of possible organic molecules (Bohacek et al., 1996) makes the brute force 

solvent screening extremely costly and time-consuming. By contrast, computer-aided 

molecular design (CAMD) of solvents based on available property estimation models 

(Song et al., 2020; Wang et al., 2020) is much more efficient for direct targeting of optimal 

solvents possessing certain desirable properties. 

In the past decade, the CAMD method has been developed and widely used for solvent 

design from a given set of molecular building blocks under the constraints of molecular 

structural feasibility and property specifications (Song et al., 2018; Scheffczyk et al., 

2017; Papadopoulos et al., 2020; Zhou et al., 2021; Zhang et al., 2021). In most of the 
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previous CAMD studies, group contribution (GC) based property models are typically 

used for solvent property prediction (Adjiman et al., 2021). However, one should note 

that standard GC models cannot accurately predict certain properties, and more

importantly, they cannot well distinguish between structural isomers. These limitations

can be potentially tackled by combining advanced machine learning (ML) methods with 

special molecular representations such as chemical text (e.g., SMILES string) and 

molecular graph.

Variational autoencoder (VAE), a powerful generative ML method, can generate simple

but informative latent variables from complex inputs (such as image, text, and graph) and 

reconstruct these inputs from the latent variables (Sanchez-Lengeling and Aspuru-Guzik, 

2018; Gó mez-Bombarelli et al., 2018). In this contribution, we propose a new CAMD 

approach for solvent design by combining VAE with deterministic optimization. Using 

SMILES strings as input, we first build a VAE to transform molecules into latent 

variables. Using these variables as input, a feedforward neural network (FNN) model is 

trained to predict molecular properties of interest. Nonlinear optimization is finally

performed to identify optimal latent variables and the corresponding molecules featuring 

desirable properties. The proposed CAMD approach is applied to 1-butene and butadiene 

separation. A set of solvent candidates with high separation performance and molecular 

synthesizability are identified.

2. Method

The CAMD approach consists of two stages, namely generative modeling and molecular 

design, as shown in Figure 1. In the first stage, the VAE model is built to freely transform 

between molecules and continuous latent variables. Using the latent variables as input, an 

FNN model is trained to predict molecular properties of interest. In the next molecular 

design stage, based on the property prediction model, a nonlinear optimization problem 

is formulated and solved to identify the optimal latent variables featuring desirable

properties. By decoding the optimal latent variables with the VAE decoder, the 

corresponding best molecular structure can be finally generated.

Figure 1. The proposed ML-based optimization approach for molecular design
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2.1. Generative modeling 

The VAE model is composed of two components, an encoder and a decoder. Starting 

from the molecular structure (represented by the SMILES string), the encoder converts it 

into a continuous latent vector while the decoder enables the reproduction of the original 

molecule from the latent vector. In this work, both encoding and decoding are achieved 

by recurrent neural networks (RNNs). Using the latent vector as input, molecular 

properties of interest are predicted by another FNN model. Notably, the VAE and FNN 

models are trained simultaneously so that the molecules close to each other in the latent 

space exhibit similar properties. 

2.2. Molecular design 

Relying on the FNN model, the mathematical relation between latent variables and 

molecular properties is obtained. With an objective function defined on molecular 

properties of interest, a nonlinear optimization problem is formulated and solved to 

identify the optimal latent variables. The corresponding SMILES string is generated by 

decoding the latent variables and the molecular structure is reconstructed using RDKit 

(2021). 

3. Results and Discussion 

C4 hydrocarbons (mostly consisting of 1-butene, 2-butene, isobutene, and butadiene) are 

mainly co-produced by the thermal cracking of various feedstock such as naphtha and 

gasoil (Streich et al., 2016). These unsaturated components are important intermediates 

in the chemical industry. For example, butadiene is a monomer in the manufacture of 

synthetic rubbers, and therefore it needs to be purified from the C4 mixture. However, 

similar physicochemical properties of these components make them difficult to separate 

by conventional methods. Adding a suitable solvent into such a mixture to change the 

relative volatility, extractive distillation can be conducted to achieve efficient separation. 

In order to illustrate our proposed method for solvent design, the separation of simplified 

C4 mixtures (butadiene and 1-butene) is carried out as a case study. Because butadiene 

generally shows strong interaction with organic solvents in contrast to 1-butene, a suitable 

solvent can be designed to efficiently extract butadiene from the mixture. Two important 

solvent thermodynamic properties (i.e., selectivity and capacity at the infinite dilution 

condition), indicating the separation performance of the solvent, are considered (Zhou et 

al., 2019). The infinite dilution selectivity is defined by 

𝑆𝐶4𝐻6/𝐶4𝐻8
∞ = 𝛾𝐶4𝐻8

∞ /𝛾𝐶4𝐻6
∞  

The infinite dilution capacity of the solvent toward butadiene is determined by 

𝐶𝐶4𝐻6
∞ = 1/𝛾𝐶4𝐻6

∞  

As represented above, both the selectivity and capacity are calculated with activity 

coefficients at infinite dilution. Notably, an increase in the selectivity usually leads to a 

decrease in capacity (Krummen et al., 2000). Thus, the product of selectivity and capacity 

is used as the objective function for solvent design. 

3.1. Model Training 

A dataset consisting of 2,496 solvents is adopted, with infinite dilution activity 

coefficients of 1-butene and butadiene calculated using COSMO-RS (Klamt and Eckert, 

2000). The training and test sets are randomly selected and they account for 90% and 10% 

of the dataset respectively. ML models (i.e., VAE and FNN) are constructed using the 
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open-source ML framework TensorFlow (2021), and they are optimized on the training 

set and evaluated using the test set. Table 1 summarizes the accuracy of the VAE model

for molecular reconstruction and the performance (i.e., mean absolute error (MAE) and 

coefficient of determination (R2)) of the FNN model for property prediction. As indicated, 

both ML models present high performance on both training and test sets. Thus, for an 

unknown solvent represented by a latent vector, the decoder of the VAE model can 

reliably reconstruct its molecular structure and the FNN model can accurately predict its

infinite dilution activity coefficients toward 1-butene and butadiene. This guarantees the 

reliability of the solvent design results.

Table 1. Model performance in the molecular reconstruction and property prediction

Dataset

Molecular 

reconstruction 

accuracy

ln(𝛾𝐶4𝐻8
∞ ) ln(𝛾𝐶4𝐻6

∞ )

MAE R2 MAE R2

Training 90.91% 0.0833 0.9504 0.0769 0.9221

Test 89.24% 0.0896 0.9625 0.0886 0.9323

3 .2 . Solvent design

To achieve energy-efficient extractive distillation of butadiene and 1-butene, the solvent 

should be optimally designed by maximizing its separation performance (i.e., the product 

of selectivity and capacity). Based on the FNN model, we first identify the optimal latent 

vector by solving a nonlinear optimization problem where the solvent performance is 

maximized. Later, the VAE decoder is used to convert the optimal latent vector into 

solvent molecular structure. In this way, a new solvent (the red star) showing superior 

separation performance is designed with the objective function of 7.930, as shown in 

Figure 2. It is significantly better than the best solvent in the employed dataset (blue star, 

objective function 5.413). The grey dots indicate the locations of all the 2,496 solvents in

the latent space visualized in two dimensions using principal component analysis.

Figure 2. Interpolation-based solvent design for the separation of butadiene and 1-butene

When training the VAE model, the latent space tends to cluster molecules with similar 

structures. Meanwhile, because the VAE model is jointly trained with the FNN model, 
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the distribution of molecules in the latent space is indicated by the molecular property. In 

this case, molecules locating closely in the latent space should also share similar 

properties. Taking these into account, interpolation is performed between the best solvent 

in the original database (blue star) and the optimally designed solvent (red star) to 

generate more solvent candidates (green crosses), as indicated in Figure 2. Following the 

route, an increase in the solvent separation performance is identified, and structural 

similarity is also observed between neighboring solvents. This demonstrates that the 

latent space allows smooth navigation of solvent performance because of its local 

similarity on both solvent structure and property. 

To further filter suitable solvents from the above-designed candidates, additional analyses 

on molecular synthesizability are carried out. The synthetic accessibility score (SAscore) 

(Ertl and Schuffenhauer, 2009) can estimate the ease of synthesis of compounds based on 

available synthetic knowledge and molecular structural complexity, and it varies between 

1 (easy to synthesize) and 10 (very difficult to synthesize). Table 2 lists the SAscore for 

the top five solvent candidates presented in Figure 2. In addition to SAscore, another two 

synthesizability indicators, Retro score (RScore) and Retro step (RStep), are estimated 

from the Spaya platform (2021) based on literature reaction templates. RScore indicates 

the probability of the synthetic route matching with existing reaction templates, and 

RStep is the number of reaction steps of the considered route. Obviously, a large RScore 

and a small RStep are preferred. As shown in Table 2, the optimal solvent with the best 

separation performance also displays the highest synthesizability, as revealed by the three 

indicators. 

Table 2. Evaluation on the synthesizability of designed solvent candidates 

Rank Molecular SMILES string Performance SAscore RScore RStep 

1 COCOC(COc1ccccc1)c1ccccc1[N+](=O)[O-] 7.930 2.67 0.8 2 

2 NC(=O)OC(Cc1ccccc1[N+](=O)[O-])OCO 7.929 3.19 0.7 3 

3 COCOC(OCO)O[N+](=O)[O-] 7.912 4.18 0.6 4 

4 O=[N+]([O-])OC(OCO)O[N+](=O)[O-] 7.752 4.00 0.7 4 

5 CC(O[N+](=O)[O-])C(O)O[N+](=O)[O-] 7.277 4.32 0.8 2 

4. Conclusion 

Combining ML and deterministic optimization, we propose a new CAMD approach for 

the molecular design of solvents. After developing accurate ML models, deterministic 

nonlinear optimization is first performed to identify the optimal latent variables, and the 

corresponding optimal solvent structure is then obtained by decoding the latent variables. 

Besides the best solvent, a few more candidates are identified by interpolating in the latent 

space and the practical applicability of all the solvent candidates is evaluated from the 

perspective of molecular synthesizability. The proposed CAMD approach has been 

successfully applied to solvent design for butadiene and 1-butene separation. 

The generated molecules represented by SMILES strings sometimes are proven to be 

structurally infeasible by RDKit. Imposing grammar constraints in encoding and 

decoding steps or replacing SMILES strings with molecular graphs can potentially 

guarantee the feasibility of the designed molecules. Additionally, density functional 

theory calculations can provide further evaluations on molecular structural stability, and 

process design can be incorporated into the CAMD framework in order to generate 

solvents better serving industrial processes. 
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Abstract 
For the application of advanced process control and optimization methods, a dynamic 
process model is necessary. Developing a purely mechanistic white-box process model is 
time consuming and challenging when the underlying physical, chemical or biochemical 
phenomena are not fully understood. Black-box models can be used in such cases when 
sufficient process data is available. These models on the other hand suffer from limited 
accuracy for inputs that are not well represented in the collected data. For extended 
extrapolation capabilities and improved interpretability, gray-box models can be used 
where white-box and black-box parts are combined. If the black-box models describe 
embedded variables of the white box model, the determination of a suitable black-box 
model structure is a challenging task. In this work we present a methodology to 
systematically decompose the parameter estimation and model structure selection tasks. 
The methodology is applied to a fermentation use case with promising results. 
 

Keywords: machine-learning, gray-box modeling, dynamic modeling, fermentation 

1. Introduction 

The problem of finding a suitable process model for a chemical or biochemical process 
is challenging. Oftentimes the underlying phenomena are not fully understood and only 
basic equations of the system dynamics that result from heat and mass balances are 
available where not all terms are fully specified. If by simple correlations or kinetics, the 
experimental data at hand cannot be matched sufficiently accurately, one way to improve 
the model accuracy is to embed data-based or machine learning (ML) models into the 
fundamental equations. This combination of traditional modelling efforts with ML 
approaches is commonly known as gray-box modelling.  
There exists a multitude of ways to realize combinations of different types of models, an 
overview can be found in [1]. Here, we consider the case that a set of ordinary differential 
equations derived from process knowledge is available, where some variables in these 
equations are described by ML models. These kinds of systems have been studied by 
different authors already. One important distinction between different situations is 
whether there exists data specifically for the input/output relation that the ML model is 
supposed to represent, as investigated in [2], or not. 
In the case that such data is not available, there are two ways to approach the issue. First, 
an artificial data-set can be estimated from the available dynamic data. Several techniques 
have been applied in the literature, for example the use of a state observer that estimates 
the unknown parameter [3]. [4] and [5] replace the embedded variables by functions of 
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time which are fitted to data to generate a training set for the parameterization of the ML 
model. Second, one can learn the parameters of the machine learning model by 
performing a full dynamic parameter estimation for the overall model, including the 
parameters of the embedded ML models and other parameters of the balance equations, 
which involves simulating the full model and minimizing the errors with respect to the 
experimental data.  
Also a combination of the two approaches is possible, as proposed in this work. 

2. Simulation model use case: Fermentation of a sporulating bacterium 

We are considering the use case of a fermentation of a microorganism that undergoes 
sporulation. Fermentation processes are a typical example of processes where deriving a 
fully mechanistic model is complicated as a complete mathematical description of the cell 
internal metabolism would be necessary. The simulation use case involves three state 
variables: the dry basis concentration of vegetative cells 𝑋௩, the dry basis concentration 
of sporulated cells 𝑋௦ and the concentration of substrate 𝑆. These state variables undergo 
two main reactions resulting in the following dynamics. In these equations it is assumed 
for simplification that the cell weight does not change and is the same for both vegetative 
and sporulated cells. 

𝑋̇௩ = 𝑟௚(𝑇, 𝑆)𝑋௩ − 𝑟௦(𝑇, 𝑆)𝑋௩  
𝑋̇ௌ = 𝑟௦(𝑇, 𝑆)𝑋௩  (1)

𝑆̇ = −𝑟௚(𝑇, 𝑆) 𝑋௩ 𝑌௑/ௌ
ିଵ    

Here, 𝑟௚ and 𝑟௦ denote growth and sporulation reaction that both nonlinearly depend on 
temperature and substrate concentration with relations taken from [6–9]. 𝑌௑/ௌ

ିଵ  is the yield 
coefficient. This system is modelled using the following gray-box model structure.  

𝑋෠̇௩
= 𝜑ଵ൫𝑇, 𝑆መ൯ 𝑆መ 𝑋෠௩ − 𝜑ଶ൫𝑇, 𝑆መ൯𝑋෠௩  

𝑋෠̇ௌ
= 𝜑ଶ൫𝑇, 𝑆መ൯𝑋෠௩  (2)

𝑆መ̇ = −𝜑ଵ൫𝑇, 𝑆መ൯ 𝑆መ 𝑋෠௩ 𝑌෠௑/ௌ
ିଵ    

The main issue of fitting this model is finding an appropriate machine learning (ML) 
model structure for the two embedded variables 𝜑ଵ and 𝜑ଶ. To this end a methodology is 
developed, which is described in the next section. 

3. Novel methodology for gray-box modelling of nonlinear ODE systems 

In this work we discuss a methodology to find a suitable structure and parameters for 
dynamic gray-box models of the general structure shown in Eq. 3: 

𝑥̇ = 𝑓஀ ቀ𝑥, 𝑢, 𝜑஀౉ై
(𝑑)ቁ  (3)

Here, 𝑥 denotes the state vector and 𝑢 denotes a vector of input variables. Additionally, 
there are embedded variables 𝜑 that are described by ML models. They depend on a set 
of ML-model parameters Θ୑୐. The inputs to these ML-models are denoted by the vector 
of descriptors 𝑑. The elements of this vector are a subset of the elements of the other 
variables of the system 𝑥 and 𝑢. The differential equations are described by the possibly 
nonlinear functions 𝑓஀. These itself depend on a set of parameters Θ which occur in the 
mechanistic relations. 
To find a suitable ML model structure for 𝜑 and values for the sets of parameters Θ and 
Θ୑୐, a full dynamic parameter estimation problem can be set up as shown below. 
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min
஀, ஀౉ై

 𝐽൫𝒀௘௫௣ , 𝒀෡൯   

𝑠. 𝑡. 𝑥̇ = 𝑓஀ ቀ𝑥, 𝑢, 𝜑஀౉ై
(𝑑)ቁ  (4) 

 𝑥௜൫𝑡௝,଴൯ = 𝑥௜,௝
଴,௘௫௣

   ∀ 𝑖 = 1, … , 𝑛௫ , 𝑗 = 1, … , 𝑛௘௫௣   

 𝑦ො = ℎ(𝑥)   

In this optimization problem, the cost function 𝐽 depends on the set of measured output 
values 𝒀௘௫௣ and the set of simulated output values  𝒀෡ as shown in Eq. 5. 

𝐽൫𝒀௘௫௣ , 𝒀෡൯ =
1

𝑛௬

෍
1

𝑛௘௫௣

෍
1

𝑛௦௔௠௣

෍ 𝐽௥(𝑟௜,௝,௞)

௡ೞೌ೘೛

௞ୀଵ

௡೐ೣ೛

௝ୀଵ

௡೤

௜ୀଵ

 (5) 

Here, 𝑛௬ denotes the number of outputs and 𝑛௘௫௣ the number of experiments. 𝑛௦௔௠௣ 
denotes the number of samples taken, which is assumed to be the same in each experiment 
for ease of notation. 𝐽௥ describes the kind of cost function used. Commonly, the mean 
squared error is used with 𝐽௥(𝑥) = 𝑥ଶ. 𝑟௜,௝,௞ refers to a residual, which is defined as  

𝑟௜,௝,௞ = 𝑦௜,௝,௞
௘௫௣

− 𝑦ො௜൫𝑡௝,௞
௘௫௣

൯. (6) 

Solving the full parameter estimation problem in Eq. 4 is a difficult task as the evaluation 
of the fitness, described by the cost function 𝐽, requires the simulation of the dynamics of 
the system. The iteration over all parameters and hyperparameters is computationally 
costly especially because good initialization of  Θ୑୐are not known and therefore many 
simulations will diverge.  
To overcome this issue, we propose to decompose the model selection and 
parameterization problem into several steps as shown in Fig. 1.  

 

Fig. 1: Steps of applying the methodology for dynamic gray-box modelling  

Step 1) involves the estimation of training data of the embedded functions by replacing 
the embedded variables 𝜑 by placeholders 𝜑෤(𝑡), which are computed as continuous piece-
wise linear functions of time as shown in Eq. 7, similar to the approaches in [4] and [5]. 

𝜑෤௜(𝑡) =
𝜑෤௜,௝,௞ାଵ − 𝜑෤௜,௝,௞

𝑡௝,௞ାଵ − 𝑡௝,௞

൫𝑡 − 𝑡௝,௞൯ + 𝜑෤ ௜,௝,௞                 𝑡 ∈ [𝑡௝,௞ , 𝑡௝,௞ାଵ] (7) 

Here, 𝜑෤௜,௝,௞ denote the values of the piece-wise linear function at the sampling time points 
𝑡௝,௞. With this replacement, determining the set of descriptors 𝑑 and estimating the 
parameters  Θ୑୐ is simplified. To estimate training data for the embedded functions, the 
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knot values of the piece-wise linear fit are adjusted as degrees of freedom in the parameter 
estimation problem shown in Eq. 8. 

min
஀,ః෩

 𝐽൫𝒀௘௫௣ , 𝒀෡൯ + 𝜆 𝑅𝑒𝑔൫𝛷෩൯   

𝑠. 𝑡. 𝑥̇ = 𝑓஀൫𝑥, 𝑢, 𝜑෤(𝑡)൯  (8)

 𝑥௜൫𝑡௝,଴൯ = 𝑥௜,௝
଴,௘௫௣

   ∀ 𝑖 = 1, … , 𝑛௫ , 𝑗 = 1, … , 𝑛௘௫௣  
 𝑦ො = ℎ(𝑥)  

In this optimization problem, the set of all values 𝜑෤௜,௝,௞ is denoted as 𝛷෩. As there is a large 
number of degrees of freedom, regularization is applied to prevent overfitting. This can 
be realized by adding the mean absolute slope 𝑅𝑒𝑔൫𝛷෩൯ to the cost function, weighted by 
a regularization constant 𝜆, see Eq. 9. 

𝑅𝑒𝑔൫𝛷෩൯ =
1

𝑛ఝ

෍
1

𝑛௘௫௣

෍
1

𝑛௦௔௠௣ − 1
෍ ቤ

𝜑෤௜,௝,௞ − 𝜑෤௜,௝,௞ିଵ

𝑡௝,௞ − 𝑡௝,௞ିଵ

ቤ

௡ೞೌ೘೛

௞ୀଶ

௡೐ೣ೛

௝ୀଵ

௡ക

௜ୀଵ

 (9) 

The results of solving the optimization problem in Eq. 8 are the values of the predicted 
state 𝑿∗ and input variables 𝑼௘௫௣ and the corresponding values 𝜑෤௜,௝,௞. 
In nonlinear dynamic systems, it can occur that the deviation from the experimental data 
is insensitive to changes of the values 𝜑෤௜,௝,௞. One such example is when the embedded 
variable is multiplied with a state variable that vanishes during an experiment. To ensure 
that the estimated data is reliable, the collected optimal values 𝛷෩∗ are filtered using the 
sensitivity of the residuals 𝑟௜,௝,௞, see [10] for further details. 
Using the resulting data 𝛷෩∗, the descriptors 𝑑, a suitable ML-model structure and a set of 
parameters Θ୑୐ can be found efficiently during step 2), the feature data fit. 
This model structure and the estimated set of parameters are initial values for performing 
step 3), the full dynamic parameter estimation, described by Eq. 4. 

4. Results 

The methodology presented in section 3 is applied to the simulated case study from 
section 2. Experimental data was generated in silico by generating random initial 
conditions and simulating the ODEs presented in section 2. Afterwards, Gaussian noise 
was added to the measured outputs. 𝑋௧ is the total cell concentration as 𝑋௧ = 𝑋௩ + 𝑋௦. 
In step 1), the optimization problem in Eq. 8 is solved using the simulated data and a 
regularization constant with a value of 𝜆 = 2, the results are shown in Fig. 2. 

 
Fig. 2: Results of the training data estimation step. Left: predicted and measured output values; 
Right: Corresponding continuous piece-wise linear trajectories of the embedded variables 

In Fig. 2 on the left hand side, the simulated and experimental values of the measured 
variables are shown. It can be seen that even though the experimental values are subject 
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to significant noise, the overall behavior is represented well. The substrate concentration 
𝑆 is initially high but decreases monotonously as the cells grow. This growth leads to an 
increase in the total cell concentration. After about 4-5 ℎ the growth process is concluded 
and the sporulation begins. The sporulated cell concentration increases until about 20 ℎ.  
On the right hand side, the corresponding estimated values of the embedded variables are 
shown. The fact that a penalization term on the slope is added to the cost function is 
reflected by the fact that intervals of constant 𝜑෤  emerge.  
Conducting step 2) of the methodology, different surrogate models were trained on the 
estimated data. Due to the training data estimation, any ML-toolbox can be used. In this 
case a constant value and a linear model were applied. Additionally two symbolic 
regression routines were applied, a Lasso regression [11] and an ALAMO [12] model 
were trained based on the same set of basis functions. Lastly, an artificial neural network 
model with 1 hidden layer and 5 nodes was fitted to the data. All models use the 
temperature 𝑇 and substrate concentration 𝑆መ as descriptors 𝑑. The regression plots are 
shown in Fig. 3. 

 

Fig. 3: Regression plot of all considered ML-model structures 

From Fig. 3, it can be seen that both the constant value as well as the linear model fail to 
accurately describe especially the embedded variable 𝜑ଶ, thus nonlinear models have to 
be used. The highest coefficient of determination can be achieved using ANN models. 
Initialized with these parameters, the full dynamic parameter estimation problem in Eq. 
4 (step 3) ) was solved. The results of this optimization are displayed in Fig. 4. 

 

Fig. 4: Results of the full parameter estimation  

From this figure, it can be seen that the sharp initial increase of the number of vegetative 
cells is not accurately represented using a constant value or a linear model for the 
embedded variable 𝜑ଶ. While there is a slight undershoot in the dynamic prediction of 
the ANN and of the ALAMO model, these model structures describe the dynamic 
behavior well. The Lasso model can be considered the best model as no negative 
concentrations of sporulated cells 𝑋௦ are predicted. 
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5. Conclusions and outlook 

The proposed methodology of systematically determining a dynamic gray-box model of 
nonlinear dynamic systems was successfully applied to a simulation use case of a 
fermentation process. It was shown that using a training data estimation step enables the 
training of data-based models using common ML-toolboxes. The model selection can be 
performed efficiently without the need of dynamic simulations. Finally, the validated 
model structures are fine-tuned by solving the full dynamic parameter estimation 
problem. 
In further work, we will include constraints into the parameter estimation to ensure that 
the resulting models are meaningful.  
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Abstract 

A significant share of the energy consumption by wastewater treatment plants stems from 

the air compressors in the aerobic processing steps. To minimize their energy consump-

tion, dynamic optimization is a viable option. Modeling the complex (bio)chemical pro-

cesses within wastewater treatment plants is a complex task and the simulation based on 

those models requires significant computational effort and is hard to initialize. An alter-

native to this approach is data-driven modeling of these plants. Therefore, this work fea-
tures recurrent neural networks. These networks are trained and tested with real data from 

a German wastewater treatment plant. The identified models are used to obtain optimal 

control trajectories. The obtained trajectories are compared to the control actions applied 

in reality to assess the economic benefit of this approach. 

 

Keywords: Machine learning, Recurrent neural networks, Wastewater treatment, Opti-

mal control, Dynamic real-time optimization. 

1. Main Text 

In wastewater treatment plants (WWTPs), sewage is recycled in several anaerobic and 

aerobic processing steps. The aeration for these aerobic steps is done via compressors, 

which account for 50-60 % of the consumed energy of these plants (Viholainen et al., 

2015). Therefore, minimizing energy consumption of the compressors would have major 

economic and environmental benefits. Consequently, rigorous, dynamic models were 

proposed to describe the transient behavior of WWTPs. Many of these models were crit-

ically analyzed and compared (Hauduc et al., 2010; 2013). However, while these models 

are certainly helpful in assessing the process dynamics, they may not be suited for online 

optimization because many of the required inputs for these models, e.g., some of the bal-

anced pseudo-components, cannot be measured online.  
Contrarily, data-driven models offer many advantages as they do not require the complex 

(bio)chemical phenomena to be modeled rigorously and can thus be evaluated much 

faster. This approach works if the available data amount and quality suffices for identify-

ing a data-driven model with acceptable prediction error. As a result, machine learning 

methods have been proposed for applications in WWTPs. For example, Cheng et al. 

(2020) and Arismendy et al. (2020) studied different types of neural networks to forecast 

various process variables. An extensive review of machine learning methods for 

wastewater plants is given by Newhart et al. (2019). As of now, however, machine learn-

ing methods have hardly been used for optimal control in WWTPs. Only recently, Icke
 
et 
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al. (2020) used a self-learning algorithm for control and reduced energy consumption by 

15 %, thus showing the large economic potential of such approaches. In this contribution, 

recurrent neural networks (RNNs) are used to model the process dynamics of WWTPs. 

In RNNs, the feedback of outputs allows previous regressors to have an impact on the 

current prediction. This is advantageous for dynamic systems and gives these models 

much flexibility. The RNNs are trained with real data from a plant in Germany within (1) 

TensorFlow 2 (Abadi et al., 2015) with simple RNN architecture and with a long short-

term memory (LSTM) layer and (2) a self-implemented RNN based on a multi-layer per-
ceptron from Scikit-learn (Pedregosa et al., 2011). Instead of choosing the hyperparame-

ters of the RNNs by trial-and-error, a hyperparameter tuning is carried out for optimal 

performance (Akiba et al., 2019).

2. Wastewater treatment plant

A simplified flowsheet of the WWTP that provided the data for this contribution is shown 

in Figure 1. The influent enters the plant and may be split into a stream that fills the rain 
basins (RB1–RB4). These basins usually fill in the case of heavy rain. Eventually, the 

sewage enters the sewer route (B1–B6) in which the (bio)chemical decomposition pro-

cesses take place. Basin B5 and B6 are aerated. This aeration is realized by the compres-

sors COM1–COM4. Furthermore, oxygen can be measured online in B5 and B6. Addi-

tionally, pH value and the concentrations of NH4
+ and PO4

− ions, and total suspended 

solids (TSS) are measured online in B6. The influent flow, the liquid volumes in the rain 

basins, and the power consumption P of the four compressors will be treated as inputs to 

the model whereas the measured concentrations will be outputs. This means that none of 

the basins are modeled in detail. Instead, only the input-output relation between the named 

variables must be found via training of the RNN. In general, the compressor duties depend 

on the required volume flow of air to achieve the desired oxygen concentration in the 

aerated basins.

Figure 1: Simplified flowsheet of the WWTP in Weinheim (Germany). A representation of the

RNN, including inputs and outputs, is given in the bottom left corner.
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3. Training framework

The Python framework used in this contribution is illustrated in Figure 2 and based on 

the preliminary work by Weigert et al. (2020). In the data processing step, the plant data 
is read from Excel sheets and stored as a pickle file for efficient storage. Afterwards, the 

data is split into training and testing data. Throughout 

this work, the training-to-testing ratio is 9, i.e., the first 

90 % of the data are used for testing while the remaining 

10 % are used for cross validation and hyperparameter

tuning. Once the training and testing data have been set 

and the input data have been windowed, the training data 

is also shuffled as part of the training algorithm.

In the model generation step, the data are separated into 

inputs and outputs as described in the previous section. 

Before the training begins, the training data are normal-
ized so that all inputs have mean 0 and standard devia-

tion of 1 whereas outputs lie between 0 and 1. In an ex-

ternal loop, the hyperparameter tuning via Optuna

(Akiba et al., 2019) is initiated. Starting from an initial 

set of parameters, Optuna varies the hyperparameters of

the respective model in the intervals defined in Table 1.

Within the inner loop, the RNN is trained using the al-

gorithms provided by TensorFlow 2 (Abadi et al., 2015)

and Scikit-learn (Pedregosa et al., 2011), respectively. 

The objective function of the inner tuning is the mean 

squared error (MSE) of measurement data and predic-

tion. The hyperparameter tuning minimizes the MSE for
the testing data. Here, it is possible to use the MSE of

the one-step prediction, the recurrent prediction – the 

prediction of the entire time horizon using the original 

data only in the first time point – or the MSE of an arbi-

trary prediction horizon. Within this contribution, the hyperparameter tuning was always 

minimized subject to a prediction horizon of 4 prediction steps. The inner tuning is re-

peated until the number of pre-defined outside iterations (here: 400) is reached. This num-

ber of iterations must be sufficiently large. In this study, the best solution was usually 

found after approximately 200 iterations, further increasing the number of iterations re-

vealed no additional benefit. Finally, the hyperparameter set with the lowest MSE is cho-

sen and the model is stored. In the optimal control step, the horizon is initialized by start-

ing the optimization at time step tstart =  t0 + n Δtk where n =  max (nc; ns) (see Table 1 for 

definitions). This ensures that enough 

past regressors are available to solve the 

RNN at the initial point. During the op-

timization, the plant influent remains an 

input to the RNN, but it can obviously 

not be used as degree of freedom. Con-

trarily, the liquid volumes in the rain ba-

sins and the energy consumption of the 

compressors are decision variables. The 

length of the prediction horizon can be 

Figure 2: Framework for
model generation and optimal 
control within Python.

Table 1: Possible parameter range for hyperpa-
rameter tuning via Optuna.

Parameter Range

Number of neurons in
hidden layer (NN)

[ 10 . . . 200]

Activation function (AF) tanh or relu
L2 regularization weight (α) [ 1e-5 . . . 10]
Number of past states (ns) [ 3 . . . 20]
Number of past controls (nc) [ 3 . . . 20]

Data processing

Read in data and store 

them as pickle

Separate training and 

testing data

Model generation

Hyperparameter tuning 

with Optuna

Tune RNN for current 

set of hyperparameters 

with Tensorflow2 or 

Scikit-learn

Optimal control

Receding horizon of

 length x

Optimal control for 

current prediction 

horizon
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chosen arbitrarily: on the one hand, the horizon should be long enough to ensure a stable 

solution of the dynamic optimization; on the other hand, the prediction error usually in-

creases with increasing time horizon. Therefore, a suitable horizon length must be deter-

mined. In this contribution, a prediction error of 1 led to profiles that occasionally violated 

inequality constraints. This did not occur for a prediction horizon of 2 for which the fol-

lowing results are shown. 

4. Results and discussion 

In the following, we compare the results obtained with different RNNs using the hyperpa-

rameter tuning described above. Results were obtained for three multiple-input-single-

output (MISO) RNNs and one multiple-input-multiple-output (MIMO) RNN. For MISO 

RNNs, one RNN is trained per output variable. In the case of the MIMO RNN, one RNN 

is trained that predicts all outputs simultaneously. Figure 3 shows the results obtained 

with the MIMO RNN, which is based on a multi-layer perceptron in which the outputs 

are fed back as inputs (pseudo-RNN). Surprisingly, both the available training and testing 
data can be predicted very well given the small number of inputs. Table 2 shows a com-

parison of the obtained results for all trained RNNs. The first three columns contain 

ranges as every output is described by a separate model with different parameterizations. 

 

Figure 3: Comparison of plant data and prediction with MIMO RNN. 

Table 2: Training results for all investigated RNNs in TensorFlow (TF) and Scikit-learn (SL) 
after hyperparameter tuning. Models in TensorFlow do not use external past states since the 
amount of recycled information is determined internally. 

 Trained RNNs 

Parameter  MISO RNN MISO RNN MISO RNN MIMO RNN 
RNN Type simple (TF) LSTM (TF) pseudo (SL) pseudo (SL) 
NN  35 to 143 61 to 196 46 to 165 164 
AF relu and tanh relu and tanh relu  relu 
α 0.002 to 4.37 6.5 ∙10-5 to 3.39 0.017 to 0.33 0.036 

ns n. a. n. a. 9 to 19 15 
nc 6 to 15 3 to 20 3 to 8 3 

MSE ·103 11.39 10.1 2.57 2.40 
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The differences in the obtained hyperparameters are significant and include a large vari-

ation in the number of neurons and the weighting parameter, and different activation func-

tions. Moreover, the number of past states is much higher for the MISO RNNs compared 

to the MIMO RNN. Overall, the models trained in Scikit-learn perform better than those 

trained in TensorFlow 2. In addition, the MIMO RNN is slightly better than the MISO 

version. A possible explanation is that the MIMO model also considers the interdepend-

ency between the various outputs. Therefore, the MIMO architecture is used in the fol-

lowing. The influent profile for this case study is shown in Figure 4 (bottom). The objec-
tive function is the MSE between measured concentrations and pre-defined setpoints. As 

Figure 4 shows over a period of about one week, the effluent concentrations show notably 

less fluctuations for both ammonia and phosphorous components. As in the original data, 

compressors 3 and 4 are only used irregularly. However, this applies to compressor 2 as 

well in the optimization. In the case of lower plant load (between hour 30 and hour 75), 

the overall compressor power is also reduced. As a result, a reduction of the energy con-

sumption of about 50 % is predicted for this week. 

5. Conclusion and outlook 

This contribution showed that a MIMO RNN can reliably predict the concentrations of 

components that are decisive for the effluent quality of a WWTP. The MIMO RNN also 

performed better than MISO RNNs where a single RNN per variable is trained at a time. 

The obtained MIMO RNN was used for optimal control in a receding horizon.  Both the 

energy consumption and the liquid volumes in the rain basins were selected as decision 

 

 

Figure 4: Optimized trajectory for 1 week. Levels of the rain basins are not shown here for 
brevity. 
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variables. This approach resulted in significantly lower energy consumption compared to 

the original plant data: a reduction of 50 % was predicted for the investigated week. In 

future work, the number of data points for the RNN must be extended and should include 

other seasons as well.   In particular, the accurate description of outputs for small concen-

trations of dissolved oxygen should be checked to verify that the determined optimal so-

lution is indeed physically feasible and not only a pseudo-solution of the trained RNN. 
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Abstract
Recirculating Aquaculture Systems are known to have its water quality conditions controlled, de-
spite being common to have a simple control structure and a lot of human interaction to achieve
that. To avoid long-term exposure to toxic levels of carbon dioxide and ammonia, its concentration
needs to be monitored more often than manual measurements are available. In this work, we ana-
lyze the multilayer perceptron’s ability to monitor water quality components that are important for
the development of the fish. This alternative method for monitoring has the potential to comple-
ment the current sensor structure and laboratory procedures for manual measurement collection,
but more studies need to be done on the type of machine learning model.

Keywords: Soft sensor, Recirculating aquaculture systems (RAS), Feedforward neural networks

1. Introduction

Recirculating Aquaculture Systems (RAS) have two dynamic sub-systems: fish metabolism and
water treatment. The water treatment system is responsible by keeping the water quality at high
standards, reducing water consumption, and reducing contact with external pathogens (European
Market Observatory for Fisheries and Aquaculture Products, 2021).

Regarding the water quality, some components are important to be monitored and controlled due
to toxicity, but are hard or not able to be measured continuously, such as ammonia. In addition, it
requires either several sensors or a central sensor station with sampling system to get information
about the levels of dissolved carbon dioxide and ammonia in all fish tanks and water treatment
system. One way of using information of the process to estimate the concentration of these toxic
components is by using soft sensors (Fortuna et al., 2007).

The soft sensor technique is a combination of data, for parameter estimation, and process knowl-
edge, for feature selection. The development of the data-driven models can be done, for example,
using machine learning models, such as feedforward neural networks (FNN). In this work, the
main objective is to apply multilayer perceptron (MLP) (Werbos, 1974), which is a classic type of
FNN and a universal approximator (Hornik et al., 1989), as a soft sensor for recirculating aqua-
culture of Atlantic salmon (Salmo salar).

In RAS, even if fish, feed and waste production increase in an exponential way, the goal is that the
water quality should be kept stable and good. Measurements of ammonia are performed manually
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daily, whereas CO2 is measured continuously at least in one point in the system. However, their
levels might vary during the day depending on feeding and other factors, and data about this may
be missed. Optimizing the water quality and fish growth would be easier with higher resolution
of information. In addition, manual collection and laboratory analyzes are time consuming and
therefore costly. Therefore, it is useful to develop an alternative method to monitor these water
quality variables.

As the system is assumed to reach a steady state after each day, the water treatment system is
approximated to a steady-state model developed in previous work (Dos Santos et al., 2021). The
training and validation data are acquired from this model, where some parameters are considered
as uncertainties. To improve the soft sensor identification, the uncertainties are changed using latin
hypercube sampling (LHS) (Jin et al., 2005), so it contains the operating region, which provides
condition for fish optimal growth. After addition of white noise, the data is used to train different
MLP configurations for predicting carbon dioxide, ammonia and ammonium concentrations.

2. Process Description

Figure 1 shows a diagram of the RAS this work is foccused on. The process consists of a fish
tank, a biofilter, a stripper and an oxygen cone. The model is a simplified version of the process,
as it does not consider the effect of the water quality on the fish metabolism, if the conditions are
kept within bounds. This assumption is reasonable for each phase of the fish life, which can last
from weeks to years depending on a lot of factors. Therefore, this work is only valid for the phase
the model represents, which is the smolt phase. This could be easily extended to other phases
by changing some parameters in the model, such as the amount of product generated by the fish
metabolism per kg of fish feed.

The measurements that are available from sensors or human addition include recirculating volu-
metric flow rate, q; pH; fish feed rate, F ; buffer additions, ṁbu f f er; base additions, ṁbase; makeup
water, qm; air inlet flow rate, ṁair; makeup oxygen, ṁO2 ; average salinity, S; average temperature,
T . More details about the process can be found in Dos Santos et al. (2021).

Fish Tank Bio-filter

Stripper

Oxygen Cone

Buffer Base
Buffer Base

Makeup water

Purge

Air

Air + CO2

Makeup oxygen

Fish Feed

Figure 1: Process diagram of a recirculating aquaculture system
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3. Methodology

In order to develop a soft sensor, a standard procedure was followed. Gather data, preprocess it
and divide it into training and validation data. After that, fit the model and choose the best model
of validation phase. And finally, test it with industrial data.

3.1. Training and Validation Data Acquisition

For the training and validation data acquisition, 6967 steady-state data points were generated
within the region described by Table 1, using CasADi v3.5.5 (Andersson et al., 2019) in Python
v3.8.8. 5967 of these data points were generated using latin hypercube sampling (LHS) built in
pyDOE package in Python. LHS is a popular algorithm for planning computer experiments cov-
ering the entire range of uncertainties and disturbance in an optimally and distributed way for
training. The rest was generated randomly within the same region for validating the soft sensor.
After that, 1% white noise was added to both input and output data of both training and validation
data.

Table 1: Region of operation

Parameter Mean Unit Range Description

G/L 2.7 - ± 50% Gas-liquid ratio in equilibrium over the stripper
ξB 0.8 - ± 25% Biofilter efficiency
T 14 ◦C ± 30% Average temperature of the system
pHm 7.0 - ± 10% pH of the makeup water
yin

CO2
4.15e-04 - ± 10% CO2 composition in the air inlet

S 15.95 ppt ± 30% Average salinity of the system
pHB

des 7.2 - ± 1% Desired pH for the biofilter
q 20 m3/min ± 50% Recirculating volumetric flow rate
F 580.6 g/min + 50% Fish feed rate

3.2. Data Preprocessing

Some concentrations are really low in RAS, when comparing with other concentrations. There-
fore, it is essential that all data is submitted to preprocessing. As the soft sensor model applied
in this work is a deep learning neural network, the normalization of the datasets uses a minmax
calculation of the training dataset. After that, the datasets are ready to be used to train and validate
the soft sensor.

3.3. Soft Sensor

The feedforward neural network (FNN) architectures were created and optimized using Auto-keras
package (Jin et al., 2018), which is a package in Python that automatizes the neural architecture
search (NAS) of models supported by another python package named Keras.

In this work, the FNNs are multilayer perceptron (MLP), trained using backpropagation method
with a batch size of 500 samples. The objective function of the NAS was the validation loss, the
loss function was the mean squared error, and the maximum number of trials is 50. The features
were chosen based on knowledge of the process and the available measurements in a real RAS.

After choosing the model with the lowest validation loss, the MLP performance was tested pre-
dicting the targets concentration from real data. To avoid breaking the non-disclosure agreement,
the collected industrial data was normalized. The performances were compared using the root
mean squared error between scaled predicted and scaled data.
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4. Results

The choice of inputs was based on the available measurements from sensors or manual insertion
of inlet streams described on the previous section. Three types of models were tested: multiple-
input, single-output MLP (MISO-MLP), multiple-input, multiple-output MLP (MIMO-MLP), and
a hybrid model, which consists of a MIMO-MLP predicting ammonium and dissolved CO2 con-
centrations with ammonia concentration being calculated using the equilibrium equation, see Eq.
1. The inputs of the models were the same for MISO-MLPNH+

4
and MISO-MLPNH3 models: fish

feed rate, F , recirculating volumetric flow rate, q, pH in the tank, pHT . The MIMO-MLP, MISO-
MLPH2CO3 and the hybrid models’ features included the same as the previous with addition of a
new feature: air inlet flow rate, ṁair.

cT
NH3

=
K3(S,T ) cT

NH+
4

cT
H+

(1)

where the equilibrium constant, K3, is dependent on salinity and temperature, and the concentra-
tions unit is mmol/L.

Figure 2 shows the prediction of the validation data using the MISO-MLP models, Figure 3 shows
the results using the hybrid model, and Figure 4 shows the results using the MIMO-MLP model.
Comparing Figures 2 and 3, prediction of ammonium and dissolved carbon dioxide were similar,
but ammonia predictions are worse using the hybrid model. Comparing Figures 2 and 4, prediction
of ammonia is slightly worse on the extremes using MIMO-MLP, and the other predictions were
similar.

(a) Prediction of cT
H2CO3

(b) Prediction of cT
NH+

4
(c) Prediction of cT

NH3

Figure 2: Prediction of validation data using the MISO-MLP models separately

(a) Prediction of cT
H2CO3

(b) Prediction of cT
NH+

4
(c) Prediction of cT

NH3

Figure 3: Prediction of validation data using the hybrid model

In Table 2, we summarize the performance of the models at the validation phase using the RMSE
index. The best MLP architecture for this case study was the MISO-MLP models put together,
which gave the lowest final RMSE at the validation phase, and MIMO-NLP model was the second
best giving similar, but slightly higher, RMSE.
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(a) Prediction of cT
H2CO3

(b) Prediction of cT
NH+

4
(c) Prediction of cT

NH3

Figure 4: Prediction of validation data using the MIMO-MLP model

Table 2: Summary of the models performance at the validation phase - RMSE index

Output MISO-MLPs Hybrid MIMO-MLP

cT
H2CO3

0.0645 0.0787 0.0694
cT

NH+
4

0.1204 0.1201 0.1230

cT
NH3

0.1322 0.2611 0.1351
Final 0.1097 0.1720 0.1129

Their architecture of the MLPs are described in Table 3. MISO-MLPH2CO3 model has two dense
hidden layers with 32 nodes each using the rectified linear activation function (ReLU), while the
others have one dense hidden layer, but with 64 and 128 nodes using the same activation function
on MISO-MLPNH+

4
and MISO-MLPNH3 models, respectively. Note that ammonia concentration

turned out to be harder to estimate when compared with ammonium, and possibly the NAS found
a flat optimum, which means that probably a MLP with lesser nodes would not improve but would
not make the prediction much worse also.

Table 3: Number of nodes in each layer of each MISO-MLP model

Layers MISO-MLPH2CO3 MISO-MLPNH+
4

MISO-MLPNH3

Input 4 3 3
Normalization 3 3 3
Dense1 32 64 128
Dense2 32 0 0
Dropout 0 64 128
Output 1 1 1

The prediction of the industrial data using the MISO-MLP models is shown in Figure 5. The
predicted values of ammonia concentration seem to be closer to the real data compared with am-
monium predictions, which is unexpected. The predicted cH2CO3 were the same for the first few
samples, which means that the model could not extract enough information from the features on
those points.

5. Discussion

The prediction of ammonia was revealed to be much harder than of ammonium, resulting in a poor
prediction of that variable. This might be due to the noise of the input variables that affects a lot
the ammonia concentration, as its magnitude is much smaller. This effect does not disappear after
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(a) Prediction of cT
H2CO3

(b) Prediction of cT
NH+

4
(c) Prediction of cT

NH3

Figure 5: Prediction of industrial data using the MISO-MLP models

preprocessing the data; it expands instead, as the magnitude after normalization is approximately
1000 times higher.

The MISO-MLP models gave the best performance due to different input features to each model,
as adding not so important features can make NAS more complex and add a lot of useless cases, as
happened with the MIMO-MLP model. This could be solved by increasing the maximum number
of trials at the NAS step, but it would take longer, and would still have the possibility of finding
different local minimum, for better or worse.

6. Conclusion

The measurement of key waste products are not always easy to collect in real-time or at a required
frequency, which reduces the possibility to stabilize and optimize the water quality for the fish.
This can be improved by using machine learning models, such as multilayer perceptron.

The MLP models trained in this work are deep neural networks, and its architectures were opti-
mized used an automated neural architecture search and tuning of hyperparameters. Three config-
urations were compared: MISO-MLPs; hybrid model; and MIMO-MLP. The best configuration
was the MISO-MLP models together, although their performance was not so good. This might
be due to the possibility of NAS reaching a local minimum or the models could not capture the
information it needed, so a different type of model could perform better. A soft sensor using these
models for monitoring would perform better than the hybrid model, and the MIMO-MLP model,
but would also complement the manual measurements, when estimating dissolved CO2 and NH3
concentrations.
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Abstract
Recently, machine learning methods such as neural networks have been applied in various appli-
cations thanks to their accuracy and flexibility. However, the main drawback of these methods is
the lack of interpretability, which is the reason for being uncommon in chemical engineering ap-
plications. At the same time, the recent rise of interpretability research has led to some confusion
in various communities. In order to deal with this issue for the CAPE community, we propose
to discuss the notion of interpretability under the prism of neural network predictions using an
example from chemical engineering. To do this, we first set out the framework for defining inter-
pretability for machine learning methods. Then a post-hoc method for model evaluation, explicitly
named ”model-agnostic methods”, will be presented. In this study, we try to enhance the inter-
pretability of the neural network predictions and visualize the effect of features on the model’s
output by a model-agnostic method named Accumulated Local Effects. As a case study, we work
on predicting electrical power output and prioritizing the parameters of a combined cycle power
plant. We could conclude that the most influential input parameter among Ambient Temperature
(AT), Atmospheric Pressure (AP), Vacuum (V), and Relative Humidity (RH) is AT, and the most
interaction is between AT and V.

Keywords: Interpretability, Neural network, Model-agnostic method, Accumulated local effects

1. Introduction

Recently, Machine Learning (ML) techniques, especially deep neural networks models, have be-
come a crucial tool for various engineering applications such as chemical engineering (Zhang
et al., 2020). These techniques have achieved high predictive accuracy primarily due to their abil-
ity to model complex nonlinear interactions between predictors and model outcomes. However,
most accurate predictions remain in the black box frameworks, meaning that interpretation of the
model’s parameters interaction and explanation is partially (or entirely) hidden to the experts. Un-
derstanding the reasons behind predictions is very important to one plan to act based on these
predictions.

In this paper, we will restrict the definition of the concept of interpretability to the ease of under-
standing the relationships established by ML models, which are able to work with non-linearly
related variables. More precisely, for prediction problems, interpretability can be defined as the
process of extracting relevant knowledge from a model about the learned relationships between
features and model outputs. The knowledge referred here concerns information with a given mean-
ing, allowing a particular audience to understand a chosen problem better (Murdoch et al., 2019).
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To this end, we have two options, namely model-specific tools (easily interpretable models) and
model-agnostic methods. Model-specific methods have their own tools to interpret the results,
such as weights (statistical significance) in linear or logistic regression and the hierarchical graph-
ical tool for decision trees. Nevertheless, they cannot be generalized to other ML models, partic-
ularly regarding the nonlinear impacts between variables in the Neural Networks learning. Thus,
model-specific interpretation tools have a significant disadvantage: the limitation to one type of
model and the difficulty of switching to other ML regression methods. The second approach,
which is the model-agnostic interpretation method, is designed to remedy these shortcomings.
Model-agnostic tools can be used on any machine learning model and are applied after the model
has been trained (post-hoc) (Molnar, 2019).

In this paper, in order to enhance the interpretability in machine learning predictions, Model-
agnostic methods are used and applied to real complex data and prediction problems. The promi-
nent advantages of model-agnostic methods are their flexibility in model, explanation, and rep-
resentation (Molnar, 2019). These methods separate the explanations from the machine learning
model and could be applied to any ML model (regression and classification) (Ribeiro et al., 2016).
The visualization provided by these tools is an important model diagnostic technique.

Model-agnostic methods can be distinct into local and global methods. Global methods concen-
trate on how features affect the prediction on average. In comparison, local methods explain the
individual effect on predictions. Global methods are mainly represented as expected values based
on the data distribution. Global methods include Partial Dependence Plots (PDP), Accumulated
Local Effect plots (ALE), global surrogate models. Local methods include Individual Conditional
Expectation curves (ICE), Local Interpretable Model-agnostic Explanations (LIME), and counter-
factual explanations (Molnar, 2019).

One of the interesting model-agnostic methods available is ALE Plots. Our previous work dived
into PDP and ICE plots as model-agnostic methods and discussed the main effect of each pre-
dictor x1,x2, ...,xn on f (x1,x2, ...,xn) (Danesh et al., 2021). This study will work on ALE Plot
to detect the lower order interaction effects among different predictors and compare it with other
visualization tools for interpretability purposes.

As a real-world application, data from Combined Cycle Power Plant (CCPP) proposed by Tüfekci
(2014) are used. The dataset is collected over six years and comprises 9568 data points. The paper
focused on testing and comparing some machine learning regression methods. It aimed to extend
an accurate predictive model and evaluate the prediction accuracy by Mean Absolute Error (MAE)
and Root Mean Squared Error (RMSE).

This paper’s main contribution falls within the framework of the interpretability methods of neural
network predictions (the Multi Layer Perceptron (MLP)) from model-agnostic points of view. The
primary purpose of this study is to present to the CAPE community a simple way to interpret,
evaluate and validate a machine learning prediction model. For this purpose, we used ALE plots
as model-agnostic methods to visualize the behavior and effect of inputs on the output.

2. Accumulated Local Effects

2.1. Theory

Accumulated local effects explain the average impact of features on the prediction of a machine
learning model (Apley and Zhu, 2020). ALE methods could work while the features are dependent,
although the assumption of features independence is the biggest problem with PDPs.

In what follows, upper case X is used to identify random variables, and lower case is used to
identify specific values of the random variables. The total feature space x contains two different
sets. The first one, xi represents the features that their effect on the prediction is studied. The
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second one named x j represents the other features that exist in the machine learning model except
for xi.

The ALE main effect of predictor xi, i ∈ {1, ...,d} is defined by the following equation:

ĝi,ALE (xi) =
∫ xi

z0,i

E
[
ĝi (Xi,X j) |Xi = zi

]
dzi −C

Where, ĝi (Xi,X j) =
∂ ĝ(X1,...,Xd)

∂Xi
. Here, g(x) is assumed a black box supervised learning model that

is a neural network in our study. ĝ(x) represents the fitted model. z0,i refers to an approximate
lower bound of Xi, and it affects the vertical translation of the ALE plot. C is considered as a con-
stant that aims to make the mean of ĝi,ALE (xi) equal to zero concerning the marginal distribution
of Xi or to center the plot vertically.

The ALE second-order effect of predictors {xi,xl} ,{i, l} ⊆ {1, ...,d} is defined by the following
equation:

ĝ{i,l},ALE (xi,xl) =
∫ xl

z0,l

∫ xi

z0,i

E
[

∂ 2ĝ(X1, ...,Xd)

∂Xi,∂Xl
|Xi = zi,Xl = zl

]
dzidzl − fi(xi)− fl(xl)−C

Where, z0,i and z0,l refer to approximate lower bounds of Xi and Xl , respectively. The functions
fi(xi) and fl(xl) are the function of single variables Xi and Xl , respectively. The functions and
the constant aims to make the mean of ĝ{i,l},ALE (xi,xl) equal to zero concerning the marginal
distribution of Xi and Xl .

2.2. Estimation

For estimation, the features are divided into many intervals, and then the differences in the predic-
tions are computed. We could approximate the derivatives by this procedure. The advantage of
this procedure is that it is able to work for models without derivatives. The equation of estimation,
as proposed by Apley and Zhu (2020), is as follows:

ˆ̃gi,ALE (x) =
ki(x)

∑
k=1

1
ni(k)

∑
j:x j,i∈Ni(k)

[
ĝ(zk,i,x j,\i)− ĝ(zk−1,i,x j,\i)

]
−C

Where the notations are as follows: the constant is chosen to 1
n ∑

n
j=1 ĝi,ALE (x j,i) = 0. For each

k ∈ {1,2, ...,K}, ni(k) refers to the number of training observation that falls into kth interval Ni(k).
Let x j,\i = (x j,m : m = 1, ...,d;m ̸= i) where the subscript \i refers all variables except the ith. For
each i ∈ {1,2, ...,d}, Ni(k) = (zk−1,i,zk,i];k = 1,2, ...,K indicates an enough good partition of the
sample rang of x j,i : j = 1,2, ...,n into k intervals (K is an input argument in the ALEPlot function,
and we typically use K around 100, with larger values often give better result.). zk,i is chosen as
the k

K quantile of the empirical distribution of
{

x j,i : j = 1,2, ...,n
}

that z0,i is chosen below the
smallest observation, and zK,i is chosen as the largest observation.

3. Case study: Combined Cycle Power Plant
A combined cycle power plant was selected as the real-world application to carry out the study.
The components of a CCPP are Gas Turbines (GT), Steam Turbines (ST), and Heat Recovery
Steam Generators (HRSG). One of the advantages of CCPP is using waste heat to produce supple-
mentary steam in order to generate additional electricity (Niu and Liu, 2008). One of the efficient
machines to generate mechanical and electrical power from gas fuels is the gas turbine. Con-
sequently, gas turbines are more common for power generation. They are utilized especially in
combined cycle mode to recover the waste heat to produce extra electricity. In addition to the high
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Figure 1: The combined cycle power plant layout (Tüfekci, 2014). It contains two gas turbines, a steam
turbine, and heat recovery steam generators. The figure shows the measurement points of the input and
output variables.

power outputs of CCPPs, they release partly low exhaust gases. CCPP generates 68% of electric-
ity and the remaining 32% waste. In contrast, other kinds of power plants can generate only 33%
electricity.

Given the advantages listed, it is clear that the use of CCPP increases, and predicting and inter-
preting the prediction model of a power plant became a trending topic for researchers and a critical
problem. We need to have information on the influential factors and interactions between them
to accurately predict a power plant’s power output. Furthermore, it is favorable to have a power
plant with high efficiency, reliable and sustainable and to maximize the income from the avail-
able megawatt-hours (MW/h). Figure 1 shows the CCPP layout and the sensors location (Tüfekci,
2014). The parameters that affect the CCPP are the ambient conditions such as ambient tempera-
ture (AT), atmospheric pressure (AP), and relative humidity (RH); and the exhaust steam pressure
(or vacuum, V) effect on the steam turbine. These parameters are the input variables of the system,
and the electrical power from both gas and steam turbines is the target variable.

The power plant was designed with a nominal generating capacity of 480 MW, consisting of two
160MW ABB 13E2 Gas Turbines, two dual pressure heat recovery steam generators, and one
160MW ABB Steam Turbine. The dataset contains data over six years. The dataset from the plant
and data preprocessing is described in detail in the original paper (Tüfekci, 2014). The dataset
consists of 9568 data points collected when the plant worked with a full load over 674 different
days. This study is performed on the dataset of the mentioned paper with the same CCPP. The
significant contribution of the paper is that we bring interpretability and explainability point of
view in the framework of supervised machine learning approaches to realize and visualize the
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effects and interaction of the predictor variables on the predicted response.

4. Results and discussion
Here we present the ALE plots used to visualize the effects of the predictors and interaction be-
tween them. All the results are attained from R software (R Core Team, 2020).

Figure 2 shows the ALE main-effect plot of input variables for an MLP prediction with one layer
and 50 neurons. The AT main effect has sigmoidal behavior. Increasing the AT makes PE decrease.
The RH main effect behaves quadratically. The V main effect has almost sigmoidal behavior, and
the AP and RH main effects have quadratic behavior.
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Figure 2: ALE main-effect plots for neural network with 50 neurons.

Figure 3 is the ALE second-order effect plot without the main effect of each input variable. They
reveal the interaction between input variables for a neural network with 50 neurons. The numbers
on the contours show the function values. The darker the chart color shows, the higher the function
value. Figure 3 reveals notable interactions between AT and V since the contour values change
over a range of 90 units (from -90 to 0), which is almost as large as the range for the main effect
of AT in figure 2. Figure 3 shows almost moderate to negligible interaction in other subplots.

We can conclude that AT and V have the most interaction and AT-RH and AP-RH has the most
negligible interaction based on figure 3.

5. Conclusion
This study aimed to improve the interpretability and explainability of a prediction model for the
output of a CCPP as a case study by applying model-agnostic methods. A clarification on the
concept of interpretability of machine learning predictions was provided. The importance of this
study comes from the fact that most of the prediction models are like a black box. However, they
are more accurate and faster than physical approaches with many nonlinear equations that might
give undesirable and invalid results.

This study was performed on the same data set as Tüfekci’s paper (Tüfekci, 2014). She studied
different regression methods to present a model to predict an electrical power output. We worked
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Figure 3: ALE second-order effect plots for for neural network with 50 neurons.

on the interpretability point of view of neural networks as machine learning methods. More pre-
cisely, our study focuses on analyzing the interactions between different variables and their in-
dividual effect on the output of the system. It is based on the accumulated local effects tool as a
model-agnostic method for visualization to make more effortless interpreting. The model-agnostic
flexibility is their remarkable advantage because it can be applied to any ML model. ALE would
show the most important input variable, the relation between the input and output variables, and
the second-order interaction between the input variables and the output variable.

To sum up, we can use ALE when the features of a machine learning model are correlated. While
other model-agnostic methods, such as PDPs, are not trustable because they may average predic-
tions of unrealistic artificial data instances in the mentioned case. A further research objective will
include the comparison of ALE for different neural network architectures. Moreover, we could
apply other model-agnostic methods such as partial dependence plots, global surrogate models,
individual conditional expectation curves, and local interpretable model-agnostic explanations.
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Abstract
Recent successes of machine learning in applications such as gaming, computer vision, and nat-
ural language processing, have generated considerable excitement for the application of purely
black-box data driven techniques in other areas. However, unlike such applications, chemical en-
gineering systems are governed by fundamental principles comprising of conservation laws and
constitutive equations. Incorporating such natural constraints is valuable in many applications.
However, as the complexity of systems increases, obtaining these first-principles models becomes
exceedingly difficult. Hence the appeal of black-box models, which manage to perform well in
some practical applications. This, however, comes at the cost of not being able to interpret and
explain such a model’s performance, which might limit its acceptance. As a result, hybrid AI
models that combine first-principles with data driven techniques have been proposed in the lit-
erature. These attempt to eliminate the drawbacks of both approaches and provide insights into
the system. Hybrid AI models can be developed for different end-user purposes – interpretability,
interoperability, meeting desired performance targets and constraints, etc. This review article de-
scribes these disparate but related approaches, and provides a summary of recent progress in this
field. Further, it provides a perspective for potential future research in this domain.

Keywords: mechanistic models, hybrid models, data driven model, reduced-order model

1. Introduction

In this emergent era of artificial intelligence (AI), particularly machine learning (ML), purely
data driven black-box models are gaining great importance in many applications. Driven by their
successes in game playing, natural language processing, and computer vision, they are seen as a
panacea in all other domains as well.

However, unlike such applications, many science and engineering based systems, such as the ones
in chemical engineering and materials science, are governed by fundamental principles comprising
of, but not limited to, conservation laws and constitutive equations. Incorporating such natural
constraints is valuable, even critical, in many applications. The complexity of many practical
chemical engineering systems, however, poses challenges in formulating such mechanism-based
transparent models. Often, in many practical settings, such models cannot be developed as not
enough fundamental information is available to formulate them. Further, even if developed, they
tend to be a large set of differential and algebraic equations, often nonlinear, with many variables
and parameters that are hard to measure or compute and hence solve satisfactorily. Such drawbacks
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have motivated people to develop data-driven ”black-box” models with their own limitations, such
as their inexplicability.

The recent trend on ’explainable AI’, or XAI, focuses on making existing black-box systems
explainable and interpretable to the end-user – a system that can explain its recommendation and
reasoning, preferably in a natural-language-like fashion. While such an explanation might not be
crucial for movies recommendations (e.g., by Netflix), or for dinner choices (e.g., by Yelp), they
are critical for many engineering applications such as in control and safety (Venkatasubramanian,
2019). As the recent Boeing 737 Max-8 control system failures have demonstrated, the cost of a
mistake is potentially high. Thus, the need to explain and justify the recommendations of an AI
agent is imperative in such applications.

Combining first-principles knowledge with data driven techniques seems like a reasonable com-
promise to address this challenge. Hybrid models can be developed for different end-user pur-
poses, such as to achieve interpretability, interoperability, meeting desired performance targets and
constraints, etc. One of the earliest hybrid-AI model was developed by Sundaram et al.(Sundaram
et al., 2001) for the inverse design of fuel additives. They combined a population balance-based,
equations-driven, fundamental model that exploited physicochemical mechanisms of fuel additive
function with a neural network-based model. The same group further developed a different hy-
brid AI model, but with a similar structure, for the inverse design of rubber compounds (Ghosh
et al., 2003). Yet another example was the Reaction Modeling Suite system for catalyst design
(Caruthers et al., 2003, Katare et al., 2001, 2004). All three approaches leveraged the underlying
physics and chemistry effectively, even though they were all very different owing to the diverse
nature of the applications. Such exploitation resulted in more explainable and reliable predictive
models that did not require great amounts of data that were hard to acquire. These hybrid AI mod-
els combined symbolic AI (i.e., a priori knowledge in the form of rules, schemas, and equations)
with numeric AI (i.e., data-driven techniques such as neural networks) and were implemented and
used in industrial settings. Despite such early successes, the development of hybrid AI models
remains a major challenge requiring a lot of time, effort, and considerable modeling skills. Hence,
there is an urgent need to make such development more systematic, routine, relatively easy, and
quick in a variety of applications.

Figure 1: Combining 1st principles with black-box models yields
hybrid AI models.

Consequently, we feel there
is a need to provide a
coherent narrative to the
various hybrid modeling
approaches, specifically from
the perspective of the end-
user’s purpose. We depict
the wide range of models
that one can obtain, and
that hybrid AI models at-
tempt to combine the best
of the two extremes, in fig. 1. The various levels of granularity that go into developing a hybrid
model often depend on the problem it aims to solve. In particular, this ranges from achieving
interpretability, incorporating fundamental physicochemical mechanisms, targeted performance
(execution speed and accuracy), adherence to constraints, interoperability (including extrapola-
tion), etc. In this paper, we discuss the opportunities and challenges underlying such approaches.
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2. Objectives of Hybrid Models
2.1. Interpretability

As noted, many safety-critical applications in chemical engineering and materials science require
the models to be interpretable. This involves, among other things, being able to describe the under-
lying phenomena (e.g., type and/or order of reaction kinetics) in fundamental mechanisms-based
terms, explaining the quantitative dependence of state variables, demonstrating dimensionally con-
sistent models, and producing causal models.

Recent work in attempting to model process systems considering the above guiding principles, has
resulted in the combination of symbolic knowledge with domain dependent (intelligent) feature
engineering into a machine-learning system. Symbolic knowledge (i.e., symbolic AI) is accounted
for through symbolic regression, where the task is to identify the model form that could have
generated the data, and subsequently obtain the parameters. Genetic algorithms have been used
as a feasible method for searching through the large function space, under user specified first-
principles-based mechanistic constraints (Chakraborty et al., 2020). These models can be linear or
nonlinear (Chakraborty et al., 2021). Constraints can be applied on the dimensionality of features
generated, as has been successfully demonstrated in the domain of computational physics (Udrescu
and Tegmark, 2020).

Such symbolic AI based models are inherently more simpler than black-box models. For a plant
operator, one can easily perform a sensitivity analysis and obtain the dependence on such a model.
Further, statistical techniques that provide uncertainty estimates of the parameters allow insight
into the importance of features of the model. Parametric models such as these require significantly
lower number of parameters than black-box models. One can even account for a priori knowledge
(e.g., in the form of priors, for Bayesian regression). Such parametric models can be beneficial in
surrogate-based modeling.

Domain knowledge can also be injected into such models by penalizing intractable function trans-
formations. This drawback is a recurring theme in purely black-box approaches, where overly
complex function transformations are used to represent the model trajectory, resulting in poor
generalizability. Additionally, such symbolic models tend to require much less data than their
purely black-box counterparts. This is a major differentiator for hybrid models in many engineer-
ing applications that are in the ’precious data’ domain, as noted, in contrast with standard machine
learning techniques for ’big data’ domains (such as computer vision, natural language processing,
gaming, etc).

2.2. Adherence to Constraints

To deploy predictive models in many engineering applications, it is of great importance that the
models respect constraints imposed by the first principles. Such constraints can be of varying
nature, such as univariate limit constraints to more complex linear and nonlinear constraints that
involve multiple input and output variables simultaneously. Examples of constraints derived from
first principles that commonly occur in chemical engineering are mass, atom, and energy balance,
or constraints on concentrations prescribed by the chemical reactions taking place in the equip-
ment. Each of these constraints is typically linear in all or a subset of the variables considered,
whereas some of these can be nonlinear as well. Atom balance constraints, for instance, are almost
always nonlinear constraints.

In many applications, model predictions need to meet such constraints for the model to be deploy-
able. In fact, one could consider machine learning models that respect a set of constraints, to be
a first subset of hybrid models that combine black-box machine learning techniques with domain
knowledge, with the latter being represented by the constraints. Several approaches can be taken
to build machine learning models that respect such constraints. These approaches differ along
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the guiding principle: either first-principles models generate the eventual estimate, adjuvated by
inputs from machine learning, or the models are mainly data-driven machine learning models, but
learning and predictions are adjusted such that they respect constraints. The former category is
an active field of research, referred to as Physics-Inspired Neural Networks (PINNs) (Raissi et al.,
2019) or Neural Differential Equations (NDE) (Chen et al., 2018). While such models are mathe-
matically elegant, they can still lack predictive accuracy as they represent an approximation to the
true first principles, since typically more phenomena take place than those represented by the dif-
ferential equation layer in them. For these reasons, one can also consider the opposite approach,
where the model is mainly data-driven but just slightly adjusted to the constraints. This can be
done post-hoc, e.g., by reconciling predictions such that they meet constraints (Narasimhan and
Jordache, 1999), but the best predictive performance can be obtained when the constraints are em-
bedded into model estimation. For models that are defined according to an explicit optimization
criterion, one can train models by numerically optimizing in the presence of first principle con-
straints. An example of such a model could be a sparse linear regression model that meets mass
balance. In the case where all flows are defined, that becomes a mixed-integer linear optimization
problem that can be solved numerically. On the other hand, more complex models such as (deep)
neural networks are not defined according to single optimization problem. To build neural network
models that inherently respect first principle constraints, one has to ascertain that the constraints
are embedded into the training framework. In such case, common neural network optimization
techniques such as ADAM can still be applied.

2.3. Scientific Machine Learning

Figure 2: Combining 1st principles
model knowledge and plant data yields
1st principles-driven hybrid model.

There has been a resurgence in the recent years in
the field of incorporating domain knowledge into
hybrid models through the use of known a pri-
ori model equations; however, the reader will find
it interesting that this approach is not recent, as
noted, with early contributions in 1990s and 2000s,
e.g., (Psichogios and Ungar, 1992; Sundaram et al.,
2001; Ghosh et al., 2003). Similar remarks apply
to building more general hybrid models as they do
to the approaches to account for constraints. Both
first-principles-driven models (fig. 2), and predom-
inantly data-driven models can be built (fig. 3), in
pure form or as a nuanced mix of both approaches.
While first-principles-driven hybrid models such as

neural differential equations do respect the constraints established through the differential equa-
tion, they obviously embed more first-principles information than just the constraints. However,
as there are often multiple governing equations to the phenomena that describe a certain piece of
equipment, data driven approaches’ flexibility can be enticing.

Again there are several ways in which first-principles knowledge that extends beyond constraints
can be embedded into models that are essentially data-driven. A first, and often successful, ap-
proach consists of domain-based feature engineering. Chemical engineering knowledge can both
complement and simplify common statistical transformations, such as expanding the data with all
cross products of variables and/or their squares. Governing physicochemical first-principles can
inspire transformations specific to only a few variables that greatly enhance predictive power, tak-
ing advantage of the sparse nature of the dynamic system (Brunton et al., 2016). Examples of such
variable transformations are common dimensionless numbers, such as the Reynolds or Damköhler
numbers. In many cases, such transformations can already successfully describe the nonlinearity
present within a certain operating window in (chemical) manufacturing processes. Therefore, to
build predictive models in such a context, it can be sufficient to combine these transformations
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with common regularized regression estimators, e.g., the LASSO (Tibshirani, 1996) or Partial
Least Squares (PLS) (Wold, 1975). Note that this approach can still be adopted when the data can
be expected to contain outliers and uninformative variables, in which case one can substitute PLS
for Sparse Partial Robust M-regression (SPRM) (Hoffmann et al., 2015), which is a sparse version
of the older Partial Robust M-regression (PRM) (Serneels et al., 2005).

Figure 3: Combining simulation data and
plant data yields a data-driven hybrid model.

Of course, there are applications where the non-
linearity provided by domain inspired feature en-
gineering is insufficient to describe a real world
process or piece of equipment, even when con-
strained to a narrow operating window. In such
case, more involved nonlinear models should be es-
timated. Variable transformations such as the ones
mentioned above can also be applied in combina-
tion with decision trees, where the interpretabil-
ity of a certain split in the tree being based on a
given threshold in a dimensionless number, can be
valuable to a process engineer. Likewise, less in-
volved transformations can be of great practical im-
portance, such as being able to interpret the model’s actions in terms of ratios of additives dosed
to the bulk mass instead of the plain mass flows of those additives. Note that a lot of progress has
recently been made to calculate decision trees optimally (Bertsimas and Dunn, 2019), which in
many cases obliterates the necessity to combine decision trees into (random) forests. Such trees
can be estimated from original and transformed variables and the required set of constraints can
be passed on into the numerical mixed-integer optimization.

It is well known that deep neural networks are efficient universal approximators for nonlinear func-
tions (Kreinovich, 1991) and therefore, do not per se require nonlinear variable transformations
to attain a satisfactory model fit. However, neural networks can also benefit from having input
based on domain specific transformations, which can lead to simpler models (fewer variables,
fewer hidden layers), which then on its turn will facilitate interpretability when model agnostic
tools are applied to them for such purpose, such as LIME (Ribeiro et al., 2016). Moreover, the
resulting simpler neural network models require lower amounts of training data and are less prone
to over-fitting. Beyond variable transformations, it is possible to design custom layers that embed
first principles knowledge. The effect of these first principles can then be analyzed by inspection
of the corresponding layer estimates. Note that in a similar way, one can design the final layer
and/or activation function in such a way that constraints are respected (Beucler et al., 2021).

3. Conclusion & Future Perspectives

This article has highlighted that different end-user requirements result in the need for different hy-
brid modeling approaches. Mechanistic insight can be obtained through symbolic models, where
knowledge is captured through the relationships of state variables and their transformations. They
facilitate interpretable models. On the other hand, enhanced predictive capabilities with the injec-
tion of domain knowledge, are the forte of constraints-based models. These account for mecha-
nistic knowledge about the system by virtue of formulating the problem as a parameter estimation
exercise, within the permissible regions in the parameter space. Consequently, we obtain models
that are capable of predicting the system with considerable accuracy, but at the cost of providing
mechanistic insight. Additionally, there has been a resurgence in the domain of scientific machine
learning, where the strengths of function approximating neural networks are combined with first-
principles knowledge, to yield mechanistically feasible neural networks. Such models are able to
extrapolate outside the domain of training data.
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As the future is aimed towards the goal of Industry 4.0 (Sansana et al., 2021), hybrid models
will play a major role. The increasing availability of data opens a multitude of possibilities. It is
imperative that we take advantage of the same – by augmenting the rapid progress of AI in data
driven modeling with process/system knowledge. Further research is needed to develop systematic
frameworks that quickly and easily help develop hybrid AI models that incorporate first-principles
knowledge of physicochemical mechanisms, cause-and-effect relationships, constraints, perfor-
mance targets, and more.
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Abstract
This paper discusses the estimation of adsorption energies for reaction intermediates for a given
metallic surface and molecule. Regression models are learned from DFT data available in the lit-
erature in a two step approach. First, metallic surfaces are characterized by a principal component
analysis (PCA) followed by a suitable orthonormal rotation to find a set of species that can be used
as descriptors for the metallic surface. Then, different machine learning techniques are considered
for the regression using the previous descriptors for the metallic surface and molecular descriptors
such as the number and type of bonds for the adsorbate. With the available data, CH3, CO2 and
CH2 were found to explain 93% of the total variance, thus were used as surface descriptors. Three
of the tested models were found to adjust similarly well to validation data.

Keywords: Adsorption energies, Machine Learning, Electrocatalysis

1. Introduction

Electrocatalytic reactions have recently gained a lot of attention as they can be powered by elec-
tric energy from renewable non-programmable sources to achieve zero or even negative carbon
processes. In particular, reduction of CO2 on metallic surfaces is a promising process to transform
industrial CO2 emissions into valuable fuels and products. However, electrocatalytic processes
are characterized by their very low selectivity; for example in the case of CO2 many C1 and C2
products including acids (e.g formic acid,acetic acid), alcohols (e.g methanol and ethanol), and
light hydrocarbons (for example ethylene) have been experimentally reported.

It is clear that the properties of the metallic surface play a role on the selectivity. As examples,
copper and copper alloys or copper oxides seem to favor the production of ethylene and methanol
from CO2 (Dinh et al. (2018), Wang et al. (2018)), and platinum the production of CH4 (Umeda
et al. (2020)). Yet, the reaction mechanisms are not completely understood, and the lack of un-
derstanding hinders reactor and process design. Reaction network generators can be used to build
the possible reaction pathways; still, thermodynamical properties of the proposed adsorbates need
to be known to infer which of the pathways are feasible. One option to compute the required
thermodynamical properties is the use of density functional theory (DFT). However, this approach
requires very specialized knowledge, is time consuming and resource intensive in terms of com-
putational power. Thus, it may not be suitable if a large amount of DFT-derived data is needed for
calculations in a particular application.

In this work, we have taken another approach to estimate the required thermodynamic properties
(adsorption energies) which is based on machine learning using data from DFT that is already
available in the literature. Figure 1 schematizes the procedure. The rationale is that adsorption
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Figure 1: Schematic of the machine learning approach to find a model for estimating adsorption
energies of adsorbates in metallic surfaces.

energies depend on properties of the adsorbates (molecules) and properties of the metallic surfaces.
While it is fairly clear which properties should be considered as descriptors of the molecules
(e.g. atoms, type and amount of bonds, etc.), it is not that clear which ones should be considered
for the metallic surfaces. Therefore, the main hypothesis is that given a dataset containing the
adsorption energies for several adsorbates in different metallic surfaces, it is possible to find a
set of descriptors for the surfaces that are based on a subset of these energies. This idea is not
new, Chowdhury et al. (2018) has proposed a similar approach using a dataset of 29 molecules
and 8 metallic surfaces. In here, we have largely expanded the dataset including new surfaces
and adsorbates, as a result, a different set of descriptors is obtained. On the basis of these new
descriptors for the surfaces, and those of the molecules, a regression model was trained to predict
adsorption energies of other molecules on the previous surfaces. The longer term objective is to
use this regression model together with network generators to predict preferred reaction pathways
for electrocatalytic reactions of different species on different surfaces.

2. Selection of descriptors of the metallic surface

As mentioned in the introduction, in order to find a correlation able to estimate the adsorption
energies of any pair of adsorbate/metallic surface, a way of characterizing the surfaces needs to be
found. A traditional DFT approach to describe a surface would need for example information on
the atoms that compose the surface and their geometrical arrangement. These characteristics will
affect the adsorption energies of all the adsorbates, although the effect on the possible adsorbates
is different for each one, and depends mainly on the adsorbate itself. The idea then is to find those
adsorbates whose energy of adsorption changes the most when the metallic surface changes. If
this set of adsorbates is small, then using them as descriptors of the surface is a very practical
and efficient way to characterize the surface, as instead of performing DFT calculations for all the
components, we need DFT calculations for just a few.

2.1. PCA analysis of the energy of adsorption data

Principal component analysis (PCA) is a technique that given a data matrix MN×P, finds a new
space of reduced dimensions which conserves a maximum amount of the variance of the original
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Figure 2: PCA analysis: left plain PCA; right PCA+varimax rotation. In both, green, blue and red
are first, second and third component respectively.

data. This new space can be built by finding the eigenvectors of the covariance matrix (ΣM) of
the data in M. To establish which are the principal components of the data in M we look for the
eigenvectors of ΣM associated with the largest eigenvalues. In practice, those that added together
make up for a certain threshold of the variance (usually 90-95%).

In our case, M is the matrix of adsorption energies (taken from DFT databases); each Mnp entry
is the adsorption energy for the p− th adsorbate on the n− th metallic surface. Figure 2 shows
the results of applying PCA to a dataset built using adsorption energies reported in Plauck et al.
(2016); Herron et al. (2012, 2013, 2014); Xu et al. (2018a); Bai et al. (2019); Ford et al. (2010);
Mavrikakis et al. (2002); Ojeda et al. (2010); Scaranto and Mavrikakis (2016a); Singh et al. (2014);
Scaranto and Mavrikakis (2016b); Ferrin et al. (2012); Greeley and Mavrikakis (2002); Ford et al.
(2005); Chen et al. (2019); Xu et al. (2018b); Krekelberg et al. (2004); Hahn and Mavrikakis
(2014); Grabow and Mavrikakis (2011); Gokhale et al. (2008); Li et al. (2016); Herron et al.
(2014); Salciccioli et al. (2010, 2012); Lu et al. (2015, 2012); Schmidt and Thygesen (2018);
Wellendorff et al. (2015). In here, it is important to mention that to apply PCA-techniques, M has
to be complete, which means that only those adsorbates for which we found DFT data for all the
surfaces of interest (Cu,Pt,Pd,Rh,Re,Ru,Ag,Au,Fe,Ir,Os,Co,Ni) were included.

Figure 2-left shows the three principal components as green (first component), orange (second
component) and blue (third component) bars. Together these three are able to explain 93% of
the variance of the original dataset (results obtained using the scikit-learn package in Python
Pedregosa et al. (2011)). The adsorption energy for each adsorbate can then be expressed in terms
of these three principal components; the absolute value of the weights that need to be applied are
represented in the figure by the length of each bar.

2.2. PCA with varimax rotation

Unfortunately, the results in Fig.2-left are of little use as they are, as the principal components lack
of physical interpretation. It would be desirable to have results where each component is clearly
dominated by one or a few adsorbates. This is accomplished by finding a new set of orthogonal
axis that represent a basis of the same space as the principal components, but in which the axis
align better with some of the adsorbates. In this way, the coefficients of many of the adsorbates
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Table 1: Summary of the performance of the regression

Method KRR-poly KRR-rbf KSVR-poly KSVR-rbf CART RF
RMSE 0.22 0.25 0.23 0.27 0.2 0.15

RMSE wo/H 0.12 0.13 0.12 0.13 0.18 0.11
sign mismatch CO2 - CO2 - O -

become zero, and those that are non-zero can be interpreted as the descriptors.

What was discussed was solved by Kaiser (1958) who proposed to find the new axes by solving
the optimization problem in Eq. 1.

max
R

j=K

∑
j=1

(
1
N

i=N

∑
i=1

((A′R2
i j)

2)−α
1

N2 (
¯A′R2

i j)
2)) (1)

s.t : RT R = I

In here, A is the original P×K eigenvector matrix (K = 3 as there are three principal components
in our case study) and R the K×K rotation matrix. α is a parameter of the problem, if α = 1 Eq.
1 is the Varimax rotation.

Fig.2-right shows the results when applying the varimax rotation. These results indicates that CH3,
CO2 and CH2, as first (79% of the variance), second (9% of the variance) and third component
(5% of the variance) respectively, can be used as descriptors of the metallic surface (results also
obtained with scikit-learn). Notice that this is different from the results in Chowdhury et al.
(2018) who obtained OH and CHCHCO as descriptors. The difference lies in the expansion of
the dataset to include data from different sources, as the exactly same results as in the Chowdhury
et al. (2018) are obtained when considering their database.

3. Learning a model to predict adsorption energies

After a suitable set of descriptors for the metallic surfaces is found, a regression problem that uses
them and those of the adsorbates, can be formulated to learn a model for the energies of adsorption
from data. As descriptors of the molecules we have considered the number and type of bonds in
the adsorbate; we have also added facet and coverage as additional descriptors for the metallic
surface when available. Notice now that completeness of the data is not required for this step, thus
all available data can be used.

The following techniques were considered for learning the model: Kernel Ridge Regression (KRR,
with polynomial and radial basis functions as kernels), Kernel Support Vector Regression (KSVR,
with polynomial and radial basis functions as kernels), Classification and regression trees (CART)
and Random Forest (RF). For the sake of space, we will not describe these methods, they are well
explained in several references including scikit-learn documentation Pedregosa et al. (2011).
In all cases, an 8-fold cross validation scheme was performed to define the set of possible values for
the hyperparameters for each technique. Learning/ validation division of the dataset was 85/15%
respectively. A summary of the results is in Table 1. As seen KRR-rbf KSVR-rbf and RF provided
similar results in terms of RMSE over the validation set. Most importantly, they did not predict
positive energies as negative nor the other way around. This was a problem that we observed when
using polynomial kernels (wrong sign prediction for CO2) and CART (wrong sign prediction for
O). From a physical viewpoint, this is troublesome because it would imply that certain adsorbates
cannot be adsorbed when in reality they can. In here, it has to be commented that we identified
some outliers for the energy of adsorption of H (2 out of 90 datapoints for H) from the reported
DFT data; the table includes the RMSE results with and without considering these outliers.
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Determination of adsorption energies from DFT databases using machine learning
techniques

Figure 3: Results of the regression using Random Forest. Adjustment for y = x: R2 = 0.96

Finally, Fig.3 presents the predicted vs DFT adsorption energies for data in the validation set.
This type of plot showing a good regression is typical for all the techniques we have tested. This
stresses the need of verifying that the chosen model correctly assigns the sign of the energy of
adsorption for all data in the validation set, a point that may be overseen by just looking for the
best RMSE and predicted vs real data fitting.

4. Conclusion

A large data set of DFT-based adsorption energies for different metallic surfaces and adsorbates
was used to train a regression model. In a first step, PCA followed by Varimax rotation was found
to be able to characterize the metallic surfaces using CH3, CO2 and CH2 as principal components,
with a loss of information less than 10% in terms of variance of the data. Six regression models
based on either Kernel Ridge, Support Vector, CART or Random Forest were considered. All
models were found to provide good estimations in terms of RMSE, but some had trouble in as-
signing a correct sign to those adsorbates whose energy of adsorption was close to zero. Those
that can correctly estimate the sign could be used together with reaction network generators to
predict thermodynamically feasible pathways.
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Abstract
In this paper, we proposed a new pathway enrichment analysis for reaction schemes based on
Bayesian Network (BN). Several reaction schemes are proposed in the waster waters treatment
literature, however, these data diverge greatly and, to date, are unexploited. As an innovative
alternative, probabilistic graphical models could allow establishing parentage between the most
relevant molecules and Transformation Products (TPs). Based on the analysis of an extensive
bibliography gathering more than 45 articles for more than 140 molecules, this study proposed
an innovative methodology based on knowledge graphs, pathway data enrichment, and Bayesian
Networks (BN) analyses. The proposed methodology has been applied to elucidate the degradation
of the sulfamethoxazole. Probabilistic approaches and graphical models bring a new light on the
identification of the TP parentage.

Keywords: Bayesian Networks, Graphical Models, Pathway Enrichment Analysis, Knowledge
Engineering,

1. Introduction

Water is a scarce resource, the ultimate receptacle of anthropogenic pollution. Its preservation and
treatment are the subject of new paradigms in terms of analytical development, processes and even
data management. In the last decades, the scientific community has pointed out the presence of
new synthetic molecules (manufactured products) in all aquatic compartments (domestic, surface
and groundwater). Several studies have proposed various breakdown pathways of a targeted mi-
cropollutant, which could be different depending on study objectives, analytical methodology, etc.
Often these studies are oriented on the formation of Transformation Products (TPs) in controlled
conditions and with a singular process. Most of TPs can retain or sometimes amplify toxic ef-
fects on aquatic lifeThe formation and the evolution of TPs remains a subject in full expansion in
wastewater treatment. Their prediction is difficult as there is no consensus on their pathways even
if a same couple ”parent compound – process” is applied. The available data on the occurrence
of TPs remain fragmentary, but sufficient to prevent any attempt at manual synthesis. Indeed, the
reaction schemes proposed in the literature diverge greatly, as much in their structure as in the
number and nature of the molecules (elements) represented. It is assumed that these differences
are the result of a combination of causes including the type of process(es) used, their operating
conditions, the analytical power (resolution) available and finally the expertise intrinsic to the
research consortium.

However, even considering recent studies Chen et al. (2019); Yazdanbakhsh et al. (2020) con-

1543

http://dx.doi.org/10.1016/B978-0-323-95879-0.50254-X 

PROCEEDINGS OF THE 32nd European Symposium on Computer Aided Process Engineering
(ESCAPE 32), June 12-15, 2022, Toulouse, France



R. Ouaret et al.

ducted on the same contaminant (sulfamethoxazole, an antibiotic) and the same type of process,
here oxidation, it appears that only one of the produced molecules is common between the two
examples considered. To date and to the authors’ knowledge, the pool of data generated by these
mechanistic (physicochemical) studies is unexploited from statistical methodology point of view.
Also, no attempt has been made to consolidate these data. Therefore, data science appears to be
an innovative alternative to establish the most probable filiation between molecules and to iden-
tify the preferential reaction pathways. To address these issues, the ANR TRANSPRO project
(2019-2022), led by a consortium of public partners (EPOC, LGC and INRAE), aims to improve
knowledge on the nature, origin and dynamics of TPs. In view of the set of molecules breakdown
pathways proposed in the literature, graph data mining techniques would provide new insights
into the most common degradation paths of a targeted micropollutant. It is in this perspective that
probabilistic graphical models have been chosen to conduct this study. From the table of all the
molecules observed on the analyzed litterature. The analysis of data would allow disentangling
the relevant relations between the molecules, the dependencies or independences between several
groups of molecules. The use of Bayesian networks will allow the extraction of a compact rep-
resentation of pathways of degradation without loss of information. In addition to the reaction
schemes identification, a methodology of data enrichment of the pathways’ degradation database
and specific data analysis have been proposed. From a preferential degradation scheme, it is possi-
ble to prioritize the most recurring Products of Transformation (TP) and thus to privilege them for
all environmental and toxicological studies. The methodology was applied to a largely described
micropollutant, sulfamethoxazole (SMX).

2. Methodology

2.1. Literature analysis of degradation Pathways of micropollutants

This study is articulated around the three complementary parts (Figure 1): (A) deals with pathway
enrichment analysis step and data mining pre-processing from dedicated search engines such as
ScienceDirect. Part (B) consists of the identification of molecules breakdown pathways of a target
pollutant (here, SMX) and matrix representation of degradation levels, and finally part (C) repre-
sents the use of information from different reaction schemes for Bayesian Networks (BN) analysis
and probabilistic graph based analysis.

Part (A) : Data pathway enrichment analysis. In this step, 45 scientific papers have been selected
and analyzed for the SMX degradation pathways identification. To date, no automatic method to
extract pathway information is proposed in the literature. For this reason, part (B) is designed to
feed a database, which is created for this purpose. The part (B) is dedicated to the extraction
of degradation pathways, requiring a manual transcription of all the molecules as well as their
breakdown level, or position, in the degradation scheme. To date, this part of the data enrichment
is done manually. Two different types of processes have been distinguished in these papers, 30
scientific papers based on Advanced Oxidation Processes (AOP) and 15 present the degradation of
SMX through the implementation of various BIOlogical processes (BIO). From these 45 papers,
141 molecules (SMX + 140 TPs) and 177 reaction pathways were considered. Then, an adjacency
matrix weighted by the number of arcs observed between the different by-products is deduced.

Figure 2 shows an example of the transcription procedure of two degradation patterns into an
easily exploitable matrix in data processing step. Assuming that there are two papers in which
two SMX degradation patterns leading to the formation of the following products: A, B, C, D and
E. In the matrix, we consider the molecules in the column as the incoming molecules from the
degradation of the starting molecules that are in the row. The values in the matrix correspond to
the number of times the degradation of the parent molecule into the child molecule is observed in
all the articles for all the proposed reaction pathways. This example allows to better understand,
from two articles, the challenge and the complexity of the data enrichment part, especially when
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Figure 1: General scheme of the methodology followed for the analysis of the degradation pathways of
molecules observed in the literature in water treatment. Two complementary blocks (A-B) for the enrichment
of the database and a block (C) for the analysis by probabilistic graphical models and knowledge graph based
analysis.

Table 1: Data matrix used for Bayesian networks analysis. For each paper, the process (AOP or BIO) of
degradation of the SMX molecule is identified. The transformation products (TP) are identified at their
respective level of degradation.

Paper Path SMX TP(1) TP(2) . . . TP(n−1) TP(n)

Paper 1
path1 AOP level 5 level 2 . . . level 5 level 7
path2 AOP level 2 level 1 . . . level 2 level 3
path3 BIO level 1 level 4 . . . level 1 level 8

Paper 2 path4 AOP level 6 level 3 . . . level 2 level 4
path5 BIO . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Paper p path m AOP level 6 level 3 . . . level 7 level 8

the number of papers to analyze becomes high.

Part (C) consists in representing the graphs of interactions between the target molecule (SMX)
and a set of its transformation products. Two approaches have been used. First, by integrating
information on the number of direct links between molecules (arc weight) and the number of arcs
coming out from the different molecules (node weight). In this case, the data is extracted from
and the model is assumed to be faithful to the physical reality.Then, from the table 1, Bayesian
networks modeling based approach is applied to find similarities with the reference model. In the
latter case, very little information is provided: a table with 177 rows (pathways) and 141 variables
(molecules). The molecules obtained from the degradation of SMX were noted by TP followed
by their m/z ratio: the mass of the molecules relative to their charge number. For example, T P 93
corresponds to the transformation product with an m/z ratio of 93. In some cases, two molecules
with a different structure are detected with the same molar mass. It was therefore chosen to add
a letter to their molar masses to differentiate them, as in the case of 283a and 283b. For each
molecule, a binary coding has been applied: observed molecule (Yes) for a given pathway and
unobserved molecule (Not Observed).
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2.2. Bayesian Networks

Figure 2: Simplified example of two degradation paths
with the associated adjacency matrix. A value greater
than or equal to 1 shows the number of times a direct
link between two molecules was observed in all pa-
pers. The value 0 codes the absence of link detected
between the molecules.

The main topic of this work can be summa-
rized in one question: can we conceive of
graph mining methods that can extract the
most probable pathways from several reaction
schemes? Probabilistic graphical models, and
more precisely Bayesian networks, seem to us
appropriate to shed new light on this ques-
tion. Moreover, a graphical model has the
advantage of being easy to interpret, and ac-
cording to the modeled properties (indepen-
dence for example) can be more or less pow-
erful to detect relationships of parentage be-
tween molecules. From the table obtained in
part B (see table 1), it is possible to use a
Bayesian Network on nominal variables. In
the absence of an a priori structure, the use
of this type of model requires learning of the
graphical structure (nodes and arcs) as well
as the estimation of the conditional probabil-
ity distribution associated to each molecule
(random variables). In our case, an a priori
structure can be attributed to the graph ob-
tained from the adjacency matrix. We will first
test a model with an a priori structure, then a
series of simulations is performed for graph
learning. The probabilistic relationships in a
Bayesian network are represented by a quali-
tative description- a graph (G ), and a quantita-
tive description- an underlying joint probabil-
ity distribution. Formally, a Bayesian network
B(G ,θ) is defined by (i) a directed acyclic
(without circuit) graph G (X ,E) whose nodes are associated with a tuple of categorical ran-
dom variables X = {X1,X2, . . . ,Xn} and E represents a set of arcs, and (ii) a set of probabilities
θ = {P(Xi | Pa(Xi))} of each node conditional on the state of its ancestors (parents) Pa(Xi) in G .
In the case where all variables are observed, the simplest and most used method for estimating
simplest and most widely used method for estimating probabilities is the Maximum Likelihood
(ML) method which gives P̂(Xi = xk | Pa(Xi) = x j) = θ̂ MV

i jk =
Ni jk

∑k Ni jk
, where Ni jk is the number of

instances in the data table where Xi takes its kth value xik and the variables in Pa(Xi) takes their
jth configuration for all k. Regarding the learning of the graph, there are two types of techniques
to build the structure of the Bayesian network: Score Based Algorithm (SBA) and Constraint
Based Algorithm (CBA). For a review of the graph learning methods, we recommend the very
complete books by Koller and Friedman (2009) and Murphy (2012). The use of CBA based algo-
rithms on SMX physico-chemical reaction data often leads to a construction of graph that are not
very faithful to the structures observed in the literature. For this reason, this study focuses on the
score methods and more particularly on the Hill-climbing (HC) algorithms (Chickering, 2002).
Score-based approaches range into the search space by examining only possible local changes in
the neighborhood of the current solution and applies the modification (add arrows, delete,..) that
maximizes the score function. Very briefly, these algorithms structure the network from an empty,
randomly generated or predefined graph (a priori structure). Then, a score is computed on the
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basis of this initialization and the modifications in the graph (addition, inversion or deletion of an
arrow) are performed. If the modification does not increase the score, the algorithm returns to the
previous state and another modification is performed; if on the contrary the score increases, the
new state is kept and a new modification is performed. The algorithm stops when no modification
increases the score. The score-based methods are easily trapped in the numerous local minima
and the final graph obtained depends strongly on the initial conditions. Thus, an empty graph
represents the most frequent choice in the absence of a priori knowledge. Regarding the choice
of the score, the Bayesian Dirichlet Equivalent (BDe) score proposed in (Heckerman et al., 1995)
provides a graphical structure most similar to the graph obtained via the literature database we
implemented (cf. data from the table 1).

Let the values {xi1, . . . ,xiri}, ri ≥ 1, i = 1, . . . ,n of all the set that each Xi can take, ri is the number
of states of the finite random variable, D is the database, and G the structure of the network
on X (set of random variables). The number of possible configurations for the parents of Xi is
determined by qi = ∏X∈Pa(Xi) ri. From these elements, BDe score and is defined by:

P(G,D) = P(G)P(D | G)⇐⇒ P(D | G) =
n

∏
i=1

qi

∏
j=1

Γ(αi j)

Γ(αi j +Ni j)

ri

∏
k=1

Γ
(
αi jk +Ni jk

)
Γ
(
αi jk

) (1)

where P(G) represents the a priori probability assigned to the structure G. The parameters αi jk

defined by αi jk = η × P̂(Xi = xk,Pa(Xi) = x j | Gc) with Gc the complete connected graph and the
equivalent sample size η expresses the strength of our belief in the prior distribution.

3. Results and discussion
Developing Bayesian networks was also one of the main objectives of our study. These networks
allow the observation of dependency or independence relationships between the different variables
(here, molecules). Figure 3-(A) shows the representation of the Bayesian network (HC algorithm
with a BIC score) obtained, as well as the common parentage to the knowledge graph from the
literature review. Three different colors are proposed, green if the observed parentage is identical
and orange if one of the two molecules (parent or child) is reversed. The black arcs illustrate false
detections or the absence of parentage between the molecules. First, we notice that there are 40%
of links (green arcs) that coincide with the knowledge graph from the literature (green color code).
Furthermore, note that nodes with no direct relatives are considered the first level of degradation
of the SMX, so arcs (not shown in the graphs) from the SMX to these molecules are considered
”valid”. The molecule T P 93 was also detected as a very frequent transformation product, i.e.
several incoming arcs from different nodes. In view of the results obtained, we can confirm our
hypothesis on the usefulness of Bayesian networks for the identification of preferential reaction
patterns. For all the scores tested, the BDe gives a good compromise between graph structure and
interpretation.

Figure 3-(B) presents a Bayesian network built with an a priori structure initialization: the graph
is extracted from the literature review. The advantage of this approach compared to the knowl-
edge network is to be able to (i) simulate the preferential paths, (ii) identify and control the
monitoring molecules, and (iii) analyze the behavior of some degradation pathways. It is also
possible to perform any kind of inference based on the conditional probabilities obtained from
this graph and the collected data. For example, the joint probability of the most recurrent pat-
tern (P(SMX ,T P 98,T P 83,T P 98b,T P 60b)) can be obtained through a table of calculation of
all the modalities taken by the TPs. The probability of simultaneously observing TPs of pref-
erential path and SMX is about 7.5%. It is also easy to retrieve all the tables of conditional or
marginal probabilities associated with the different transformation products. As a simple exam-
ple, P(T P 98 | SMX) = 19.15%, P(T P 98,T P 83 | SMX)≈ 8%, or as presented in (Figure 3):

P(T P 93 = Observed,T P 172a = Observed | {SMX ,T P 255a = Observed}) = 31.9%.
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Figure 3: Bayesian networks obtained for Biological processes. Left (A), without “a priori” network, the
structure was learned from data (BIO processes) and compared to the knowledge graph from the literature
review. Right (B) Bayesian network with structure initialization and highlighted (blue path) the most re-
current degradation path. A query such as searching probability of orange molecules knowing green ones :
P(orange rectangles | green hexagon) = 31.9% is possible from the BN inference (Right B)

Specifying the arguments in the inference procedures requires some care, but the result is an
extremely flexible framework to compute the probability of arbitrary combinations of events. As
an example of a more complex query, we can compute:

P(T P 93 = Observed,T P 172a = Observed | {SMX ,T P 255a = Observed}∪
{T P 89b = Observed}) = 22.3%

4. Conclusions and future work
To day, no methodology for consolidating and processing data from molecule degradation path-
ways are considered in the literature. The proposed methodology explores a new way and attempts
to respond to this lack, to create consensus on the basis of studies where data are widely dispersed,
from heterogeneous or even contradictory sources. Regarding the Bayesian networks, the graph-
ical models shed new light on the data enrichment pathways of molecule degradation between
the transformation products when passing through wastewater treatment plants. To date, the part
of the database enrichment is done manually. This database is often fed by updating the articles
and identifying new molecules and reaction pathways. The most ambitious perspective is the au-
tomation of the database enrichment phase. In future work we intend to develop a framework
for the data retrieve automation of degradation pathways. In these conditions, an identification of
molecules and their properties would be possible by extending our field of investigation in graph
mining.
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Abstract 

Viscosity represents a key indicator of product quality but has traditionally been difficult 

to measure in-process in real-time. This is particularly true if the process involves 

complex mixing phenomena operated at dynamic conditions. To address this challenge, 

a promising solution to monitoring product viscosity is to design soft-sensors which 

correlate viscosity with easily measured process variables. In this study, we developed an 

innovative machine learning based soft-sensor construction framework by integrating 

different types of advanced artificial neural networks. The framework first employs a 

deep learning autoencoder to generate information-rich statistic latent variables by 

compressing high-dimensional industrial data, and then adopts a heteroscedastic noise 

neural network to simultaneously predict product viscosity and process variance based on 

the extracted latent features. To evaluate its accuracy and robustness, the data-driven soft-

sensor was used to predict product viscosity for a number of industrial batches operated 

over different seasons. It is found that the soft-sensor has both high accuracy (prediction 

error <12%) and high robustness in most of the cases, indicating its great potential for 

industrial batch process monitoring and quality control.    
 

Keywords: Machine learning, data analytics, dimensionality reduction, quality control, 

uncertainty estimation. 

1. Introduction 

Quality control is paramount to many industrial processes to avoid the viscosity of the 

final product falling outside the predetermined acceptable boundaries, otherwise, the 

entire batch must be discarded, effectively wasting the entire process time. Not only does 

this lead to excessive losses due to material wastage, but it also incurs costs involved with 

safe disposal of the defective products. Ideally, advanced fault detection technique should 

be available to monitor the progress of the batch over the process time however, there is 

currently no efficient approach to quickly measure the viscosity of complex liquid 

formulations during their industrial scale production. 

 

Real time prediction of viscosity has historically been a challenge within the consumer 

goods industry. The difficulties stem from the current lack of understanding of rheology 

within the context of highly viscous fluids, making it impractical to derive any accurate 

1549

http://dx.doi.org/10.1016/B978-0-323-95879-0.50255-1 



 S. Kay et al. 1526 

physical models for viscosity prediction. It is common for industrial processes to sample 

measurements during a process to directly measure the viscosity. However, this is time 

consuming and if poor batch quality is observed, there is little opportunity to adjust the 

process to prevent deviations of viscosity outside acceptable boundaries. A solution to 

this can be applied with the usage of data-driven models which find the underlying 

relations that lie within the data recorded from a series of sensors on a plant and the 

measured viscosity. These data-driven models are then used as a soft-sensor for new 

process prediction. In addition, to mitigate false confidence, these data-driven soft-

sensors should be able to make accurate estimations and represent the aleatoric 

uncertainty present within the data, analogous to the uncertainty specified within the 

instrument used to record the viscosity values.  A further challenge associated with data-

driven models is the capability to generalise to different processes. To resolve this, an 

excess of data is required by the model from different processes. However, this data is 

usually not readily available and is time consuming to produce and sort. 

2. Problem statement 

This study focuses on a batch process for consumer goods product production. The aim 

is to develop a robust soft-sensor for final viscosity prediction using real-time process 

sensors’ recordings. Three datasets are available and are referred to as Alpha, Beta, and 

Gamma dataset, respectively, where the first two were obtained from the same process 

line and the latter being obtained from a similar, but different process. These datasets 

contain 30, 16 and 11 batches, respectively. Each batch contains 28 sensors recording 

temperature, pressure, and flowrate in different locations in the process. The actual batch 

process generates around 7000 times series data points and real-time data is recorded once 

per second or once per two seconds. In our previous work (Hicks et al., 2021), partial 

least squares has been used to identify commonly important sensors and critical time 

regions within the datasets, leaving us with only information relevant to predicting 

viscosity. This process reduced all 3 datasets to a 3-rank tensor of n batches, 300 timesteps 

and 8 sensors (n being dependent on the dataset). Before being used for training or 

validation purposes, the 3-rank tensors are timewise unfolded to generate a 2-rank matrix 

for soft-sensor construction. 

 

Dimensionality reduction is necessary in this case to mitigate problems associated with 

high dimensional data analysis (Min, 2005) and to improve accuracy of the data-driven 

soft-sensor. Dimensionality reduction techniques remove multi-collinearity, improves the 

capability of the model to generalise to new datasets and will remove redundant features 

whilst retaining important characteristics of the data. Here we offer the usage of an 

autoencoder for dimensionality reduction as opposed to traditional linear regression 

techniques such as PCA and PLS. Although the usage of autoencoders is well 

demonstrated in a number of recent studies, the implementation in chemical process soft-

sensing and monitoring is sparsely explored. Once key process information is extracted 

through dimensionality reduction, we adopted a heteroscedastic noise neural network 

(HNN) to make accurate viscosity predictions and meaningful uncertainty estimations. 

Successful predictions are those which replicate the industrial measurement errors 

(~10%). In addition, to effectively identify the best structure for the autoencoder and 

HNN, Bayesian optimisation is performed to optimise the hyperparameters of these 

models through construction of a Gaussian process surrogate model. 
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3. Methodology 

First, we will introduce the structure of the autoencoder. For a given input (the process 

data) 𝑥, we obtain a projection 𝑧, and a reconstruction 𝑥′. The autoencoder is defined by 

two neural networks (Fournier & Aloise, 2019): 

An encoder – This is defined by a function 𝑓(𝑥) = 𝑧, where 𝑥 and 𝑧 are the respective 

inputs and outputs of the network. 

A decoder – This is defined by a function 𝑓(𝑧) = 𝑥′, where 𝑧 and 𝑥′ are the respective 

inputs and outputs of the network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Diagram of a general autoencoder and its respective components. 

The training objective is defined by a cost function in which the distance between the 

input and reconstruction error is to be minimised. Henceforth, the cost function assumed 

for the construction of the autoencoder will be the mean squared error; for an input of 𝑛 

datapoints, the error 𝐸 =
1

𝑛
∑(𝑥 − 𝑥′)2 and the activation function applied to all hidden 

layers will be ELU (exponential linear unit) defined by 𝐸𝐿𝑈(𝑥) = {
𝑥                 𝑖𝑓 𝑥 > 0

𝛼(𝑒𝑥 − 1)  𝑖𝑓 𝑥 < 0 
 

(Clevert et al., n.d.). A condition must be enforced on the model to copy the input data as 

its output (i.e. reconstruct the dataset), in the interest of extracting useful properties and 

characteristics from the process data. The autoencoder found after hyperparameter 

optimisation and used throughout this paper is defined in Table 1. 
 

Table 1: Representation of the parameters used for the construction of the autoencoder. 

Hidden layer Number  of nodes Learning rate Epochs Activation 

function 

1  1404  

 

 

0.001477 

 

 

 

782 

 

 

 

ELU 

(Exponential 

linear unit), 𝛼 = 

0.15 

 

2  94 

3 50 

4  16 

5 50 

6  94 

7  1404 
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Let us now describe the structure of the heteroscedastic neural network (HNN) generating 

the viscosity predictions. The objective of the HNN is to accurately predict batch quality 

and associate each prediction with an uncertainty metric representing the confidence of 

the model in its predictions. Intuitively, it is essential for the model’s uncertainty 

estimates to provide very high coverage probabilities for its predictions. Hereafter, the 

following metrics will be defined to establish a consistent method of comparison between 

soft sensor models: the mean average percentage error, 𝑀𝐴𝑃𝐸 =
|𝑦−𝜇(𝑥)|

𝜇(𝑥)
; the percentage 

uncertainty, 𝑃𝑃𝑈 =
3𝜎(𝑥)

𝑦
 and the coverage probability, 𝐶𝑃 = 𝑃(𝑃𝑃𝑈 > 𝑀𝐴𝑃𝐸) where 

𝜎(𝑥) is the standard deviation of the HNN’s prediction, 𝜇(𝑥) is the output viscosity from 

the HNN and 𝑦  is the measured viscosity. Using these predefined metrics, we can 

determine the best HNN structure based on its performance using cross validation. An 

important note is that the PPU was not considered to be a priority in determining the best 

performing model, as long as its estimated standard deviation is around 10%. It was 

however essential that the model’s prediction errors were covered by the uncertainty 

estimations, so the following condition was created to ensure a viable soft-sensor, 𝐶𝑃 >
0.8. It is required to provide a meaningful uncertainty estimate for each prediction so, a 

gaussian negative log likelihood term has been implemented for the loss function of the 

HNN, where the loss, 𝐿 =
1

2
ln(𝜎2(𝑥)) +

(𝑦−𝜇(𝑥))2

2𝜎2(𝑥)
 (Hirschfeld et al., 2020). 𝜎(𝑥) 

represents the uncertainty estimation of the HNN (one standard deviation), 𝑦  is the 

measured values of viscosity and 𝜇(𝑥) is the predicted viscosity values.   

 

Both the autoencoder and the HNN were optimised using Bayesian optimisation 

techniques assuming a GP surrogate function (Song et al., 2019), this allowed for efficient 

searching and mapping of the hyperparameter space, especially useful for when large 

numbers of hyperparameters must be optimised; such is true for the autoencoder. Once 

viable optima were found, manual refining was employed to further explore the regions 

surrounding each optimum to ensure the quality and stability of the solution. 

4. Results and Discussion 

Two-fold cross-validation on the alpha dataset was used to optimise the hyperparameters 

of the HNN soft-sensor using the latent space extracted from the autoencoder, averaging 

the MAPE and PPU over the 435 possible combinations. The final HNN structure, 

activation function, epochs, MAPE, PPU and CP are shown in Table 2 below. 

 

Table 2: Parameters of the optimised HNN soft-sensor. 

Number of hidden layers 2 

Number of nodes [layer1, layer2] [31, 3] 

Learning rate 0.0125 

Activation function Sigmoid 

Number of epochs 160 

MAPE [training, validation] [7.8, 10.0] 

PPU [training, validation] [28.9, 28.3] 

CP [training, validation] [1, 1] 

 

The finalised model, as shown in Table 2 was used to predict the batch quality of both the 

beta and the gamma datasets.  
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The viscosities have been normalized to a range of 0-1 and the results are as shown below 

in Figures 2a and 2b.

(a)                                                                                 (b)

Figure 2: Plots of the soft sensor predictions against the measured values for batch data 

for datasets Beta (a) and Gamma (b). The error bars represent one standard deviation.

As shown in Figure 2 (a), the soft-sensor is capable of predicting Beta dataset’s batch 

quality to an reasonable degree of accuracy on data derived from the same process as the 

training set (Alpha), with an average MAPE of 11.3%. Similarly, the uncertainty

estimations average to ± 26.0% for three standard deviation (± 8.67 for one standard 

deviation). Notably, 87.5% of the datapoints for the measured and predicted viscosities 

have overlap between the error bars. This means that the soft-sensor’s predictions are 

lying within the acceptable range of values determined from experimental procedure; the 

expected standard deviation of measurements taken for the viscosity is >  ± 10% due to 

standard experimental errors (i.e. uncertainties of measurement equipment and human 

error in experiments). The significance of this is such that the soft-sensor seems to have 

successfully replicated the error within the process data in its predictions. The MAPE, 

PPU and CP for the HNN’s validation results of the beta dataset can be found in Table 3. 

A similar conclusion can be drawn of the models capacity to predict the batch quality of 

the Gamma dataset as to that of the Beta dataset. The results indicate slightly worse 

performance with an average MAPE of 15.5% this, however is expected due to the data 

being derrived from a different process. The model also seems to provide less overlap 

between the error bars with only 54.5% of them overlapping for one standard deviation. 

The MAPE, PPU and CP for the HNN’s validation results of the gamma dataset can be 

found in Table 3.

Table 3: Validation result of the HNN soft-sensor.

Dataset MAPE PPU CP

Alpha 10.0 28.3 1

Beta 11.3 26.0 1

Gamma 15.5 26.8 1
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Overall, it was anticipated that the HNN would provide better performance on the Alpha 

and Beta datasets than on the Gamma data due to them both being obtained from the same 

process line, meaning their characteristics should be similar. Eventhough the datasets 

were obtained at different times of the year, the performance on beta would indicate that 

this had little effect on the models capacity to accurately predict batch quality meaning 

that the inherent features of the process data was similar. On Figure 2(a), it can be seen 

that there is little variety in the estimation of viscosity made by the HNN. This could be 

attributed to the nature of the autoencoder as viscosity is not taken into account when 

extracting the feature space of dataset provided. This leaves the possiblity that the 

important physical relations between the sensor data and the viscosity, that are necessary 

for making accurate predictions are partially lost when reducing the dimensionality. A 

second explanation could be that there is no identifiable difference between the features 

of each batch that would give rise to a reason for the model to predict largely different 

viscosities. This pattern also arises within the Gamma dataset, shown on Figure 2(b), 

however the extent of which is less severe. 

5. Conclusion 

In conclusion, autoencoders are a viable dimensionality reduction method and can be used 

in conjunction with machine learning regression models to help build a robust model to 

predict outcomes of industrial processes such as batch quality. The autoencoder is able to 

effectively produce small latent spaces which accurately represent large datasets thus 

removing the problems associated with high dimensionality. Through the use of data-

driven models and non-linear dimensionality reduction techniques, it is possible to reduce 

the computational cost whilst identifying a high-quality solution to industrial problems. 

Through cross validation, it is observed that the HNN model has both high accuracy and 

high reliability when predicting final viscosity. The developed soft-sensor was also found 

to be able to predict different processes operated over a broad time span with a relatively 

large viscosity variation. This is the significant benefit over conventional linear regression 

based dimensionality reduction and modelling methods. Overall, this work demonstrates 

the innovative combination and potential impact of different machine learning techniques 

for high dimensional industrial data analysis and batch process monitoring.  
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Abstract 

This paper presents an analysis of green hydrogen production from geothermal and solar 

energy sources through a Monte Carlo simulation approach, using a first version of a 

digital twin for the intelligent design of hydrogen facilities. The proposed methodology 

allows comparing hydrogen production based on three different configurations (case 

study 1, 2, and3) by calculating the internal rate of return and the levelized cost of 

hydrogen. The trade-off between system availability and capital investment to reduce 

investment risks was also studied. The results show that hydrogen production from 

geothermal energy source presents business opportunities even in conservative scenarios. 

The valorization through batteries of surplus solar electricity implies significant 

investment risks. The cost of electricity and the investment costs of electrolysis were 

identified as the parameters with the highest impact on the LCOH. In addition, the best 

trade-off between system availability and return on capital has been studied, concluding 

that redundancy in the electrolyzers is sufficient for achieving it. Future research will 

need to improve the calculation of system availability and maintenance costs. 
 

Keywords: Green hydrogen, Monte Carlo simulation, renewable energy, Digital Twins. 

1. Introduction 

Hydrogen is an emerging energy vector that has been identified as a key driver for 

achieving sustainable development goals. However, some challenges must be overcome. 

In this regard, the future of hydrogen economy depends on reducing costs (i.e., CAPEX 

and OPEX) and minimizing investment risks. Furthermore, hydrogen facilities are 

complex systems that involves the interaction between different energy sources and 

feedstock, technologies, hydrogen physical form, and storage modes  (Carrera and 

Azzaro-Pantel, 2021), being required to address the uncertainty linked to the data 

available for its optimal design.  

Digital Twin (DT) solutions could help to address these challenges. The DT concept is 

based on the development of multi-physical, multiscale and probabilistic models 

considering the integration of physical and virtual products through the exchange of data 

(Wang et al., 2020). Methodologies based on data-driven DT approaches have been used 

for optimal operation and simulation of green hydrogen technologies (Jaribion et al., 

2020; Meraghni et al., 2021). However, this approach has not necessarily been applied to 

the design of entire facilities. To address these gaps, our study proposes a methodology 

based on stochastic simulations for the evaluation of green hydrogen facility designs. The 

main contribution of this work is thus to address data uncertainty and its propagation to 

KPIs, identify the parameters that have the highest impact on LCOH, and choose the 
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facility design that presents the best trade-off between system availability and CAPEX .

The paper is divided into five sections following this introduction. The methods and tools 

are presented in Section 2 with a focus on the stochastic simulations. The case studies are 

described in Section 3. Finally, the main results are analyzed in Section 4, followed by 

the conclusions and perspectives presented in Section 5.

2. Methods and tools

A methodological framework for the analysis of hydrogen production facilities from a 

Monte Carlo approach is presented. It is summarized in the Fig. 1.a.

2 .1 . Design proposition

Different hydrogen production configurations are proposed to analyze business 

opportunities, which may consider redundancy between equipment.

2 .2 . Entering data and assignment of probability distribution

The data considers the characteristic parameters of each component of the system. This 

involves capacities, CAPEX , OPEX , mean time to failure (MTTF), main time to repair 

(MTTR), among others. The MTTF and MTTR are used to calculate system availability, 

which is defined as the probability that the system will be operational at a given time "t"
(Hou et al., 2015). The failure (λi) and repair rate (µ i) are considered and calculated 

through Eq. (1.a) and (1.b). The availability of each equipment is then determined through 

Eq. (2) (Hastings, 2015). Finally, the system availability is calculated considering series 

(As) or parallel (Ap) configurations thought Eq. (3.a) and (3.b), respectively (Hastings, 

2015). Other input parameters considering the data that is independent of the equipment

are also involved (i.e., indirect cost).

𝑎) 𝜆𝑖 =
1

𝑀𝑇𝑇𝐹𝑖

; 𝑏) 𝜇𝑖 =
1

𝑀𝑇𝑇𝑅𝑖 (1)

𝑎𝑖(𝑡) =
𝜆𝑖

𝜆𝑖 + 𝜇𝑖

+
𝜇𝑖

𝜆𝑖 + 𝜇𝑖

exp [(−𝜆𝑖+𝜇𝑖)𝑡]
(2)

𝑎) 𝐴𝑠(𝑡) = ∏ 𝑎𝑖(𝑡)

𝑛

𝑖=1

; 𝑏) 𝐴𝑝(𝑡) = 1 − ∏(1 − 𝑎𝑖(𝑡))

𝑛

𝑖=1

(3)

Fig. 1. a) Methodological framework; b) Case studies

a) b))
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2 .3 . Monte Carlo simulation

The Monte Carlo method (Johansen, 2010) can be summarized in the following steps.

First, the cumulative distribution function (CDF, FX (x)) (see Eq. (4)) of each input 

parameter is defined. It describes the probability that a random variable “X ” with a given 

probability distribution will be found at a value less than or equal to x (Arora, 2017).

Secondly, random values between 0 and 1 are chosen, allowing random values to be taken

from the CDF. Then, the output variables of interest or KPIs are calculated. Finally, the 

process is repeated " n" times according to the precision required, to obtain the CDF for 

the outputs.

2 .4 . Results analysis and post-processing

The CDF of the key performance indicator (KPI) of interest (i.e., internal rate of return, 

levelized cost of hydrogen, etc.) are analysed for each design, considering the 

“opportunity index”. This index indicates the probability of obtaining a value equal to or 

lower than the desired value for a given KPI.

3. Case studies

The methodology described above was applied to four case studies for green hydrogen 

production, which are shown in Fig. 1.b and described below:

• Case 1: Using geothermal energy (facility located in Iceland).

• Case 2: Using solar energy (facility located in southern Spain).

• Case 3: Using solar energy and storing the surplus electricity to be valorized in the 

electrolysis plant.

• Complementary studies from Case 2, keeping the same solar energy source but 

analyzing the business opportunities associated with equipment redundancy and 

availability of the system. Three configurations are studied, which are shown in 

Table 1.

The main assumptions of the case studies are:

• Energy facilities are entirely used to meet hydrogen demand.

• Triangular probability distributions using minimum, maximum, and average values 

are involved (See Fig. 2).

• Electrolysis plant capacity: 100 MW.

• Lifetime: 35 years.

𝐹𝑋(𝑥) = 𝑃[𝑋 ≤ 𝑥] = ∫ 𝑓𝑥(𝑢)𝑑𝑢
𝑥

−∞ (4)

Fig. 2. Example of triangular probability distribution
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Table 1. Green hydrogen facility design configurations for complementary studies of case 2

Design Description

1 (Initial Case 2) Project in the south of Spain

2 (Hypothetical Case 2.1) Design 1 with 20% increase in electrolysis capacity.

3 (Hypothetical Case 2.2) Design 2 with doubled compression capacity

4. Results and discussion

4 .1 . Case studies 1 to 3 - Evaluation of hydrogen production from geothermal and solar 

sources

The main results obtained in this study are discussed in this section. Fig. 3 shows the 

business opportunities associated with Case Studies 1, 2, and 3. The geothermal energy 

source presents reduced investment risk compared to the use of solar energy, since its 

IRR value remains positive even for a conservative scenario (opportunity index close to 

one). This is mainly due to the load factor of geothermal electricity production (about 

92%) compared to the solar load factor (about 31%), which allows the IRR to rise by up 

to 48% in an optimistic scenario. The scenario with the highest investment risks would 

be case study 3, in which the probability of obtaining a positive IRR is 0.48. This implies 

that adding batteries to valorize the total available energy to produce hydrogen cannot be

profitable according to our results. However, other case studies can be economically 

viable (i.e., isolated regions) (Marocco et al., 2021).

In addition, a sensitivity analysis on LCOH was performed for each major parameter, 

which is shown in Fig. 4. The LCOH varies between 2.11 and 3.29 €/kg H2. The results 

indicates that electricity cost, electrolyzer capital cost, and system power composition are 

the major inputs influencing the LCOH. These should be prioritized from an optimal 

design and operational point of view. The investment cost of batteries has an important 

impact in Case 3, being the parameter that increases the LCOH compared to Case 2.

Fig. 3. Opportunity index vs IRR for case studies 1, 2 and 3Fig. 3. Opportunitunit ty index vs IRR fR fR or for f  casor casor e studitudit es 1, 2 and 3
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4 .2 . Complementary studies to case 2 - Finding the best trade-off between CAPEX  and 

availability

Several business opportunities associated with three production system designs and 

system availability (SA) are explored, which are indicated in Table 1. Fig. 5 shows the 

IRR for each design at the P50 point (opportunity index of 0.5) as a function of their

CAPEX. “Case 2.1” offers an increase of a 0.26% in IRR despite having a higher CAPEX . 

This is achieved through increased system availability. In this regard, an improvement in 

the availability of the electrolyzers is sufficient to increase the probability of better

economic performance. “Case 2.2” implies a decrease of 0.43% in IRR, degrading 

economic performance compared to Designs of Case 2 and 2.1.

Fig. 5. IRR as a function of CAPEX  at P50

Fig. 4. Inputs ranked by effect on LCOH for a) Case 1, b) Case 2, and c) Case 3
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 5. Conclusion and perspectives 

In this paper, a methodological framework for the economic risk analysis and design of 

green hydrogen facilities was proposed. It was demonstrated that an approach driven by 

Monte Carlo simulations generates substantial value-added insights to decision-makers. 

Firstly, the methodology addresses the uncertainty inherent in the parameters and its 

propagation to the KPIs. Secondly, the investment risk related to different facility designs 

is considering by an opportunity index and providing confidence intervals. Thirdly, 

sensibility analyses can be carried out to identify the parameters with the highest impact 

on KPIs. Finally, several facility designs can be proposed and evaluated, identifying the 

best trade-off between the capital invested and the system availability.  

The added value of the methodology was shown in several case studies. It was found that 

the geothermal energy source offers business opportunities even in conservative 

scenarios, compared to solar energy source. The valorization of the overproduction of 

electricity from batteries to produces hydrogen implies high investment risks. In addition, 

it was possible to choose between three design configurations including equipment 

redundancy to increase system availability. For this case study, we conclude that a 

redundancy in the electrolyzers is sufficient to increase the economic performance of the 

project, and then represents the best trade-off between CAPEX and system availability. 

Future research will require studying how to improve the calculation of system 

availability and O&M cost to precisely capture the stochastic behavior of the facility. 
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Abstract 

Widespread adoption of high-temperature electrochemical systems such as polymer 

electrolyte membrane fuel cells (HT-PEMFCs) requires models and computational tools 

for accurate optimization and guiding new materials for enhancing fuel cell performance 

and durability. In this contribution, knowledge-based modelling and data-driven 

modelling are combined using Few-Shot Learning and implementing an Automated 

Machine Learning framework for the generation of Machine Learning-based surrogate 

models.  

 

Keywords: Surrogate Models, Derivative Free Optimization, Transfer Learning, 

AutoML, data-driven modeling, high-temperature polymer electrolyte membrane fuel 

cells. 

1. Introduction 

The discovery of new materials like catalysts, polymeric membranes, and biomolecules, 

is driven by industrial needs such as improving reaction or separation selectivity, 

enhancing therapeutic effects on medical treatments, or reducing manufacturing costs. 

However, deployment of these advances in industrial applications is often hindered by 

the lack of models needed for design and optimization. Due to the novelty of the materials  

and devices, experimental data and first principles knowledge is scarce, making it hard to 

build models either via data-driven or knowledge based approaches. In this context, a way 

to efficiently combine domain knowledge with data could provide a pathway to 

streamline new materials discovery for industrial applications. Transfer Learning (TL) is 

an extension of Machine Learning (ML) in which knowledge learned for a particular task 

can be leveraged to ease the training for a new task. In terms of modeling for 

electrochemical systems, models developed for a given device or material can be 

leveraged to reduce the amount of data needed to accurately predict how new materials , 

operating parameters, and device configurations affect system performance. When the 

data for the initial training stage comes from a simulation, domain knowledge can be 

easily incorporated into the data-driven model, while at the same time reducing the 

number of experiments to be conducted – which can be timely and costly. This approach 

generates surrogate models that approximate the real behavior of the systems with 

adequate accuracy at a reasonable cost.  
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In this work, a TL framework for the development of Machine Learning-based surrogate 

models (MLBSM) to be used with a derivative free optimization algorithm is presented. 

Simulations from a compositional knowledge-based model validated using experimental 

data was used to generate training examples for a MLBSM. Then, TL learning was used 

to improve the performance of the MLBSM by using experimental data as training 

examples. Finally, an implementation of Particle Swarm Optimization (PSO) was used as 

demonstration of the applicability of this approach for derivative free optimization. 

2. Transfer Learning

Transfer Learning (TL) (Pan & Yang, 2010) is a ML technique in which a data-driven 

model previously trained (general training) for a given task (source domain) is used as 

the base to build a model for a new task (target domain), with less data being required for 

the new training stage (task-specific training). Typically, the source and target domains 

are similar or closely related. Formally, given a source domain 𝒟𝑠, and learning task 𝒯𝑠,

a target domain 𝒟𝑇 and a learning task 𝒯𝑇 , transfer learning aims to help the learning of 

the target predictive function 𝑓𝑇
(∙) for the target domain using the knowledge in 𝒟𝑠 and 

𝒯𝑠, where 𝒟𝑠 ≠ 𝒟𝑇 and 𝒯𝑠 ≠ 𝒯𝑇 (Yang, Z hang, Dai, & Pan, 2020). In this work, the source 

domain 𝒟𝑠 and learning task 𝒯𝑠 come from simulations generated using a low fidelity  

knowledge-based model. The target domain 𝒟𝑇 and learning task 𝒯𝑇 come from 

experimental data. A useful extension of TL is the so-called few-shot learning (FSL) in 

which the task-specific training stage uses a very small amount of data (i.e., on the order 

of 1 × 101) (Yang et al., 2020).

The overarching strategy of this implementation is described in Figure 1. A knowledge-

based explicit equation model (EEM) for a HT-PEMFC was used as the source domain. 

An experimental dataset was used as target domain. A fully connected neural network 

optimized using a genetic algorithm-based Automated Machine Learning framework 

(AutoML) was implemented. 

Figure 1. Transfer learning-based modeling strategy.

3. Data preparation

For the general training stage, simulated data was generated using the knowledge-based 

model reported elsewhere (Briceno-Mena, Venugopalan, Romagnoli, & Arges, 2021). To 

obtain a balanced dataset, the values for the input variables where structured followin g a 

full 3-level factorial experimental design using 11 variables (311). It is important to note 

that all HT-PEMFC models and data only consider pure oxygen as the oxidant. For each 

set of inputs, 5 points in the polarization curves were generated. The res ulting datasets 

were arranged to generate a total of 887,735 input vectors of size 12 (the 11 input 

variables plus the current density) and the corresponding labels of size 1. For the target 
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domain, experimental data reported by Venugopalan et al.(Venugopalan et al., 2020) was 

used. Data were scaled using over min-max scaling in all cases. 

4. Few Shot Learning and Automated Machine Learning Framework 

Broadly, FSL strategies are based upon the notion of preserving information obtained 

through a first stage of training and reusing it in some fashion to develop a target model. 

FSL was implemented through regularization where the target model has the same 

architecture as the source model, and the learned parameters (weights) are adjusted during 

a new training stage, but some restriction is applied to prevent the model from overfitting 

the new data (Yang et al., 2020). In artificial neural networks (ANN), regularization takes 

the form of restricting how much the weights of the model can be updated. By applying 

setting different restrictions for each layer in the ANN, influence of the new data over the 

model can be controlled. The problem of obtaining the MLBSM can then be divided in 

two stages: (i) find a good source model and (ii) find the best way to perform the task-

specific training. The first stage involves finding the proper architecture and training 

conditions (number of hidden layers (𝐿), number of nodes (𝑁), the learning rate (𝑙𝑟), and 

the batch size (𝑛)) for the given source domain. The second stage requires finding a proper 

set of learning rates and batch size for a given target domain. Here, the selection of 𝐿, 𝑁, 

𝑙𝑟 and 𝑛 is defined as a Mixed Integer Nonlinear Programming problem and solved using  

a multi-objective evolutionary algorithm (Vishwakarma, Haghighatlari, & Hachmann, 

2019), namely the Non-dominated Sorting Genetic Algorithm (NSGA-II) (Blank & Deb, 

2020; Deb, Pratap, Agarwal, & Meyarivan, 2002). For tuning the hyperparameters of the 

neural network at source training, the multi-objective optimization problem 

(Optimization problem 1) is formulated as the minimization of 𝑓𝑚 (𝑥) subject to  𝑥 ∈ 𝑅4 

and  𝑥 𝑖 ∈ ℤ, 𝑖 =  1, 2, 3 where, 𝑥1, 𝑥2, 𝑥3 are 𝐿, 𝑁 and 𝑛 respectively and 𝑥4 is the learning 

rate. 𝑓1
(𝑥) = 𝐸𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

𝑠 ,  𝑓2
(𝑥) = 𝐸𝑡𝑒𝑠𝑡𝑖𝑛𝑔

𝑠 , and 𝑓3
(𝑥) = 𝐸𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛

𝑠  are the mean values 

for training, testing and validation in the 5-fold cross validation. The testing and 

validation errors are included in the multi-objective optimization problem to prevent 

overfitting. To obtain a model for a given source domain, a new neural network is built  

for each individual using the set of hyperparameters 𝑥  (in addition to a fixed input layer 

12: 𝑁 and 2 fixed output layers 𝑁: 𝑓𝑙𝑜𝑜𝑟 [
𝑁

2
] : 1) and then its performance is cross 

validated. For the FSL stage, a similar optimization problem (Optimization problem 2) 

can be formulated to obtain the appropriate learning rates (𝑙𝑟𝑖𝑛𝑝𝑢𝑡 , 𝑙𝑟𝑔𝑒𝑛𝑒 𝑟𝑎𝑙 , 𝑙𝑟𝑡𝑎𝑠𝑘 ) and 

batch size (𝑛) for a given target domain. In this case, 𝑥1, 𝑥2, 𝑥3 are 𝑙𝑟𝑖𝑛𝑝𝑢𝑡 , 𝑙𝑟𝑔𝑒𝑛𝑒𝑟𝑎𝑙  and 

𝑙𝑟𝑡𝑎𝑠𝑘  respectively and 𝑥4 is the batch size.  

5. Derivative Free Optimization using MLBSMs 

Once the surrogate model is obtained, the next step is use it to inform both the design of 

new materials for the fuel cell and its operating conditions. This task can be defined as an 

optimization problem (Optimization problem 3) in which the power density of the fuel 

cell estimated using surrogate model, 𝐺(𝑥) , is the objective function and the physical 

realizability of the input variables (𝑥 ∈ ℝ10) sets the upper and lower bounds for the 

problem variables. Since knowledge about the derivatives of the objective function is 

often unavailable, the problem is well suited for derivative free optimization (DFO) (Rios 

& Sahinidis, 2013). Furthermore, DFO benefits from the ability of ANN to perform well 

in high dimensional spaces  (Bhosekar & Ierapetritou, 2018), opening the opportunity to 

exploit the flexibility of both MLBSMs to represent complex systems and DFO to 
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perform optimization using black-box models. In this work, Particle Swarm Optimization  

(PSO) (Kennedy & Eberhart, 1995) is implemented as a demonstration of the potential of 

coupling MLBSMs obtained via transfer learning with DFO. 

6. Results and Discussion

6 .1 . Source model training

From Optimization Problem 1, it was found that a neural network with 3 hidden layers, 

each with 36 nodes (12:36:36:36:18:1), a batch size 𝑛 = 331, and a learning rate 𝑙𝑟 =
9.94 × 10−5 was the best architecture. For the 5-fold cross validation source model 

training using the optimized neural network the mean relative root mean squared error

(rRMSE) values for training, testing and validation were 2.80%, 2.87% and 29.16% 

respectively. The simulated data was obtained from an explicit equations model first 

developed for MEA0 and reported elsewhere (Briceno-Mena et al., 2021). Figure 2

shows the accuracies and their variability for the source model (Figure 2A) and the target 

model (Figure 2B). The high validation error for the source model stems from the 

inaccuracy in the original explicit equations model used to generate the simulations for 

training, namely the estimation of the activation polarization.

6 .2 . Target model training  

When the source domain is a simulation and the target domain is real experimental data 

for the same system, TL can be used to obtain a better model. As shown in Figure 2A,

although the optimized neural network reached very low errors for the training and testing 

data, the error for the validation data is still high. This is consistent with the fact that at 

pretraining the ANN have not been exposed to real experimental data and the source 

domain is known to have inferior performance at very low current densities. For the task-

specific training, the optimized learning rates and batch size from Optimization Problem 

2 (𝑙𝑟𝑖𝑛𝑝𝑢𝑡 = 1.99 × 10−8, 𝑙𝑟𝑔𝑒𝑛𝑒𝑟𝑎𝑙 = 8.80 × 10−6, 𝑙𝑟𝑡𝑎𝑠𝑘 = 0.00097 , 𝑛 = 7) (the 

number of nodes and layers remained unchanged) were used. Validation data corresponds 

to the 200 ° C polarization curve. As it can be observed, the validation error decreases by 

a factor of 3 for the target model. These results demonstrate the applicability of TL to 

improve existing models using small datasets, thus reducing the burden of generating 

experimental data. 

Figure 2. 5-fold cross validation results for model improvement. Boxes represent the standard

deviation of the errors. (A) source model. (B) target model.

As the EEM models contains physical knowledge (e.g., Butler-Volmer kinetics for 

informing the activation overpotential and Ohm’s Law for determining the ohmic 

overpotential from electrolyte conductivity) (Briceno-Mena et al., 2021), TL enables the 

introduction of this information into the MLBSM. An illustrative example of this is shown 

experimental data. 
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in Figure 3. Here, the change in the polarization curve with changes in pressure is 

represented for both the source model (Figure 3A) and the target model (Figure 3B). 

Although the target domain does not contain information about the effect of pressure over 

the system (all examples correspond to the same pressure), the target model preserves 

some of this knowledge from the pretraining stage, which was introduced via the Nernst 

equation and physics-informed expressions for the exchange and limiting current density 

values. Therefore, new information on all the predictors in the source model is not 

required. This opens the opportunity for a faster development of models for new materials  

and device designs and optimal operating parameters, helping guide new materials by 

identifying the necessary properties for enhancing fuel cell performance (e.g., peak power 

density or power density at 0.7 V). Furthermore, the MLBSM can assist with future 

optimization activities such as pathways to reduce PGM loadings in the MEA while 

minimizing device performance losses such as power density.

Figure 3. Effect of pressure as predicted by the source model (A) and the target model (B). The 

base case corresponds to 200 ° C.

6 .3 . Derivative Free Optimization

Figure 4A shows the convergence of the optimization algorithm and Figure 4B shows 

the values for the problem variables corresponding to the optimal solution. 

Figure 4. (A) Convergence of the optimization algorithm. (B) values of the problem variables for

the optimal solution. The values are normalized by the upper bound in the optimization problem 

and grow in the direction of cost/difficulty of realization.

The optimization results suggest that the conductivity properties of both the membrane 

and ionomer binder (IECmem and IECio ) are crucial for enhancing the performance of the 

fuel thus warranting further research on new materials to achieve higher conductivities. 

Furthermore, the ability to optimize operating conditions for a given set of materials could 

the values for the problem variables corresponding to the optimal solution. 
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allow researchers to test the potential of these materials  in silico which can in turn reduce 

the cost of experiments and accelerate the timeline for bringing new materials to market.  

7. Conclusions 

A ML framework that exploits FSL in an AutoML framework for the generation for 

MLBSMs was demonstrated. Using FSL, the validation error was effectively reduced by 

a factor of 3, showcasing the capabilities of this approach to improve existing models 

using small datasets. The final surrogate model preserved physical knowledge included 

at pretraining, which is key advantage for the development of physics informed ML 

applications. Finally, the usefulness of the MLBSM was demonstrated by using it as the 

objective function in an optimization problem solved via a derivative free optimization  

algorithm. PSO converged after 25 iterations and rendered physically meaningful results 

that can inform future developments in materials for the components and operation 

conditions of the HT-PEM fuel cell. 
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Abstract
Process simulation and digital twins are of paramount importance to design new processes or
optimize already existing plants and equipment. The main drawback with current process simulation
software is the computational time required to obtain a solution convergence towards a new steady-
state. Especially when the input or the output to a system are perturbated. This procedure may take
up to minutes in large systems or with strong non-linear recycles. Surrogate modelling of digital
twins offers the possibility to speed up the time to convergence required by process simulators
by substituting the fundamental or rigorous models with machine learning methods and models.
In this work, a surrogate modelling methodology is described for extracting a useful amount of
data in a domain near the nominal steady-state of the plant for which a digital twin has been
created. For each process variable, a plethora of machine learning models are trained and compared.
The best-performing models are chosen to predict the behaviour of such process variables. The
application of the surrogate modelling framework thus created has been successfully applied to
a steady-state simulation, i.e. digital twin, of an acid gas dimethylamine washing process at the
Itelyum exhausted oil refinery in Pieve Fissiraga (LO), Italy.

Keywords: surrogate model, machine learning, digital twin, amine washing

1. Introduction

Surrogate models are gaining more interest in the field of chemical process simulation (McBride
and Sundmacher, 2019). Their strength lies in the ability to substitute rigorous fundamental models,
thus accelerating computationally intensive tasks like superstructure optimization (Granacher
et al., 2021) or dynamic non-linear process prediction (Shokry et al., 2020). One key step for
accurate modelling using surrogates is the data sampling technique. Surrogate models have found
applications in Bayesian optimization where data samples are generated mainly near the optimal
conditions, thus making the surrogate able to predict optimal working conditions (Keßler et al.,
2019). On the other hand, surrogate models have also been applied with wider data samples in
order to explore working conditions outside of the canonical domain for a given process (Ganti
et al., 2020). It is needless to say that each application requires a tailored solution and so does the
data sampling procedure. Different data sampling techniques are described in Liu et al. (2017).
This work focuses on the usage of surrogate models for the substitution of digital twins of real
processes around nominal steady-state conditions. For this reason, the data sampling procedure
adopted is both wide and narrow. Narrow, like in the case of the Bayesian optimization, for samples
close to the nominal steady-state, and wide for the feasible domain around the steady-state. This is
done, firstly, to enable the model to consistently predict the production near the steady-state, where
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the plant is going to operate the majority of times. Secondly, data samples far from the nominal
conditions should enable the model to be used for exploration purposes. An example is real-time
steady-state optimization. In this case, it is advantageous to extend the computation to the cloud for
faster results (Galeazzi et al., 2021). The methodology just described has been applied to a process
of acid gas removal with amine washing using diethanolamine in the bio-oil regeneration refinery
of Itelyum in Pieve Fissiraga (LO), Italy.

2. Data Generation

The data generation procedure is of key importance since a correct mapping of the operative domain
of the process enables the surrogate model to make good predictions everywhere inside this domain.
Especially when it is used for testing purposes rather than training. Several advanced methods
exist for adaptively sampling the design space, an example can be found in Eason and Cremaschi
(2014). For this work, the preferred method for data sampling is the Latin-Hypercube (McKay et al.,
1979) design of experiment (DoE) since it spreads the samples uniformly within the constrained
domain. The data thus generated is preprocessed to remove eventual outliers and, most importantly,
non-converged simulations. These are all Aspen HYSYS simulations that did not arrive at a
solution, with the desired operative conditions, in a reasonable amount of time at the imposed
numerical tolerance. Generally, the data generation is slow due to the presence of non-linearities in
the simulation and recycle loops. An optimization that has been implemented is to sort the samples,
in ascending (or descending) order, generated through the DoE for the principal variables, e.g. the
temperature of a stream entering a column. Thus, the starting point for the next sample of the DoE
is much closer and the simulator should go to the solution more quickly.

3. Modelling framework

After the data is gathered and preprocessed the surrogate modelling framework starts the training
of several machine learning (ML) algorithms. The type and amount of algorithms chosen are
arbitrary and a specific case study may require a tailored solution. In this case, the proposed
algorithms are, in inverse order of complexity, linear regression, polynomial regression, support
vector regression (SVR), decision tree regression, random forest, AdaBoost, gradient boosting,
and artificial neural networks. For this particular case study, every feature variable has been used
to make a prediction about the target variables. Eventually, the framework should benefit from a
previous feature selection to reduce the total number of variables given to each algorithm, thus
speeding up the training time. Every ML algorithm is trained and compared against each other with
a k-folds cross-validation method (with k = 5, in this case). The comparison of each model has
been performed through the analysis of the mean absolute error (MAE), in Eq. 1, and the root mean
squared error (RMSE), in Eq. 2.

MAE(y, ŷ) =
1
n

n−1

∑
i=0

|yi − ŷi| (1)

RMSE(y, ŷ) =

√
1
n

n−1

∑
i=0

(yi − ŷi)2 (2)

where y is the targeet value, ŷ is the predicted value, n is the number of samples, and i is i-th data
sample.

4. Case study

The surrogate modelling framework has been applied for the process of acid gas removal with amine
washing in the exhausted oil refinery of Itelyum in Pieve Fissiraga (LO), Italy. The process flow
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Figure 1: PFD of the amine washing section of Itelyum exhausted oil refinery in Pieve Fissiraga
(LO), Italy

diagram (PFD) is shown in Figure 1. It is composed of two main sections, namely the absorbing
section and the regeneration section. The absorbing section is composed of two absorbers, one
being at high pressure (T-504, in Figure 1) and the other at low pressure (T-505, in Figure 1). The
regeneration section is composed of a single column (T-506, in Figure 1) used to regenerate the
spent diethanolamine (DEA) coming from the previous HP and LP absorbers. These unit operations
are part of the Revivoil process, created by Itelyum and Axens, and the streams entering the amine
washing subsection are coming from the hydrofinishing units. They are rich in light hydrocarbons,
hydrogen, and hydrogen sulfide. Hydrogen is separated in the HP absorber and recycled back to
the hydrofinishing while H2S is sent to a sulfur recovery unit (SRU). The small amount of light
hydrocarbons remaining after the separation are finally purged in the flare.

First, a steady-state simulation was created using Aspen HYSYS. Several simplifications have been
implemented in order to reduce the time to convergence of the HYSYS simulator. Moreover, for
computational reasons, the two main sections described above have been split into two different
flowsheets as shown in Figures 2 and 3. The steady-state digital twin solution has been validated
against plant data taken from the distributed control system (DCS) through Yokogawa’s Exaquantum
platform. The simulation has shown a small deviation of 4.4 % on average from the process data.
An example is shown in Table 1.

Table 1: Methane mass flow [kg/h] in amine washing process.

F18 F9 F8 F5 F4 F7

Digital twin 297.47 0.00061 6.17 0.00029 0 0
Process data 297.44 0 7 0 0 0

The data are generated for each section independently. The data extracted from the simulation are
the temperature, pressure, flow rate, and composition of each stream shown in Figures 2 and 3.
A total of 4000 data points for each section have been generated with box constraints around the
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Figure 2: Flowsheet schematization of the absorbers section

Figure 3: Flowsheet schematization of the regenerator section
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Figure 4: Histograms of the occurrences of data points in the range of process variables for stream
F8.

nominal conditions and with a Latin-Hypercube DoE. Two different domains, i.e. box constraints,
have been defined, the former being closer to the operational range with an arbitrary ±10 % from
the nominal conditions while the latter being wider with a range of ±40 %. Figure 4 shows an
example of data extraction for stream F8. The split ratio for the data created in both domains is
50 %. However, due to the relative width of the second domain (±40 %), only a few data samples
have found a convergence with the desired tolerance (64 out of 2000 for the case of the HP and LP
absorbers). On the other hand, for the first box constraint of ±10 % the case is inverted, and only a
few operative conditions did not result in convergence (1947 converged out of 2000 for the case of
the HP and LP absorbers). The convergence/non-convergence information is still insightful. In fact,
by applying a binary classification algorithm, like logistic regression (for example), it is possible to
understand the feasible domain for process convergence.

After this initial preprocessing, features and targets were defined. The features chosen for the
modelling framework are all those inputs needed for fixing all the degrees of freedom of the
simulation. Viceversa, the targets are all those process variables (temperature, pressure, composition,
and flow rate) calculated by the same simulation. Once the variables are set, the training of each
algorithm described in Section 3 starts, and the residual errors (MAE and RMSE) are taken
for establishing the best-performing algorithm. The results of the best-performing algorithms
chosen are shown in Table 2. It is worth noticing that not always the most complex model is the
best performing one. For example, the linear regressor has always been chosen for predicting
the pressure variables. This is explained by the fact that pressure drops are set as constants in
the HYSYS simulation. Moreover, other more advanced models like artificial neural networks
were always underperforming their lower complexity competitors, even though they took more
computational time for training. Finally, the overall residual error for the first domain of exploration
(±10 %) is approximately 2 % for the absorbers section and 5 % for the regenerator. If we calculate
the residual error also for the case of the wider domain (±40 %) the percentage is higher by orders
of magnitude. This is explained by the fact that the actual converged solutions in this domain are
very few, and the models may neglect these measurements given the higher amount of data of the
first domain. Solutions to this problem may range from the addition of weights that try to rebalance
the domains disparity during the regression procedure, to the generation of more data inside the
actual feasible domain, possibly with a binary classifier guiding the DoE inside the actual boundary
of convergence.

1571

1547



A. Galeazzi et al.

Table 2: Number of occurrences for each best-performing algorithm for the regenerator and HP/LP
absorbers sections

Regenerator section Absorbers section

Occurrences (#) Occurrences (%) Occurrences (#) Occurrences (%)

Linear regression 2 7.7% 3 7.7%
Polynomial order 2 1 3.8% - -
SVR 12 46.2% - -
Decision tree 2 7.7% - -
Random forest 6 23.1% 28 71.8%
AdaBoost 3 11.5% 8 20.5%

5. Conclusions

In conclusion, the surrogate modelling approach has been successfully applied for a case study of a
real industrial process. The surrogate modelling framework has been written in Python and, for
communicating with the process simulator (Aspen HYSYS), an interface was developed in Excel
via visual basic (VB) using the native libraries of HYSYS for VB. This approach is optimal for
creating surrogate models of steady-state digital twins of industrial plants, given the data generation
procedure that creates many data points near the nominal operating conditions of the process.
With these surrogate models, it is now possible to apply optimization strategies or applications for
real-time usage since the amount of time required to obtain a result from the surrogate model itself
is lesser. This methodology should be further enhanced to make it able to treat dynamic digital
twins. Furthermore, the final goal of this method is to substitute the need for a process simulator
that generates the data and take this data directly from the DCS of the industrial plant, automating
the process of surrogate models creation.
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Abstract 

With the growing urbanization process in several cities around the world, air pollution 

mitigation has become one of the main environmental challenges of the present time. 

Recently, low-cost air pollution sensors have become a current trend in the air quality 

control area since they are an affordable alternative for deploying air quality monitoring 

systems with high spatial resolution. However, the main drawback of these sensors is that 

they tend to provide measurements with lower accuracy and reliability compared to 

traditional air quality monitoring stations. Therefore, periodical calibration of these 

sensors is essential to maintain the quality of their measurements. This work presents a 

novel air quality sensor calibration method based on a Bayesian neural network model. 

The proposed method is assessed using a real public available dataset. The test experiment 

results show that the method has a good accuracy performance, with a lower mean 

absolute error compared to other machine learning-based calibration methods applied to 

the same dataset. In addition, the method presents the advantage of directly providing 

estimations of the uncertainty of the calibrated measurements, which is an important 

metric used to assess the quality and reliability of data provided by air pollution sensors 

and that most other calibration methods usually cannot provide. 
 
Keywords: air quality evaluation, sensor calibration, machine learning, Bayesian neural 

network. 

1. Introduction 

Air pollution mitigation has become one of the main environmental challenges of the 

present time. It is estimated that 96% of the urban population is exposed to air pollution 

levels that exceed the recommended limits (Lewis and Edwards, 2016) and, just in 2016, 

more than 4.2 million deaths in the world were caused by factors related to air pollution 

exposition (WHO, 2016). Therefore, the implementation of air quality monitoring 

systems that collect detailed data about air pollution concentration in urban areas and 

assist city managers to remediate problems related to air pollution has become crucial for 

large cities. Most cities, however, use air quality monitoring systems based on expensive 

monitoring stations that are sparsely distributed in their urban areas. As such, they can 

only monitor air pollution with low spatial resolution and they cannot collect detailed 

information about air pollutants in their whole urban area. In this context, low-cost air 

pollution sensors have recently become a trend in the air quality monitoring area, as they 

are a potential alternative for increasing the spatial resolution of the air quality monitoring 

systems. Since these devices can be acquired at a much lower cost compared to the 
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traditional air quality monitoring stations, they can be widely deployed in urban areas and 

support the traditional monitoring stations carrying out air pollution concentration 

measurements in regions that the stations cannot cover. However, the main drawback of 

these sensors is that they tend to provide lower accuracy and reliability measurements 

compared to traditional air quality monitoring stations. They suffer from cross-

sensitivities between different air pollutants, they are affected by external factors (such 

as temperature and humidity), and their measurement performance degrades over time 

due to aging and poisoning effects on their components (Maag et al., 2018) (Concas et 

al., 2021).  

To improve the accuracy of these sensors, a widely used strategy is to periodically 

calibrate them. The calibration of these sensors is traditionally performed in laboratories, 

by exposing them to controlled atmospheres with known concentrations of pollutants. 

However, as these devices are widely deployed in urban areas, this calibration approach 

tends to become unfeasible, since a massive number of sensors would have to be removed 

from their deployment site and then transported to laboratories. In this context, calibration 

methods based on machine learning models have recently emerged as excellent 

alternatives for air pollution sensor calibration as they allow in-field calibration. The 

general idea of these methods is to use measurements of a monitoring station (or an 

already calibrated sensor) located in the proximity of the low-cost sensor as references to 

train a machine learning model that can correct the errors of its measurements and output 

more accurate measurements (Concas et al., 2021).  

Artificial neural networks have become commonly used machine learning models for air 

quality sensor calibration. They showed to be flexible multivariate calibration models, as 

they are capable of handling the cross-sensitivity between air pollutants, the influence of 

external conditions, and the nonlinear relationships between a sensor measurement and a 

reference measurement, which are challenging problems in the sensor calibration task (De 

Vito et al., 2018). These models, however, are known to suffer from overfitting problems, 

which can affect their generalization capability (Concas et al., 2021). Thus, this study 

proposes a novel low-cost air pollution sensor calibration method based on a Bayesian 

neural network model, which is a probabilistic neural network model that has the 

advantages of presenting natural mechanisms of regularization against overfitting and 

directly providing estimates of the uncertainty of its predictions (Jospin et al., 2020).  

2. Methodology 

2.1. Bayesian Neural Network 

A Bayesian neural network (BNN) is a stochastic artificial neural network trained using 

Bayesian inference (Jospin et al., 2020). Stochastic neural networks are a type of artificial 

neural networks (ANNs) built by introducing stochastic components into their 

architectures that allow the estimation of uncertainty of their predictions. In the case of 

BNNs specifically, the network parameters 𝜃 are usually considered stochastic and this 

allows the networks to simulate multiple model parameter configurations according to 

their associated probability distribution 𝑝(𝜃). In this way, while training a BNN, instead 

of training one single model, a set of models is trained and their predictions are aggregated 

into probabilistic distributions. This characteristic avoids problems of overfitting for the 

neural network and gives access to uncertainty estimates of its predictions. 

To design and train a BNN denoted by 𝑦 = 𝐹𝜃(𝑥), the following Bayesian inference 

process is carried out. Given a training dataset with 𝑋 = [𝑥1, … , 𝑥𝑁] as its input variables 

and 𝑌 = [𝑦1 , … , 𝑦𝑁] as their respective target outputs, the first step is to choose a proper 

neural network architecture (i.e. feed-forward, recurrent, convolutional) for the problem 
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in hand. Then, the next step is to choose a prior distribution 𝑝(𝜃) over the model 

parameters, that describe the prior beliefs about the parameters before analyzing the 

dataset, and a likelihood distribution 𝑝(𝑌|𝑋, 𝜃), that describes a prior confidence in the 

predictive power of the model 𝐹𝜃. In the case of a regression problem, such as the 

calibration sensor problem, a Gaussian distribution is normally used for the likelihood 

distribution (Gal, 2016): 

𝑝(𝑦|𝑥, 𝜃) =  𝑁(𝑦; 𝐹𝜃(𝑥), 𝜎) =  
1

√2𝜋𝜎2
𝑒𝑥𝑝 (−

(𝐹𝜃(𝑥) − 𝑦)2

2𝜎2
) (1) 

Then, applying the Bayes' theorem, the Bayesian posterior distribution can then be 

computed as: 

𝑝(𝜃|𝑋, 𝑌) =  
𝑝(𝑌|𝑋, 𝜃)𝑝(𝜃)

∫ 𝑝(𝑌|𝑋, 𝜃′)𝑝(𝜃′)𝑑𝜃′
 (2) 

This posterior distribution describes which are the most likely values for the parameters 

𝜃 to have generated the data, according to the combination of prior knowledge about 𝜃 

and the information about 𝜃 provided by the training data. Finally, given this Bayesian 

posterior, it becomes possible to compute a marginal probability distribution of the 

network's output, given a certain new input 𝑥∗, which quantifies exactly the uncertainty 

of model predictions: 

𝑝(𝑦∗|𝑥∗, 𝑋, 𝑌) = ∫ 𝑝(𝑦∗|𝑥∗, 𝜃′)𝑝(𝜃′|𝑋, 𝑌)𝑑𝜃′ (3) 

In practice, however, this predictive distribution is summarized by a few statistics 

computed using a Monte Carlo sampling approach. In this approach 𝑇 samples of 𝜃 are 

sampled from the posterior distribution 𝑝(𝜃|𝑋, 𝑌) and then used to compute statistics of 

the predictive distribution. For instance, to summarize the prediction of a BNN used in 

regression problem, the usual procedure is to perform model averaging: 

𝑦̃∗ =
1

𝑇
∑ 𝐹𝜃𝑖

(𝑥∗)

𝑇

𝑖=1

 (4) 

While the uncertainty of the prediction is computed as follows: 

𝜎̃2 =
1

𝑇
∑(𝐹𝜃𝑖

(𝑥∗)  −  𝑦̃∗)
2

𝑇

𝑡=1

 (5) 

One problem while training a BNN is that the posterior distribution computation is usually 

an intractable problem, since computing the evidence ∫ 𝑝(𝑌|𝑋, 𝜃′)𝑝(𝜃′)𝑑𝜃′ cannot be 

done analytically. To address this problem, Bayesian inference approximation methods 

are normally used to train BNNs in practice. A review of Bayesian inference 

approximation methods specific for BNNs is presented in Gal (2016). For this study, the 

variational inference method called Monte Carlo (MC) Dropout (Gal and Ghahramani, 

2016) is adopted, since it allows to approximately perform Bayesian inference in BNNs 

with only simple adaptations of traditional neural networks training techniques. 

2.2. Bayesian Neural Network Calibration Method 

The BNN-based air quality sensor calibration method proposed for this study is 

schematized in Figure 1. As illustrated, the goal of this method is to train a BNN 

calibration model that takes as input a raw sensor measurement (𝑥𝑟𝑎𝑤) and external 

conditions data (𝑥𝑒𝑥𝑡) (such as temperature, humidity, and concentration of other 

pollutants sensors), and returns as output a calibrated concentration measurement of the 

target pollutant of the sensor (𝑦𝑐𝑎𝑙
∗ ). To train the model, the Bayesian inference 

1575



 G. R. Taira et al. 1552 

approximation method MC-Dropout (Gal and Ghahramani, 2016) is used. Previously 

collected raw sensor measurements and external conditions data stored in a historical 

database are used as the input variables of the training dataset, and reference 

measurements provided by some reference meter close to the sensor (such as a traditional 

monitoring station or another previously calibrated sensor) are used as target outputs 𝑌 of 

the training dataset. Once trained, the BNN model is then deployed to calibrate new raw 

sensor measurements. Since the trained model is Bayesian, when receiving as input new 

inputs 𝑥∗ =  (𝑥𝑟𝑎𝑤
∗ , 𝑥𝑒𝑥𝑡

∗ ), it returns a predictive probabilistic distribution of calibrated 

pollutant concentration values corresponding to the new raw sensor measurements 

𝑝 (𝑦𝑐𝑎𝑙
∗ |𝑥∗, 𝜃). To simplify the model output, only the mean of the predictive probabilistic 

distribution (𝑦̃𝑐𝑎𝑙
∗ ) and its respective uncertainty value (𝜎̃𝑐𝑎𝑙) are outputted by the model. 

 

Figure 1 - BNN calibration method 

3. Experiment 

3.1. Data 

To evaluate the proposed method’s performance, an application experiment was carried 

out. For this experiment, the ENEA (National Agency for New Technologies, Energy and 

Sustainable Economic Development) dataset (De Vito et al., 2008) was utilized. This 

dataset was chosen for this experiment since it has already been used as a benchmark for 

evaluation of other machine learning-based sensor calibration methods (De Vito et al., 

2018), thus enabling the performance comparison between the proposed method and 

methods already tested against this dataset. A complete description of this dataset can be 

found in De Vito et al. (2018).  

3.2. Experimental Setting 

The specific case of the CO sensor calibration was chosen for this experiment since the 

performance of other machine learning-based methods in the calibration of this specific 

sensor were described in De Vito et al. (2018) and it can be used for performance 

comparison. To allow a fair comparison between the proposed methods and the methods 

used in De Vito et al. (2018), a similar dataset split configuration was used: the first 504 

instances were used to train the BNN model and the remaining instances were used to test 

the trained model. To assess the performance of the model, the mean absolute error 

(MAE) was used, since it was the performance metric used to evaluate the other machine 

learning models in De Vito et al. (2018). 

3.3. Calibration Model  

To calibrate the CO sensor, a Bayesian feed-forward neural network model was chosen. 

The model was structured to receive as input the responses from CO, NMHC, NOx, NO2, 

O3, temperature, relative humidity, and absolute humidity sensors and to return as output 

CO concentration values. To train the model, the CO ground truth concentrations values 
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provided by the reference monitoring station were used as target outputs. The model was 

implemented using the Python programming language and the Pytorch library (Paszke et 

al., 2019). The optimal model was determined using the Optuna framework (Akiba et al., 

2019). The optimal Bayesian neural network model was structured with a single hidden 

layer containing 24 processing units that use the ReLU activation function and an output 

layer containing only one processing unit. This model was trained using a dropout rate 

equal to 0.163, a learning rate equal to 0.012, 400 training epochs, and an RMSprop 

optimizer (Tieleman et al., 2012). 

4. Results and Discussion 

To evaluate its performance, the optimal model was tested against the test dataset. The 

test experiment showed that the model has good accuracy in the calibration of the CO 

sensor with a good generalization capacity. As highlighted in Table 1, the model 

presented an MAE value of 0.47, which is lower compared to the MAE values obtained 

by the models evaluated in De Vito et al. (2018) for the calibration of the same sensor. 

Furthermore, as can be seen in Figure 2, uncertainty estimates for the calibrated 

measurement are directly provided by the calibration model. Uncertainty measures are an 

important metric in the context of validation of air quality sensors (Council of European 

Union, 2008), as they allow to evaluate the quality and reliability of the measurements 

provided by them. In the literature, only a few machine learning-based methods for the 

calibration of air pollution sensors address the obtainment of uncertainty estimates of 

calibrated measurements, and usually, in their approaches these estimates are not obtained 

directly by the calibration model, requiring the use of extra mechanisms to compute the 

uncertainty values (Esposito et al., 2016). Therefore, the proposed method proves to be 

novel in this sense. 

 

Figure 2 - Uncertainty estimates for the calibrated measurement 

5. Conclusion 

A Bayesian neural network calibration method for low-cost air quality sensors was 

proposed in this study. The experimental results show that the method has a good 

accuracy performance, with a lower mean absolute error compared to other machine 
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learning-based calibration methods applied to the same dataset. In addition, the method 

presents the advantage of directly providing estimations of the uncertainty of the 

calibrated measurements, which is an important metric used to assess the quality of data 

provided by air pollution sensors and that most other calibration methods usually cannot 

provide. 

Table 1 - Performance comparison 
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Abstract 

 

The design and control of biological reactors depends upon the correct calibration and 

selection of kinetic parameters from the exponential phase in the microbial growth. 

Nowadays, kinetic microbial parameters reported in the literature of biochemical 

engineering are obtained based on specific growth conditions, thus limiting their possible 

application in a wide variety of dynamic models. In this paper, we propose an adaptive 

machine learning approach to predict microbial growth and provide information on the 

effect that variations of pH (5, 7, 9) and concentration of the culture media (10, 20, 40, 

60, 80, 100%v/v) have on the growth rate. We study biological reactions and obtain a set 

of experimental exploratory data using the Pseudomonas aeruginosa. The versatile and 

robust metabolism of P. aeruginosa is responsible of its ability of growth in different 

environment conditions even at low nutrient and oxygen levels, in an sample range of 

temperatures (4°- 42° C) and polluted sites. As first contribution, we propose a technique 

to gather experimental data via measurements of optical density, microbial growth, from 

the MultiskanTM FC Microplate Photometer, Thermo Scientific. Our second contribution 

consist in integrating the Hyperconic Multilayer Perceptron (HCMLP) as computational 

and mathematical approach to predict microbial growth across all the set of conditions of 

the experimental design. HCMLP is a state-of-the-art method to define complex non-

linear decision boundaries, in the parameters’ space, using a mix of ideas from conformal 

geometry and neural networks, and focusing on quadratic hyper-surfaces through 

multiple hidden layers. As a consequence, we generate precise hyper-surface responses 

which predicts microbial growth even in values not evaluated during the experimental 

stage. Finally, our statistical testing and comparisons validate that the proposed 

experimental, mathematical and computational framework is robust and capable of 

predicting the dynamic growth of bacteria P. aeruginosa using two main operation 

conditions: pH and concentration culture media. In the future, we plan to apply our 

proposed methodology to other bacterial strains and advance HCMLP for forecasting 

dynamics of other multiple microbial measurements under a wide variety of conditions. 

 

Keywords: Microbial Growth, Machine Learning, Fitting Experimental Data, 

Hyperconic Multilayer Perceptron 
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1. Introduction 

The chemical, biochemical and pharmaceutical industries have always focused on the 

development of new products. However, the scaling of equipment is an important 

bottleneck in the transition from chemical, biochemical and pharmaceutical research to 

the development of processes for which a large amount of experimental data is necessary, 

which subsequently allows the generation of models to describe the behavior of the 

process. A crucial part of this procedure is the development of a kinetic model of the 

chemical or biological reaction system. The tools that engineers provide, in combination 

with the use of specialized software, allow us to reduce time and development costs 

through a reduction in laboratory experiments, rapid expansion and avoidance of the need 

for expensive tests pilot. In the particular case of microbial kinetics, existing models only 

govern processes for specific operating/growth conditions; that is, if the operating 

conditions change, the kinetic parameters must be obtained through new experiments, 

thus increasing both the material and monetary costs. Here, the development of more 

robust and precise kinetic models for predicting microbial growth emerge as a novel 

approach to build profitable and faster chemical process which, in turn, lower monetary 

costs for the end-user. 

 

Modelling of microbial kinetic behavior through mathematical computing, particularly 

machine learning (ML), is a still vastly unexplored field. The biokinetic parameters for 

microbial growth of P. aeruginosa, assuming statics growth conditions, are 

experimentally determined by  Bakke et al. (1984); and Tuovinen (1984) and Beyenal et 

al. (2003) in biofilms, planktonic cultures and double substrate growth kinetics of P. 

aeruginosa, respectively. Tochampa et al. (2005) develops a model of xylitol production 

by the yeast C. mogii ATCC 18364 in the presence of glucose as the cosubstrate using a 

genetic algorithm, further improved by Sirisansaneeyakul et al. (2013) through 

mathematical optimization. Lee et al. (2015) provides growth kinetic models for micro-

algae cultivation using multiple factors but only under single operation conditions. 

Recently, Eze et al. (2018) designed a kinetic model to describe the growth of micro-

algae strain Desmodesmus sp. in wastewater cultures using numerical methods for 

differential equations. As shown in literature, although there are models of microbial 

kinetic behavior, most of them lack of adaptability using various dynamic factors and 

under multiple operation conditions. 

 

Our contributions focus in both experimental design for data collection, and modelling 

through a novel machine learning technique, with particular emphasis on prediction of 

microbial growth. Section 2 describes the proposed framework, from biochemical 

experimentation to the machine learning application. Section 3 analyze and statistically 

validate the prediction under various conditions. Finally, Section 4 summarize our 

findings and states future work. 

2. Methodology 

The proposed framework include two distinctive phases: 1) biochemical experimentation, 

and 2) microbial growth data approximation. As first contribution, we study the microbial 

growth of the P. aeruginosa bacteria on selective media, and introduce a technique to 

analyze their cellular growth under various conditions of pH, culture media and agitation 

speed. We keep an oscillating temperature between 23° C and 32° C for kinetic inspection 

during all experiments. Thus, in our second contribution, the proposed kinetic model 
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predicts the microbial growth and its dynamics using pH, medium and agitation speed as 

inputs. 

 

2.1. Biochemical experimentation 

Experimental design takes into account two values in the culture medium, 80% and 100%, 

whilst pH is set to three different values, 5.0, 7.0 y 9.0. We perform four runs of each 

experiment in a Multikscan microplate spectrophotometer with a 5% measuring error, at 

most. To statistically verify that microbial growth is affected by pH values and the culture 

medium, we apply an analysis of variance ANOVA with 95% confidence interval. The 

P. aeruginosa strain (SA1-12) is isolated from Lerma river in Salamanca, Guanajuato, 

Mexico; and identified through 16S DNAr amplification and comparison analysis in 

public databases. To evaluate the growth of P. aeruginosa (SA1-12) at different pH and 

levels of nutrients and intensities of agitation during the first stages of development, we 

prepare overnight cultures of the bacteria in King’s B Medium at 28° C and 100rpm. 

Bacterial pellets are recovered by centrifugation and resuspended in diluted culture media 

according the experimental condition (pH; 5.0, 7.0, 9.0; King’s B medium; 10, 20, 40, 

60, 80, 100% v/v). The fresh cultures media are inoculated with 0.01% of pre-inoculums 

and 200L are deposited in 96-multiwell plate. The optical density is measured every 

15min for 8h (A = 620nm, in a microplate reader MultiskanTM FC Microplate Photometer, 

Thermo Scientific) at two intensities of agitation, low and medium, at 28° C. We use a 

multiwell plate during our testing stage. 

 

2.2. Microbial Growth Data Approximation  

The second phase consist in learning data patterns using collected experimental data of 

microbial kinetics growth of P. aeruginosa. We develop a surface response model via 

modern approaches from machine learning based on geometric algebra. Well tested 

capabilities of modern artificial intelligence tools, e.g. novel versions of neural networks, 

provide us with an efficient way to predict microbial growth on unknown values of the 

exogenous variables. 

 

The proposed Hyperconic Multilayer Perceptron (HC-MLP) includes neurons in the 

hidden layer named Hyperconic Neurons (HCN), which use transfer functions to define 

decision boundaries via hyperboloids, paraboloids, spheres, and ellipsoids. Figure 1a 

shows the architecture of the proposed HCMLP in this study. The architecture consists of 

three layers: 1) input layer, 2) hidden layer and 3) output layer. The input signals are 

propagated through the network from left to right, where the output scalar y comes from 

the final output layer. The calculation of the HCN includes the estimation of a conic. In 

this study, we use the HCMLP as function approximation and predictive model to 

estimate the absorbance y using as input the time 𝑥1 and the percentage of the culture 

media concentration 𝑥2  as is illustrated in Figure 1b. For practical purposes and for 

convenience of the reader, we present a brief description of the computed calculations for 

the HCN. By identifying points 𝑥 =  (𝑥1 , 𝑥2) ∈  ℝ2 with points 𝑥⃗ = [𝑥1 , 𝑥2, 1], it is well 

known that given a symmetric 3x3 matrix 𝐴, the set of points 𝑥 =  (𝑥1 , 𝑥2) ∈  ℝ2 such 

that 𝑥⃗𝐴𝑥⃗𝑇 = 0 lie in a conic, i.e. 

 

[𝑥1 𝑥2 𝑥3]  [

𝑎1,1 𝑎1,2 𝑎1,3

𝑎2,1 𝑎2,2 𝑎2,3

𝑎3,1 𝑎3,2 𝑎3,3

]  [
𝑥1

𝑥2

1
]  =  0                                                         ( 1 ) 
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On the other hand, the relative position of a point (𝑥1 , 𝑥2) with respect to a conic can be 

obtained by means of the sign of the following number (𝑥⃗𝑇 𝑥⃗ )𝐴. Finding the best 

approximation of a solution to the equation (𝑥⃗𝑇 𝑥⃗ )𝐴 = 0 for a set of points (𝑥1 , 𝑥2)  is 

usually called the algebraic estimation of the conic passing through these points. 

Therefore, the output of the neuron in the hidden layer can be written as a function 

composition of a non-linear associator and the sigmoid function 𝐺 (Serrano-Rubio et al., 

2017).Thus, the output of a neuron 𝑜𝑖  in the hidden layer is written as follows 
 

          𝑜𝑖 =  
1

1+𝑒𝑥𝑝(−𝜆(𝑥⃗𝑇 𝑥⃗)⋅𝐴(𝑖))
,                                                                            ( 2 ) 

 

Where 𝜆 ∈  ℝ  is the slope of the sigmoid function. Note that the machine learning 

problem, from an optimization perspective, consist in finding parameters 𝑎𝑖,𝑗 and 𝜆. 
 

The Spherical Evolutionary Algorithm (SEA) is implemented for training the HCMLP 

(Serrano-Rubio et al., 2018). The population of SEA represents the potential solutions 

that determines an optimal approximation to the target outputs. These solutions are 

vectors which are encoded as individuals for the evolutionary algorithm. Therefore, the 

goal of the training is to find the vector of parameters that determines an optimal 

approximation to the target dataset. Figure 1b shows the encoding of a single solution. 

 
The experimental setup is given as follows: The number of neurons in the hidden layer is 

varied to obtain the best topological-architecture for our Evolutionary Artificial Neural 

Network. The number of neurons is as follows: 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10. We use a 

dataset of 190 feature vectors. The population for the evolutionary algorithm was set to 

30 individuals with uniform random initialization in the domain [−1, +1]. The stop 

criteria of the training occurs when the algorithm reaches an error of 0.0001 or 10000 

fitness function evaluations. As fitness function we use the widely tested least square 

function during the training stage.Our model is validated using standard growth factors. 

We train the machine learning model using three pH values (5.0, 7.0 and 9.0) and multiple 

medium concentrations (100%, 80%, 60%, 40%, 20% and 10%). Our model predicts 

absorbance values for any configuration of pH in [5.0, 9.0], concentration of medium in 

[10%, 100%], and any timestamp, hours (ℎ), between 0 ℎ and 8 ℎ. 
 

 

 

 

a) Hyperconic Multilayer Perceptron. 

 

b) Technique to encode a single solution. 

Each solution consist of weights 𝑎𝑖,𝑗 

where 𝑎𝑖,𝑗  represents the parameters to 

estimate for each conic neuron. 

 

Figure 1. Hyperconic Machine Learning Framework. 
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3. Results 

Common mathematical approaches, on microbial growth kinetics, assumes specific 

conditions for optimal bacterial growth. However, biological reactors cannot keep the 

same exact settings during prolonged periods of time due to inherent unpredictability on 

the reactor system. Thus, designing and deploying an approach capable of modelling the 

nonlinear behavior of microbial growth, lessen the amount of resources necessary for 

complex experiments in bioreactors. A key advantage is the reduction of spent time in 

laboratories because our proposed method can learn a characteristic surface, and predict 

outputs for conditions not present in the experimental dataset. In this study, we focus on 

the robust P. aeruginosa strain which flourish in pH values around 7.0. Our mathematical 

and computational model predicts the dynamic growth of bacteria P. aeruginosa when 

tuning two main operation conditions: pH and concentration media culture. 

Inputs/outputs of learning model 𝐹 are as follows 
 
 

𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 =  𝛽 =  𝐹(𝑝𝐻, [𝑚𝑒𝑑𝑖𝑎 𝑐𝑢𝑙𝑡𝑢𝑟𝑒 ], 𝑡),  
 
 

Where 𝛽 is the output-absorbance value, pH is the acidity or basicity of the solution, in 

our case of study pH=7.0, concentration media culture is the solution concentration and 𝑡 

represents a specific time. We perform statistical hypothesis testing to verify that 

microbial growth depends upon bioreactor's operation conditions. Here we use an 

ANOVA test with a significance level of 𝛼 = 0.05, thus confirming the impact on 

microbial growth when varying growth conditions. Figure 2 shows a visual comparison 

of experimental-data time series using different media culture during the 8h time interval, 

versus output surface response using our hyperconic multilayer perceptron. 

 

Validation of the proposed model is performed in two different phases. In phase 1, we 

obtain the training error of 6.6939E-4, which refers to the difference between the value 

predicted by the HC-MLP and the experimental value, considering only the data set with 

which the network is trained. In phase 2, the testing error of 6.9530E-4 is obtained, i.e., 

the difference between the predicted value and the test-experimental value of some 

growth condition that is within the established interval for the input variables (pH, time 

and concentration media culture). Table 1 shows the comparison of the absorbance value 

predicted by the HC-MLP algorithm and the experimental value for the P. aeruginosa 

strain at pH=7.0. The calculated error presents an order of magnitude between 10E-3 and 

10E-5. The order of magnitude of these errors can be compared with similar studies 

carried out in the area of food microbiology, regarding the prediction of microbial growth 

in foods exposed to environmental conditions. In this sense, the proposed mathematical 

models in literature receive pH and temperature as inputs (Pla et al., 2015). Such models 

are used to predict the growth of 3 strains: Pseudomonas spp. (Baranyi et al., 1999), 

Listeria monocytogenes (Oksüz and Buzrul, 2021) and Bacillus cereus INRA-AVTZ 415 

(Pla et al., 2015) in different culture media obtaining in all cases errors in the adjustment 

of the order of 10E-3. 

 

If the testing error of the HC-MLP algorithm is compared with the error obtained in the 

literature, it is evident the reduction of 1 order of magnitude in the fit of the data by the 

proposed algorithm. This means, that our tool improves on what is reported in the 

literature with respect to similar works for fitting experimental microbial growth data. 

Therefore, our most important contribution is the development of a methodology for the 

prediction of microbial kinetics based on robust and modern machine learning tools, and 

versatile enough to fit experimental data of any kind. 
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Table 1. Experimental value versus predicted value 

absorbance when training HC-MLP with pH=7.0 

Exp 

Microbial 

Growth 

condition 

Absorbance (𝜷) 

Error 

(SSE) 
t 

(h) 

[Culture 

Media] 

% 

Experi- 

mental 
Predicted 

1 0.25 80 0.0559 0.0650 8.281E-5 

2 3.5 60 0.2728 0.2670 3.364E-5 

3 5.25 40 0.3860 0.4210 1.220E-3 

4 6.00 20 0.3879 0.3910 1.600E-5 

5 7.25 10 0.2991 0.3380 1.140E-3 
 

 
Figure 2. Surface response using our hyperconic 

multilayer perceptron 
 

4. Conclusions 
We have proposed the first model to predict the growth of the native bacterial strain P. 

aeruginosa based on Hyperconic Networks and conformal algebra. We have developed a 

mathematical and computational method to systematically select the structure of kinetic 

models and partially automatize the laboratory process. We have collected experimental 

data of our bacterial strain and statistically validated our approach to predict the microbial 

growth under operation conditions. Our studies indicates that an artificial intelligence-

based predictor of microbial growth can be generated that takes into account changes in 

growth conditions. In the future we plan to apply our proposed approach to other bacterial 

strains and advance HCMLP to forecasting dynamics of multiple microbial measures. 

This methodology can be extended to adjust microbial growth data of any microorganism 

to obtain a characteristic growth surface as a response to changes in the conditions that 

most affect it. 
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Abstract 

This work presents an integrated planning and scheduling framework for the optimal 

contract selection problem of Contract Manufacturing Organisations (CMO) under 

uncertainty. Considering a multistage, multiproduct, batch facility of a secondary 

pharmaceutical industry, an aggregated MILP planning model is firstly proposed 

including material balances and allocation constraints. Utilizing a rolling horizon 

approach, the production targets are then provided to a precedence-based MILP 

scheduling model to define batch-sizing and sequencing decisions in detail. To model 

demand uncertainty, a scenario-based approach is proposed, considering the Value-at-

Risk (VaR) and Conditional Value-at-Risk (CVaR) measures. Since large number of 

scenarios imposes significant challenge to computations, a scenario reduction framework 

is integrated to reduce the total solution time, when considering large-scale problem 

instances. The proposed methodology increases the profitability of CMOs by selecting 

the optimal contract combinations depending on their risk tolerance while considering the 

availability and optimal utilization of underlying production resources. 

Keywords: Contract Manufacturing Organizations, Conditional Value-at-Risk, MILP. 

1. Introduction 

Over the past few years, large R&D pharmaceutical companies have increasingly 

outsourced non-core activities, such as manufacturing, to Contract Manufacturing 

Organisations (CMOs), which are companies without their own product portfolio. This 

policy enables multinational pharmaceutical industries to reduce their costs and 

emphasise on drug discovery and marketing, which are considered as key parts for their 

value chain. Typically, drug development is a time-consuming process, as it takes at least 

10 years on average for a new medicine to be in the marketplace. Additionally, demand 

of newly developed pharmaceutical products is usually highly uncertain. Lower drug 

efficacy can affect the demand and total sales, while in the worst case, it can lead to the 

suspension or even the withdrawal of the drug. Under this dynamic and uncertain 

environment, a CMO must decide the best contract combination to accept, so as to 

maximize its profits (Marques et al.
, 

2020)
. 

2. Problem statement 

The problem under consideration is mainly concerned with the optimal contract selection 

of a secondary, multistage, pharmaceutical contract manufacturer (CMO). Secondary 

pharmaceutical manufacturing is focused on the further processing of active ingredients 

(APIs), by adding excipient inert materials to produce the final products, usually in SKU 
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form. Secondary manufacturers consist typically of three main production stages 

operating in batch mode:, granulation, compression, and coating (Marques et al., 2020). 

In each stage, the production takes place in multiple parallel lines, while product-

dependent changeovers occur between consecutive product batches, due to the necessary 

cleaning operations. To ensure the required purity and quality of final products, batch 

splitting or mixing is not typically allowed in these industries. Although there is no 

intermediate storage capacity between stages, if necessary, product batches can remain in 

a production unit after completing their process. The pharmaceutical plant operates 24 

hours per day, for five days a week, in order to satisfy a weekly order-driven demand. 

Contract manufacturers (CMOs) don’t produce their own product portfolio but serve 

other companies in the pharmaceutical industry on a contract basis to provide 

comprehensive services related to drug manufacturing. The length of contracts usually 

ranges from six months up to one year or more. A contract can include currently-

developed products, characterized by highly volatile demand and high selling prices, or 

drugs with less uncertain demand and lower profit margins (Johnson. 2005). Currently-

developed products are subject to unsystematic risk, while products that have been 

already placed into the market are affected only by systematic risk. Systematic risk is 

inherent to the whole market, reflecting the impact of economic, geo-political and 

financial factors, while unsystematic risk is unique to a specific drug or a group of 

products. Drugs that are subject only to systematic risk are characterized by similar 

demand fluctuations. Hence, an unexpected event can lead to an increase or a decrease in 

the demand for all mature drugs. On the other hand, new pharmaceutical products are 

characterized by strong demand fluctuations which are mainly related to their level of 

efficacy and unexpected side effects. In the worst case, strong side effects can lead even 

to the withdrawal of the drug. Considering these facts, decision-makers must determine 

the best contact combinations to be signed in order to increase expected profits, while 

considering the capacity of equipment, plant operational and design constraints, and the 

risk tolerance of the company. 

3. Solution strategy 

To model  the problem under consideration a hierarchical approach is proposed based on 

the idea of rolling horizon framework (Johnson. 2005). An aggregated MILP model is 

proposed for determining planning level decisions such as weekly production and 

inventory targets. A general precedence MILP  model, inspired by the work of Cerdá et 

al., (2020), is then proposed, for making batch sizing, timing, allocation and sequencing 

decisions. A feedback loop is included as well, to converge the produced amount of both 

decision levels. 

Given a set of available and already agreed contracts, a CMO must define the best contract 

mixture to maximize its profits while avoiding high risk exposure. For each contract, 

demand uncertainty is modeled using several independent scenarios which represent 

different possible instances while they are associated with a weight representing the 

probability of the scenario realization. All contract combinations and all the individual 

scenarios are independent, thus the integrated planning and scheduling problem of each 

scenario can be solved separately (Johnson. 2005). The planning MILP model and the 

proposed solution algorithm are presented in the following sections in detail. 

3.1. Planning MILP model 

 

𝑞𝑗
𝑚𝑖𝑛𝑊𝑉𝑝,𝑗,𝑤 ≤ 𝑄𝑝,𝑗,𝑤 ≤ 𝑞𝑗

𝑚𝑎𝑥𝑊𝑉𝑝,𝑗,𝑤     ∀ 𝑝 ∈ 𝑃, 𝑗 ∈ 𝑃𝐽𝑝, 𝑤 ∈ 𝑊 (1) 
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∑ 𝑄𝑝,𝑗,𝑤
𝑗∈𝐽𝑆𝑠

≤ ∑ 𝑄𝑝,𝑗,𝑤
𝑗∈𝐽𝑆𝑠−1

+ 𝐼𝑝,𝑠,𝑤−1     ∀ 𝑝 ∈ 𝑃, 𝑠 ∈ 𝑆, 𝑤 ∈ 𝑊: 𝑠 > 1 (2) 

𝐼𝑝,𝑠,𝑤−1 + ∑ 𝑄𝑝,𝑗,𝑤
𝑗∈(𝐽𝑆𝑠∩𝑃𝐽𝑝)

= 𝐼𝑝,𝑠,𝑤 + 𝑑𝑝,𝑠,𝑤 − 𝐵𝑝,𝑠,𝑤 + 𝐵𝑝,𝑠,𝑤−1 

∀ 𝑝 ∈ 𝑃, 𝑠 ∈ 𝑆, 𝑤 ∈ 𝑊 

(3) 

𝑁𝑝,𝑗,𝑤 ≥
𝑄𝑝,𝑗,𝑤

𝑞𝑗
𝑚𝑎𝑥 

 ∀ 𝑝 ∈ 𝑃, 𝑗 ∈ 𝑃𝐽𝑝, 𝑤 ∈ 𝑊 (4) 

𝑇𝑝,𝑗,𝑤 = 𝑓𝑥𝑝,𝑗𝑁𝑝,𝑗,𝑤 +
𝑄𝑝,𝑗,𝑤

𝑣𝑡𝑝,𝑗
     ∀ 𝑝 ∈ 𝑃, 𝑗 ∈ 𝑃𝐽𝑝, 𝑤 ∈ 𝑊 (5) 

𝐼𝑝,𝑠,𝑤 ≤ 𝑐𝑎𝑝𝑝,𝑠      ∀ 𝑝 ∈ 𝑃, 𝑠 ∈ 𝑆,𝑤 ∈ 𝑊 (6) 

∑∑𝐼𝑝,𝑠,𝑤
𝑠

≤ 𝑤𝑐      ∀ 𝑤 ∈ 𝑊

𝑝

 (7) 

∑𝑇𝑝,𝑗,𝑤
𝑝

+∑𝑐𝑙𝑝,𝑗𝑊

𝑝

𝑉𝑝,𝑗,𝑤 ≤ ℎ       ∀ 𝑗 ∈ 𝐽, 𝑤 ∈ 𝑊 (8) 

∑ 𝑇𝑝,𝑗,𝑤
𝑗∈(𝐽𝑆𝑠∩𝑃𝐽𝑝)

≤ 𝑎𝑣𝑙𝑠       ∀ 𝑠 ∈ 𝑆, 𝑤 ∈ 𝑊 (9) 

 

𝑚𝑎𝑥 ∑𝑖𝑛𝑐
𝑐

⏞    
initial contarct payment

+∑∑ ∑ 𝑊𝑝,𝑗,𝑤𝑑𝑝,𝑠,𝑤
𝑗∈(𝐽𝑆𝑠∩𝑃𝐽𝑝)𝑝𝑤

𝑝𝑟𝑝
⏞                    

total sales

−

∑∑𝐵𝑝,3,𝑤𝑏𝑐

𝑝𝑤

⏞          
backlog cost

−∑∑∑𝐼𝑝,𝑠,𝑤
𝑠𝑝𝑤

𝑖𝑐𝑝
⏞            

inventory cost

−∑∑ ∑ 𝑄𝑝,𝑗,𝑤
𝑗∈𝑃𝐽𝑝𝑝𝑤

𝑞𝑐𝑝
⏞              

production cost

−

∑𝑓𝑟𝑝𝑟𝑐𝑝
𝑝

⏞      
raw material fixed cost

−  ∑𝑟𝑐𝑝 ∑ ∑(𝑄𝑝,𝑗,𝑤 −

𝑤𝑗∈𝑃𝐽𝑝𝑝

𝑓𝑟𝑝)
⏞                  

raw material variable cost

                                

 
 

 (10) 

Constraints (1) impose upper and lower limits on the production of each product Qp,j,w, 

equals to the maximum (𝑞𝑗
𝑚𝑎𝑥) and the minimum capacity (𝑞𝑗

𝑚𝑖𝑛) of the production unit 

j, respectively. According to the constraints (2), the amount of a product p at each stage s 

at the end of week w, should not exceed the amount that has been produced at the previous 

stages plus the amount being stored from the previous week, Ip, s,w-1. Material mass 

balances are expressed via constraints (3). The total produced and the stored amount of a 

product p, must be equal to the weekly demand (dp,s,w) and the new stored amount, minus 

the unsatisfied demand of the current week (backlog, Bp,s,w), plus backlog from previous 

weeks. The number of batches of each product is expressed by integer variable Np,j,w, 

which is determined by constraints (4). It is assumed that each production unit will 

process a certain number of batches at a full capacity and a single batch at flexible size at 

every stage, which is a valid assumption for realistic case studies. Furthermore, the 

processing time of each product at each processing unit j, Tp,j,w, is provided by constraint 

(5). The terms fxp,j and vtp,j express the coefficient for the fixed and the variable processing 

time, respectively. Constraints (6) and (7) guarantee that the stored amount doesn’t 

exceed the total warehouse capacity of the plant wc, and the individual capacities of each 

product at each stage capp,s. According to constraints (8), the total processing time and 
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the average cleaning time clp,j of each production unit must be lower than the available 

time horizon. Additionally, constraints (9) impose an extra upper bound on the total 

production time of each production stage. The upper bound is given by parameter avls. 

and its initial value is equal to the time horizon h. Since the planning model doesn’t 

include timing and sequencing constraints, in some cases the production targets provided 

to the scheduling level could be infeasible. To converge the production amounts of the 

two MILP models, the upper bound is adjusted to the maximum production time defined 

by the scheduling level. Hence, the planning MILP model becomes more accurate. 

Finally, the objective function focuses on the maximization of the total profit of the plant. 

The main income is related to the initial payment of each signed contract and the total 

revenue of sales. On the other hand, costs include backlog, inventory, production and raw 

material costs. It is also assumed that if a contract is signed an initial amount of raw 

materials must be purchased regardless of the actual demand and the produced amount of 

products. 

3.2. Solution algorithm 

The proposed solution framework involves three phases. The first phase is concerned with 

the examination of the feasibility of each contract combination. In particular, the 

predominant scenario of each combination is solved by using the aggregated planning 

MILP model. If the generated solution leads to full demand satisfaction, the underlying 

contract combination is proven feasible. If a contract combination is shown to be 

infeasible, then any combination which is a superset of the former must also be infeasible. 

For example, if the combination of contracts C1 and C2 is infeasible then a combination 

with the contracts C1, C2 and C3 is also infeasible.  

In the second phase, the predominant scenario of each combination that has been proven 

feasible in the first phase is solved by using the integrating planning and scheduling MILP 

framework. If the solution of any iteration of the rolling horizon framework leads to 

unsatisfied demand (generation of backlog) then the contract combination is proven 

infeasible and thus, any combination which is a superset of the former, deemed infeasible 

as well.  

Since all contract combinations and the individual scenarios of each combination are 

independent, the proposed integrated planning and scheduling MILP framework can be 

solved separately for each combination and each contract. Thus, regarding the third phase 

of the proposed algorithm, the planning and scheduling problem of each combination is 

solved for each scenario. To cope with  problems that involve large number of scenarios, 

a scenario reduction framework based on the work of Li and Floudas (2014), is utilized. 

Considering scheduling level decisions, the total profit is accurately reported for all 

scenarios and thus, risk metrics such as Value-at-Risk and Conditional Value-at-Risk can 

be calculated. As a result, decision-makers can determine the optimal contract 

combination based on their risk tolerance. 

4. Application study 

The efficiency and applicability of the proposed solution strategy is illustrated using a 

representative case study concerning a secondary pharmaceutical CMO. The problem is 

focused on a multistage batch facility, which consists of three stages (granulation. 

compression. and coating). Each stage includes multiple production units with varying 

capacity and production rates. The CMO must decide the best contract combination 

among 6 contracts, as it is presented in Table 1, while contract C1 is already agreed. Each 

contract has four demand scenarios: high, target and low demand, and failure. Contracts 

C1-C3 includes products with less demand volatility and smaller profit margins while 
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contracts C4-C6 are related to new products with higher selling prices. The time horizon 

is 1 year (52 weeks) and a weekly demand has to be satisfied for each product. The 6 

contracts lead to 28 combinations with different demand distributions. Since contracts 

C1-C3 are subject only to systematic risk, their combinations consist of the same 

scenarios including high, target and low demand with the same realization probabilities. 

On the other hand, if a combination includes contracts with new drugs, the probability of 

combined scenarios is calculated as the product of the probabilities of the new drugs and 

the probability of the developed products. 

Table 1 Contract data 

contracts 
Contract availability / 

Product type 

Products 

Demand multiplier for each scenario and 

probability of realization 

High Target Low Fail 

C1 Agreed/developed 1,2 1.2 (10%) 1 (80%) 0.8 (10%) 0 (0%) 

C2 non agreed/developed 3,4 1.2 (10%) 1 (80%) 0.8 (10%) 0 (0%) 
C3 non agreed/developed 5,6,7 1.2 (10%) 1 (80%) 0.8 (10%) 0 (0%) 

C4 non agreed/new  8,9,10 1.2 (15%) 1 (60%) 0.5 (20%) 0 (5%) 

C5 non agreed/ new 11,12 1.4 (20%) 1 (50%) 0.4 (20%) 0 (10%) 
C6 non agreed/ new 13,14 1.7 (25%) 1 (40%) 0.2 (15%) 0 (20%) 

 

Table 2 Summary of results  

Feasible Contact combination 
Exp. 

Profit 
VaR90% VaR95% CVaR90% CVaR95% 

Max. 

Profit 

C1-C3 0.96 0.76 0.76 0.76 0.76 1.15 

C1-C4 1.83 1.12 0.43 0.76 0.42 2.46 

C1-C5 0.74 0.27 0.27 0.27 0.27 1.09 
C1-C6 1.83 0.42 0.42 0.42 0.41 3.42 

C1-C3-C5 1.50 1.15 1.15 1.10 1.06 1.99 

C1-C3-C6 2.36 1.29 1.29 1.22 1.16 4.30 

C1-C5-C6 2.66 0.76 0.76 0.76 0.76 4.23 

*The values represent millions of relative monetary units (r.m.u.) 

 

According to the first phase of the proposed solution algorithm, all combinations are 

solved using the aggregated planning model for the predominant scenario, by considering 

the target demand. Then, the feasible combinations are solved by applying the integrated 

planning and scheduling framework. The feasible combinations according to the second 

phase are presented in Table 2. Contract combinations C1-C3-C4 and C1-C4-C5 were 

proven feasible in the first but not in the second stage of the algorithm. Regarding the 

third phase of the solution framework, the planning and scheduling problem of each 

scenario is solved for all feasible combinations. To reduce the computational time, a 

scenario reduction algorithm is utilized so as to consider up to 10 scenarios for each 

combination. The expected profit, the Value-at-Risk, the Conditional Value-at-Risk, and 

the maximum profit for each combination are summarized in Table 2. Also, Figure 1 

illustrates a bubble chart comparing expected profit, VaR and CVaR for all contract 

combinations. The diameter of the bubble represents the CVaR value of contract 

combinations. A favorable contract combination should be represented by a large bubble 

in the top right-hand corner of the diagram, implying high expected profit, VaR and CVaR 

values. A risk-neutral approach indicates that combination C1-C5-C6 is the optimal one 

since it leads to the highest expected profit. However, considering VaR90% and CVaR90%, 

the combination C1-C3-C6 seems more attractive, when a risk-averse policy is applied. 

In that case, the profit will exceed 1.29 million of relative monetary units (r.m.u) with a 
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90% confidence interval, while the mean of the lowest 10% profits will be equal to 1.16 

million r.m.u. 

Figure 1 Expected profit, VaR90% and CVaR90% of each contract combination

5. Conclusions

In this work and optimization framework is proposed for the optimal contract selection 

problem of a CMO in the secondary pharmaceutical industry. Demand uncertainty is 

modeled by using discrete independent scenarios with known probabilities, while the 

consideration of scheduling level decisions into an hierarchical planning and scheduling 

approach leads to accurate profit estimations. In contrast with risk-neutral approaches,

the proposed methodology allows decision makers to choose the optimal contract 

combinations depending on their risk tolerance.
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Abstract 
Carbon dioxide emission from the industrial sectors in Italy is second only to emissions 
from the energy sector. The implementation of carbon capture and storage chains, while 
considered an ideal solution to decarbonize the industry sector, is cause for additional 
concern due to the seismic profile of the Italian peninsula. A nationwide multi-objective 
carbon capture and storage chain is here optimized through a mixed integer linear 
programming framework, aiming at both cost minimization and reduction of the risk 
factor linked with the susceptibility of transport to local seismic activity. The resulting 
minimum specific CO2 avoidance cost resulting from the economic optimization is 64.7 
€/t for a 50% carbon reduction target, while the minimization of seismic risk determines 
an increase in infrastructural costs up to 79.4 €/t (+22.5%).  

Keywords: Cement, steel, oil refining; Carbon capture and storage; Seismic risk; Multi-
objective optimization; Mixed integer linear programming. 

1. Introduction 
Cement plants, steel mills and refineries are responsible for a significant share of carbon 
dioxide (CO2) emissions (EEA, 2020), which are among the greenhouse gases responsible 
for the global threat of climate change. Implementing carbon capture and storage (CCS) 
technologies is key to reduce a significant portion of CO2 emissions from these hard-to-
abate sectors (Bui et al., 2018). A CCS system is an ensemble of technologies aimed at 
reducing anthropogenic CO2 emissions. In particular, the capture of CO2 consists in its 
separation from a process stream through different methods depending on the industry 
and the applied technology, then the transport step is necessary to move the captured CO2 
from emission sources towards areas suitable for sequestration, the latter carried out by 
injecting the CO2 deep into underground geological basins. Given the inherent complex, 
multi-stage nature of CCS chains, the optimization of such systems proves fundamental 
to achieve a substantial level of decarbonization. Mixed integer linear programming 
(MILP) models are commonly regarded as powerful methodologies to optimize complex, 
multifaceted systems, such as energy systems, and they have been recently exploited for 
the case of CCS networks (Tapia et al., 2018). Several studies optimized CCS chains at 
different scales, such as region-to-country scale (Lee et al., 2017; Elahi et al., 2017)). 
Additionally, higher-level continent-wide analyses were proposed as well (Hasan et al., 
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2015; d’Amore et al., 2021). One key issue in the deployment of CCS infrastructures is 
their social sustainability. Although being practiced for over 30 years, CCS is nowadays 
still rising public concern, especially when the possibility of leakage is taken into account 
in the vicinity of densely populated areas (d’Amore et al., 2018). In this context, seismic 
activity poses an additional requirement during the planning, installation, and operation 
of a CCS system, particularly with regards to pipelining (Psyrras and Sextos, 2018). In 
this work we will focus on optimizing a comprehensive CCS framework to abate the CO2 
emissions from the Italian industry sector. However, considering the widespread seismic 
activity in the Italian peninsula, our model will aim at simultaneously minimizing cost 
and risk (with respect to seismic phenomena) of a CCS system in Italy. Italian industrial 
stationary sources (i.e., cement, steel and refinery sectors) will be taken into account 
within a multi-objective MILP modeling framework.  

2. Modelling framework 
This section will describe the three echelons of the optimized Italian CCS system in terms 
of key model input parameters. The level of CO2 emissions and location of industrial 
plants are taken from EEA (2020) and referred to the year 2017. The total number of 
emission points was reduced from that reported in the EEA database to decrease the 
computational burden while ensuring the representativeness of the sample (i.e., at least 
80% of the emissions from each sector are included in the optimization). The reduced 
dataset includes a total of 27 CO2 emitting nodes n, subdivided into 20 cement plants 
(described through subset c), 5 refineries (described through subset r) and 2 steel mills 
(described through subset s).  

The CO2 capture stage is modelled through a set k={kc, ks1,2,3, kr1,2,3} whose components 
refer to: (kc) oxy-fuel capture for cement plant; (ks1) absorption from power plant stack 
at steel mill; (ks2) absorption from (ks1) and coke oven flue gas at steel mill; (ks3) 
absorption from (ks1+ks2) and capture from sinter plant at steel mill; (kr1) pre-combustion 
capture from steam methane reformer at refinery; (kr2) capture at (kr1) and post-
combustion capture on power unit at refinery; and (kr3) which comprises (kr1+kr2) and 
post-combustion capture from further emission points at refinery. A complete description 
of capture plants can be found in d’Amore et al. (2021), including the parameters for 
determining the CO2 avoidance cost CCAk,n [€/t] of capture plant k installed in an 
industrial node n, comprising scale effects on capture plant size. In this study, the CO2 
can be transported through either onshore or offshore pipelines, which are discretized 
through set p into possible ranges of flowrate to account scale effects of total transport 
scale on unitary transport cost UTCp [€/km/t] (Rubin et al., 2015). Offshore transport cost 
is increased by a γn,n’ [=1.71] (d’Amore et al., 2021). Differently, sequestration entails a 
fixed unitary cost USC [=7.2 €/t (Rubin et al., 2015)], which is increased by a θn [=2.5] 
factor to account for offshore basins (d’Amore et al., 2021). The positional and capacity 
data on storage are taken from Donda et al. (2011). 

The seismicity-related parameters are obtained through a dataset containing the 
coordinates of polling points over the entire Italian peninsula, which are then averaged 
into seismic areas and implemented to calculate the risk specific to each pipeline in the 
transport stage of the CCS system (Gehl et al., 2014). 

3. Mathematical formulation 
The MILP model aims at minimizing both the total cost TC [€/year] of the CCS system 
and the total risk TR [ruptures/year] associated to the transport stage: 
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𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = min {𝑇𝑇𝑇𝑇;𝑇𝑇𝑇𝑇}  (1) 

The total cost of Eq.(1) is given by the contributions of capture (TCC [€/year]), transport 
(TTC [€/year]), and sequestration stages (TSC [€/year]): 

𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇𝑇𝑇  (2) 

In particular, TCC of Eq.(2) is evaluated according to the captured CO2 flowrate INk,n 
[t/year] through capture plant k in node n: 

𝑇𝑇𝑇𝑇𝑇𝑇 = � �𝐼𝐼𝐼𝐼𝑘𝑘,𝑛𝑛 ∙ 𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘,𝑛𝑛�
𝑘𝑘,𝑛𝑛

 
 

(3) 

TTC of Eq.(2) depends on the transported flowrate Qq,n,n’ from node n to n’ (resulting 
from the mass balance among nodes), on the distance between nodes LDn,n’ [km], and on 
unitary cost factors UTCp [€/t/km]: 

𝑇𝑇𝑇𝑇𝑇𝑇 = � �𝑄𝑄𝑝𝑝,𝑛𝑛,𝑛𝑛′ ∙ 𝐿𝐿𝐿𝐿𝑛𝑛,𝑛𝑛′ ∙ 𝑈𝑈𝑈𝑈𝑈𝑈𝑝𝑝 ∙ 𝛾𝛾𝑛𝑛,𝑛𝑛′�
𝑝𝑝,𝑛𝑛,𝑛𝑛′

 
 

(4) 

Storage cost TSC of Eq.(2) is proportional to the yearly stored amount OUTn [t/year] and 
to the unitary storage cost USC [€/t], the latter increased by θn if located offshore: 

𝑇𝑇𝑇𝑇𝑇𝑇 = � (𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛 ∙ 𝑈𝑈𝑈𝑈𝑈𝑈 ∙ 𝜃𝜃𝑛𝑛)
𝑛𝑛

 
 

(5) 

The overall stored amount is imposed to be larger than the set Italian carbon reduction 
target of 50% of yearly emissions from industry. TR of Eq.(1) is the sum of all the repair 
rates RRn,n’ [ruptures/year] pertaining to the pipelines employed in the transport grid, the 
latter accounted through a binary variable λp,n,n’ associated to sizes p between n and n’: 

𝑇𝑇𝑇𝑇 = � �𝜆𝜆𝑝𝑝,𝑛𝑛,𝑛𝑛′ ∙ 𝑅𝑅𝑅𝑅𝑛𝑛,𝑛𝑛′�
𝑛𝑛

 
 

(6) 

𝑅𝑅𝑅𝑅𝑛𝑛,𝑛𝑛′ = 0.002416 ∙ 𝐾𝐾1 ∙ 𝐿𝐿𝐿𝐿𝑛𝑛,𝑛𝑛′ ∙ max {𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛;𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛,𝑛𝑛′
𝑚𝑚𝑚𝑚𝑚𝑚;𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛′} ∀𝑛𝑛,𝑛𝑛′ (7) 

where K1 is a parameter representing the effect of transport characteristics and 
construction material over repair rate, LDn,n’ is the length of the arc, and PGV (calculated 
as its maximum among its values in n, at the center of the pipe, and in n’) is the peak 
ground velocity, defined as the highest horizontal ground velocity during a seismic event 
expected in the next 50 years, with an exceedance probability of 10% (USGS, 2021). In 
particular, K1 [=0.6] was taken from ALA (2001) by assuming carbon steel pipelines 
transporting dry CO2, while PGV was evaluated from 16852 points (then discretized into 
315 squares of 50 km of size) of spectral acceleration SA [g] computed by the Istituto 
Nazionale di Geofisica e Vulcanologia – INGV (Stucchi et al., 2011), according to the 
formulation proposed by Allen and Wald (2007): 

𝑃𝑃𝑃𝑃𝑃𝑃 = (386.4 ∙ 𝑆𝑆𝐴𝐴)/(2𝜋𝜋 ∙ 1.65)   (8) 

4. Results 
The MILP multi-objective problem was implemented in GAMS software and optimized 
through CPLEX solver (maximum optimality gap < 3.9 % and solution time < 2 hours). 
Results exhibit a clear trade-off between the two objectives (Table 1 and Figure 1), with 
the cheapest configuration (64.7 €/t) being characterized by the highest value of risk (13.9 
ruptures/year) (Case A).  
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Table 1. Results in terms of specific total costs (TC [€/t]), specific costs breakdown (TCC, TTC, 
TSC [€/t]), total risk (TR [ruptures/year]), optimality gap (Opt. gap [%]) and solution time (Sol. 
time [s]). 

 TC TCC TTC TSC TR Opt. gap Sol. time 
Case [€/t] [€/t] [€/t] [€/t] [rup./y.] [%] [s] 
A 64.7 51.8 5.7 7.2 13.9 3.87 6631 
B 75.6 64.2 4.2 7.2 1.7 0.01 300 
C 79.4 67.8 4.4 7.2 1.3 0.01 54 

The safest infrastructure (1.3 ruptures/year) is the most expensive (79.4 €/t) (Case C). 
Case B represents an interesting configuration, characterized by a reasonably balanced 
solution between costs (75.6 €/year) and risk (1.7 ruptures/year). The costs breakdown 
shows the significant contribution of the capture stage, independently from the optimized 
case study, with specific capture costs varying from a minimum of 80.1% (Case A) up to 
a maximum of 85.4% (Case C) of total costs, while transport and sequestration represent 
an expenditure in the range of 14.6% (Case C) – 19.9% (Case A) altogether. 

More detailed analysis on the capture stage reveals for Case A (best economic network) 
the significant contribution of cement plants and steel mills in terms of captured CO2, 
being these the cheapest options implemented in this model (Figure 1a). As for refineries, 
these are generally not employed as CO2 sources, except for the site located in Sardinia, 
to which a capture plant kr1 is installed to the steam methane reformer to exploit the 
beneficial effect on costs of this particularly large emitter. On the other hand, Case A 
makes extensive use of transportation arcs crossing areas with high values of spectral 
acceleration, with negative consequences on the performance of this network in terms of 
seismic risk results. Differently, the risk-oriented optimization takes advantage of the lack 
of seismicity in the Sardinian area by installing full-scale capture plants at its refinery, 
which determines the substantial increase in capture costs of Case C (Figure 1c). 
However, this increase in costs can be limited if considering Case B, which still takes 
advantage of the non-seismicity of the Sardinian area for safely transporting significant 
amounts of CO2, but nonetheless suggests some minor modifications to the captured and 
transported flowrates to optimize the costs of these two stages (Figure 1b). 

A sensitivity analysis on the minimum carbon reduction, which is set as lower bound for 
CO2 capture (here varied between 20% and 80% of Italian emissions from industry, 
against the 50% target already discussed as base case) reveals a minimum specific cost 
(Case A) ranging between 59.0 €/t for a 20% capture target (-9.0% over base case) and 
80.7 €/t for a 80% capture target (+24.5 % over base case). The cost increases alongside 
the capture target due to the necessity of exploiting progressively more expensive CO2 
sources and more complex transport infrastructures. Oppositely, the best networks in 
terms of risk minimization show a total risk varying between 0.1 ruptures/year for a 20 
% capture target (-88.6% over base case) and a significant 9.9 ruptures/year for a 80% 
capture target (+675.8% over base case), the latter due to the vast network of pipelines 
that is needed to achieve such a challenging reduction target. Summarizing, the safest 
networks entail an increase in costs of +64.4% (20% capture target), +22.5% (50% 
capture target) and +0.7% (80% capture target) with respect to their respective best 
economic results. 
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(a) (b) 
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Figure 1. CCS chain configurations for (a) Case A (minimum cost), (b) Case B (trade-off result), 
and (c) (minimum risk). 

5. Conclusions 
A nationwide multi-objective carbon capture and storage chain was here optimized 
through a mixed integer linear programming framework for the context of decarbonizing 
the Italian industry. The model aimed at minimizing both the total cost (economic 
objective) and the total seismic risk (risk objective). Depending on the chosen carbon 
reduction target, the best networks in terms of economic result entailed a total cost of 59.0 
€/t (20 % capture target), 64.7 €/t (50 % capture target), and 80.7 €/t (80% capture target). 
The minimization of risk determined an increase in costs in all analyzed cases due to the 
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necessity of diverting the transport infrastructure towards areas with low seismic activity 
and resulted equal to 97.0 €/t for 20% capture target (+64.4% with respect to best 
economic network), 79.4 €/t for 50% capture target (+22.5%) and 81.3 €/t for 80% capture 
target (+0.7%). Trade-off configurations were identified that could allow achieving an 
optimal balance between the two conflicting objectives hence simultaneously reducing 
costs and minimizing the exposure towards seismic risk.  
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Abstract
Food, energy and water resources are heavily interconnected in many process systems and there-
fore need to be taken into consideration holistically for sustainable decision-making, via a sys-
tematic food-energy-water nexus (FEWN) framework. A FEWN study represents a promising
decision-making support for regions characterized by scarce water resources, abundant renewable
energy resources and significant population growth, as it tackles these different challenges simul-
taneously while taking into account the effect of each solution strategy on the resource systems
at different scales. In this work, we investigate the impact of a FEWN strategy on small-scale
farming within agricultural activities. Varying water demands are evaluated on the basis of renew-
able, and non-renewable based energy sources, along with varying water sources. To this end, a
greenhouse connected to a reverse osmosis desalination plant is modeled as a mixed-integer non-
linear optimization problem and optimized for an array of objectives to enable a cost-comparison
on the basis of water scarcity. The decision-making tool is then extended towards energy-water
scheduling decisions for the optimization of agricultural scenario planning.

Keywords: food-energy-water nexus, irrigation planning, energy-water scheduling, mixed-integer
optimization.

1. Introduction
Due to a rising global population, rapid urbanization, expanding international trade, cultural and
technological changes, diversifying diets, and economic growth the demand for food, energy and
water are ever-increasing. It is estimated that by 2070 the global energy consumption will be at
least doubled, whereas the global food production already has to be doubled by 2050. The wa-
ter demand on the other hand is prognosticated to increase between 20% and 30% by 2050. To
tackle these challenges sustainably, one has to consider food, energy and water as interconnected
resources and model these holistically, which is summarized in the so called food-energy-water
nexus (FEWN) (Nie et al., 2019). The necessity of FEWN solution generation is underlined by
the following: Agriculture is the world’s largest fresh water consumer and around 30% of the en-
ergy used globally is expended on food production and supply. Additionally, 90% of the global
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power generation is water intensive. Therefore, it is essential to tackle challenges regarding these
resources not as isolated problems but rather as interconnected systems, where solution strategies
of one resource system influence the other two.

Especially for arid and semi-arid regions like Qatar where water is scarce, renewable energies
are plentiful available, the country’s food supply relies heavily on imports and the majority of
vegetables can only be produced during a limited period of time due to harsh climate conditions,
sustainable solution generation has to take into account food, energy and water as interconnected
resource systems. Consequently, fully climatized greenhouses using available renewable energies
and saline groundwater sources for agricultural applications can overcome these challenges by en-
abling yearround farming and therefore food supply. Subsequently, this work tackles the analysis
and optimization of the energy consumption of a greenhouse connected to a reverse osmosis (RO)
system for water purification. The goal is to enable qualitative and quantitative comparisons of
varying greenhouse energy-water-food set-ups.

Energy-water systems for agricultural applications have already been investigated in the litera-
ture. Li et al. (2021) used a generic optimization approach of agricultural benefit and non-point
pollution considering crop and livestock farming policies for distinct regions. Further, Lee et al.
(2020) performed a country wide investigation of irrigation management regarding the impact of
climate change on productivity, irrigation requirement and energy input of a representative crop.
In these cases the focus of the work was set on region or country wide solutions for an agricultural
sector based on energy-water systems. Work has also already been performed for interconnected
greenhouse farming and RO systems. Rahimi et al. (2021) for example conducted region- and
crop-specific techno-economic studies of nexus systems. In addition, detailed RO system model-
ing is often disregarded, especially when various farming scenarios are to be evaluated (Sadeghi
et al. (2020)).

In this work, we introduce a generic framework to link water and energy supply systems for green-
house farming. For the supply systems, detailed mathematical models are defined in which an ar-
ray of possible objectives are considered for food-energy-water nexus trade-off analysis (Avraami-
dou et al., 2018), including cost and water utilization. Section 2 provides an overview of the frame-
work. Section 3 describes the mathematical model for each subsystem, while Section 4 applies
the framework to a Qatar based greenhouse case study.

2. FEWN Framework Overview

The framework integrates decisions regarding the energy supply in terms of renewable energy re-
sources, the RO desalination system to supply purified water and the greenhouse farming as the
agricultural application. The idea is to use the framework to minimize the overall energy con-
sumption of the system while fulfilling various irrigation scenarios. Further, the model can also be
applied to energy-water planning and scheduling decisions for multi-period greenhouse farming.

Thus, the framework consists of a water supply system, energy supply system and farming system,
which altogether build an energy-water analysis tool for agricultural planning. These key compo-
nents, as well as their interactions are illustrated in Figure 1.
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Figure 1: Visualization of the FEWN framework, the interconnected resource systems and their
interactions.

3. Mathematical Modeling

The farming system determines the necessary water generation ( m3

day ), the TDS constraint ( mg
L ), as

well as the energy required to operate the greenhouse. For tomatoes for example the RO permeate
concentration should not be higher than 1920 mg

L (or 3 mS
cm ). The daily irrigation requirement can be

derived as specified in Eq. (1) or based on the average yearly water demand of the specified crop
type in the respective farming environment. Regarding the required energy for the greenhouse op-
eration the daily electricity consumption over a ten month period of a fully closed pilot greenhouse
study in Qatar conducted by Hassad Food, Qatar Fertiliser Company and Yara International ASA
is consulted (see section 4). Thus, the framework requires greenhouse specific information, i.e.
the necessary energy for successful operation (kWh), and crop specific information, i.e. the TDS
tolerance and the water demand.

Qsum(
L

day
)≥

Yield( kg
m2 ) ·Area(m2) ·Water Used( L

kg )

Days o f Operation
(1)

The water supply system is based on the detailed mathematical RO desalination model as defined
by Di Martino et al. (2021). The model optimizes for an array of objectives the necessary pres-
surization, the water recovery, the membrane surface area and the parallel flows for each stage
and available water source, as well as the feed flow for each available water source. The employed
model is nonlinear and scales with the number of water sources (J), as well as number of RO stages
under investigation n, resulting in J · (4 · n+ 1) degrees of freedom, together with 4 · n · J + 5 · J
number of constraints. In this case the system design, i.e. number of stages and operational pa-
rameters, are based on the irrigation requirements of the crops under investigation. The key points
of the selected water supply model are that a detailed mathematical model is employed which in-
corporates constraints based on the crops selection to minimize the system’s energy consumption
by adjusting the operational paramters of the RO process.
The overall energy demand is driven by the RO and greenhouse system. To fulfill the specified
demands a combined mixed-integer linear model (MILP) is consulted to determine the optimal
mix of solar panels and wind turbines based on supplied renewable energy data as described by
Cook et al. (2022). The overall energy supply tool is summarized in Figure 2 and is comprised
of 148,953 constraints, 96,398 variables, together with 6 discrete variables for a one year time
horizon. The combined model determines a cost optimal energy and storage system to satisfy a
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specified power demand over a predefined time horizon based on detailed mathematical model-
ing. To this end, solar direct normal irradiance (DNI) and wind speeds are preprocessed to obtain
correlations of the total annualized cost vs. the desired power output for fixed angle and single
axis tracking solar panels, as well as for wind turbines. On the basis of these surrogates together
with the supplied climate data, the combined MILP model determines how the energy demand
will be fulfilled. For the study conducted here, biomass as a possible energy resource has been
disregarded.

• Y ield (ton/ ha).

• Inv estment cost ($ / kW ).

• Net energy yield  (MJ / ha).

• W ater usage (m³ / ha).
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Figure 2: FEWN framework - The energy system.

Overall, this results in a mixed-integer programming model which can minimize the total system
costs, the used energy and maximize the water usage for a specified energy-water-food mix and
predefined time horizon, i.e. one year. Therefore, trade-offs and synergies between water and
energy supply systems can be evaluated. Furthermore, by updating employed constraints, i.e.
producing more water in the RO system, the overall optimization model can be modified according
to the ε-constraint method enabling multi-objective optimization.

4. Case Study
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Figure 3: Simplified FEWN framework superstructure - Key features.

To illustrate the capabilities of the derived tool, we applied the simplified FEWN supersturcture
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Figure 4: Daily consumption of electricity
by components of the system, kWh

day ,
Qatar greenhouse trial 2020
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Figure 5: Comparison of results of RO operation
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as shown in Figure 3 to a glass greenhouse using traditional farming practices to farm tomatoes
(CP ≤ 1900 mg

L ) on a 800 m2 farming area. Using the specified annualized yield of the previously
mentioned pilot greenhouse in Qatar together with the specification of how much water per kg
of produced tomatoes was used results in a constant daily water demand of 5 m3

day . The energy
consumption of the greenhouse is assumed to be the same as the data provided in Figure 4.

Furthermore, it is assumed that only brackish water with a TDS concentration of 2560 mg
L is avail-

able. Additionally, the water recovery of the RO system is restricted to be at least 60%. The energy
supply system has to provide energy for the RO process, as well as for the greenhouse farming sys-
tem. The solar DNI and wind speed data have been obtained from the National Renewable Energy
Laboratory (NREL). Moreover, the time horizon of this study has been fixed to one year. These
specifications result in a three stage RO system in which the concentrate of a previous stage is
used as the feed of a successive stage with an overall permeate output of QP,SUM = 5 m3

day , an over-
all permeate concentration of CP,SUM = 1899 mg

L and a system water recovery of WR = 95.98%
with a minimum overall energy requirement of the system of 1.1 kWh

day or 0.22 kWh
m3 . The detailed

results and operational parameters for each stage are sumamrized in Table 1. Further, in Figure 5
the results of minimizing the energy of the system for changing number of stages together with
the respective water recoveries is shown. It can be deducted that indeed a three-stage system re-
sults in the lowest energy consumption closely followed by a two-stage process. One and four
stages require the highest energy consumptions. In all cases the water recovery is comparably
high, especially compared to the enforced lower bound water recovery restriction of 60%. After
further analysis, i.e. minimizing the energy for step-wise increases of a newly introduced feed
flow restriction while the energy requirement and water recovery of the system are monitored, it
can be deducted that for this scenario the lowest possible feed flow is most advantageous for the
energy consumption of the system, which results in high water recoveries. It is suggested that
the energy for pressurization throughout the system is reduced by reducing the feed volume flow
which offsets the possible energy recovery after the last stage.

Table 1: Results of RO operation optimization for minimizing energy consumption. m - parallel
flows per stage.

Stage Q f [m3/d] Cf [mg/L] P[bar] WR[%] Cp[mg/L] Cr[mg/L] m
Stage 1 5.21 2560 5 70.00 1392 5284 1
Stage 2 1.56 5284 5 62.99 2532 9968 1
Stage 3 0.58 9968 5 63.76 5221 18320 3
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Based on the energy requirements of the RO system and the greenhouse, the energy supply system
has to fulfill an overall power demand of 0.7 ·106 kWh

year or alternatively an average demand of 80kW .
The results of minimizing the system’s cost for these two cases are summarized in Table 2. In all
cases only solar power as a generating technology is selected. Further, the first case does not re-
quire an energy storage system, whereas the second case requires a storage system with a capacity
of 20300kWh and power rating of 530kW . These evaluated cases underline the possible scenario
analyses of the energy supply system, as well as the influence of renewable energy availability,
together with the importance of the correct sizing of the energy generating technologies.

Table 2: Results of energy supply optimization for minimizing the total system cost to satisfy
varying power demands. FA - Fixed angle solar panels, SAT - Single axis tracking solar panels.

Power demand Power Output FA Power Output SAT Total Area Cost
0.7 ·106 kWh

year 700000 kWh
year 0 kWh

year 1.4 ha 165500 $
year

80kW 760250 kWh
year 99470 kWh

year 1.72 ha 284890 $
year

5. Conclusion

An energy-water decision tool for food production has been presented. The generic model has
been applied to a greenhouse case study in Qatar. For this case the cost and energy optimal energy
and water supply system has been determined for tomato farming. Future work will focus on
extending the framework to (i) dynamic planning of irrigation schedules considering dynamic RO
production schedules based on seasonality, and (ii) detailed greenhouse modeling to analyze and
compare farming systems for varying agricultural scenarios.
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Abstract 

Increasing demands and climate change are critical challenges to ensure water, energy, 

and food security. The water-energy-food nexus requires integrating tools to guide the 

allocation of resources and promote sustainability. This work presents a mathematical 

formulation for the optimal design and management of resources to enhance the water-

energy-food nexus security. Resource security is measured through indicators related to 

the availability, access, and sustainability of the water, energy, and food sectors. 

Furthermore, the problem was analyzed under different allocation schemes (social 

welfare, Rawlsian, Nash, and Rawlsian-Nash) to maximize resource security and obtain 

the optimal design of the system. To show the applicability of the model, a Mexican state 

evaluated by regions was selected as a case study. Results show that through this 

approach, it is possible to increase 14%, 44%, and 15% the security of the water, energy, 

and food sectors, respectively, and 25% security of the water-energy-food nexus in the 

addressed case study. The proposed framework can be applied to any region with the 

corresponding data. 

 

Keywords: Resource security; Allocation schemes; Sustainability; Optimization; Water-

energy-food nexus. 

1. Introduction 

The water-energy-food (WEF) nexus introduced in the Bonn Conference (Hoff, 2011) 

has become a relevant topic to promote the study of synergies in the water, energy, and 

food sectors to achieve sustainable development. In the last years, growing resource 

demands and limited access and availability of resources have caused increasing concern 

about water, energy, and food security. Due to the multidimensional nature of the WEF 

nexus, decision-making methods have been used to address the challenges that the nexus 

faces and new approaches have been proposed to enhance the synergies between 

resources and face climate change events and globalization using quantitative analysis 

methods (Zhang et al., 2018; Radini et al., 2021). In this context, optimization models 

have been proposed for the sustainable design for resource management, the planning of 

the WEF nexus involving multiple objectives in conflict, and the performance of the WEF 

nexus when policies are incorporated (Ogbolumani and Nwulu, 2021; Chamas et al., 

2021; Sušnik et al., 2021). However, despite the progress made towards the WEF nexus, 

there is still a relative lack of methods that allow quantifying, optimizing, and evaluating 

the nexus security in the planning and design of a WEF system. 
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It has been highlighted that a driving factor to achieve long-term sustainability is the 

security of the WEF nexus, therefore, the planning, distribution, and resource 

management policy should be improved. The allocation of resources is one of the main 

concerns in social planning. Typically, when optimization models are solved, resources 

allocation is guided by the maximization of the sum of the player's utilities or objectives 

in interest. However, it has been proved that solving problems based on this approach 

may lead to non-unique solutions since different allocations of resources can give the 

same total utility of the system (Sampat and Zavala, 2019). Therefore, some allocation or 

distribution schemes have been reported and have been associated with fairness measures. 

Through these distribution schemes, it is possible to solve the problem through different 

perspectives and find solutions that capture the scales of stakeholders or objectives in 

interest and that are unique. Nonetheless, fairness measures related to allocation schemes 

in integrated WEF systems have not been addressed. Therefore, the novelty of this work 

is the development of a model formulation for the integration of the WEF nexus involving 

indicators to measure the WEF security nexus, where the optimal distribution of resources 

is evaluated through different allocation schemes. 

2. Problem statement 

Water-energy-food nexus security has been threatened by climate change impacts and 

increasing resource demands. Allocation and distribution of resources are important 

factors in the decision-making for planning WEF nexus systems. In this context, several 

efforts have been made to explore synergies between resources and improve the 

management of these sectors. However, there are required tools to quantify resource 

security involving the optimal resource allocation to improve WEF nexus security and 

achieve sustainable development. In this sense, this work presents a mathematical model 

of a macroscopic water-energy-food nexus integration for a set of regions that involves 

water, energy, and food availability, accessibility, and sustainability indicators to quantify 

the WEF nexus security. The developed model is based on the superstructure (see Figure 

1) that indicates the possible alternatives to integrate water, energy, and food resources. 

 
Figure 1. General Superstructure. 

3. Water- energy-food nexus optimization framework 

The mathematical model is composed of material balances and constraints to determine 

the existence of the technologies proposed in the superstructure in order to integrate the 

resources properly. Security indices related to water (IWater), energy (IEnergy) and food 

(IFodd) are included, and they are based on availability (IAvailability), accessibility (IAccessibility) 

1604



Optimizing the allocation of resources for the security of the
 water-energy-food nexus   

1581

and sustainability (ISustainability) of resources. The average of these indicators equals the 

WEF nexus security index (IWEF) which is maximized according to different allocation 

schemes.  

3.1. Objective functions: Allocation schemes 

A suitable way to generate solutions that can help decision-making and address a deemed 

fair resource distribution is through the implementation of allocation schemes (social 

welfare (SW), Rawlsian (R), Rawlsian Nash (RW-N), and Nash (N)).  

The social welfare scheme is commonly used to allocate resources by maximizing the 

sum of the utilities of stakeholders (Equation 1). However, solutions including multiple 

allocations of resources could be found since this scheme may provide non-unique 

solutions, and thus, this method causes ambiguity. Furthermore, it cannot capture the 

scales of the stakeholders involved in the problem. For purposes of this work, a new 

function to solve the social welfare scheme is introduced, which consists in maximizing 

the sum of the water, energy, and food security indexes: 
sw water energy foodI I I = + +        (1) 

The Rawlsian scheme is an alternative to allocate resources; the principle of this scheme 

is to maximize the smallest utility of the stakeholders. One of the disadvantages of the 

Rawlsian scheme is that it does not capture scales properly; therefore, large stakeholders 

may be ignored. The formulation of the Rawlsian scheme for this problem consists in 

including a new variable ( ) that is minimized: 
rw =          (2) 

waterI−           (3) 

energyI−           (4) 

foodI−           (5) 

In the Nash scheme, it is possible to capture the scales of the stakeholders since a 

logarithm function is used. The Nash allocation generates a unique solution that is 

obtained by maximizing the sum of the logarithms of the water, energy, and food security 

indexes. 

( ) ( ) ( )ln ln lnn water energy foodI I I = + +       (6) 

Finally, a combination of the Rawlsian and Nash schemes is included. The formulation 

of this scheme is similar to the Rawlsian scheme, but in this case, the constraints are 

modified to include the logarithm function, and another one is included to represent the 

Nash scheme: 
rw n − =         (7) 

( )ln waterI−           (8) 

( )ln energyI−           (9) 

( )ln foodI−           (10) 

( ) ( ) ( )( )ln ln lnwater energy foodI I I− + +         (11) 

4. Case study 

The Mexican state of Sonora was selected as a case study to demonstrate the applicability 

of the model. Sonora has been one of the most important economic entities in Mexico 

because it has a diversity of natural resources that facilitate the development of economic 

activities such as agriculture, livestock, fishing, mining, and services. Nevertheless, the 
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availability and distribution of resources in Sonora are unequal due to its geographical 

and hydrological conditions. The northern of the state is covered by the Sonoran Desert, 

which is the hottest desert in the country, while the south of the state has potential for 

agriculture activities. However, providing access to water for the different economic 

sectors represents a great challenge. Furthermore, considering that Sonora has potential 

for renewable energy, the design of an integrated WEF system is addressed to increase 

the security of the WEF. 

In this work, the Sonora state was divided into four representative regions to evaluate the 

security of the WEF Nexus; the border region (R1), center region (R2), central-mountain 

range region (R3), and southern region (R4). Table 1 presents the water, energy, and food 

indices associated with the availability, accessibility, and sustainability of resources to 

date. Currently, the central-mountain range region (R3) presents the lowest water 

availability, while the center region (R2) presents the highest water availability of the 

state; therefore, water from R2 is used to help satisfy water requirements in the near 

regions. On the other hand, it is shown that energy production is centered in R2, and R3 

exhibits the lower energy production of the state. 

 
Table 1. Current water-energy-food nexus security indices. 

 Water Energy Food   
 IW

Availability IW
Accessibility IW

Sustainability IE
Availability IE

Accessibility IE
Sustainability IF

Availability   

R1 0.465 0.981 0.465 0.400 0.988 0.400 0.751 IWater 0.836 

R2 2.494 0.991 1.000 2.171 0.978 2.171 0.751 IEnergy 0.814 
R3 0.030 0.971 0.030 0.140 0.980 0.140 0.751 IFood 0.751 

R4 0.823 0.958 0.823 0.215 0.970 0.215 0.751 IWEF 0.800 

 

The Sonora’s regions present unequal distribution of resources availability and 

production. It can be seen that R2 presents the highest water and energy production, which 

is associated with its industrialized nature. On the other hand, R3 corresponds to the least 

urbanized region of the state, therefore, technologies for energy production are not 

abundant. In addition, it is important to mention that this region does not have access to 

the sea, and the existence of desalination plants that increase the water production in the 

region is not an option. R2 has the highest availability, accessibility, and sustainability 

indicators of the regions of the state. Nevertheless, it is important to notice that the 

potential of Sonora for renewable energy can be exploited, and increasing the renewable 

energy capacity could improve security in the energy sector. In the same way, water reuse 

and irrigation techniques could enhance the security of the WEF substantially. 

5. Results 

The mathematical formulation for the analyzed fair allocation schemes was implemented 

in the software GAMS. The models of the schemes correspond to a Mixed Integer Linear 

Programming Model (MINLP) and were solved using the solver LINDOGlobal. Table 2 

shows the costs, freshwater consumption, and GHGE generated in the different allocation 

schemes. The social welfare scheme presents the lowest GHGE generation, but also it is 

the scheme with the highest costs and freshwater consumption. On the other hand, the 

Rawlsian scheme presents the lowest cost for the system and the lowest freshwater 

abstraction. 

 
Table 2. Economic and environmental aspects of the allocation schemes. 

 Social welfare Rawlsian Nash Rawlsian-Nash 
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WATER (hm3) 6,135.56 5,471.93 5,363.63 5,511.55 

COST (MMUSD) 27,212.2 26,768.6 27,104.6 26,948.1 
GHGE x 103 (Ton CO2) 20.864 24.103 20.95 24.523 

 

The results of the security index for water, energy, and food for the social welfare, 

Rawlsian, Nash, and Rawlsian-Nash schemes are presented in Table 3.  

 
Table 3. WEF Security Index for the schemes analyzed. 

 Social welfare Rawlsian Nash Rawlsian-Nash 

IWater 0.957 0.870 0.853 0.869 

IEnergy 1.177 0.886 1.164 1.157 
IFood 0.869 0.870 0.825 0.869 

IWEF 1.001 0.875 0.947 0.965 

Water 

IW
Availability 1.086 0.839 0.774 0.831 

IW
Accessibility 1 1 1 1 

IW
Sustainability 0.784 0.772 0.784 0.775 

Energy 

IE
Availability 1.383 0.942 1.364 1.353 

IE
Accessibility 0.987 0.974 0.987 0.987 

IE
Sustainability 1.16 0.741 1.141 0.775 

Food 

IF
Availability 0.757 0.761 0.674 0.757 

IF
Accessibility 1 1 1 1 

IF
Sustainability 0.849 0.849 0.802 0.849 

 

The results obtained in the social welfare scheme present the highest WEF Security Index 

(1.001) compared with the other schemes. The water, energy, and food security indexes 

were higher than those of the other schemes. In the case of the water sector, the 

availability index was approximately 29% higher than in the other schemes, this is mainly 

attributed to the water production in R2, which exceeds the demand and can be exported 

to other regions of the state to cover the water requirements. Similarly, in the case of the 

energy sector, the security index is also the highest in comparison with the other schemes, 

energy production in R2 is 3.33 times the energy demand in the region, and it is exported 

to other regions to cover their energy demands. In this scheme, even the availability of 

energy exceeds the demand of the region, the model determines that the energy is 

distributed to other regions without access to energy rather than to provide access to all 

the population in R2. On the other hand, in the food sector, a value of 1 was obtained for 

the food accessibility index, which indicates that all population has access to a balanced 

diet where food is supplied by the associated region and by the imported food.  

The results of the system design for the Rawlsian scheme show a WEF security index of 

0.875, which corresponds to the lowest security index resulting from the evaluated 

schemes. This is mainly attributed to security in the energy sector, which is around 30% 

lower than the energy security index of the other schemes. Specifically, energy production 

in region 2 (R2) is equivalent to 2 times the demanded energy in the region, while for the 

other schemes the energy production capacity was 3.33 times the energy consumed. The 

WEF security index in the Rawlsian-Nash scheme is equal to 0.965, and it is 3% lower 

than the WEF security index resulting from the social welfare scheme. However, it is 

important to mention that it is possible to obtain a unique solution by using the Rawlsian-

Nash formulation, unlike the social welfare scheme. For the Nash scheme, the 

accessibility to water, energy, and food is completely covered for all the population as in 

the social welfare scheme. In the water sector, it is observed that R2 does not produce 
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more water than the demand in the region, therefore, there are no internal water imports 

between the regions.  

6. Conclusions 

This paper has presented a water-energy-food optimization framework to maximize the 

security of the nexus considering different allocation schemes, which supports the 

decision-making for better management of resources and performance of the sectors. As 

a case study, regions of the state of Sonora from Mexico were used to implement the 

proposed framework. By the application of the proposed approach, and comparing the 

results with the current water-energy-food nexus security indices, results show an 

increase in the security index of the water sector of 14%, 44% of the energy sector, and 

15% of the food sector. This gives an increment of 25% in the WEF security index. 

Results for the design of the Rawlsian scheme present the lowest costs ($26,768.6 

MMUSD) and the lowest freshwater consumption (5471.93 hm3) among the different 

allocation schemes. Moreover, this scheme presents the lowest WEF security index of 

0.875. On the other hand, the social welfare scheme presents a WEF security index of 

1.001, in addition, its design presents the lower GHGE (20,864 ton CO2) but the highest 

freshwater abstraction (6135.56 hm3) and costs (6,135.56 MMUSD). The main 

contribution of the proposed framework is the development of a model that provides the 

optimal allocation of water, energy, and food and quantifies and maximizes the security 

of the water, energy, and food sectors. The proposed water-energy-food nexus framework 

can be applied to any region at any scale with the corresponding data. However, its main 

limitation is the uncertainty related to the lack of time dimension. 
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Abstract 
In this study, we are tackling systems design with assessments for emerging technologies. 
Because of the data limitation on the systems and processes adopting emerging 
technologies, computer-aided process engineering (CAPE) tools such as process design 
heuristics, process simulation, optimization, parametric analysis for characterizing 
sensitivity and alternative generation, and decision making with uncertainties have huge 
potential to compensate such data limitation and jump up to the deep technology 
assessments with quantified results. In this paper, we examine the applicability of CAPE 
tools for systems design and assessment adopting emerging technologies with a case 
study of recycling systems design of Lithium-ion battery (LiB). 
 
Keywords: Spent lithium-ion batteries, Recycling, Positive electrode active materials. 

1. Introduction 
Recently, Lithium-ion batteries (LiBs) have been widely utilized not only for electronic 
devices such as mobile phones and laptops, but also for electric vehicles and stationary 
energy storage systems. Because this increase in LIB demand causes significant increases 
in demand for certain materials, i.e., lithium (Li), cobalt (Co), nickel (Ni), and manganese 
(Mn), it is necessary to secure these resources by recycling, as well as through mine 
developments. In recent years, there has been an increase in the number of case studies 
using prospective life cycle assessment (LCA), which take into account the future 
potential of the technology and aim to predict the environmental impacts on the 
technology under development (Arvidsson et al., 2018; Moni et al., 2020; Thonemann et 
al., 2020). 
In this study, we are tackling systems design with assessments for emerging technologies. 
Because of the data limitation on the systems and processes adopting emerging 
technologies, computer-aided process engineering (CAPE) tools such as process design 
heuristics, process simulation, optimization, parametric analysis for characterizing 
sensitivity and alternative generation, and decision making with uncertainties have huge 
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potential to compensate such data limitation and jump up to the deep technology 
assessments with quantified results. In this paper, we examine the applicability of CAPE 
tools for systems design and assessment adopting emerging technologies with a case 
study of recycling systems design of Lithium-ion battery (LiB). The recycling of cathode 
particles and aluminum (Al) foil from positive electrode sheet (PE sheet) dismantled from 
spent LiBs was experimentally demonstrated by applying a high-voltage pulsed discharge 
(Tokoro et al., 2021). This separation of LIB components by pulsed discharge was 
examined by means of prospective LCA (Kikuchi et al., 2021). The indicators selected 
were life cycle greenhouse gas (LC-GHG) emissions and life cycle resource consumption 
potential (LC-RCP). We first completed supplementary experiments to collect redundant 
data under several scale-up circumstances, and then attempted to quantify the 
uncertainties from scaling up and progress made in battery technology. When the batch 
scale of pulsed discharge separation is sufficiently large, the recovery of cathode particles 
and Al foil from PE sheet by pulsed discharge can reduce both LC-GHG and LC-RCP, in 
contrast to conventional recycling with roasting processes. 

2. Materials and methods 

2.1. Application of CAPE tools into prospective LCA 
Figure 1 shows the description of systems assessments applying CAPE tools for 
prospective LCA. In management activity and resource provider, data estimation and 
interpretations are assigned to CAPE tools considering the conditions in prospective LCA. 

 
Figure 1 Description of multiple assessment activities with the necessary conditions for 
prospective assessments including LCA. The parameter n is the number of assessment methods. 
(Modified from previous studies (Kikuchi, 2014; Kikuchi et al., 2010; Kikuchi and Hirao, 2009)) 

Conventional LCA does not take into account changes in technology level, because it 
refers to information on the current technology level and specifically estimates the 
environmental impacts of each process related to the provision of products and services. 
On the other hand, efforts to tackle climate change have become more active in recent 
years, and new products and technologies are changing concepts and models more rapidly, 
making the transition to a low-emission society more urgent.  
The significance of conducting a strategic LCA of emerging technologies for the 30-year 
time horizon up to the target year of 2050 arose regarding the issues on the climate change. 
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Application of CAPE Tools into Prospective Life Cycle Assessment: 
  

Emerging technologies, as defined by Rotolo et al. (2015), are; “innovative and rapidly 
growing technologies that have the potential to have a significant social and economic 
impact in the domains in which they are structured, with some degree of persistent 
coherence, actors, institutions, ways of interacting with them and related knowledge 
production processes. It is characterised by its potential to have significant social and 
economic impacts. However, its most prominent impact lies in the future and is therefore 
somewhat uncertain and ambiguous at the stage at which the technology emerges.” These 
technologies are characterized as “innovative”, “rapid growth”, “consistent”, “significant 
impact” and “uncertain”, which makes technology assessment difficult due to lack of 
existing data and knowledge. 
Four main issues were identified as needing to be addressed in conducting prospective 
LCAs of emerging technologies (Thonemann et al., 2020; Moni et al., 2020). (1) 
comparability of technologies; (2) availability and quality of data; (3) scale-up 
challenges; and (4) uncertainty of assessment results. Process modeling and simulation 
are effective in estimating the missing process inventories in industrial scale production, 
because these technologies are under development in lab or pilot scale. 

2.2. Case study: Recycling Systems Design of Lithium-Ion Battery   
Figure 2 shows the life cycle model of conventional and the proposed alternative 
recycling systems. The dashed-line boxes are not included in the life cycle inventory 
analysis. (M-SO4: metal sulfate, i.e., CoSO4, NiSO4, and MnSO4; positive electrode active 
material (PEAM): Li(NixCoyMnz)O2, raw materials of positive electrode active material 
(rawPEAM): (NixCoyMnz)(OH)2, and R- (recycled-). The functional unit of this LCA was 
defined as the use of a positive electrode as a component of LIBs for vehicles. The LIB 
components assessed in this study are provided in the previous study (Kikuchi et al., 
2021). The pulsed discharging process applies a novel technology to separate cathode 
particles, i.e., cathode black powder (Co and Ni) from Al foil (Tokoro et al., 2021). The 
technology readiness level (TRL) of this technology is the lab-scale demonstration, where 
the process inventory data required for LCA was not sufficiently obtained from the 
experimental demonstration considering the upscaling of throughputs of pulsed 
discharging. For such technology, modeling and simulation can be employed to fill the 
gap of foreground data (Tsoy et al., 2020). As for the prospective thinking for LiBs 
recycling applying the novel pulsed discharging separation process, three types of 
uncertainties should be addressed by the application of CAPE tools. 

 
Figure 2 Life cycle model of conventional and alternative case settings to compare recycling 
processes for LIB and to consider the shift of elemental composition in positive electrode active 
materials. (Modified from the previous study (Kikuchi et al., 2021)) 
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2.2.1. Settings on LCA  
The operating ratios of precise cell dismantling and high-voltage pulsed discharge 
separation should be carefully examined. Because the pulsed discharge device contains 
high capacitance capacitors, the lifetime throughput is highly sensitive to the life cycle 
impacts (Kikuchi et al., 2021). The elemental composition in PEAM in LiB cathodes has 
changed with technological development. While PEAM of LiBs, which has been used for 
several years in the market, can be reused, the technology of the reused PEAM may 
become outdated during its period of use. 

2.2.2. Application of CAPE tools 
The process system combining precise cell dismantling and high-voltage pulsed discharge 
separation is semi-batch system. The residence times of contained unit operations were 
measured, and then the number of equipment items for cell dismantling and pulsed 
discharge was optimized. To improve the performance of the process system, the scale of 
pulsed discharge was re-designed and experimentally demonstrated to reduce the takt 
time of the treatment of unit LiB module. If the lifetime throughputs could be increased 
sufficiently, the environmental loads induced by the initial manufacturing of machines 
could become small due to the allocation of such initial environmental loads to the 
throughputs. 
The increase of the lifetime throughputs determined by the processing scale of precise 
cell dismantling and pulsed discharge can reduce the environmental impact of equipment 
manufacturing per throughput. On the other hand, since the number of LiBs depends on 
the number of vehicles produced and disposed of in the market, it is not possible to 
determine whether the processing scale is necessarily sufficient. This could be considered 
by dynamic material flow analysis to forecast the future availability of spent LiBs from 
markets by assuming the shipments and wastes of products (Kikuchi et al., 2014; 2021). 

3. Results and discussions 
Figure 3 shows the results of prospective LCA applying CAPE tools. The same tendencies 
were also observed for LC-RCP (Kikuchi et al., 2021), where (a) Results of LCA for 
treatment of unit amount of PE sheet, where Case 1 treats spent LiBs in incineration and 
land filling, Case 2 is roasting and smelting, Cases 3 and 5 are the recycling of PEAM 
applying pulsed discharging with low and high lifetime throughputs, respectively, and 
Case 4 is the reuse of PEAM applying pulsed discharging. (b) Results of LCA for 
scenarios with a shift in elemental composition in PEAM, where the NCM111, i.e., 
Li(Ni1/3Co1/3Mn1/3)O2, cathode is first manufactured using 1 kg-Co in all scenarios and is 
then used in the LIB. In Scenario 1, all products are incinerated or landfilled (Case 1). In 
Scenario 2, 80% of the LIB is recovered and reused as PEAM for the NCM111 (Case 5). 
In Scenario 3, rawPEAM is recycled from the recovered LIB (Case 4) and PEAM of 
NCM811 is produced. Since the total amount of LIB capacity in each scenario is different, 
the capacity in Scenario 3, which has the largest storage capacity among these scenarios, 
is used as the reference flow of the functional unit, i.e., 4.83 kWh, and the shortage in 
Scenarios 1 and 2 is compensated for by newly manufactured NCM811. The storage 
capacities for NCM111 and NCM811 were assumed as 0.16 kWh/kg-Cathode and 0.25 
kWh/kg-Cathode, respectively. As shown in Figure 3(a), lifetime throughput is an 
essential variable to understand the scale of the process and to design the process and to 
be dominant factor to the total LC-GHG. The lifetime throughput varied with the treated 
positive electrode sheet length at pulsed discharge, residence time of each item of 
equipment, and adjustment of the number of items of equipment for cell dismantling and 
pulsed discharge. The number of equipment items for cell dismantling and pulsed 
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discharge were optimized, considering the rate-determining step of their batch unit 
processes. This optimization is required for revealing the plausible effects of the newly 
implemented machines into society. 
The development of the elemental composition in cathode particle resulted in the change 
of preferred recycling system. Fig. 3(a) shows that the reuse of PEAM had less 
environmental impacts than the recycling of rawPEAM. Comparing Figures 3(b), the LC-
GHG of Scenario 3 were less than those of Scenario 2. This is because of the improvement 
of cathode capacity per Co use from NCM111 to NCM811. Even though the smaller circle 
recycling considered in Case 5 has less environmental impacts than the larger circle 
recycling in Case 4, as shown in Figure 3(a) for the same battery chemistry, the shift in 
elemental composition results in a different conclusion. As it is possible that the future 
trend of battery chemistry will be dominated by lithium nickel cobalt manganese oxide, 
or other battery chemistries, e.g., lithium iron phosphate, novel lithium-sulfur, or lithium-
air (Xu et al., 2020), the need for lithium, nickel, cobalt, and manganese will remain for 
the next decades. Pulsed discharge separation can provide the option to recover such 
metal resources from spent LIBs. Based on the trends of battery chemistry, metal 
efficiency could be considered in the selection for reuse as PEAM or recycling of 
rawPEAM (Figure 3(b)) to meet future demand for batteries (Xu et al., 2020). Metal 
recycling with pulsed discharge separation can thus influence the direction of future 
technological developments of battery cathodes. 
At present, there are more than 3,400 car dismantling plants in operation in Japan, and 
the scale of processing in Case 4 would be able to process about 1,000 spent LIBs per 
year; this would be sufficient to process about 3.4 million cars, assuming that the precise 
cell dismantling and pulsed discharge separation were installed in all dismantling plants. 
While the number of waste hybrid vehicle in Japan was estimated as from 0.11 million to 
less than 1 million, the uptake of low emission vehicles is promoted more and more 
recently as like European Union. Since the number of new vehicle registrations and sales 
in Japan in 2019 was about 5 million, the order of magnitude is about the same for 
processing.  
 

  
(a) Treatment of unit amount of PE sheet                    (b) Scenarios in composition in PEAM 

Figure 3 Prospective assessments results on LC-GHG emission. (Modified from the previous 
study (Kikuchi et al., 2021)) 
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4. Conclusion 
CAPE tools can become methods applicable for acquiring data for prospective 
assessments. Prospective LCA should be applied into the technology assessment that 
employs modelling tools which focus on potential environmental impacts arising from 
various technologies even still at the R&D stage, i.e., low technology readiness level. 
With CAPE tools, the inventory data for prospective LCA can be connected with the 
design methods for optimizing the throughputs of unit operations, analyzing the upscaled 
process systems, and conducting the quantification of environmental loads with plausible 
process system design. 
Through the case study on LiB recycling, it was demonstrated that the application of 
CAPE tools into prospective LCA enables the strategic technology assessments for 
systems design. Especially in the proof of concept on technology implementation can be 
verified and validated with the ranged values of uncertainties in emerging technology 
under development. 
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Abstract 

To achieve sustainable development, certain objectives must be considered. A fair 

allocation of resources is key for long-term sustainability. Therefore, these objectives can 

include attaining environmental fairness and sustainability metrics. Besides considering 

the fair allocation of resources, equity in policies, implementation, and equality in 

outcomes need to be addressed. Recently, several fairness schemes have been applied as 

measures to allocate resources in multi-stakeholder systems. These schemes have been 

analyzed in different sectors, such as an agricultural system and an integrated residential 

complex. These studies have verified the deficiencies of certain approaches and 

highlighted the importance of comparing different allocation schemes. On the other hand, 

an economic approach to include sustainability in process integration projects has been 

reported recently. Here, a new sustainability metric is proposed. This metric is 

denominated as the Sustainability Weighted Return on Investment metric (SWROIM). 

The metric is based on the economic return on investment but also evaluates the 

contribution to sustainability. Extended forms of the metric have been proposed to include 

safety and resilience. In this work, we propose a fair-sustainable approach that involves 

applying fairness schemes along with the sustainability metric SWROIM for the optimal 

income allocation of an integrated system to produce fuels and simultaneously capture 

emissions. The analyzed schemes are the social welfare, Rawlsian welfare, and Nash 

approaches. The involved stakeholders in the integrated system include refineries, 

biorefineries, and eco-industries. To foster the reduction of emissions, we include 

economic compensations for the eco-industries. Furthermore, we analyze the avoided 

emissions (environmental function) and the generated jobs (social function) obtained 

through the different schemes and the sustainability metric. To demonstrate the 

applicability of the optimization approach, a case study for the future planning of the 

energy system in Mexico was presented. In the results, important differences are observed 

for the stakeholders’ income allocation, as well as for the environmental and social 

functions under the schemes and the sustainability metric. These differences highlight the 

importance of exploring these different allocations since they can be key for decision-

makers. The results also show that the Nash scheme can provide fair trade-offs among 

the stakeholders’ income and the environmental and social functions.  

Keywords: Optimization, Fairness schemes, Sustainability metric. 
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1. Introduction 

Previous works have proposed approaches to include a fairness environment for 

stakeholders and an evaluation of sustainability metrics separately. Recently, fairness 

schemes for the allocation of resources in multi-stakeholder systems have been reported 

(Sampat and Zavala, 2019). These schemes have been applied to allocate resources in 

different systems (see for instance: Munguía-López et al., 2019). These studies have 

highlighted the importance of comparing different allocation schemes in diverse systems 

and verified some deficiencies of other approaches that may guide to solutions that are 

not fair. The desired aim would be to simultaneously foster equity, environmental 

protection, and economic growth (Rosa, 2009). However, these aspects represent a great 

challenge. In this regard, an economic approach to involve sustainability in process 

integration projects has been reported by El-Halwagi (2017). Here, sustainability is 

included by proposing a metric that is based on the economic return on investment but 

also evaluates the contribution to sustainability (SWROIM). Extended forms of the metric 

have been proposed to include safety and resilience (Guillen-Cuevas et al., 2018; Moreno-

Sader et al., 2019). As a fair allocation of resources is key for long-term sustainability, 

we propose a fair-sustainable approach that includes applying the fairness schemes along 

with the sustainability metric SWROIM for resource allocation in complex engineering 

systems that include economic, environmental, and social objectives. 

This work uses this fair-sustainable approach for the optimization of an integrated system 

to produce fuels and simultaneously capture emissions. The involved stakeholders in the 

integrated system include refineries, biorefineries, and eco-industries. In this approach, 

the eco-industries are taken as endeavors for forest plantations resulting in capturing 

emissions. To further foster the reduction of emissions, we include economic 

compensations for the eco-industries. The optimal allocation of income among these 

stakeholders is evaluated by using different fairness schemes (social welfare, Rawlsian 

welfare, and Nash approaches) and the sustainability metric SWROIM. Furthermore, the 

environmental and social functions (avoided emissions and generated jobs) obtained 

through the distinct schemes are analyzed. 

2. System Description 

In the proposed integrated system, there are three types of industries: refineries, 

biorefineries, and eco-industries. These industries are considered as the stakeholders that 

compete for income allocations (economic function). The integrated system includes the 

production of fuels and biofuels by refineries and biorefineries. Moreover, it includes the 

eco-industries or forest plantations that can capture part of the emissions generated by the 

fuels and biofuels production processes (an economic compensation for the eco-industries 

is involved). The avoided emissions by the eco-industries and the generated jobs by all 

the types of industries (environmental and social functions) are also evaluated through 

the analysis. Parameters such as potential locations for the industries, biomass types, 

availability restrictions, and climatic conditions are given. The objective of the work is to 

find the optimal allocations for the involved stakeholders through the fair-sustainable 

approach. Here, allocation schemes (social welfare, Rawlsian welfare, and Nash 

approaches) that have been previously used to allocate resources in a fair manner are 

evaluated. The sustainability metric SWROIM is also used for evaluating the allocations 

because it allows assessing the impacts on sustainability while considering the economic 

profitability. Each allocation scheme and the SWROIM metric result in different 

mathematical models since the objective function and some constraints vary. The 

schematic representation of the system is shown in Figure 1.  
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Figure 1. Schematic representation of the integrated system.

3. Model Formulation

The formulation of the proposed model includes the following steps. First, the 

mathematical model to describe the integrated fuel production system was developed. 

Here, the mass balances to represent the interactions among industries, the technical 

relationships to compute costs and incomes, and the disjunctions to find the optimal

installation of industries were included. Also, the economic compensation for the eco-

industries, the evaluation of the environmental and social impact of the system by 

estimating the avoided emissions and the generated jobs, and the introduction of the 

fairness schemes and the SWROIM metric as alternative objective functions were 

included. Then, the utopic solutions of the economic, environmental, and social variables 

were estimated. The environmental function refers to the emissions captured by the eco-

industries from refineries and biorefineries (𝐸𝑚𝑐𝑎𝑝𝑖
𝑅𝑒𝑓

, 𝐸𝑚𝑐𝑎𝑝𝑏
𝐵𝑖𝑜).

𝐴𝐸𝑀 = ∑ (∑ 𝐸𝑚𝑐𝑎𝑝𝑖,𝑒
𝑅𝑒𝑓

𝑖
+ ∑ 𝐸𝑚𝑐𝑎𝑝𝑏,𝑒

𝐵𝑖𝑜

𝑏
)

𝑒
(1)

The social function in this work refers to the total generated jobs and it is defined as the 

sum of the number of jobs in refineries, biorefineries, and eco-industries:

𝑇𝑂𝑇𝐴𝐿𝐽𝑂𝐵𝑆 = 𝐽𝑜𝑏𝑠𝑅𝑒𝑓𝑖𝑛𝑒𝑟𝑦 + 𝐽𝑜𝑏𝑠𝐵𝑖𝑜𝑟𝑒𝑓 + 𝐽𝑜𝑏𝑠𝐸𝑐𝑜𝑖𝑛𝑑 (2)
The economic functions refer to the incomes of refineries, biorefineries, and eco-

industries. The income of refineries and biorefineries includes the sold products and 

bioproducts. They are estimated considering the unitary sale cost of each product, the 

operating days, and the total flow rate of products and bioproducts.

𝐼𝑛𝑐𝑜𝑚𝑒𝑅𝑒𝑓𝑖𝑛𝑒𝑟𝑦 = ∑ ∑ 𝑈𝐶𝑖,𝑝1
𝑝−𝑟𝑒𝑓

𝐻𝑌 𝐹𝑖,𝑝1
𝑝−𝑟𝑒𝑓

𝑝1𝑖
(3)

𝐼𝑛𝑐𝑜𝑚𝑒𝐵𝑖𝑜𝑟𝑒𝑓𝑖𝑛𝑒𝑟𝑦 = ∑ ∑ 𝑈𝐶𝑏,𝑝2
𝑝−𝑏𝑖𝑜

𝐻𝑌 𝐹𝑏,𝑝2
𝑝−𝑏𝑖𝑜

𝑝2𝑏
(4)

The income of eco-industries depends on the captured emissions from refineries and 

biorefineries (see Equation (5)). Here, we can observe that the cost of the emissions 

generated by refineries (𝐶𝐸𝑚𝑖𝑠𝑟
𝑅𝑒𝑓

) and biorefineries (𝐶𝐸𝑚𝑖𝑠𝑏
𝐵𝑖𝑜) is multiplied by the 

captured emissions by eco-industries for each type of refinery. Furthermore, the economic 

compensation is also included.

𝐼𝑛𝑐𝑜𝑚𝑒𝐸𝑐𝑜𝑖𝑛𝑑 = ∑ (∑ 𝐶𝐸𝑚𝑖𝑠𝑖
𝑅𝑒𝑓

𝐸𝑚𝑐𝑎𝑝𝑖,𝑒
𝑅𝑒𝑓

𝑖
+ ∑ 𝐶𝐸𝑚𝑖𝑠𝑏

𝐵𝑖𝑜 𝐸𝑚𝑐𝑎𝑝𝑏,𝑒
𝐵𝑖𝑜

𝑏𝑒

+ 𝐶𝑜𝑚𝑝𝑒
𝑝𝑙

) (5)

1617



 1594 

Considering the economic functions of each stakeholder, the allocations through the 

fairness schemes are computed. First, the social welfare scheme is estimated by 

maximizing the sum of the utilities of the stakeholders as follows: 

𝑆𝑊 = 𝐼𝑛𝑐𝑜𝑚𝑒𝑅𝑒𝑓𝑖𝑛𝑒𝑟𝑦 + 𝐼𝑛𝑐𝑜𝑚𝑒𝐵𝑖𝑜𝑟𝑒𝑓 + 𝐼𝑛𝑐𝑜𝑚𝑒𝐸𝑐𝑜𝑖𝑛𝑑 (6) 

Similarly, the Nash allocation is given by maximizing the function 𝑁 that corresponds to 

the sum of the logarithms of the utilities of the stakeholders.  

𝑁 = ln 𝐼𝑛𝑐𝑜𝑚𝑒𝑅𝑒𝑓𝑖𝑛𝑒𝑟𝑦 + ln 𝐼𝑛𝑐𝑜𝑚𝑒𝐵𝑖𝑜𝑟𝑒𝑓 + ln 𝐼𝑛𝑐𝑜𝑚𝑒𝐸𝑐𝑜𝑖𝑛𝑑 (7) 

Then, for the Rawlsian scheme, the objective function 𝑅𝑊 is minimized and the 

following constraints are included: 

−𝐼𝑛𝑐𝑜𝑚𝑒𝑅𝑒𝑓𝑖𝑛𝑒𝑟𝑦 ≤ 𝑅𝑊 (8) 

−𝐼𝑛𝑐𝑜𝑚𝑒𝐵𝑖𝑜𝑟𝑒𝑓 ≤ 𝑅𝑊 (9) 

−𝐼𝑛𝑐𝑜𝑚𝑒𝐸𝑐𝑜𝑖𝑛𝑑 ≤ 𝑅𝑊 (10) 

This formulation corresponds to maximizing the smallest utility of the stakeholders. 

Regarding the sustainability metric SWROIM, the following objective function is 

maximized: 

𝑆𝑊𝑅𝑂𝐼𝑀 =

(𝐼𝑛𝑐𝑜𝑚𝑒𝑅𝑒𝑓𝑖𝑛𝑒𝑟𝑦 + 𝐼𝑛𝑐𝑜𝑚𝑒𝐵𝑖𝑜𝑟𝑒𝑓

+𝐼𝑛𝑐𝑜𝑚𝑒𝐸𝑐𝑜𝑖𝑛𝑑 − 𝑇𝐶𝐼
) [

1 + 𝑤𝐴 (
𝐴𝐸𝑀

𝐴𝐸𝑀𝑡𝑎𝑟𝑔𝑒𝑡)

+𝑤𝐽 (
𝑇𝑂𝑇𝐴𝐿𝐽𝑂𝐵𝑆

𝑇𝑂𝑇𝐴𝐿𝐽𝑂𝐵𝑆𝑡𝑎𝑟𝑔𝑒𝑡)
]

𝑇𝐶𝐼
(11)

 

 

Here, the economic, environmental, and social functions mentioned above are involved 

and 𝑇𝐶𝐼 is the total capital investment. 

4. Results and Discussion 

To illustrate the applicability of the model, we addressed a case study of an integrated 

system that involves existing refineries in Mexico and potential locations for installing 

new refineries, biorefineries, and eco-industries (Sánchez-Bautista et al., 2017). Different 

biomass types for the biorefineries and availability restrictions for suppliers were 

included. Regarding the eco-industries, one forest plantation for each Mexican state was 

considered. First, Figure 2 presents the income of each stakeholder (refineries, 

biorefineries, and eco-industries) through the distinct schemes: SWROIM, social welfare 

(SW), Nash (N), Rawlsian welfare (RW), and their difference with the utopia point (UP). 

For the refineries, the differences between the schemes and the utopia point are minimal 

in percentage. However, since this income is high, a minimum difference can represent a 

great variation of income. The SWROIM scheme gives the closest income to the utopic 

solution (with 1.491E+07 USD MM/year of difference) while the Rawlsian approach 

attains the lowest income. This behavior occurs because the refineries’ income 

corresponds to the greatest part of the total income. For the biorefineries, the differences 

in income are greater among the schemes and have the opposite behavior. The Rawlsian 

scheme provides a solution equal to the utopia point and the SWROIM analysis allocates 

no income to this stakeholder. Moreover, the social welfare scheme allocates almost half 

of the utopic solution, while the Nash approach allocates 14% more. The biorefineries’ 

income is smaller than the income of the other stakeholders. Because of this, we observe 

that the Rawlsian approach favors this stakeholder. For the eco-industries, the SWROIM 

and Rawlsian schemes provide the worst solutions. However, the social welfare gives the 

same income as the utopia point. The Nash scheme provides a similar allocation since it 

attains only 12% less. The difference between these schemes is similar in percentage to 

their difference for the biorefineries’ income, but opposite in direction. The results for the 
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integer decisions including the installation of new refineries, biorefineries, and eco-

industries are represented in Figure 3. For the SWROIM scheme, the refineries are the 

only new industries that are installed (3 out of the 3 new possible refineries). For the rest 

of the schemes, the same number of new refineries is installed. However, in some 

approaches, this proportion is smaller than the proportion related to the installation of the 

other industries. For instance, for the social welfare and Nash schemes, the highest 

proportion of eco-industries is observed. Regarding the biorefineries, the possibility of 

installing 6 new industries of this type was considered. For the social welfare and the 

Rawlsian schemes, this maximum number of new biorefineries are installed.  

Figure 4 shows the environmental and social functions under the distinct schemes and 

their difference with the utopia point. We observe that the behavior of the eco-industries’ 

income (see Figure 2) is almost equal to the environmental and social functions. This 

occurs because the economic objectives of the eco-industries are not conflicting with 

these functions. On the contrary, they increase in the same direction since the eco-

industries’ income depends on the captured emissions that are the avoided emissions. The 

allocations for the number of generated jobs are also similar, only with a slight difference 

in the SWROIM and Rawlsian schemes. It should be noticed that through the SWROIM 

analysis no emissions are avoided. However, 30,715 jobs are generated due to the existing 

refineries as well as the installation of new refineries. 

 
Figure 2. Refineries, biorefineries, and eco-industries income through the different schemes. 

 

 
Figure 3. Proportion of the installation of new industries through the different schemes. 
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Figure 4. Avoided emissions and generated jobs through the different schemes. 

5. Conclusions  

This work presented an approach for the evaluation of fairness schemes (social welfare, 

Rawlsian welfare, and Nash approaches) and the sustainability metric SWROIM for the 

optimal allocation of income among different stakeholders (refineries, biorefineries, and 

eco-industries). The differences in incomes with each evaluated scheme highlight the 

importance of analyzing these possible allocations since they can be key for decision-

makers. We found that certain schemes attain the utopic solution (or a value close to it) 

for one of the stakeholders; however, there is not a specific scheme that can provide the 

utopic solution for all stakeholders. Also, it was found that the SWROIM metric does not 

favor the environmental and social functions of the addressed system. On the contrary, 

this metric gives preference to the economic function and favors the stakeholder that 

contributes the most to the total profit. Furthermore, there is no installation of new 

biorefineries and eco-industries in the solution given by this scheme. Additionally, the 

Nash approach allows identifying trade-off solutions among the incomes of the 

stakeholders. Simultaneously, this allocation scheme provides trade-offs for the avoided 

emissions and the generated jobs. Moreover, through the Nash approach, an optimal 

design that allows the installation of biorefineries and eco-industries was found.  
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Abstract 

Reducing the CO2 emission from the power sector is one of the effective ways to 

mitigate global warming. Net-zero-emission power generation implies the control of not 

only pollutants such as NOx, CO and organic air pollutants but also greenhouse gas 

CO2. In traditional gas power plants, a huge amount of CO2 is generated, which has to 

be captured to achieve the near-zero emission target. Carbon capture in the power 

industry is technically and economically challenging due to the energy penalty and high 

capital cost. CO2 taxation among others is expected to accelerate the progress of zero-

emission power plants. The concept of zero- and near-zero-emission power plants can 

be realized by combining advanced power cycles and carbon capture technologies. 

Scientists and engineers are striving hard to improve the efficiency of power cycles and 

decrease the cost of carbon capture. Novel systems combining carbon capture 

technologies and advanced power cycles are reviewed in this paper. Each country has its 

own roadmap and timeline to achieve the zero-emission target in power sector. 

Therefore, the role of the zero-emission natural gas power plants in the future energy 

supply depends heavily on the country. In this paper, the prospect of the zero-emission 

natural gas power plants in the USA, China and Denmark are analyzed. 

Keywords: zero-emission, natural gas, power plants, future energy supply
 

1. Introduction 

Global warming has become one of the most contentious scientific and technological 

challenges in the last two decades. Among the greenhouse gases, CO2 is the largest 

contributor to global warming (NASA 2019). Reducing the CO2 emission from power 

plants is one of the effective ways to limit global warming to less than 2°C. Previous 

attempts to capture CO2 in power plants have decreased the efficiency of the power 

plant by about 10% (Fu and Gundersen 2012). Generally, carbon capture on a natural 

gas power plant is not economic due to the high operating cost and capital cost. 

However, with the increasing concern on climate change, carbon capture and storage 
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(CCS) is attracting more and more attention from both industry and academia. To 

achieve the target of the zero-emission power plant, advanced power cycles with CCS 

becomes the primary measure to take. There are many advanced power cycles and 

carbon capture technologies in power plants. In this paper, power cycles and carbon 

capture technologies are reviewed first. Based on this, the most promising natural gas 

power plants with zero- or near-zero-emission are reviewed and analyzed. The prospect 

of natural gas power plants in the future energy supply depends on the country. The role 

of natural gas power plants in the USA, China and Denmark in the near future is 

presented in the last section of this paper. 

2. Power cycles 

Commonly used power cycles in natural gas power plants are briefly reviewed. (I) Gas 

turbine cycle: The gas turbine cycle is the primary cycle for natural gas power plants. 

The high temperature and pressure flue gas expands in a gas turbine to generate 

electricity. The higher temperatures at the inlet of the turbine, the higher the thermal 

efficiency of the system (Unger and Herzog 1998). However, the materials cannot bear 

too high combustion temperatures in the gas turbine and thus the material is the main 

limitation of the gas turbine efficiency. (II) Steam Rankine cycle: Since the temperature 

of exhaust flue gas from the gas turbine is still very high, the stream can be generated in 

a heat recovery steam generator (HRSG). The generated steam can be utilized to drive a 

steam Rankine cycle. Therefore, the steam Rankine cycle is often integrated with the 

gas turbine cycle to form the well-known natural gas combined cycle (NGCC) plants. 

(III) Steam injection gas turbine cycle: The steam generated in the HRSG can be 

injected into the combustor to increase the power output of the simple gas turbine cycle 

(Nishida et al. 2005). The steam and air can mix at the outlet of the compressor or in the 

combustor and thus the thermal efficiency of a combined cycle can be improved. (IV) 

Allam cycle: This is a new, high-pressure, supercritical CO2 cycle that generates 

electricity from fossil fuels with near-zero emissions. CO2 is used as the working fluid 

rather than steam or air. All CO2 generated by the system is produced as a high-

pressure, pipeline-ready by-product. It is reported that Allam Cycle with carbon capture 

has a similar levelized cost of energy compared with NGCC power plants without 

carbon capture (Allam et al. 2014). (V) Organic Rankine cycle (ORC): ORC has been 

widely used for waste heat recovery (Yu et al. 2016). ORC can generate power at low-

temperature or even cryogenic temperature levels. Therefore, ORC can improve the 

system efficiency with the recovery of low-temperature heat and LNG cold energy in a 

liquified natural gas (LNG) fired power plant. (VI) Direct expansion cycle: LNG 

regasification process can be integrated with the power plant. In the natural gas direct 

expansion cycle, LNG is firstly pumped to very high pressure, then heated up to a 

gaseous or supercritical state, and finally expands in an expander to generate power 

(Franco and Casarosa 2015).  

3. Carbon capture technologies 

There are generally four categories of carbon capture technologies in power plants: (i) 

Pre-combustion carbon capture: Reforming of natural gas with oxygen produces a 

mixture of CO and H2, and then the water-gas shift reaction converts CO into CO2. Pre-

combustion carbon capture refers to capturing CO2 in a synthesis gas after the 

conversion of CO into CO2. CO2 can be separated by physical absorbent and hydrogen 

can be the fuel to generate electricity (Kanniche et al. 2010). (ii) Post-combustion 
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carbon capture: CO2 is separated from the flue gas after the combustion. There are many 

different ways to separate CO2 from flue gas, such as chemical absorption, adsorption, 

membrane separation and cryogenic CO2 separation. Solvent-based absorption (MEA-

CO2 absorption) has become a benchmark for post-combustion carbon capture (Alie et 

al. 2005). (iii) Oxy-combustion carbon capture: Pure oxygen is employed in the 

combustion process. Therefore, the flue gas mainly consists of water and CO2. Oxy-

combustion provides an effective way to burn natural gas while allowing the capture of 

CO2 through simple physical separation processes. The concentration of CO2 in the flue 

gas can reach 80%, which is an advantage for the carbon capture process. However, an 

air separation unit (ASU) is required, thus both the operating cost and capital cost are 

higher compared with the conventional power plants. (iv) Chemical looping combustion 

(CLC): A metal oxide as the oxygen carrier is circulated between two interconnected 

fluidized bed reactors: an air reactor and a fuel reactor. CLC is similar to oxy-

combustion where there is no direct contact between air and fuel. Oxygen is extracted 

from the air by oxygen carriers in the air reactor. The fuel is oxidized by the lattice 

oxygen of the metal oxide and produces CO2 and vapor in the fuel reactor. The main 

advantage of chemical looping resides in the inherent separation of both CO2 and H2O 

from the flue gases. In addition, the NOx formation is minimized since the combustion 

takes place in a nitrogen-free environment.  

Among the above-mentioned carbon capture technologies, solvent-based chemical 

absorption post-combustion capture is the most popular choice because of its relatively 

low cost and the matureness of the technology. Pre-combustion, post-combustion and 

oxy-combustion carbon capture technologies are energy-intensive, resulting in a 

significant decrease in the overall efficiency and increase in the cost of produced 

electricity. CLC technology is energy efficient, but commercial scale-up of the CLC 

depends on the availability of the performance and stability of oxygen carriers. 

4. Review of zero-emission natural gas power plant 

To achieve zero- and near-zero-emission goal, both power cycles and carbon capture 

have to be considered simultaneously in a natural gas power plant. Bolland and Sather 

(1992) presented the analysis of natural gas-fired seawater cooled combined cycle 

power plants with CO2 capture. 90% of CO2 was captured by amine scrubbing. A 

fraction of the flue gas is recirculated back to the gas turbine compressor to reduce the 

volumetric flow and increase the concentration of CO2 for the downstream CO2 

recovery plant. Shao et al. (1995) proposed a natural gas-fired power plant with 

virtually zero emission. The plant operates in a gas-steam turbine combined cycle with 

oxy-combustion mode. The liquid oxygen is used to liquefy CO2 from the flue gas to 

save the compression work. Mathieu and Nihart (1999) proposed a novel MATIANT 

cycle, which is a gas cycle with CO2 as the working fluid and O2 as the oxidizer. In this 

system, CO2 is compressed to very high pressure and then cooled down by cooling 

water and finally removed in the liquid state. The temperature of the combustion 

chamber is 1300 °C and the condensation temperature is 29°C at 70.5 bar. Deng et al. 

(2004) proposed a cogeneration power system with LNG regasification process. This 

system can not only generate electricity but also produce natural gas for other end users. 

The power system is an oxy-combustion power cycle and CO2 in the flue gas is 

liquefied by LNG. Sanz et al. (2005) proposed an S-Graz Cycle to achieve the zero-

emission goal of the power plant. They declared that S-Graz Cycle could be the most 

economical solution for CO2 capture once the development of new turbomachinery 
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components is realized. Zhang and Lior (2006) proposed a quasi-combined cycle mode 

with a supercritical CO2 Rankine-like cycle and a CO2 Brayton cycle. The top Brayton 

cycle and the bottom supercritical CO2 Rankine cycle are coupled. The LNG cold 

energy is reutilized to capture the CO2 in the flue gas and cool down the inlet stream of 

compressors to save compression work. Zhang and Lior (2008) also proposed two novel 

systems for oxy-combustion natural gas-fired power plant integrated with steam 

reforming and CO2 capture. Natural gas is converted into H2 and CO to improve the fuel 

heating value and the turbine exhaust heat can be recovered by the reforming reaction. 

They declared that the net energy efficiency is in the range of 50–52%. Liu et al. (2009) 

proposed an oxy-combustion gas turbine cycle with LNG cold energy utilization, which 

is based on the flowsheet proposed by Deng et al. (2004). The primary difference is the 

integration of the LNG evaporation with the CO2 condensation. Xiong et al. (2014) 

proposed a combined cycle with LNG cold energy recovery. The combined cycle 

consists of a gas turbine cycle and a steam Rankine cycle. LNG cold energy is utilized 

in ASU and CO2 capture processes. The electrical exergy efficiency can reach 54.9% 

with 90.6% CO2 recovery. Scaccabarozzi et al. (2016) performed thermodynamic 

analysis and optimization of Allam cycle. The maximum efficiency is 54.8% with 100% 

CO2 capture. Chen et al. (2017) proposed a novel gas and steam mixture cycle. In this 

system, peak shaving, energy storage and CO2 capture are considered along with power 

generation. Liquefied oxygen is produced during off-peak hours. The main advantage of 

the novel cycle is that the pressure of LNG and liquefied O2 is increased to the 

combustion pressure by pumps instead of compressors, thus a huge amount of 

compression work is saved. Naqvi et al. (2004) proposed a chemical looping 

combustion natural gas power plant with CO2 capture. The oxidation reactor outlet 

stream drives the gas turbine and the exhaust from the fuel reactor drives CO2-turbine. 

The results show that an optimum efficiency of 49.7% can be achieved under given 

conditions with a CLC-combined cycle at zero emissions level. 

5. The role of zero-emission natural gas power plants around the world 

Each country is at a different point in the decarbonization journey. Therefore, natural 

gas plays different roles in decarbonization all over the world. The USA is the largest 

natural gas consumer in the world. Annual electricity generation from natural gas power 

plants in the USA increased by 31% in the Northeast region, by 20% in the Central 

region, and by 17% in the South region between 2015 and 2019. Natural gas power 

plants will continue to play an important role in the USA. Net power technology, which 

is a company focusing on zero-emission electricity, intends to build two natural-gas 

power plants in the U.S. that will have all its emissions captured and buried deep 

underground. Almost all new power plants built in 2021 will be carbon-free. However, 

for the existing natural gas power plants, revamping with carbon capture is expected to 

be done to achieve carbon neutrality in 2050.  

China is the largest CO2 emission country, accounting for about 30% of the world’s 

total emission in 2013 (Friedlingstein et al. 2014). Currently, natural gas plays a 

relatively small role in China’s power sector despite the growth in recent years. Coal 

remains the dominant fuel in China’s power sector, but wind and solar generation have 

risen more rapidly than gas power. China has pledged to peak carbon dioxide emissions 

before 2030 and achieve carbon neutrality before 2060. China’s energy consumption is 

dominated by coal. Natural gas will play an important and stable role in the Chinese 
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energy market with a share of 12% in 2030 and 11% in 2060. China has committed to 

increasing support for other developing countries in developing green and low-carbon 

energy, and not to build new coal-fired power projects abroad. Natural gas power plants 

are key to stable power systems in the energy transition. Natural gas is expected to be a 

key bridge fuel over the next two decades. China will fundamentally revamp its natural 

gas power plants to achieve the zero-emission target. Natural gas power plants are 

expected to be retrofitted with CCS by 2050 in China (Qin 2020).  

As regards Denmark, the country has been playing a leading role in the carbon-neutral 

society. Copenhagen, the capital of Denmark, committed to becoming carbon-neutral in 

2010-five years before the Paris Agreement and will become the world’s first carbon-

neutral capital by 2025 (Damsø et al. 2017). Denmark has set up two targets to achieve 

the carbon-neutral goal: year 2050 with 100% renewable energy from biomass, wind, 

solar and wave energy; year 2030 with 50% renewable energy, as the first important 

milestone on the way to carbon-neutral society (Lund and Mathiesen 2009). Currently, 

there are only two natural gas-fired power plants in Denmark. Towards the target of 

carbon neutrality, biogas will play an increasingly important role. Biogas is abundant in 

Denmark due to its advancement in biomass utilization (Korberg et al. 2020). Biogas 

can replace natural gas after upgrading. Thus with biogas as the fuel, the existing power 

plants do not need to be revamped with CCS. If CCS is implemented, a negative 

emission goal can be achieved. Natural gas power plants will be replaced by various 

sources of renewable energy in Denmark. In summary, natural gas power plants will be 

phased out in Denmark soon. The advancement of technologies in natural gas power 

plants seems to be of no interest to Denmark. 

6. Conclusion 

To combat climate change, decarbonization in the power sector is a necessity. Natural 

gas power plants play an important role in the power sector. The advancement of zero 

and near-zero-emission natural gas power plants is reviewed in this paper. Even though 

it is technologically viable to achieve the zero-emission target, there are more 

challenges in putting the concept into practice considering the cost of carbon capture. 

All the studies are focusing on reducing the cost for carbon capture while maintaining 

an acceptable thermal efficiency of the power plants. For the policymakers in different 

countries, zero-emission natural gas power plants play different roles on the journey to 

carbon neutrality depending on the country. The prospect of the zero-emission natural 

gas power plant in the USA, China, and Denmark are analyzed in this paper. Zero-

emission natural gas power plants will still be of interest to the USA and China on the 

journey to carbon neutrality, while Denmark will phase out the natural gas-fired power 

plants in the near future. 
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Abstract 

The criticality of climate change is such that any further delay in mitigation action would 

result in irreversible damage. This work develops a novel software framework for optimal 

decarbonisation in energy planning to determine the optimum deployment of renewable 

energy sources, alternative low carbon fuels, negative emission technologies (NETs) and 

CO2 capture and storage (CCS). The mathematical programming-based tools in this work 

provide rigorous optimal solutions, subject to budget, demand, and emission constraints. 

The application of the software framework is demonstrated with a Malaysian energy 

decarbonisation case study. The results indicate a heavy reliance on NETs, alongside 

reductions in coal and natural gas use to achieve CO2 neutrality by 2050.  

Keywords: Multiperiod Energy Planning; Negative Emission Technologies; Process 

Integration; Policymaking; Decarbonisation Software 

Introduction 

Global leaders recently gathered at COP26 to agree on emission reduction targets. 

Limiting warming by 2100 to 1.5 °C is technically feasible but time is short to achieve 

this. An emissions cut of 45% must be achieved by year 2030 relative to 2010 

(International Renewable Energy Agency, 2021) to meet the Paris Agreement targets. On 

a positive note, the recent plummeting costs of renewable energy sources offers hope for 

climate change mitigation.  The challenge is to optimally deploy different decarbonisation 

measures to reduce emissions strategically and rapidly within economic and 

environmental constraints.  

Sustainable energy planning via Carbon Emissions Pinch Analysis (CEPA) was 

pioneered by Tan and Foo (2007). Later, Tan et al. (2009) extended the CEPA approach 

by incorporating CCS as a decarbonisation option. The initial graphical approach was 

followed with the development of an automated targeting model by Lee et al. (2009), 

which was applied to CCS deployment by Ooi et al. (2013). The deployment of carbon 

dioxide removal (CDR) via negative emission technologies (NETs) was then addressed 

with graphical (Nair et al., 2020) and algebraic targeting tools (Nair et al., 2021). Equally, 

several energy planning tools e.g., MARKAL, TIMES etc. had been developed to analyse 
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energy and electricity systems (Ringkjøb et al., 2018). These models conduct short and 

long-term planning, considering the technical and economic constraints. This work 

develops a decision-making software framework based on mathematical programming 

for planning decarbonisation. A multiperiod model is used to allow progressive targets to 

be incorporated subject to technical and economic constraints. The novelty of this work 

is that it includes fuel substitution, NETs, and CCS as concurrent alternatives, along with 

process integration-inspired visualisation tools and detailed strategic scheduling and 

technology selection for a Malaysian case study. 

1. Problem Statement 

A superstructure mathematical programming formulation is developed to synthesise an 

optimal decarbonisation plan with the following specifications. For time-period 𝑘 ∈ 𝐾, 

the CO2 emission limit, 𝐿𝑘 and energy demand, 𝐷𝑘  are specified.  Power plant 𝑖 ∈ 𝐼 with 

lower, 𝐹𝑖,𝐿𝐵 and upper bound energy output, 𝐹𝑖,𝑈𝐵, and CO2 intensity, 𝐶𝑆𝑖 constitute the 

energy planning system for period k. To meet CO2 emissions and energy demands in 

period 𝑘, CCS 𝑛 ∈ 𝑁 of different types can be employed at each power plant, as well as 

energy-producing NETs (EP-NETs) 𝑝 ∈ 𝑃, energy-consuming NETs (EC-NETs) 𝑞 ∈ 𝑄 

and compensatory renewable energy 𝑐 ∈ 𝐶 that are considered for deployment. 

Additionally, alternative solid-based fuels 𝑠 ∈ 𝑆 and gas-based fuels 𝑔 ∈ 𝐺 are available 

to substitute the use of coal and natural gas respectively for power generation.  

2. Mathematical Programming Formulation 

Within period k, the energy outputs from all power plants 𝑖 ∈ 𝐼 (∑ 𝐹𝑆𝑖,𝑘𝑖 ) must satisfy 

energy demands (𝐷𝑘), as shown in Eq.(1).  

∑ 𝐹𝑆𝑖,𝑘 = 𝐷𝑘  

𝑖

          ∀𝑘 (1) 

Carbon intensities of power plants with CCS technology n installed in period k (𝐶𝑅𝑖,𝑛) 

are determined from Eq.(2) (Ooi et al., 2013).  

𝐶𝑅𝑖,𝑛 =  
𝐶𝑆𝑖  ×  (1 − 𝑅𝑅𝑛)

1 − 𝑋𝑛

          ∀𝑖 ∀𝑛 (2) 

where 𝑅𝑅𝑛 and 𝑋𝑛 are the CO2 removal ratio and power loss associated with installing 

CCS. 

Eq.(3) is used to calculate the net energy output from power plants with CCS retrofit 

(𝐹𝑁𝑅). Note that there will be a reduced energy output from power plants with CCS 

retrofit due to the technologies’ power consumption. Eq.(4) is a Big-M constraint 

associated with CCS selection. 

𝑅𝑖,𝑘,𝑛  ×  (1 − 𝑋𝑛) = 𝐹𝑁𝑅𝑖,𝑘,𝑛          ∀𝑖 ∀𝑘 ∀𝑛 
(3) 

 

𝑅𝑖,𝑘,𝑛  ≤ 𝐹𝑖,𝑈𝐵  × 𝐵𝑖,𝑘,𝑛          ∀𝑖 ∀𝑘 ∀𝑛 (4) 

where 𝐵𝑖,𝑘,𝑛 is a binary variable associated with selection to retrofit CCS technology n to 

power plant i in period k and 𝑅𝑖,𝑘,𝑛 is the extent of CCS retrofit. 

The total extent of CCS retrofit of power plant i with all CCS technologies (𝑇𝑅𝑖,𝑘) is 

obtained from Eq.(5). Additionally, the energy output from the power plant i cannot be 

less than the total extent of CCS retrofit with all CCS technologies, represented by Eq.(6). 
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∑ 𝑅𝑖,𝑘,𝑛𝑛 = 𝑇𝑅𝑖,𝑘           ∀𝑖 ∀𝑘  
(5) 

 

𝑇𝑅𝑖,𝑘  ≤ 𝐹𝑆𝑖,𝑘          ∀𝑖 ∀𝑘 (6) 

In any period k, the total energy from a plant (𝐹𝑆𝑖,𝑘) must be equal to the summation of 

the net energy output without CCS retrofit (𝐹𝑁𝑆𝑖,𝑘), the extent of CCS retrofit (𝑅𝑖,𝑘,𝑛) and 

the alternative solid (𝑆𝐷𝑖,𝑘,𝑠) and gas-based fuels (𝐺𝑆𝑖,𝑘,𝑔); shown in Eq.(7). 

𝐹𝑁𝑆𝑖,𝑘 + ∑ 𝑅𝑖,𝑘,𝑛

𝑛

+  ∑ 𝑆𝐷𝑖,𝑘,𝑠

𝑠

+ ∑ 𝐺𝑆𝑖,𝑘,𝑔

𝑔

 = 𝐹𝑆𝑖,𝑘           ∀𝑖 ∀𝑘  (7) 

 Eq.(8) ensures that in any period k, total energy output from all energy sources is equal 

to total energy demands, which includes the total power demands (𝐷𝑘) combined with 

those required by EC-NETs (𝐸𝐶𝑘,𝑞 ). Similarly, Eq.(9) enforces total CO2 load from all 

energy sources is equal to total CO2 emissions over period k (𝑇𝐸𝑘). 

∑ ∑(𝐹𝑁𝑆𝑖,𝑘 +  𝐹𝑁𝑅𝑖,𝑘,𝑛 )

𝑛

+ ∑ 𝐹𝐶𝑐,𝑘

𝑐

+ ∑ 𝐸𝑃𝑘,𝑝

𝑝

+  ∑ 𝑆𝐷𝑖,𝑘,𝑠

𝑠𝑖

+  ∑ 𝐺𝑆𝑖,𝑘,𝑔

𝑔

 =  ∑ 𝐸𝐶𝑘,𝑞 + 𝐷𝑘

𝑞

 ∀𝑘 

(8) 

 

 

∑ ∑ (𝐹𝑁𝑆𝑖,𝑘𝐶𝑆𝑖 +  (𝐹𝑁𝑅𝑖,𝑘,𝑛 𝐶𝑅𝑖,𝑛))

𝑛

+ ∑ 𝐹𝐶𝑐,𝑘 𝐶𝐼𝐶𝑐,𝑘

𝑐𝑖

+ ∑ 𝐸𝑃𝑘,𝑝 𝐶𝐼𝐸𝑃𝑘,𝑝

𝑝

 +  ∑ 𝐸𝐶𝑘,𝑞 𝐶𝐼𝐸𝐶𝑘,𝑞

𝑞

+  ∑ 𝑆𝐷𝑖,𝑘,𝑠 𝐶𝐼𝑆𝐷𝑖,𝑘,𝑠

𝑠

+  ∑ 𝐺𝑆𝑖,𝑘,𝑔 𝐶𝐼𝐺𝑆𝑖,𝑘,𝑔

𝑔

= 𝑇𝐸𝑘      ∀𝑘 

(9) 

where 𝐶𝐼𝐶𝑐,𝑘, 𝐶𝐼𝐸𝑃𝑘 , 𝐶𝐼𝐸𝐶𝑘,𝑞 , 𝐶𝐼𝑆𝐷𝑖,𝑘,𝑠 and 𝐶𝐼𝐺𝑆𝑖,𝑘,𝑔 represent the carbon intensities of 

compensatory energy c, EP-NETs technology p, EC-NETs technology q, alternative 

solid-based fuel s and gas-based fuel g in period k respectively.  

The total energy costs for period k (𝑇𝐶𝑘) are obtained using Eq.(10). 

∑ ∑ (𝐹𝑁𝑆𝑖,𝑘𝐶𝑇𝑖,𝑘 +  (𝐹𝑁𝑅𝑖,𝑘,𝑛 𝐶𝑇𝑅𝑖,𝑘,𝑛) + (𝐶𝐹𝑋𝑖,𝑘,𝑛𝐵𝑖,𝑘,𝑛 ))

𝑛𝑖

+ ∑ 𝐹𝐶𝑐,𝑘  𝐶𝑇𝐶𝑐,𝑘

𝑐

+ ∑ 𝐸𝑃𝑘,𝑝 𝐶𝑇𝐸𝑃𝑘,𝑝

𝑝

 +  ∑ 𝐸𝐶𝑘,𝑞 𝐶𝑇𝐸𝐶𝑘,𝑞

𝑞

+  ∑ 𝑆𝐷𝑖,𝑘,𝑠 𝐶𝑇𝑆𝐷𝑖,𝑘,𝑠

𝑠

+  ∑ 𝐺𝑆𝑖,𝑘,𝑔 𝐶𝑇𝐺𝑆𝑖,𝑘,𝑔

𝑔

= 𝑇𝐶𝑘           ∀𝑘 

(10) 

where 𝐶𝑇𝑅𝑖,𝑘,𝑛 and 𝐶𝑇𝑖,𝑘 are costs of energy output by power plants with and without 

CCS technology, while 𝐶𝑇𝐶𝑐,𝑘, 𝐶𝑇𝐸𝑃𝑘,𝑝, 𝐶𝑇𝐸𝐶𝑘,𝑞 , 𝐶𝑇𝑆𝐷𝑖,𝑘,𝑠 and 𝐶𝑇𝐺𝑆𝑖,𝑘,𝑔 are the cost 

associated with compensatory energy c, EP-NETs technology p, EC-NETs technology q, 

alternative solid-based fuel s and gas-based fuel g. Meanwhile, 𝐶𝐹𝑋𝑖,𝑘,𝑛 represents the 

fixed cost of retrofitting power plant i with CCS n in period k.  

 Eq.(11) ensure that decisions taken to retrofit power plants with CCS in earlier periods 

is not reversed in later periods; the extent of CCS retrofit at later periods is at least equal 

to that in previous periods. 
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(𝑅𝑖)𝑘+1  ≥  (𝑅𝑖)𝑘          𝑘 = 1,2, … , 𝑛 − 1 (11) 

Total CO2 emissions and total energy costs are subject to limits in Eq.(12) and Eq.(13), 

relating to emission limits 𝐿𝑘  and budget allocation 𝐵𝐷𝑘 .  

𝑇𝐸𝑘 ≤ 𝐿𝑘           ∀𝑘 (12) 

𝑇𝐶𝑘 ≤ 𝐵𝐷𝑘           ∀𝑘 (13) 

Objective functions for the optimisation problem can either be Eq.(14) if the total costs 

are to be minimised subject to meeting certain emissions limits, or Eq.(15), where total 

CO2 emissions are minimised subject to budgetary constraints. 

𝑚𝑖𝑛 𝑇𝐶𝑘            ∀𝑘 (14) 

𝑚𝑖𝑛 𝑇𝐸𝑘           ∀𝑘 (15) 

This mixed-integer linear programming (MILP) model is implemented in Pyomo with a 

spreadsheet as an input interface and can be solved using the users’ choice of solver. The 

code and supporting documents are available at https://github.com/mchlshort/DECO2.  

3. Case Study 

The application of the optimal decarbonisation software framework is demonstrated with 

a Malaysian energy planning case study. Malaysia is one of the fastest-growing 

economies within ASEAN (Association of South-East Asian Nations). This rapid 

economic growth makes Malaysia a carbon-intensive country, but a carbon-neutrality 

pledge by 2050 has been made with the 12th Malaysia Plan (Salim, 2021). This goal will 

require a revamp of the country’s carbon-intensive grid. In year 2020, the power 

generation sector alone generated 109 Mt CO2 (Energy Commission, 2020). Due to the 

Paris Agreement, renewable energy share is projected to hit 40% by year 2035 (The 

Straits Times, 2021). However, an increase in renewable energy share alone would not 

be sufficient. A recent study concluded that a carbon pricing policy must be implemented 

in Malaysia to achieve its target CO2 emission reduction (Izlawanie, 2021). However, an 

ambiguous carbon tax framework and political instability would hinder its 

implementation. On the other hand, Malaysia, being one of the top palm oil producers in 

the world has significant potential for the use of crops as biomass (Loh, 2017). Given that 

coal plants are expected to be operational till at least year 2040, other alternatives i.e., 

fuel substitution and the use of NETs must be considered. 

We consider energy planning for Malaysia across six 5-year periods starting in 2025, each 

with a specified demand, emission limit and budget allocation, based on forecasts. The 

CO2 emission reduction is achievable with the potential deployment of three types of EP-

NETs i.e., bioenergy with CCS and biochar and EC-NETs i.e., direct air capture and 

enhanced weathering, alongside two choices of CCS technologies and compensatory 

energy. Two types of biomass and biogas, each with a specified CO2 intensity and cost 

are also available to replace coal and natural gas respectively. Table 1 presents the 

demand and CO2 emission constraints for each period. The case study was solved for the 

minimum budget objective function (Eq.(14)) using CPLEX as the optimisation solver. 

Figure 1 presents the energy planning pinch diagram for period 6 (years 2045 – 2050).  
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Table 1: Energy Planning Data

Period k Y ears
𝐷𝑘 / 

TWh y-1

𝐿𝑘 / 

Mt y-1

1

2

3

4

5

6

2022 - 2025

2025 – 2030

2030 – 2035

2035 – 2040

2040 - 2045

2045 – 2050

133

142

156

166

184

203

116

115

110

94

60

0

Figure 1 shows that the carbon-neutral target in 2050 can be achieved with the 

deployment of NETs, renewable energy and CCS.

Figure 1: Energy planning pinch diagram for Period 6 (2045-2050)

The optimisation results demonstrate that all coal power plants would be decommissioned 

to be replaced by biomass by 2050. As of 2040, 13 of the available 19 natural gas plants 

were operational to generate 68.23 TWh electricity annually. In 2050, while one natural 

gas plant is decommissioned, four plants generating 43.5 TWh electricity are CCS 

retrofitted, with the remaining being transitioned to accommodate biogas as feedstock, 

generating 39.2 TWh electricity annually. The results of this software framework align 

with Malaysia’s aspiration for a gradual decommissions of coal power plants in light of 

its climate change target. 

4. Conclusion

An optimal decarbonisation policy software framework was developed in this work based 

on mathematical programming models for energy planning. It can aid policymakers in 

crafting decarbonisation strategies. The MILP model provides solutions for optimal 

deployment of NETs, CCS, compensatory energy and fuel substitutions to meet emissions 

caps in each period. As demonstrated using a Malaysian decarbonisation case study, this 

software framework could contribute to the achievement of the net-zero emissions targets. 

1631

A Process Integration-Based Optimal Decarbonisation Policymaking Software 

Framework

1607



 1608 

Results show that there is a need for energy planning models to consider fuel substitutions 

in existing plants, as well as techno-economic constraints down to the individual plant 

level. Future work on the open-source software will focus on incorporating uncertainty 

associated with parameters, as well as considering economy-wide CO2 emissions from 

other industries/sectors e.g., petrochemical, cement etc. aside from incorporating the 

technical constraint i.e., availability, implementation time, cost etc. for each technology.  
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Abstract 

Today’s Industry 4.0 (I4) is re-designing industrial activities and re-shaping communities 

into the so-called Society 5.0 (S5), enabling the creation of a new industry-society-

environment nexus. The application of novel technologies such as pervasive sensing, 

widespread internet of the things (IoT), artificial intelligence (AI), and robotics aims to 

sense, calculate, and actuate by employing data-driven architectures and automated 

decisions for reaching more efficient processes that reduce environmental impacts and 

transform manpower workloads. This work introduces a cyber-physical system (CPS) 

towards more innovative operations within the mining industry's mine-to-mill process, 

whereby the operations' decision-making and executions are often done by human 

intelligence. However, the increasing use of autonomous machines or mechatronics 

(MEC) such as trucks, drills, drones, and conveyor belts, combined with advanced 

modelling and solving algorithms (MSA), can achieve the necessary autonomous 

operations for handling such hazards and harsh environments, where no or reduced 

manpower is required. For that, information and computing technologies (ICT) facilitate 

innovative solutions to re-shape and re-design production systems. The interplaying of 

advanced technologies of the I4 mandate and circular economy (CE) ideology towards 

the mines of the future creates a smart connected mining industry that embeds vast 

amounts of data into predictive and fully integrated intelligent systems. This paper 

discusses how I4’s technological developments in mining sector applications generate 

opportunities to re-design and re-execute stockpiling to conveyor-belt processes into 

enhanced production states from a CE perspective (environmental, economic, and social). 

CE theories within I4-S5 offer innovative sustainable industrial concepts driven by safer, 

more environmentally friendly towards precision and autonomous mining. 

Keywords: Industry 4.0, Society 5.0, mining, circular economy, sustainable 

development. 

1. Introduction 

Human beings have engaged in mining since the stone age. Since then, we have used 

natural resources from the earth for utilitarian purposes to support global development. 

Mining is generally considered to be the activity of recovering minerals and other 

materials from the earth and is often associated with further processing of minerals to 

concentrate the amount of metal and to remove impurities. The combination of industrial 

organisations involved in traditional mining and oil and gas recovery is often described 
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as the extractives sector. There are many interpretations of mining and its associated 

activities, and some terms are used interchangeably. Mining can be classified according 

to various criteria, including the location of activities and the scale at which it occurs. 

Figure 1 summarises common mining pathways, including underground, quarrying, sand, 

artisanal small-scale, undersea, in addition to the promising lunar or beyond Earth mining. 

As our world’s population and economic growth increases, the demand for total global 

metal production continues to increase in scale with its associated impacts. Some metals 

experience cycles of demand as older uses are phased out, such as cryolite, while other 

historically less-exploited metals have come to prominence as a result of technological 

innovations, such as the increasing production of lithium due to its use in batteries (Martin 

et al., 2017). Since the world of mining is changing with new technologies reshaping 

mining practices, traditional value chains (input, exploration mine development, blasting 

load and haul, processing, transportation, further processing, and products) are disrupted 

and society's expectations of mining companies have never been higher. The digital 

transformation and the introduction of CPSs towards smarter operations within the 

mining industry have put huge ambition towards global prosperity and sustainable 

development. The interplaying of advanced technologies and CE ideology towards the 

mines of the future creates a smart connected mining industry, whereby vast amounts of 

data are embedded into predictive analytics capabilities for achieving fully integrated 

intelligent systems (Kelly and Menezes, 2019). Such Industry 4.0 (I4) autonomous 

machinery and tools are fundamental to provide safer and more efficient environments. 

For example, mechatronics (MEC) with sophisticated modelling and solving algorithms 

(MSA) are needed for autonomous handling of hazards and the severe environment when 

no or little human intervention is required. ICT enables novel solutions to reshape and re-

design mining production processes towards a complete digitalization of the processes. 

At a process level in the mining system (from the crushing and to the milling), improved 

stockpiling to conveyor-belt operations can be achieved by employing better processes 

for separating and transporting ore, preventing evaporation, and producing drier tailings 

through a hybrid dynamic control application. Thus, additional safety, stability, and 

predictability can be achieved to maximise the ratio of metal to ore output while 

minimising the environmental impacts and the operating and capital costs. In addition, 

this creates sustainable communities to identify socio-economic development 

opportunities. This paper addresses how I4 technological advances drive opportunities to 

re-design and re-execute operations at the process level (of stockpiling to conveyor-belt) 

into an improved state under CE ideologies within the scope of the environmental, 

economic, and social pillars. In this context, CE theories within I4-S5 introduce novel 

sustainable industry principles for innovative processes that are driven by safer and more 

efficient, accurate, precise, and autonomous mining processes. 

 

Figure 1: Mining pathways. 
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2. Mining challenges from a CE perspective 

The life cycle assessment of mining and mineral processing as well as oil and gas 

industries use heavy equipment that consumes electrical, thermal and mechanical energy, 

, which are key contributors to the overall industrial impacts on the environment (Farjana 

et al., 2019). The mining industry has been undergoing significant changes as companies 

adopt automation technologies to decrease costs, increase efficiency, and improve safety. 

The accident and ill-health record of the mining sector compares poorly to that of other 

economic sectors such as manufacturing, construction, and rail, leading to mining’s 

reputation as the most hazardous industrial sector (Domingues et al., 2017). Mining poses 

significant health issues due to airborne contaminants such as silica and coal dust, as well 

as noise, heat, and vibration. Other severe health concerns include chemical hazards 

unrelated to the subterranean, such as air pollution, gases, skin diseases, ergonomic 

strains, and ionic, cosmic, and radioactivity radiations, among others. Although health 

problems can be mitigated by applying tight controls at the source in the workplace, 

developing such measures for mining operations provides significant hurdles given that 

dust and noise are created by mining operations themselves. The impacts of shifts in 

employment patterns and tedious working hours that increase site exposure are added to 

the complexity of assessing the likelihood of health risks. Many mineworkers have 

worked in mines for over two decades, with increasing risk of occupational diseases. 

Lately, the effectiveness of protective systems based on occupational exposure limits for 

eight-hour working days has been questioned (Komljenovic et al., 2017). 

Besides social risks, the world faces the biggest environmental threat in generations, and 

low-carbon technologies are needed to resolve this issue. However, the development of 

such technologies increases the demand for the mining of raw materials. Electric vehicles, 

as an example, are made with around 70% of copper. The mining industry faces an 

interesting future with growing demand as well as severe challenges (Sánchez and 

Hartlieb, 2020). The current technological trend is to vastly increase the level of 

automation driven by enhanced I4 capabilities. Within this context, many challenges 

arise. First, local mining enterprises have become multinational giants and mine sites are 

usually very remote and with harsh climatic conditions. Recruiting and retaining skilled 

personnel to operate the mines in distant locations such as deserts or mountains is 

difficult. Second, decreased ore grades, which leads to exploring more ore bodies. As a 

result, the trade-off between drilling deeper with increased costs is to maintain profitable 

throughput. Third, despite continuous improvements, workforce safety incidents and 

accidents continue to occur, prompting policies to impose stricter laws, rules, and 

regulations. The safety of workers must be addressed, particularly in subterranean 

operations and on-ground areas where people working close to heavy machines are 

exposed to risks. Fourth, the mining sector has long been concerned about growing energy 

costs, efficiency, and measuring power consumption. Assuring tightly integrated plant 

processes and power units would be considered key for improving energy efficiency. 

Fifth, the lack of information unity, in which there are several independent pieces of 

equipment, machinery, systems, and subsystems in the mining site, and each has its own 

information and interfaces. Thus, decision-makers have separate pieces of information at 

hand with no holistic overview, known as “islands of automation”. The lack of unity and 

integration imposes difficulties in performing proper decisions in a timely manner. 

Complementary to the I4 adaptation in organisations, concerns in resource utilisation, 

conversation, and recycling, aligned with environmental issues worldwide, have 

transformed the old-fashion profitability objective to be maximised in the short-term 
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horizon to the sustainable economic growth targeting a long-term prospectus. With the 

support of the I4 technologies, the sustainable deployment, also referred to as CE in 

manufacturing systems and supply chains, implies efficient use of natural resources, 

reduced energy consumption, minimum generation of wastes, as well as high-

performance production, logistics, and services. Therefore, identification and design 

opportunities for the resource-process-product within the I4-CE adoption are expected to 

increase (Song and Wang, 2018). Modern MEC-MSA-ICT fundaments of the I4 

transform production and service operations models, reducing energy and optimising 

material flows and inventories. The consequence of such transformations is the reduction 

of waste and greenhouse gases (GHG) emissions. Such an evidence of GHG reduction by 

virtue of the capabilities of the augmented information age in transportation, logistics, 

smart cities, efficient buildings, and facilities, etc., demonstrate more sustainable 

environment while offering economic benefits (GelenbeErol and CaseauYves, 2015; 

Moyer and Hughes, 2012; Murugesan and Laplante, 2011). 

3. Sense, calculate, and actuate cycle within CPSs for mine-to-mill process 

From a laboratory-level to mature processes, advanced production in the industry is 

evolving to re-identify, re-design, re-execute, and re-evaluate new opportunities within 

research, development, and deployment (RD&D) stages into the I4 improved state. In the 

mining case, a real-time dynamic predictive control model based on I4 capabilities relies 

on the cycle of sensing, calculating (via optimisation), and actuating (SCA) within CPS 

in the stockpiling to conveyor-belt process. In this context, Menezes et al. (2019) address 

a conveyor-belt intermittently delivering crushed-ore to form multiple stockpiles 

considering targets of their inventories to avoid the so-called bridging, reducing the flow-

out beneath the stockpiles, which feeds other conveyor-belts to the mills. In such a system, 

a dynamic online optimisation for shuttle-conveyor-belt tripper car is treated as a real-

time hybrid model predictive control (HMPC) with shifting prediction time-horizon. The 

HMPC aims to enhance the performance of the stockpiles’ level by autonomously 

adjusting the idle-time (actuation or manipulated variable) of the robotic apparatus of the 

tripper car that moves over each stockpile position (as seen in Figure 2). The motion from 

one stockpile to the next in a neighbour-to-neighbour fixed sequence forms multiple 

stockpiles instead of one per belt. The problem is solved as a mixed-integer linear 

programming (MILP) problem to minimise the deviation of the given targets to the actual 

or live inventory of the stockpiles (sensed by industrial radar technologies using 

ultrasound). In this coordinating of the conveyor-belt for multiple stockpiles, the robotic 

arm idle-time in the schematics of Figure 2 is the actuation or manipulated variable 

depositing the solids into each stockpile to automatically control its inventory. Then, the 

robotic apparatus goes back and forth as a smart sweeping movement since it counts on 

the smart manufacturing ground bases of the ICT, MSA, and MEC pillars to be 

implemented within a continuously controlled cycle of sensing, calculating (via 

optimisation), and actuating. 

The bottlenecks of such a CPS in mining have been surpassed by the development of fast 

discrete optimisation in the calculating stage of the SCA cycle to continuously determine 

idle-time as a binary variable per time-window of the positions (Kelly and Menezes, 

2019). By moving from one to multiple stockpiles per belt, CE implications of its three 

pillars exist. Economically, more efficient flow-to-stockpile increases the utilisation 

factor of the equipment, while reducing dust, raw material losses, and energy 

consumption. Nevertheless, the raise of such I4 technologies leads to social impacts by 

increasingly closing low-skilled positions and requiring high-qualified personnel.  
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Figure 2: Robotic arm apparatus schematics feeding eight stockpiles in the multiple stockpiling 

per belt system.

Such control application considers advancements in manufacturing toward the I4 mandate 

involving ICT and MEC fundaments evolving together with advances in MSA. In the 

latter, advances in network (flowsheet) optimisation, solving algorithms, and computer-

aided resources allow faster and more efficient solutions (Franzoi et al., 2021). Moreover, 

the ICT expansion provides the demanded velocity of the communication of the online 

data measurement of complete process networks for the massive volume and variety of 

information from the plant, which permits the viability of the addressed control strategy.

Such advances provide proper capabilities for the development and implementation of 

tools and sustainable strategies in mining operations with safer and more efficient process 

conditions towards the mines of the future.

By employing hybrid dynamic control applications in the mine-to-mill processes, 

stockpiling operations can be improved to better segregate and convey ore methods, 

reduce evaporation, and create drier tailings. As a result, increased human safety and 

predictability can be reached to maximise the metal to ore output ratio while reducing 

social and environmental consequences and operational and capital costs. Furthermore, 

this builds sustainable communities capable of identifying socioeconomic growth 

prospects.

4. Discussion and conclusion

After the hunter-gatherer, agrarian, and industrialisation stages of mankind, our current 

society in the wake of the S5 stage, referred to as an augmented society, moves towards 

the transformations of economic and environmental targets to the collection of 

individuals’ and communities’ well-being as a core of the new business models. Although 

the adoption of technologies is an economic added value, industries have faced difficulties 

in hiring skilled people since it requires specialised knowledge, abilities, and 

competencies in ICT, MEC, and MSA branches of the I4 age (Fitsilis et al., 2018). Mining 

is a labour-intensive industry with a harsh and dangerous working environment, and I4 

facilitates replacing humans with autonomous machinery. The consequences affect 

employment profiles, but it ensures to maximise human safety in such remote and harsh 

places like deserts or mountains. Mine settings are particularly complex to handle since 

they deteriorate quickly and alter as the mining processes progress. Furthermore, mining 

emits hazardous pollutants into the atmosphere, and crushing rocks is intrinsically 

connected with dust and noises, whereby oxygen and lights must also be artificially 

provided in subterranean mines. Also, on- and under-ground miners operate heavy 

machinery and perform hard and tedious work in cramped contexts; thus, ergonomic risks 

are widespread in such industries. These hazards are connected to poor technical design

and add higher safety risks (Komljenovic et al., 2017). The trade-offs debate between the 

pros and cons of increasing automation level depends on the society and its technological 
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evolution. If society’s policies and procedures force industries to work towards the so-

called CE ideology, an increased level of automation would create new job positions in 

remanufacturing and recycling activities with the high skills demanded in the I4 mandate. 

The mining sector's accidents and ill-health records compare severely to those of other 

industry sectors, contributing to mining's reputation as being the most dangerous 

industrial sector. Intuitively, occupational injuries and illnesses records can negatively 

impact public safety, health, and the environment (SHE), where people's health and safety 

have monetary costs and environmental consequences. Furthermore, it connects 

initiatives to improve workplace health and safety to a wider societal agenda from a 

corporate social responsibility perspective, i.e., sustainable development. The 

experimental simulation of the current practice of stockpiling process shows a lack of 

resources utilisation. Increasing the level of automation by integrating technology 

solutions has the power of speeding stockpiling, maximising performance, improving 

safety, and reducing overall costs. The I4 elements can be implemented with a hybrid 

SCA dynamic control cycle to relocate feeding positions within seconds, increasing 

feeding performance, efficiently utilising resources, and performing multi-stockpile 

feeding. In the broader context of CE, healthy and safe working conditions are among the 

first expectations for sustainable development. 
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Abstract 

Using the Umicore process, a current state-of-the-art recycling in the metal recovery 

industry for lithium battery waste, as a baseline, this contribution examines economic and 

environmentally friendly solutions for effective metal recovery from spent LIBs. At the 

same time, possible synergies between existing resource use from other manufacturing 

and waste treatment industries are considered as valuable input to metal recycling, while 

also reducing the amount of atmospheric carbon. This further presents a case for possible 

integration of various waste management approaches as a single business unit for 

economic incentive and profitability for possible investment. 

 

Keywords:
 
Lithium-ion battery, Waste recovery, e-Waste, Circular economy. 

1. Introduction 

Waste Management has become one of the most rapidly growing pollution problems 

globally as new technologies are increasingly exceeding millions of analogue techniques, 

which in turn result into their disposal in prescribed landfills with possible environmental 

consequences. Both landfilling and incineration are highly unsustainable remedies since 

they use large areas of land resulting to the release of significant environmental pollutants, 

including the greenhouse gases (GHGs) such as carbon dioxide (CO2) and methane (CH4) 

as the waste dissociates thereby causing health and environmental threats to developing 

countries (The World Bank, 2019). Waste electric and electronic equipment 

(WEEE/EEE) no longer suitable for their intended use are known as e-waste. TVs, 

telephones, radios, computers, printers, fax machines, DVDs, CDs, washing machines, 

refrigerators, dryers, vacuum cleaners, and other electronic devices are examples of e-

waste. The composition of typical e-waste is depicted in Table 1. Approximately 50 

million metric tons (Mt) of e-waste were produced globally in 2018 alone, compared to 

44.7 Mt in 2016 and expected to rise in the future. 

Due to a variety of factors such as technological challenges, implausible economic 

burdens, high environmental impact, complex chemical reactions, and so on, the optimum 

nature of the Lithium-Ion Batteries (LIBs) recovery process and technologies has yet to 

be determined (Azpagic, 1999). Creating a circular economy for e-waste could lower 

manufacturing costs, increase revenue streams, and provide tax advantages. Jobs could 

be created as a result of new and expanding markets. The Circular Economy (CE) is a 

regenerative strategy to waste reduction that aims to ensure the environmental 

sustainability of post-use items. For LIBs, a CE strategy is the central issue of more than 

3,000 studies completed in the previous ten years, all of which have focused on the 

exploration of its primary steps (Yun et al., 2018). By enhancing a company's reputation 

and consumer confidence through environmentally responsible activities, a CE approach 

could improve market competitiveness. Reduced waste, energy use, and GHG emissions, 
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as well as the preservation of raw resources, could all be part of the greater environmental 

benefits. The goal is to develop a more sustainable e-waste recovery process that aligns 

with the global vision of reducing the amount of carbon dioxide emission and increase 

energy efficiency.  

The Umicore process, a state-of-the-art commercial recycling process flow in the metal 

recovery industry for LIBs (Georgi-Maschler et al. 2012), is a global leading solution in 

environmentally friendly precious metal recycling and processing. It uses an integrated 

metals smelter and refining procedure to recover metals such as gold, silver, and the 

platinum group metals (PGMs: palladium, platinum, rhodium, iridium, ruthenium), 

special metals (selenium, tellurium, indium), secondary metals (antimony, tin, arsenic, 

bismuth), and base metals (antimony, tin, arsenic, bismuth). Sulphuric acid (from off gas-

purification) and a depleted slag, which is used as a building material and in the concrete 

industry, are two other by-products of the factory.   

In the following, environmentally friendly metal recovery from the spent LIB waste is 

explored using the Umicore process as a baseline. The introduction of solutions such as: 

anaerobic digestion of organic waste to produce methane, a biogas which can be sold for 

profit, mineralization of the recovered metals to form stable carbonates, through 

utilization of the carbon dioxide produced from the digester, as well as possible 

integration of captured carbon dioxide from energy intensive industries, are considered.  

2. Methodology 

This paper aims to provide understanding towards the development of an economically 

and environmentally feasible, efficient, and sustainable LIB recycling system for 

adoption in Europe. The stages of the Umicore process that fall within this scope are also 

represented schematically in Fig.1. The analysis, using data from the open literature (Li 

et al. 2018; Sommerville et al. 2021), was divided into 2 stages: firstly, an economic 

assessment of the state-of-the-art recovery process, broken down into its major stages, is 

performed, and secondly, an improved process is proposed, for which a similar study on 

the economics is carried out. 

2.1. Economic analysis of current state-of-the-art LIB recovery process 

For the purpose of this analysis, the Umicore process is broken down into its major sub-

processes and the cost of each individual component is evaluated to establish the overall 

cost. Investment, operation and maintenance costs are not considered. All calculations are 

done on a yearly estimate, assuming a recycling capacity of 7,000 tons/year of LIB waste. 

The process involves the smelting of the LIBs in a smelter which recovers two main 

categories of high and low value metals. The high value metals are extracted as an alloy 

from the smelter, which would later be separated into individual pure components through 

leaching and solvent Extraction. The low value metals are extracted from the smelter as 

slag. 

The following steps are considered in the analysis of the Umicore process: 

a) Breaking down the process into its main stages of Smelting, Leaching and Solvent 

Extraction.  

b) Calculate the cost of each stage using a functional unit of 1,000kg of LIB waste as 

input to establish an overall recovery cost. 

c) Calculate the carbon tax related to the smelting the processes. 

d) Calculate the mass of each high value metal and slag recovered. 

e) Calculate the market value of recovered metals and slag as revenue for the process. 
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f) Calculate the profit from the difference between the cost of the process and revenue 

generated from the market value of the recovered metal and slag. 

g) Calculate the improved profit after a predicted 25% decrease in cost due to economies 

of scale at a recycling capacity of 7,000 tons of LIB per year. 

 

 

Figure 1. Flowsheet of the Umicore process 

2.2 Economic analysis of improved process 

In the second step, an improved and sustainable LIB recovery process is designed 

conceptually (Fig.2). New stages, such as mineralization, utilize CO2 from an anaerobic 

bioreactor or absorption from the atmosphere for the conversion of the recovered metals 

and the slag to products which can be sold (e.g., Portland cement). In the case an anaerobic 

reactor is used, methane is also produced as biogas. Furthermore, the carbon tax acquired 

from the utilization of the CO2 can also be sold as carbon credit. Thus, the recovery 

process creates new revenue streams, apart from the metals and LIB waste, by applying 

Circular Economy concepts, and creating new pathways for the reduction of atmospheric 

CO2 emissions. 

 

 

Figure 2. Flowsheet of the improved LIB recovery process 

Once the process flowsheet is available, the following steps are followed to evaluate its 

efficiency and use the results for the comparison with the baseline: 

a) Calculate the cost of operating the anaerobic bioreactor and the shredder through their 

energy consumption. 

b) Calculate the cost of mineralization of the recovered metals and slag. 

c) Calculate the total cost of the overall improved process. 

d) Calculate the revenue generated from the sale of methane produced from the 

bioreactor as biogas. 
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e) Calculate the revenue generated from the sale of slag Portland cement produced 

during the mineralization.  

f) Calculate the total carbon tax on the total CO2 consumption for the whole processes 

which is to be sold as Carbon Credit.  

g) Calculate the total revenue of the overall improved process. 

h) Calculate the profit of the improved process after a 15% predicted reduction in cost 

due to economies of scale. 

3. Results and Discussion 

The recovery of the metals is divided into precious and non-precious metals, according 

to their market value. All precious metals are recovered through leaching and solvent 

extraction, while the non-valuable metals are extracted as slag during the smelting stage 

as. From the costing of the stages of the Umicore process (Table 1), the leaching 

contributed approx. 94% to the total recovery cost of $19,858.16, while the solvent 

extraction and smelting contributed approx. 6.5 and 0.15%, respectively. 

 

Table 1. State-of-the-art subprocess cost breakdown 

Process  Cost ($) % 

Smelting 1,266.28 6.38 

Leaching 18,565.69 93.49 

Solvent extraction 26,20 0.13 

Total  19,858.16 100 

 

The revenue generated from the recycling processes is comprised of the following 

streams: the selling of the recovered precious metals, the selling of the slag and the tipping 

fee (Table 2). 

 

Table 2. State-of-the art subprocess revenue breakdown 

Revenue breakdown Valuation ($) % 

Valuable metals  10,266.79 51.36 

Slag resell value  223.02 1.16 

Recycling fee per tonne 9,500 47.52 

Total  19,989.81 100 

 

As a commercial recycling process, it is predicted that a 25% reduction in recycling cost 

is expected due to economies of scale after the processing of 7,000 tons/year of LIB waste, 

which is the current operating capacity of the Umicore Process. This results in a profit of 

$35,343,248 per year (Table 3). 

The major cost of the improved process is the cost of mineralization, with a percentage 

of 99.81% for the cost of mineralizing the slag (0.04%) and the high value metals 

(99.77%), while the cost of the mechanical treatment by shredding contributes 0.15%. 
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Table 3.Cost-Revenue breakdown of current state-of-the-art process 

 Value ($) 

25% Cost reduction 34,861,757 

Improved cost 104,585,272 

Revenue 139,928,701 

Profit 35,343,428 

 

Table 4. Cost breakdown of the improved process flow 

Process Cost 

($/year) 

Percentage 

(%) 

Bioreactor 61,205.76 0.04 

Shredding 205,920.00 0.15 

Slag mineralisation 52,992.92 0.04 

Metals mineralisation 140,132,160.00 99.77 

Total Cost 140,452,278.68 100 

Reduction due to economy of scale (15%) 21,067,841.80  

Total 119,384,436.87  

 

Table 5. Revenue breakdown of the improved process flow 

Revenue breakdown Valuation ($/year) % 

Carbon tax  1,414,011.40 1.50 

Methane  19,225,728.00 20.38 

Digester tipping  1,647,360.00 1.75 

Mineralised metals  71,867,558.52 76.16 

Slag Portland cement  203,218.02 0.22 

Total 94,357,875.94 100 

 

Table 6. Cost-Revenue breakdown of the improved process 

Process economic parameters Valuation ($/year) 

Total revenue 94,357,875.94 

Cost 119,384,436.87 

Loss 25,026,560.93 

 

The total revenue from the improved metal recovery process focuses on applying a 

Circular Economy approach and the introduction of new revenue streams from the 

production of methane and slag Portland cement, in addition to the sale of stable 
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mineralized metals and the carbon credit achieved. As shown in Table 5, a total revenue 

of $94,357,876 per year is achieved for the proposed process. 

From Table 5, the revenue generated from methane and mineralized metal contributes 

20.38% and 76.16%, respectively to the total revenue of the improved process. 

Additionally, the cost of mineralizing the metals contributes 99.77% to the total cost of 

the improved process (Table 4). This results in a loss of $25,026,560 per year compared 

to a profit of $35,343,428 from the Umicore process, as illustrated in Table 6. However, 

the improved process is able to use 46,270.01 metric tons of carbon dioxide per year. 

4. Conclusion 

This work analyzes the current state-of-the-art for the LIB recycling process from an 

economical perspective, by estimating its cost and revenue generated from the sale of the 

recovered metals. The results are used as a baseline to propose an improved conceptual 

pathway for the metal recovery process from both an environmental and economic 

perspective, with the introduction of new technologies that use carbon dioxide as input 

and improve the recovery efficiency.  

This improved pathway for the recovery of metals from spent LIBs is efficient in 

recovering metals and recycling of organic waste which could have ended up in the 

landfill causing degradation of soil and water and increasing toxic and microbial levels in 

the environment. The mineralization of the recovered metals in the improved process uses 

up all the CO2 from the digester, with captured carbon dioxide hypothetically making up 

for the deficit, with a total consumption of 46,270.01 metric tons per year. This serves as 

an environmental advantage in reduction of possible anthropogenic CO2 released to the 

atmosphere compared to the current Umicore process.  

Nonetheless, the new recovery pathway is more expensive compared to the commercially 

implemented process, with the mineralization of the high value metals taking up a huge 

percentage of the total cost. The revenue created by Circular Economy from the 

production of secondary materials (slag Portland cement) and reselling of the high value 

metals is not able to offset this high cost, which results in a loss of the overall proposed 

process. The high cost of mineralization can be reduced with improved investment in the 

integration of the chemical process into current carbon capture and storage technologies 

of current industrial processes. 
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Abstract 
This work presents the results of investigating the design and use of optimized cell 
factories in a biorefinery. Based on a base-case process design created in an optimization-
based framework, the cell factory models are analyzed through a sensitivity analysis to 
define and implement engineering targets. With the engineered cell factory models, 
flowsheet simulations are performed for a risk-based uncertainty analysis. The results 
show significantly improved economics of the biorefinery. A future outlook about 
integrating cell factory optimization into process design and optimization is given. 
 
Keywords: Biorefinery, Mechanistic Modelling, Monte Carlo, Cell Factory Optimization 

1. Introduction 
Second-generation biorefineries are a key element in the transition towards more 
sustainable production processes and bio-based value chains. Despite harboring this 
immense potential, second-generation biorefineries are consensually hardly economically 
feasible (Ubando et al., 2020). Compared to first-generation biorefineries, the second 
generation commonly utilizes lignocellulosic biomass as feedstock, requiring an 
additional biomass pretreatment unit. This implies several challenges: firstly, the related 
capital and operational expenditures for the pretreatment unit directly affect the key 
performance indicators (KPIs) of the plant and, furthermore, both the sugar yield, as well 
as the yield of undesired inhibitor compounds created in the pretreatment influence the 
yield of the conversion processes and the downstream processing of the whole process 
(Vollmer et al., 2021b). Consequently, this also has a mediate effect on the KPIs, which 
often results in a poor overall economic performance. 
 
On another note, there has been immense progress in cell factory optimization in the last 
decade. Firstly, rational design approaches in synthetic biology and genetic and metabolic 
engineering allow for optimizing yield, titer, and productivity of existing cell factories by 
manipulating metabolic pathways through, e.g., the overexpression or knockout of genes. 
Moreover, new cell factories can be created by inserting heterologous pathways by tools 
like, e.g., CRISPR-Cas9. This potential is currently unfolding and will further 
revolutionize biotechnology in the coming years. Secondly, irrational design approaches, 
e.g., adaptive laboratory evolution, can be employed to optimize cell factories by fast-
forwarding the natural evolution process towards more robust or adapted cell factories for 
different operating conditions. Nonetheless, the translation of this paramount progress to 
bridge the gap into the process engineering domain for the design and optimization of 
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entire biotechnological processes is complex and highlights the need to integrate these 
approaches over different scales (Straathof et al., 2019)

In the scope of this work, a base-case process design for the production of xylitol and 
succinic acid is taken as the basis for investigating the potential of optimized cell factories 
in a second-generation biorefinery. For this, different tools from process systems 
engineering are used: Based on wild-type cell factories for the fermentation processes for 
both products, a sensitivity analysis is performed on both mechanistic models of the cell 
factories to identify targets for optimization in the cell factories to increase yield, titer, 
and/or productivities. Based on the results of the sensitivity analysis, the mechanistic 
models are redesigned accordingly to resemble the optimized cell factory. With these, a 
risk-based techno-economic analysis with a whole process model for the biorefinery is 
performed in order to investigate the economic potentials of the optimized-case process 
design. Ultimately, the conclusions of the analysis highlight potential future directions 
for the in-silico design of optimized cell factories and biotechnological processes to 
accelerate the transition towards bio-based value chains.

2. Methodology
2.1. Xylitol Biorefinery
2.1.1. Base-Case Process Design
The mentioned xylitol biorefinery was designed by Vollmer et al. (2021c) in an 
optimization-based framework – S3O – and assessed through a techno-economic 
analysis: The framework employs mechanistic unit operation models through surrogate 
models in the optimization procedure. The biorefinery involves a pretreatment unit for 
the lignocellulosic biomass, where the hemicellulosic fraction is separated and 
depolymerized. The resulting hydrolysate is upconcentrated in an evaporation unit. 
Subsequently, the sugars are used as substrate in a fermentation unit to produce xylitol. 
The downstream process involves an evaporation unit and two crystallization units. The 
solid residue of the pretreatment is subjected to enzymatic hydrolysis to separate the 
cellulosic fraction and depolymerize the sugars. These are used as substrate in a second 
fermentation process to produce succinic acid. The downstream process for succinic acid 
also involves an evaporation unit and two crystallization units. Lastly, the lignin fraction 
is combusted for steam and electricity generation to be integrated with the downstream 
processes (Vollmer 2021a, c). The flowsheet of the process is illustrated in Figure 1. 

Figure 1: Flowsheet of the Base-Case Process Design of the Xylitol Biorefinery (adapted from 
Vollmer et al. 2021c) 
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2.1.2. Fermentation Models and Cell Factory Design 
Both fermentation models are mechanistic models and based on a so-called black-box 
approach, referring to the reduction of intracellular reactions into three essential reactions, 
as depicted by Heijnen (2009): The first reaction describes the substrate uptake into the 
cell factory as shown in equation (1): 
 

 𝑞𝑞𝑠𝑠 = 𝑞𝑞𝑠𝑠 ∙
𝐶𝐶𝑠𝑠

𝐾𝐾𝑠𝑠 + 𝐶𝐶𝑠𝑠
∙ 1/𝐼𝐼𝑠𝑠 ∙ 1/𝐼𝐼𝑝𝑝, (1) 

 

Here, 𝑞𝑞𝑠𝑠 denotes the rate of substrate uptake, 𝐶𝐶𝑠𝑠 the substrate concentration, 𝐾𝐾𝑠𝑠 the 
substrate affinity constant of the cell factory and 𝐼𝐼𝑠𝑠 and 𝐼𝐼𝑝𝑝 terms for substrate and product 
inhibition. The second reaction is a Herbert-Pirt substrate distribution relation, 
summarizing the intracellular metabolism. Mathematically, this is described by equation 
(2): 
 

 𝑞𝑞𝑠𝑠 = 𝑎𝑎 ∙ 𝜇𝜇 + 𝑏𝑏 ∙ 𝑞𝑞𝑝𝑝 + 𝑚𝑚𝑠𝑠. (2) 
 

Here, 𝑎𝑎 and 𝑏𝑏 describe the yields of biomass and product over the substrate and 𝜇𝜇 the cell 
growth rate, 𝑞𝑞𝑝𝑝 the product formation rate and 𝑚𝑚𝑠𝑠 the cell maintenance rate. 
Lastly, the third reaction is a Luedeking-Piret equation describing the product formation, 
given with equation (3): 
 

 𝑞𝑞𝑝𝑝 = 𝛼𝛼 ∙ 𝜇𝜇 + 𝛽𝛽. (3) 
 

Here, 𝛼𝛼 and 𝛽𝛽 are fitted parameters, describing the product formation as a function of the 
cell growth (Heijnen, 2009). For the base-case process design, the model is fitted to wild-
type strains of cell factories that naturally produce xylitol or respectively succinic acid. 
The reader is referred to the original work for a detailed description of the models and the 
fitted parameters (Vollmer et al., 2021c). 
2.2. Monte Carlo Methods 
2.2.1. Sensitivity Analysis 
Sensitivity analyses attribute uncertainty in a model output to the different model inputs. 
In this work, we apply a variance-based sensitivity analysis based on Monte Carlo 
Simulations and implemented in the easyGSA package (Al et al., 2019). Both the first-
order as well as the total sensitivity index are calculated. While the prior describes the 
sensitivity of the model output to uniquely this parameter, the latter describes the 
sensitivity of the output to the model parameter when considering all interactions with 
other input parameters (Vollmer et al., 2021b). 
2.2.2. Uncertainty Analysis 
The complementary to sensitivity analyses are uncertainty analyses trying to quantify the 
model output with varying model input. The methodology applied in this work is equally 
based on Monte Carlo Simulations. After defining input uncertainties and ranges, a 
sampling method is chosen, and Monte Carlo simulations are performed. The results are 
subsequently analyzed. 

3. Results 
3.1. Sensitivity Analysis of Cell Factory Model 
As a first step, sensitivity analyses for both fermentation models are performed to 
determine the model parameters with the highest sensitivities. Each parameter can 
uniformly vary by ±50%, equivalent to downregulating or overexpressing genes for 
specific pathways in the microorganism. For the xylitol model, 𝑁𝑁 = 8192 and for the 
succinic acid model 𝑁𝑁 = 4096 Monte Carlo samples are performed, using Sobol 
sampling. The results for the total sensitivity indices are shown in Figure 2. 
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Figure 2: Heatmap of the total sensitivity indices for the fermentation model parameters.

For the xylitol cell factory, the most sensitive parameter is the substrate uptake rate of 
xylose. An increased uptake rate directly influences the productivity of the cell factory as
the throughput through the cell factory increases as a function of the uptake rate. 
Secondly, also the operational yield of biomass over xylose ܽ𝑥𝑥௬௟ and the constant 
parameter of the product formation equation ߚ influence the output, increasing the 
biomass growth and thus indirectly increasing the yield of xylitol over xylose. Lastly, the 
parameters related to the glucose uptake and growth on glucose influence the output, as 
the uptake of xylose is catabolically repressed by the glucose uptake, which influences 
productivity. For the succinic acid cell factory, the most influential parameters are the 
operational yield of succinic acid over glucose, increasing the yield of succinic acid 
directly, and the inhibition constant for the acids, which induces product inhibition in the 
cell factory. Secondly, the glucose uptake rate influences the output as increased substrate 
uptake also increases productivity. 
3.2. Risk Assessment of Economic Feasibility
Based on the results presented in section 3.1, the following cell factory design is 
conceptualized and translated into the model parameters for retrofitting the fermentation 
models to engineered cell factories: The cell factory optimization for both models aims 
at increasing the yield of the respective product over the respective substrate. The product 
yields over substrate for both wild-type cell factories lie around 40 െ 55%. The 
engineering strategy for the xylitol cell factory targets the growth metabolism on xylose, 
e.g., by overexpressing genes of relevant enzymes and the excretion of xylose out of the 
cell factory, e.g., by overexpressing the genes for the transporter. Mathematically, this is 
done by increasing the value of ܽ𝑥𝑥௬௟ and ߚ by 75%. This translates to a new product yield 
of around 80% for the microorganism. The engineering strategy for the succinic acid cell 
factory targets the acid tolerance ௣ܫ to decrease the product inhibition, e.g., by performing 
adaptive laboratory evolution in media with low pH. Furthermore, the operational yield 
of succinic acid over glucose 𝑙𝑙ௌ௨௖ is increased by e.g. knocking out respective genes for 
enzymes through a metabolic engineering approach. Mathematically, this is done by 
decreasing the value of ܫ௣ and increasing the value of 𝑙𝑙ௌ௨௖ by 20%. This translates to a 
new product yield of around 80% for the microorganism. Both engineering strategies 
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have been proven to be realistic in different laboratory studies by the mentioned or similar 
engineering strategies (Hernández-Pérez et al., 2019 and Mancini et al., 2020). 
 
Employing both retrofitted models in the S3O framework, an updated-case process design 
can be simulated to perform a new techno-economic analysis. Based on the results from 
Vollmer et al. (2021c), the four most promising candidate process topologies are 
investigated. Equally to the original study, uncertainties in the capital and operational 
expenditures (CAPEX and OPEX), including all equipment and utilities considered, and 
the product prices are assumed. The CAPEX varies in the interval [−50, +100]% and 
the OPEX varies in the interval [−20, +50]%, assuming a triangular distribution for both. 
The product price of the xylitol varies between 4.29 $/𝑘𝑘𝑘𝑘 and 5.42$/𝑘𝑘𝑘𝑘, and the succinic 
acid price between 3.18$/𝑘𝑘𝑘𝑘 and 3.24 $/𝑘𝑘𝑘𝑘, assuming a uniform distribution for both. 
When performing an uncertainty analysis with these, 𝑁𝑁 = 1000 Monte Carlo simulations 
and analyzing the net present value of the xylitol biorefinery as, the failure rates of 
investment result as 𝑅𝑅𝑓𝑓 = 48.9%, 86.9%, 92.4% and 55.5% (Vollmer et al., 2021c). 
Repeating the same uncertainty analysis with the engineered cell factory models and 
otherwise unaltered parameters, the metrics change significantly, as illustrated in Figure 
3.  
 

 
Figure 3: Results from the uncertainty analysis of the net present value of the xylitol biorefinery 
with engineered cell factories 

Prominently visible is the increased economic feasibility for all four candidate process 
topologies. In particular, process configuration cID 2 shows an outstandingly low failure 
rate. This directly correlates with the increased yields of the engineered cell factories, 
consequently increasing the product sales without altering CAPEX or OPEX. 

4. Conclusions 
In this work, we showcased the potential in-silico design of cell factories based on 
mechanistic models for the use in a second-generation biorefinery. Based on a sensitivity 
analysis, the most sensitive model parameters of the cell factories were defined, and based 
on approaches in cell factory optimization, engineering targets were defined to increase 
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the product yield of the cell factories. The retrofitted cell factory models were used in 
flowsheet simulations to perform a risk-based uncertainty analysis on the net present 
value of the biorefinery to analyze the failure rate of the investment. Compared to the 
base-case process design, the optimized-case process design shows minimal failure rates, 
indicating a profitable investment. 

Directions for future work could be the actual optimization of the model parameters by 
mathematical methods to guide potential cell factory optimization efforts. Ultimately, the 
used mechanistic models of the cell factories should be replaced by full genome-scale 
metabolic models, containing detailed information about the metabolism and potentially 
even information about transcriptional, metabolic, and other constraints. In Systems 
Biology, such models are constantly developed and improved and used for dynamic flux 
balance analysis to simulate fermentation processes (Sánchez and Nielsen, 2015). 
Integrating these models in full process models in a framework like the S3O framework 
would allow the simultaneous optimization-based design of cell factory, process, and 
value chain in a multi-scale approach. Ultimately, this approach allows bridging the gap 
between cell factory optimization and process design to accelerate the transition towards 
more bio-based processes and value chains for more sustainable industrial production. 
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Abstract 

This work develops a multi-product MILP vaccine supply chain model that supports 

planning, distribution, and administration of viral vectors and RNA-based vaccines. The 

capability of the proposed vaccine supply chain model is illustrated using a real-world 

case study on vaccination against SARS-CoV-2 in the UK that concerns both viral vectors 

(e.g., AZD1222 developed by Oxford-AstraZeneca) and RNA-based vaccine (e.g., 

BNT162b2 developed by Pfizer-BioNTech). A comparison is made between the 

resources required and logistics costs when viral vectors and RNA vaccines are used 

during the SARS-CoV-2 vaccination campaign. Analysis of results shows that the 

logistics cost of RNA vaccines is 85% greater than that of viral vectors, and that 

transportation cost dominates logistics cost of RNA vaccines compared to viral vectors. 

 

Keywords: SARS-CoV-2 vaccines, vaccination campaign, mathematical programming, 

economic analysis, vaccine availability. 

1. Introduction  

The COVID-19 pandemic has accelerated the research and development of new platform 

technologies for the production of vaccines against infectious diseases, including the 

novel corona virus, also known as Severe Acute Respiratory Syndrome Corona Virus 2 

(SARS-CoV-2). Platform technologies such as viral vectors (Voysey et al., 2021) and 

RNA (Walsh et al., 2020) have been used to develop vaccine candidates to combat 

COVID-19. However, these new vaccines pose both logistics and distribution challenges. 

For example, unlike conventional vaccines, certain RNA-based vaccines require ultra-

low temperature throughout the distribution network to avoid loss of potency. 

 

Vaccine supply chain is a complex network that facilitates the transport of vaccines from 

manufacturing plants to administration points, such as GP surgeries, hospitals, 

pharmacies, clinics, and mass vaccination centers. The storage and transport conditions 

required by vaccines determine the type of cooling technology (e.g., fridge, freezer, or 

ultra-low freezer) to be installed at storage locations. During transportation, ultra-low 

temperature is maintained using thermal shipper loaded with dry ice (liquified CO2).  

 

The structure of a typical vaccine supply chain comprises manufacturing plants or import 

locations, fill-finish plants, warehouses/central stores, regional stores, and administration 

points. A manufacturing plant, aka primary manufacturing, consists of several unit 

operations used in the production of drug substance, which is the main ingredient in 

vaccines, while a fill-finish plant, also known as secondary manufacturing, inserts 
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vaccines (drug substances and excipients) into sterile glass vials or bags that are further 

packaged into cartons. 
 

The design and planning of vaccine supply chains addresses the following: optimal 

selection of storage locations, production planning at manufacturing and fill-finish plants, 

inventory management/storage capacity planning, distribution planning, selection of 

routes and transport types, etc. In the recent past, Lee and co-workers (2014; 2015, 2016) 

have applied a simulation-based analytical tool, known as HERMES–Highly Extensible 

Resource for Modeling Supply Chains, to assess and re-design vaccine supply chains in 

low- and middle-income countries. However, HERMES does not support optimisation of 

supply chains, leading to solutions that could be suboptimal. Cavalho et al. (2019) 

developed a mixed-integer linear programming (MILP) model for optimal design and 

planning of a sustainable vaccine supply chain. The key performance indicators used to 

assess candidate supply chains are related to economic, environmental, and social 

performance. Kis et al. (2019) developed a supply chain model for the distribution of 

vaccine candidates such as RNA vaccines, outer membrane vesicle vaccines with 

genetically customizable membrane antigens virus-like particle vaccines with genetically 

configurable epitopes, and humanized yeast-produced vaccines. The model optimizes 

both supply-chain configuration and delivery type. Recently, Georgiadis & Georgiadis 

(2021) developed a MILP model for the distribution of COVID-19 vaccine and proposed 

an efficient method to solve the complex model. Nevertheless, the model does not account 

for quality control checks, fill-finish plants, production planning, selection of transport 

mode, and more importantly, management of vaccine thermal shippers. 

 

This work develops a multiple-product MILP supply-chain model that supports the 

planning and distribution of viral vectors and RNA-based COVID-19 vaccines, from 

manufacturing plants to vaccination centers where vaccines are administered to targeted 

individuals. Unlike previous work, the proposed optimisation-based supply chain model 

comprises of five echelons, including manufacturing plants, fill-finish plants, imports, 

warehouses, regional stores, and administration points. A recycle loop for vaccine thermal 

shippers from warehouses to administration points and back to warehouses is 

implemented to ensure efficient management of vaccine thermal shippers. Including these 

entities within the supply-chain model allows efficient distribution of viral vectors and 

RNA-based vaccines, in addition to setting production targets at manufacturing and fill-

finish plants. The performance of candidate supply chains is assessed using relevant key 

performance indicators such as vaccine availability, logistics cost, logistics cost per fully 

immunized patients, etc.   

2. Methodology  

2.1. Vaccination scheduling   

Vaccination campaigns against infectious diseases are mostly preceded by scheduling of 

targeted individuals as well as healthcare personnel needed to administer vaccines. For 

the COVID-19 vaccination campaign, targeted individuals are selected according to risk 

of mortality and hospitalization when exposed to the highly contagious disease. Next, the 

targeted individuals are stratified, giving rise to cohorts to be schedule for the vaccine 

administration. The cohorts are prioritized according to risk-factors and vulnerability to 

COVID-19. Based on the COVID-19 vaccine regimen, the total number of doses required 

is estimated, and hence the vaccine demand profiles. By dividing the daily/weekly 

number of vaccinations by workload, it is possible to estimate the number of healthcare 
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workers that should be schedule on daily/weekly basis in order to ensure a successful 

vaccination campaign. This calculation may be carried out separately or embedded within 

the supply-chain model described in Section 2.2. 

 

2.2. Design and planning of vaccine supply chains 

The proposed vaccine supply-chain model supports the distribution and administration of 

vaccine candidates developed using various platform technologies, including viral vectors 

and RNA-based vaccines. The proposed supply chain comprises five echelons: 

manufacturing plants/imports, fill-finish plants, central stores, regional stores, and 

administration points (see Figure 1). Vaccines flow from manufacturing plants to 

vaccination centers via transportation modes, which can be a refrigerated van, a 

refrigerated truck, or an airplane. For vaccine candidates requiring ultra-low cooling 

temperatures, vaccine “thermal shippers” are used to ensure that the recommended 

temperature is not compromised during transportation. A recycle loop from warehouses 

to clinics and back to warehouses is implemented to enable efficient management of 

thermal shippers. The model inputs and outputs are summarised in Table 1.  

 

Table 1. Vaccine supply chain inputs and outputs  

Inputs Outputs 

i. vaccine demand profile 

ii. proposed supply chain structure 

(optional) 

iii. minimum and maximum 

inventories (manufacturing and fill-

finish, warehouses, regional stores, 

and administration points) 

iv. minimum and maximum capacities 

of manufacturing plants, fill-finish 

plants, and import rate 

v. minimum and maximum capacities 

of transportation modes 

vi. operating cost and capital cost 

factors (manufacturing and fill-

finish, warehouses, regional stores, 

and administration points) 

vii. travel distances and times 

i. optimal supply chain configuration 

ii. transport mode per route 

iii. backlog in each time period 

iv. vaccine availability and vaccine 

wastage at administration points 

v. vaccine supplied to administration 

points per time period 

vi. vaccine import rate and production 

rates in manufacturing and fill-

finish plants 

vii. capacity of quality control facilities 

viii. capital cost, operating cost, and 

total annualised cost of supply 

chain facilities 

ix. total transportation cost and 

transport cost per route 

x. inventories of vaccines in 

manufacturing, fill-finish, 

warehouses, regional stores, and 

administration points  

xi. inventories of vaccine thermal 

shippers (full and empty) in 

warehouses, regional stores, and 

administration points 

 

Note that thermal shippers are needed only for vaccines stored and transported at ultra-

low temperature. Also, constraints are included in the supply chain model to ensure that 

vaccines stored at clinics do not stay longer than their shelf-life. The objective function 

used to assess the performance of candidate supply chains include logistics cost, logistics 
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cost per fully immunized patient, and total cost of supply chain components. The model 

is built in GAMS, where the solver CPLEX is used to optimise the MILP model. 

 
Figure 1. Schematic of the proposed vaccine supply chain comprising internal and 

external manufacturing and fill-finish plants, in-country warehouses, regional vaccine 

stores and administration. 

3. Application   

This section illustrates the capabilities of the proposed multi-product vaccine supply-

chain model against COVID-19 in the UK, considering both viral vectors (AZD1222) and 

RNA vaccines (BNT162b2). The targeted individuals, as recommended by the UK Joint 

Committee on Vaccination and Immunization (JCVI), includes: care home residents, 

residential care workers, age 80 plus, health care workers, social care workers, age group 

75-79, age group 70-74, clinically extremely vulnerable (under 70), age group 65-69, at 

risk (under 65), age groups 60-64, 55-59, and 50-54. For both vaccines, individuals are 

required to take two doses to be fully immunized. Vaccine doses are administered at least 

three weeks apart, leading to a vaccination timeframe of 38 weeks. The optimal supply 

chain distribution network is determined by the supply-chain model together with 

production targets at manufacturing and fill-finish plants, as well as vaccine inventory at 

storage locations, distribution planning, selected transportation mode, number of shippers 

and quantity of dry ice needed, etc. The total logistics cost and cost of supply chain 

components for viral vectors and RNA vaccines are shown in Figure 2 and Table 2, 

respectively.  

  

Figure 2. Total logistics cost required to deliver vaccines from manufacturing plants to 

administration points in England, Scotland, Wales, and Northern Ireland. The costs of 

precuring AZD1222 and BNT162b2 are not included, since logistics cost is the sum of 

total annualized capital cost, transportation cost, and total operating cost.  
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Figure 2 compares the logistics cost and logistics cost per fully immunized patient (FIP) 

for viral vectors and RNA-based vaccines. Note that there is no inventory of vaccines at 

warehouses and regional stores throughout the vaccination campaign, leading to zero 

operating cost, as shown in Figure 2. In this case study, vaccine inventory accumulates at 

administration points only. Note that this work considers a fixed supply chain structure 

in order to mimic the existing vaccine distribution network in the UK. Therefore at the 

design level, the supply chain model selects the transport type between echelons and their 

corresponding delivery frequency, which are discussed below. 

 

From the results, the logistics cost of RNA vaccines is 6-fold larger than that of viral 

vectors. Similar trend is observed for logistics cost per FIP. Logistics cost is the sum of 

total annualized capital cost, transportation cost, and total operating cost. The high 

logistics cost observed for RNA vaccines is due to the large delivery frequency required 

to deliver sufficient vaccines to administration points during the vaccination campaign. 

RNA vaccine candidate, BNT162b2, has a shelf life of five days when stored at 2-8oC or 

kept in thermal shippers (without re-icing) and two hours at room temperature. Hence 

vaccine inventory can be kept to satisfy demand for five days only in order to avoid loss 

of potency and vaccine wastage. On the contrary, viral vector candidate, AZD1222, have 

a shelf life of six months at 2-8oC, thus warehouses, regional stores, and administration 

points can hold vaccine inventory for a longer period, consequently reducing the delivery 

frequency, but increasing the total annualized capital cost (see Figure 2). The increase in 

total annualized capital cost is due to the larger cold chain storage facility required to hold 

vaccine inventory. Another factor that leads to high transport cost for RNA vaccines is 

that BNT162b2 is produced in Pfizer-BioNTech manufacturing plant in Puur, Belgium, 

and have to be transported using an expensive transport mode (airplane) to warehouses in 

London, Edinburgh, Cardiff, and Belfast. On the other hand, viral vector candidate, 

AZD1222 is produced in the UK transported using refrigerated truck.  

 

In addition to logistics cost and logistics cost per (FIP), the supply-chain model estimates 

the cost of other vaccine supply- chain components (see Table 2), including thermal 

shipper, dry ice, vaccinator wages, vaccine procurement, and quality control checks.   

 

Table 2. Total cost of vaccine supply chain components such as vaccine thermal shippers, 

dry ice, vaccinator wages, vaccine procurement, and quality control checks. 

Item (in million $) AZD1222 BNT162b2 

Cost of vaccine shipper - 7.72 

Cost of dry ice - 20.30 

Cost of vaccinating individuals 1880.0 1880.0 

Cost of vaccinating individuals at care home 24.10 24.10 

Cost of vaccine procured 450.0 2000.0 

Cost of quality control checks 59.90 59.90 

Total cost 2420.0 3990.0 

 

In Table 2, the total supply chain components cost for AZD1222 and BNT162b2 are $2.42 

and $3.99 billion respectively. The selling price of BNT12b2, $18 per dose, is higher than 

that of AZD1222, $3 per dose, leading to 78% increase in the procurement cost of vaccine 

needed to vaccinate the entire UK target population of approximately 53 million 

individuals with two doses. AZD1222 does not require ultra-low cooling during 
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transportation, hence no thermal shipper and dry ice are required. Apart from the recycle 

loop for vaccine thermal shippers, the supply chain structure for ADZ1222 and 

BNT162b2 is similar. Also worth mentioning is that the storage technology for the two 

supply chains differs, i.e., refrigerators (2-8oC) for AZD1222 and deep freezers (-80oC) 

for BNT162b2. Deep freezers lead to high operating cost as a result of energy 

consumption needed for ultra-low temperature cooling.  

4. Conclusions  

A multi-product MILP vaccine supply chain model has been developed considering the 

essential features of a typical vaccine supply chain. The model can be used to design, 

plan, and optimize the distribution and administration of vaccine candidates developed 

using the most advance platform technologies, i.e., viral vectors and RNA. A case study 

compared the logistics costs when either viral vectors or RNA-based vaccines are used 

during a vaccination campaign against COVID-19 in the UK. The results show that the 

logistics cost of RNA-based vaccines (BNT162b2) is far greater than that of viral vector 

(AZD1222). Transportation cost dominates logistics cost of RNA-based vaccines as a 

result of high delivery frequency needed to supply sufficient vaccines to administration 

points. The long shelf life of viral vectors allows this vaccine type to be stored at 

administration points for a period of up to 6 months, consequently increasing capital cost 

related to storage facility.  
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Abstract 
The paper focuses on three different modeling approaches to describe the dynamic 
evolution of an epidemic. These models have been extensively tested in the field and 
applied to Italy, one of the countries that most suffered from Covid-19. 

Keywords: Covid-19, pandemic, modeling, early-warning, vaccination policies. 

1. Introduction 
Covid-19 pandemic with its prolonged and iterated waves has caused emergencies at the 
hospital and political levels calling for responsible and prompt decisions. The “every day 
counts” saying is meaningful when one has to make choices and resolutions that have an 
impact on human lives. At the very beginning of Covid-19, there was no knowledge of 
the outbreak dynamics and rather simple questions about the expected allocation of 
resources for hospital wards and intensive care units (ICU) were difficult to answer. If 
one was able to answer those questions, the replies shocked both medical doctors and 
general managers of hospitals because the exponential growth of the pandemic 
phenomenon had never been experienced before in most continents of the world. The 
doubling time of infected, hospitalized, intubated, and dead individuals were 
unprecedented and often as short as two-three days. 
Similar questions about the time evolution and intensity of the outbreaks were raised by 
local and central government representatives who were interested in making timely 
decisions to contain the spreading and relieve the pressure on all the organs responsible 
for the health and safety of citizens. Finally, the world of information focused most of its 
attention on the pandemic and on any news capable of predicting, quantifying, and 
assessing fragments of the whole framework. Mass media urged insistently on ever 
updated and critically analyzed pandemic data. 
Most of the questions focused on what-if scenarios and resource allocation, pressure, and 
duration. The queries were first formulated for short-term horizons but quickly expanded 
towards medium- and long-term perspectives. The short-term horizon involved decisions 
for the allocation of hospital resources such as beds, wards, resuscitation personnel, and 
scarce material. The medium-term horizon called for decisions about non-pharmaceutical 
protective actions such as masks, swabs, social distancing, and lockdowns. These 
decisions had to find a balance between health/safety/treatment and 
economy/security/freedom of the population. Finally, both hospitals and governments 
called for a quantitative prediction of the pandemic on a long-term horizon to 
psychologically start seeing the light at the end of the tunnel (i.e. hope, perseverance, and 
resilience), to dynamically (re)allocate hospital means to elective medicine rather than 

1663

http://dx.doi.org/10.1016/B978-0-323-95879-0.50274-5 



 D. Manca 

emergency treatments, and to loosen the strict lockdown rules in favor of a progressive 
return to normality. In the meanwhile, there were new requests for a quantitative 
prediction of pandemic-related themes when the first wave came almost to an end but 
suddenly a second outbreak caught most of the countries unprepared. Afterward, there 
have been further pandemic waves and some nations have experienced the fourth and fifth 
waves with the onset of new virus variants. What it was deemed to be understood became 
suddenly new and unknown. The lessons learned were no more sufficient and a new call 
for quantifying the ever-changing and multifaceted pandemic became evident and 
compelling. In the meanwhile, the first vaccines were released. Initially, for several 
months, the doses were few and the fragile population was exposed to more infectious 
and lethal virus variants (e.g., alpha, beta, delta, omicron to cite the most circulated). The 
vaccination problem was hyper-constrained as several categories claimed the right to be 
vaccinated first and every government adopted different sanitary policies. These 
governments chose different criteria to vaccinate the population and to inject the vaccine 
with different time intervals between doses. There was a new call for understanding the 
optimal vaccination policy and finding a suitable compromise between population 
coverage in number and category to reduce both the overall pandemic risk and mortality, 
as well as achieve more robust sanitary and public force systems. The paper shows how 
the PSE community with its tools, algorithms, models, and methods can cover, analyze, 
and quantify the different topics and issues that were listed above. 

2. Short-term pandemic models 
At the very beginning of the Covid-19 outbreak, the hospital heads of resuscitation wards 
were overwhelmed by SARS-CoV-2. The most stringent resource in hospitals was ICU 
beds. Resuscitation heads had often to double and even increase three-, four-, five-folds 
the number of beds in a few days alongside the resources connected (e.g., air-breathing 
lines, respiratory devices,  monitors, space allocation, dirty and clean areas/paths). Human 
resources were the determining step, which called for specialized ICU doctors and nurses. 
Indeed, these specialized operators can be neither increased nor hired in the characteristic 
time of an epidemic. It calls for years of planning and formation. Regarding the dynamics 
of Covid-19 ICU beds, they start from zero at the very beginning of an epidemic (or from 
a positive known value in case of subsequent waves) and they increase steadily up to a 
maximum value. In the following, the ICU wards begin emptying and they reach either a 
final null value at the end of the epidemic or a minimum nonzero plateau before a new 
outbreak triggers the inversion of deflation with a new inflation trend. Similar qualitative 
behavior occurs also for daily positives, hospitalized, healed, and dead. Conversely, the 
total cumulated values of those quantities are curves that are monotonically increasing 
and reach either temporary or permanent plateaus between two waves or at the end of the 
epidemic respectively. Manca et al. (2020) proposed three different curves that describe 
the inflation trend of a pandemic wave: the exponential, the logistic, and the Gompertz 
functions (Eq.s 1-3). The mathematical description of the exponential model is: 

10bty a  (1) 

The mathematical description of the logistic model is: 

 1 exp 1 c t

a a
y

b c t b e 
  

 (2) 

The mathematical description of the Gompertz model is: 
  exp exp

c tb ey a b c t a e
     (3) 
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The adaptive parameters of Eq.s 1-3 can be evaluated through a nonlinear regression of 
real values that are periodically measured at both regional and national levels. For the 
sake of clarity, the logistic curve performs comparably and sometimes worse than the 
Gompertz model, which is the preferred one. Equally, the exponential model is very 
compact and effective at the very beginning of each outbreak but it soon overpredicts the 
epidemic dynamics. Hence, Gompertz is the most robust model and its analytical features 
allow also evaluating the inflection point,  lninflt b c , and the halfway point, 

  ln ln 2halfwayt b c  . In addition, a  is the asymptote of the dynamic inflation 
phenomenon. Once the plateau is reached, the curve starts decreasing and the reverse 
Gompertz function (Eq. 4) describes the deflation region: 

  01
c t tbey a e

    (4) 

Equally, the around-the-maximum period is well described by Eq. 5 which is an 
exponentially modified Gaussian (EMG) curve: 

2

10at bt cy    (5) 

Figure 1 shows the typical dynamic behavior of both direct/reverse logistic and Gompertz 
functions, and the EMG curve for the ICU patients of Lombardy (the most populated 
region of Italy with over 10 million citizens) during the first pandemic wave. 

 

Figure 1: ICU patients in Lombardy and parametric models during the first Covid-19 wave. 

3. Medium-term pandemic models 
Another family of epidemic models can describe the contagion dynamics on a medium-
term horizon. These models are based on interconnected compartments that summarize 
the condition of individuals in a given population. The simplest compartmental model for 
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an outbreak is the SIR model that is based on three compartments (susceptibles, infected, 
and removed) that describe the evolution of a population plagued by the epidemic. The 
population features N  individuals, whose number is assumed constant (this hypothesis 
holds if N  is sufficiently large and one assumes that the number of newborns equals that 
of fatalities and the prediction horizon is not too prolonged). Initially,  1N   individuals 
are susceptible (i.e. they belong to the S  compartment of those vulnerable to the virus) 
and one person is infected and belongs to the I  compartment of those who can transmit 
the contagion with a reproduction number,  . Once an infected individual either recovers 
or dies, they move to the R  compartment, with a rate proportional to  . Eq. 6 
summarizes the SIR model based on an ordinary differential system with suitable initial 
conditions: 

      dS I dI I dR
S S I I

dt N dt N dt
        


 (6) 

The adaptive parameters of the model ( ,  ) can be identified by a nonlinear regression 
that minimizes the distance between the real data and the model predictions. The 
continuing availability of periodically measured real data allows improving the quality of 
the model and better predicting the dynamics of the pandemic. The complexity of the SIR 
model can be increased (Giordano et al., 2020) by introducing further compartments (e.g., 
those infected but not yet contagious, those who died) or contributions (those who have 
recovered but may lose their immunity and move back to the susceptible compartment). 
The adaptive parameters may change in time according to virus mutations, improved 
capacity of treating the infection, and different behavior of the population induced by 
nonpharmaceutical measures such as lockdowns, curfews, and social distancing. For the 
sake of simplicity, Eq. 7 shows some modifications to the adaptive parameters that 
account for lockdown measures and modification of the healing rate. These modifications 
call for the evaluation of additional adaptive parameters that pave the way to further 
simulations of what-if scenarios in case of government decisions such as non-
pharmaceutical interventions. 

0

0

,
) exp(

lockdown

lockdown

t t

t tt



 
 

  








          1
0 1 exp( )

t
t 


 


   

  
 (7) 

Compartmental models can be effective in predicting the expected dynamics of an 
epidemic. The so-called parametric runs allow quantifying the effect of different 
measures on the outcomes in terms of infected, recovered, and fatalities. Understanding 
the role played by adaptive parameters enhances the quality of decision-making aimed at 
prompt and effective resolutions for the health safety of citizens. Equally, compartmental 
models do not show a high degree of precision, rather they indicate the trend of the 
epidemic. However, their predictive capability usually increases towards the end of an 
outbreak once a good amount of real data allows refining the adaptive parameters. 
A further differential equation can account for the vaccination of the population, which 
for most of the industrialized countries started in the middle of the second/third Covid-19 
pandemic wave: ddV dt V M . The first differential equation of system (6) must be 
modified accordingly to account for the individuals that once vaccinated are assumed not 
to be susceptible anymore and therefore neither recover nor die but move directly to the 
V  compartment: ddS dt S I N V M    . dV  is the vaccination rate and M  is the 
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fraction of individuals who were not infected and are vaccinated. dV  is a dynamic input 
value that measures the capacity of the system (either regional or national) to daily inject 
the vaccine and decrease (after one or two doses) the number of susceptible individuals 
(Figure 2). Again, the model can be improved by removing some oversimplifications and 
accounting for reinfections and partial protection from infection as a function of the 
number of doses and vaccine maker. Parametric runs can quantify the effect of increasing 
the rate of vaccination and population coverage by computing the number of saved lives. 

 
Figure 2: SIRDV model based on susceptible, infected, recovered, dead, and vaccinated 
compartments. The immune diagram collects both recovered and vaccinated individuals. Italy, 
third Covid-19 wave. 

4. Long term predictions 
Equations (2-5) can be extrapolated to long-term horizons to determine when the 
asymptotic condition for a maximum or minimum plateau is reached. Equally, it is 
possible to determine the time taken to reach and overtake a given threshold for both the 
inflation and deflation phases. These last bits of information are valuable when hospital 
managers have to either prepare for emergencies (during the inflation period) or 
progressively allocate resources to return to elective medicine (during the deflation 
period). Likewise, Equation (6) allows evaluating the asymptotic condition for rather long 
integration times. However, the user should be aware of the risks connected to the 
extrapolation of long-term models that depend heavily on adaptive parameters. 

5. Alternative vaccination policies 
In the case of a vaccination campaign against an epidemic, initially, the available doses 
are limited and a suitable vaccination policy should be chosen and implemented. The 
most effective indicator to account for is the number of fatalities. If the decision-makers 
try to minimize the fatalities toll then the pressure on the limiting resources of hospitals 
such as ICU beds and Covid-19 wards gets relieved and both medical doctors and nurses 
can cure the patients more efficiently, which results in a synergistic reduction of mortality. 
In the case of Italy, the first available doses (January 2021) were reasonably administered 
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to high-priority categories (such as hospital operators, health doctors, and fragile 
subjects). Nonetheless, it is well-known that Covid-19 mortality follows a monotonically 
increasing curve with age. In Italy, almost 99% of the officially documented 133,000+ 
victims of Covid-19 (as of November 2021) were people aged 50 and older. 
Unfortunately, the following doses did not strictly respect a reverse-order of age policy 
aimed at minimizing the fatalities. There were some diversions to lower priority 
categories that, thanks to their health status and age, were less exposed to either serious 
or fatal consequences (e.g., school and university personnel, armed forces, lawyers, 
scientific informants, social workers, customs and airport personnel, and funeral home 
staff). 
An in silico vaccination simulator can quantify the difference between real fatalities and 
what might happen if an alternative vaccination procedure were adopted. That simulator 
relies on the immunization degree after injection (Creech et al., 2021) and the death 
distribution curve, which both allow assessing the expected number of saved lives. After 
having covered the high-priority categories, if one implements a rigid approach to 
vaccination based on the reverse order of age ranges (i.e. the elderly first, the young last) 
every dose can be injected to individuals in the following decreasing sequence of 90+, 
80-89, 70-79, 60-69, 50-59, 40-49, 30-39, 20-29, and 12-19 years old. The rate of injected 
doses is available daily and the optimal reallocation of doses allows evaluating the 
number of lives that would be saved. In addition, the simulator can solve what-if scenarios 
such as what would happen if (i) the daily delivered doses increased by some percent, or 
(ii) the vaccination campaign to the elderly were anticipated of a few days, or (iii) some 
doses were diverted from lower priority categories to the elderly, or (iv) the interval 
between first and second dose were increased or decreased. Table 1 reports some results 
of different vaccination policies on the expected number of saved lives. 
Table 1: Saved lives in Italy by alternative vaccination policies. Rows report the expected saved 
lives under the hypothesis of administering the same amount (100%) or 10% and 20% more daily 
doses than those injected in reality. The columns report the calculated saved lives under the three 
hypotheses of 0, 10, and 20 days anticipation with respect to reality (which started on 18-Feb-
2021). The numbers in brackets quantify the increase over the basic case study of 18-Feb at 100% 
administrations. The assessment was carried out at the end of May 2021. 

Saved lives – ITALY Start on 18-Feb-
2021 

Start 10 days 
before 

Start 20 days 
before 

100% of the real 
administrations 

3969 4465 (+12.50%) 5317 (+33.96%) 

110% of the real 
administrations 

4905 (+23.58%) 5414 (+36.41%) 6311 (+59.01%) 

120% of the real 
administrations 

5712 (+43.92%) 6245 (+57.34%) 7083 (+78.46%) 
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Abstract 

Considering the growing need for alternative and cleaner fuels to replace the ones based 

on fossil energy sources, and to reduce the environmental impacts associated, this work 

aims to present a novel process that replaces natural gas (NG) as a source of hydrogen 

(H2) in the production of ammonia (NH3). The generated CO2 is fed to the urea synthesis 
unit, which reduces the greenhouse gas (GEEs) emissions through an integrated ethanol-

ammonia-hydrogen-urea plant. To achieve these goals, an integrated plant was designed 

where the H2 from NG was replaced by the H2 from the ethanol reform ("moss hydrogen") 

and electrolysis process (green H2) where it receives electricity from the co-generation 

ethanol system. The capturing process of the CO2 produced during the fermentation and 

bagasse burning is carried out in the sugarcane photosynthesis. Besides, part of the CO2 

emitted during the ammonia section (in the ethanol reform stage) is used as feed in the 

urea plant, supplying all the demand for the urea production from the outputs of the 

process itself and minimal carbon emission to the atmosphere (≈ 44%). Finally, after an 

evaluation performed in the Aspen Plus process simulator and based on metrics used in 

green chemistry associated with sustainability, it was concluded that the proposed plant 

can be considered sustainable with great potential, especially in regions rich in biomass. 

Keywords: Ammonia, Ethanol, Urea, Green hydrogen, CO2 emission. 

1. Introduction 

The path to a low carbon economy involves the development of new processes and the 
use of new raw materials to produce all the necessary products to maintain a modern 

standard of living, meeting the sustainability tripod. Thus, in addition to fuels and other 

chemical products that used to come from fossil sources, new routes to produce fertilizers, 

such as NH3 and urea, must be developed. (Konig, et al. 2015) 

A renewable source of chemicals and energy is biomass, where Brazil is one of the world 

leaders in the use it, especially sugarcane, used in the production of ethanol, sugar and 
electricity through the burning of bagasse and vinasse. Cogeneration of energy in 

sugarcane mills plays a fundamental role in the sustainability of the production process, 

which remains independent of external fuels. On the other hand, electricity is often 

generated in excess, and sold to the local energy distributor. (Mehmeti, et al. 2018) 
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Currently, according to Mehmeti, et al. (2018), the ammonia and urea feedstocks are natural 

gas, CO2 and air. Developing new technological routes, with sustainable sources of CO2 

and hydrogen, is necessary for a cleaner and more sustainable process. This work aims to 

present a new route to produce green ammonia and green urea from clean energy sources 

widely available in Brazil, (biomass energy and sugarcane ethanol). (Erdemir & Dincer, 

2020) 

The hydrogen sources come from the electrolysis of water, using the excess of electrical 

energy generated in the plant, and ethanol, which undergoes a steam reforming process. 

The source of CO2 is ethanol (EtOH), also through steam reforming, implementing the 

capture and storage process within the plant. Nitrogen continues to come directly from 

air. This new concept plant was modeled and simulated in Aspen Plus v.12. (Erdemir & 

Dincer, 2020) 

2. Methodology 

In this work, the methodology consisted, firstly, in carrying out the plant simulation of 

the proposed process, which integrates the stages of production of ethanol, green H2, 

ammonia and urea and whose main objectives are to change the source of H2 to a more 

sustainable one and the reduction of CO2 emission. Then, an analysis was carried out to 
assess and quantify the proposed plant's capability to reduce CO2 emissions. 

The simulation only includes the ammonia, green H2 and urea production sections (figure 

1). As for the ethanol section, it was considered a plant with the capacity to process 1150 

ton/h of sugar cane, producing 1766 kmol/h of ethanol and 287.5 ton/h of bagasse. In the 

following topics, the step-by-step performed to simulate the green H2, ammonia and urea 
production sections will be elucidated. (Wirti, 2016) 

 

Figure 1. Integrated process flowsheet  

2.1. Green H2 Unit - Simulation 

Green H2 is produced through the alkaline electrolysis of water which, in this case, was 

simulated using an RSTOIC (Stoichiometric Reactor Module), named “ELECTR” and an 

SEP (Component Separation Module), named SEP-4. 

In the reactor, the reaction shown in equation 1 was added and the yield attributed to the 

fractional conversion of H2O into H2 and O2 was 99.9%, according to Faria (2018). In 

addition, the reaction temperature and pressure conditions were 80°C and 1 bar and the 

electricity consumption required by the electrolyzer (ELECTR) per Nm3 of H2 produced 

is around 4.3 kWh. 
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2𝐻2𝑂
 

→ 2𝐻2 + 𝑂2                                                      (1) 

2.2. Ammonia Unit - Simulation 

According Garcês (2021), ammonia is produced from the Haber-Bosch reaction (equation 

2), which consists of reacting H2 and N2 to form NH3. However, on an industrial scale, 

some additional steps are necessary for this synthesis. 

𝑁2 + 3𝐻2

 
→ 2𝑁𝐻3                                                    (2) 

In this plant, different from the technologies commonly found in the literature ammonia 

production (BASF (1910), Kellogg (1960), KBR (Kellogg modified by Braun), Haldor 

Topsoe), the hydrogen source is the green H2 process – produced from the electrolysis of 

water – and “moss” H2 – produced from the reform of ethanol. (Pattabathula et al., 2016) 

Therefore, to explain the ammonia section simulation process, the explanation will be 

divided into two parts: ethanol reforming and ammonia synthesis.  

2.2.1. Ethanol Reforming 

The ethanol reforming process consists of generating H2 from ethanol to produce 

ammonia and, in addition, capturing and recovering the produced CO2, so that it can be 

used to in urea production plant. 

The process basically takes place in two stages (SSR and WSGR), where the reactions 

shown in equations 3 and 4 occur, respectively, the first at high temperatures (650°C) and 
the second at relatively lower temperatures (200°C). Furthermore, according to Teixeira 

(2016), the fractional conversions for both reactions are, respectively, 93.7% and 99.5%. 

𝐶2𝐻5𝑂𝐻 + 𝐻2𝑂
 

→ 2𝐶𝑂 +4𝐻2                                           (3) 

2𝐶𝑂 + 2𝐻2𝑂
 

→ 2𝐶𝑂2 + 2𝐻2                                         (4) 

The stream rich in CO2, H2 and H2O is sent to the CO2 capture and recovery, as carbon 

dioxide is extremely poisonous to the ammonia production catalyst and needs to be 

separated from H2. (Sunny et al., 2016) 

The stripping strategy adopted in the work was the capture of CO2 by alkaline amine, 

more specifically DEA (Diethanolamine). The process was simulated in a “Hierarchy” 

block, composed of two RSTOICS and a FLASH, as seen in figure 2.  

 

Figure 2. CO2 Removal 

As mentioned by Oh et al. (2010) and Mendieta (2011), in the first reactor (REACT-1), at 

low temperature and pressure conditions, the reaction between water, carbon dioxide and 

diethanolamine occurs (eq. 5), followed by a flash drum that separates H2 from the other 

product components and, finally, in the REACT-2, the inverse reaction of the one 
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described above occurs (eq. 6), due to the high established temperature and pressure 

conditions. 

𝐷𝐸𝐴 + 𝐶𝑂2 + 𝐻2𝑂
 

→ 𝐶5𝐻10𝑁𝑂4
− + 𝐻3𝑂+                               (5) 

𝐶5𝐻10𝑁𝑂4
− + 𝐻3𝑂+

 
→ 𝐷𝐸𝐴 + 𝐶𝑂2 + 𝐻2𝑂                               (6) 

Next, the separation of CO2 from the DEA takes place, so that it can be directed to the 

urea plant, in addition, due to the residues of carbon oxides in the H2 stream (S014), it 

goes to a methanation step, where the concentrations of CO2 and CO are drastically 

reduced to the order of 0.2% and 0.02% (mol/mol), respectively. The reactions of the step 

can be seen in equations 7 and 8. (Sunny et al., 2016) 

𝐶𝑂2 + 𝐻2

 
→ 𝐶𝑂 + 𝐻2𝑂                                              (7) 

3𝐻2 + 𝐶𝑂
 

→ 𝐶𝐻4 + 𝐻2𝑂                                             (8) 

2.2.2. Ammonia Synthesis 

As previously mentioned, the main reaction that occurs in the synthesis step is the Haber-

Bosch (eq. 2), reacting the H2 - obtained in the ethanol reforming and in the production 

section of Green H2 - and N2 removed from the atmosphere. This step uses Haldor 

Topsoe's S-250 ammonia conversion strategy, which consists of a two-bed radial flow 

converter with indirect heat exchange between the two beds. In this way, efficient use of 

the converter volume, low pressure drops, and high conversion occurs - due to indirect 

cooling. In these reactors, the NH3 formation reaction was defined through the subroutine 

"NH3SYN", found in the software files. (Sunny et al., 2016) 

Finally, the ammonia fed into the refrigeration unit is liquefied and goes direct to its 

intended purpose, whether it is for storage or, in this case, for feeding the urea plant. 

2.3 Urea Section - Simulation 

Finally, the urea synthesis step starts, simulated from the example flowsheet present in 

the Aspen Plus files. However, some changes were made to this flowsheet, such as: 

considering the formation of reactor biuret (unwanted by-product); add pure component 

– using the NIST database – and binary interaction parameters – defined as the same as 

urea – for biuret, in addition to DHFORM and DGFORM data; add vapor pressure data 
– PLDTDEP – for urea and biuret; finally, define the urea and biuret formation reactions 

as “POWERLAW”, placing their kinetic data according to Chinda (2019). 

3. Results 

Having carried out all the methodology previously presented, obtaining the simulation of 

all the steps of the proposed process, an evaluation of the achieved results was carried 

out. 

As mentioned, the ethanol production plant used as a base a processing capacity of 1150 

ton/h of sugarcane, producing around 1766 kmol/h of ethanol and 287.5 ton/h of bagasse. 

All the bagasse was used to generate energy, first to supply the plant itself and then to 
produce Green H2 by electrolysis. It is noteworthy that the produced CO2 released into 

the atmosphere at this stage – from the fermentation and burning of bagasse – does not 
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enter the final balance, since the sugarcane manufacture itself will absorb it. (Oh et al., 

2010) 

After burning the bagasse and supplying the ethanol plant, 172.5 MW of energy were 

directed to the electrolyzer, being able to produce, with this amount of energy, 1790.8 

kmol/h of green H2 - entirely directed to the synthesis of ammonia. (Faria, 2018) 

The ethanol produced is directed to the reform, so that the moss H2 is produced. The table 

1 shows the main composition data for this section, prior to ammonia synthesis. 

Table 1. Streams composition – Ammonia section 

Comp. 

Flow – kmol/h 

SRR WSGR CO2 - SEP MET 

In Out In Out In Top Bottom In Out 

Ethanol 1766,0 111,3 - - - - - - - 

H2 - 6619,0 - 3292,9 3292,9 3276,0 16,9 9895,0 9194,7 

CO - 3309,5 3309,5 16,5 16,5 16,2 0,3 16,2 1,8 

CO2 - - - 3292,9 3292,9 182,5 2999,2 182,5 18,3 

Then, all hydrogen produced - approximately 11000 kmol/h, adding the streams of "green 

H2" and "moss H2" - is sent to the ammonia synthesis, where it reacts with the N2 removed 

from the atmosphere and, through the Haber-Bosch reaction, it forms NH3, which is then 

sent to the synthesis of urea. At the end of the process, the ammonia section releases 

2624.92 kmol/h of NH3 and 2999.25 kmol/h of CO2. (Garcês, 2021) 

Due to the integration of the ammonia and urea sections, the amount of carbon dioxide 

that would be released into the atmosphere is reduced, since part of the CO2 produced is 

transferred so that urea is produced. Considering that the NH3 feed from the urea section 

is 2624.92 kmol/h, the simulated plant is capable of processing about 1317 kmol/h of 

greenhouse gas, reducing its emission by approximately 44%. The table below shows the 

overall balance of the proposed integrated plant. 

Table 2. Overall Balance 

Green H2 Section Ammonia Section Urea Section 

H2O 
In 

EtOH 
In 

NH3 
In 

1790,8 kmol/h 1766,0 kmol/h 2624,9 kmol/h 

Energy 
In 

CO2 
Out 

CO2 
In 

172,5 MW 2999,2 kmol/h 1316,9 kmol/h 

H2 
Out 

NH3 
Out 

UREA 
Out 

1790,8 kmol/h 2624,9 kmol/h 1312,0 kmol/h 

Furthermore, it is worth noting that, in the ethanol steam reforming step, approximately 

8300 kmol/h of water were processed, used both in the SSR and WSGR steps and in the 
capture of CO2 by DEA. Besides, simultaneously with the production of urea fertilizer, 

there is also the production of 8.5∙10-3 kmol/h of biuret which, although low, must be 

considered (given the harmful character of the by-product for plants). 

4. Conclusion 

Finally, it can be concluded that, from the data found in the literature (operational 

conditions, reaction yield, mass, and energy balances of existing plants), it was possible 

to carry out the simulations of the proposed plant that integrated the production sections 
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of green H2, green ammonia - produced from hydrogen from the reform of ethanol - and 

urea. As a result, it is observed that the results were satisfactory, showing the possibility 

of a plant with an alternative source of hydrogen (moss H2) for the ammonia production, 

in addition to being able to reduce 44% of the CO2 emission of this step and use the waste 

from the ethanol plant (bagasse) as an energy source to produce green H2. 
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Abstract 

Although there are studies where the economic and environmental impacts of different 

cork supply chains were assessed, no study exists where the social impacts of these supply 

chains have been analyzed. The main goal of this study is to narrow this research gap by 

assessing the social performance of the Portuguese natural cork stoppers’ supply chain, 

using the social life cycle assessment methodology. Furthermore, this study provides 

suggestions on how this social performance can be improved based on the processes and 

regions where the most relevant potential social impacts are likely to arise (i.e., social 

hotspots). Five social issues were recognized as relevant and one hotspot, Cork harvest 

in Portugal, was identified for these issues. Based on these results, a set of industry-

specific recommendations is provided for Portuguese cork suppliers to improve their 

social performance. If implemented, these recommendations will contribute to three 

Sustainable Development Goals, namely Goal 4 – Quality Education, Goal 8 – Decent 

Work and Economic Growth, and Goal 16 – Peace, Justice, and Strong Institutions. 

 
Keywords: Sustainable supply chain management; Social life cycle assessment; Social 

hotspots; Sustainable Development Goals; Natural cork stoppers supply chain. 

1. Introduction 

The economic and environmental dimensions of sustainable development have been 

comprehensively covered in the field of sustainable supply chain management (SSCM), 

while the social dimension is addressed in a fairly simplified manner (Seuring, 2013). 

Similarly, a recent review found that the social dimension of sustainability is the most 

overlooked in assessment studies applied to forest wood supply chains (Santos, et al., 

2019). While some studies have attempted to narrow this research gap, including the study 

conducted by Santos et al. (2020) where the social impacts of a Portuguese pulp and paper 

supply chain were quantified, there is still work to be done. For example, no study has 

been conducted where the social performance of a cork product supply chain has been 

assessed. Hence, the main goal of this study is to assess the social performance of the 

Portuguese natural cork stoppers’ supply chain since the cork industry is one of Portugal’s 

biggest industries and natural cork stoppers (NCS) are the most manufactured product in 

this industry (ICNF, 2018). Social life cycle assessment (LCA) was chosen in this study 

to assess the social performance of the selected supply chain because it has been identified 

as a promising approach to assess the social performance of forest wood supply chains 

(Santos, et al., 2019). Furthermore, this study also provides suggestions on how the social 

performance of the Portuguese NCS supply chain can be improved by identifying the 

social hotspots associated with this supply chain. Social hotspots are processes in a region 

where the most relevant potential social impacts are likely to arise (UNEP, 2020). Thus, 

identifying these hotspots allows determining where changes need to be made to reduce 
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the most critical social issues associated with a supply chain. The suggestions provided 

will assist natural cork stoppers’ manufacturers and other supply chain partners dealing 

with the relevant social issues highlighted in improving their social performance and, as 

a result, the social performance of their supply chain. By implementing these suggestions, 

the different NCS supply chains partners will address critical social issues and help 

achieve specific Sustainable Development Goals (SDGs) (United Nations, 2021).  

2. Social Life Cycle Assessment 

The social LCA methodology is used to analyze the potential social impacts associated 

with the life cycle of a system (i.e., the specific object under analysis). This methodology 

is comprised of four steps (ISO, 2006):  Goal and Scope Definition, Life Cycle Inventory 

(LCI), Life Cycle Impact Assessment (LCIA), and Results Interpretation. These steps are 

explained below together with an explanation of how they were applied to the supply 

chain under analysis. 

2.1. Goal and Scope Definition 

The first stage of this step is to establish the goal of the social LCA. In this study, the goal 

was to assess the social performance and identify the social hotspots associated with the 

supply chain of natural cork stoppers manufactured in Portugal.  

The second stage of this step is to establish the scope of the social LCA which requires 

establishing the functional unit and system boundary. The functional unit is a 

representative element of the system(s) under analysis (EC-JRC-IES, 2010). One ton of 

natural cork stoppers was the functional unit selected in this study. The system boundary 

defines which part of the supply chain and respective processes will be considered (EC-

JRC-IES, 2010). Given the goal previously defined (i.e. social hotspots identification), it 

is very important to select a boundary that considers the entire supply chain since 

choosing a restrictive system boundary could prevent the social hotspots from being 

identified if these were located outside the boundary. Hence, the system boundary chosen 

was cradle-to-grave, which includes four distinct life cycle stages: Raw materials’ 

extraction, Products' manufacture, Products' distribution, and Products' end-of-life.  

2.2. Life Cycle Inventory 

The purpose of the second step is to collect a list of social flows (e.g., number of worker 

hours in bad working conditions) which will be converted into potential social impacts in 

the following step. To determine these flows, the system(s) under analysis must be 

modeled using foreground (i.e., specific) and background (i.e., generic) data related to the 

different life cycle stages included within the system boundary previously defined. 

Foreground data refers to data that has been collected for the specific system under 

analysis (UNEP, 2020) and it usually includes information on (Norris, et al., 2019):  

• Materials (i.e., raw materials, utilities, and transports) used in the different life 

cycle stages included within the system boundary; 

• Economic sectors (GTAP, 2019) to which the materials belong to; 

• Region (e.g., country) from which the materials are sourced from; 

• Cost of the materials. 

Background data refers to data that has not been collected for the specific system under 

analysis (UNEP, 2020) and it can be found, for example, in databases such as the Social 

Hotspots Database (SHDB) which includes information on (Norris, et al., 2019):  

• Supply chain composition – Using the Global Trade Analysis Project (GTAP) 

global economic equilibrium model version 9, which contains information on 

the trade flows between 57 economic sectors (GTAP, 2019) from 140 regions 
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for the reference year 2011, the SHDB database can provide information on 

supply chain composition. Based on the economic sector, origin, and cost of 

each material identified in the foreground data collection, the SHDB determines 

the trade flows (in US dollars) from other sectors/regions involved; 

• Labor intensity – Using GTAP data on total wage payments (US dollars) per US 

dollar of output by the sector/region average wage (US dollars/hour), the SHDB 

database can determine the worker hours involved per dollar of output for the 

reference year 2011 for each of the 57 economic sectors in each of the 140 

regions previously mentioned;  

• Social risks – Using data obtained from different sources such as country 

statistics, academic papers, and intergovernmental databases (e.g., the 

International Labor Organization database), the SHDB has information on over 

160 social impact indicators for 244 regions and 57 sectors.  

In this study, the foreground data was collected considering the four life cycle stages 

included within the system boundary (see subsection 2.1) and the background data was 

collected using the Social Hotspots Database. The collected foreground and background 

data were used to model the Portuguese natural cork stoppers supply chain using the 

SimaPro 8.4.0 software. The developed model is presented in Figure 1. 

 

Figure 1 - Portuguese natural cork stoppers supply chain model. 

The output of the model presented in Figure 1 is a list of social flows associated with the 

Portuguese natural cork stoppers supply chain. 

2.3. Life Cycle Impact Assessment 

The third step of a social LCA consists of converting the social flows collected in the 

previous step into potential social impacts. The Reference Scale Approach is the most 

developed impact assessment approach (UNEP, 2020). This approach assesses the 

potential social impacts based on reference scales typically comprised of 1 to 5 levels 

(i.e., performance reference points). Therefore, a reference scale with clearly defined 

levels needs to be developed for each social inventory indicator collected in the previous 

step (UNEP, 2020). One impact assessment method that uses the Reference Scale 

Approach is the Social Hotspots Index (SHI) available in the SHDB. This was the method 

chosen in this study to convert the inventory collected in the previous step into potential 

social impacts. The SHI method considers 25 impact subcategories (e.g., Child Labor, 

Occupational Toxics and Hazards, and Gender Equity) (Norris, et al., 2019). These impact 

subcategories are assessed using the 160 social impact indicators mentioned in subsection 

2.2, with some being assessed using only one indicator, while others are assessed using 
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several indicators. Each indicator has a clearly defined reference scale of four risk levels 

(very high, high, medium, and low). A characterization factor is attributed to these levels 

(10, 5, 1, and 0.1, respectively), representing the relative probability of an adverse 

situation (Norris, et al., 2019). By combining these characterization factors with the social 

flows obtained in the LCI step, it is possible to quantify the potential social impacts in 

medium risk hours equivalent (MRH eq.). These impacts can be added together to 

determine the overall potential social impact (i.e., single score) of the system(s) under 

study after normalized and weighted using normalization and weighting factors, 

respectively.  

2.4. Results Interpretation 

The fourth and last step of a social LCA consists of examining and interpreting the results 

of the LCA study to accomplish the goal defined in Step 1. Since the goal of this study is 

not only to assess the social performance of the Portuguese natural cork stoppers supply 

chain but also to provide suggestions on how this performance can be improved, the 

interpretation of results will focus on social hotspots identification. According to the 

definition provided in the Introduction, social hotspots are processes in a region (e.g., 

cotton production in India) where the most relevant potential social impacts are likely to 

arise (UNEP, 2020). Following this definition, the first step to identifying social hotspots 

is to determine the most critical potential social impacts. In this study, the most relevant 

social impacts were identified using the “80/20” rule which asserts that 80% of outcomes 

(i.e., total social impact) result from 20% of all causes (i.e., impact subcategories). Hence, 

the 25 impact subcategories were sorted in decreasing order of normalized and weighted 

results and the top 20% (i.e., the five impact subcategories with the highest normalized 

and weighted results) were chosen. The next step to identifying social hotspots is to 

determine the most relevant processes and regions. In this study, for each relevant impact 

subcategory identified, the most relevant processes and regions were determined by 

sorting the processes and regions in decreasing order of characterized results and selecting 

the top result.  

The results of applying the social LCA to the Portuguese natural cork stoppers supply 

chain are presented in the next section. These results will be used to provide informed 

suggestions on how the social performance of this supply chain can be improved.  

3. Results Analysis and Discussion 

From the normalized and weighted results obtained for the Portuguese natural cork 

stoppers supply chain, it is possible to conclude that the most relevant impact 

subcategories (i.e., highest normalized and weighted results) associated with the supply 

chain under analysis are Injuries and Fatalities, Occupational Toxics and Hazards, 

Corruption, Migrant Labor, and Children Out of School. The same social hotspot, Cork 

harvest in Portugal, was recognized for the five relevant impact subcategories identified 

since this is the process and region with the highest characterized results in these 

subcategories. Given this information, Portuguese cork suppliers are key to improving 

the overall social performance of the Portuguese NCS supply chain. Due to the 

background data available in the SHDB, it is possible to determine which economic sector 

and region is most responsible for the bad social performance of Cork harvest in Portugal 

(Figure 2). The results presented in Figure 2 can assist in providing suggestions on how 

the social performance of the Portuguese NCS supply chain can be improved. In the case 

of the two most relevant social issues, Injuries and Fatalities and Occupational Toxics 

and Hazards, the social hotspot identified was Cork harvest in Portugal. The sector/region 

most responsible for this result is the Forestry sector in Portugal (Figure 2) which 
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indicates that it is the activities/behaviors of the Portuguese cork suppliers the main 

responsible for the bad social performance of Cork harvest in Portugal in the two 

aforementioned subcategories. Consequently, to improve the social performance of the 

Portuguese NCS supply chain, Portuguese cork suppliers should improve their working 

conditions by implementing different strategies such as (1) identifying where common 

accidents occur and which health hazards may be present in the workplace; and (2) 

defining measures to minimize occupational accidents and prevent employers from being 

exposed and harmed by occupational hazards (ILO, 2021). If implemented, these 

measures will contribute towards achieving SDG 8 – Decent Work and Economic Growth.  

 

Figure 2 – Contribution of different sectors/regions to the characterized result of “Cork, Portugal”  

in the five relevant impact subcategories. 

In the case of Corruption, the social hotspot identified was Cork harvest in Portugal and 

the sector/region most responsible for this result is the Oil sector in the South Central 

Africa (i.e., XAC) region (Figure 2). This result indicates that it is not the 

activities/behaviors of the Portuguese cork suppliers the main responsible for the bad 

social performance of Cork harvest in Portugal in the Corruption subcategory but 

activities/behaviors of oil providers from South Central Africa with whom the Portuguese 

supply chain partners deal with. To improve the social performance of the Portuguese 

NCS supply chain, Portuguese cork suppliers should contact the oil providers from South 

Central Africa and make sure they implement different measures such as (1) publishing 

financial accounts for each country of operations, including what is paid to each 

government in taxes and other contributions, and (2) disclosing and regularly monitoring 

anti-corruption systems throughout all operations and those of subsidiaries (Transparency 

International, 2017). If implemented, these measures will contribute towards achieving 

SDG 16  – Peace, Justice, and Strong Institutions. Similar to the conclusion reached for 

the two most relevant impact categories, the social hotspot identified for Migrant Labor 

was Cork harvest in Portugal and the sector/region most responsible for this result is the 

Forestry sector in Portugal (Figure 2). Portuguese cork suppliers should implement 

measures to support the migrant workers employed by them such as (1) developing 

policies and procedures that promote equality of opportunity in the workplace;  and (2) 

providing equality and diversity training for all workers and having a suitable induction 

process that includes introducing the new workers to their team and touring the workplace 

(NiBusinessInfo, 2021). If implemented, these measures will contribute towards 

achieving SDG 8 – Decent Work and Economic Growth. In the case of  Children Out of 
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School, the social hotspot identified was Cork harvest in Portugal and the sector/region 

most responsible for this result is the Forestry sector in Portugal (Figure 2). Portuguese 

cork suppliers should implement business actions such as (1) creating programs (e.g., 

internships) that give students early access to the corporate environment, which could 

reduce the number of students that drop out of school (SDG Compass, 2015). If 

implemented, these actions will contribute towards achieving SDG 4 – Quality Education.  

4. Conclusion 

In this study, the social performance of the Portuguese natural cork stoppers’ supply chain 

was assessed and the social hotspots of this supply chain were identified using the social 

life cycle assessment methodology. Based on the hotspots recognized, a set of suggestions 

were provided to assist natural cork stoppers’ manufacturers and other supply chain 

partners in improving their social performance and, as a result, the social performance of 

the Portuguese NCS supply chain. If implemented, these suggestions will contribute to 

three Sustainable Development Goals: Goal 4 – Quality Education, Goal 8 – Decent Work 

and Economic Growth, and Goal 16 – Peace, Justice, and Strong Institutions.  

References 

EC-JRC-IES, 2010. International Reference Life Cycle Data System (ILCD) Handbook - General 

Guide for Life Cycle Assessment, Luxembourg: Publications Office of the European Union. 

GTAP, 2019. 57 Detailed Sectoral List. [Online] Available at: 

https://www.gtap.agecon.purdue.edu/databases/contribute/detailedsector57.asp [Accessed 07 

January 2021]. 

ICNF, 2018. Síntese económica 2018., Lisbon, Portugal: Institute for Nature Conservation and 

Forests. 

ILO, 2021. Occupational Safety and Health - A Guide for Labour Inspectors and other stakeholders. 

[Online] Available at: https://www.ilo.org/global/topics/labour-administration-

inspection/resources-library/publications/guide-for-labour-inspectors/lang--en/index.htm 

[Accessed 15 September 2021]. 

ISO, 2006. ISO 14040:2006 Environmental management - Life cycle assessment - Principles and 

framework., Geneva, Switzerland: International Organization for Standardization. 

NiBusinessInfo, 2021. How to support migrant workers in your business. [Online] Available at: 

https://www.nibusinessinfo.co.uk/content/how-support-migrant-workers-your-business 

[Accessed 21 September 2021]. 

Norris, C. B., Bennema, M. & Norris, G., 2019. The Social Hotspots Database - Supporting 

documentation, Maine: New Earth B. 

Santos, A. et al., 2019. Assessment and optimization of sustainable forest wood supply chains – A 

systematic literature review. Forest Policy and Economics, Volume 105, pp. 112-135. 

Santos, A., Norris, C. B., Barbosa-Póvoa, A. & Carvalho, A., 2020. Social Life Cycle Assessment 

of Pulp and Paper Production – A Portuguese Case Study. Computer Aided Chemical 

Engineering, Volume 48, pp. 15-20. 

SDG Compass, 2015. SDG 4: Ensure inclusive and equitable quality education and promote 

lifelong learning opportunities for all. [Online] Available at: https://sdgcompass.org/sdgs/sdg-

4/ [Accessed 21 September 2021]. 

Seuring, S., 2013. A review of modeling approaches for sustainable supply chain management. 

Decision Support Systems, 54(4), pp. 1513-1520. 

Transparency International, 2017. Six ways business can help deliver the sustainable development 

goals. [Online] Available at: https://www.transparency.org/en/news/six-ways-businesses-can-

help-deliver-the-sustainable-development-goals [Accessed 16 September 2021]. 

UNEP, 2020. Guidelines for Social Life Cycle Assessment of Products and Organizations.. Nairobi, 

Kenya: United Nations Environment Programme (UNEP). 

United Nations, 2021. The 17 Goals. [Online] Available at: https://sdgs.un.org/goals [Accessed 

23rd July 2021]. 

1680

 A. Santos et al.



PROCEEDINGS OF THE 32nd European Symposium on Computer Aided Process Engineering  

(ESCAPE32), June 12-15, 2022, Toulouse, France  

L. Montastruc, S. Negny (Editors) 

© 2022 Elsevier B.V. All rights reserved.  

 

 

A game-theoretical approach for the analysis of waste treatment and 
circular economy networks 
 

Antonis Kokossis* and Evripidis Melampianakis  

School of Chemical Engineering, National Technical University of Athens, Zografou 

Campus, 9, Iroon Polytechniou Str. GR-15780, Athens, Greece  

*akokossis@mail.ntua.gr  

Abstract 

The paper presents a game-theoretical approach for the analysis of waste management 

and circular economy networks. Players include waste producers, competitive 

technologies, and the governing authorities. The variables include interactions of the 

players, choices for valorization technologies and different cost models. In search of Nash 

equilibria, an interesting conclusion has been that the players often converge at errant and 

deviant equilibria unless waste valorization is involved. In other words, circularity brings 

stability. In the case where valorization is involved, bilevel optimization has been applied 

to evaluate the dependence of profit share on market elasticity, options to subcontract 

waste upgrade to third parties, the cost of processing technologies, and the choices of 

products. Results indicate a strong dependence of the profit share on market conditions 

and player interactions. Solutions include cases where leaders choose to subcontract 

followers, cases that indicate the impact of controls to divert profit share, and the impact 

of cost and process efficiency in the network development. 

Keywords: circular economy, game theory, bilevel optimization, waste management 
 

1. Introduction 

Circular economy is emerging as a sustainable alternative to clean and waste management 

technologies in that waste is upgraded as a resource with a purpose to further use it as 

feedstock either to the same or to other industries. Major drivers include consumer needs, 

resource shortages, and technological breakthroughs. Other than materials and energy 

though, circular economy involves different stakeholders who have similar or different 

roles and entertain a different level of interactions with each other; the state, as 

government or municipality, is a major stakeholder and a player assigned with a role to 

incentivize or manipulate interactions. To understand the development of interactions, the 

use of game theory can be both insightful and powerful. Traditional applications in game 

theory typically follow Stackelberg formulations that feature players in open markets, 

with identical or similar roles. They compete each other on how they can access markets, 

by means of cost or market functions that dictate their profits. Approaches involve 

mathematical formulations produced as bilevel optimization problems optimized to 

determine the profit share of each player. Quite often, mathematical models take the form 

of multi-objective optimization approaches in which one optimization function balances 

trade-offs with another competitive function.  

Game theory can be applied to address interactions and roles in emerging and circular 

economy networks. Torres and Stephanopoulos [1] have been among the first to illustrate 

the use of game theoretical methods to analyze interactions in chemical engineering. 

Palafox-Alcantar et al. [2] have specifically pointed the significance of game theory in 

circular economy networks. These are cases where markets are shaping up, and are not 
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ideal. Indeed, many researchers ignore the fact that profits are primarily made at the 

purchase of raw materials (waste) rather than the production of marketable products. As 

the ownership of value chains involves many actors, partner payoffs depend not only on 

the choices of a single actor but on the choices of others. Research by Y Jin et al [3] 

indicates that compensation policy may promote cooperation between players. D Salmon 

et al point [4] out instead that unqualified government subsidy to recyclers may not be 

sufficient to shift choices; instead, a more targeted approach should benefit recyclers that 

engage honestly with downstream material or resale markets. Drivers other than 

competitive advantage include a better management of threats, social and environmental 

benefits, and policies to establish a fair share of profits. Parlar et al [5] use mathematical 

programming to model the networks for control and on-line decision purposes. Instead, 

this paper addresses strategic decisions in the problem. Nash equilibria rather than Pareto 

optimal constitute more attractive and sensible objectives. Both in waste management and 

circular economy networks, there are two profit lines to consider: one at the receiving end 

and, potentially, a second one at the production as based on the valorization path that is 

selected. While in the context of a classical Stackelberg approach the competition relates 

to the product, in circular economy networks the competition is mainly for the feedstock; 

products may diversify with the players’ choice to valorize feedstock. Moreover, while 

the profit share is important to study, it is equally important to study the equilibrium of 

the overall system in the context of Nash as the network are subjected to several threats 

and opportunities from the players involved. 

The paper presents a game-theoretical approach for the analysis of waste management 

and circular economy networks. Players include waste producers, competitive 

technologies, and the governing authorities. The variables include interactions of the 

players, choices for valorization technologies and different cost models. In search of Nash 

equilibria, an interesting conclusion has been that the players often converge at errant and 

deviant equilibria unless waste valorization is involved. In other words, circularity brings 

stability. In the case where valorization is involved, bilevel optimization has been applied 

to evaluate the dependence of profit share on market elasticity, options to subcontract 

waste upgrade to third parties, the cost of processing technologies, and the choices of 

products. Results indicate a strong dependence of the profit share on market conditions 

and player interactions. Solutions include cases where leaders choose to subcontract 

followers, cases that indicate the impact of controls to divert profit share, and the impact 

of cost and process efficiency in the network development. 

2. Games in extensive forms with complete information 

Let us use game theory to model a typical problem of a waste producer (A) and a 

contractor (B). The model is formulated in extensive form with complete information. Let 

us use backward induction under the assumption that both players are rational and that 

each player is trying to maximize her/his own payoff. For each unit of waste, Player A  

(A.1) is required to dispose waste to the contractor at a gate fee α (€/t) and receive a 

receipt 

(A.2) may discharge his waste without receipt at a gate fee α’ (€/t) 

(A.3) may risk and dump his waste without cost 

Besides, Player B is required to process waste and this would cost β’ (€/t) 

(B.1) will be taxed on his profits by γ% 

(B.2) may risk dump the waste he/she received without processing 

The backward induction tree for the game is shown in Fig. 1. Table 1 is the payoff matrix 

of the game; x1 and x2 represent possible government subsidies for A and B.  
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Figure 1. Backward induction tree for the game 

Based on Table 1, without any government subsidies, the lawful and desirable choice is 

(A.1, B.1). However, payoffs for Player A are best for A.3; A.2 is the second-best choice. 

Similarly, payoffs for Player B are better for B.2; B.1 is the worst choice. In other words, 

based on game theory payoffs, both players are inclined for errant and unlawful choices. 

Provided payoffs are available, (a) player A would choose A.1 over A.2 & A.3 once  𝑥1 >
𝑎 − 𝛼′ & 𝑥1 > 𝑎, and (b) Player B would choose B.1 over B2 once 𝑥2 > 𝛽′. Such 

conditions imply that, lawful choices are ensures once the government is prepared to take 

up all the costs of waste management.  

Table 1. Payoff matrix of the game 

 

3. Continuous games with multiple players 

The previous section considered games with players featuring different roles (e.g. waste 

producers, contractors) and a finite number of choices (e.g. select legal or lawbreaking 

action). This section considers players featuring similar roles and continuous choices as 

this often happens in open markets. More precisely, we consider games with two players 

as have been extensively studied already in Stackelberg’s models of duopoly. Our 

incentive would be to assess whether game theoretical models for waste management and 

circular economy are straightforward extensions of Stackelberg problems or they feature 

differentiating aspects.  

Let A and B be respectively leaders and followers in a context of Stackelberg duopolies. 

A and B compete in collecting waste, Q; they may further valorize waste (circular 

economy) to increase revenues at a cost, C, that depends on technology and downstream 

markets. A and B profit by selecting waste (probably more profitably) and/or in 

processing waste. A and B subsequently compete in two markets: in the first market 

(waste) they compete against each other; in other markets they may compete, but they 

may also cooperate instead (e.g., subcontracting waste discharge on behalf of the other). 

Assume A and B share Q in capacities q1 and q2. Instead of processing waste, A may opt 

to discharge all or part of q1, as q12, over to B (at a lower price so he can profit). Once B 

  Player B 

  B.1 B.2 

 

Player A 

A.1 −𝛼 + 𝑥1 , 𝛼 ∙ (1 − 𝛾) − 𝛽′ + 𝑥2 −𝛼 + 𝑥1, 𝛼 ∙ (1 − 𝛾) 

A.2 −𝛼′ ,  𝛼′ − 𝛽′ −𝛼′ ,  𝛼′ 
A.3 0, 0 0, 0 
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is prepared to process the waste, the total capacity would be then q2+q12. Another 

difference over the conventional Stackelberg, is thus that A and B have a clear incentive 

to eventually cooperate. 

Fig. 2 illustrates the interactions between A and B. Let 𝑝 be the collection price of waste; 

𝑝1, 𝑝2 sale prices of end products from waste; 𝑝′ the resale price of waste; 𝑐1, 𝑐2 the costs 

to process waste to products.   

 

Figure 2. Player interactions in continuous game 

Let us further assume linear markets for waste collection and treatment (MW) as well as 

those valorizing products to markets (MA and MB respectively for A and B). The prices 

in MW, MA and MB are set by 

𝑝 = 𝑎 − 𝑏 ⋅ 𝑄    (1);      𝑝1 = 𝛼1 − 𝑏1 ⋅ 𝑞11   (2); 𝑝2 = 𝑎2 − 𝑏2 ⋅ 𝑞22   (3) 

Where α, β are market parameters. Mass balances in Fig 1 translate to 

𝑄 = 𝑞1 + 𝑞2    (4);     𝑞11 = 𝑞1 − 𝑞12   (5);      𝑞22 = 𝑞2 + 𝑞12   (6) 

Economic balances subsequently translate to 

𝑃1 = 𝑝 ∙ 𝑞1 + 𝑝1 ∙ 𝑞11 − 𝐶1   (7);    𝑃2 = 𝑝 ∙ 𝑞2 + 𝑝2 ∙ 𝑞22 + 𝑝′ ∙ 𝑞12 − 𝐶2   (8) 

𝐶1 = 𝑐1 ∙ 𝑞11 + 𝑝′ ∙ 𝑞12   (9);              𝐶2 = 𝑐2 ∙ 𝑞22  (10) 

The solution to the game-theoretical model that is set up by A and B results in a bilevel 

mathematical formulation with one leader and one follower that takes the form 

max
𝑞11,𝑞12

𝑃1( 𝑞11, 𝑞12) 

s.t. Eqs. (1), (2), (4), (5), (7), (9) 

𝑞2, 𝑞12  solves max
𝑞11,𝑞12

𝑃2( 𝑞2, 𝑞12) 

s.t. Eqs. (1), (3)-(6), (8), (10) 

The bilevel optimization problems has been formulated and solved using the Extended 

Mathematical Programming (EMP) of GAMS and solvers JAMS and BARON.  

4.  Results 

The bilevel optimization model of the previous section is applied to evaluate typical cases 

in waste management (primal) markets with gate fees closely regulated by the state and 

serviced by two contractors without upper bounds on the amount of waste they collect 

and process (typical to larger markets). The purpose would be to evaluate: (a) the split of 

profit and the market share, and (b) the emerging interactions and exchanges that 

differentiate the game from conventional cases. Sets of parameters are selected 

accordingly for low elasticity in primal markets (small 𝑏, 𝑏1 = 𝑏2 = 0.005), large gate 

fees (large 𝑎 as compared to 𝛼1 and 𝛼2), and competitive processing costs 𝑐1 = 𝑐1 = 10. 

The impact of parameters is outlined in Fig 3-5. 

(i) Fig. 3 illustrates the impact of waste management economics, namely the impact of 

gate fee on market shares. As expected, A holds the largest share in all cases, either 

picking up all waste (𝑎 <120), or share with B (once 𝑎 >120). Without exception, A 
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makes use of B as a subcontractor profiting by diverting his waste to B. 

Subcontracting peaks as B enters the primal market; thereafter it decreases to lower 

volumes. 

 

Figure 3. The impact of gate fees on market shares. 

(ii) Fig. 4 illustrates the impact of circular economy choices as made by players, namely 

the product types selected for valorization. Quite naturally, A increases his/her share 

as higher value products are selected. A continues to subcontract to B with a rate that 

increases with the product value (but at lower rate than the increase of his share in  

As the product value of B increases, the gap in the market share initially decreases 

(a1<25) but then increases again as A picks up waste for resale purposes (essentially 

A gradually transforms into a trader, processing no waste and profiteering by his 

position as a leader).  

 

Figure 4. Impact of circular economy choices made by the players, namely product types selected 

for valorization the market. 

Fig. 5 illustrates the impact of process technology costs. As expected, with an increase in 

the processing costs of A, the share of B in the primal market increases. Reversely, as the 

processing costs of B increase, both the market share of A and B decrease since the scope 

of A to use B as a subcontractor also decreases. 
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Figure 5. Impact of process technology costs on market share and interactions. 

5. Conclusions 

The paper applied a game theory in a extensive forms using a backward induction model 

(discrete decisions, complete information) as well as a bilevel optimization problem 

exploring similarities and differences with a conventional Stackelberg approach. The 

discrete decision model has revealed that, unless there is incentive to valorize waste, 

players are encouraged to bypass the law. Waste management can only be possible 

through full subsidies by the government. Contrary to the claims by Jin et al. [3] and more 

aligned to the conclusions of Salmon et al [4], subsidies are not providing incentives 

unless with a scope to install circular economy models. The bilevel optimization 

formulation has similarly revealed important differences that characterize circular 

economy and waste management problems from conventional market problems: (a) 

economics are reversed as feedstocks make profits instead of products; (b) competitors 

are naturally and fully entitled to cooperate (as one is encouraged to subcontract for 

another), and (c) the type of products produced and the technologies used could have a 

significant impact.   
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Abstract 

Our two-part paper investigates the current status and future trends and suggests a 

framework for teaching of Process Systems Engineering (PSE) topics that addresses what 

should be taught and how these topics should be taught effectively in a classroom setting. 

This first part concerns the “what” – i.e., which specific key PSE topics should constitute 

the core requirement of chemical engineering education – either a BSc, but in many cases, 

an MSc, and which application areas should be included. We surveyed existing courses 

on novel aspects of PSE applications, as well as polling PSE stakeholders to ascertain 

their opinion of what is taught and the degree to which graduates skills match their 

expectations. Existing gaps and interesting prospects have been revealed by the surveys 

leading to suggestions for the future.   

Keywords: PSE education, curriculum, active learning 

1. Rationale and Background of the Work 

Process Systems Engineering (PSE) is the branch of the chemical engineering 

discipline that exploits computational methods and tools for the analysis, design, control, 

optimization, and effective operation of processing systems, and the design of products, 

across different scales and dimensions. The field of Process Systems Engineering (PSE) 

in the context of Chemical Engineering (CE) has been active for more than 50 years. Prof. 

Roger Sargent, founder and pioneer of the PSE field, defined it in the mid-60’s as the 

development of systematic techniques for process modelling, design and control. 

Subsequently, a large number of academics and researchers have made significant 

developments and contributions to advance and expand PSE principles in many 

directions. Recently the interest in PSE education has increased with the development of 

comprehensive works, as described in Section 2.  
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Several inspiring works have been recently published that highlight prospects and 

critical points that need attention for the future of PSE education. Grossmann and  

Harjunkoski (2019) describe in detail the current status, discuss the future academic and 

industrial perspectives of PSE, and summarize the results of their survey on the standing 

of PSE in academia and industry. The authors also outlined critical issues such as the 

disconnect between academia and industry with regards to the appreciation of PSE and 

the role of stakeholders to disseminate the crucial role of PSE in the academic content 

and the profession of graduates. In a recent work, Pistikopoulos et al (2021) analyzed the 

needs of PSE for the next generation in terms of basic principles, research, practical 

implementation as well as education. Their work adopts a hierarchical model representing 

the education needs, starting from the core and proceeding to the outer layers. The authors 

consider the Circular Economy as the framework for future PSE expansion and 

developments. Cameron et al (2019) have expressed - possibly for the first time so clearly 

- the relevance of PSE to the so-called Grand Challenges that require holistic approaches. 

Their work provides the insight of PSE as an integrative discipline in chemical and 

process engineering. The authors suggest an integrated framework for the design of PSE 

curriculum, mainly aiming at the development of technical knowledge as well as the 

mindset to approach problems in the PSE way.  

This increased interest in educational needs for PSE highlights the need to match 

educational activities to a rapidly changing engineering world as well as the recognition 

of the impact PSE may have in all the great challenges in the years to come. In that respect, 

the present work should not be considered as just one more contribution. It supports the 

ideas in play and takes the discussion one step further. The methodology that has been 

followed in the present paper consist of: (a) a comprehensive survey of the actual topics 

and application areas covered in the courses taught in academia, and (b) an online survey 

that received responses from PSE stakeholders around the world (developers, researchers, 

and management) that map the education perceptions of PSE.  

2. Current Status and Contents in PSE Education  

This section surveys the PSE related modules being taught in some selected 

undergraduate and postgraduate courses in Europe, Asia, USA, and Canada. Clearly, 

there are Chemical and Biochemical Engineering courses with a strong presence of PSE 

related content without the presence of PSE modules as such. As pointed out by Cameron 

et al (2019), the presence, breadth and depth to which PSE is included in the curriculum 

of a Chemical and Biochemical Engineering program depends strongly on the number of 

faculty members with a background or research focus on PSE. Other relevant parameters 

may be the presence of a strong process industry, the attitude and focus of academics and 

industrials to cooperate (e.g. forms of industry – academia cooperation, e.g. in Imperial 

College), the recognition of PSE expansion in other strong areas such as the energy field 

(e.g. Texas A&M, USA), and the creation of, and local activity in, computer science and 

technology capacity. The modules present in almost all undergraduate Chemical and 

Biochemical Engineering undergraduate curricula that have PSE content are the 

ubiquitous courses covering integrated process design, process dynamics and control, and 

often courses in process modelling, simulation as well as in process optimization. While 

it has been widely recognized that process integration is key for the successful operation 

of chemical systems (Baldea and Harjunkoski, 2014), this aspect is still missing in most 

of the chemical engineering curriculums, i.e., offer courses that integrate fundamental 

PSE tasks such as process design, control, scheduling and planning strategies. 
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In a few universities, PSE focused postgraduate studies are also carried out in 

dedicated MSc Courses, also including research dissertations in the PSE field. These PSE 

dedicated MSc courses have started appearing in universities programs during the last 

decade, clearly revealing the strong interest in the field and its expansion in other areas. 

However, it should be emphasized that the relevant PSE education content in the key 

societal issues such as energy, environment, water, pharmaceuticals, water-energy-food-

environment nexus is often lagging behind the relevant focus of PSE research in these 

fields. A number of courses have also been found, mainly in MSc programs, such as big 

data methods and modelling in CE, supply chain planning and scheduling, process and 

energy integration, energy systems optimization and process intensification, knowledge 

based systems and AI, process safety and operations integrity, advanced environmental 

engineering; transition to a low carbon economy, modelling of biological systems, 

advanced bioprocess engineering, multivariate statistics in CE. These courses are found 

mainly in postgraduate courses since the capacity of undergraduate courses is usually 

limited to more basic subjects.  

3. Survey Content and Methodology 

As a complement to the review of actual teaching practice, we carried out an online 

survey to obtain the opinions from PSE stakeholders (developers, researchers, users) to 

map the education perceptions of PSE around the world. The survey asked the 

respondents to establish their position regarding the content of PSE education and its 

response to current and future needs. This questionnaire was termed the “WHAT” survey, 

delivered using Google Forms, and distributed via email links to the global PSE 

community. The second part of our contribution analyses the methods and tools (the 

HOW issues) to educate engineers more efficiently to respond to present and future needs 

(Lewin et al, 2022 The “WHAT” survey consisted of 16 questions and was organized into 

three main categories:  

A. Information about the responder (Q1-Q3 on the nature and size of business, 

geographic location, Q4 on how responder views PSE skills as critical) 

B. Questions relating to the responder’s position on aspects of the PSE and CE in 

general curriculum outcomes.  

C. Questions relating to how the respondents’ organizations use PSE methodology.  

To collect as many responses as possible, we reached out to the following 

communities: the EFCE CAPE Working Party members, EURECHA members, the 

Energy Section of the EFCE, the AIChE CAST Division, the CACHE Corporation, the 

master list used to promote PSE 2018, the Systems and Control Division from Canada 

and the Japanese PSE community. The total number of respondents was 142: 92 from 

academia and research and 50 from a wide range of industries (i.e., process industry, 

software development, and consulting companies). The respondent’s geographical 

distribution is: 40% Europe, 21% USA, 27% Asia, 10% Central and South America, 2% 

Australia/New Zealand. About 50% of the responses were from very large organizations 

(more than 5,000 employees, with a further 25% from large organizations (500-5,000).  

4. Survey Results 

The responses to the 16 questions establishing the positions of respondents in Parts A, 

B and C of the survey were distributed on a 5-point Likert scale, where 1 indicated strong 

disagreement, 3 indicated a neutral position and 5 indicates a strong agreement. Tables 1-

3 summarize the average and standard deviation of the received responses to the 16 

position questions.  
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Table 1. Statistics and response distributions of the received responses to the position questions of 

the “what” survey, Part A: Your position on the importance of PSE.  

Question Question statement Ave STD Histogram 

Q4 

To what extent do you consider 

PSE skills as useful in developing 

a career as a chemical engineer? 

4.42 0.62 

 
Not surprisingly, given the PSE-related organizations who were polled, 94% of the respondents 

considered PSE skills as either important or vitally important to developing a career in chemical 

engineering. Some respondents made comments related to the reliability of the results due to the 

very wide nature of questions. One comment is quoted due to its significance: “The students have 

high critical thinking, but it is not only due to PSE… We are very familiar here with ‘advanced’ tools and 
methods from PSE, but this area lost some way in some sense. Even with Optimization, Design and Cyber 

Physical Fusion, the real sense is very important. All computer aided design tools must be used with some 

discretion and engineering judgment on the part of the designer. This judgment mainly comes with 
experience. The art and practice of design cannot be learned from books. The intuition and judgment 

necessary to apply theory to practice will come only from practical experience.” (G. Towler) 

 

Table 2. Statistics and response distributions of the received responses to the position questions of 

the “what” survey, Part B: Your position on aspects of PSE curriculum outcomes.  

Question Question statement Ave STD Histogram 

How close to your expectations are the skills of freshly-graduated chemical engineers in the 

following areas: 

Q5 
Fundamentals of chemical 

engineering 
3.27 0.76 

 

Q6 
Practical engineering design 

capabilities 
2.79 0.78 

Q7 Critical thinking 2.95 0.87 

Q8 
Mastery of process analysis and 

synthesis software packages 
3.18 0.86 

Q9 Computer programming skills 2.77 0.90 

Q10 

Professional and personal skills 

(group work, presentation, 

writing) 

3.13 0.84 

The last question in this part of the survey refers to the impact of teaching innovations on skills  

Q11 

Do you see a positive effect of 

innovative teaching methods on 

the capabilities of freshly-

graduated chemical engineers? 

3.23 0.97 
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Table 3. Statistics and response distributions of the received responses to the  position questions 

of the “what” survey, Part C: How your organization uses PSE methodology.  

Question Question statement Ave STD Histogram 

To what extent is your industry/research involved in/using computation tools in:  

Q12 
Enhancing sustainability or 

addressing climate change 
3.39 1.25 

 

Q13 

Production planning, 

scheduling or supply chain 

management 

3.20 1.22 

Q14 Safety and risk management 2.87 1.17 

Perceived value of PSE 

Q15 
How do you value of PSE in 

driving business? 
3.52 1.03 

 

Q16 
Extent of in-house capability to 

conduct PSE projects 
3.72 1.09 

Q17 

Degree of in-house 

development or implementation 

of Industry 4.0 projects 

3.19 1.20 

Q19 

Would you consider bringing in 

experts from outside to address 

PSE-related questions? 

2.96 1.07 

5. Discussion of the results  

The responses to the specific questions are presented in Tables 1-3. One of the 

interesting issues of this part of the survey is that it has been answered by respondents 

from both academia and industry, and thus, are weighted averages from both 

communities. However, separate analysis for the two groups indicates that there is no 

significant difference between them. The responses from industry in general avoid 

extreme opinions (i.e., “not at all” and “very much”). Almost all the respondents (94%) 

believe that PSE is a key factor that contributes to the knowledge and capabilities of 

freshly graduated chemical engineers. The respondents certainly are PSE experts or with 

PSE knowledge and this affects the survey’s outcome. But the general opinion is that 

young graduates appear to be rather moderate in chemical engineering fundamentals, 

practical engineering knowledge, personal and professional skills, and particularly low in 

design, critical thinking, and programming skills. On the other hand, it is very clear from 

the respondents that they have been using PSE methods and tools to face climate change 

and sustainability issues but to a lesser extent, supply chain management and 

planning/scheduling problems. In general, PSE is considered very important for their 

activities, and they are much interested in hiring specialised graduates to accomplish the 

PSE related projects.  

The above results indicate serious issues not only for PSE related education but more 

generally for the ability and knowledge of graduates to understand the complexity of 

today’s industry and professional environment. Indeed, paraphrasing Pistikopoulos et al 

(2021), there is no chemical engineer that does not utilize PSE every day, everywhere. 

Therefore, PSE education needs to be totally integrated into the entire CE undergraduate 

curriculum to gain depth in different areas of application of chemical engineering and 

provide cases and expansion to all the relevant fields at a later stage. Courses in 

engineering computational tools, numerical methods, statistics and engineering 
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economics, essential in the PSE field, should be integrated to the engineering core of each 

curriculum.  

To perform successfully, the chemical engineer must be able to design, analyse, 

operate and control processes to produce useful and desirable products from less valuable 

raw materials in an efficient, economic, and socially responsible way. The integrated 

approach of PSE and its focus on modelling and systems thinking make a very important 

framework and it is not only a matter of separate modules but a way of thinking and a 

mindset that should be introduced straight from the beginning in the Chemical 

Engineering curriculum.   

6. Conclusions 

Our two-part contribution suggests a framework for academic activity in preparing 

the next generation of engineers and researchers to be better aligned with the needs of 

academic research, industry, and society. This first part presents surveys of current 

practice and the perceptions of practitioners in both academia and industry, concerning 

the appropriate content of PSE education that would provide prospects and professional 

advancement to graduates as well as significant added value to industry for the most 

sustainable solution of their crucial problems. Outcomes of the research and suggestions 

for the future include the encouragement of the PSE community to expand to fields related 

to novel challenges in classical problems such as sustainable supply chains or the societal 

issues of circular economy, water, food, energy engineering, where the PSE approach has 

a lot to offer, and PSE-specialised engineers will find new professional prospects. 

Following the principal conclusion of Part 2 of this contribution, which refers to active 

learning enabled by novel teaching methods, perhaps the time has come for educational 

modules to be developed to facilitate the introduction of these new areas into the PSE 

curriculum worldwide, for the benefit of both students and the PSE community.  

More work should follow on the investigation of the real PSE needs from the side of 

the demand and the users. It is believed that this will provide a much more complete 

insight where we should go. Furthermore, the accommodation of new PSE applications – 

expansion in the great social challenges will further enhance its role and contribution 

amongst industry and society in general.  
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Abstract 

Even though the COVID-19 pandemic forced all PSE instructors to move their 

teaching completely online, this has largely not changed most teaching practice, which 

has retained face-to-face lecturing as the main activity during contact between lecturers 

and students. This paper presents the case for shifting teaching to active learning by 

students, most effectively accomplished using the flipped classroom. With the advantages 

of adopting the flipping approach clear, one is left with two issues to resolve, both of 

which are the focus of the contributions of this paper: (a) how to effectively produce the 

necessary supporting materials (recorded lectures, online quizzes, and class activities), 

and (b) how to continuously foster engagement by the students. These contributions are 

supported by examples from the authors’ extensive experience of successful applications 

of active learning approaches relying on the flipped classroom in process design and 

process control courses. 
 

Keywords: PSE education, active learning, flipped class
. 

1. Introduction 

All topics taught under the PSE umbrella benefit from more time-on-task made 

available for students to learn by class discussion, experimentation, and cooperative 

solution of open-ended problems – basically by “getting their hands dirty” – as a key 

component of their own learning process. Courses taught using the conventional teacher-

centered, lecture-based approach have less time available for these crucial activities, and 

thus may achieve lower levels of learning outcomes. 

The flipped format moves the lecture material online, to be completed by students as 

homework. Thus, the main justification to move to flipped format is the desire to increase 

the proportion of the student-staff contact time in which students are actively learning, 

rather than just listening to lectures (Crouch and Mazur, 2001; Felder and Brent, 2015). 

This makes better use of the shared time between teacher and students, which has a huge 

impact on students’ engagement, as does aiming to maximize the degree to which students 

are participating actively with the teacher and with each other, rather than passively 

listening to lectures. There are many existing studies that provide quantitative evidence 

that active learning improves course outcomes (e.g., Freeman et al, 2014, Velegol et al, 

2015; Lewin and Barzilai, 2021). In an extended study involving secondary and post-

secondary education, van Allen et al. (2019) found that the flipped classroom has a small 

effect of learning outcomes, but uncertain effect of student satisfaction, noting that the 

results depend strongly on how flipping is implemented.  

Since the COVID-19 pandemic forced all teaching to move completely online, one 

would have thought that this would have motivated the transition to active methods in 

teaching. In fact, teaching pedagogy has largely not been affected by the potential of 
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technology, with much online teaching still teacher-centered, relying on synchronous 

lectures delivered over Zoom. Lewin et al. (2022) ran a survey that received 82 responses, 

mostly from veteran lecturers on PSE topics, which found that the main obstacles to 

change are the following: time taken away from  research activities (65%), lack of 

available institutional funding (46%),  and student dissatisfaction with new forms of 

teaching (32%). Teachers are clearly discouraged both by the significant investment of 

time and effort required to prepare quality online materials (prerecorded lectures and 

online exercises), and by the initial resistance of some students to active learning. Not 

surprisingly, there is reduced outcomes performances from the non-participants/non-

engagers;  Quantifiable lower outcomes are attained by students who engage less with the 

online materials and with class activity (Lewin, 2022). 

The paper next discusses the link between active learning and learning outcomes. 

Next, in Section 3, the components of the proposed flipped class approach are presented, 

as well as details of what is required from the point of view of the lecturers and the 

benefits for students, with a focus on guidelines for practice that works. Next, working 

experience is shared regarding evidence for the contribution of the proposed teaching 

methodology to learning outcomes (exam results), followed by conclusions.  

2. The Link Between Active Learning and Learning Outcomes 

PSE topics are challenging to teach and to master since they all address the three top 

tiers in Bloom’s Taxonomy (Bloom, 1956): analysis, synthesis, and evaluation. Ideally, a 

combination of examinations and group project assignments are the vehicles for teaching 

and assessing students’ knowledge and competencies in all PSE topics. The utilization of 

project outcomes for assessing individual assessment requires careful checking to ensure 

all team members are truly contributing. For example, most process design courses also 

include a competitive design project component, calling for a demonstration of team-

effort in addition to individual mastery. While both team and individual capabilities are 

important, examinations provide a reliable measure of the crucial mastery of individual 

students (Turton et al., 2013). Bloom (1968) postulated that the degree to which students 

achieve mastery depends on four conditions: 

1. Clear definition of what constitutes mastery. It is the responsibility of the course 

instructor to clearly state the learning objectives in a manner that defines 

precisely what students need to achieve to demonstrate mastery.  

2. Systematic, well-organized instruction focused on student needs. Our approach 

is based on pre-prepared, clear presentations of the course materials in which 

online lectures are composed of short video segments interspersed with practice 

activities, to enable students to actively control their initial acquisition of the 

basic materials. Then in the class meetings and active tutorials, students practice 

on more complex and advanced example exercises, first in cooperation with the 

course staff, and then on their own and with their peers. This sequence of actions 

leads to weekly cycles of systematic learning.  

3. Assistance for students when and where they experience difficulties. The active 

tutorials are the ideal vehicle to aid students when they need it most: the first 

time when they attempt to solve example problems for themselves. This 

increases the likelihood that mastery will be achieved in less time.  

4. Provision of sufficient time for students to achieve mastery. This implies the need 

to increase the time allotted to active tutorials at the expense of time expended 

in teacher-centered lectures and demonstrations. This is the reason for the shift 
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to switch lectures to online homework activities, which is the basis of the flipped 

classroom. 

Bloom (1968) reports the modes of learning that improve outcomes, with the most 

significant obtained by personal tutoring, which increases the degree of mastery as 

exhibited by exam grades up to two standard deviations higher than for students taught 

by a conventional lecture-based approach. Amongst other factors indicated by Bloom 

(1984) as having significant positive effects on achieving learning mastery, are positive 

reinforcement and praise from the instructors, student classroom participation and time 

on task. Bloom reports that all these factors improve results by approximately one 

standard deviation higher than achieved by conventional lecture-based instruction.  

The main justification to move to flipped format was the desire to increase the propor-

tion of the student-staff contact time in which students are actively learning rather than 

just listening to lectures. This format makes better use of shared time between teacher and 

students to significantly impact students’ engagement, as does aiming to maximize the 

degree to which students are participating actively with the teacher and with each other, 

rather than passively listening to lectures.  

3. Flipped-class Enabled Active Learning 

This section describes the three phases of the flipped approach, the demands on 

teachers who choose to adopt it in their courses, and the benefits to their students.  

3.1. The recommended flipped approach 

Three PSE topics, process design, process control and plant design, have been taught 

annually at the Technion using a three-phase flipped approach, the first of which since 

2015, and all three online since the COVID-19 pandemic struck. In this approach a 

weekly cycle consists of three steps:  

(a) Asynchronous assignments in which pre-recorded video lessons are completed 

in advance of the week's activity by students as homework. Moodle lessons 

(https://moodle.org) are used as a framework for these, with each lesson being 

composed of a series of questions in which short video segments of lecture 

material are embedded.  

(b) Synchronous class meetings, using Zoom or in F2F/hybrid sessions, in which 

students interact with the lecturer and with each other. Typically, these involve 

review of concepts from the online lesson, discussions generated by quiz 

questions, and open-ended problem solving.  

(c) Synchronous active tutorials, using Zoom, in which students solve example 

problems for themselves. These usually begin with a brief review by the teaching 

assistant followed by problem solving by students working separately or in 

groups, utilizing breakout rooms. Our experience is that active tutorials run in  

Zoom breakout rooms are more effective than tutorials in regular F2F settings. 

3.2. Requirements from the lecturer 

The flipped format implemented imposes significant effort on the part of the lecturer: 

(a) Online materials, namely, the prerecorded lectures involving 5-15 minute video 

segments and associated quiz questions need to be prepared, most effectively 

using a video editor such as Camtasia® (https://www.techsmith.com). Each 

course typically requires of the order of 100 of each, which constitutes a huge 

investment. However, this effort is only invested once: the author prepared the 

materials for the process design course in 2015, for the process control course in 

2017, and for the plant design course in 2020. No additional preparatory 

materials have been required for either course since then.  
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(b) The lecture time freed by moving lectures to online homework tasks for students 

to do on their own needs to be occupied by suitable activities. The main difficulty 

for many teachers, especially those who are used to just lecturing, is the required 

change in their mind-set, which shifts the contact time between lecturer and 

student from being teacher-centered to being student-centered. This means that 

class materials should be designed to support open-ended problem solving 

performed by the lecturer but stressing class participation, the use of pop-quizzes 

to generate class discussion on their solutions, and any other activity that will 

enhance students’ understanding. The development of these activities will take 

time to get right, and will likely evolve over time, as teachers become more 

accustomed to this mode of instruction. 

(c) The active tutorials could be as simple as just having students solve what used 

to be homework exercises working in teams in recitation time, or more involved 

and specially designed exercises. The main objective is to ensure that the 

students are doing most of the work for themselves. 

(d) It is important to continuously monitor the activity of each student, and follow-

up on those students who are less active. This task is facilitated by a myriad of 

tools that are available in learning support systems.1  

3.3. Benefits to the students 

Low-performing students typically do not significantly engage during the semester, 

leaving most of their effort for cramming just before final exams. This behavior is 

unlikely to achieve mastery of the taught materials. In each week of a course taught in 

flipped format, students need to prepare for class meeting and active tutorials by covering 

the pre-prepared materials ahead of time. They then benefit from participating effectively 

in the class meetings, by responding to the pop-quizzes, contributing to class discussion 

and brainstorming during the open-ended problem solving. Finally, they participate in 

active tutorials where they solve exercises for themselves, mentored by the course staff. 

This combination of activities increases the performance of the entire class, as will be 

described next.  

4. Class Experience with the Teaching Method 

As a teacher of process design for more than 20 years, I have taught using the full 

spectrum of possible approaches. This began with a traditional teacher-centered 

instruction, in which the course materials were transmitted via lectures and 

demonstration-recitations to my students, termed Phase I. The first transition was to active 

tutorials, where at least students were actively engaged in problem-solving for 

themselves, termed Phase II. The last major change, Phase III, was the move to the flipped 

classroom paradigm in 2015, which freed even more time for students to get to grips with 

the course material for themselves. I also teach process control and plant design, both of 

which are now also taught in the flipped format as previously described.  

As described in Lewin and Barzilai (2021), the outcomes achieved by the students of 

the process design course have incrementally improved over the last 15 years, as 

illustrated in Figure 1, which shows a bubble plot showing disks whose diameters are in 

proportion to the fraction of the high-performing students in each year’s class, p, centered 

on coordinates, whose ordinate and abscissa are the average grades of the high- and low-

 
1 For more implementation details about our flipped classrooms, see the YouTube video: 

https://www.youtube.com/watch?v=O3hoSlYaGo4&list=PLW3u28VuDAHIQHECm8Vq30_Et_

2chWFyO (13.5 min) 
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performing subsets of the class in each year, µ1 and µ2 respectively. These parameters are 

determined by fitting a bimodal distribution to actual exam grade distributions using the 

approach of Lewin (2021). Note that as µ1  µ2 by definition, all disks have to be centered 

under the dashed line µ1=µ2 indicated in Figure 1. The best performing classes would be 

those represented either by disks of any diameter in the top right of the plot (high average 

exam grades of both high- and low-performers, irrespective of their proportions), or lower 

on the right with large diameters (high average exam grade of high-performers, whose 

proportion dominates the population). Conversely, classes represented by disks on the left 

would be characterized by low average exam grades of the high-performers, and even 

lower average grades of the low-performers. As can be seen in Figure 1, in Phase I, the 

class disks, shown in black, are on the left. The transition to Phase II indicates a shift to 

the right, maintained after the transition to the flipped class in Phase III. 

 

Figure 1.  Bubble chart summarizing binomial distribution diagnosis (adapted from Lewin and 

Barzilai, 2021). The statistics for each year are centered on the µ1 – µ2 plane, with the 

disk diameter proportional to p. The disks are color-coded according to period: black – 

Phase I: 2005-2010 (before active tutorials), grey – Phase II: 2011-2013 (before 

flipping), white – Phase III: 2015-2020 (after flipping). The dashed line indicates µ1 = 

µ2. 

 
(a) (b) (c) 

 

Figure 2.  (a) 2021 Process control course outcome distribution for the entire class and separate 

distributions for (b) the 20 students that attended active tutorials the least and (c) the 20 

that attended the most, out of a total of 50 students examined. In the histograms, 

abscissae indicate numbers of students, plotted against exam grade bins. 
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What is the cause of the bimodal distribution present in all exam grade histograms? 

As discussed in Lewin (2021), these could be inherent heterogeneous capabilities of the 

students in the class, or the consequence of the degree of engagement in the course 

materials. Certainly, there is evidence for the link between engagement and final exam 

grades, as shown in the example data in Figure 2 in which the exam grade distribution in 

the final exam of the process control course in 2021 is shown in comparison with separate 

distributions – one for the 20 students that attended active tutorials the least, and other 

distribution for the 20 that attended the most. Note that whereas the average exam grade 

for the entire course was about 70.1%, the average grade of the 20 students that attended 

the most tutorials was 78.7%, while that for the 20 least attending students was 60.5% -- 

more than one standard deviation lower than that achieved by the most attending students. 

5. Conclusions 

This paper advocates a change in teaching practice of PSE – from teacher-centered to 

student-centered instruction. It is worthwhile to consider moving much of the teaching 

materials from the lecture room to an online setting and require students to cover these 

materials on their own in preparation for class and tutorial activities. The effort is 

worthwhile in the long run, as better-prepared students will learn more effectively with 

the instructors and TAs, especially if they are expected to take an active part in the 

problem-solving sessions in class. The paper has provided evidence of the outcome 

improvements that can be expected.  
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Abstract 

This study is the second part of a contribution addressing the appropriate content of 

process systems engineering (PSE) curriculum (the “what”) and how best it should be 

taught, so that our graduates are equipped to effectively apply their knowledge (the 

“how”). The two-part contribution presents the collective views and perceptions of the 

responders from all over the world to surveys as well as the collective view of the authors. 

This paper presents the “how” – how best to instruct our students in all matters PSE, given 

the availability of teaching technologies, and the time available to effectively train our 

students. 

   

Keywords: PSE education, curriculum, active learning. 

1. Introduction 

This two-part paper proposes a “game plan” for effective teaching of process systems 

engineering (PSE) topics that addresses what should be taught and how these topics 

should be taught effectively. We base our recommendations on: (a) A survey of the 

teaching methods used by professors teaching PSE concepts and tools in universities 

around the World (the “how”), and (b) Surveys of the actual topics and application areas 

covered in the courses taught in academia (the “what”). This second part concerns the 

“how” – the most effective methods that should be used to achieve learning objectives 

that enable graduates of the first degree in chemical engineering – either a Bachelor’s, but 

in many cases, a Master’s degree. In particular: 

• Students should be taught fundamental concepts in detail, ideally self-paced. This is 

achieved more efficiently using prerecorded materials. 
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• Students need to be exposed to computer programming packages ranging from those 

solving chemical process flowsheets to those specialized in data analysis, optimiza-

tion, and spreadsheets.  

• Students need to understand why some software or computer packages may not 

provide accurate answers in some instances. The fact that they run and converge to a 

solution does not necessarily mean that the solution is correct.  

• Students should become familiar with optimization tools earlier in their academic 

career, so that they can use them to solve practical problems in their senior years. 

• Students should apply multivariate statistical and artificial intelligence tools for 

solving real problems. 

• Students should be required to develop critical thinking skills, i.e., to question their 

solutions/methods and ask themselves if other (attractive) approaches could be used 

to tackle a particular problem.  

• Students should develop professional and personal skills such as teamwork, commu-

nication, project management. 

This study consists of a survey of teaching practices aimed to assess the degree to 

which active methods are used in practice, to understand their benefits, limitations, and 

potential reasons as to why they are not implemented, and to identify circumstances or 

the conditions under which these methods may be more effective. The two-part paper 

provides a working plan for academic activity in preparing the next generation of 

engineers and researchers to be better aligned with the needs of both academic research, 

industry, and society, without requiring additional time-on-task beyond that allocated 

currently for the coverage of PSE topics.  

2. Teaching PSE using Active Learning  

For students to attain mastery in the critical understanding and application of the PSE 

core materials, time needs to be allocated for them to experiment, get things wrong and 

understand why; thereby, repeating this process as many times as needed. Such student-

centered, active approaches to learning require time, which in a conventional teacher-

centered approach is often allocated to lecturing. Several methods have been advocated 

that free class time for students to engage in active learning such as project-based 

learning, blended teaching, and flipped class approaches. The flipped class paradigm, 

detailed by Lewin (2022), moves the transmission of basic information to online 

preparatory tasks, which students complete in advance of class activities. This freed class 

time enables the four key agile values to be incorporated into the class environment, i.e.,  

1. Student-centered flipping inherently focuses on the learner rather than following 

traditional teaching processes, which are teacher-centered.  

2. Student-staff contact time is mostly used to work problems cooperatively and for 

project work, rather than for the transmission of information.  

3. The contact time is largely reserved for collaborative work between staff and 

students and transforms the staff member to take on the role of mentor and motiva-

tor. 

4. Staff can respond to the feedback and needs of students.  

3. Method 

3.1. Design 

We used a survey to map the teaching perceptions of PSE academic teachers around 

the world. The survey asked the responders to establish their position regarding the 

application of active teaching methods, and then describe the extent to which active 
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methods are used in one of the courses taught by the responder. Moreover, the responders 

were asked to discuss how they see their teaching will evolve, and to define barriers to 

future evolution of their teaching approaches. This questionnaire was termed the “HOW” 

survey, delivered using Google Forms, and distributed to the global PSE community. 

3.2. Material 

The survey consisted of 26 questions organized into five main categories:  

A. Information about the responder (i.e., geographical location, teaching experience) 

B. Questions regarding the responder’s position on aspects of the PSE curriculum  

C. Questions regarding the responder’s position on how teaching should be carried out 

and, to the degree to which active learning should be applied.  

D. Questions regarding the responder’s teaching practice, and to what extent active 

learning is employed. 

E. Questions regarding the responder’s future adaptation of teaching methods.  

3.3. Participants 

To cover as many individuals as possible, we reached out to the following communi-

ties: the EURECHA members, the Energy Section of the EFCE, the AIChE CAST mail-

ing list, the CACHE mailing list, the master list used to promote PSE 2018, the Canadian 

Systems and Control Division mailing list, and the Japanese PSE community.  

3.4. Procedure 

On 15th October 2021, a request for feedback with a link to the survey was emailed to 

all potential responders on the mailing lists described above, with a reminder sent on 22nd 

October. We received 82 responses from academic lecturers from all over the world, with 

the following geographical distribution: 47.6% Europe, 20.7% North America, 15.9% 

Asia and 13.4% Central/South America. Most of the responders (83%) had more than 10 

years of experience teaching PSE courses, with an additional 10% having between 6 and 

10 years of experience. 

4. Analysis 

The responses to the 18 questions establishing the positions of responders in Parts B-E 

(see Section 3.2) were distributed on a 5-point Likert scale (1 indicates strong  disagree-

ment, 3 indicates a neutral position and 5 indicates strong agreement). Tables 1-4 sum-

marize the averages and standard deviations and presents histograms of the received 

responses to the position questions. 

Table 1. Statistics and response distributions of the received responses to the  position questions 

of the “how” survey, Part B: Your position on aspects of the PSE curriculum. 

Question Question statement Ave STD Histograms 

Q3 

Enrich  Courses should be enriched 

with external sources or guest 

lecturers 

4.17 0.83 

 

Q4 
Should offer courses using open 

access software  
3.94 0.93 

Q5 
Should offer courses on advanced 

statistics 
4.13 0.84 

Q6 
Should offer courses on AI and 

ML 
4.02 0.75 

Summary: There is general agreement about the need to enrich PSE courses using external 

sources (Q3), and to maintain curriculum up-to-date with regards to the usage of open-access 

software (Q4), and the introduction of courses in advanced statistics, artificial intelligence, and 

machine learning (Q5 and Q6). 
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Table 2. Statistics and response distributions of the received responses to the  position questions 

of the “how” survey, Part C: Your position on how should teaching be carried out in 

practice. 

Question Question statement Ave STD Histograms 

How course materials should be transmitted to students, and how best to utilize contact time 

Q7 

Classes should be organized so 

teachers mostly lecture, and 

students listen  

3.16 1.18 

 

Q8 

Lecture materials should be 

reviewed by students on their own 

as homework in preparation for 

class activity 

3.52 1.00 

Q9 

Most of the contact time between 

teachers and students should be 

used  for student activity 

3.56 1.03 

The responses indicate ambivalence regarding face-to-face lecturing as the main transmission 

vehicle (Q7). There is slightly more support for moving materials online for students to cover 

on their own (Q8) and for class time to be used more for student activity (Q9). However, it is 

fair to indicate that this support was not overwhelming.  
How should most of recitation time be best utilized? 

Q10 
Instructors demonstrating solutions 

and students listening 
2.68 1.01 

 
Q11 

Students solving problem sets with 

staff providing hints/motivating 
4.04 0.80 

If responses are consistent, the two questions should have response distributions that are mirror 

images. The responses to Q10 are bimodally distributed, with more disagreement than agree-

ment – more responders do not approve of student passivity, but clearly many are comfortable 

with it. Moreover, Q11 indicates that there is strong support of student activity in recitations. 

However, the distributions are clearly not inversed, as they should be for consistency.  
How should PSE course outcomes be assessed? 

Q12 
Include a significant portion of 

project-based learning (teamwork) 
4.35 0.62 

 

Q13 
Students should do individually 

graded homework exercises  
3.79 0.96 

Q14 
Using one or more exams involv-

ing open-ended problem solving 
3.51 0.89 

The need for project-based assessment (Q12) received strongly positive response. There were 

mixed feelings about the other two issues – while there is a slightly positive position regarding 

the need to check individual students’ formative abilities by grading homework (Q13), the 

position does not have overwhelming support. The support for summative assessment (exams, 

Q14) is moderate. The main issue is which kind of formative/summative assessment methods 

are the most appropriate given students’ time limitations. What proportion of assessment should 

be team or individual is crucial. That is likely to be more significant than the methods. 
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Table 3. Statistics and response distributions of the received responses to the  position questions 

of the “how” survey, Part D: How do you teach? 

Question Question statement Ave STD Histograms 

Q16 Graduate (G) or undergraduate (UG) course: 28% UG, 53% Combined, 19% G 

Q17 
Subject taught: 48.5% Process design,  33.3% Process control, 15.2% Optimiza-

tion, 3% Numerical methods 

Q18 Class size: : 8.6% <10,  58% 10-50, 25.9% 51-100, 7.4% >100 

Slightly more than half of the responders teach mixed classes of graduate and undergraduate 

students, with 28% teaching only undergraduates and 19% teaching only graduates. Most 

responders are teaching either process design (49%) or process control (33%). Most class sizes 

are either medium-sized with 10-50 students  (58%) or large with 51-100 students (26%). 
The following questions were directed at the type and mode of learning environment that exists 

in the responders’ institution.  

Q19 
Student-centered (>50%  of 

contact time is student activity). 
3.16 1.10 

 

Q20 

Teacher-centered (>50% of 

contact time, students are listen-

ing to me). 

3.02 1.06 

Q21 
Students are required to work 

independently and not in groups. 
2.74 1.07 

Q22 
Student activities are included 

into the lectures and recitations. 
3.70 1.02 

The responses to Q19 and Q20 regarding how responders run their lectures are very similar and 

are both bimodally distributed. The responses are almost split 50/50 between those who teach in 

the traditional teacher-centered method (teacher talks – students listen) and those who apply 

student-centered, active learning in their classes. More detailed analysis indicates that much of 

the support for student-centered activity was by teachers of process design, and independent of 

the class size. Q21 discloses the responders’ views on the need for students to work inde-

pendently rather than in groups. The majority of the responders disagree with this statement, 

indicating there is some application of group effort in many of the responders’ courses. However, 

many of them (27%) still consider it important for students to spend time working problems on 

their own. Q22 discloses the responders’ choice to include student activities into lectures and 

recitations. The responses to this question are somewhat in conflict with the responses to Q19 

and Q20. On the one hand, about 50% of the responders adopt teacher-centered classes, yet here 

there appears to be more than 50% support for student-centered class activities. Perhaps the 

question was poorly posed as it refers both to lectures and recitations. 

Table 4. Statistics and response distributions of the received responses to the  position questions 

of the “how” survey, Part E: Your position on adaptation of teaching methods. 

Question Question statement Ave STD Histograms 

Q23 
I regularly investigate the engi-

neering education literature 3.63 0.94 

 
Q24 

It is important that I increase my 

use of real-world situations  4.12 0.87 

The surprising response to Q23 indicates relative support for keeping in touch with state-of-

the-art engineering education literature, while Q24 indicates strong support for increasing use 

of real-world situations in the classroom. 

Q25 

Most important barriers for 

me to innovate in my 

teaching role 

65% Time taken away from research activities 

46% Lack of available institutional funding 

32% Student dissatisfaction with new methods 
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5. Responder Opinions Summarized and Conclusions 

Lecturers are ambivalent concerning whether teacher-centered instruction is appropriate 

(Q7) but tend to support the idea of students reviewing materials to prepare for class (Q8) 

as well as the use of contact time to enable student activity (Q9). Regarding recitations, 

the responders largely disagreed that staff should run them in demonstration mode (Q10), 

and strongly supported the idea of active tutorials, where students do the problem-solving 

themselves (Q11). Regarding outcomes assessment, there was high agreement that 

project-based learning (PBL) should be employed (Q12), agreement that individually 

graded homework should be assigned (Q13), and that open-ended exams should be used 

for formative assessment (Q14). Note that requiring both preparation before classes, as 

well as individual homework and project work may overload students, and this needs to 

be considered. When it comes to their own teaching practice in lectures, the responders 

were more ambivalent, with responses almost evenly split between those taking teacher- 

and student-centered approaches (Q19 and Q20). Regarding student activities, there are 

more instances of group work than individual work (Q21), and a majority of the respond-

ents include student activities in lectures and recitations (Q22). Furthermore, the respond-

ers indicated that a majority regularly update their teaching materials (Q23), and a large 

majority indicated the importance of using real-world situations in their teaching, which 

links to the importance of PBL indicated by Q12. Finally in addition,  the main obstacles 

to teaching innovation (Q24) are identified as the lack of time (65%), followed by the 

lack of institutional support (46%), but it also appears that not all students are welcoming 

innovative teaching methods (32%). In addition to the above, the survey also included 

two questions (Q15 and Q26) giving responders the opportunity to make general remarks. 

Because of space limitations, these are not being addressed in this paper, but will be sum-

marized in the full version, as will summaries of interviews with leading members of the 

worldwide PSE community.  

The survey disclosed that there is a gap between the technological capabilities that 

can be harnessed to the teaching of PSE and practice for many of the responders, most of 

whom see this as a burden since research time is sacrificed to perform this activity. Per-

haps additional incentives are required to promote the move to more active teaching. In 

conclusion, the objectives of our studies are to provide information and suggestions to 

improve learning outcomes (i.e., the “what”) but also their efficient transmission to 

students (i.e., the “how”). The process systems engineering community needs to openly 

share best practices and resources, otherwise we will be back talking on this subject in 5- 

or 10-years' time (Cameron and Lewin, 2009, Cameron et al., 2019, Kiss and Grievink, 

2020). 
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Abstract 

The recent pandemic events have significantly affected people and institutions 

worldwide. Multiple issues and difficulties arise, with an increasing number of 

challenges. In this work, we address the impact of pandemic events on educational 

resilience, and we provide guidelines for addressing such concerns by using a structured 

framework assisted by data-driven and decision-making capabilities. The educational 

resilience framework is comprised of five steps: data collection, data analysis, gaps 

formulation, solution development, and implementation planning. First, a data-driven 

strategy collects data from the internet, literature, surveys, and previous knowledge. 

Second, analyses are carried out to draw patterns and insights that can serve as 

indicatives of potential improvements. Third, the most critical gaps are analysed and 

classified according to a cost-effectiveness criterion. Fourth, guidance is provided to 

handle these gaps, whereby proper solutions are developed considering the availability 

of resources (time, effort, money) and outcomes (benefits, accomplishments, profit). 

Finally, a deployment plan is built using the structured solution. From the proposed 

guidelines, educational resilience improvements can be achieved for people, academia, 

industry, and society, in a wide variety of problems and applications and with multiple 

significant benefits. The results and conclusions derived from this work illustrate how a 

decision-making framework can be effectively and interestingly employed towards 

easier and more efficient educational strategies, methodologies, and policies. 

Keywords: Educational resilience, Education in PSE, Learning capabilities, Decision-

making framework, Modelling and optimisation, Pandemic events, COVID
-
19

. 

1. Introduction 

Resilience can be understood as the potential of adaptation, or the ability to maintain or 

regain healthy status when experiencing adversity (Herman et al., 2011). Within a 

community, resilience measures the ability of responding to and recovering from 

adverse situations. This allows adaptation and growth after disaster strikes (Magis, 

2010). In this work, we address the topic of educational resilience, defined as the 

likelihood of success in the educational life accomplishments, despite environmental 

adversities brought by traits, conditions, experiences, and unforeseen events (Waxman 

et al., 2003). This concept focuses on dynamic variables such as motivation, smart-work 

(rather than just hard-work), and learning environment (McMillan and Reed, 1994). 

The literature on the topic of educational resilience has been extensively addressed 

(Downey, 2008; Torsney and Symonds, 2019), but only a few works have focused on 
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scenarios of crisis (Annarumma et al., 2020; Zamfir, 2020; Naidu, 2021) such as the 

COVID-19 pandemic that has affected the society worldwide. This is a novel topic that 

has emerged due to the current pandemic scenario and which presents several gaps that 

require attention. Tackling these gaps represent multiple potential opportunities towards 

more efficient educational resilience, with several benefits towards real-life educational 

applications.  

This work aims to introduce a decision-making framework to systematically address 

important and impactful educational gaps derived (or augmented) from times of crisis 

and to provide guidance towards implementing computational-aided decision-making 

(e.g., modelling, simulation, optimisation) to achieve enhanced educational resilience. 

Such decision-making tools have increasingly assisted a wide variety of applications in 

multidisciplinary areas and provide proper capabilities for improved solutions (Franzoi 

et al., 2021). The foundation of the proposed framework is twofold and relies on data-

driven and solution-driven concepts. Reliable and representative data are required to 

allow proper analyses, which can be done based on previous knowledge on the topic, 

literature review, further research, surveys with students, researchers, faculty, workers, 

etc. Moreover, the development of an efficient educational framework is closely related 

to solution-driven objectives, which relies on data gathering, data-driven analyses, 

identification of educational gaps, development of solutions, and implementation of 

deployment plans required for an enhanced educational system. 

This paper is structured as follows. Section 2 discusses educational resilience, including 

the main drivers, resources, and beneficiaries. Section 3 presents the proposed 

educational resilience framework. Section 4 provides an illustrative example. Section 5 

highlights the main findings and future guidelines derived from this work. 

2. Educational resilience 

Educational resilience concerns a wide variety of gaps, issues, and improvements 

required towards a more efficient educational system. Its importance is significantly 

augmented in times of crisis, with increased difficulties and new challenges. Under the 

presence of unforeseen pandemic events, which have recently caused significant 

impacts worldwide, the general concept of resilience becomes particularly important. In 

this section, we present the: a) main drivers that affect educational resilience of 

individuals, organisations, and communities; b) resources required for improved 

resilience; and c) beneficiaries and benefits from a more resilient educational system. 

2.1. Main drivers 

There are three important drivers that significantly impact educational resilience: 

investments, learning capabilities, and collective intelligence. 

1. Investments are typically funded by the government or partnerships between 

universities and companies. They concern project and research grants, 

scholarships, infrastructure, resources, tools, software, etc. 

2. Learning capabilities can be described as the mechanisms and management 

structures that can be implemented to promote better learning environments (Goh 

et al., 2012). Examples of learning skills include organisational, communication, 

collaboration, critical-thinking, and creative skills. 
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3. Collective intelligence arises from a group of individuals acting intelligently 

towards collective goals, such as in collaborations between postgraduate students 

(Menezes et al., 2021). 

The concepts and some key foundations of those drivers are illustrated in Figure 1. 

 

Figure 1: Educational resilience drivers. 

2.2. Required resources 

Three resources are fundamental to properly improve the educational system. The first 

are the data to be collected mostly through research and surveys, which provide insights 

on the most critical educational issues derived from the pandemic, either qualitative 

(i.e., according to peoples’ opinions) or quantitative (i.e., numerical data and statistical 

analyses). The second is the effort needed to analyse data, define gaps, propose efficient 

solutions, and draw implementation plans. The third concerns the capabilities required 

for implementing the deployment plan (e.g., investments, time, effort).   

2.3. Beneficiaries 

Improved educational resilience provides benefits for recipients (students, researchers, 

faculty, staff), academia (schools, research centers, laboratories, universities), industry 

(companies), and society (people, public system, government), as shown in Table 1. 

Table 1: Drivers and outcomes, beneficiaries, and benefits. 

Drivers and Outcomes 
Direct 

Beneficiaries 
Benefits 

Investments: grants, 

scholarships 

People and 

academia 

Resources for studying and developing 

research, which can be applied for industrial 

and public sector applications. 

Investments: software, 

resources, infrastructure 
People 

Resources for developing high-quality 

research, which also benefits universities. 

Learning capabilities: 

training and skills 
People 

Better efficiency and accomplishments 

(also extend to universities). 

Learning capabilities: 

better supervising 
People 

Improved performance, enhanced learning 

efficiency, and higher accomplishments. 

Collective intelligence: 

academia-industry 

synergies/collaborations 

Academia and 

industry 

Development of industrial-driven research, 

scholarships, better environment. 

Collective intelligence: 

research collaborations 
People 

Exchange knowledge (full-time researchers) 

and experience (part-time researchers). 
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3. Educational resilience framework 

The educational resilience framework proposed herein is expected to identify the 

potential gaps that lead to (or augment) educational crisis, and to guide the 

implementation of efficient solutions seeking enhanced educational resilience. This 

provides assistance in understanding the importance of the education system, especially 

under pandemic events that bring many difficulties and impose restrictions worldwide 

(e.g., remote access, distance learning, educational limitations). Figure 2 illustrates the 

proposed educational resilience framework. 

The framework is comprised of five steps: data collection, data analysis, gaps 

formulation, solution development, and implementation planning. This data-driven 

approach employs distinct sources of data: a) surveys to be carried out with students, 

researchers, faculty, and workers; b) previous knowledge from the research team to 

provide practical examples where educational gaps exist; c) literature review aiming to 

collect useful information and data related to the topic; and d) search for recent news 

and information from reliable sources that indicate real scenarios and examples of 

impactful educational issues. Multiple procedures and analyses may be carried out on 

the collected data, including aggregating data to provide quantitative information, 

drawing insights, performing statistical analyses, and verifying whether the data are 

accurate and sufficient for the purpose of the research. Then, educational gaps are 

identified and classified according to a cost-effectiveness criterion, whereby listing for 

each gap their respective pros and cons, risks and probabilities of success, and expected 

outcomes. Decision-making capabilities, which may include any simulation- or 

optimisation-based tools, are employed for properly tackling the gaps. This is 

fundamental to manage the resources available to be used, and to consider potential 

issues, risks, and damages that may jeopardise the feasibility and success rate in the 

implementation phase. Finally, a deployment plan is carefully developed to guide the 

solution implementation. An efficient implementation is mandatory and can be 

performed through a structured and organised plan, whereby avoiding delays and 

minimising risks. 

The objective of the proposed framework is to assist in identifying the most impactful 

educational gaps and leveraging the capabilities required for enhanced educational 

resilience. Such measures target people, academia, industry, and government, and 

concern the implementation of strategies such as public sector investments, assistance to 

people for easier and better adaptation against pandemic events, incentives for 

companies and universities to build partnerships, etc. From the guidelines provided by 

such a framework, decision-making based on mathematical modelling, simulation, and 

optimisation approaches can provide proper capabilities for achieving improved 

educational resilience, whereby solutions can be implemented in the real-life 

environment according to requirements, restrictions, and limitations (e.g., availability of 

people and resources, investments). To illustrate the foundation of such educational 

resilience framework, we provide an illustrative example that follows the sequence of 

steps shown in Figure 2. 
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Figure 2: Educational resilience framework.

4. Illustrative example

It is known that the recent pandemic events have introduced several difficulties in the 

management of classes and resources of schools. Thus, a survey is launched for high 

school teachers over a significant number of public schools to collect information on the 

gaps, challenges, and improvements needed in the current educational system. The data 

gathered is analysed, whereby major gaps are found regarding the availability of 

materials and resources for laboratory classes (e.g., chemical/physics experimental 

classes). Those classes have to be in-person to provide a proper experience for the 

students, but the pandemic restrictions impose reduced classroom occupancy. Then, the 

laboratory classrooms are divided into multiple sub-groups, which leads to additional 

requirements of personnel and materials for carrying out the experiments, and hence, an 

overload of the system with consequent lack of resources. This includes achieving better 

allocation and distribution of resources to public schools to optimise such educational 

requirements. To properly address this concern, modelling and optimisation decision-

making is employed, whereby building a mathematical model that represents the 

problem and utilising an optimisation algorithm to find an optimal solution to be 

implemented in the system. This would provide proper capabilities for systematically 

identifying and addressing the current and challenging educational needs.
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5. Remarks and future guidelines 

This work provides guidance for effectively addressing educational gaps through the 

development of an educational resilience framework assisted by decision-making 

capabilities. Guidelines are provided in a structured fashion which segments the 

methodology into five steps, namely, data collection, data analysis, gaps formulation, 

solution development, and implementation planning. They include identifying the most 

impactful educational gaps in times of crisis, developing solution methods and 

strategies that are appropriate and effective for each scenario, and providing practical 

guidance towards implementing these solutions to mitigate educational gaps. 

The framework proposed herein is expected to: a) identify representative and impactful 

educational gaps and issues, which are insights drawn from the data gathered; b) 

provide cost-effectiveness or other similar analyses to systematically establish a 

criterion considering the importance to handle each gap, the cost and effort required, 

and the potential outcomes; and c) highlight quick and efficient methods, approaches, 

and solutions to be employed in the implementation steps.   

From the proposed guidelines, educational resilience improvements can be achieved for 

multiple beneficiaries in a wide variety of problems and applications, and with multiple 

advantages, including better allocation of personnel, materials, and resources; improved 

teaching/learning; proper capabilities for the learning/development of students, teachers, 

and staff; more efficient investments from the government (e.g., allocation of financial 

resources for training, teaching, materials, infrastructure), enhanced resilience of the 

education system, among others. The results and conclusions derived from this work 

illustrate a decision-making framework can be effectively and interestingly employed 

towards easier and more efficient educational strategies, methodologies, and policies. 
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Abstract 

The current pandemic has blatantly affected teaching at all levels. Specifically, in 

Portugal, for STEM (Science, Technology, Engineering and Mathematics) students 

attending Universities and taking high learning degrees, it was particularly harsh. Most 

mandatory courses implied attendance to science laboratory or computational lab lessons 

that had to be postponed to after lockdown times, rescheduled to late night hours, or 

simply converted into videoconference sessions. Teachers and researchers had to be very 

creative and resourceful to keep their students interested and invested in their courses in 

spite of the disturbing and abnormal situations caused by the pandemic. 

Operational Research, Simulation, and Actuarial and Financial Mathematics courses were 

mostly converted to online versions with videoconference lectures supported by e-

learning platforms. The courses’ heavy usage of computational resources and the physical 

characteristics of the majority of existing computer labs prevented the possibility of face-

to-face classes due to social distancing even after the end of the several lockdowns. 

Unfortunately, online versions of these very hands-on courses revealed to be really bland 

and having a low appealing to students, leading to pupils’ increasingly dropping out of 

courses and even quitting their attendance for that particular semester. 

 

In this work the authors will present the adaptations that they decided to implement on 

their courses during three long semesters to make the teaching and learning experiences 

engaging, interesting and effective and the assessment activities reliable and efficient. 

Lectures being recorded (previously or live), small group assignments during classes, the 

use of a professional video-conferencing software, each course having its Moodle page 

are some of the experimented adaptations, among others. The main goal was to meliorate 

and even to cease students’ drop-outs. This work will explore the experiments and good 

practices that worked and the ones that did not correspond to the expected outcomes. 

Additionally, some framing will be made concerning how Portuguese Government and 

the authors’ teaching institution have supported these experiments and good practices. 

Some comparisons between the students’ performances from the affected semesters and 

from previous years will also be presented. 

 

Keywords: Virtual Education, Teaching Practices, Pandemics, Active Learning, Peer 

Instruction 

 

1711

http://dx.doi.org/10.1016/B978-0-323-95879-0.50282-4 



 N. Chibeles-Martins et al. 

1. Introduction 

FCT NOVA (NOVA School of Sciences and Technology) is one of the most important 

and renowned Sciences and Engineering schools in Portugal. It offers doctorate, master 

and bachelor degrees in Mathematics, Computer Sciences, Physics, Chemistry, Industrial 

Management, Geology, Environmental Sciences, Material Sciences, among others. All 

offered degree programmes are accredited by the national agency for assessment and 

accreditation of higher education and all Engineering programmes have the EUR-ACE 

certification. Around 8,000 students, 400 professors, 1,000 researchers and 200 staff 

(NOVA School of Sciences and Technology, 2021) study, work and live in its campus 

making it larger than several Portuguese villages. The current CoViD19 pandemic had a 

tremendous impact in this academic community like it happened across the Globe, 

slowing down research and teaching activities, leading to students dropping out of their 

hard earned higher learning opportunities. 
 

From March, 2019 to June, 2020, FCT NOVA lived through total and partial lockdowns. 

Regular classes were converted into remote versions, whenever possible, affecting the 

lives of thousands of students and hundreds of teachers. The authors were the Coordinator 

Professors of a total of nine different courses offered to Mathematics and Engineering 

degrees’ students. Almost 300 students attended to their courses during the mentioned 

period. Table 1 lists those courses and some of its characteristics. 

 
Table 1 - List of Courses 

Course Year # students Type Level 

Decision Sciences 2020/21 2 Mandatory Doctor. 

Decision and Risk 2019/20 9 
Optional Master 

Decision and Risk 2020/21 9 

Financial Mathematics 2019/20 77 
Optional Bach. 

Financial Mathematics 2020/21 75 

Introduction to OR1 2020/21 42 Mandatory Bach. 

Non-Life Insurance 2019/20 17 
Mandatory  Master 

Non-Life Insurance 2020/21 17 

RM2 Non-Life Insurance 2020/21 11 Mandatory Master 

Simulation techniques in RM2 2020/21 14 Mandatory Bach. 

Simulation 2020/21 16 Mandatory Master 

Social Security and Pension Funds 2020/21 11 Optional Master 

 

Decision Sciences is a mandatory course for students attending the doctorate degree in 

Mathematics – Operational Research. Decision and Risk is offered to the Master in 

Analysis and Engineering of Big Data Programme. Financial Mathematics is an optional 

but transversal course available to every FCT NOVA Bachelor students. Introduction to 

Operational Research is a mandatory course in both Mathematics and Risk Management 

Applied Mathematics degrees. The course “Simulation techniques in Risk Management” 

was new and the class of 2020/21 was the first one attending it. The remaining courses 

are offered to students attending the Applied Mathematics Master Programme. 

 

                                                           
1 Operational Research 
2 RM - Risk Management  
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In the following the authors will address the various pedagogical approaches 

implemented on the listed courses. 
 

2. What was tried 

During the three mentioned semesters classes were held remotely through a 

videoconference platform. The authors had to adequate the courses’ documents and other 

pedagogical materials to this format. Additionally several approaches were implemented 

in order to keep the students interested and invested. Namely: 
 

(1) Lectures were recorded live and the recordings were later made available to 

students; 

(2) Lectures were previously recorded and the recordings were available to 

students before the corresponding remote session; 

(3) Course was supported by a MOODLE3 course page; 

(4) The usual midterm tests were replaced by several smaller and more focused 

tests during class time; 

(5) Group assignments solved not only during classes but also as homework; 

(6) Students studied some small part of the course syllabus, or solved a more 

complex problem, and prepared and presented a lecture about it, individually 

or in group; 

(7) Students rated their peers’ works; 

(8) Students were offered additional non-mandatory tasks that could be used to 

improve their final grade up to a limiting threshold; 

(9) Collections of solved exercises were made available before or after the 

corresponding classes. Although this was already a common practice during 

this period it was expanded. More exercises and with a higher variety were 

added to the collections and it was implemented in more courses. 
 

Table 2 presents which of the listed approaches/techniques were used in each course.  

Table 2 - Pedagogical approaches 

Course Years (1) (2) (3) (4) (5) (6) (7) (8) (9) 

Decision Sciences 2020/21     X X    

Decision and Risk 2019/21 X  X      X 

Financial Mathematics 2019/21  X X      X 

Introduction to OR 2020/21 X  X X    X X 

Non-Life Insurance 2019/21   X  X    X 

RM in Non-Life 

Insurance 
2020/21   X  X X    

Simulation tech. in RM 2020/21 X  X X X X X X X 

Simulation 2020/21   X  X X   X 

Social Security and 

Pension Funds 
2019/20   X  X     

 
                                                           
3 MOODLE is the acronym to Modular Object-Oriented Dynamic Learning Environment. It is a 

digital learning platform designed to provide an integrated, secure and highly flexible system for 

teachers, educators and students. (The Moodle Project, 2021). Often used by schools and 

universities as an e-learning platform. 
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A typical lesson included some lecturing time where the teacher presented the important 

theme concepts, deduced the relevant formulae and demonstrated the fundamental 

theoretical results using digital slides and/or writing on shared digital white boards. Later 

the teacher would explore practical examples supported by specific digital applications 

like spread sheets, Geometry software and an adequate programming language. 

 

Afterwards the class would be split into smaller groups and would go into separated 

videoconference “rooms” and would tackle with simple but consecutively more complex 

problems and practical case studies on their own under the supervision of the teacher. 

The lesson ended with the day’s theme being wrapped up with the problems solving or, 

at least, a possible resolution for the case study and the results’ discussion. The main goal 

was to emulate a face-to-face experience as close as possible using the videoconference 

platform and some additional digital means. 

 

3. Some results and comments 

At FCT NOVA, at the end of each semester students are obliged to fill an on-line 

anonymous questionnaire addressing the course and any out of the ordinary happenstance 

occurring during the semester. Additionally, the Coordinator Professor elaborates a report 

with his/hers perspectives about the course, discussing the students’ performances and 

commenting the students’ answers to the questionnaire.  

 

This section presents the overall feeling of the authors concerning the implemented 

measures form the students’ point of view based on the information collected from the 

semester report of each course. No serious statistic treatment was made with that 

information and therefore no numbers will be presented. 

 

3.1. Lectures’ recordings. 

They were generally well received although were mostly used by students who missed 

some of the videoconference sessions. Some students also declared they reviewed the 

recordings if they were unsure of having fully understood some concept or explanation. 

Nevertheless, more timid students avoided asking questions knowing they were being 

recorded in spite of the guarantee that students’ identities were excluded from the 

recording. Live recordings were usually more messy and chaotic than previously recorded 

lectures but also realer because they included students’ questions during the lecture. 

Currently, even after classes went back to the classrooms and computational labs some 

of these last year’s recordings are still offered as additional studying material. 

 

3.2. MOODLE 

This was a no-brainer. Teaching this courses during lockdown without it or a similar 

platform would not be reasonably possible. The authors kept using it in all the courses 

they coordinate. 

 

3.3. More evaluation moments 

Students really enjoy them. Having short term objectives helped keeping them focused. 

Nevertheless this situation can easily become a heavy burden for the teachers. In the 

current school year, the courses referred in Table 2 keep using a diverse and more frequent 
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evaluation schedule although with some adaptations due to the lighten of the social 

distancing measures. 
 

3.4. Group assignments 

The general consensus is that they work really well even remotely. The current video and 

sound equipment present in most home computers and internet connections make it totally 

possible for students to follow their peers even from their bedrooms. Unfortunately, it can 

become a tricky situation when a student does not have a healthy family environment. 

Additionally, still not every family in Portugal has a good access to internet, particularly 

in rural areas. 

Another issue arose when the groups were randomly assigned. Some students refused to 

work with colleagues they did not know. And simply turned off their microphones and 

cameras and worked alone for the rest of the session. In the current year group 

assignments are still a part of the courses evaluations.  

 

3.5. Autonomous work with oral presentations 

This was a hit or miss. When a student did a good job it was exciting to follow and 

motivating for the rest of the class. And the students enjoy it tremendously and praised it 

in the report. But when a student was shy, did not feel comfortable speaking in public or 

had some difficulties dealing with the videoconferencing technical issues the presentation 

could become a difficult situation to correct in the heat of the moment, a lost learning 

opportunity and very penalizing for the involved students. Currently, some of the courses 

mentioned in Table 2 still have some oral evaluation moment but with some teachers 

safeguard measures to ensure a higher evaluation equity. 

 

3.6. Students marking their peers’ work 

It was a partial success. Some students really enjoyed it and discovered they would learn 

immensely from marking their colleagues’ works. They became more aware of what was 

the teachers’ expectations and therefore managed to achieve better results in the following 

tests. Other students never took it seriously. Additionally this kind of activities demand a 

tight control from the teacher otherwise it can lead to personal vendettas with a group of 

less mature students. This measure was kept for the current year. 

 

3.7. Extra tasks for extra grade 

As the previous measure, this was a partial success. The majority of students praised it 

and tried to execute those extra tasks as much as they could. Other students mentioned 

schedule issues and work overload and not even tried. Nevertheless, most students 

complained that the reward was sometimes too low for the extra work.  

 

3.8. Collection of solved exercises. 

This come to stay. The collections are already made. It is just a matter of adding more 

every other year.  

 

From the authors’ point of view all these implemented measures ensured that students 

had a good learning experience during the worse part of the pandemic. Not everything 

had the expected outcome but the general result is positive. Table 3 compares the average 

students’ grades, in the [0 – 20] scale used in Portugal, where a 10 is needed for a student 

to successfully conclude a course. The grades in bold type and shaded in grey correspond 
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to the pandemic period. The excluded averages correspond to school years when the 

course was not being coordinated by one of the authors. 

 

Table 3 - Average Grades 

Course 
Average Grades 

2016/17 2017/18 2018/19 2019/20 2020/21 

Decision Sciences - - 17.0 - 19.0 

Decision and Risk  - - 13.5 16.2 14.2 

Financial Mathematics 14.9 - 14.8 13.1 14.6 

Introduction to OR - - 16.1 15.8 16.9 

Non-Life Insurance - 13.8 13.9 14.0 15.5 

RM in Non-Life Insurance 16.6 15.0 14.5 14.2 17.5 

Simulation tech. in RM - - - - 16.3 

Simulation 14.5 14.0 - 15.8 16.1 

Social Security and Pension 

Funds 
13.8 14.8 - 16.0 15.2 

 

As can been seen, the grades did not suffer much during the lockdowns. On the contrary, 

in some courses an obvious improvement was noticed. And that lead to the maintenance 

of some of the aforementioned measures even after classes returned, totally or partially, 

to the campus. 

4. Conclusion 

Both authors made important, creative and meaningful efforts during the lockdown 

semesters for keeping the courses they were coordinating engaging and interesting to 

students attending them. The additional load of work paid off because the main goal of 

those efforts was achieved. Students generally gave positive feedbacks on their semester 

questionnaire and the average grades were similar to the ones from recent years.  

 

Additionally, in some courses the students’ performance seemed to have improved 

leading to the maintenance, to some extents, of several of the teaching practices 

introduced during in the initial phase of the pandemic. Some lessons were learned and 

they were too good to be discarded! 
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