32ND EUROPEAN SYMPOSIUM
ON COMPUTER AIDED
PROCESS ENGINEERING

ESCAPE-32

Edited by
LUDOVIC MONTASTRUC
STEPHANE NEGNY




32" EUROPEAN SYMPOSIUM ON
COMPUTER AIDED PROCESS
ENGINEERING

VOLUME 1






COMPUTER-AIDED CHEMICAL ENGINEERING, 51

32" EUROPEAN SYMPOSIUM ON
COMPUTER AIDED PROCESS
ENGINEERING

VOLUME 1

Edited by

Ludovic Montastruc
Professor, Laboratoire de Genie Chimique

Universite de Toulouse, France
ludovic.montastruc@ensiacet.fr

Stephane Negny

Professor, Laboratoire de Genie Chimique
Universite de Toulouse, France
stephane.negny@ensiacet.fr

n :@ =
ELSEVIER

Amsterdam — Boston — Heidelberg — LLondon — New York — Oxford
Paris — San Diego — San Francisco - Singapore - Sydney - Tokyo



Elsevier

Radarweg 29, PO Box 211, 1000 AE Amsterdam, Netherlands

The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK
50 Hampshire Street, Sth Floor, Cambridge, MA 02139, USA

Copyright © 2022 Elsevier B.V. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, recording, or any information storage and retrieval system,
without permission in writing from the publisher. Details on how to seek permission, further
information about the Publisher’s permissions policies and our arrangements with organizations such
as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website:
www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the
Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience
broaden our understanding, changes in research methods, professional practices, or medical treatment
may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating
and using any information, methods, compounds, or experiments described herein. In using such
information or methods they should be mindful of their own safety and the safety of others, including
parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume
any liability for any injury and/or damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas
contained in the material herein.

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress
ISBN (Volume 1): 978-0-443-18631-8

ISBN (Set) : 978-0-323-95879-0

ISSN: 1570-7946

For information on all Elsevier publications visit our
website at https://www.elsevier.com/

aa Working together
—4AM8 (o grow libraries in

mematond developing countries

www.elsevier.com ¢ www.bookaid.org

Publisher: Candice Janco

Acquisition Editor: Anita Koch

Editorial Project Manager: Lena Sparks

Production Project Manager: Paul Prasad Chandramohan
Designer: Mark Rogers

Typeset by STRAIVE



Contents

Preface

Theme Coordinators

T1: Modelling and Simulation

1.

Periodic Oscillations in Methane Reactor: Effects of the Main
Operating Parameters

Piero Bareschino, Alberto E. Cutillo, Claudio Tregambi,
Francesco Pepe, Gaetano Continillo, Erasmo Mancusi

Modeling and Simulation of Non-Isothermal Ceramic Drying
Achilleas L. Arvanitidis, Margaritis Kostoglou, Michael C. Georgiadis

Numerical study on the solid phase residence time distribution
in a counter-current screw extractor

Annemarie Lehr, Gabor Janiga, Andreas Seidel-Morgenstern,
Dominique Thévenin

Dynamic modelling of light and temperature effects on biomass
growth and biohydrogen production by the photosynthetic
bacterium Rhodopseudomonas palustris

Bovinille Anye Cho, Brandon Sean Ross, Jan-Pierre du Toit,
Robert William Mcclelland Pott, Ehecatl Antonio Del Rio-Chanona,
Dongda Zhang

Reducing the experimental effort to design pharmaceutical tablet
lubrication by model-based design of experiments

Francesca Cenci, Gabriele Bano, Charalampos Christodoulou,
Yuliya Vueva, Simeone Zomer, Massimiliano Barolo, Fabrizio Bezzo,
Pierantonio Facco

A model-based approach to predict the flowability of directly
compressed pharmaceutical blends from individual components
Gabriele Bano, Magdalini Aroniada, Yuliya Vueva

Purification of MIBA by Continuous Distillation
Pavan Veldandi, Ralph Cos, David Earp

Modelling of Organophilic Pervaporation for Separation
of Acetone-Butanol-Ethanol Mixture
Andras Jozsef Toth

XV

xvii

13

19

25

31

37

43



vi

10.

11.

12.

13.

14.

15.

16.

17.

18.

Contents

Development of Deep Learning Architectures for Forecasting
Distillation Columns Dynamic Behavior of Biobutanol Purification
Abraham Rodarte de la Fuente, Eduardo Sanchez-Ramirez, Martha
Patricia Calderon-Alvarado, Juan Gabriel Segovia-Hernandez,
Esteban A. Hernandez-Vargas

Impact of Methanol Synthesis Kinetics on Bulk Production
Prediction: an In-Silico Assessment

Filippo Bisotti, Matteo Fedeli, Carlo Pirola, Giulia Bozzano,
Flavio Manenti

Optimal layout of modular multi-floor process plants using MILP
P Wrigley, P Wood, S O'Neill, R Hall, S Marr, D Robertson

Paving the way to multi-case optimization of a steam Rankine
cycle for cogeneration in nuclear power plants

Guilherme Vescovi, Nicolas Alpy, David Haubensack,

Catherine Azzaro-Pantel, Pascal Stouffs

Dynamic modelling of non-isothermal open-cell foam catalyst
packings: selective sugar hydrogenation to sugar alcohols as a case
study

Catarina G. Braz, Ali Najarnezhadmashhadi, Vincenzo Russo,

Kari Erdnen, Henrique A. Matos, Tapio Salmi

Optimising a wind farm with energy storage considering
curtailment and uncertainties

Flora A. V. Biggins, Jude O. Ejeh, Diarmid Roberts, Aaron S. Yeardley
and Solomon F. Brown

Optimisation of Biofuel and Kerosene Fuel Blends to Support
Sustainable Aviation
Ridab Khalifa, Mohammad Alherbawi, Adel Elomri, Tareq Al-Ansari

Dynamic Surrogate Modeling for Continuous Processes Control
Applications

Alessandro Di Pretoro, Andrea Tomaselli, Flavio Manenti, Ludovic
Montastruc

Probabilistic machine learning based soft-sensors for product
quality prediction in batch processes

Max Mowbray, Aaron Hicks, Harry Kay, Sam Kay,

Amanda Lane, Cesar Medonza, Philip Martin and Dongda Zhang

Property Estimation Method for Cannabinoids and Terpenes
Using Machine Learning
Laura A. Vergara, Hector J. Hortua, Gustavo A. Orozco

49

55

61

67

73

79

85

91

97

103



Contents

19. Kinetic modelling of y-linolenic acid production by Cunninghamella
echinulata
Zigi Song, Alexander Rogers, Bovinille Anye Cho, Keju Jing,
Dongda Zhang

20. Techno-economic and environmental analysis of pyrolysis process
simulation for plastic (PET) waste
Muhammad Shahbaz, Ahmed AlNouss, Gordon Mckay, Hamish Mackey,
Tareq-Al Ansari

21. Monte Carlo Simulation of the Mechanical Processing of Bulk
Materials with Fluctuating Compositions - Compositional
Probability Density
Karim Khodier, Tobias Krenn, Lisa Kandlbauer, Lisa Tatschl,
Renato Sarc

22. Determination of the burst pressure of pillow plates using finite
element methods
Alexander Zibart, Bernhard Spang, E.Y. Kenig

23. A hybrid multi effect distillation and double reverse osmosis system
for most economical brackish water desalination
O.M.A. Al-hotmani, Mudhar A. Al-Obaidi, Y.M. John, Raj Patel,
and Igbal M. Mujtaba

24. Computational intelligence applied to the mathematical modeling
of enzymatic syntheses of biosurfactants
Alice de C. L. Torres, Rafael A. Akisue, Lionete N. de Lima,
Paulo W. Tardioli, Ruy de Sousa Junior

25. A Practical Guide to Coffee Roaster Modelling
Cameron E. Bolt and Philip L. de Vaal

26. Modeling and simulation of anoxic-aerobic algal-bacterial
photobioreactor for nutrients removal
Irina Bausa, Raul Murioz, Smaranda Podar, César de Prada

27. Gaussian-Process based inference of electrolyte decomposition
reaction networks in Li-ion battery failure
Dr Peter J. Bugryniec, Aaron Yeardley, Aarjav Jain, Nicholas Price,
Dr Sergio Vernuccio and Dr Solomon F. Brown

28. Energy evaluation of processes for the production of hydrogen from
biomass biodigestion under Aspen Plus
Lokmane Abdelouahed, Fatma Kourdourli, Bechara Taouk,
Lionel Estel

vii

109

115

121

127

133

139

145

151

157

163



viil Contents

29. Life cycle optimization of energy systems integrated with carbon
capture and utilization
Ilasonas Ioannou, Alex Mercandetti, Gonzalo Guillén Gosalbez

30. A comparative study of swarm intelligence and artificial neural
networks applications in modeling complex reaction processes
Min Wu, Ulderico Di Caprio, Furkan Elmaz, Bert Metten,

Dries De Clercq, Olivier Van Der Ha, Siegfried Mercelis,
Peter Hellinckx, Leen Braeken and M. Enis Leblebici

31. Combined optimization of start-up shutdown and grade transition
of a multistage continuous crystallization process
Jiaxu Liu, Brahim Benyahia

32. Systematic dynamic modelling of heat exchanger network
Bertrand Zitte, Isabelle Pitault, Boussad Hamroun
and Francoise Couenne

33. Technical and economic assessment of a castor bean biorefinery to
produce renewable aviation fuel: a computer-aided design
Araceli Guadalupe Romero-Izquierdo, Claudia Gutiérrez-Antonio,
Fernando Israel Gomez-Castro, Salvador Hernandez

34. SiCN fibers as advanced materials for electromagnetic shielding in
X-band: experiments and computational modelling and simulation
Heloisa Ramlow, Liangrid Lutiani da Silva, Braulio Haruo Kondo Lopes,
Mauricio Ribeiro Baldan, Ricardo Antonio Francisco Machado

35. Continuous-Time Surrogate Models for Data-Driven Dynamic
Optimization
Burcu Beykal, Nikolaos A. Diangelakis, Efstratios N. Pistikopoulos

36. Parameter estimation in dynamic metabolic models applying a
surrogate approximation
Rafael D. de Oliveira, Dielle P. Procopio, Thiago O. Basso
and Galo A.C. Le Roux

37. A Benchmark Model to Generate Batch Process Data for Machine
Learning Testing and Comparison
Margarida L.C. Vicente, José F.O. Granjo, Ruomu Tan and Franz D.
Bdhner

38. Global warming impact of electric city buses in Chile: Critical stages
of their fabrication and use
Guillermo Valenzuela-Venegas, Daniel Peria-Torres, Franco Lizama-
Valenzuela and Melanie Colet-Lagrille

169

175

181

187

193

199

205

211

217

223



Contents X

39.

40.

41.

42,

43.

44.

45.

46.

47.

48.

49.

Sustainable Ammonia Production via Electrolysis and Haber-Bosch
Process
Gbemisola Ojo, Kyle Camarda 229

Optimization for sustainable hydrogen production path
Patience B. Shamaki, G.A.C Le Roux 235

Development of lactic acid evaporation process model with multi

effect evaporator and mechanical vapor recompression system

Sujin Cha, Jonghun Lim, Yurim Kim, Hyungtae Cho, 1l Moon,

Junghwan Kim 241

Optimization-Based Framework for Robust Modeling and Design of
Kinetic Systems

Eduardo Sanchez-Ramirez, Brenda Huerta-Rosas,

Juan José Quiroz-Ramirez, Victor Alejandro Sudrez-Toriello,

Juan Gabriel Segovia-Hernandez 247

Optimal Control System For Products Quality from a Deethanizer
Column
Cristian Patrascioiu, Nawwar A. Rahman, Marian Popescu 253

Importance of detailed experimentation in the model based design

and scale up of pharmaceutical spray dryers for heat sensitive

products

P. Martin-Salvador, T. De Beer, A. Kumar 259

Process modelling of Direct Air Capture (DAC) of CO; using solid
amine sorbents
So-mang Kim, Grégoire Léonard 265

Mechanistic modelling for thrips incidence in organic banana
Jean C. Campos, José Manrique-Silupu, William Ipanaqué, Bogdan
Dorneanu and Harvey Arellano-Garcia 271

A novel approach to modelling trickle bed reactors
Bogdan Dorneanu, Norbert Heinzelmann, Klaus Schnitzlein, Harvey
Arellano-Garcia 277

Alkaline Water Electrolysis Model to Purify GMP grade NaOH
Solutions for Biopharmaceutical Manufacturing Processes
Yeonghyun Kim, Youngjin Kim, Jae Hyun Cho, 1l Moon 283

Effect of air dynamics on the discharge of a pharmaceutical powder
using the discrete element method
L. Naranjo, I. Nopens, T. De Beer, A. Kumar 289



50.

51.

52.

53.

54.

5S.

56.

57.

58.

59.

Contents

Biorefinery modelling is in tatters, and here is why
Robert Pujan and Heinz A. Preisig 295

Simulation of a Fischer-Tropsch reactor for jet fuel production using
Aspen Custom Modeler
Alejandro Morales, Gregoire Leonard 301

Techno-economic-environmental analysis of a microbial oil
production integrated into a bioethanol sugarcane biorefinery
Andreza Aparecida Longati, Felipe Fernando Furlan,

Roberto de Campos Giordano, Everson Alves Miranda 307
Modeling the hydrodynamic sizing and rating of reactive packing in
Aspen Plus

Andressa Neves Marchesan, Ingrid Lopes Motta, Rubens Maciel Filho

and Maria Regina Wolf Maciel 313

Simplified Model-based Design of Plate-fin Microdevices with
Uniform Flow Distribution at High Flow Rates
Osamu Tonomura, Kaori Maenaka, Shinji Hasebe 319

CFD-based study of fluid flow and transport phenomena in fixed bed
compact reactors

Osamu Tonomura, Akihiro Kitagawa, Kazuki Kato, Taisuke Maki,
Ken-Ichiro Sotowa 325

Multicomponent, nonisothermal VOC adsorption modelling for
pharmaceutical effluent purification: effect of operating conditions

on bed performance

Vasiliki E. Tzanakopoulou, Alexandra Costa, Daniel Castro-Rodriguez,
Dimitrios Gerogiorgis 331

Hydrogen Separation via Continuous Hydrate Formation

Marcelino Artur L. Fernandes, Mariana G. Domingos, Fernando G.
Martins, Isabel S. Fernandes, Marcelo F. Costa, Ricardo J. Santos,

José Carlos B. Lopes 337

Combined particle model and experimental approach for predicting
pyrolysis with palm Kkernel shells

Andres Chico-Proano, Michelle Romero, Ricardo A. Narvaez C.,

Boris G. German, Daniel Rivadeneira, George Manos, Lazaros G.
Papageorgiou and Eric S. Fraga 343

Methanation of CO; byproduct from an ammonia plant with green
hydrogen
Samuel Asante, Mark W. Hlawitschka, Robert Schlesinger 349



Contents X1

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

Uncertainty analysis applied to distillation columns calculations
Leonardo O. S. Santana, Ewerton E. S. Calixto,
Fernando L. P. Pessoa 355

Gas diffusion channels in Li-O; batteries: a comparison of wet and
flooded electrodes
Jean Felipe Leal Silva, Gustavo Doubek, Rubens Maciel Filho 361

Techno-economic analysis of flexible AP-X LNG production process
under risks and uncertainties
Noor Yusuf, Rajesh Govindan, Tareq Al-Ansari 367

Modelling and Parameter Fitting of the Dosage of Hydrogen
Peroxide in a Photo-Fenton Process
Kourosh Nasr Esfahani, Montserrat Pérez-Moya, Moises Graells 373

Optimising the performance of the condensate stabilisation unit in
LNG Processes
Abdul Aziz Shaikh, Ahmed AlNouss, Tareq Al-Ansari 379

Data-driven modelling of full batch distillation cycles based on
recurrent neuronal networks
Gerardo Brand-Rihm, Erik Esche and Jens-Uwe Repke 385

Stackelberg Game Design and Operation of a Non-Cooperative Bi-
Level H; Supply Chain Under Cournot Equilibrium

Jose M. FLORES-PEREZ, Catherine AZZARO-PANTEL,

Antonin PONSICH and Alberto A. AGUILAR LASSERRE 391

Modelling of Heat-Driven Water Treatment Systems: Multi-Effect
Distillation (MED) model in Modelica
Miguel Castro Oliveira, Pedro Coelho, Muriel Iten, Henrique A. Matos 397

Continuous operation of a solar photobioreactor with linearizing
control — A simulation study
Joris Sébile-Meilleroux, Mariana Titica, Jérémy Pruvost 403

Dynamic Inherent Safety Analysis of a Distillation Column under
Simultaneous Design and Control
Denis Su-Feher, Efstratios N. Pistikopoulos 409

Modeling of Phosphates Slurry Pipelines Through Dynamic Non-
Newtonian Fluid Model With Modelica

Fatima Ez-Zahra EIl Hamra, Radouan Boukharfane, Saad Benjelloun,
Ahmed Ja and Jean-Michel Ghidaglia 415



Xii

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

Contents

Techno-Economic Analysis of the Conversion of Waste Plastics to
Hydrogen Fuel
Ali A. Al-Qadri, and Usama Ahmed 421

Evaluating the flexible operation of vacuum-pressure swing
adsorption for CO; capture from modern gas turbines
Mathew Dennis Wilkes, Solomon Brown 427

Exergoeconomic assessment of the optimized vapour-recompression
assisted column for palm-based fatty acid fractionation
Norul M. Sidek, Mohamad R. Othman, 433

A Reduced Population Balance Model for Coupled Hydrodynamics

and Mass Transfer in Shallow Bubble Column Reactors

Menwer Attarakih, Ferdaous Al-Slaihat, Armin Fricke,

Hans-Jorg Bart 439

Modeling of the crystallization of gypsum produced in the digestion
tank of an industrial phosphoric acid manufacturing process

llias Bouchkira, Abderrazak M. Latifi, Lhachmi Khamar

and Saad Benjelloun 445

Development of a whole-body physiologically-based pharmacokinetic
model for high-dose methotrexate
Giuseppe Pesenti, Dario Massari, Marco Foppoli, Davide Manca 451

Analysis of an industrial adsorption process based on ammonia
chemisorption: model validation

Cristian Cardenas, Abderrazak M. Latifi, Cécile Valliéres

and Stéphanie Marsteau 457

CFD modeling and simulation of an ammonia adsorption process
Flora Esposito, Cristian Cardenas, Abderrazak M. Latifi
and Stéphanie Marsteau 463

Polygeneration from sugarcane industries enhanced by
functionalizing novel cultivars and excess thermal energy
Shoma Fujii, Yuichiro Kanematsu, Yasunori Kikuchi 469

Economic optimization of a reactive distillation column with multiple
reactive sections for silane production

Alcantara-Maciel, Francisco D., Victor E. Casillas-Céspedes,

J. Armando Lopez-Garcia, Julian Cabrera-Ruiz,

César Ramirez Mdrquez, J. Rafael Alcantara-Avila 475



Contents

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

A multiscale model of proliferating and quiescent cell populations
coupled with cell cycle dynamics
Igra Batool and Naim Bajcinca

Multi-objective optimization of the food chain as a support for the
development of agricultural sector

Jan Drofenik, Klavdija Zirngast, Bojan Pahor, Zdravko Kravanja,
Zorka Novak Pintaric¢

Optimal CO; allocation for enhanced oil recovery operations within

carbon utilisation networks in Qatar
Razan Sawaly, Ikhlas Ghiat, Abdulkarim Mohamed,
Ahmad Abushaikha, Tareq Al-Ansari

Optimal operation of an evaporator for the controlled production
of titania nanoparticles
Filippo Tamagnini and Sebastian Engell

A model-based approach for the prediction of banana rust thrips
incidence from atmospheric variables

Carlos A. Estrada, José Manrique-Silupu, William Ipanaque,
Bogdan Dorneanu and Harvey Arellano-Garcia

Comparison between 3D numerical simulations and experimental
results of a lab-scale liquid-solid fluidized bed
Almir G. S. L. Ritta, Renaud Ansart and Olivier Simonin

Non-process elements in kraft bleach plants: adsorption
equilibrium aiming at reducing water consumption

Ana M. Sousa, Carolina T. Pinheiro, José Granjo, Licinio M. Gando-
Ferreira, Lino O. Santos, Margarida M. J. Quina

Re-design and scheduling of dairy thermal treatment processes for
continuous operation
Wei-Fu Tseng and Sandro Macchietto

Xflow modelling for investigation of fluid structure interaction of
artificial reef: application to burial effect
Baptiste Oudon, Chanez Belaidi, Jessica Salaun, Arnaud Coutu

Xiii

481

487

493

499

505

511

517

523

529

Metamodeling of chemical engineering unit operations using Kriging

and prediction error estimation
Thibault Delage, Sanaa Zannane and Thibaut Neveux

535



Xiv

91.

92.

93.

94,

9s.

96.

97.

98.

99.

Contents

On the integration of process engineering with metabolomics for the
production of muconic acid: the case for Saccharomyces Cerevisiae
Stefanos Xenios, Daniel Weilandt, Hatzimanikatis Vasilis, Ljubisa

Miskovic, Antonis Kokosis 541

Modelling and simulation of a residual lignocellulosic biomass
pyrolysis pilot plant
Nezly Martelo, Antonio Gagliano, Alberto Fichera, Rosaria Volpe,
Mirari Antxustegi, Rodrigo Llano-Ponte, Maria Gonzalez Alriols
547
Techno-economic-environmental analysis of biodiesel production
by magnetic nanoparticles CLEASs of eversa® transform
Alves, E.S., Miranda, L.P., Guimaraes, J.R., Tardioli, P.W.,
Giordano R.C., Furlan F.F. 553

Numerical Analysis of Impellers Hydrodynamics Performance in a
Bioreactor CSTR with SPH

R. Murrieta-Duerias, C.E. Alvarado-Rodriguez, J. Cortez-Gonzdlez,

R. Gutiérrez-Guerra 559

On the use of embedded models and advanced analytics to model
complex processes in the cement industry

Alexandros Pyladarinos, Antonis Kokossis, loannis Marinos,

Thanassis Gentimis 565

Aspen Plus® modeling approach of beechwood gasification in a
fluidized bed reactor using biochar as bed material

Leonela Martes Herndndez, Minda Loweski Feliz, Luis Reyes Alonzo,
Lokmane Abdelouahed, Bechara Taouk 571

Mathematical modeling of the diffusion-limited (DLA) aggregation
accompanied by particles swarming in reactors
Leila Musabekova, Sabira Akhmetova, Assel Sailau, Arnold Brener 577

Verification of Neural Network Surrogates
Joshua Haddad, Michael Bynum, Michael Eydenberg, Logan Blakely,
Zachary Kilwein, Fani Boukouvala, Carl D. Laird and Jordan Jalving 583

Sustainable Analysis of Recent Acid Gas Treatment Schemes for
LNG production
Ahmed AlNouss, Saad AI-Sobhi 589



Preface

This volume of the Computer-Aided Chemical Engineering series puts together
a selection of the contributions presented at the 32th European Symposium on
Computer Aided Process Engineering (ESCAPE), held in Toulouse, France, from
June 12th to 15th, 2022.

This 32th event of the ESCAPE series is a continuation of the conferences under
the auspices of the CAPE Working Party of the European Federation of Chemical
Engineering (EFCE), and the Société Francaise de Génie des Procédés (SFGP).

The ESCAPE series serves as a forum to bring together scientists, researchers,
managers, engineers, and students from academia and industry, who are
interested in CAPE and Process Systems Engineering (PSE). The scientific aim
of the symposium is to present and review the latest developments in CAPE
and/or PSE. The conference has been organized since 1992, starting with two
meetings in 1992 in Denmark and France, and since then having one event
annually. Hosting countries to the conference have been Austria (1993, 2018),
Ireland (1994), Slovenia (1995, 2016), Greece (1996, 2011), Norway (1997),
Belgium (1998), Hungary (1999, 2014), Italy (2000, 2010, 2020), Denmark
(1992, 2001, 2015), The Netherlands (2002, 2019), Finland (2003, 2013),
Portugal (2004), Spain (2005, 2017), Germany (2006), Romania (2007), France
(1992, 2008), Poland (2009), United Kingdom (2012) and Turkey (2021).

The main focus for ESCAPE-32 is on the methodical approaches in process
systems engineering with emphasis on uncertainty towards sustainability. The
themes of ESCAPE-29 have been selected after a comprehensive discussion with
the CAPE Working Party members and the scientific community. The particular
topics within these overarching themes have been formulated to allow researchers
from CAPE-related sciences to present their results and exchange valuable
knowledge and experience. The themes include:

Modelling and Simulation
Coordinators : Igbal Mujtaba, Jena-Pierre Belaud and Ludovic Montastruc

Product/Process Synthesis and Design
Coordinators: Grégoire Léonard and Laurent Cassayre

Large Scale Design and Planning/Scheduling
Coordinators: Antonio Espuna and Catherine Azzaro-Pantel

On Line Model Based Applications and Control
Coordinators: Miroslav Fikar and Nataliya Shcherbakova



XVi Preface

Concepts, Methods and Tools
Coordinators: André Bardow and Pascal Floquet

Digitalization and Artificial Intelligence
Coordinators: Norbert Aspirion, Rachid Ouaret and Stéphane Negny

CAPE Applications Addressing Societal Challenges
Coordinators: Ana Barbosa-Povoa, Raphaéle Thery-Hetreux and Marianne Boix

Education in CAPE and Knowledge Transfer
Coordinators: Eric Schaer and Vincent Gerbaud

ESCAPE-32 attracted 467 contributions from four continents (Europe, Americas,
Africa, Asia). The papers have been reviewed and 281 selected for publication
by the International Scientific Committee together with the help of Theme
Coordinators. The selection process involved review of abstracts, review of
manuscripts and final selection of the revised manuscript. We are deeply thankful
for timely and careful reviews by these Scientists, as well as their invaluable help.

As editors of this special volume, we hope that the contributions in this edition of
Computer Aided Process Engineering are excellent illustrations of the current
state of the art in their respective field, that it will contribute to the progress in
computer aided process and product engineering.

March 2022

Ludovic Montastruc ~ Stéphane Negny
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Abstract

Biogas is widely considered as one of the most promising renewable energy resources
and the most environmental-friendly energy source. Biogas produced through anaerobic
digestion contains many impurities and a high percentage of CO.. Thus, upgrade and
purification of the raw biogas by capturing COz before its application are necessary. In
this work a catalytic methanation process of biogas was proposed and numerically
analyzed. It appears that sustained periodic oscillations occur in a wide range of operating
parameters. A detailed nonlinear analysis is performed, and the information produced can
be useful for effective plant design and adequate plant control and operation.

Keywords: Biomethane, Power-to-Methane, fixed bed reactor, periodic oscillations, non-
linear dynamics.

1. Introduction

Due to the continuous increase in energy demand and to mitigate environmental problems
related to greenhouse gas emissions, the research towards non-fossil and renewable
energy sources is continuously increasing (Kapoor et al. 2019). In this respect, production
of biomass-derived biofuels has emerged as one of the most promising non-conventional
energy resources (Tursi 2019, Mancusi et al. 2021). Among biofuels, biogas from the
anaerobic digestion of organic wastes stands out as an attractive way of reducing
landfilling while producing energy. However, the CHa content in biogas usually reaches
about 70% at most, so that it needs to be purified (removal of trace components) and
upgraded (removal of COz) before utilization. The most used carbon dioxide separation
technologies are based on absorption, adsorption, cryogenic distillation, and membrane
separation, all of them being highly energy consuming (Zhang et al. 2020). In this work,
the upgrading process by direct methanation of biogas is analyzed. Particularly, we
envision using surplus electrical energy from renewable sources to produce, via
electrolysis, the required hydrogen to be fed, along with the biogas, into the methanation
reactor (Bareschino et al. 2020). Methanation enables the conversion of H2 and CO: into
methane ranking among the power-to-gas technologies that represent the best solution for
the energy storage. Several studies show that methanation has a very high CO2 conversion
degree, close to the removal efficiencies of traditional upgrading techniques (e.g.
Mhadmhan et al. 2022). In the present work, the proposed methanation process involves
simultaneous biogas upgrading and methane enrichment of the leaving gas. The process
is carried out in an adiabatic fixed bed reactor with a nickel-based catalyst, and a recycle
loop is used for diluting the inlet reactants concentration, to limit the maximum adiabatic
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temperature increase (Bareschino et al. 2021). The effects on the feed temperature and
recycling ratio (R) are considered. Periodic oscillations are predicted over a wide range
of the investigated parameters. The main cause of the sustained periodic oscillations can
be found in the feedback from the mass recycle coupled with the typical phenomena of
fixed bed reactors, i.e. the inverse response (Luyben, 2007). Although the maximum
temperature reached during the oscillations is limited by the thermodynamic equilibrium,
the system temperature oscillates remarkably, with a period of about 10 minutes and in a
range of +150°C. This behavior must be avoided to prevent catalyst damage. Non-linear
analysis is performed to characterize the stability range of periodic regimes and to identify
domains of coexistence of multiple stable regimes. This information can be useful for
effective plant design and adequate plant control and operation (Mancusi et al., 2007).

2. Mathematical Model

The biogas upgrading process is carried out in a single adiabatic fixed bed reactor with a
nickel-based catalyst. Figure 1 reports a schematic layout of the methanation process
under study.

CHj-rich gas

Recycle

compressor @

condensate

Feed

S Voup

Figure 1 Adiabatic fixed bed methanation with recycle.

The biogas fed to the reactor is produced by anaerobic digestion of food waste. Purified
from all impurities (H2S), it contains CH4 and CO: at 65% and 35% respectively (Tursi,
2019). This stream is enriched with Hz produced by renewable sources according to a
stoichiometric CO2:Hz ratio of 1:4 (Rs in Tab. 1). The complete CO2/CO methanation
reaction mechanisms for syngas methanation over Ni-based catalyst proposed by Xu and
Froment (Xu and Froment 1989) is considered. For readers’ convenience, Table 1
summarizes the adopted reactions and associated enthalpy variations.

Table 1 — Reactions scheme and associated standard enthalpies of reactions.

Reaction AHas (kJ.kmol ™!
CO + 3H, = CH, + H,0 206 R,
CO, + H, = CO + H,0 41 R
CO, + 4H, = CH, + 2H,0 -165 Rs

To limit temperature increase due to the strong exothermicity of the methanation
reactions, the water content in the feed is increased by adopting gas recirculation (Rénsch
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et al. 2016). While the presence of water in the feed stream due to recycle shifts the
chemical balance towards the products, it is essential to keep the temperature below
600° C and reduce carbon formation (Ronsch et al. 2016). Moreover, since the process is
exothermic and reactions R1 and R; take place with increasing volumes, the process
benefits from high pressures and low temperatures.

The fixed bed reactor is modeled by a 1D pseudo-homogeneous and adiabatic model
(Bareschino et al. 2021). The material balances for each gas component (i=CHa4, CO, CO,
Hz, H20) and the energy balance are reported in Table 2 with the initial and boundary
conditions:

Table 2 — Governing equations.

Mass Balance ac: ac.
L L
g5, = ~Usg 5, — (1= 2)per

Heat Balance

3
oT oT
(ggpyC0q + (1= fg)%c)ﬁ = "UsgPyCpg g, PCZAHR/‘ R;
=
Initial conditions ¢i(z,0)=0,T(z,0) =T,

Boundary conditions ¢i(0,t) = ¢;in, T(2,0) =T,

where z is the axial position along each reactor belonging in [0, L], and r: the rate of
consumption or formation of i-species (i=CH4, CO, CO2, Ha, H20) determined by
summing up the reaction rates of those species in all the reactions R; (see Table 1)
according to the stoichiometric coefficients (v) as follows:

T = Z?:lvi,jRj Q)

The gas superficial velocity (us) is calculated as follows:

PM;
Usg (zt) = P_A,llnusg,in @)

where PM is the molecular weight and the subscript in represents inlet conditions.
Operating conditions, reactor volumes, and catalyst properties used in the simulations are
reported in Table 3.

Table 3 — Parameters values used in the simulations.

Parameter Value Parameter Value
P, bar 15.0 VCo2in 0.145
Tin, °C 280 VH2,in 0.585
L,m 1.5 Cpe> kg K 1100
dr, m 0.225 o kgm? 2350
YCH4,in 0.27 & 0.4

The method of lines is applied to solve the partial differential equations (PDEs) in two
steps: the spatial derivatives are approximated by finite differences over a uniform grid
of 200 discretization nodes, and the resulting system of 1200 ODE:s is integrated in the
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initial value variable (Bareschino et al. 2021). The size of the ODE set is large, but model
order reduction techniques are available for future studies (Bizon and Continillo, 2021).

3. Results

The non-linear features of the fixed bed reactor give rise to phenomena such as the inverse
response (a temporary behavior contrary to that expected). Figure 2 reports the reactor
output according to the legend, for a step decrease (10°C) of the inlet temperature. It is
apparent that the first effect observed at the reactor exit is a temperature increase. Since
higher temperatures decrease the equilibrium conversion, the temperature increase is
followed by an increase in the reactant concentrations. Thus, although the inlet heat
exchanger cancels out temperature variations, recycle still provides a feedback.

T
—_— T

YCH,/CH, o 1
¥co,/¥co,
YH/YH, oo

110

output/steady state

LR Vo
LY AN PR

I I I I
4,000 6,000
time,s

0.95

10,000

Figure 2 Reactor response to a step decrease of inlet temperature. Subscript ss refers to unperturbed
steady-state. Recycle ratio R=1.6 whereas the other parameters are those reported in Tab. 3.

The combination of this feedback due to mass recycle and the inverse response can result
in sustained oscillatory behavior (Luyben, 2007). Numerical simulations using non-linear
dynamical model reproduce periodic oscillations in the reactor. Figure 2 reports a
simulation showing time series of the outlet gas temperature and composition.

(4]
a
o

(4]
(=]
o

Temmperature, °C

Figure 3 (a) Temperature at reactor exit vs time, (b) CH4 and H, molar fraction at reactor exit vs
time for R=1.6, whereas the other parameters values are those reported in Tab. 3.

Although the maximum temperature is limited by thermodynamic equilibrium, the
system, as it can be seen, oscillates with a period of about 10 minutes and in the range of
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+150°C. The amplitude of temperature oscillations is wide, and this could cause thermal
stress of the catalyst. We now use a linear analysis to study more carefully the cause of
the instability induced by the recycle operation. Close to an operating point, the dynamics
of a system are well described by its linearized model. The model of the reactor was
linearized numerically at this operating point, yielding a standard linear state space model
with 1200 state variables in the form:

dx

— = Jx ©)
where J is the Jacobian matrix calculated at the steady state solutions. Computing steady
state solution implies solving the nonlinear system of equations as reactor parameters
vary (Mancusi et al., 2015). Once the steady state solution was calculated, the eigenvalues
are computed by employing the eig function in MATLAB.

The largest eigenvalues of J for several values of R were calculated and depicted in Fig. 4.
The reactor with no recycle (R=0) has a stable stationary response, i.e., all the eigenvalues
have a negative real part. As R increases, the real part of the eigenvalues increases until
R=1.5, where a couple of eigenvalues cross the imaginary axis. In these conditions the
stable static regime solution becomes unstable, and periodic oscillations occur due to a
Hopf bifurcation (Kuznetsov 1998).

T T T
%
0.04- x x M -
| x x
0.02 R increases
.02~ e»e
( J ° '
S oF * Y -
Y [ ]
—0.02}F ) ®e
* ®
-0.04 *, % -
T RS R S I S S R SR S S NI
-0.020  -0.015 -0010  -0.005 0
Re())

Figure 4 Imaginary and real part of the largest eigenvalues for several values of R.

The effect of the inlet temperature and recycle ratio is addressed by a bifurcation diagram
(Fig. 5) where the locus of all Hopf bifurcation points is reported in the plane R-Tin. In
this plot, the lines partition the parameter space into regions characterized by qualitatively
similar phase portraits, that is the region characterized by stable steady state and region
in which stable periodic oscillations exist (Kuznetsov 1998).

4. Conclusions

The paper reports a dynamical study of an adiabatic fixed bed reactor for the catalytic
methanation of biogas. The complete dynamical characterization of a model is very useful
to study the existence of periodic regimes and its influence on plant design, control, and
operation. For the problem at hand, complex periodic regimes are due to the interaction
of feedback induced by the mass recycle and by the inverse response typical of fixed bed
reactors. The emergence of periodic oscillations is due to a Hopf bifurcation. The effect
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of both the inlet temperature and the recycle ratio was investigated. The knowledge of the
global dynamics can be helpful in designing an effective control strategy.

o e e i e i O

22

- - N
[+2] [+ o
T T T

Recycle Ratio

-
ES
T

121

1.0
290 295 300 305 310 315 320 325 330 335
Temperature, °C

Figure 5 The bifurcation diagram in the R-Ti, plane.
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Abstract

The main objective of this work is to model, simulate and assess the drying behavior of a
single ceramic tile which is exposed to the convective flux of air of known humidity,
velocity and temperature. The proposed mathematical model is inspired by a moving
boundary model which was originally presented by Adrover et al. (2019). More
specifically, 1-D mass and heat transfer is assumed along the thickness of the tile. The
mechanism of mass transfer inside the material is a combination of diffusion and capillary
motion, whereas at the surface moisture is removed through forced convection by the
blowing air. Based on this assumption, shrinkage takes place only on one dimension. The
model is used to accurately capture the drying behavior of a parallelepiped roof tile for
two distinct case studies. Namely, the ideal-shrinkage case and the no-shrinkage case.
The proposed modeling approach leads to high quality results with low computational
costs. Furthermore, the developed modeling framework can provide the basis for
modeling drying for a wide variety of operating conditions and various material
properties.

Keywords: Process Modeling, Ceramic Drying, Moving-Boundary Problem

1. Introduction

Drying constitutes an essential step in the ceramic industry consuming large amounts of
energy. During this process most of the water that was added in a previous molding step
is removed. This step is characterized by significant complexity since heat and mass
transfer are coupled processes and take place simultaneously. According to Geankoplis
(1993), at first, the wet green body is heated by the blowing air and thus the evaporation
initiates. Afterwards, the body’s temperature reaches an equilibrium value which implies
that the drying rate is constant. At some point, the moisture content at the surface becomes
insufficient to maintain the constant rate drying and the drying rate starts decreasing.
Accounting to the nature of the process, drying may also be accompanied by dimensional
variations which occur due to the moisture removal. Specifically, the total volume
variation of the material, in an ideal shrinkage case, should be equal to the removed
water’s volume. In reality thought, this phenomenon is often antagonized by an increase
in the body’s porosity which is caused by the replacement of the evaporated water by an
equal volume of air. Thus, products with differing shrinkage than the ones expected are
usually rejected as they often do not meet the required quality standards or there is a high
probability of breakage in the subsequent firing step. Furthermore, it is possible that
breakage phenomena occur during the drying process itself, especially when the drying
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rates are not properly controlled. Consequently, drying is a product quality defining
process which makes the knowledge of the evolution of moisture content and linear
shrinkage imperative.

Due to the complex nature of the process, drying has been studied extensively through
the years. Scherer (1990) presented a comprehensive review in which he explains the
mechanisms as well as the various phenomena that take place during drying of porous
material. Jarque et al. (2016) combined experimental results and modeling techniques and
showed that drying of ceramic roof tiles is a non-isothermal process and that the
assumption of an instantaneous increase of the body’s surface temperature to the drying
air’s temperature does not stand well. More recently, a numerical model was developed
to describe the drying kinetics of ceramic green bodies by using moisture dependent
thermophysical properties (Lauro et al., 2021). In this work a non-isothermal model is
proposed to predict the water distribution and shrinkage of a ceramic tile over time.

2. Mathematical description of the model

Air of uniform velocity is assumed to flow over a rectangular ceramic roof tile. The
temperature, Ty, and relative humidity, RH, of the blowing air are fixed. The mass and
heat transfer inside the tile are assumed to be one dimensional and are described by the
corresponding diffusion equations, which in this case, also consider the local shrinkage
of the material via a local shrinkage velocity variable, vy (Adrover et al., 2019). The mass
conservation equation is written in terms of the water mass concentration, C,,, and the
energy equation is given in terms of the tile temperature T'.

ac, a ac,
L Ap——— - _ 1
at oz [D °ff "oz USCW] @
aT 0 1. dT
gy = 35|57~ eGeT] @

Where D, is the effective diffusion coefficient of the moisture in the porous body and
k is the thermal conductivity of the wet tile. Both properties have constant values for the
present study.

The local shrinkage velocity, v, accounts for the rate at which a specific point of the
green body moves and is surmised to be proportional to the diffusive flux of water inside
the body.

Desr 9Cw

PHy0 0z

Vs =a 3)
Where a is the shrinkage factor, which is a parameter that lies between O to1. These two
marginal values correspond to the no-shrinkage and the ideal-shrinkage scenario

respectively. However, since shrinkage is considered, the sample thickness, L, is not fixed
and should be measured at any time according to equation (4).

dlL
dt = Vs|z=L(t) *)

In addition, bearing in mind that volume variations occur during drying and that the
shrinkage velocity is a pointwise variable, the local concentration of the solid phase, C;
should be described by:
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9Cso1ia - _ 0[vsCso1ial

(5)
Jat 0z
Given that, the local porosity of the green body, &, can be derived from the equation (6).
Csoli C
1=c+ solid + w (6)

Pintrinsic pHZO

Where pinirinsic 18 the particle density of the solid and does not include the volume of the
pores.

The density and the thermal conductivity of the wet porous body are moisture dependent
properties and are calculated through equations (7) and (8) respectively.

p=Cy +Cs +epgr @
Cp — Cp,HZOCw + Cp,spcs + Cp,airspair (8)

Furthermore, it is assumed that the water evaporation takes place only on the surface of
the tile. Hence, the boundary conditions for the mass conservation equation (1) is:

ac,,
—Depr—— =h Hy? — 9
eff 9z 2=L(6) mpda( g g) ( )
Where h,, is the mass transfer coefficient, py, is the dry air density and Hy is the humidity
ratio of air which is given by the equation (10).

Hy

= sat
Hg

RH (10)

The term Hz?" is the saturation humidity ratio and it is calculated by equation (11).

sat
HSat = 0,622 P_Hig)?% (11)
Where P is the pressure of the air and P,ﬁ% is the saturation pressure of water.
The boundary condition of the energy balance equation (2) is given by:
L = hy(Tl =1y — Ty) — 4D %y (122)
0zl =100 g VI 0z e

Where hy is the heat transfer coefficient and 4, is the latent heat of vaporization of water.
Finally, the specific moisture, W, at the tile - air interface correlates with the equilibrium
relative humidity through the Henderson desorption isotherm (Murugesan et al., 2001):

RH =1 — exp(—17W%%) (13)

The water concentration can be converted to specific moisture through the following
transformation:

w = Cw/Csolid (14)
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3. Results and Discussion

The above system consists of ordinary differential equations coupled with partial
differential equations with moving boundaries. The numerical solution of the model in
this form is not trivial. This makes the need of a new, fixed in time spatial variable which
exempts the partial differential equations of the moving boundaries and allows the model
to predict the position of the boundary as part of the solution. The boundary
immobilization technique requires the dimensionalization of the model by utilizing the
new fixed-in-time spatial variable y = z/L(t) , which lies between 0 and 1.

The transformed model is implemented in the gPROMS™ modeling environment. The
following data were used as inputs:

Table 1: Model Data

Model Inputs
k123 wyamio Ay 2500 kJ/kg T, 273.15 + 60 K
Derr | 6.108m2/s | Pimerinsic | 2826 kg/m? Trite 273.15+ 25K
RH 0.50 Puzo 1000 kg/m? Culico | 414 kgyo/m?
h 0.01 m/s Pair 1.063 kg/m3 | Csoriale=o | 2070 kg/m3
hr 60 w/m2i) p 101325 Pa Lle—o 0.0187 m

In this work two marginal shrinkage scenarios were examined and compared. In the ideal
shrinkage case, where the a parameter is equal to unity, the tile’s volume variation from
its initial state corresponds to the total volume of the liquid water that has been removed
until that time. In other words, no change in the porosity takes place. On the other hand,
in the no-shrinkage case, where the a parameter is equal to 0, the moisture migrates
towards the body’s surface where it evaporates leaving empty pores inside the green body.

(@) (b) (c)

500 340 3000
— 400 330 _
“a ©

E 30 ) 7 2500
o o
5 g = 310 =)

3 " 2000
Q o

290!
0 1500
o 1 2 3 4 5 0 4 2 4 & I8 0o 1 2 3 4
Time [hr] Time [hr] Time [hr]

— — g = ()

Figure 1: (a) Simulated surface moisture concentration vs time for the two cases (b) Simulated tile
surface temperature vs time for the two cases (c) Surface solid concentration vs time for the two
cases
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Figures 1 and 3 illustrate the comparison between these two case scenarios and how the
body shrinkage affects the drying kinetics of the body.

Figure 2 shows the tile shrinkage with respect to time, for the ideal-shrinkage case. It can
be observed that the shrinkage stops when drying exits its constant rate period, as stated
in the literature (Scherer, 1990; Lauro et al., 2021). As far as the no-shrinkage case is
concerned, the tile thickness is fixed to its initial value since no volume variations occur.

0.020

0.018

0.016

L[m]

0.014

0.012

0.010
0 1 2 3 4 5

Time [hr]

Figure 2: Tile thickness vs time for the ideal-shrinkage case and the no-shrinkage case

(a) (b)

— 1.0 _. 06
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§ 0.2 § 0.4

0.0° 0.0

0 1 2 3 4 5 0 1 2 3 4 5

Time [hr] Time [hr]
f——  Water

Figure 3: Surface volume fractions of the moisture, solid and the pores for (a) the ideal-shrinkage
case and (b) for the no-shrinkage case

Solid Pores|

As it was stated earlier, when a = 1, the green body’s volume is decreased by the volume
of the evaporated water. In that case, an increase in the local solid concentration is
expected along the tile. For the ideal-shrinkage scenario, since no pores are created as
drying proceeds, the solid concentration approaches the solid’s intrinsic density
asymptotically. On the other hand, when a = 0, pores with an equal volume as the
removed water’s are created along the tile. Hence, the solid concentration is not affected.
This phenomenon can be displayed in Figures 1c and 3.
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Figure 3 presents the graphical illustration of the terms of the right-hand side of equation
(6). For the ideal-shrinkage scenario (see Figure 3a), the local solid volume fraction
increases with respect to time while the moisture volume fraction decreases. No pores are
created. When it comes to the no-shrinkage scenario (see Figure 3b), the solid volume
fraction remains fixed to its initial value through the process as no volume variations take
place on the body. At any time, the volume of the removed moisture is replaced by an
equal volume of air. Thus, the product’s porosity increases as drying proceeds.

4. Conclusions

In this work, a 1-D modeling framework is proposed to simulate the drying behavior of a
shrinking roof tile. Two marginal shrinkage scenarios were examined. These two
scenarios were distinguished by the value of the shrinkage parameter a , which illustrates
a key role in the overall analysis. The simulated results confirm the robustness of the
model. It is important to note that the above framework can be used to capture the
phenomena that accompany drying of a wet tile even for more realistic shrinkage
scenarios, i.e., when a € (0,1), in which the tile’s thickness decreases while its porosity
increases.
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Abstract

The application of a highly efficient continuous counter-current extraction to extract
Artemisinin from Artemisia Annua leaves is desirable since Artemisinin is efficiently
used as anti-malaria drug. The residence time distribution (RTD) of the solid and liquid
phases are most important for understanding this process since they influence the reaction
efficiency. This work is devoted to the numerical investigation of the solid-phase RTD in
a fully-filled screw extractor by using computational fluid dynamics (CFD). The solid
phase is considered as a liquid Eulerian phase with a high viscosity. To track it, the
commonly used species model has been implemented in a frozen quasi-steady-state
simulation. Validation experiments have been performed by using dry leaves. A very
good agreement between numerical and experimental residence times can be observed,
with a relative error lower than 12 %. As a next step the model will be extended to predict
the RTD in a multiphase flow model including the liquid solvent.

Keywords: computational fluid dynamics (CFD), extraction, residence time distribution

1. Introduction

The implementation of counter-current extraction processes provides advantages
compared to the direct current method, since higher final concentrations of the target
substance can be achieved in the solvent. Especially in the field of natural product
extraction high yields of plant substances are required for drug preparation (Lack, 1985).
In this work the solid-liquid counter-current extraction process of Artemisia Annua leaves
to gain Artemisinin is investigated. Derivatives of Artemisinin (e.g. artesunate) are
increasingly used as efficient anti-malaria drugs (Gilmore et al., 2014). The extraction
efficiency of this leaching process is influenced by the contact times between the liquid
solvent and the solid plant material. Consequently, the knowledge of the residence time
distribution (RTD) of both phases is of particular interest. The RTD is directly linked to
the apparatus performance as it is influenced by various process parameters, such as
throughput, the rotation speed of the screw, or the process temperature. Its
characterization is highly important for many industrial processes such as the continuous
production of chemicals, food and pharmaceutical products (Gao et al., 2012).
Experimental measurements are the most common way to study the RTD in an apparatus.
However, such measurements can be very expensive, especially when considering scale
up or plant design. Here, computational fluid dynamics (CFD) may provide a deeper
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understanding of the multiphase flow and of the controlling interactions. Chen et al.
(2019) used CFD simulation to measure the particle residence time distribution in a
fluidized bed by using the species method and the multi-solid method for tracer injection,
which are the most common Eulerian methods. While the species method only solves a
species transport equation for a numerical tracer, the multi-solid method describes two or
more solids as Eulerian phases by considering interactions. Both methods can in principle
deliver accurate predictions of the RTD, but the species method needs prior information
concerning the diffusion coefficient. Nevertheless, the associated computational time is
lower compared to the multi-solid method. This is the reason why several additional
studies used the species method for getting the RTD behavior of multiphase flows, e.g.
Adeosum et al. (2009), Deshmukh et al. (2009), and Zhang et al. (2015).

In this study the species method is used as well to describe the RTD distribution of the
solid phase in a fully-filled screw extractor. The diffusion coefficient is derived from prior
experiments. Finally, the numerical results are validated by comparison with
experimental data.

2. Mathematical Model

2.1. Mean residence time and variance

The mean residence time and variance can be determined from the residence time
distribution (RTD), which is a function of the length of the observed extruder. For
measuring the RTD in a device, the stimulus response technique with pulse or stepwise
input of tracer is typically used. The tracer concentration is measured by an appropriate
device at the outlet of the extruder, leading to concentration curves named E (t) and F(t)
curves, also known as normalized residence time distribution function and cumulative
exit age distribution function, respectively. Both functions can be transformed into each
other following Levenspiel (1999):

F(t) :fE(t)dt €]
0

or conversely

dF ()

E(t) = 2
®=—; @
The mean residence time T and the variance o2 can be derived from E (t).
T =f t-E(t)dt 3)
0

o? = Lw(t—r)z-E(t)dt 4)
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2.2. Dispersion coefficient

The dispersion model is frequently applied to describe back-mixing effects in tubular
reactors. For this purpose, an additional axial dispersion coefficient D, is introduced into
a second-order term in the mass balance:

dc, dc, d%c,

=7 = ~Uax 5 T Dox 5

ot 0z dz?
Implementing the species method in CFD requires the provision of the axial dispersion

coefficient as input parameter. It can also be expressed via the dimensionless Bodenstein
number Bo, which includes the axial velocity u,, and the length of axial coordinate L.

)

272

Bo = —2 (6)
o
Uy, L

o= ®

3. Experiments and Simulation

3.1. Experimental Setup

For validating the CFD simulations three experiments with equal operating conditions
have been performed. The employed screw extractor with a total length of 320 mm is
shown in Figure 1. The milled dry leaves are introduced as powder on the left-hand side
until total filling of one segment is reached. When starting the screw rotation with 1.3 rpm
the leaves are transported towards the right side of the device over a total flow length of
260 mm. The RTD during the transport process is controlled by a sampling of leave
material at four different locations, marked 1 to 4 in Figure 1. Since only the dry leaves
transport in the screw extruder has been considered no compression inside the device
occurs. Consequently, the pressure equals atmospheric pressure.

L

< >
>

leaves inlet extraction screw

motor ﬂ leaves flow direction
i raffinate
outlet

- —
z T T T T
b
X 1 2 3 4
Figure 1: Counter-current screw extractor used for solid RTD experiments with equally
distributed sampling points 1-4, L =320 mm, d = 29.7 mm
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3.2. Numerical Setup

The flow investigation was performed by using the commercial CFD software package
StarCCM+ (Simcenter STAR-CCM+ 2019.2.1 Build 14.04.013). The computational
geometry corresponds to the configuration used in the experimental setup (Figure 1). A
block-structured mesh has been generated with a total number of 830.931 finite-volume
cells. According to a previously performed mesh independence study this resolution
provides the most accurate results by reducing numerical diffusion. Since only the screw
rotates, the domain has been separated into a rotating and a stationary domain.
Refinements at the interface between the domains were implemented to accurately
capture the occurring leakage flows. As the numerical simulation of solid phases is very
complex, the Artemisia annua leaves have been modelled as a Newtonian fluid with a
very high viscosity of # = 1,000 Pa-s. Due to the slow rotation of the screw (1.3 rpm) and
the high viscosity the resulting flow is laminar. A slip boundary for all walls has been
implemented. The CFD simulation considers a completely filled system. The real
experiments naturally involve a thin layer of gas phase (air) at the top, but it does not play
any significant role for the extraction process. It is therefore neglected in CFD to reduce
the computational effort. To adapt the inflow velocity of the leaves in CFD to the
experiments an average axial velocity ., has been calculated from experimental data.

_ L 8
u = —

T Texp ®)
To measure the residence time distribution, the species method has been implemented by
using the experimentally determined axial diffusion coefficient at the outlet (sampling
point 4). First, the flow has been solved for 30 s of physical time until velocities and
pressure converged to a specific value to ensure a quasi-steady state. Subsequently, the
resulting flow has been frozen, and the species has been initialized and solved as single
transport equation in the domain. Further modeling details can be taken from Table 1.

Table 1: Physical models and boundary conditions

Models Parameter Value Unit
Laminar Density 260 kg/m3
Liquid Viscosity 1000 Pa-s
Segregated Flow Velocity Inlet 4.5% 10* m/s
2nd order Implicit Unsteady Time Step 0.5 S
Three Dimensional Screw rotation 1.3 rpm

Gravity z -9.81 m/s?
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4. Results and Discussion

The residence time distributions obtained from the CFD simulation at four sampling
points are shown in Figure 2a and compared with the residence time distributions of the
first experiment. The RTD curves are similar, but the differences in maxima increase with
time. Figure 2b shows the resulting mean residence times of experiments and CFD
depending on the sampling points. The numerical results show slightly higher values than
the experiments resulting in an error of 7.05 % for sampling point 2, up to 14.65 % for
sampling point 4 (Table 2). These errors correspond to a difference in residence time
between 0.31 and 1.32 min. Nevertheless, during the independent repetitions of the same
experiment, some deviations of the RTD curves have also been observed. They occur due
to minute changes of particle size distributions, particle-particle interactions, but also
small variations in the screw rotation speed. As the experimental values are not perfectly
repeatable a second comparison of numerical residence times is performed by involving
three experimental realizations, considering the mean values and their deviations to each
other (Figure 3). Here, the numerical mean residence times fit the experimental residence
time for sampling points 2 and 3. For sampling point 1 the experimental residence time
is slightly higher than the numerical one, by 12 % (Table 3). For sampling point 4 the
numerical residence time is outside the experimental range by only 2.48 %.
Consequently, the numerical predictions are very close to the experimentally measured
values, proving that the CFD model can appropriately predict the residence time.

Table 2: Comparison of numerical results and experimentally measured residence times
(Dgx = 1.41 X 1076 m¥s)

Sampling Point Tcpp (min) Texp,1 (Min) error (%) (vs. exp.)
1 1.54 1.74 11.49
2 4.71 4.40 7.05
3 7.88 6.99 13.31
4 10.33 9.01 14.65
a b
0,8 - = 12
-~ = = experimental E i |- -
.06 } ——— numerical o .
€ 7 E s | ]
5 ‘ 3 .
=1 0,4 ' |, g 6 F
= N RYT A\ 2 41 '
“ 02 | YA ] .
5 2 N7 J\\ c 2} . ® experimental
T N £ .
0,0 \ g o . ., ® numerical,
0 2 4 6 8 10 12 14 16 0 1§ 2 3 4
physical time (min) sampling point (#)

Figure 2: Results of the solid RTD study and comparison between experiments and numerical
simulation regarding a) RTD curves at four sampling points, b) mean residence times



18 A. Lehr et al.

Table 3: Numerical mean residence time compared 12
to the deviations observed when repeating the

experiments (D, = 1.41 X 107% m?/s)

5
£
g
s 87 f
. — 1]
Sampling  Tcpp Texp,all Oexp,all €rror (%) g 6 r
Point (min)  (min)  (min) (vs. é 4 F i
range) E 2} - * experimental
1 154 189  +0.14 12.00 g % numerica,
2 471 494  +047 - o 1t 2 3 4
sampling point (#)
3 7.88 7.77 +0.68 - Figure 3: Comparison of the numerical
4 1033 958 +050 248 mean residence time with three

experimental runs

5. Conclusion and Outlook

In this study the solid residence time in a counter-current screw extractor has been
analyzed by using CFD simulations. Since solid-phase RTD experiments show deviations
in the resulting mean residence times, the numerical simulations have been first compared
to one single experimental trial, then to the average value involving three measurement
campaigns. The results show that the CFD mean residence time fits in the range of the
experimental observations. The first sampling point shows the largest deviation, with an
error of only 12 % (12.6 s). As this is considered an acceptable range, the numerical model
with a fully-filled Eulerian phase can appropriately predict the solid RTD of Artemisia
Annua leaves. Using the frozen quasi-steady-state flow allows short computational times
for the implemented species method. This will enable future multiphase flow simulations
with liquid and solid phase even closer to the experimental reality.

The numerical representation of the RTDs will then be used to parametrize compartment
models (CM) in which the reaction kinetics can be considered with acceptable
computational times. This mixed CFD/CM model will be used for the final optimization.
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Abstract

Background: Parallel to the impending hydrogen economy, the simultaneous treatment of
organic waste and biohydrogen synthesis by the photosynthetic bacterium
Rhodopseudomonas palustris is a promising renewable energy technology. However,
studies so far have been mostly laboratory based with upscaling of the bioprocess still
being an open challenge. Therefore, this study investigates two different photobioreactors
(PBRs): schott bottle-based and vertical tubular-based PBRs and presents three original
contributions to facilitate the biotechnology transfer across PBR scales and
configurations.

Study Design: Firstly, a dynamic model is constructed to simulate the complicated
influences of light intensity, light attenuation, and temperature, previously not unified for
any photosynthetic bacteria to the best of our knowledge. Secondly, perturbation analysis
was exploited to identify critical parameters influencing the model accuracy and
reliability for across the scale extrapolations. Thirdly, two model parameters: effective
light coefficient and biohydrogen enhancement coefficient, both linked to the PBR’s
transport phenomena were proposed for recalibrations during bioprocess upscaling
predictions.

Major results: By comparing against experimental data, the upscaling prediction accuracy
was thoroughly verified for the two investigated PBR scales. As well, the enhancement
of biohydrogen production rate by improved culture mixing and gas removal was
mechanistically described.

Conclusion: This provides important advances for the efficient design of novel PBRs and
future online optimisation for biohydrogen production.

Keywords: Photobioreactor, Biohydrogen production, kinetic modelling, Purple non-
sulfur bacteria, Upscaling.

1. Introduction

Renewable biohydrogen is a key biofuel identified as one promising alternative to the
conventional fossil-based fuels for providing energy meant for: (i) electricity generation,
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(ii) transportation, and (iii) heating [1, 2]. Amongst the several species of photosynthetic
microorganisms which can synthesis biohydrogen, the purple-non-sulfur photosynthetic
bacterium Rhodopseudomonas palustris (hereinafter referred to as R. palustris) has been
identified as a promising candidate due to: (i) the absence of oxygen-induced nitrogenase
repression; (ii) a versatile metabolic repertoire with capabilities of degrading a wide
variety of organic substrates including those toxic to other microorganisms; as well as
(iii) the continuous synthesis of biohydrogen during all the growth phases, including the
stationary phase which is observed to last significantly longer under anaerobic conditions
than in cyanobacteria and microalgae species [2]. Despite these benefits, literature
investigations have been mostly carried out at the laboratory scale and to a lesser extent
at the pilot scale but remains pending industrial scale applications. Although
mathematical models can help facilitate the experimental design and process upscaling,
two of the most important cultivating factors, namely temperature and light intensity (plus
light attenuation herein - the decrease in light transmission due to cellular absorption and
scattering within PBRs) have never been unified/coupled in a biokinetic model of any
photosynthetic bacteria in general and R. palustris in particular. Therefore, this paper
aims to: (i) investigate the photoheterotrophic biomass growth and biohydrogen
production of R. palustris in two different Photobioreactors (PBRs) configuration and
scales: schott bottle-based (0.5 L) and vertical tubular-based (1 L) PBRs, (ii) construct an
accurate mechanistic model of the bioprocess under the unified influences of temperature,
and light intensity, and light attenuation, and (iii) evaluate model’s applicability for
simulating process dynamics over different scales and configurations of PBRs.

2. Methodology

2.1. Mechanistic model construction

The photo-heterotrophic biomass growth, substrate consumption and biohydrogen
production under the influences of light intensity, light attenuation, and temperature are
simulated with Equations (1) to (3). The biomass growth (Equation 1) assumes negligible
cell death and replete amount of substrate (i.e., > 20 mM at the end of each batch) with
the rate of substrate consumption described in Equation (2). The biohydrogen production
model (Equation 3) is an extension of the Luedeking-Piret model with the incorporation
of temperature and light intensity influences on the linear dependence of biomass growth
rate and instantaneous biomass concentration. The first square brackets on the Right-
Hand-Side of Equations (1) and (3) simulates the monotonic increase of microbial activity
by temperature which does not exceed the optimal operational value (i.e., 313.15 K) for
R. palustris biomass growth [3]. Assuming the absence of photoinhibition for light
intensities not higher than 200 Wm[4], photolimitation and photosaturation are the main
photo-mechanisms captured from the Aiba model as represented by the second square
brackets on the Right-Hand-Side of Equations (1) and (3).

2.2. Dynamic parameter estimation

Generally, the model parameter estimations were solved by weighted nonlinear least-
square regression. However, due to the high nonlinearity, the entire process was
decoupled into two steps with step I: estimating biomass growth and substrate
consumption model parameters, and step II: estimating biohydrogen model parameters
while fixing the optimal solution of step I. Due to stiffness and nonlinearity, orthogonal
collocation over finite elements in time was used to discretise the differential equations,
then solved with the interior point solver, IPOPT through the open-source interface
Pyomo, within Python version 3.7 programming environment.
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where X, S and H,, are the biomass concentration (g L), substrate concentration (mM)
and biohydrogen production (mL) respectively, p,qx and Qg are the maximum
specific growth rate (h™!) and maximum specific production rate (h™!) respectively, tmax -
A=A (h)and a,, - A 1= A, (h'") are the pre-exponential factors which are lumped
for identifiability purposes, E, and E, ;, are the activation energies (J mol™), R the is
universal gas constant (8.3145 J mol'K™!), T is the absolute temperature (K), I, is the
incident light intensity (Wm™), T (m? g') is the light absorption coefficient, L (m) is the
light path length, Yy and m as the substrate yield coefficient (mmol g') and maintenance
coefficient (mmol g! h'!), respectively.

2.3. Parameter perturbation analysis

The parameters in the mechanistic model are grouped into three classes: Class I (i.e., Yyg
and m) for reaction conversion related parameters, Class II (i.e., kg, kg 5, and 7) for light
intensity associated parameters, and Class I1I (i.e., A4', E,, Ay, and Eg ) for temperature
associated parameters based on expert knowledge (e.g., Class I are well-known to great
accuracy from microbiological studies meanwhile the same is not true for Class III). Input
parameter uncertainties are assigned to each Class, then probabilistic sampling with Latin
Hypercube Sampling was carried out, and the effects on the model’s prediction
uncertainty was propagated by Monte Carlo simulations.

2.4. PBR large scale simulations

The frequencies of local light/dark cycles are the only factor influenced by the PBR’s
transport phenomena on biomass growth rate. This effect was simulated in our recent
study [5] by introducing one additional parameter (i.e., effective light intensity
coefficient, n) which is larger than 1 if the PBR’s culture mixing is intensified thereby
leading to Equation (4). As the biohydrogen production rate is known to be a function of
the PBR’s biohydrogen partial pressure since this reaction is reversible, another parameter
(i.e., biohydrogen enhancement coefficient ¢) is added into Equation (6) to affect the
overall hydrogen production rate as per the influence of biohydrogen removal rate and
gas-liquid mass transfer.
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3. Results and discussion

3.1. Dynamic parameter estimation results

Table 1 lists the obtained parameter values while the orange line in figure 1 shows the
model fitting result after the step I of the parameter estimation for 100 Wm2 and 200 Wm-
2 at 35°C and 30°C, respectively with the remainder (i.e., 200 Wm? at 35°C and 40°C) not
shown due to fitting similarities.

Table 1: Model parameter estimates and literature validation.

Parameters Estimated Parameters Estimated
Step-one optimisation Ar—308.15 k (h) 81.0
Ur=303.15k (h) 0.159 ar=31315x (h) 106.0
Ur=308.15k (h™) 0.185 ks, (Wi?) 500.0
Ur=31315 ¢ () 0.225 Step-two optimisation

k, (Wm?2) 500.0 A'(hY) 830X 103
7 (mm? g) 90.8 E;(J mol?) 2.74 x10*
Yys (mmol g™ 9.66 Ay (b 1.01x10'°
m (mmol g' h") 0.0140 Eq ,(J mol™) 4.78x10*
ar-30315x (h™) 56.9

3.2. Results of parameter perturbation analysis

Figure 1 shows the uncertainty bands and average percentage uncertainty over the process
trajectory to be lowest and highest for Class I parameters (not shown) and Class III
parameters respectively. This suggests that the model is highly sensitive to changes of
Class III parameters but is less responsive to Class I parameters. Therefore, it is necessary
to design more experiments for the accurate identification of temperature associated
parameters meanwhile it is unsafe to update these Class III parameters during model-
based process online optimization considering the high level of prediction uncertainty
that can be introduced into the model output. Conversely, Class Il parameters only
showed a similar magnitude of model uncertainty when their input uncertainty was
around 20% thereby indicating the model to be robust in their mild changes. Hence, Class
II parameters are the ideal candidates to be re-estimated during online operation if the
model is used for dynamic process optimisation.

3.3. Results of PBR large scale simulation

Figure 2 (a) to (c) shows that the model can well predict substrate consumption and
hydrogen production in the large scale PBR with the calibrated transport phenomena
associated parameters being n = 4.515 and ¢ = 1.945. The n was observed to be higher
than that reported in the literature [5] (i.e., 0.25 to 3.625) thereby implying a better light
utilisation efficiency in the upscaled PBR which can be associated to the enhanced
transport phenomena (i.e., better culture mixing that promotes a more frequent light/dark
cycling). The obtained ¢ implies that the maximum specific H, production rate was
almost doubled due to a decrease in the PBR’s partial pressure which facilitates
biohydrogen synthesis. Similar observations were reported in the literature [6] whereby a
12% increase in the biohydrogen productivity of Rhodobacter sphaeroides ZX-5 was
attained when the total pressure at the PBR’s headspace was decreased from 1.082x10°
t0 0.944x10° Pa.

Figure 2 (d) to (f) shows the biomass, substrate and biohydrogen models to be sensitive
to the transport phenomena associated parameters. This implies: (i) they tune all of the
state variables during any re-calibration process for the prediction of a different PBR scale
and configuration, and (ii) can be updated during process online optimisation for
scenarios such as a sudden disturbance of the PBR operation (e.g., random failure event
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of the mixing pumps in the PBR) since their sensitives were relativity low in comparison
to Class III parameters.
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Figure 1: Perturbation analysis for input uncertainties of (a) to (c) 4% for class III, (d) to (f) 20%
for class 1. The mean, 10™ and 90™ percentile, and %RE for 100 Monte-Carlo simulations. Also,
(a) to (c) and (d) to (f) are state variables corresponding to the biomass, substrate and biohydrogen
models respectively

4. Conclusion

In this paper, a mechanistic model capable of simulating the photoheterotrophic biomass
growth and biohydrogen production by the photosynthetic bacterium R. palustris under
the unified influences of light intensity, light attenuation and temperature was developed.
Model-based upscaling capabilities via two transport phenomena dependent parameters,
1 and ¢ embedded into the mechanistic model was possible after re-calibration. By using
experimental data from a small (0.5 L) and large (1 L) scale photobioreactors (PBRs), the
model prediction accuracy was thoroughly verified for both intra and across-scale
predictions. Whilst perturbation analysis revealed temperature, light and transport
phenomena associated parameters to be sensitive, the first should be identified and fixed
during online model-based process optimisation meanwhile the second and last are more
suitable to be updated. Amongst the investigated PBR scales, the enhanced biohydrogen
production rate in the large scale PBR was attributed to the superior culture mixing and
gas removal performance, and was mechanistically described for the first time. This
provides important advances for the efficient design of novel PBRs and future online
optimisation for biohydrogen production.
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Figure 2: Simulation result of the large scale PBR: (a) to (¢) and perturbation analysis (d)
to (f) of 20% for transport phenomena associated parameters. The mean, 10™ and 90™
percentile, and %RE for 100 Monte-Carlo simulations. Each fitting is accompanied by
the percentage relative error (%RE). Also, (a) to (c) and (d) to (f) are state variables
corresponding to the biomass, substrate and biohydrogen models respectively.
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Abstract

In oral solid-dosage manufacturing through direct compression, lubrication is used to
enhance powder flowability and the ejection of the tablet from the die. However,
lubrication can negatively impact tablet quality attributes such as tablets hardness or
dissolution. In order to facilitate the selection of an appropriate lubrication extent,
different models describing the relation between compaction performance and process
conditions may be used. In particular, the extension of the Kushner and Moore model
proposed by Nassar et al. (Nassar et al., 2021, Int. J. Pharm., 592, 119980) allows
predicting tensile strength over a wide range of tablets solid fraction and powder blending
time values. The main drawback of this model is that it requires a large number of
experiments for parameter estimation. This results into a significant consumption of
active pharmaceutical ingredient (API), which may be scarce and considerably expensive.
In this study, model-based design of experiments is used to reduce the required
experimental effort for the identification of the model parameters. We propose a novel
procedure that is able to reduce parameters uncertainty while minimizing the number of
required experiments. Results based on a simulated case-study demonstrate the
effectiveness of the approach.

Keywords: model-based design of experiments; pharmaceutical engineering; quality by
design; oral solid-dosage manufacturing

1. Introduction

In tablet manufacturing, while dry or wet granulation facilitates compaction and flow
properties by converting fine powders into agglomerates (Santl et al., 2011), direct
compression improves powder manufacturability only through lubrication. Accordingly,
lubrication is a crucial step: an excessive usage of lubricant may degrade tablets
properties, like disintegration and dissolution, thus prejudicing the correct absorption
when they are ingested by the patients. Many lubrication models have been proposed to
aid the product development in tablets production through direct compression. Kushner
and Moore (2010) developed a model which relates tensile strength and lubrication at the
fixed solid fraction of 0.85. Recently, Nassar et al. (2021) introduced two additional
parameters to the abovementioned model to describe the effect of solid fraction when it
varies in a wide range of values. Despite the satisfactory predictive power, a considerable
amount of experiments is needed for model parameters identification. In the industrial
practice the experiments are usually carried out in a suboptimal, and consequently



26 F. Cenci et al.

ineffective, manner, based on trial-and-error approaches. The typical experimental
procedure goes through the preparation of up to 7-9 blends with different lubrication
extents, in which one powder blend is first prepared with a specific lubrication extent,
and then a compression profiling is performed to produce tablets with different solid
fractions. While changing compression pressure to have different solid fractions is not an
issue, preparing a considerable number of blends (i.e., a considerable number of
lubrication extents) leads to an excessive usage of API, which is expensive and may not
be available in the required quantity during drug development.

In this work we adopt model-based design of experiments (MBDoE; Asprey and
Macchietto, 2000), which is a science driven method to select optimal experimental
conditions yielding the maximum information content for the purpose of parameters
estimation. In order to minimize the number of blends to be prepared, a novel approach
is proposed based on a two-step optimization: first the optimal solid fractions are found
for every possible value of lubrication extent (i.e., blend); then, the lubrication extent
providing the most informative experiment is selected.

2. Materials and methods

The efficacy of the proposed MBDoE procedure is demonstrated through numerical
simulations (Figure 1): (1) a proper model describing the lubrication process is selected,
together with preliminary parameters guesses; (2) based on model equations and
parameters, MBDoE provides the design of the most informative experiments; (3) optimal
experiments are executed in the process, which in this study is simulated through a digital
model; (4) optimal data are available to update parameters estimates. This procedure is
iterated until satisfactory parameters precision and model predictive power are obtained.

1 2 3 4
Model —— MBDoE [—| Process [—] Data

f |

Figure 1 Workflow to validate the MBDoE procedure through numerical simulations.

2.1. Lubrication model

The compression performance in the tablet press is quantified in terms of tablets tensile
strength (ts, MPa), which is related to powder lubrication extent and to tablets solid
fraction (sf,-) through the extended Kushner and Moore equation proposed by Nassar et
al. (2021):

ts/tssp-08s0 = (1 —B) + Bexp(—yk) (D
tSsr=0.850 = a1 €xp(b1(1 —sf)) 2
B =a,(1—-sf)+b, 3

where Eq. (1) represents the original Kushner and Moore (2010), while Egs. (2) and (3)
introduce the dependence of tensile strength from solid fraction.

Five parameters (6) must be identified in this model: a, [MPa], a, [-], b;[-], b, [-] and y
[dm']. Two variables can be manipulated in the experiments to estimate those
parameters, namely solid fraction and lubrication extent.

2.2. Model-based design of experiments and global sensitivity analysis

MBDoE aims at finding the optimal experiment conditions ¢opc = [Sfopts kopt]T in terms
of solid fraction and lubrication extent in such a way as to estimate the model parameters
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with minimum uncertainty. This is performed by solving an optimization problem which
maximizes the information obtained by the experiment, which is evaluated through the
Fisher information matrix (FIM), H 5 (Box and Lucas, 1959):

H5(0.9) = :50.9)'5@.9) , @)

where S is the sensitivity matrix whose elements are:
dts ats dts ats dts

Ssri(0,¢) = [g (0.¢).5,.(0.¢).5-(0.¢).5,-(6.¢).5- (8, ¢)Lf K )
the decorator symbol (7) indicates estimated quantities, ¢ is the design vector which
collects inputs variables, i.e. ¢ = [sf,k]T, and @ are the estimated parameters. In this
study, the information content is maximized through a D-optimal strategy (Pukelsheim,
1993) which minimizes the volume of the parameters uncertainty region:

Popt = argglax{det[ﬂ 26,91} (6)

Note that, to avoid the dominance of some variables or parameters due to different scales,
data are pre-treated through a division by a reference value (e.g., the mean value of each
variable) and the parameters are estimated with scaled data and indicated with capital
letters, i.e. ® = [Al, El,AZ,E’Z,f]T.

Considering that MBDOoE calculations rely on sensitivity indices and that parameters with
negligible influence on the response tend to have higher uncertainty, a preliminary global
sensitivity analysis is performed. Sobol’s method (Saltelli et al., 2008) is applied,
estimating first-order (Syain,i» {=A4;, ..., ") and total-order (St;, i=Ay, ..., I') sensitivity
indices with a latin-hypercube sampling strategy. In particular, 8000 resamplings are
performed in the entire parameters domain whose ranges are shown in Table 1.

Table 1 Lower and upper bounds for model parameters used in global sensitivity analysis.

Parameter | Lower bound Upper bound
A4 0 5
B, -7 -2
A, 0 5
B, 0 5
r 0 5

2.2.1. Two-step MBDoE

With a classic MBDoE, input variables are freely varied inside their domain; therefore,
in each iteration of the MBDoE procedure ¢,, may have different kg, which
corresponds to the preparation of different powder blends after one compression point.
However, the number of blends that should be prepared (i.e., the changes in powder
lubrication extent) should be minimized for operational reasons. To reach this goal, we
adapt the MBDoOE procedure by developing a two-step optimization. At first,
experimental domains of the input variables are specified: sf varies in the continuous
range [0.65, 0.90], while k can take on integer values in [90, 2000] dm. Then, the
following optimizations are performed:

e a possible value of k is fixed and the optimization (6) is solved to get Nsr optimal
values of sf’; the set of Ngp solid fractions for the same lubrication extent is named
“profile”; this procedure is repeated for every possible value of k;

e among all calculated profiles, the one maximizing the objective function in (6) is
selected as the optimal experiment to be executed (op =

[Sfopt,lt T Sfopt,Nsp' kopt]T)-
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In general, the same values of sf,,.; and kop can be obtained by solving (6) multiple
times; however, since the objective is to reduce the experimental burden, replications of
similar optimization results are avoided by imposing that the optimal values differ by at
least 150 dm for k and 0.04 for sf. This allows to better explore the experimental domain,
which is advantageous in case of process-model mismatch.

In order to have sufficient experimental data for model calibration, the two optimization
steps are iterated Ny = 4 times, thus obtaining Ny profiles. For each profile, Ngz=5
optimal solid fractions are calculated.

In both optimization steps, results depend on the quality of the parameters estimates @
used in (6), but usually “true” parameters estimates are not available at the beginning of
the experimental campaign and parameters guesses @ guess Must be used. In this study,
we choose guesses based on historical data. Indeed, the datasets of five different
formulations named A, B, C, D and E (for details, see Nassar et al., 2021) are available.
Since they comprise a considerable amount of data points, the estimated parameters are
treated as “true values” (0,4, Og, O, Op, O respectively) and reliable initial guesses are
obtained by setting @ guess = mean(0,, Oz, O¢, Oy, Og).

2.3. Process

In this study, we represent the process through a digital model of the historical
formulation A, which is made of equations (1)-(3) and “true” parameters @,. Noise is
added to the in-silico data to mimic experimental and measurement errors. In particular,
given that specific solid fractions are difficult to be achieved in the physical system,
pseudo-random noise is added to Sfopei, L = 1, ..., Ngp to reproduce experimental errors
(the mean sf error is 0.01). Furthermore, pseudo-random noise is added also to the values
of ts generated by the digital model to reproduce a ts error variance of 0.02.

2.4. Global sensitivity analysis

First-order and total-order sensitivity indices are calculated in the selected domain of sf
values for three different given lubrication extents, namely 90 dm, 800 dm, 2000 dm.
Results (Figure 2) show that:

e at low lubrication extents (k=90 dm in Fig 2.a), the most influential parameters
are A,, B, and B, while at medium and high lubrication extents (k=800 dm and
k=2000 dm in Fig 2.a) the influence of B, on the response is dominant;

e parameter A, has always little influence on the response (Fig 2.b); therefore, it
is expected to have higher uncertainty when the model is calibrated with
experimental data. However, St 4, is not constantly equal to zero, thus this
parameter cannot be set to a nominal value;

e the summation of the total effects (omitted for sake of conciseness) is almost
always higher than 1, suggesting a high level of interaction among parameters
at every sf and k value, which in turn complicates the unique identification of
parameters.
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Figure 2 Global sensitivity analysis on model (1)-(3). Two types of sensitivity indices are shown:
(a) main effects; (b) total effects. They are calculated for three different lubrication extents: 90 dm,
800 dm and 2000 dm (separated by vertical black dotted lines).

2.5. Design of optimal experiments

By applying the two-step MBDoE procedure, the following optimal lubrication extents
are obtained: 90 dm, 2000 dm, 718 dm, 1849 dm. Since the process is affected by
experimental and measurement errors, four replicates are generated in silico for every
optimal solid fraction level.

Optimal profiles are used to identify model parameters, whose precision is assessed
through a t-test (Table 2). Moreover, model validation is performed by calculating the
tensile strength absolute error (ts AE) with the historical dataset A in the domain of the
MBDoE optimization, i.e. with k in [90, 2000] dm. As suggested by the process experts,
the desired model predictive power is a percentage of at most 5% of data points with a ts
AE exceeding 0.25 MPa.

Table 2 Results of model calibration performed with an increasing amount of optimal profiles
generated in silico. Parameters estimates are shown together with 95% confidence intervals (0,
+ 100(1-a)%Cl); CI are not calculated when the FIM is ill-conditioned. Parameters precision is
assessed though a t-test; estimates not satisfying the t-test are indicated with an asterisk (*).

no. 0;, + 100(1-a)%CI

Kope A, B, A, B, r
2 0.14* -4.82% 0.92* 1.00% 0.63*
3 0.15+0.03 -4.8140.41 0.72+0.44* 0.7940.23 1.26+0.58
4 0.1540.03 -4.8140.40 0.7140.37 0.8040.19 1.2140.53

The t-test for parameters precision show that two optimal profiles do not allow to obtain
statistically sound parameters estimates; a considerable improvement is achieved by
adding the third profile, since all parameters except for A, pass the t-test. The higher
uncertainty of this parameter is likely due to the scarce influence on the response, as
revealed by GSA (Section 2.4). The addition of the fourth optimal profile significantly
improves the quality of A,, which passes the t-test; moreover, and the fourth optimal
profile slightly improves the precision of parameters B, and [ (their 95% CI are smaller)
and brings negligible differences in terms of parameters estimates and intervals for A,
and B,. Moreover, three optimal profiles allow to attain the desired model predictive
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performance (Fig. 3), leading to a reduction of the experimental effort by more than 50%
with respect to the standard industrial practice.
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Figure 3 Tensile strength absolute error when the model is calibrated with three optimal profiles.

3. Conclusions

Lubrication models are used in the pharmaceutical industry to aid the design of lubrication
processes, which in turn are crucial to facilitate tablets manufacturability and to ensure
the desired product quality. Precise model parameters are required to the scope, but they
are usually obtained with an excessive amount of experimental data, which implies a
considerable API usage (thus, high costs) and time-consuming experimental campaigns.

We solve this issue by proposing a novel MBDOoE procedure that allows to select the most
informative experiments for the purpose of parameters estimation. Moreover, the
proposed MBDoE approach is able to minimize the change in lubrication extent, thus the
number of blends to be prepared, through a two-step optimization: first, solid fraction
values are optimized for every lubrication extent, thus providing multiple profiles of
optimal sf; among them, the profile maximizing parameters precision is selected as the
best experiment to be performed. We demonstrate that it is efficient in reducing the
experimental effort by more than 50% with respect to the standard industrial practice,
with considerable savings in terms of API and time for the experimentation. Indeed, three
optimal blends instead of the typical 7-9 are sufficient to obtain both statistically sound
parameters estimates and the desired prediction quality. However, with three optimal
profiles a higher uncertainty has to be accepted for parameter A,, which is likely due to
the small influence of this parameter on the model response.
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Abstract

In oral solid dosage (OSD) forms manufacturing, understanding and characterizing the
flowability of pharmaceutical formulations is pivotal since product and process performance
directly depend on this property. Therefore, whenever a formulation change occurs during
drug development, the impact on powder flowability must be quantified to address any
potential effects on the manufacturability or critical quality attributes of the final product.
Current industrial practice relies on extensive experimentation to address this problem,
resulting into a significant consumption of active pharmaceutical ingredient (API), which is
expensive and scarce during the early stages of drug development.

In this study, we propose a mixing rule model that can be used to predict the flowability of
pharmaceutical blends from the flowability of the individual components. The model is
validated with 35 different powder blends consisting of common APIs and excipients used for
directly compressed pharmaceutical formulations. Results show that, by measuring the
flowability of the pure APIand only 6 binary mixtures, the mixing rule model can be used to
predict the flowability of directly compressed pharmaceutical blends containing the API
without further experiments. Fora new pharmaceutical product, the reduction in experimental
effort using this modelling approach can translate to ~80% reduction of API consumption,
depending on the formulated product and the APIphysical properties.

Keywords: quality by design; pharmaceutical manufacturing; mixing rules; OSD

1. Introduction

Understanding powder flowability is critical to the success of several unit operations involved
in the manufacture of oral solid dosage (OSD) forms (Prescott and Barnum, 2000). The
performance of feeders, blenders, tablet presses and capsule fillers depends, among other
factors, on the flow properties of the formulation = (Osorio and Muzzio, 2013). Nevertheless,
measuring and predicting powder flowability from the individual components of the
formulation is notoriously a difficult task (Seville et al., 2000), especially for powders with
small particle size and uncontrolled size and shape distributions (Leung et al., 2017).

Despite this complexity, attempts to predict the flowability of multi-component mixtures of
solids have appeared in the literature. These attempts can broadly be categorized in two
groups: empirical approaches based on statistical models (Hildebrandt et al., 2019; Barjat et
al., 2021) and approaches based on the granular Bond number (Capece et al., 2015; Giraud et
al., 2021). In the former case, powder flowability was predicted from both bulk and particle
properties of the individual components using multivariate regression techniques, latent
variable models, support vector regression models or a combination thereof (Barjat et al.,
2021). In the latter case, specific flow properties of the powder mixture such as the flow
function coefficient (ffc) were correlated to bulk and particle properties of the individual
components via the Bond number, which quantifies the relative balance between gravitational
forces and attractive interparticle forces such as the van der Waals forces.
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Both these approaches have limitations. From one side, the prediction fidelity of statistical
models depends on the size and the range of composition and bulk/particle properties included
in the calibration dataset. The models currently available cover only a small range of powder
flow characteristics observed in pharmaceutical OSD forms, and therefore have limited
applicability for industrial applications, independently of the manufacturing platform
considered (direct compression, dry or wet granulation). On the other side, the approaches
based on the granular Bond number, although promising, require some input measurements
that are notroutinely collected in an industrial environment (e.g., particle surface energy), and
often show a low prediction fidelity. Their applicability is therefore limited, since the
additional effort to retrieve the required input measurements does not often justify their
resulting low prediction fidelity.

In this study, we develop a pragmatic mixing rule model to predict the flowability of
pharmaceutical blends from the individual components. We constrain our study to
formulations that are suitable to direct compression as the chosen manufacturing platform for
the final OSD product. Under this assumption, we identify a restricted set of components and
composition ranges for the formulations which are relevant in an industrial context, and we
quantify the prediction fidelity of the proposed modelling approach with experimental data.

2. Materials and experimental methods
2.1 Materials
Experiments were performed using blends composed of the following materials:
e microcrystalline cellulose (MCC) as Avicel PH102 (FMC Corporation, USA);
e anhydrous lactose as lactose Supertab 21AN (DFE Pharma, Germany);
e croscarmellose-sodium as Ac-Di-Sol (FMC Corporation, USA);
magnesium stearate as LIGAMED MF-2-V (Peter Greven, Germany)
monohydrate crystalline lactose as Pharmatose 200M (DFE Pharma, Germany)
(used as surrogate API)
e micronized paracetamol (Mallinckrodt Pharmaceuticals, USA).
All materials were used as received by the vendors. Binary and ternary mixtures containing
Pharmatose 200M as API (formulation A) and micronized paracetamol (formulation B) were
prepared spanning the range of composition reported in Table 1. These components and
composition ranges were selected based on current state-of-the art for directly compressed
pharmaceutical formulations in an industrial environment.

Table 1. Materials used in this study and composition ranges used for the ternary mixtures.

Material Grade Range (%w/w)
API n/a [5,40]
MCC Avicel PH102 [10, 90]
Lactose anhydrous SuperTab 21AN [15,70]
Croscarmellose sodium  Ac-Di-Sol Fixed at 3%
_ Magnesium stearate LIGAMED MF-2-V__ Fixedat 1%

Binary blends and ternary blends were prepared for the two formulations at different
compositions according to the ternary plots shown in Figure 1.

2.2. Blend preparation (pre-lubrication)

2.3. The blends were prepared using 3L bin blender (Sino Pharmaceutical Equipment
Development Co, Ltd). All excipients and the API were transferred into the blender after
screening through 1.0 mm sieve, and then mixed at 20 rpm for 20 min.
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Figure 1. Powder blends prepared for this study using (a) Pharmatose 200M as surrogate API and
(b) micronized paracetamol as API. Red stars are pure components, black squares binary blends and
blue circles ternary blends. The shaded area represents the formulation design space of interest.

2.4. Blend lubrication

Magnesium stearate (MgSt) was added to the pre-lubricated blends in the amount of 1% w/w
in the 5L bin blender. The mass of the non-lubricated blend required to achieve 40% head
space and the lubrication time were calculated respectively from the blend bulk density, and
according to therelationship proposed by Kushner (2012), by setting a target lubrication extent
equal to 100 dm.

2.5. Flowability measurements

Powder flowability was measured using a Brookfield shear cell tester (Amtrek, USA). Prior
to the analysis, all blends were pre-conditioned at 20 °C/50% RH for 24h. Flow function tests
were performed for each blend using a standard (volume = 266 cm®) cell.

3. Proposed modelling approach
We aimed to construct a mixing rule model that could predict the following properties of the
powder blend:

e  slope and intercept of the flow locus;

e fill bulk density
using these properties of the individual components as inputs. From the slope and intercept of
the flow locus, we derived the flow function coefficient at a consolidation endpoint = 3 kPa.
This value is often used in industry to assess the flowability behaviour of the blend according
to the classification system reported in Schulze (2008).
Most of the APIs and excipients that are used in pharmaceutical development are fine, dry and
uncharged powders. In this scenario, previous studies (Capece et al., 2015; Giraud et al., 2021)
have shown that the flowability of the mixture is dominated by inter-particle cohesive forces
such as the van der Waals forces. Based on this assumption, we used statistical-mechanical
arguments developed for mixture of fluids to propose a functional relationship between the
property of the solid mixture and the individual components.
For a mixture whose pair intermolecular potential energy as a function of distance between
the pair (u;;(1)) can be described as:

() = e f (—) (1)

the following mixing rules can be derived to describe the molecular volume o> and the
molecular energy € of the mixture:
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Here, 0;;is intermolecular interaction distance between molecules of component i and J, €;; is
the interaction energy parameter, N is the number of components in the mixture and w; is the
mass fraction of the i-th component. For a mixture of solids, we assumed that the property of
the mixture can be described as a sum of two terms: 1) a term that depends on the molecular
volume of the mixture o> (zero-interaction term), and 2) a term that depends on the product
(molecular energy) x (molecular volume) e (first-order interaction term). Leveraging on the
mixing rules developed by Van der Waals for fluids and their statistical mechanics
interpretation (Vander Waals, 1873; Kwak and Mansoori, 1986), and considering the analogy
with our assumptions, we formulated the following mixing rule for a generic property ¢,, of
the mixture:

b= ZiLawid; + LI 2L waw, (60, (1- kij) C))

where k; ; is a binary interaction parameter (BIP) for the pair of components i and j that needs
to be fitted from experimental data of the binary mixture, and ¢, is the property of the i-th
component of the powder blend. The first term on the right-hand side of Eq. (4) is the zero-
interaction term, while the second term is the first-order interaction term. Note the analogy
between the first and second term of Eq. (4) and the "b” and "a" term in the van Der Waals
equation of state for mixture of fluids.

Eq. (4) sets the structural relationship between the property of the mixture and the individual
components. In order to use it, binary interaction parameters must be estimated for each pair
of components of the mixture. For the formulation considered in Table 1, this requires
estimation of the binary interaction parameters K,p; yecs Kapr rac @0d Kyec e, With MCC =
Avicel PH102 and Lac = Lactose SuperTab21AN. Note that, for a specific property of the
mixture, only the first two parameters depend on the API, and therefore need to be estimated
from experimental data when a new product is considered. The binary interaction parameter
kycc Lae can be estimated only once and then used for any formulation containing those two
components.

3.1 Sofiware
The models presented in this study were coded in MATLAB R2020b. All simulations were
performed on an Intel Core i7-5600U CPU@2.60GHz processor with 16.0 GB RAM.

4, Results

The BIPs were estimated from the binary mixtures reported in Figure 1 (black square points)
for each binary system API-excipient or excipient-excipient. The parameter estimation was
performed using a maximum likelihood estimator (Johansen and Juselius, 1990). The
estimated values of the BIPs for the slope and intercept of the flow locus and for the fill bulk
density are reported in Table 2. Model predictions were validated against the experimental
data obtained for the ternary mixtures reported in Figure 1 (blue circles). Note that these
mixtures were chosen in order to cover the design space of mixtures of industrial relevance
(yellow area in Figure 1). The same plot shows the classification ranges for the flow behavior
of the mixture according to the ffc values reported in Schulze (2008). Good agreement
between the model predictions and the experimental observations was obtained for both
formulations.
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Table2. Estimated value of the binary interaction parameters for the two formulations considered
in this study.PT = Pharmatose 200M. MCC = Avicel PHI02. Lac = Lactose SuperTab2IlAN.

APAP=micronized paracetamol.

Binary interaction Value for slope of Value forintercept of  Value for fill
parameter the flow locus [-] the flow locus [-] bulk density [-]
kprymce 3.648 0.085 0.753
kprpac -0.861 1.756 0.830
kapapmce 9.575 4.695 1.061
k ap ap ac -8.897 3.497 2.387
Kmcc rac 3.107 0.720 1.306

The classification of the flow behavior of the blend was predicted correctly by the model for
all blends apart from a single blend with micronized paracetamol (blend #3), where the blend
was categorized as cohesive rather than very cohesive. However, the model prediction was
still within the experimental error for the specific blend.

. ffc at 3kPa ffc at 3kPa
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Figure 2. Model predictions Vs experimental values of the flow function coefficient at 3kPa
consolidation endpoint for (a) formulation A (API: Pharmatose 200M) and (b) formulation B (API:
micronized paracetamol.

Figure 3 shows the parity plots predicted vs experimental for the fill bulk density. Good
prediction fidelity was obtained for both formulations; however, the model seemed to
systematically underestimate the bulk density of the formulation containing micronized
paracetamol. Investigation on this behavior is ongoing and the study will be further
corroborated with additional experimental data for model validation. Overall, the model was
able to consistently predict the behavior of the ternary blends with just binary and pure API
data used as model inputs. Whenever a minor or major change of the formulation occurs, the
model can be used to assess any impact on the flow behavior without additional experiments.

5. Conclusions

In this study, we developed a simple, yet effective, mixing rule model to predict the flowability
of multi-component pharmaceutical powder blends that are suitable for direct compression.
The model requires an upfront experimental characterization of the flowability of the pure API
and 6 binary mixtures, and can then be used to predict the flowability of any ternary blend
whose ingredient compositions fall within pre-defined ranges relevant to a direct compression
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manufacturing route in an industrial environment. Whenever a minor or major change in the
formulation composition occurs during the drug development process, the model can be used
to predict the impact on the blend flowability without requiring any further shear cell
experiments.

Ternary blends - FBD o 600 Ternary blends - FBD
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Figure 3. Model predictions Vs experimental values of fill bulk density for (a) formulation A (API:
Pharmatose 200M) and (b) formulation B (API: micronized paracetamol).

For some OSD products, where several alterations of the formulation composition might
occur, this can translate into areduction of up to 80% of API consumption for blend flowability
assessment. Future work will focus on testing the methodology with additional APIs and
excipients (e.g., mannitol) with different particle properties in order to define the range of
validity of the underlying assumptions of the proposed approach.
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Abstract

MIBA (Methyl Iso Butyryl Acetate) is an intermediate used in the pharmaceutical
industry and is generally produced in small scale batch processes making it expensive to
produce. This study was to look at the potential for a continuous process for the
manufacture of MIBA, with the aim to improve yields and hence reduce costs., with the
initial stage of the work focused on the purification of the MIBA product, this being
required at high levels of purity, typically in excess of 99 weight %. Vacuum distillation
column models were built using both AVEVA’s PRO/II Simulation and AVEVA Process
Simulation process modeling tools with the feasibility of separations assessed using
PRO/II’s Ternary VLE tool. This study investigated achieving high purities of MIBA by
using different column configurations modelled in AVEVA PRO/II Simulation and
AVEVA Process Simulation. This paper summarizes the methods and findings of this
study.

Keywords: MIBA, Distillation, Simulation, modeling, Ternary Plots.

1. Introduction

The component Methyl Iso Butyryl Acetate (MIBA) has good demand in Pharmaceutical
Industry across the world. Most of the manufactures are synthesizing MIBA in batch
processes and as a result the cost of the product is high. So, in this work we tried to design
a single continuous distillation unit. This is a challenging problem because the properties
of the components involved in the reaction are not well known. It is a general method that
MIBA is synthesized by the reaction of Methyl Acetoacetate with Iso Butyryl Chloride
in the presence of Calcium Hydroxide and Ammonium Chloride. In the reaction the main
byproducts are Acetamide and water. In this work the reaction part of the process is not
considered for simulation. Rather, the focus is on removing Acetamide and water to
produce 99.9 wt% MIBA by means of a continuous distillation process.

2. Simulation of continuous distillation of MIBA
2.1. Simulation using AVEVA PRO/II Simulation Software

In this simulation the following feed composition and conditions were used:



38 P. Veldandi et al.

Table 1. Feed stream composition and condition

Stream Name FEED
Temperature C 80
Pressure MM HG 133.488
Total Molar Rate g-mol/hr 1384.401
Total Mass Rate KG/HR 125
Stream Phase Liquid
Thermodynamic system NRTL
Total Weight Comp Fractions

ACETAMIDE 0.0739

MIBA 0.8561

WATER 0.07
Total Weight Comp. Rates KG/HR

ACETAMIDE 9.2323

MIBA 107.0159

WATER 8.7518

A rigorous distillation column unit operation with 13 trays, reboiler and condenser is used
to model the separation. The feed enters at the bottom. This is to make the distillation
equivalent to the configuration in a batch distillation. The pressure of the column is
maintained at 4 mmHg. The thermodynamic method used is Non-Random Two Liquid
(NRTL). When the simulation model is run the top product purity achieved was 92.7 wt%
MIBA, but this purity is not of sufficient quality for use in practical applications. The
objective is to reach 99.9 wt% purity. An attempt has been made to improve the purity by
changing several parameters for the column, but none of them achieved the desired purity.
The MIBA composition profile versus the tray number, as illustrated by Figure 1, reveals
a peak composition MIBA in the upper stages below the condenser. Resulting from this
observation a side draw was added at tray 3 and this produced 99.9 wt% pure MIBA
stream. The stream details of the top product and side draw are shown in Table 2.

2.2. Simulation using AVEVA Process Simulation Software

The same approach as mentioned in 2.1 has been followed to simulate the Distillation
operation using AVEVA Process Simulation Software with identical results. The initial
results without side draw are shown in Figure 2., and the process flow diagram with side
draw is shown in Figure 3.

2.3 Application of Ternary plots

The separation has been analyzed with PRO/II’s Ternary Plot tool confirming the
obtained results through a conceptual analysis. The ternary plot analysis of the initial
process flowsheet with 92 wt% pure MIBA is shown in Figure 4. The ternary plot analysis
of the modified process flowsheet with 99.9 wt% pure MIBA is shown in Figure 5.
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Table 2. Product stream composition and condition

Stream Name SIDEDRAW TOP PRODUCT
Temperature C 56.501 0.653
Pressure MM HG | 5.246 4
Total Molar Rate g-mol/hr | 650 576.954
Total Mass Rate KG/HR 92.853 22.643
Stream Phase Liquid Liquid
Thermodynamic system NRTL NRTL
Total Weight Comp. Fractions
ACETAMIDE 0.0008 0
MIBA 0.9981 0.6182
WATER 0.0012 0.3818
Total Weight Comp. Rates KG/HR
ACETAMIDE 0.074 0.0002
MIBA 92.672 13.9982
WATER 0.107 8.6447

Figure 1. Weight fraction of MIBA from top tray to bottom tray
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Figure 2. MIBA synthesis initial process flowsheet using AVEVA Process Simulation

software
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Figure3. 99.9 wt% MIBA modified process flowsheet using AVEVA Process

Simulation software
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The intention is to gain a 99 wt% pure MIBA distillate. But this is not achievable, it is
infeasible. As the feed is a ternary system composed of MIBA, ACETAMIDE and water,
we used the PRO/II Ternary Plot tool that allows to analyze the thermodynamic behavior
along with the operational process specifications.
The filled dots represent stream compositions, the marine circles represent the column
profile for the extreme solution when 60 mol% MIBA is obtained. This allows to analyze
the separation statement. We can see the residue curves in red. According to separation
theory for ternary systems, two requirements describe the solution:

a) Distillate, bottoms and feed compositions form a straight line.

b) Distillate and bottoms compositions must lie on the same residue curve.
This defines the separation region for a given feed. The chart below shows the feed as the
blue dot. If we want the blue feed to separate into a pure MIBA composition then the
bottoms must be resulting somewhere along the dotted green curve, it would be
somewhere in the upper left section. This is due to requirement a).
Requirement b) shows that a bottoms composition in that section is infeasible:
The column can be solved for the distillate/bottom composition pairs in pink, green, and
marine. The arrow shows that as we move the specification for the distillate’s MIBA from
pink to marine, we also push the bottom’s ACETAMIDE towards 100 wt%.
The point is that the residue curve does not extend upwards (the crossed out red arrow on
lower left corner). Hence, there is no way a bottoms product can be gained that would be
in the upper left section. The pure ACETAMIDE node (the chart’s lower left corner)
limits the MIBA distillate to the marine blue fraction of 0.6, i.e. 60 mol%.
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Below is a plot with various side draw rates (90, 50, 5 g/h), all at 99 wt% MIBA (ca. 92
mol%), and the resulting top and bottom purities and rates. In case of side draws, the feed

is located in the gravity center of the triangle that can be spanned by the top, side and
bottom composition (the dotted lines). It is a simple mass balance.

Figure 5. Ternary Plot for 99.9 wt% MIBA Flow diagram
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Conclusion

In this work a continuous distillation process has been proposed for purifying MIBA.
Simulation has been carried out using AVEVA PRO/II Simulation software and AVEVA
Process Simulation Software. The results from the standalone flowsheet have been
verified with ternary plots feature available in both the software. The location of side
draw plays an important role in achieving 99.9 wt% MIBA. The data used and the

predicted performance of the distillation columns should be validated by experimental
analysis.
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Abstract

The motivation of the research is based on separation problem from fermentation
industry, that is Acetone-Butanol-Ethanol solvent residue removal from its aqueous
solutions. Pervaporation is a novel, promising technology for the separation of complex,
azeotropic mixtures. Within pervaporation membrane category, organophilic
pervaporation was investigated. In this work, laboratory experiments were performed
with commercially available test membranes at different temperatures conditions. The
separation factor and total organic fluxes were determined as well. It was found that, the
separation factor and fluxes were inversely proportional to the feed butanol concentration.
The laboratory results were consistent with literature studies. Using partial fluxes,
semiempirical pervaporation models were fitted. Exponentially improved model version
of Rautenbach pervaporation model (Szilagyi and Toth, 2020) was investigated in the
case of binary mixtures. The aim of this work was to extend the observations of
organophilic pervaporation model to more complex mixture. It can be observed that, the
exponentially Rautenbach model describes accurately the transport process of
organophilic pervaporation. Thus, it is possible to implement further studies in process
simulator environment.

Keywords: Parameter estimation, Organophilic pervaporation, Acetone-Butanol-Ethanol
mixture.

1. Introduction

During the ABE (A: Acetone, B: N-butanol, E: Ethanol) fermentation, Acetone, N-
butanol and Ethanol are mainly produced, other components may be e.g. organic acids
(butyric acid, acetic acid) (Kollarik, 2018). There are several possibilities for the
separation of fermentation products. The most common solutions are distillation
adsorption, liquid-liquid extraction, stripping, reverse osmosis, pervaporation (Valentinyi
et al., 2018). The latter two methods fall within the scope of membrane procedures. The
advantages of membrane operations are that they are generally energy efficient, flexible
operations and do not require the addition of foreign (organic) substances to improve the
separation. Any fouling and scaling during the process must be prevented. Furthermore,
the membrane operations are environmentally beneficial because they do not produce
significant additional waste (Haaz and Toth, 2018).

Pervaporation is a membrane operation in which the mixture to be separated evaporates
to the low-pressure side of the membrane and the separation between the components
through the membrane is carried out by the principle of sorption-diffusion. Vacuum pump
is mostly used to achieve the low vapor pressure on the permeate side. Depending on the
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permeable component, two types of pervaporation are distinguished: hydrophilic and
organophilic pervaporation (Baker, 2012). The “sorption-diffusion” model is the most
accurate to describe pervaporation in bilayer composite membranes, so the separation
process of pervaporation can be derived from the sorption-diffusion principle (Wijmans
and Baker, 1995). The industrial application of pervaporation has become more
widespread in recent decades due to its lower energy consumption compared to traditional
separation techniques (distillation, absorption, etc.). In the case of the products of ABE
fermentation, the actual task is the problem of separating the quaternary mixture of
Acetone - N-butanol - Ethanol - Water. Only organophilic pervaporation is possible, not
hydrophilic because dilute aqueous solutions must be separated. Tables 1 introduces some
organophilic pervaporation membranes treating the products of ABE fermentation.

Table 1 Organophilic membranes separating ABE fermentation products (Feed, total organic flux and separation
factor values)

Total Separation factor
Feed [wt%] organic P

Membrane type flux [-] Reference

A B E [kgm®h] A B E
PDMS/ceramic 0.6 1.2 0.2 1.21 346 200 6.5 Liuetal,2014
PDMS 1.1 1.0 10.2  58.60 4.7 11.6 2.7 Liuetal., 2005
PEBA 0.6 1.9 0.7 0.03 5.1 124 3.5 Liuetal., 2005
PDMS filled with s. Huang and Meagher,
(60Wt%) 7.0 15-20 1.0 0.91 70 200 1.0 2001
PDMS/ceramic 0.6 1.1 0.2 1.05 300 18.0 5.0 Liuetal,2011
PDMS filled withs. o5 10 02 028 400 700 10.0 Zhouetal, 2011
(65Wt%)
PDMS filled with s. :
(50wt%) 30 100 1.0 0.12 440 70.0 5.2 Qureshietal, 2001

Thongsukmak and

TOA LM with PP s. 08 1.5 0.5 0.02  220.0 275.0 80.0 Sirkar, 2007

Studying Table 1, it can be seen that PDMS-based membranes are the most common in
practical application. The aim of this research work is to investigate the quaternary
Acetone - N-butanol - Ethanol - Water test mixture and the parameter estimation for
semiempirical pervaporation model.

2. Material and methods

The measurements were performed on CM Celfa Membrantechnik AG P-28 membrane
apparatus with the effective membrane area of 28 ¢cm?. On the permeate side, constant
13.33 mbar vacuum was provided with VACUUMBRAND PC2003 VARIO vacuum
pump. Measurements were performed under isothermal conditions at three different
temperatures (303, 318 and 328K) with an organophilic PDMS type membrane (Sulzer
PERVAP 4060). The starting compositions of the 500 mL feed mixtures were 0.4 wt%
Acetone, 0.8 wt% N-butanol and 0.1 wt% Ethanol. The rest of the test mixtures were
water. The permeate was collected in liquid nitrogen-cooled traps and the compositions
were analyzed by SHIMADZU GCMS-QP2010 gas chromatograph and Hanna HI 904
Karl Fischer coulometric titrator (Toth, 2015).

Appropriate computer modelling is an essential tool for designing and optimizing
separation processes, which requires models that describe the processes as well as
possible. Among the pervaporation models found in the literature, the used model
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(Szilagyi and Toth, 2020) was based on Rautenbach's sorption-diffusion model. The
model defines the process of pervaporation in the following steps.

e adsorption of the component in the selective layer of the membrane,

e diffusion of the component through the membrane material,

e desorption of the target component on the steam side.
The basic equation of this model is (J: partial permeate flux) (Szilagyi and Toth, 2020):
Ji = Dexp [ (= — 1)) (B2 exp(xin®) 0= (1,0, 1) M
First the parameters of the model must be estimated based on measured data. These
parameters are the activation energies (£;) and the reference transport coefficients (D),
and the B parameters that shows the concentration dependencies of the transport
coefficients. Transport coefficient depends on the temperature in an Arrhenius type
exponential way. The liquid activity coefficients can be calculated with different vapor-
liquid equilibrium models or with the Wilson equation (Haaz and Toth, 2018). The
estimations are completed with the STATISTICA® program environment. The
verification can be obtained with objective function, that is minimized the deviation of
the modelled and the measured values (Toth et al., 2018).

2
OF = Z:lzl <]i.measured‘]i,modelled) (2)

Jimeasured

Partial pressures (pjo) are calculated according to the Antoine equation (Haaz and Toth,
2018).

3. Results and discussion

The most valuable component during the separation is N-butanol, so the parameters
evaluating the separation was plotted as a function of this. Figure 1 shows the separation
factors at 303K. Total organic fluxes at 303, 318 and 328K can be seen in the Figure 2.

Separation factors - 303K
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Figure 1. Separation factors of ABE mixtures in a function of feed N-butanol content in weight percent with
Sulzer PERVAP™ 4060 membrane
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Total organic fluxes
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Figure 2. Measured total organic fluxes of ABE mixtures in a function of feed N-butanol content in weight
percent with Sulzer PERVAP™ 4060 membrane

Figure 1 and Figure 2 show that the fluxes are inversely related to the separation factors
as a function of the N-butanol feed concentration. Higher temperatures resulted in higher
flux and separation factor values. In order of magnitude, the order is: Ethanol <N-butanol
<Acetone, which is in agreement with the literature (Kujawska et al., 2015). Figure 3,
Figure 4 and Figure 5 show the comparison of the measured partial fluxes with the model
at 303K.
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Figure 3. Measured partial Acetone fluxes of ABE mixtures compared to Acetone fluxes calculated with
pervaporation model at 303K in a function of feed N-butanol content in weight percent
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Figure 4. Measured partial N-butanol fluxes of ABE mixtures compared to N-butanol fluxes calculated with
pervaporation model at 303K in a function of feed N-butanol content in weight percent
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Figure 5. Measured partial Ethanol fluxes of ABE mixtures compared to Ethanol fluxes calculated with
pervaporation model at 303K in a function of feed N-butanol content in weight percent

It can be seen that, in the case of the pervaporation model good agreement is found at the
lower and also at the higher feed N-butanol content between the measured and calculated
values. The reason for the better fit of the supplemented model probably lies in the
concentration dependence of the transport coefficient. The results of the laboratory
measurements suggest that the transport coefficient is also concentration dependent. The
minimized objective functions and estimated values for transport coefficients, activation
energies and B parameters of the pervaporation model are shown in Table 2. It can be
seen, the low OF values also confirm the accuracy of the model.

Table 2 Estimated parameters for Acetone - N-butanol - Ethanol - Water mixture with Sulzer PERVAP™ 4060
membrane and objective functions

Acetone N-Butanol Ethanol Water
D, [kmol/m?h] 0.034 0.193 0.003 65821
E; [kJ/kmol] 18075 34298 43943 35637
B [-] 257.12 -30.45 624.12 -15.42

OF [-] 0.012 0.031 0.025 0.106
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4. Conclusions

In this study, organophilic pervaporation works in the literature related to the separation
of ABE fermentation products was presented. Laboratory experiments were performed at
three different temperatures. It was found that the separation factors and the fluxes are
inversely proportional to the N-butanol feed concentration. The results are in good
accordance with literature studies. It can be observed that the Rautenbach model with
exponential exponent precisely describes the transport process of organophilic
pervaporation. This publication was supported by NTP-NFTO-21-B-0014, MEC 140699,
OTKA 128543, OTKA 131586 and TKP2020 National Challenges Subprogram.
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Abstract

In recent years, Artificial Neural Networks (ANNs) have received special attention to a
widespread application in the field of engineering, biology, energy, and finance. Within
the ANN design, several factors play a major role in the correct prediction of the process,
such as the number of internal layers, the number of neurons, the number of used features,
the training algorithm, the activation function, the number of epochs, among many others.
Considering datasets of an intensified distillation column generated by Aspen Plus
Dynamics at different operation conditions, here we bring clarity in the field with
different architectures of ANNs to abstract the dynamics of both an intensified and
conventional distillation process that separates an effluent coming from fermentation
producing acetone, butanol, and ethanol (ABE) for spark-ignition purposes. Our results
highlight that a one-layer neural network can represent the dynamics of an intensified
column to forecast the concentration of acetone, butanol, and ethanol. Remarkably, the
linear activation function overperforms the tangent hyperbolic as activation functions.
Ultimately, we found that the reflux ratio and reboiler duty are key features to reconstruct
the full dynamics of the intensified column.

Keywords: Deep Learning, ABE purification, LSTM, Biobutanol.

1. Introduction

The use of liquid biofuels such as ethanol and butanol has been presented as an important
advance due to their origin from biomass fermentation and their low emission levels
(Ribeiro et al., 2007). One of the processes by which it can be obtained is ABE
fermentation from biomass, this process produces a mixture composed of acetone,
butanol, and ethanol which creates a challenge in trying to reduce the energy in the
separation process (Gonzalez-Bravo et al., 2016). The use of new design approaches for
the control, modeling, and simulation of chemical processes has allowed the development
of intensified processes, seeking a radical change in the unit operations used to meet
current needs under the development of a sustainable process (Sanchez-Ramirez et al.,
2017). The dividing wall column (DWC) allows to reduce energy and capital costs due
to the reduction of equipment since the separation of the mixture would be carried out in
one column and not in two, in addition to the fact that shorter piping and electrical currents
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are required (Gomez-Castro et al., 2008). Dynamic properties are an important issue in
DWC since apparently dynamic behavior can be greatly reduced. Although it has been
shown that control sequences can be better than conventional distillation sequences so
you can have total annual cost savings as good dynamic performance (Rewagad & Kiss,
2012). Furthermore, there is not any preliminary work reported involving the processing
of mixtures with a high degree of complexity relative to thermodynamic modeling. Deep
learning models can learn extremely complicated patterns from a large amount of data
without much manual expertise so they can be used for a large number of applications
where their structure is constituted by several hidden layers that allow transforming the
input data several times before producing the output, so it is possible to manipulate their
architecture to obtain better output values without overfitting (Lopez-Tapia et al., 2021).
The use of Long short-term memory (LSTM) ANNS in time series prediction may offer
more efficient and effective alternatives for highly complex multivariate systems (Ookura
& Mori, 2020). The main objective of this study is to optimize the ANN architecture that
models the dynamics behavior of a DWC comparing the activation function, the
optimizers that minimize the Mean Squared Error (MSE), and analyzing the increase in
the number of hidden layers based on the AIC (Akaike Information Criterion) value.
Finally, the manipulable variables that have a greater weight on the system modeling
while maintaining a good prediction of the output data will be identified.

2. Methodology

Data generation. The datasets are obtained from a simulation software Aspen Dynamics,
this simulation is performed in a closed-circuit test where a set point was implemented in
the composition of each component of the mixture to be separated (Acetone-Butanol-
Ethanol), in this way three setpoint changes were performed, and tuned at the same time,
thus producing time-varying operational datasets. Simulations of 100 hours were
performed using a sampling time of 0.4 hours. The feed stream considers a mixture of
acetone, butanol, ethanol, and water in proportions of 0.3018, 0.1695, 0.0073, and 0.5214
wt%, respectively. The datasets were subdivided into the first 24 hours for training and
the rest for testing. The data manipulation is done in the Python 3.8 programming
language where use is made of the PANDAS library which is ideal for data analysis.
Neural Network basic elements. An artificial neural network (ANN) is a distributed
computing scheme inspired by the structure of the human nervous system. The
architecture of a neural network is formed by connecting multiple elementary processors,
being an adaptive system that has an algorithm to adjust its weights to meet the
performance requirements of the problem based on representative samples. Eq. 1 and 2
represent the equivalent model of the synaptic connections in a k neuron.

Uy = Z Wi jXj (€Y
j=1
Vi = @(u + by) )

where the vector x; is the set of input signals, wy; is the set of synaptic weights of neuron
k, uy, is the linear combination of the weighted inputs, by, is the polarization and yy, is the
output signal of the neuron. The activation function ¢ serves the purpose of limiting the
output range of the neuron and can be linear or nonlinear. In this study, we compare the
performance of the functions Linear, ReLU, and Tanh. To obtain a good minimization of
the loss function, the choice of the optimizer will be compared from a defined activation
function to obtain a good prediction of the time series thanks to its convergence speed
and its generalization speed (Manickam et al., 2021). The optimizers compared are
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Adaptive Moment Estimation (ADAM), Root Mean Square Propagation (RMSP), and
Stochastic Gradient Descent (SGD).

LSTM modeling. Recurrent Neural Networks (RNN) are distinguished in that they have
at least one or more feedback loops that have a profound impact on the learning capability
of the neural network. The LSTM is a special type of RNN that can learn long-term
dependent information making considerable progress in problems related to time series
analysis. This type of network needs a higher computational power because it has
feedback based on a time step (Hochreiter & Schmidhuber, 1997). In this study, a step of
5 is used for the feedback, with which it is possible to have a good prediction for a large
amount of data.

Model Selection. Optimal architectures of the neural network model can be found by
minimizing the MSE concerning the variation of the number of hidden neurons (Shin et
al., 2020).

MSE = Z?=1(y;l_37l)2 3)
where n is the number of data points, y; is the actual value and Y, is the value estimated
by the ANN. Given a collection of models for a dataset, AIC estimates the quality of each
model, relative to each of the other models. Hence, AIC provides a value for model
selection. It deals with the trade-off between the goodness of fit of the model and the
complexity of the model. AIC does not provide a test of a model in the sense of testing a
null hypothesis, so it can tell nothing about the quality of the model in an absolute sense.
If all the candidate models fit poorly, AIC does not give any warning of that. The formula
for AIC depends upon the statistical model. A lower AIC value means that a given model
describes the data better than other models with higher values.

2MN
AIC = Nlog(MSE) + N —1
N is the number of data points, M is the number of unknown parameters.
The normalization was performed using Eq. 5 to transform all feature values into an
interval of /0,1], mathematically speaking y; refers to the data values, min(y;) is the
minimum value and max(y;) refers to the maximum value. Increasing the efficiency of
the algorithm by reducing fluctuations.
yi —min(y;)
max(y,) — min(y,)

4)

)

Vscaled =

3. Results

From the DWC system, were considered as manipulable variables the reflux ratio, side
streamflow, and reboiler heat duty. In the Linear activation function and the RMSP
optimizer, an analysis of the impact of these manipulable variables was performed; first,
the ANN was fed with the three manipulable variables the result is shown in blue color
line in Figure 1(a), then the reboiler duty input to the ANN was inactivated and the
predictive capability of the ANN was measured with the input only of the reflux ratio and
the side stream flow the result is shown in orange color line Figure 1(a), also the analysis
of inactivating the reflux ratio to the ANN and feeding the ANN reboiler duty and the
Side streamflow the result is shown in Figure 1(a) green color line and finally inactivating
the side-stream flow feed to the ANN and feeding the ANN with the Reboiler duty and
ratio the results are shown black line Figure 1(a). According to these results, it can be
observed that the one that showed the worst behavior was the one that deprived the
Reboiler duty feeding, and the ones that showed the best results were on the one hand the
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one that feed the three manipulable variables and the ones that deprived the side
streamflow feeding and the reflux ratio. The one that showed the best result for 5 neurons
was the one feed with the reflux ratio and the reboiler duty.
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Figure 1. ANNs with one single hidden layer (a) Effects of the input manipulable
variables on MSE; (b) AIC value comparison for input manipulable variables; (c) Best
value of AIC is for Reflux ratio/Reboiler duty.

The ANN RMSP optimizer is analyzed for the three manipulable variables; Reflux ratio
side streamflow and reboiler duty. The black-colored line in Figure 1(b) was the one that
showed the lowest value of the AIC for 5 hidden neurons which is the one that was fed
only with the Reflux ratio and the Reboiler heat duty. An error analysis was performed
only for the one showing the lowest AIC shown in Figure 1(c).

According to the analysis performed to the different hyperparameters, the final topology
of the ANN shown in Figure 2(b) was configured, where the manipulable variables that
showed the greatest influence in the modeling of the DWC dynamics, as well as the
perturbed variables, are feed to the ANN and only one layer of neurons is used, achieving
a good prediction in the output variables, the composition profiles of Acetone, Ethanol,
and Butanol. With the architecture shown in Figure 2(b), a good prediction was achieved
for the system shown in the diagram in Figure 2(a), the results obtained by ANN show a
good fit to the data simulated by Aspen Dynamics for the mass fraction of Acetone,
Ethanol, and Butanol (see Figure 3). Table 1 summarizes the methodology that gave the
best results in the ANN configuration.
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Table 1. ANN Configuration Summary.

Percentage of training data 24%  Activation function Linear

Percentage of test data 76% Optimizer RMSP

Feedback step 5 Key Features Reflux ratio/ Reboiler heat
duty

Number of input features 5 MSE value 6.396095x107°

Type of neurons LSTM AIC value -591.96

Number of hidden layers 1 Activation function Linear

Number of hidden neurons 5 Optimizer RMSP
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4. Conclusions

The architecture of the ANN was optimized to obtain good forecasting of Acetone,
Butanol, and Ethanol in a dividing wall column. A major result in our study is that we
found that to have a good data prediction it is not necessary to consider the three
manipulable variables. Results show that it is only necessary to consider two: the reflux
ratio and the reboiler heat duty. This would have an impact on future work by
implementing only two controllers for the three perturbed output variables of the DWC
system, which would reduce the operating cost considerably by having fewer controllers
and with a low number of neurons in the ANN structure.
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Abstract

Kinetic modelling covers a key role in process simulation and design. Recently the
methanol sector is assisting a remarkable enhancement due to its applications as fuel,
solvent, and precursor as shown in Bozzano and Manenti (2016). The increasing number
of patents, the market prospects, and recent research witness this renewed interest.
However, despite this rate in developing and improving technologies, the kinetics
modelling does not follow these trends. The methanol synthesis chemical paths, the
intermediates, and the real role of the active sites are nowadays still unclear. However,
process engineering requires reliable models to estimate the methanol synthesis rate,
hence, to design and size the reactor and downstream equipment. Currently, the most used
kinetics are Graaf and Vanden Bussche - Froment’s models which in any case show some
shortcomings and weaknesses. Starting from these premises, the need for updated kinetics
is clear. This work aims at comparing and highlighting the impact of different kinetic
models (1) original Graaf (or-GR), (2) Vanden Bussche - Froment (VBF), and (3) refitted
Graaf (ref-GR) on the methanol synthesis configuration for different feedstocks through
an in-silico assessment. The general simulation flowsheet includes the single-stage PFR
for the methanol synthesis, the condensation step, and recycle loop for the unreacted
syngas. The comparison with industrial data proves that the ref~-GR model predicts better
than the original Graaf model as in Graaf et al. (1988), while the VBF, Vanden Bussche
and Froment (1997), tends to overestimate methanol production. The validation exploits
industrial data published in the literature.

Keywords: kinetics comparison, methanol reactor, process simulation, industrial
comparative case studies, Lurgi and ICI technologies

1. Introduction

As highlighted in recent publications by Bisotti (2021), and Bozzano and Manenti (2016),
the methanol molecule has been gaining increasing interest for twenty years as in Olah’s
wishes for the methanol economy anticipating the energy transition period. Although the
technology is shifting towards milder operating conditions decreasing pressure and
optimizing catalyst formulation, the kinetic steps, species role and interaction with active
sites, and consequently modelling appear to lack a comprehensive catalytic path
description for CO and CO; hydrogenation over CZA catalysts. The different kinetic
models (Table 1) reflect this fragmented framework where carbon source and kinetic
scheme are not uniform. The methanol synthesis is essentially limited to three different
reactions: CO and CO, hydrogenation, and (reverse) water-gas shift reaction. Looking at
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the table, with few exceptions, these models were proposed more than 20 years ago,
hence, a kinetic parameters robust refit would be beneficial as demonstrated in Bisotti et
al. (2021) for the or-GR model. They decided to refit the Graaf model since several
authors use regardless Graaf’s and VBF’s models showing good accuracy with industrial
and/or experimental observations. Hence, or-GR and VBF models are considered as
industrial benchmark for methanol synthesis modelling, as proven in Mayra and Leiviskd
(2018). In this work, adopting the ref-GR model, we would show the impact and the
different predictions in methanol synthesis for or-GR, ref-GR and VBF models furtherly
corroborating observations/conclusions proposed in previous work, Bisotti et al. (2021).

Table 1 — Main kinetic models available in the literature.

Model (year) Source Model reactions

. CO + 2H, 2 CH;0H
Villa et al. (1985) CO CO + H,0 2 CO, + H,
Klier et al (1982)

CO + 2H, 2 CH,0H

McNeil et al. (1989) CO, + 3H, 2 CH;0H + H,0

Ma et al. (2009)
Graaf et al. (1988)

Park et al. (2014) COandCO2 | ¢4 4 o, = CH,0H

Seidel et al. (2018) CO, + 3H, 2 CH;0H + H,0
Slotboom (2020) CO +H,0 2 CO0, +H,
Bisotti et al. (2021)

Skrzypek et al. (1991)

Askgaard et al. (1995) CO, CO, + 3H, 2 CH3;0H + H,0

Vanden Bussche-Froment (1996)
Kubota et al. (2001)

€O, + H, 2 CO + H,0

2. Methods

The in-silico assessment consists of two different steps: (1) comparison of the methanol
production and reactants conversions using three different kinetic models, syngas quality,
and operating conditions; (2) industrial case studies. For the first task, the analysis is
performed in Aspen Hysys® V11 using a PFR followed by a cooling step (up to 25°C)
and flashing unit where liquid products and light gas are separated. The recovered syngas
is then recycled back to the reactor feed after a re-compression as in Figure 1. The fresh
syngas make-up and recycled syngas temperatures are set to 225°C. Pressure drop is
estimated using the Ergun model already implemented in Aspen Hysys". The PFR length
is subdivided into 100 segments (the default value is 20). The recycle function settings
impose low errors in the molar flow and stream composition, the adjust guarantees the
residual error for the feed stream (FEED) lower than 0.02%. Since, we aim at comparing
kinetic models for industrial applications, we choose conventional feed compositions or
at least close to industrial among the one proposed in Leonzio (2020). For the second
task, reactor design/configuration and flowsheet are assigned in accordance with the
analyzed industrial technologies (i.e., Lurgi and ICI). For the industrial plant data, we
refer to Chen et al. (2011) and Froment et al. (1995) which report the process schemes
and equipment details for the Lurgi and ICI technologies, respectively. We focused our
attention on such technologies since they cover almost 90% the installed reactor
technology worldwide, as proven in Bozzano and Manenti (2016).
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3. Sensitivity analysis to the feed composition and pressure

The sensivity analysis aims at comparing the methanol production using the three kinetics
under different operating conditions: 50-75 bar is a typical operating window for the
MegaMethanol technology and 70-90 bar range is a standard in other technologies such
as Lurgi and ICI. To futher test the kinetics, different feed compositions are considered.
Such compositions are petro-syngas, COG, and bio-syngas in Leonzio (2020) and
reported also in Bisotti et al. (2021). The petro-syngas is representative for conventional
syngas from natural gas (i.e., steam methane reforming), the COG for syngas from coke
gasification that in China is still the main carbon source to chemicals, and bio-syngas for
emerging biosources such as biogas and biomasses. The implemented Lurgi reactor
specifications, including feed temperature, are the same reported in Chen et al. (2011).
As purge ratio, we assumed that 10% of the recycle loop is removed. Figure 1 depicts the
implemented reactor flowsheet, while Figure 2 gathers the simulations results.

‘ RECYCLED -._’D:ﬁ

SYNGAS
® T PURGE

LURGI LIGHT GAS
METHANOL
REACTOR
FLASH
OUTLET

LIQ MEOH

Figure 1 - methanol synthesis complete configuration.

The results show that the ref-GR is like the VBF model in predicting the methanol
production and reactant conversions meaning that the robust refit procedure modified the
kinetic parameters forcing the or-GR to move closer to the VBF. Since the or-GR tends
to underestimate the methanol productivity, the refit induced an increment in the CO, and
H; conversion as depicted in Figure 2 (2A)-(2C). Furtherly, it is noticeable that VBF and
ref-GR predicts larger methanol production with regards to the or-GR which never
overcomes 3 ton/h. This is one of the main Graaf’s model shortcoming already emerged.
Moreover, the ref-GR exhibits a strong pressure dependence in the methanol production,
on average moving from 50 bar to 90 bar there is +35% increment, while or-GR and VBF
is almost flat regardless the operating pressure. Generally, the ref-GR behavior is
comprised the VBF and or-GR predictions (expect for the petro-syngas feedstock). These
have been already discussed in Bisotti et al. (2021). However, considering the order of
magnitude of the simulation results is possible to state that the ref-GR and VBF
predictions are quite similar both in terms of methanol production (4.5 ton/h vs 3.7 ton/h
respectively). Instead, it is quite evident that the discrepancies are magnified looking at
COG and bio-syngas feedstocks. Under such conditions, using the VBF model, the
methanol production is one order of magnitude larger than the one predicted with ref-GR
as in Figure 2 (1B)-(1C). Finally, the reactants conversions point out that the VBF implies
larger H, and CO; consumptions. This is due to: (1) the VBF tends to overestimate the
methanol production as proven in Bisotti et al. (2021) and (2) the CO; is the only direct
hydrogenation path considered, hence, as expected, higher CO, conversion are strictly
related to the suppressed CO hydrogenation which push the water-gas-shift equilibrium
towards CO; production which is then converted into methanol.
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Figure 2 - sensitivity analysis results: (1) methanol production and (2) CO2 and Hz conversions for
different feedstocks (A) petro-syngas, (B) COG, and (C) bio-syngas. For the conversion chart CO2
conversion is the solid line (left y axis) and Hz conversion is the dashed one (right y axis).

4. Industrial case studies

The industrial case studies include the Lurgi Boiling Water Reactor (BWR) and the fixed
adiabatic beds gas-quenched reactor (formerly ICI, nowadays Johnson Matthey). The
Lurgi and ICI technologies are described in Chen et al. (2011) and Froment et al. (1995)
and depicted in Figure 3 and Figure 4 respectively. The cited works report further details
such as the reactor specifications, feed composition, and operating conditions.
Simulations results are graphically depicted in Figure 5 (BWR Lurgi) and Figure 6 (ICI).

B
Steam out Syoes Feed
LURGI
Boiling Product
Water out

Figure 3 - Lurgi BWR technology: (A) reactor configuration and (B) simulation flowsheet
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The industrial case studies results show that the ref-GR kinetic better predicts the
methanol production in the Lurgi reactor while the predicted outlet temperature is close
to the industrial value. Similarly, also for the ICI technology it is possible to appreciate
that the ref-GR is based on an accurate kinetic model since it enables to catch both
methanol and COx molar fractions, and the outlet temperatures. Specifically, VBF and
ref-GR have similar deviations with regards to the industrial data, however, the ref-GR
model is the only one catching the final CO, amount. In Figure 6, the hydrogen content
is not reported since industrial data are not available. Concerning the ICI technology
neither of the considered kinetic models can correctly predict the products mixture and
outlet temperature values for the first and second adiabatic beds. This may be due to the
presence of mass transfer limitation which may occur where temperature is larger than
275°C. It is not possible to characterize this aspect using simulation software such as
Aspen Hysys. The VBF model presents similar accuracy even though it is not as accurate
as the ref-GR in predicting the methanol production, for instance, in the Lurgi technology
VBF underestimates the methanol production for almost 1.0 ton/h. The or-GR exhibits
the worst accuracy meaning that it does appear as a suitable kinetic model for the
methanol synthesis reactor simulation and validation.

5. Conclusions

This work demonstrated that kinetics affect the reactor predictions. Furtherly, it proved
that in process simulation environment (Aspen Hysys®) the or-GR is not a suitable model
to properly design the methanol synthesis reactor. Conversely, the ref-GR guarantees
accuracy, and it is more precise of the VBF in the analyzed case studies. Hence, it is
possible to state that ref-GR solved the shortcomings emerged in the or-GR and it is a
potential candidate as reliable alternative for industrial and simulation purposes.
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Abstract

Off-Site Modular Construction (OSMC) research has been a growing research area over
the past two decades driven by low productivity levels in construction (Bock 2015). Some
of the chemical plant industry has started analyzing small modular chemical plants.
Some work has been achieved in automating earlier parts of the small modular chemical
plant design process such as automated database creation and selection of equipment.
However, a layout optimization methodology has not been applied to OSMC industrial
process plants. Plant layout is an important step in the plant design process (Moran 2017).
Methods have been made to proposed to optimize the plant for different requirements.
Requirements have been modeled in a mathematical programming model as constraints
such as connectivity, pumping, safety, pipe routing, multi-floor arrangements, etc., to
establish the optimal cost and safe plant layouts.

This paper proposes to develop and utilize a MILP mathematical layout optimization
model to help design and construct modular process plant. The main considerations are
the module sizes for transport requirements and factory handling. Data from previous
research was utilized and run through the new modular optimization model. The previous
research layout results were compared to the new modular layouts process plant
optimization to compare how modularization may affect the design of industrial process
plants. The results demonstrate that building a plant in road transportable, factory built
could enable equipment to be located closer together due to advanced factory
manufacturing processes as assembly and tools are more accessible than building stick
built plants.

Keywords: MILP, mathematical layout optimization, off site modular construction,
industrial process plants,

1. Introduction

Off-Site Modular Construction (OSMC) research has been a growing research area over
the past two decades driven by low productivity levels in construction (Bock 2015).
Productivity is higher in factories when compared to a stick-built site due easier access to
superior tools, methods and learning. This has spawned the development of small, factory
built, rapidly deployable and flexible process plants (Seifert et al. 2012) to take advantage
of the gains in OSMC productivity. This is a rapidly growing area in Chemical process
plant research (Bielenberg and Palou-Rivera 2019). Research has shown that OSMC can
provide 20% savings in cost and up to 50% savings in scheduling, providing reductions
in risk and finance (Mignacca et al. 2018). The same work performed in a factory may be
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8x more efficient and cost effective than performing work in situ according to a study in
shipbuilding (Barry 2009).

Plant layout is an important step in the plant design process (Moran 2017) where
requirements are taken into consideration for layouts. Requirements can take the form of
process flow connectivity, pumping, safety, pipe routing, multi-floor arrangements, etc.,
to establish the optimal cost and safe plant layouts. Three core approaches have been
applied to optimising costs of plant layouts: Heuristics and Metaheuristics, Mathematical
optimisation along with Rule based expert systems. Some work has been achieved in
automating earlier parts of the small modular chemical plant design process such as
automated database creation and selection of equipment, however, a layout optimization
methodology has not been applied to OSMC industrial process plants (Eilermann et al.
2018).

In plant layout literature, heuristics were first utilised in the plant design problem to
arrange equipment. Mathematical approaches were then developed using Mixed integer
(Nonlinear) Programming (MINLP) and (MILP) and techniques (MINLP) or graph
partitioning (Ejeh, Liu, and Papageorgiou 2019b) for pumping and floor construction
costs, financial risk and safety. Pipe routing and other safety methods were developed
(Ejeh, Liu, and Papageorgiou 2019b) along with methods to solve larger problems. Ejeh
et al., expanded the optimisation model with considerations for tall equipment items that
span across floors and the availability of predefined production sections (Ejeh, Liu, and
Papageorgiou 2018) and an updated model accounting for fire and explosion risk (Ejeh,
Liu, and Papageorgiou 2019b). In another work, three improvements are added over the
previous methods: an extension for multi-floor equipment items to extend above the
maximum possible number of levels, the choice of an available number of floors fewer
than the maximum amount essential for any equipment item and Integer cuts to improve
the efficiency (Ejeh, Liu, and Papageorgiou 2019a).

This work builds upon the previous work of (Patsiatzis and Papageorgiou 2002) by
extending the problem to consider process plant systems for OSMC and road
transportable modules.

2. Problem Description

This work aims to obtain the optimal system layout for equipment in modules constrained
for OSMC and transport. The factory-built road transportable requirement for this work
is a key requirement. Requirements for EU transport are outlined in Table 1, (Barrot
2019).

No permit (1) Long term permit (2) | Corridor (3)

(except Germany)

Width 3m 3,5m 4,5m

Overall length | 24 m 30m 40 m

Overall height | Directive 96/53/EC | 4,2 m 44 m

Weight Directive 96/53/EC | 80 tonnes 100 tonnes

Axle load: Directive 96/53/EC | 12 tonnes 15 tonnes 12 tonnes 15 tonnes

Beam axle 12 tonnes

Table 1 — EU road transport requirements (Barrot 2019)
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In this section, the extension of the optimisation model will be considered with the
addition of module cost. An outline of the modular process plant layout problem and the
fundamental assumptions are provided in this section for the mathematical model
formulation. If equipment items extend above the available module height, these are
identified a suitable vertical module and located outside the module stack. Equipment
items are assumed as a cuboid. The geometrical centres are utilized for rectilinear
distances between equipment in the x-y axis. A position on the equipment height is
determined for the vertical distances/connections. Every equipment item is permitted to
rotate in 90angles in the x-y plane unless constrained. Equipment items could be built on
platforms to increase the work off site. A trade off study would be required to assess these
criteria. The problem description is as follows

Provided to the Model:
o A set of N process plant equipment items, i, j, size: (width, height, depth)
e Directed connections between items
e Module size (width, height, depth)
o NF number of modules
e a set of K available modules for layout with module height, MH;
e Connection points height on items h
e Costs of connections and modules connection, Cci j, pumping (horizontal, Chi j, and
vertical, Cvi j), land purchase (LC) and construction (FC1, FC2) cost data;
¢ Additional margin space between items
® Module Positions (fixed)
e ij, pumping (horizontal, Ch
e ij, and vertical, Cv
e ij), land purchase (LC) and construction (FC1, FC2) cost data;

Determined by the Model
e Positions of items
¢ Rotations of items
e Number of modules used
e  Cost of connections
e floor area;
so as to minimise the total plant layout cost

2.1. Model Formulation

Binary variables Vik and Zik, Integer variable NF, and Parameter H from (Patsiatzis and
Papageorgiou 2002) are altered to represent modules rather than floors.

Assuming construction and piping installation costs can be reduced 20% by constructing
modules in factories (Barry 2009)(Mignacca et al. 2018), FC1&FC2 and connection costs
Cij are reduced by 20%.

2.2. Non overlapping of Items with module bounds

A lower and upper bound must be imposed on the equipment coordinates to ensure they
remain within the module dimensions depending on its current rotation Assuming that
all modules are positioned at the origin and distances are calculated by taking their
relative position into account:

X+ < W, +M(1—my), Vv € V,Vk € K Equation 1
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Yo +d; <H,+MQA-my), Vv € V,Vk € K Equation 2
Considering if items can move in the z axis:
z,+dv <D+ M1 —-my), Vv € V,Vk € K Equation 3

and (Xuv, Vuv, Zw) = (0, 0, 1) respectively.

2.3. Rectilinear distance between connected items

The rectilinear distance in the x-axis between item i and j can be calculated by the absolute
value of Dxij and is considered for the set of connected items, f(i; j) 2 Eg, where Dxij is
defined by:

Rij - L” = X; + ZkEK Vik mx, — Xj - ZkEK mjk mxy, V(l,]) € fl] Equation 4
Aij — Bij = ¥ + Ykexk Mix MYk — ¥j — Zkex Mjx MYk, V(i,)) € fij Equation 5

Considering the rectilinear in the z-axis:
Uij — Dij = [2i + Tkex Mue mzi] — [z + Lex mjx mzi], V(i) € fijEquation 6

2.4. Objective function
Given that the unit cost of a connection between i and j is cij and the cost of a module is
given by gk, minimise the following objective function,
of = Z ¢ij TDy + CDy; + CB(Ryj + Lij + Ayj + B;) + C1- NF + FC2 - NF - FA
(i.j)eE
+LC-FA
Equation 7

All continuous variables in the formulation are defined as non-negative. Total layout cost
(eq. 21), subject to floor constraints (eqs. 1 - 3, 5 - 9), multi-floor equipment constraint
(eq. 4), distance constraints (eqs. 10 - 14), area constraints (eqs. 15 - 20), equipment
orientation, non-overlapping and layout constraints

3. Results and Discussion

For the case study, the five-unit instant coffee process (Patsiatzis and Papageorgiou 2002)
was chosen.

3.1. 2 Module stack
The results for the 3 layer module stack can be seen in Figure 1.

X y Z w{
Percolator 7.9 785 5 ' |
Cyclone 7.9 4.7 5 ‘|
Spray Dryer 79 785 o ‘M
Press 745 3.15 0 .1
Drier 153 3.15 0 “we

Figure 1 - Locations of equipment for 2
floor module
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Assuming construction and piping installation costs can be reduced 20% by constructing
modules in factories (Barry 2009)(Mignacca et al. 2018), construction of the module stack
(FC1&FC2) reduces to 26624rmu and connection costs decrease to 12374rmu. The total
plant cost is 77184rmu a 6.3% decrease compared to the original stick-built site. Land
costs stay the same at 13340rmu. However, pumping costs increase to 24846rmu a 3.6%
increase of the total original costs of 82366rmu.

3.2. 3 Module stack
The results for the 3-layer module stack can be seen in Figure 2.
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Figure 2 - Locations of equipment for 3
floor modules o
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Again, assuming 20% reduction in construction and piping installation, construction of
the module stack (FC1&FC2) increases to 39936rmu. Connection costs are 13863rmu.
In this instance, pumping costs decrease to 12854rmu, a 41% decrease on the original
pumping costs of 21909rmu. Land costs stay the same at 13340rmu.

The total plant cost is 79992rmu, a 2.9% decrease compared to the original stick-built
site.

Although the construction costs have increased by 13312rmu (a 50% increase) the
reduction in pumping costs is 11992rmu. The operators of this plant would therefore see
significant savings if running the plant for over a year.

4. Conclusions

A layout optimisation model was introduced to consider off site manufacture and
transport of process plant systems. Although operational pumping costs may increase
slightly due to the requirement to locate equipment items in modules (more constrained),
construction costs for structures and piping costs can be decreased. The results showed
that this reduction provides an overall benefit when comparing OSMC to stick built
process plants on the smaller scale plants analysed here.

Future work would be to increase the process plant system size to see how it copes with
larger models. A more detailed analysis is required on the construction of modules, this
would require the involvement and collaboration with civil engineering and infrastructure
experts.
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Abstract

The current global climate situation requires adequate energy technologies and systemic
solutions to reduce CO, emissions to reach the carbon neutrality target by 2050.
Cogeneration in nuclear power plants can provide a low-carbon source of process heat.
These plants are in most cases optimized only for electricity production, which is the case
for Pressurized Water Reactors in France. A significant asset of cogeneration units is that
they can efficiently switch from electricity-only production to hybrid heat and power
production. In this context, the objective of this work is to assess the benefits of
performance optimization for a multi-case operation applied to Rankine cycle system
design. The key for such an optimization is to minimize the exergetic losses that change
from one operational mode to another. As a proof of concept of the multi-case
optimization relevancy for a steam-water cycle, a seasonal variation of the heat sink
temperature is considered as it induces several operating modes for the cycle, even for
electricity-only production. The model of the system developed in the Modelica
environment with the ThermoSysPro library is first presented. The formulation of the
optimization problem involves dimensional parameters as optimization variables to
maximize the global efficiency of the cycle. Three cases are then simulated: minimal
condenser pressure, maximal condenser pressure and a seasonal variation profile of
condenser pressure. Multi-case optimization allows improving the mean operating
efficiency of the cycle in the considered heat-sink temperature range, compared to an
optimization focused on a single operating point. The relative efficiency gain obtained
for a narrow condenser temperature range is about 0.5 %. While the gain is modest, this
demonstrates the interest for the concept of partial regimes modelling in support of a
multi-case optimization, which should be rather emphasized for a cogenerating Rankine
cycle, for which operational modes will be much more different. Further developments
on the model and the study of a cogeneration case constitute a natural perspective of this
work.

Keywords: Modelica simulation, Optimization, Cogeneration, Rankine cycle, CO,
reduction.
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1. Introduction

The energy transition has become a cornerstone of the global response to climate change.
In order to avoid nature’s irreversible turning point, extremely challenging goals are being
set for reducing greenhouse gas emissions to zero by 2050, and limiting the rise in global
temperatures to 1.5 °C (IEA, 2021). The role of nuclear energy is very relevant in that
context, since nuclear power plants (NPP) do not emit CO; during electricity production.
Alongside with the growth of renewables, which have an intrinsic variability, the need
for flexibility in power systems increases. The combined production of electricity and
heat in power systems contributes to grid stability and security, dealing with supply-
demand fluctuations and load following transients. The heat produced during a decrease
in electricity supply has several potential applications depending on the available
temperature levels, such as hydrogen production, thermal storage (for further shifted
electricity production when the demand becomes higher), and district heating. Hence,
cogeneration in power plants has a key role in decarbonisation of the energy systems in
the long term (Taibi et al. 2018).

In this work, a seasonal temperature variation is used as a proof of concept for the multi-
case optimization approach, which could be useful in the design of cogenerating systems.
The dimensional characteristics of the cycle are optimized considering the whole
temperature profile, instead of a single operation case with the extreme or average
temperature values. The assessment of this case study will provide better insights in a real
cogeneration case, with a larger range in temperature variations to which the cycle is
submitted, so that more significant efficiency improvements could be achieved.

2. Rankine cycle model

The case study considered is a Nuclear Power Plant (NPP) equipped with a 540 MW
Small Modular Reactor (SMR). In the secondary circuit, saturated steam exits the steam
generator at 45 bar, is expanded in the turbine group, releasing heat through the condenser
to the cooling circuit before being pumped back to the steam generator as liquid water. In
the cooling system, sea water is pumped to the condenser, where it extracts heat and flows
back to the sea in an open system configuration.

The secondary circuit of the NPPs is usually a Rankine cycle containing a reheater and
several preheaters. However, the reference case for the present work contains only one
preheater and no reheat. Even if this cycle is significantly simplified, this choice facilitates
the calculations and numerical convergence of the model, and is not restrictive for the
goal of this work.

Figure 1 shows the case study, which consists of the secondary circuit of the SMR-PWR.
The system was modeled using Dymola software (Dassault Systémes 2021) and the
ThermoSysPro library (EDF 2021). These tools are capable of simulating system models
comprising physical components from several engineering domains (Briick 2018).

The cycle in Figure 1 was designed with the standard ThermoSysPro components. In
order to validate the Rankine model developed in Dymola, the CYCLOP (Cycle
Optimization) tool was used (Haubensack, Thévenot, and Dumaz 2004). This tool is
being developed by the CEA and its accuracy has already been proven with real operation
data of NPPs. Table 1 shows the results obtained with Dymola, compared to CYLOP, for
the steady-state design operation for two values of the condenser pressure, i.e. 50 and 100
mbar.
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Figure 1: Rankine cycle model, designed with ThermoSysPro library in Dymola.

For these two design conditions, the results show that Dymola model is capable of
obtaining optimized values very similar to CYCLOP results for different nominal
conditions, hence validating a single case optimization process with Dymola.

Table 1: Validation of Dymola cycle in design conditions. Where 7 is the cycle efficiency, Tip g
is the steam generator inlet temperature, Ppp, and Qpp, are the pressure and mass flow of steam
entering the preheater, respectively. The relative error between cases is presented.

Design S0mbar 100mbar
Value CYCLOP Dymola Rel. Error | CYCLOP  Dymola Rel. Error
n 0.3306 0.3306 0 0.3141 0.3140 -3.2E-04
Tin,sg (°C) 150.00 150.01 6.7E-05 150.00 150.01 6,7E-05
Ppp, (mbar) 5436 5436 0 5436 5437 1.8E-04
Qpn (kg/s) 46.99 47.02 6.4E-04 42.77 42.79 4.7E-04

3. Seasonal temperature variation of cold source

In a water-cooled condenser, typical of a Pressurized Water Reactor (PWR), the pressure
is defined by the available temperature of the cold source. Consequently, temperature
variations of the cooling water in the vicinities of the NPP affect the electricity
production, since the efficiency of the Rankine cycle (secondary circuit) is dependent on
the condenser pressure. This effect is shown in Figure 2.
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Figure 2: Electrical power production sensibility to cold source temperature. Adapted from (Grard
2014). Courtesy of the author.
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As the condenser pressure decreases, due to a reduction in cooling water temperature, the
production of electricity increases, as expected by the Carnot efficiency. However, there
is an inflexion point beyond which electrical power begins to drop with a further decrease
in condenser pressure. This effect is highly influenced by the increase in irreversibilities
along the turbine during off-design operation. Indeed, the increase in condenser pressure
causes an increase of turbine outlet swirl velocities, generating losses, which degrade
cycle efficiency, reinforcing the Carnot tendency. In addition, the reduction in condenser
pressure increases turbine outlet volumetric flow, which increases kinetic losses,
contradicting the ideal Carnot cycle efficiency trend.

Temperature variations occur seasonally, and their amplitude depends on the geographic
location of the plant. Table 2 shows the monthly temperature averages for sea water used
as a cold source in the nuclear power plant located in Blayais, France.

Table 2: Average values of sea temperature, with corresponding condenser pressures, in Blayais,
France (Weather Spark 2021).

Month Tseq (°C) P_onq (mbar) Month Tseq (°C) P onq (mbar)
January 11 44,99 July 20 73,88
February 11 44,99 August 21 77,91
March 11 44,99 September 20 73,88
April 13 50,38 October 17 62,85
May 15 56,32 November 15 56,32
June 18 66,36 December 13 50,38

The water used for cooling the three 900 MW reactors of this NPP undergoes a
temperature variation from 11 to 21°C, with a yearly average of 15.4°C. In order to assess
the electricity production efficiency and optimize the cycle for the seasonal temperature
variation, the exhaust loss effect must be considered in the turbine model.

In order to account for off-design conditions, the turbine model available in
ThermoSysPro library was then modified to include the exhaust loss as a function of last
stage exit velocity (1) adapted from (Spencer, Cotton, and Cannon 1974). This loss has
been chosen since it has considerable influence on the cycle efficiency in part-load
operation.

Ah =3.901-1078V,* — 4.515- 1075V, + 1.954 - 1072V,% — 3.447V, 0
+ 2.28-10?

In this expression, Ah is the enthalpy loss due to the exhaust-pressure loss, and V is the
velocity of steam leaving the last stage blades. In order to assess the operation at off-
design conditions, a pressure variation was imposed to the condenser, in a cycle designed
for a condenser pressure of 57.63 mbar. For comparison, the same cycle was re-optimized
at every pressure with CYCLOP tool, which does not account for the irreversibility
effects. The results from the Dymola simulations in Figure 3 include the inflexion point
seen in Figure 2, which is influenced by the exhaust loss in the turbine. As expected, the
cycles simulated at rated conditions with CYCLOP follow the Carnot efficiency trend,
which increases as the condenser temperature (and pressure) decreases. These results
support the Rankine model developed in Dymola regarding the operation in off-design
conditions.
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Figure 3: Efficiency of Rankine cycle with exhaust loss in non-rated conditions (Dymola) and the
design efficiency of each condition (CYCLOP).

4. Optimization

The optimization module available in Dymola was then used to optimize the Rankine
model for the multi-case scenario given by the temperature profile of Table 2. The
Simplex method was used with six optimization variables, given by dimensional
characteristics: the Stodola coefficients of the turbines (Cooke 1984), the exhaust area of
the turbine’s last stage and a coefficient for pump head characteristic curve (for both the
high-pressure and low-pressure sections). The multi-case optimization was compared to
the performance of cycles optimized for the minimal and maximal temperatures (Figure
4).
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Figure 4: Multi-case optimization result for the Rankine cycle submitted to a seasonal variation of
cold source temperature. A comparison is made with the cycle optimized for the minimal and
maximal temperatures.

The multi-case results do not give the best efficiency values at minimal and maximal
pressures. However, it increases the average efficiency of the cycle with respect to the
single-case extreme-temperature optimizations. Table 3 shows the respective average
efficiency.

The multi-case optimization presented the highest annual average efficiency for the
Rankine cycle. This demonstrates the interest in considering the different operation
scenarios during the optimization, instead of a single-case approach. The results obtained
indicate that even if the cycle is optimized for the average temperature (of the seasonal
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variation), the efficiency obtained is lower than the multi-case performance. This
methodology allowed a relative gain of 0.41%, 0.67% and 0.06% with respect to the
single case optimizations for the minimal, maximal and average temperatures,
respectively.

Table 3: Average values of Rankine cycle efficiency for the different optimization approaches.

Single Case Single Case Single Case Multi
Tmin Tmax Tavg Case
0,3135 0,3127 0,3146 0,3148

Average Efficiency
(12 months)

5. Conclusion

The presented work is a proof of concept of the methodological feasibility of the multi-
case optimization approach. First, the case study was presented and the optimization was
validated using two nominal conditions as a reference. The turbine model was then
modified to include the exhaust loss effect, which has a considerable influence on cycle
efficiency. A literature example was then used as a reference for supporting the behavior
of the modified turbine model. For a seasonal temperature variation, relative efficiency
gains of 0.41% and 0.67% were obtained through the multi-case optimization of the
Rankine cycle, in comparison to the cycle optimized only for the minimal or maximal
temperatures. When the cycle was optimized for the average value of the seasonal
variation, the efficiency was still slightly lower than with the multi-case optimization
result. In a cogeneration situation, with temperature variations that might be much more
significant, this methodology should further improve the efficiency of combined heat and
power production.
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Abstract

A comprehensive multiphase model was developed for a trickle bed reactor with solid
foam packings. Three-dimensional dynamic mass and energy balances in the three phases
of heterogeneously catalysed reaction systems were implemented, and the mass and heat
transfer resistances in the gas-liquid and liquid-solid phases and inside the pores of the
catalyst were included in the model. Hydrogenation of arabinose and galactose mixtures
on a ruthenium catalyst supported by carbon-coated aluminium foams was applied as an
industrially relevant case study for the multiphase model. The kinetic parameters were
estimated with confidence intervals within 10% error, indicating a good accuracy of the
parameters, and the model results present a good adjustment to the experimental values.
Finally, a sensitivity analysis on several model parameters demonstrated that the model
could be applied to industrially sized reactors and various multiphase catalytic systems.

Keywords: Open-cell foam catalyst packing, Non-isothermal trickle bed reactor,
Reaction kinetics, Mass transfer, gPROMS.

1. Introduction

In the context of increasing energy costs and future stringent environmental regulations
for industrial production, structured catalysts play an essential role in designing more
energy-efficient chemical reactors. In recent years, several advances in this field have
been taken, with diversified structured catalysts being invented and studied in detail, such
as monoliths, fibres, solid foams as well as structures prepared by 3D printing.

For three-phase catalytic systems (solid catalyst, gas phase, and liquid phase), open-cell
foams have been investigated as suitable alternatives for catalytically active reactor
packings because of their advantageous structural properties. The structures of pores and
struts in open-cell foams provide high porosity (75-95%) and high specific surface area,
allowing radial liquid flow and high local turbulence, which result in enhanced mass and
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heat transfer. Axial and radial mixing are improved by the high pore tortuosity of solid
foams, ensuring the even distribution of the gas and liquid phases, which is critical for a
maximum product yield (Stemmet et al. (2008), Mohammed et al. (2014), Twigg et al.
(2002)).

In this work, an advanced mathematical model of a three-phase catalytic tubular reactor
was developed for solid foam packings and implemented in the gPROMS® ModelBuilder
7.0. software. The two-dimensional gas, liquid and solid phase mass and energy balances
include individual terms such as internal diffusion, gas-liquid and liquid-solid mass
transfer, and intrinsic kinetics. Furthermore, the gas and liquid flows are described by
axial and radial dispersion terms along with liquid hold-up and pressure drop expressions.

The hydrogenation of arabinose and galactose mixtures on a ruthenium catalyst supported
by carbon-coated aluminium foams was applied as an industrially relevant case study.
The kinetic parameters of the reaction were estimated using experimentally obtained
concentrations of arabinose, galactose, arabitol and galactitol in a continuously operating
tubular reactor (Figure 1) with a diameter of 11 mm and bed length of 33 mm, equipped
with an open-cell aluminium foam with a pore density of 40 PPI. The experiments were
conducted at varying operating conditions, with temperatures between 90 and 120 °C and
arabinose-galactose molar ratios of 1:1 and 1:2. The experimental methods are explained
in detail in a previous study by Najarnezhadmashhadi et al. (2020).

Liquid feed
|

I Gas feed

Al-foam (for better

Heater

liquid distribution)

Foam catalysts

Thermocouple

Figure 1 — Continuous tubular reactor system: trickle bed with cylindrical solid foam packing.

2. Model development

Modelling of trickle bed reactors is a very challenging and complex problem. In addition
to the description of the flow pattern and the intrinsic reaction kinetics, mass and heat
transfer effects must be accounted for accurately calculate the concentrations and
temperatures inside the reactor tube. Heat and mass transfer resistances can appear at the
gas-liquid and liquid-solid interfaces, as well as inside the pores of the catalyst layer.
These resistances are more pronounced for lower fluid velocities (lower Reynolds,
Sherwood, and Nusselt numbers) of the fluids inside the reactor. This is the case for many
organic reactions applied in the production of fine and speciality chemicals and
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ingredients in dietary products, where reactions are slow and long residence times are
necessary to obtain high reactant conversions. On the other hand, internal mass and heat
transfer resistances can be significant too, depending on the ratio between the reaction
and diffusion rates, and, particularly, the thickness of the catalyst layer. Typically, internal
mass and heat transfer resistances in the catalyst pores are negligible in structured reactors
with thin catalyst layers such as 50 um or less. However, these resistances might become
prominent for rapid reactions and slow diffusion rates.

It was assumed that the reactions proceeded in the porous catalyst layer exclusively.
Hence, the reactants diffuse first into the solid catalyst, after which they react on the active
centra on the surface of the solid catalyst. Figure 2 illustrates the scheme of the system
considered in the present work.
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Figure 2 — Interaction of kinetic, mass and heat transfer effects in the three-phase system: gas,
liquid, and solid foam catalyst. Adapted from Najarnezhadmashhadi (2021).

2.1. Advanced model for continuous trickle bed reactors with open-cell foam packings

The model for the tubular reactor enables the calculation of the axial and radial
concentration and temperatures profiles in the gas and liquid phases, as well as within the
catalyst active layer by solving the dynamic mass and energy balances simultaneously for
the gas, liquid, and solid phases. The model considers intrinsic kinetics, gas-liquid mass
and heat transfer, internal diffusion inside the catalyst pores, heat conduction within the
reactor and inside the catalyst pores, and the flow description by axial and radial
dispersion. These essential features are combined with up-to-date correlations for liquid
holp-up, mass transfer coefficients, axial and radial dispersion coefficients and pressure
drop. The energy balances for the tubular trickle bed reactor are presented in equations
(1)-(3). Because the catalyst layers are very thin (< 10 pm), and the reactor and particle
coordinates are quite different in the model, a dimensionless coordinate, x = 7,/R,, is
used in the mas and heat balances of the solid phase, where R, is the catalyst layer
thickness, and 7, is the distance from the catalyst centre to its surface. The mass balance
equations and the correlations implemented in the reactor model are described in detail
by Najarnezhadmashhadi (2021).
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The boundary conditions for the energy balances are presented below. The closed-closed
boundary conditions of Danckwerts were applied at the reactor inlet and outlet in gas and
liquid phases. In the solid phase, the energy balance is coupled to the bulk liquid balance
through the boundary condition, which states that the heat flux through the liquid film is
equal to the heat flux in/out to/from the catalyst particle.
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3. Modelling results and discussion

The dynamic model for trickle bed reactors equipped with cylindrical solid foam packings
was applied to describe the catalytic hydrogenation of arabinose and galactose mixtures
as a representative case study. The kinetic parameters of the highly selective arabinose
(A) and galactose (G) hydrogenation to arabitol and galactitol are presented in Table 1.
The activation energies and pre-exponential factors for the process were estimated with a
95 % confidence interval below 10 % error, indicating a good accuracy of the estimated
parameters.

Table 1 — Parameter estimation results.

Parameters Estimated Value 95 % Confidence interval

Ea, 5.32 x10* 0.36 x 10*
Eag 5.48 x 104 0.37 x 10*
Krefa 5.24 x 107 0.31 x 107
Kref g 5.31 x 107 0.30 x 107

Figure 3 compares the experimental and calculated conversion values, of both arabinose
and galactose, as a function of the reaction temperature. The model is able to predict the
sugar conversions successfully, the average relative deviations being maximally about
16 %. The experimentally recorded sugar conversions displayed in the figures are
averages from multiple samples. The selectivity toward sugar alcohols was always very
high, typically exceeding 95%.
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Figure 3 — Experimental and model values for the conversion of sugar mixtures as a function of
the temperature. Inlet molar ratio (a) 1:1, (b) 1:2.

Figure 4 (a) and (b) present the arabinose concentration and the liquid-phase temperature
axial and radial profiles for different reactor lengths. The conversion increases in line
with the reactor length. The radial profiles in the conversion of arabinose were not
observable because local conversions are very small. The temperature inside the reactor
tube does not vary significantly because the reactor radius is very small. Higher
temperature profiles are observed for higher reactor radiuses, Figure 4 (c).
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Figure 4 — Arabinose conversion (a) and liquid temperature (b) as a function of the reactor length,
and liquid temperature as a function of the reactor radius for L=1320 mm (c).

The capabilities of the model proposed were tested through a sensitivity analysis on the
effect of the catalyst layer thickness on the concentrations (galactose) and temperature
profiles inside the catalyst pores, for ko ; = 25 X k&5 *?  Analysing Figure 5, it is
possible to conclude that, as the washcoat thickness increases, so do the concentration
gradients and temperature in the catalyst layer. These results also demonstrate the
flexibility of the generalised model, which can simulate both ideal cases, where there are

no internal transfer limitations, and systems dominated by high intraparticle transport
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limitations. These properties demonstrate that this model is suitable for use in other
chemical systems.
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Figure 5 — (a) Galactose and (b) temperature profiles in the washcoat in the middle of the reactor
(z=0.033m), for kyep; = 25 X kgsiyared

4. Conclusions

A comprehensive dynamic model for three-phase catalytic tubular reactors with solid
foam packings considering all the main chemical and transport effects occurring in the
system was developed and implemented successfully in the very modern software. The
kinetic parameters of the model were estimated with good accuracy by non-linear
regression analysis. The sensitivity analysis demonstrated that the model could predict
the effect of different reactor dimensions, as well as the kinetic and transport phenomena
included in the advanced multiphase reactor model. It is possible to conclude that this
modelling approach can be applied to industrially sized reactors and various reactive
multiphase catalytic systems, which are of fundamental and industrial interest.

Acknowledgements

The present work was financed by Finnish Cultural Foundation, Neste-Fortum
Foundation and Rector of Abo Akademi University (Ali Najarnezhadmashhadi),
Academy of Finland, Academy Professor grant 319002 (Tapio Salmi) and CERENA,
strategic project FCT-UIDB/04028/2020 (Henrique Matos and Catarina Braz). The
economic support is gratefully acknowledged.

References

1. Mohammed, T. Bauer, M. Schubert, R. Lange, 2014, Liquid—solid mass transfer in a tubular
reactor with solid foam packings, Chemical Engineering Science, 108, 223-232.

A. Najarnezhadmashhadi, K. Erdnen, S. Engblom, A. Aho, D. Murzin, T. Salmi, 2020, Continuous
Hydrogenation of Monomeric Sugars and Binary Sugar Mixtures on a Ruthenium Catalyst
Supported by Carbon-Coated Open-Cell Aluminum Foam, Industrial & Engineering Chemistry
Research, 59, 30, 13450-13459.

A. Najarnezhadmashhadi, 2021, Development of structured catalyst and reactor technologies for
biomass conversion- Continuous production of sugar alcohols, Doctoral thesis, Abo Akademi
University, Turku/Abo, Finland.

C.P. Stemmet, 2008, Gas-liquid solid foam reactors: hydrodynamics and mass transfer, PhD
dissertation, Eindhoven University of Technology, Eindhoven, The Netherlands.

M.V. Twigg, J.T. Richardson, 2002, Theory and Applications of Ceramic Foam Catalysts,
Chemical Engineering Research and Design, 80, 2, 183—189.



PROCEEDINGS OF THE 32" European Symposium on Computer Aided Process Engineering
(ESCAPE32), June 12-15, 2022, Toulouse, France

L. Montastruc, S. Negny (Editors)

© 2022 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/B978-0-323-95879-0.50014-X

Optimising a wind farm with energy storage consid-
ering curtailment and uncertainties

Flora A. V. Biggins?, Jude O. Ejeh?, Diarmid Roberts?, Aaron S. Yeardley® and
Solomon F. Brown®"

ADepartment of Chemical Biological Engineering, The University of Sheffield, Mappin Street,
Sheffield, S1 3JD, United Kingdom
s.f.brown@sheffield.ac.uk

Abstract

In this work, we present a scenario-based stochastic optimisation (SBSO) model to schedule a
wind farm with battery storage (BS) and a hydrogen electrolyser (HE) considering curtailment
and uncertainties in generation and market prices. We compare cases with BS only, HE only, and
a combination of the two. We apply Markov Chain (MC) and Gaussian Process (GP) techniques
to generate wind curtailment and electricity price scenarios, respectively, capturing their inherent
uncertainties. The model then assesses the economic benefits of incorporating BS and/or HE
alongside wind generation and their scheduling as a function of curtailed and non-curtailed wind.
The results can be used to determine the suitability of such systems for the purposes of maximising
profits and making optimal use of curtailed generation. Results show that HE increases mean
income and curtailed wind utilisation significantly more than BS. However, by combining the
two, wind curtailment can be reduced by 95%.

Keywords: Wind farm, Battery storage, Hydrogen electrolysis, Curtailment, Stochastic optimisa-
tion

1. Introduction

Energy storage technologies (EST) can facilitate the decarbonisation of energy systems and lead
to more sustainable futures. Battery storage (BS) has been found to improve power quality in
electrical grids (Das et al., 2018) — particularly with high renewable energy penetration — and
hydrogen storage (HS) can also replace fossil fuels in heating, industry and shipping (Gielen et al.,
2019). Operating these technologies alongside renewables allows for the adoption of variable
electricity sources (IRENA, 2019) and a means to use otherwise curtailed generation. However, in
order to do so optimially, the scheduling of these ESTs must further take into account uncertainties
relating to renewable generation, curtailment and market prices due to their unpredictable nature.

There are a number of recent studies optimising the scheduling of renewable energy - energy stor-
age systems under uncertainties, specifically wind-hydrogen systems. Xiao et al. (2020) consider
uncertainties in wind generation and electricity price and present a scenario-based stochastic op-
timisation (SBSO) model which evaluates financial risk. They find that a hydrogen electroyser
(HE) can increase the value of a wind system, the extent of which depends on hydrogen price.
Yu et al. (2019) and Mirzaei et al. (2019) present SBSO models which minimise operation costs
of a system with wind generation and HS, the latter study also considers demand response (DR).
Both of these papers consider uncertainties in wind generation, whilst Yu et al. (2019) also con-
siders uncertainties in demand. The efficacy of these models at reducing the risk of uncertainties
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is demonstrated. Finally, Cao et al. (2020) present a SBSO model to minimise operation costs of
an intelligent parking lot with HS and renewable generation. They present a Pareto set of solu-
tions for different levels of risk aversion. These studies highlight the value of SBSO models for
scheduling wind-hydrogen systems under uncertainties. However, they do not consider curtailed
wind, which is an important issue as renewable penetration increases, nor do they consider other
forms of energy storage, such as BS.

Several studies address using curtailed wind for an HE. For example, Yan et al. (2018) explore
different approaches for handling curtailed wind. They find that investing in an HE is both a
profitable and environmentally friendly approach. However, they do not consider uncertainties in
wind power or electricity price. Shams et al. (2021) present a machine learning model to predict
curtailed power which is used for an HE and BS. However, they optimise from a system operator
point of view rather than that of an investor. On the other hand, Jiang et al. (2019) present a
chance-constrained model that optimises the size of a wind-hydrogen system from an investor’s
perspective. Their methodology allows flexibility for the decision variables to not satisfy the
constraints at a given probability level; thus adverse conditions can be accounted for. However,
they do not model different curtailment or electricity price scenarios nor do they incorporate BS.

In this work we consider an investor’s point of view, and present an SBSO which schedules a wind
farm with HE and BS. We optimise their usage to maximise income, considering curtailment and
uncertainties in wind generation, curtailment and electricity price. We compare case studies with
HE and BS, HE only, BS only and no storage (NS). From this we determine the optimal choice for
a wind farm owner to maximise income and utilise the maximum amount of curtailed wind.

2. Model Description

Wind curtailment occurs when generation exceeds demand, and generators are instructed to re-
duce, or sometimes halt, power export. At time ¢, in scenario, i, total wind generation can be
divided into two categories: curtailed wind, wf;, which cannot be exported, and non-curtailed
wind, wy;, which is available to export. The electrolyser can be powered using curtailed, ef;, or
non-curtailed wind, ¢f;. Likewise the battery can be charged using curtailed, ¢7;, or non- curtailed
wind ¢}';. The dlscharged power from the battery can be exported to the grid d" or curtailed df ;.
It is assumed that at times when wind generation is not curtailed, wy; = 0, dlscharged battery is
also not curtailed, d; = 0. However where there is wind curtailment, it is assumed that discharged
power cannot be exported to the grid, d'; = 0, and is also curtailed.

The objective function is given in Equation 1 and maximises revenue due to selling non-curtailed
power in the day-ahead market (first term), selling hydrogen (second term) and minimises losses
due to using curtailed wind (third term). The day-ahead price at time, ¢, and scenario, i, is p;{j-‘,

" is hydrogen price and n° is electrolyser hydrogen conversion efficiency. The cost of using
curtailed wind, p°, is neglected in most models, which assume that curtailed wind is free. This

assumption is overly simplistic and not realistic, hence we consider p¢ here.

T.1 h
y d -\ P
max Z Wi+dli—cli—el)pii + (ef i +ef;) ne
1i=0

(efitcr)p” (H

The constraints are given in Equations 2-10. Equation 2 sets the lower limits on the battery charg-
ing and discharging powers and the power going to the electrolyser, where e represents the mini-
mum power required for hydrogen production. Equations 3 and 4 set the upper limits; the upper
bound on dJ'; is set such that discharged power can only be exported when there is no wind cur-
tailed. Equa7tion 5 prevents the sum of curtailed and non-curtailed powers exceeding the maximum
limits.
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Equations 6 and 7 set limits on the battery’s capacity, x; ;, and ensure that it is equal to the capacity
at the previous time period plus any charging/discharging in the current time period, respectively.
The charging and discharging efficiencies are n¢ and 1€, respectively, and are equal to 90%.

x<x; <X Vit (6)
_ di+dy;

Xt,i :xt—l,iJF(C;l,iﬂchc,i)nc nd

Vi 7

Equation 8 prevents the battery from being simultaneously charged and discharged. In Equation
9 the curtailed generation and discharge is greater than or equal to the curtailed power used for
charging and powering the electrolyser. Equation 10 ensures that when there is no wind curtailed
there is also no curtailment of discharged battery. M is a very large positive co-efficient which
allows curtailed discharge to take on any value, satisfying previous constraints, when there is
non-zero curtailed wind.

(cfi+ci)di+di) =0 Vi,i (8)
wiitdi>ciite; Vi ©9)
Mwi;—df; >0 Vit,i (10

3. Scenario Generation

A range of scenarios are generated to represent possible outcomes of the uncertain parameters, in
this case wind generation, curtailment and electricity price. Three wind power profiles are ran-
domly generated from Drax Power Ltd (2021), by adding noise from a Gaussian centred around
each data point with a mean equal to that point and a standard deviation 0.25 * data point. This
wind data is scaled such that the farm has a maximum output of 20 MW. Five curtailment pro-
files are then generated using a MC with probabilities of moving between states ‘curtailed’ and
‘not-curtailed” determined using historic data, and initial state ‘not-curtailed’. When the state is
‘curtailed’, the percentage of wind power curtailed is determined by randomly selecting from his-
toric data. The ‘not-curtailed’ wind profile is the difference between this and the original wind
profile. Three price profiles are created using Gaussian Process (GP) techniques as described in
Yeardley et al. (2021); the first profile is an ordinary GP, and the other two are created using
a novel hybridisation method which combines Gaussian Processes with K-means clustering and
hierarchical cluster.

A summary of the scenario generation procedure is shown in Figure 1. Each of these scenarios is
input into our SBSO model which optimises the scheduling our of energy storage for cases with
HE and BS, HE only, BS only, and no storage (NS). The input parameters for the storage for each
of these cases is shown in Table 1. Finally, it is assumed that hydrogen can be sold at a price of
£3.50/kg and the cost of curtailed wind is £0.01/kWh.
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Table 1: Input storage parameters for each case considered.

e MW) ¢ MW) &d MW) x (MWh) & (MWh)
HE + BS 0.04 2 2 1.6 8
HE 0.04 2 0 0 0
BS 0 0 2 1.6 8
NS 0 0 0 0 0
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Figure 1: Scenario generation diagram

In Table 2 the mean income and percent of curtailed wind utilisation, across all scenarios, are
shown for the different case studies, along with their standard deviations. It can be seen that the
inclusion of storage increases both the mean expected income and curtailed wind utilisation. In
particular, the HE is able to increase the values of these more than the BS. However, the combi-
nation of both is the most effective of the case studies presented here. Additionally, the inclusion
of storage reduces the standard deviation of mean expected income. This is since storage adds
flexibility; for instance, when wind generation is low and curtailment is high, additional revenue
can still be achieved due to selling hydrogen and discharged power from the BS.

Figure 2 shows the optimised daily power profiles for each case study for Scenario 6. This scenario
was chosen because there is a large amount of wind curtailment, occurring between 4:00 and
14:00 (8 and 28 in Figure 2), and shows how the scheduling of the storage responds to this. Wind
generation is indicated by the red lines; wind power that is directly imported or curtailed is shown
by a solid area, power used for the HE: a dashed area, and power used for or discharged by the BS:
a dotted area. Non-curtailed wind may be exported, along with non-curtailed discharge from the
BS (indicated by a dark blue area); alternatively, it may be consumed by the storage (green area).
Curtailed wind (and BS discharge) is used to power the HE and/or BS (although the BS cannot
simultaneously charge and discharge) and is indicated by a white area.

In the case of NS, we can seen that all curtailed wind is wasted. By adding BS, we are able to use
some of the curtailed wind, however, once the BS is fully charged we cannot use it anymore. The
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Table 2: Mean and standard deviation of daily income and percentage of curtailed wind utilised
across all scenarios for each case study.

Mean Standard Curtailed wind Standard
income (£) deviation (£) usage (%) deviation (%)
HE + BS 4989 222 0.949 0.029
HE 4870 300 0.679 0.034
BS 4311 629 0.165 0.037
NS 4208 689 0.0 0.0

BS also allows a greater amount of power to be exported in the evening when electricity prices
are typically higher (34 - 38 in Figure 2). By adding HE we are able to use a greater proportion
of the curtailed wind. Furthermore, under the conditions specified here, it is economical to self-
consume and import power for the HE. By combining BS and HE we are able to utilise the most
curtailed wind and maximise power used for the HE; at 10:30 and 12:00 (21 and 24 in Figure 2),
there are two peaks above the red line which indicate curtailed BS discharge powering the HE.
As shown in Table 2 this case generates the highest mean income across the different scenarios.
Hence we conclude that of the cases explored here, a combination of BS and HE is optimal for
both maximising income and utilising the maximum curtailed wind.

mmm exported wind self-consumption  [Z2A electrolyser mmm exported wind self-consumption  [Z2A electrolyser
B imported [ curtailed battery B imported [ curtailed battery
7,000 7,000
6,000 6,000
£ 5,000 £ 5,000
X X
3 3
£ 4,000 £ 4,000
S S
£ £
w 3,000 w 3,000
53 53
3 3
£ 2,000 £ 2,000
1,000 1,000
0 0
[ 10 20 30 40 [ 10 20 30 40
Time (1/2 h) Time (1/2 h)
() NS (b) BS
W exported wind self-consumption  [ZZ electrolyser W exported wind self-consumption  [ZZ electrolyser
mm imported [ curtailed battery mem imported [ curtailed battery
6,000 6,000
H H
= 4,000 = 4,000
- -
1 1
= =
s s
£ £
w 2,000 w 2,000
8 8
3 3
& &
0 0
-2,000 -2,000
0 10 20 30 40 0 10 20 30 40
Time (1/2 h) Time (1/2 h)
(c) HE (d) HE and BS

Figure 2: Daily power profile for Scenario 6, for each case study. Red line indicates total wind
generation.
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5. Conclusion

A scenario-based stochastic optimisatiom (SBSO) model is presented to schedule a wind farm with
battery storage (BS) and a hydrogen electrolyser (HE) under uncertain conditions and considering
curtailment. We generate wind curtailment and electricity price scenarios using Markov Chain
(MC) and Gaussian Process (GP) techniques, respectively, to model a range of possible outcomes.
We compare daily mean predicted income and utilisation of curtailed wind with BS only, HE only,
both BS and HE, and no storage (NS).

We find that HE increases mean income and curtailed wind utilisation significantly more than
BS. However, by combining HE and BS curtailed wind utilisation increases from 68% to 95%,
compared with HE alone. At times when curtailed wind is greater than the HE maximum power, it
can also be used to charge the BS; then at times when curtailed wind is lower than this maximum
power, it can be additionally powered by discharging the BS. Future work will consider capital and
operational costs of these technologies, as well as varying their sizes, ratios and hydrogen price.
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Abstract

The aviation industry supports the world economy, contributing US$ 2.7 trillion to global
the gross domestic product. However, aviation raises environmental concerns, where the
industry has a 12% share of CO, emissions within the transportation sector. Therefore,
the International Civil Aviation Organization (ICAO) suggested the implementation of
Carbon Offsetting Scheme for International Aviation (CORSIA) as a market-based
measure to mitigate CO,. The CORSIA scheme may increase the operational costs by
setting a carbon price on every extra tonne of CO; beyond the baseline limits. In order to
reduce operators' obligations, the integration of reduction measures such as Sustainable
Aviation Fuels (SAF) may reduce the cost associated with offsetting requirements. As
such, a multi-objective optimization model is presented in this study to identify optimal
blending ratios of jet biofuels with conventional kerosene fuel for multiple aircrafts and
destinations. The model considers the operators fuel cost, carbon price and renewable
credit under CORSIA; aiming to minimize the total fuels’ associated costs. In addition,
the model is implemented in a case study considering three fuel categories. The results
indicate that Jatropha-based jet fuel, within the current tested data, is a preferable
synthetic fuel to be blended with Jet-A at a maximum margin of 50%. Fuel prices highly
influenced the results of the model. Whereas other factors including carbon prices, fuels’
lifecycle emissions, and supplied fuel quantity may directly or indirectly impact the
process of incorporating SAF as an integrated mitigation tool under CORSIA.

Keywords: CORSIA, Carbon Policy, Aviation, Sustainability, Mitigation.

1. Introduction

The airline industry has not only influenced global mobility, it has also contributed
US$3.5 trillion to the global gross domestic product (GDP). In 2019, the aviation sector
created over 87.7 million jobs and facilitated 4.5 billion boarding passengers on the
world's airlines. During the pandemic, the economic contribution from the aviation sector
reduced to US$1.7 trillion, eliminating 46 million jobs supporting the industry (ATAG,
2020). As a mode of transportation, the aviation sector contributes 12% of the total CO,
emissions produced from transportation (IEA, 2019). It is reported that in the next 15
years, the demand for transportation will double (Airbus, 2019), thus increasing CO,
emissions from the sector. As a consequence, the IATA suggested four CO, mitigation
techniques: market-based measures (MBM), alternative fuels, technological
enhancement, and operational modifications. The International Civil Aviation
Organization ICAO proposed the "Carbon Offsetting Scheme for International Aviation
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(CORSIA)" as an applicable methodology of global MBM techniques to support aviation
environmental goals.

1.1. CORSIA

During the 39th assembly, the ICAO announced CORSIA as a global offsetting scheme
for international flights, with an applicable methodology of a combinatory approach,
beginning with a 100% sectorial approach and moving to a 100% individual approach
(TIATA, 2019). Fuels classified as CORSIA's Eligible Fuel (CEF) should have the
capability of achieving a minimum 10% emission reduction compared to Jet-A,
determined by life cycle assessment (LCA) of the fuel. The integrability of SAF,
technological improvement, and operational enhancement within a CORSIA framework
can help minimize the cost of carbon, support IATA's goal of reducing carbon emissions,
and invest in research or through the implementation of SAF (Staples et al., 2018). The
acceleration on developing drop-in fuels seems the most suitable substitute for Jet-A, in
which its implementation may require minimum or no design modification of the engine
or fuel system. These fuels can be synthesized from biomass for example, through
production pathways of Fischer-Tropsch (FT), Hydroprocessed Easter Fatty Acid
(HEFA), Hydrothermal Liquefaction (HTL), Alcohol to Jet (ATJ), and Direct Sugars to
Hydrocarbons (DSHC) or commonly known as Synthesized Iso-paraffins (SIP) (Stratton
et al., 2010).

1.2. CORSIA Associated Models

Optimization techniques can predict the influence of SAF in minimizing carbon
emissions and support managerial decisions. Jiang & Yang (2021) discussed the
correlation between SAF and SAF’s policies from an operational decisions perspective,
comparing carbon tax and SAF quota. Sharma et al. (2021) investigated CORSIA by
examining technologically innovative factors and the related emissions through
regression techniques. Sharma et al. (2021) developed a minimization model of aviation
emissions using Vensim. Chao et al. (2019) modified the Fleet-level Environmental
Evaluation Tool (FLEET) and created multiple emissions scenarios. The modified model
was integrated with the SAF lifecycle assessment to evaluate SAF development
economically and environmentally. Whereas, this study presents a multi-objective
optimization model to select optimal blending ratios based on carbon price, fuel price and
lifecycle emissions. The model is applicable to multiple data entries considering different
types of aircrafts and multiple destinations through the incorporation of key parameters,
such as, aircraft fuel consumption rate, number of passengers and distance travelled.

2. Methodology

2.1. Mathematical optimization model

A mathematical model was developed to select and set the blending ratios of viable SAF’s
and Jet-A under CORSIA as presented in Table 1. The model was solved using CPLEX
OPL considering two assumptions. The model assumed that the Trips Number (TNy;) is
a ready-prepared aircraft schedule and that the blending ratio does not vary for different
trips on the same route. The model aimed to minimize the cost of investing and operating
fleets using certain SAF and the cost of emissions under CORSIA framework. It also
considers the reward provided to operators utilizing SAF.

Table 1: Mathematical formulation of blend ratio selection of biofuel and Jet-A.

Sets, Decisions Variables, and Parameters

Sets Parameters
k: is the aircraft type Ps: Price of fuel f ($/M1J.)
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j: is the routes CPrice: Price of carbon ($/kgCO2)
f: is the fuel Ef 2 Amount of COz produced per MJ of fuel f.
Decision Variable LCA 1. Lifecycle Analysis value of fuel f.

BR 1x;: Blending ratio  TNk,: Number of trips of aircraft type k on route j.
of fuel f on aircraft k Paxj: Number of passengers using aircraft type k on route j.
and route j. CR k: Consumption rate using aircraft k (M.J./Pax.km).
LHVs: Lower Heating Value of fuel f (M.J./liter)
Supply r: The amount of supplied fuel f (liter)
FCF: Fuel Conversion Factor (0.0718 kgCO2/MJ for Jet-A).
GF: Growth factor of carbon (20%).
NFC: Net cost of jet fuel.
CTax: Carbon taxing cost.
RCredit: Reduction credit, representing a reclaimed value of reduced
emissions from the offsetting requirements.
Objective Function

Min NFC + CTax — RCredit

Where:

NFC =Y ¢ ¥ X j FuelConsumptionsy ; * Pr

CTax =CPrice = Gf * ¥.r ¥ X.; OperatorsEmissionsg

RCredit=CPrice * FCF * ¥.r 3. 3. ; FuelConsumptiong ; * (1 — %
OperatorsEmissions=Y.; ., > FuelConsumptiong j * Efr
FuelConsumption=Y., ¥ . ; Paxy ; * TNy ; * CRy * D; * BRs . ;
Constraints
ZBR . {1 TNy; #0 Yk The blending ratio of fuels f utilized by
= TRIT0 TN =0 ’ assigned aircraft k on route j should add
up to 100%.
BRy_yy; 2 0.5 TNy; #0, Vk,j A minimum blending ratio of 50% should
be allocated to Jet-A utilized by aircraft k
on route j.
Z Z Pax,,, TNy ;CRy,,BRy ., /LHV, For each fuel, the total amount of the
5 consumption by all aircraft k and all route
< Supplyy Vf j should not exceed

LCA, The total SAF fuels utilized by all aircraft
z z FuelConsumptiony,; * FCF » (1 =—25%)  k associated with route j should pertain to
k

M-n

r=2k a minimum of 10% emissions reduction
> 041 Z Z Z FuelConsumption,  ; * Ef, from the total fuel consumption.
=ik

2.2. Case study

Aside from the conventional Jet-A, data of two biofuels including jatropha and algae-
based fuels, were obtained to test and validate the developed model. Previous literature
referenced a well-to-wheel (WTW) approach to account for GHG emissions of jatropha
and algae fuels as studied by Alherbawi et al. (2021a) and Fortier et al. (2014),
respectively. CORSIA specifies that these values shall be compared to the lifecycle
emissions of 89 gCO2/M1J of conventional jet fuel, as referenced by the ICAO (IATA,
2019). Jatropha lifecycle emissions values were collected from Alherbawi et al.
(2021a). Whereas Fortier et al. (2014) performed an LCA using a WTW approach to
study algae-based jet fuel’s environmental performance. The study analyzed two
pathways: the Hydrothermal Liquefaction (HTL) and the wastewater treatment plant
(WWTP) HTL. The study also compared the results to previous LCA values of bio-jet
fuels. Table 2 shows the average emissions for the two selected fuels. Fuel prices were
collected to evaluate the additional costs associated to clean fuels for airlines operators.
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Algae and jatropha jet fuel prices were obtained based on the minimum selling price of
jet biofuels (Alherbawi et al., 2021b). The fuel prices were presented in USD per energy
equivalent units of (MJ) based on the lower heating value (LHV) and density
characteristics for each biofuel (Azami & Savill, 2017), and for jet-A as specified by
Chevron Products Company (2007). In 2019, biojet production was estimated with 140
million liters per year, the production is assumed to be shared between Jatropha and Algae
as in Table 2 (Renewable Energy Agency, 2021).

Table 2: Selected fuels’ price, quantity, and characteristic.

Fuels Price Supplies LHV LCA emissions
($/MJ) MillionL) (MJ/L) (8C02¢q.MJ)
Jatropha 0.026 70.000 39.0 37.95
Algae 0.031 70.000 38.0 61.38
Jet-A 0.015 87.625* 34.7 89.00

* Jet-A supplied fuel amount was assumed.

The associated direct emissions of Jet-A, jatropha, and algae synthesized fuels are defined
based on their emissions factors of 3.16, 2.81(Carels et al., 2012), and 3.7 (kgCOz/kgfuel)
(Ponnusamy et al., 2014), respectively. Implementing CORSIA requires setting a growth
factor value by the ICAO to specify the increase in the emissions compared to a baseline
of 2020 for each country. The tested scenario assumed a growth factor of 20% and a
carbon price tax of 3 $/kgCOs,.

Table 3:Selected aircraft types and fuel consumption rates.

Type of Aircraft Consumption Rate (MJ/Pax/km)
Airbus A320-200 0.7814
Airbus A330-200 1.0802
Airbus A380 1.1357

The scenario was developed with three aircraft types as summarized in Table 3 along with
their consumption rates. It was assumed that the operators have a ready flight schedule
associated with a specific aircraft type and an average number of passengers on board.
The number of trips and passengers per aircraft on each route and the associated traveled
distance are illustrated in Table 4 and Table 5.

Table 4: Trips number per an aircraft type on a specific route

Trips Number Passengers
Type of Aircraft | Route Route Route | Route Route Route
1 2 3 1 2 3
Airbus A320-200 0 0 46 0 0 180
Airbus A330-200 77 0 0 220 0 0
Airbus A380 0 22 0 0 320 0

Table 5:Trips destinations and distances.
Route Doha-Kuwait Doha-London Doha- Miami
Distance (km) 572 5240 12340
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3. Results

The results illustrated Figure 1 indicate that the model selected kerosene and jatropha to
create an optimal blend. Algae is excluded from the blend in the current scenario, which
is possibly due to its higher price as compared to Jet-A and jatropha fuels. The first route
was assigned a 100% jet-A to minimize the overall fuel associated costs, while the SAF
blend comes is introduced from the second route to satisfy the minimum emission
reduction constraints. However, as the distance travelled increases, the subsequent
emissions also increase, which require more SAF to be blended to restrict the emissions
within the defined margins. As such the third route was associated with a 50:50 Jet-A and
jatropha blended fuels. The initial run of the model suggested a cost of approximately 1.5
million U.S.$. Along with fuel price, the supplied fuel quantity, fuel emission factor, and
emissions reduction capability also influenced the optimal blending ratio and the SAF
selection. In addition, an increasing carbon tax is expected to further promote the
integration of SAF with higher blending ratios. In such case, airlines can shift to SAF
with reasonable blending ratios to satisfy the environmental targets without
compromising the economic gains.

100%
11.12%
75% 50.00%
Algae
50% 100.00% ; 3
88.88% = Jatropha
1 Jet A
25% 50.00%
0%
route 1 (A330-200) route 2 (A380) route 3 (A320-200)

Figure 1: Results of the optimal fuel blending ratios for selected routes.

4. Conclusion

CORSIA promotes the integration of SAF to mitigate the environmental impact of air
travel. The policy framework incentivizes operators utilizing SAF by providing a
reduction reward function that allows operators to reclaim some of the offsetting carbon
emissions. However, a 100% shift can be more challenging due to the high price of SAF
as compared to Jet-A, leaving operators required to maintain a higher blending ratio for
Jet-A utilization on fleets, as the results reflect a 100%, 88.88 %, and a minimum of 50%
Jet-A utilization. It is expected that SAF blending ratios will be further promoted with the
expected increase in carbon tax. However, more efforts are required to produce cheaper
SAFs and reduced life cycle emissions to reach a full transition to clean fuels.
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Abstract

With the increasing amount of data to quickly process, surrogate modeling has become a
topic of major interest in process engineering during the last decades. Recently, black-
box models have gained renewed interest as effective tools to reduce the computational
effort and to enhance the solution of optimization algorithms. Among the surrogate model
applications, scheduling and control problems are getting particular attention in the last
years. However, when dealing with dynamics, the majority of literature works concern
batch processes to be modeled within the corresponding residence time interval. With the
purpose to extend the established procedures to continuous operations, in this research
work the surrogate modeling procedure of a dynamic non-isothermal CSTR reactor is
discussed and analyzed in detail. The modeling phase was carried out for the temperature
and concentration with different sampling size and techniques by means of the software
ALAMO®. After the open-loop model was built and validated, the related closed loop
configuration has been tested by means of a conventional PID controller implementation.
The controller has been properly tuned on both models in order to compare the
performances. The obtained trends show good agreement with those of the rigorous model
both for open loop and closed loop performances. More importantly, the implemented
surrogate model requires reduced calculation time thanks to the explicit input-output
variable correlations. In conclusion, the proposed dynamic surrogate modeling approach
for process control applications has proved to be effective and provided reliable results.
Moreover, the computational time was reduced by an order of magnitude and the best
compromise between the performances and accuracy can be detected.

Keywords: data-driven modeling, design of experiment, process control, ALAMO

1. Introduction

Nowadays, the exponential increase of the available computational performances is
leading the entire engineering domain towards a more and more data-driven approach.
With respect to phenomenological models, data-driven models sometimes allow a
smoother calculation, lower computational effort and better convergence of optimization
algorithms. In the process engineering domain, the impact of data processing in the
digitalization transition can be detected in particular in the growing interest towards
surrogate modeling. Initially conceived to compensate the lack of phenomenological
models, surrogate modeling for chemical processes has become a topic of major interest
in the Process Systems Engineering and it is studied and exploited to considerably reduce
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the computational effort for complex systems modeling as well as for optimization
(Bhosekar and Ierapetritou, 2018; McBride and Sundmacher, 2019).

The majority of surrogate modeling related research works addresses steady state models
to derive input-output variables correlations without the need to solve all the units of the
system. During the last years, the interest towards this approach is nevertheless involving
dynamic systems as well (Di Pretoro et al., 2022). When dynamic models are analyzed,
the literature studies mainly refers to batch operations to be modeled over the related
residence time interval (Shi and You, 2015; Shokry et al., 2020). The purpose of this work
is then to extend the surrogate modeling activity to continuous processes and suggest a
preliminary approach that could be suitable for this scope. Moreover, once completed the
modeling phase, we are interested as well in comparing the rigorous and data-driven
model closed-loop performances for a conventional PID feedback control strategy.

The selected case study is a simple non-isothermal CSTR reactor and its thorough
description is addressed in the next section as well as the control strategy one. Section 3
refers to the different approaches proposed for the surrogate modeling procedure and the
obtained results are then discussed in section 4. Finally, some conclusions of general
validity and possible perspectives and developments are commented in the last section.

2. Case study

This section introduces first the selected case study, i.e. a non-isothermal CSTR reactor,
along with its model equations and parameter values. The second part of the section is
focused instead on the feedback control strategy and on the parameters tuning approach.

2.1. The non-isothermal CSTR reactor

The continuous process selected for the surrogate modeling procedure is a conventional
non-isothermal CSTR reactor, with constant inlet and outlet overall flowrates, where a
first order reaction occurs according to the kinetic scheme:

ASB (1)
E,
k = ko + exp (- ﬁ) (2)

The set of differential equations required for the phenomenological modeling of the
system consists of mass and heat balances as follows:

ac, 0 E
d_tA=V'(CA.m—CA)_ko‘EXP(—ﬁ)'CA €)
Az @Q Eq
T _ _ X, : e, 4
a =y etk EXp( R-T) Ca &
ar  Q AH, E, UA
X (T —-T) = k (__>— T
dt % Cp (m ) p'Cp 0" €Xp R-T p‘V'Cp (] ) (5)

All physical properties and system parameters are listed in Table 1.
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Process parameter Value Unit
Qv 1 /s
Cain 0.98 mol/m?
ko 7.2-10'° | 1/s
E/R 8750 K
Tin 304.2 K
AH; 5-10* J/mol
U-A 5-10* W/K
p-cp 239 J/(m?*-K)

Table 1 — Process operating conditions and reactor parameters
2.2. Control strategy and tuning

This section introduces the control strategy employed for the aforementioned case study.
As already explained, given the constant inlet and outlet flowrates, no level control is
accounted for while the reactor temperature is controlled by manipulating the coolant
temperature in the jacket. For this purpose, a conventional PID control was used
according to the characteristic equation:
de(t

( )) ©)

u(t)=u5+KC-<e(t)+Tl-f e(r)-dr+rD-7
0

I
Where e(t) is the error, Kc is the proportional gain, 11 and tp the integral and derivative
time constant respectively. As concerns these controller parameters, both for
phenomenological and data-driven models, they were tuned so that they minimize the
objective function given by:

Fubj:W]_'CAmax+W2'ISE+W3'OS+W4'ST (7)

where w; is the relative weight of each term, CAmax is the maximum control action, ISE
is the Integral Square Error, OS is the OverShoot and ST is the Settling Time.

3. Methodology

The surrogate modeling procedure was carried out based on different approaches better
detailed in the following subsections.

In any case, the dataset used for temperature and concentration dynamic trends is the same
and it was derived by means of the Latin Hypercube Sampling (LHS) function already
implemented in MatLab®. The key difference between this approach for control of
continuous processes and those available in the literature is that sampling should be
performed over the [time]x[manipulated variable] domain for a time interval long enough
to achieve the new steady state conditions.

Figure 1 a and b show respectively the results obtained for reactor temperature and
reactant concentration for coolant temperature step perturbation of different magnitude.
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Figure 1 — a) Concentration and b) reactor temperature response vs coolant temperature and time

A time interval equal to 10 seconds was found in order to achieve the new steady state
conditions for both variables and every step perturbation size.

3.1. Surrogate modeling with ALAMO®

The first two approaches for surrogate modeling exploit the dedicated software
ALAMO®. This tool performs surrogate modeling based on Response Surface
Methodology by using selected interpolating base functions. In this study, mixed
polynomial, logarithmic and exponential functions were selected for the regression.
Datasets with different size have been imported and the related performances in terms of
model accuracy and computational time required to solve the dynamic model over the
10s time interval have been recorded as later discussed in the results section.

The main difference between the two is related to the sample density. In particular, as
pointed out in the next section, the model obtained with the conventional LHS sampling
shows some discrepancies at the proximity of the domain boundaries and is not able to
exactly represent the steady state behaviour. That is why, in the second approach, the
sample density was doubled in proximity of the 10 s boundary, so that the steady state
points have a higher weight on the objective function minimized by the software.

3.2. First order response regression

The third approach is based on the pre-selection of a polynomial function for the
controlled variable whose coefficients are obtained by means of a regression minimizing
the relative error with respect to the data sampling. Given the temperature behaviour (cf
Figure 1b) a suitable candidate as response surface is a first order response function as:

T.=f(T))-1-A-eB)+C (7)

The advantage of using this expression lies on the fact that, for high values of the time
variable, it exhibits a steady state behaviour that is exactly what is experienced by the
system under study. This procedure was implemented with a MatLab® dedicated script.
The results for these three approaches, along with the related advantages and
inconveniences are discussed in the next section.
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4. Results
4.1. Modeling

This first subsection addresses the performances of the modeling procedure from a
computational point of view. Although results are showed for the first approach, the same
remarks both from a qualitative and a quantitative perspective are valid for the others.

Relative error with respect to the rigorous model output data Computational time

Reactant Concentration Rigorous model
Reactor Temperature ——— Surrogate model

035
b L
03

Error on all points
Computational time

T

0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
Number of initial data of the surrogate function Number of data

Figure 2 — a) Relative error [%] and b) computational time [s] vs dataset sample size

Figure 2a presents the mean relative error for concentration and temperature while Figure
2b compares the solution of the dynamic model over the 10 s time span for the rigorous
and surrogate model respectively. As it can be noticed, for this specific case study, the
relative error decreases almost exponentially with the sample size and achieves a stable
value of about 0.1 % for a dataset with more than 40 points. On the other hand, the
computational time, that is one order of magnitude lower than that of the rigorous model,
follows an almost linear trend with respect to the sample size.

From this first analysis, we can observe the considerably higher performance of surrogate
model with respect to ODE system from a computational perspective and that a good
compromise between accuracy and computational time can be obtained for a number of
points in the range 40-60.

4.1.1. Closed-loop response

Figure 3 — Controlled/manipulated variable for the three approaches

Once the surrogate models according to each of the three approaches have been derived,
their closed-loop response to two sequential 5 K perturbations on the inlet reactor
temperature have been tested. Figure 3 shows, for each of them, the controlled or
manipulated variable behaviour according to the one that is more significant for the model
performances.
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As it can be noticed, in the first case, the model is able to reproduce with some
inaccuracies the dynamic trend by respecting the settling time and the overshoot for the
second perturbation in particular. However, in proximity of the second steady state, the
curve starts dropping down to the impact of the exponential term of the obtained
analytical function. In order to mitigate this behaviour, the second approach increases the
number of points in proximity of the domain boundary. In this case, the steady-state issue
has been fixed but the cost to pay is a higher inaccuracy in the central part of the time
domain, in particular for the manipulated variable trend as showed in Figure 3b.

Finally, the first order regression performances were tested. The obtained trend exhibits
good agreement with the rigorous model one both in terms of transient quality and steady
state behaviour. However, an offset with respect to the actual steady state values can be
noticed due to the fact that the functional form of the surrogate model has been fixed and
includes, as a function of time, the exponential term only.

5. Conclusions

As a first result, the study shows that surrogate modeling to describe continuous processes
dynamics is possible and effective by means of the currently available tools. In particular,
the obtained model is able to describe the system performances both in open- and closed-
loop behaviour. However, although the most critical aspects such as transient peaks and
steady state value are correctly described, the accuracy of all points in the perturbation
time interval is not always ensured. To deal with these inaccuracies different modeling
and sampling approaches can be employed according to the specific parameter of interest.
As concerns the computational aspects, with respect to the set of differential equation, the
model obtained by means of the proposed procedure exhibits a solution time over the
defined time span that is lower by an order of magnitude and a relative error lower than
the 0.5 %. Moreover, it allows to detect the best compromise between solution accuracy
and computational time in terms of sample size for the specific case study.

In conclusion, the research work shows good potential for continuous process modeling
by means of data-driven approach and it is worth a deeper investigation in terms of both
modeling strategies and sampling in order to become a well-established tool in the process
systems engineering domain and also further applications in different research fields.

References

A. Bhosekar, M. Ierapetritou, 2018. Advances in surrogate based modeling, feasibility analysis,
and optimization: A review. Computers & Chemical Engineering 108, 250-267.

A. Di Pretoro, B. Bruns, S. Negny, M. Griinewald, J. Riese, 2022. Demand Response Scheduling
Using Derivative-Based Dynamic Surrogate Models. Computers & Chemical Engineering,
107711.

K. McBride, K. Sundmacher, 2019. Overview of Surrogate Modeling in Chemical Process
Engineering. Chemie Ingenieur Technik 91, 228-239.

H. Shi, F. You, 2015. Adaptive surrogate-based algorithm for integrated scheduling and dynamic
optimization of sequential batch processes. 54" IEEE Conference on Decision and Control
(CDC) proceedings, Osaka, 7304-7309.

A. Shokry, P. Baraldi, E. Zio, A. Espuiia, 2020. Dynamic Surrogate Modeling for Multistep-
ahead Prediction of Multivariate Nonlinear Chemical Processes. Ind. Eng. Chem. Res. 59,
15634-15655.



PROCEEDINGS OF THE 32 European Symposium on Computer Aided Process Engineering
(ESCAPE32), June 12-15, 2022, Toulouse, France

L. Montastruc, S. Negny (Editors)

© 2022 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/B978-0-323-95879-0.50017-5

Probabilistic machine learning based soft-sensors for
product quality prediction in batch processes

Max Mowbray?, Aaron Hicks?, Harry Kay?, Sam Kay?, Amanda Lane®, Cesar
Mendoza®, Philip Martin® and Dongda Zhang®"

2Department of Chemical Engineering and Analytical Science, University of Manchester, Oxford
Road, Manchester, M1 3AL, UK.

SUnilever Research Port Sunlight, Quarry Rd East, Bebington, CH63 3JW, UK

dongda.zhang @manchester.ac.uk

Abstract

Statistical machine learning algorithms have been widely used to analyse industrial data for batch
process monitoring and control. In this study, we develop a three-step methodology to identify,
visualize and systematically reduce data dimensionality for the construction of robust soft-sensors
for end-product quality prediction. The approach first employs partial least squares to screen the
entire dataset and identify critical time regions and operational variables, then adopts multiway
partial least squares to construct a latent space descriptive of the existing batches. Nonlinear esti-
mators are then constructed from the reduced latent space to estimate final product quality, which
is able to express model uncertainty. Specifically, in this study, we explore the performance of
Gaussian processes. Innovations of this approach include the ease of data visualisation and ability
to identify major operational activities within the factory, as well as robustly predict end-quality.
To highlight efficiency and practical benefits, an industrial consumer goods product manufactur-
ing process was presented as an example and the soft sensor was successfully constructed and
cross validated. Furthermore, the accuracy, reliability, and interpretability of the soft-sensor is
discussed, tested and shown to generalise well.

Keywords: Machine Learning, Batch process, Soft-sensor, Dimensionality reduction, Viscosity
prediction, Interpretability

1. Introduction

The operation of nonlinear, uncertain batch processes is a well established domain of research
within process systems engineering. Batch process data tends to consist of rank-3 tensorial datasets
which are highly dimensional. Further, given that the process is batch, it tends to be the case that
operation’s primary concern is to ensure that end-quality is kept on specification (meaning that
one typically only has a single measurement of the desired qualities of a given batch). As a re-
sult, the construction of end-quality predictive models for process monitoring and operation is a
highly complex process, requiring identification of different dynamical regimes (handling of non-
stationarity in the data) and highly dimensional data points that typically exhibit multicollinearity.
This is combined with the fact that operational data is often reasonably limited (at least relative to
the era of big data) and the identification of physical mechanisms (mathematically) is extremely
challenging. Conventionally, the problem has been handled by various dimensionality reduction
techniques (see e.g. Wold et al. (2009)). However, proper quantification of the uncertainties asso-
ciated with latent variable models is challenging as discussed in Zhang and Garcia-Munoz (2009).
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As aresult, in this work we consider the development of probabilistic latent variable models, which
can naturally quantify the uncertainty of their prediction. This is important because not only is the
nature of end-quality prediction in batch processing of high uncertainty, but such quantification
can help inform operation of the batch to mitigate waste and reduce inefficiencies.

2. Methodology

2.1. Model construction with rank-3 tensorial input data

In this work, we assume the availability of a dataset, ¥ = {2, Y }, composed of N batch runs, with
J process variables recorded at T discrete time intervals, such that 2° = [X),...,Xy]|T € RV*/xT
and Y = [yy,...,yn] € R¥*" where ny represents the number of process qualities one would like
to monitor. In this work, we would like to identify a predictive mapping expressed as follows:

y=f(X,0) )

where 6 € R"¢ are the parameters of the functional mapping, f(-, ), defined generally. The input
data, 2", represents a rank-3 tensorial dataset, which generally poses challenge to constructing
classical predictive models. A number of techniques exist to handle such data (that all aim to
obtain a rank-2 tensorial representation), including convolutional neural networks, and a number
of tensorial analysis approaches as outlined in Sun and Braatz (2020). Further, it is common in
the paradigm of batch processing for datasets to exhibit multi-collinearity, such that the problem
of identifying the mapping (in Eq. 1) is ill-posed. As a result, in this work, we use the method
developed in Hicks et al. (2021) with inspiration from Nomikos and MacGregor (1995, 1994) to
construct a reduced latent representation of a batch, such that the dataset 2" can be well described
by Z = [z1,...,2zy], where z; € R™ and i € {1,...,N}. This reduced latent representation, Z can
be used for model construction as outlined subsequently. Specifically, we propose to identify Z
via multi-way projection to latent structures (MPLS), which can be thought as a special case of
projection to latent structures (PLS). Essentially, the additional component of MPLS (relative to
vanilla PLS) is the transformation (or unfolding) of a rank-3 tensorial dataset via a functional
transformation, f, s, to obtain a rank-2 matrix. In this work, we use time-wise unfolding, which
may be defined as fy, : RN*IXT _, RNXJT  Having obtained an unfolded representation of the
dataset, X = Jfun f(% ), one can then identify Z that correlates with the variables one desires to
predict via PLS:

X=zpP" +E

T )
Y=UQ" +F

) Xy

where P € R'T*" are the input loadings, which project X to the input latent space; Q € R™
are the output loadings, which project Y to the output latent space; U = [uy,...,uy]? € RV are
the output scores; and, E € RN*/T and F € R¥*" quantify the information loss from projecting
both X and Y to their respective latent spaces. The latent spaces themselves are related via a
linear regression, which enables formation of a predictive model (which together with an unfolding
mechanism enables identification of a model of the form of Eq. 1).

Although PLS is a linear decomposition, the relationship expressed within the latent spaces can
often be nonlinear. This means that PLS may inherently underfit the modelling problem at hand.
Further, approximation of the model uncertainties is a difficult problem given that the typical
methods for uncertainty estimation do not consider the indirect relationship of model input and
output via the latent structures. This was studied in Zhang and Garcia-Munoz (2009). To handle
these two facets, we propose to a nonlinear estimation from the latent space, U to the target Y, to
identify a model which naturally expresses predictive uncertainty via probabilistic inference. A
suitable estimator is discussed in the following.
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2.2. Nonlinear Estimators for Probabilistic Inference and Gaussian Processes

Here, we briefly formalise a general introduction to nonlinear estimators which lend naturally to
probabilistic inference. Specifically, we can consider probabilistic inference as the construction of
a conditional probability distribution function over predictions, y, given a model input, z. In this
case, we would like to identify a prediction as follows:

y~ p(ylz,-) 3)

Specifically, we consider the use of Gaussian processes (GPs), the high level intuition for which is
provided in the following. The use of GPs is particularly appealing as the predictive distribution
constructed (in Eq. 3) expresses both aleatoric (arising due to the underlying process) and epis-
temic (due to a lack of information) uncertainties in closed form. In short, GPs operate within a
nonparametric, Bayesian inference framework. The idea here is to (instead of identifying a fixed
model structure and number of parameters) simply exploit the statistical relationships within the
data to identify a function, f : R"* — R, (i.e. an infinite dimensional weight vector) such that we
can make predictions, f = [f(z1),..., f(zy)], where f(z;) € R, by simply querying the function at
given model inputs, Z. Formally, however, GP models are a subset of stochastic process models
(SPs). SPs define a probability model over a collection of random variables, such that any finite
subset of the random variables have a joint distribution - meaning they are often identified as a
distribution over functions. When this joint distribution is assumed Gaussian, one obtains a GP. A
GP is fully specified by a mean, m(-), and covariance function, k(-,-). Many covariance functions
exist, but all are constituted by some hyperparameters, which we define generally as A, such that
the covariance function may be denoted k(z, z; l). Selection of the covariance function, and the
associated hyperparameters, defines the behaviour of the GP in function space, otherwise known
as the prior, p(f|Z,A):

f(2)~ pltiZ.4) “

p(flZ,A) =9 P (m(z),k(z,2';1))
The mention of a prior, leads us nicely into discussion regarding probabilistic inference in GPs.
As mentioned, inference leverages a Bayesian framework, which allows us to directly exploit the
statistical relationships in data to infer f(z;) ~y € R (i.e. a product end-quality). Therefore, we
may write a variant of Bayes’ rule for inference of a latent coordinate at the training points in GPs
as follows:

p(Y’|Z,£,4)p(flZ,A)

J —

&)

where Y/ € RY, j € {0,...,n, — 1} denotes the j* column of Y; p(f|Y/,Z,A) is known as the
posterior predictive distribution; p(Y/|Z,f,A) is the likelihood (formalised as conditional to the
covariance function hyperparameters); and, p(Y/|Z,A) is the marginal likelihood. Due to the
dependence on A, it is important to properly identify A. This is achieved by maximisation of the
marginal log-likelihood, p(Y/|Z,A). If a homoscedastic Gaussian additive noise model is chosen
in construction of the likelihood term, and given that Gaussians are closed under both conditioning
and marginalisation, we can construct the posterior exactly as a Gaussian distribution, such that at
a new test point z*, a posterior predictive distribution over function values, f*, may be constructed
as:

p(fY!, 2,2 A) = N (u(z"Y!,Z,A),0(z" Y/ . Z, X)) (6)

As GPs are multiple-input, single-output models, if one has an n, dimensional latent representation
of desired process qualities to predict, then n, separate GP models can be constructed with the
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predictions aggregated as follows:
;,t(z*;Y Z) =[5y 2, (2 Y Z,0)]
X(z":Y,Z,") = diag(c}(z" YO,Z,~),...,G,%v(z*;Y”VHZ,-))
p(y* |z )= (1T)

y ~p(y |z", )

O]

2.3. Contribution

By integrating the concepts outlined in this Section, one can identify a reduced latent representa-

tion of the batch trajectory, which correlates to the desired end-qualities to predict. By constructing

nonlinear f:sgimators from the latent space, Z, one can make predictions given a new test batch,
* € RUYXT s follows:

Y ~ (Y| fung (XT)P, ) ®)

Given, we identify our mapping from the latent space to end-batch quality as a Gaussian process,
we can write y* ~ 4~ (u,Z), which describes both the expected end-quality given the trajectory
information of the batch, as well as a variance which is quantitative of the aleatoric and epistemic
uncertainty associated with the prediction.

3. Case Study

3.1. Consumer goods product-quality prediction

The work developed in this paper focuses on product quality prediction in batch processes. The
feasibility and performance of the proposed soft-sensors is assessed by predicting the viscosity
of a consumer good product with data obtained from a production plant. This data belongs to
two different product specifications with similar processing procedure. Specifically, the data was
generated from real-time monitoring of the process as well as one off-line measurement of end-
viscosity. These measurements are performed with a rheometer, and can take upwards of 20 min to
be completed, which can potentially make errors irreversible. As is demonstrated subsequently,a
possible solution is to substitute periodical off-line viscosity measurements with on-line final vis-
cosity prediction using live process data.

3.2. Datasets

The first dataset used to develop the soft-sensor belongs to the first product specification. It com-
prises 30 individual batches that follow the same recipe, and have the same target viscosity. De-
viations from the set target are due to operation errors and uncertainty in the final viscosity mea-
surements. This dataset was used to train all the models. In the first instance, model performance
was assessed using leave-two-out cross-validation on dataset . Two further datasets, 8 and 7,
were used for testing. Dataset 3 originates from the specification as dataset @ and has 16 batches,
while dataset y belongs to a different product specification and is composed of 11 batches. Hence
datasets 8 and « represent the same process. As for dataset ¥, test predictions assess the generali-
sation capacity of the model, since ¥ belongs to a different specification of product.

To ensure that all datasets could be used for prediction, heterogeneity was standardised via a pro-
cess of batch alignment and critical time regions and process variables were selected to constitute
Z (for the respective datasets). This was conducted via the framework outlined in Hicks et al.
(2021), which is based on finding datapoints that correlate strongly with the process quality one
would like to predict. For all datasets, critical data regions were identified such that J = 8 and
T = 300, reducing the datasets from an original dimensionality of 7000 measurements of 30 dif-
ferent process variables.
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3.3. Metrics for Model Selection and Evaluation

The evaluation and comparison of the different models’ performance was based on the follow-
ing metrics that are required to quantify the quality of the predictive distribution constructed by
the models. The accuracy of the models was calculated with the mean average percentage error
(MAPE) with respect to the real viscosity as seen in Eq. 9:
(Xt
mape = PZHELIL g0 ©)
y
where |- | denotes the absolute value; y is the real viscosity measurement and (i (z) corresponds to
the mean of the predictive distribution over viscosity values given a latent coordinate, z, as pre-
dicted by the models constructed in this work. The scaled coefficient of variation, o, is denoted:

_ co(z)
%= ux,)

where ¢ € R is defined to quantify the normalised spread of potential viscosity values observed
under the predictive distribution modelled, with a given probability (i.e. ¢ = 3 indicates the spread
of potential viscosity with probability 0.997); o(X*,-) = \/EL(X*,-) is the standard deviation of
the predictive distribution identified. In the region of the latent spaces that one has data, this
should be reflective of the aleatoric uncertainty of the data generation process and e.g. represent
variability in the measurement of viscosity and operational error. For the underlying process it has
been estimated that this aleatoric uncertainty should be in the range of 6, = 26% The final metric
used in this work, is the coverage probability, CP:

CP=P(ly—u(z)| <co(z)) (1D

x 100 (10)

As in Zhang and Garcia-Munoz (2009), CP is defined with ¢ and hence the inequality should be
satisfied with a hypothetical probability (i.e. ¢ = 3 indicates CP = 0.997, as used in this work).

4. Results and Discussion

Given the nonparametric nature of Gaussian process models, determination of model structure
primarily considered the number of latent variables used with the MPLS model input latent space.
The results of the cross validation for the model are expressed by Fig. 1. From Fig. 1, one can
see the optimal number of latent variables (PCs) in the latent space is around 2. At this PC, there
is the lowest validation MAPE (~ 10%), 6. ~ 26%, which well represents the expected variation
of the process, and CP = 0.95, which considering the finite number of predictions is close to the
hypothetical value desired.

The results obtained in model testing are displayed by Table 1. The results demonstrate the ability
of the model identified to obtain impressive predictive accuracy (via low MAPE ~ 10%) and
identify predictive distributions, which well represent the aleatoric and epistemic uncertainties
(quantified via CP ~ 0.9). The framework has particular utility, because it is able to identify
predictive uncertainties (innately) in closed form. Further, combining Bayesian inference with
latent space modeling, interpretability is provided in the form of both the uncertainty prediction,
but also clustering and loading type analyses, which together are able to jointly inform operators
when the process is displaying dynamical regimes not commonly observed (i.e. when operational
error is present) and for what reason. This enables efficient process monitoring and an online
indicator if operators should take action and how best to take it.

5. Conclusions

In this work, we have provided a framework for the identification of a robust soft sensor for
end-quality prediction in batch processes. The soft sensor is able to well identify a predictive
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Figure 1: a) Average training and validation MAPE (bar 1 and 2, respectively) and o, (bar 3 and 4,
respectively) over all cross validation folds as latent variables are added to the MPLS latent space.
b) Evolution of coverage probability with the addition of latent variables.

Table 1: Results of predictive tests on datasets § and y.
Dataset MAPE (%) o.(%) CP

B 10.0 2246  0.88
Y 114 2290  0.83

distribution that quantifies both the expected end-quality (quantified via MAPE in the region of
10% on both validation and test predictions), as well as a closed form uncertainty prediction, which
represents the underlying process variation and epistemic uncertainty of the model (quantified via
the coverage probability and coefficient of variation). Combining both Bayesian inference and
latent space modelling enables interpretability of the predictions, and could help inform operators
if and how to take action. We hope to implement this framework to a real process in the scope of
process monitoring.
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Abstract

Nowadays, medical cannabis has great importance as a coadjuvant in the treatment of
some pathologies as glaucoma, rheumatoid arthritis, HIV, Alzheimer's, asthma, cancer,
chronic pain that is difficult to control, Crohn's disease, epilepsy, multiple sclerosis,
insomnia, and Parkinson's; additionally, cannabinoids and terpenes have important
properties that need to be considered and studied in a deeper way to understand the way
these compounds work. The main goal of this study is to develop a new hybrid
methodology based on both contribution groups and machine learning algorithms. In this
particular case, the study is focused on estimating properties of cannabinoids and terpenes
whose experimental information is really scarce and, in most cases, not yet reported. To
do so, a database of hundreds of thousands of molecules which includes different
thermodynamic properties have been considered. Our method is able to estimate different
properties such as: boiling point, melting point, vapor pressure, viscosity, and
vaporization enthalpy. Machine learning algorithms have been used to establish the
contribution of every functional group and its prediction capability has been compared
with other well-known methods like the Joback and Reid (1987) method, Constantinou
and Gani (1994) method, among others. One of the major findings of the present study is
the fact that the current estimation methods are not adequate enough for cannabinoids and
terpenes, so there is an important need to find new and more precise ones that allow to
improve the accuracy in the groups as well as to extend the predictions to a bigger set of
chemical groups. This study clearly shows the importance and utility of the machine
learning methods in one of the most relevant chemical engineering areas such as the
properties estimation one. This study clearly shows the benefits of machine learning
techniques in chemical engineering applications.

Keywords: Property Estimation Method, functional groups, Machine Learning, Neural
Networks, Cannabinoids.

1. Introduction

In the last years the interest in studying the cannabis plant has increased notoriously in
different fields due to the different pharmaceutical properties of several of its chemical
compounds, for instance it is known cannabinoids are of great importance as coadjuvants
in the treatment of different pathologies as cancer, epilepsy, and multiple sclerosis
Abyadeh et al. (2021). Besides cannabinoids, cannabis plants also contain several
compounds such as flavonoids, fats, and terpenes. The latter have biological properties
that make them potential mechanism against different diseases, including cancer chemo
preventive effects, antimicrobial, antifungal, antiviral, and antiparasitic activities Paduch
et al. (2007). Despite the great range of applications, the thermodynamics properties of
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cannabinoids and terpenes are difficult to find in the literature or in specialized databases.
Therefore, as a first cheap and fast alternative predictive tool such as the based ones on
group contribution methods can be used in order to estimate them based on experimental
data of other molecules, in particular due to their importance in the crystallization and
distillation process it is relevant to study properties such as melting and boiling points,
densities, viscosities, among others. This work is aimed to study the melting point of
several cannabinoids and terpenes using a group contribution strategy along with machine
learning techniques. The basic idea when using group contribution methods, once a set of
chemical groups is defined, all molecules belonging to the database are split accordingly
allowing to establish a system of algebraic equations. Finally, an optimization method is
used in order to minimize the error between predictions and experimental data. Several
contribution methods have been proposed for different purposes in the property’s
estimation field. One of the most famous was proposed by Joback and Reid (1987), this
method is able to estimate critical points, melting temperature and normal boiling
temperature, it is commonly used for relatively simple molecules and is based on 41
molecular groups. Additionally, Constantinou and Gani (1994) made the estimation of
critical properties of pure organic compounds, which due to its sophistication promises
better results than Joback's method, as the estimation is performed at two levels: the basic
level that uses contributions from first-order groups, and the next higher level that uses a
small set of second-order groups having the first-order groups as building blocks. The
predictions, first and second order approximations, are based on the molecular structure
of the compounds, and is able to make the distinction between isomers. Recently, other
studies unified the group contribution methods with artificial neural networks. For
instance, Valderrama et al. (2015) created this type of hybrid method for the estimation
of the density of ionic liquids. For this purpose, an experimental database of 399 data for
100 ionic liquids was used for the network training. In order to discriminate between
different isomers, the molecular mass and the structure of the molecule were given as
input variables. Additionally, Gharagheizi et al. (2011) proposed an artificial neural
network-group (ANN-GC) contribution method in order to determine surface tension of
pure compounds at different temperatures and pressures. They used 4700 data belonging
to experimental surface tension values of, approximately, 750 chemical compounds and
151 functional groups at different conditions. Although several methods have been
proposed, none of them is able to reproduce the experimental data of cannabinoids or
terpenes, additionally since the experimental information is scarce for these compounds
it is certainly to propose a methodology to estimate them, in this particular a hybrid
strategy of group contribution methods along with machine learning techniques and a big
set of experimental data will be used. The manuscript will be presented as follows, first
in the computational section, the database generation for and the group contribution
method is described, second the neural network algorithms are presented, third the results
are presented and finally the conclusion and future work is presented. The code and the
best predicted model will be available after publication.

2. Methodology
2.1. Database features

In order to build the machine learning algorithms, a database with the property data was
needed to train the method. To do so, an open database available on the U.S.
Environmental Protection Agency (EPA) was used, this database contains the chemical
name, the Simplified Molecular Input Line Entry Specification (SMILES) and different
chemical and physical properties such as the melting point, the boiling point among many
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others. This database has, approximately, 700,000 compounds with their respective
melting point, as it is the property being studied. Additionally, the database created has
the functional groups present in each compound, which are group of atoms that have their
specific characteristics and contribute to the properties of the compound. The functional
groups were obtained using RDKit, a library created for Python, which prints the
functional groups of each compound based on its SMILES. Additionally, to evaluate the
model a database of 50 cannabinoids and terpenes was generated, the information was
obtained from the Cannabis Compound Database Version 1.0, a freely available
electronic database containing detailed information about small molecules found in
Cannabis sativa, Cannabis indica and Cannabis hybrids (Cannabis Database). The
functional groups of the cannabinoids and terpenes were also found using RDKit and the
compounds SMILES. Finally, it is important to mention that, as this was the database
used for the evaluation of the model, the melting point was not included in it.

2.2. Machine learning algorithms

In this subsection, we introduce the concept of Artificial Neural Networks (ANN), and
the process of its training and evaluation. ANN was inspired by the structure and functions
of biological neurons, and it generally consists of an input layer where data is fed, the
hidden layers standing for the internal structure of the model where information goes
through until arrive at the output layer Schmidhuber (2015). Each layer comprises
neurons that transmit the information downstream to connected neurons belonging to
other layers. The previous layer acts as an input for the next one after applying nonlinear
activation on it, and finally propagates the current result to the following layer. In a vector
notation we have Wang et al. (2020):

higr = Wigali + biy1s Ly = f(higr) (€Y}

where [; is the input row vector of the i — th layer, W;,, and b;,, are the weights and
biases trainable parameters, h;,; is the intermediate vector after linear transformation,
and f is the activation function. The goal of training an ANN is to minimize the difference
between the predicted value given by the output layer = fi;, ,(h) and the ground truth
y. The minimization is described through the loss function L, by optimizing the
parameters W and b. In regression tasks Schmidhuber (2015), it is common to use L as
the mean squared error (MSE), the mean absolute error (MAE) or the Huber loss (H):

lz R 12 . . 050y =9 ly-3l< 6
—_— — 2 = —_ =

where N stands for the number of samples. The aforementioned functions will be adapted
to this work. Following the chain rule, one could transmit gradients of the trainable
parameters in the i — th layer from the (i + 1)th layer. During backward propagation
the parameters are updated, then forward propagation is performed again. This is repeated
until the loss function achieves the desired precision and thus, the NN is trained and ready
to make predictions. Two types of artificial neural networks are implemented in this work:
deep Feedforward Neural Networks (FNN) and Convolutional (ConvlD). The FNN
described above does not have cycles contained within it and the connections between
layers and the information flow are straightforward, while the Conv1D is a structured
network with multiple sets of weights (filters) that "slide" or convolve across the input-
space to analyze distance-pixel relationship opposed to individual node activation in the
FNN Schmidhuber (2015). On the other hand, the dataset is split in training 70%,
validation 15%, and test 15% sets. The first set is used to train the ANN, while the
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validation and test set contain unseen values, relevant for testing the performance of the
model. The latter can be achieved using a metric that in most of cases is similar to the
loss function shown in Eq.(2) or thought the coefficient of determination (R?) Hortua et
al. (2020):

2, 2@ —y)?
B e @

where ¥ is the average of the true parameters and the summations are performed over the

entire test set. R? ranges from 0 to 1, where 1 represents perfect inference. R? will be
used in this work as metric for measuring the performance of the NN models. Finally, a
downside behind of the standard NNss is that they are sensitive to the training process and
the hyper-parameter choices, finding different set of weights each time they are trained,
which in turn produce different predictions and high variance. An attempt approach to
reduce this variance is to train multiple models instead of a single one and to combine
the predictions from these models. This is called ensemble learning and it helps to reduce
the variance of predictions and can also result in better performance Tao (2019).

3. Analysis

In order to predict the melting point in terms of the establish chemical groups, we started
with single NN regression models. First, we built in TensorFlow a FNN consists in four
dense layers with 256, 128, 64 and 1 neurons, followed by an ELU activation function,
a Batch Normalization in order to optimize and accelerate the convergence, and a Dropout
layer (with a rate of 0.1), for regularization purposes. Here, we adopt Adam as the
optimizer, and a learning rate decay with 0.01 in its initial value, with a factor of 0.8
during each 10 epochs. On the other hand, the convlD architecture comprises of four
convolutional layers of 64, 32, 32, 16 filters, then a MaxPool layer is used to reduce the
dimensions of the feature maps, followed by four dense layers of 256,126,64 and 1
neurons. As before, each layer is followed by an ELU activation function, Batch
Normalization and Dropout (rate 0.1).

Table 1. Performance for different models in terms of R?

. Ensemble Single
Metric/Model =/qp MAE Huber MSE MAE Huber
R2-FNN 0.88 0.84 0.84 0.83 0.82 0.82
R2-ConviD | 0.87 0.87 0.87 0.81 0.80 0.83

The results of the performance for both, FNN and Conv1D for different loss functions are
reported in the right hand side of the Table 1. As we observed, both models seem to work
well, reaching a decent coefficient of determination value. FNN model trained with MSE
is the best model that we obtained through all single NN experiments, and the behavior
for predicting unseen instances can be seen also in Fig.1a. Finally, we also worked with
ensembles of Neural Networks (BNN) in order for including variances during the
inference process, and improve the estimates for predictions. The schema for those
ensembles with either FNN or Conv1D are displayed in Fig.(2)-(3) respectively. For these
ensembles we added at the top of the models, an Average-layer which provides of an
unique neuron for predicting the melting point. Furthermore, we could extract the
information from the top-before layer to get the outputs for all the models in the ensemble
and thus, to be able to compute the standard deviation for the predicted values. As we can
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see in the left part of the Table 1, the ensemble models outperform the results that we
have obtained in the single scenario. Indeed, we achieved coefficient of determination
around 0.8 for the FNN ensemble trained with MSE loss function. The prediction for the
test dataset can be also seen in Fig.1b. Here, we observed not only a better accuracy in
the predictions, but also, we acquired new information about the uncertainty of those
estimations. One of the main analysis that we can get from the ensemble models, is that
there is a huge variance for chemical groups with melting points around 10-100 Celsius
degrees, basically because of the few dataset in this range. Also, we can argue that five
models in the ensemble is not good enough, and it requires more single NN for yield
better results in terms of variability. These additional remarks along with the use of
models which provide uncertainties such as Bayesian Neural Networks Hortla et al.
(2020) or Gaussian Processes are tools that we are proposing for a future work.

(a)Predicted values again against true (b) Predicted values for an ensemble
values for a single FNN model. consisting on 5 FNN models.

Figure 1. Predicted vs true values for the best experiments found for a single and ensemble NN
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Figure 2. NN architecture used in the work based on ensembles of several NN Fully-connected
models.
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Figure 2. NN architecture used in the work based on ensembles of several NN convolutional
models.

Table 2. Prediction provided by the ensemble FNN model for different cannabinoids

Compound Name Predicted Value (°C) | Reported value (°C) | Standard Deviation

Mircene -70.0 <-10.0 48.4
Apha-pinene -30.8 -62.0 26.8
Menthol 87.0 36.0-38.0 36.0
Cannabidiol 152.4 66.0 39.2
Cannabigerol 152.3 49.0-52.0 36.4
Beta-pinene -53.1 -61.5 354
Limonene -45.8 -74.0 35.8
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Table 2 summarizes the predictions for some of the studied cannabinoids, not previously
used by the algorithm. Standart desviations are also reported. As shown: i) qualitively
speaking the model is able to predict positive and negatives melting points, however, it
still need a lot of improvement in compounds such as cannabidiol one of the most
important in the current processes ii) the obtained standard deviations are very high
indicating that a pre-treatment process is certainly necessary to improve the model.

4. Discussion and Conclusions

In this paper, we have explored several machine learning techniques for estimating the
melting point property in chemical compounds. We contrasted two main approaches: the
use of trained single NN models based on FNN and Convolutional layers, along with
ensembles comprise of those single NN. We have found that these ensembles outperform
single NN, and additionally provide uncertainties in its predictions. The best model found
in this paper comes from the ensemble of FNN trained with MSE loss function, reaching
a R? = 0.88. Even if the results are good enough and promising, we observed that the
variance for the models built so far is huge. This effect can be associated with either a
noisy dataset or because of few instances in the dataset for some temperature ranges. In
order to overcome this issue, we suggest for a future work, a strong reprocessing method
before feeding the data into the NN model, and also the use of more robust techniques
such as Bayesian Neural Network in order to get the aleatory and epistemic uncertainties
which give a clearer picture about the huge variability in the predictions. Finally, we are
currently working on improving the accuracy of this model as well as determining more
thermodynamic properties of interest in the cannabinoid extraction process.
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Abstract

Microbiological production of y-linolenic acid (GLA) via a temperature-shift strategy has
been found to shorten the batch cultivation period, improve GLA yields and reduce the
operational cost. However, the underlining biochemical mechanistic phenomena are
highly complex and challenging to model, thus hindering commercial upscaling
applications of this fermentation technology. To bridge this gap, a dynamic model capable
of simulating biomass growth, substrate consumption, and GLA biosynthesis of
Cunninghamella echinulata for a wide temperature range was proposed for the first time.
Once the model parameters were identified, the model’s high simulation accuracy was
demonstrated against data from a small scale 1L bioreactor. It was found that the optimal
temperatures for biomass growth and GLA production were 37 °C and 14 °C, respectively.
Model aided upscaling to a SL bioreactor with a two-stage temperature-shift strategy
showed a 69.6% increase in GLA production, which was verified experimentally.
Therefore, this presents a significant advance for the upscaling of GLA production
biotechnology from laboratory to pilot scale.

Keywords: fermentation; kinetic modelling; y-linolenic acid; temperature-shift; process
upscaling.

1. Introduction

The polyunsaturated fatty acid (PUFA), y-linolenic acid (C18:3n-6, GLA), is widely
utilised within the pharmaceutical and nutraceutical industries due to its outstanding value
for treating diseases. As an essential precursor for the biosynthesis of several
prostaglandins, GLA is an essential fatty acid with proven anti-inflammatory and anti-
cancer effects (Wan, 2009). However, with the body unable to manufacture its own
(Somashekar et al., 2003), GLA must be assimilated through the consumption of poultry,
beef, pork or egg yolk, or else as a dietary supplement.

Plant seeds such as borage, black currant, evening primrose, and hemp have been used as
commercial sources of GLA oil (Tanticharoen et al., 1994). However, cultivating these
plants requires large swathes of arable land owing to their seeds low intracellular GLA
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content. In contrast, a promising alternative source: the oleaginous fungus
Cunninghamella echinulata (C. echinulata), possesses a much higher GLA content, and
is simpler to cultivate (i.e., traditional fermentation). Taken together, this marks the
fungus as an economically competitive source of GLA for large-scale production.
Temperature-shift: an approach where the operating temperature is switched during
cultivation to increase the accumulation of the targeted metabolite has been reported to
influence the intracellular PUFAs content of fungal species (Jang et al., 2005).

However, whilst C. echinulata is oleaginous fungi, the optimal temperature for biomass
growth, lipid production, and product accumulation might differ significantly between
strains. Hence, it is valuable to investigate the optimal temperature-shift strategy for
industrial GLA production with C. echinulata. Moreover, model-based design of
experiments is considered an effective tool to accomplish bioprocess scale-up from
laboratory to pilot and industrial scale (Zhang et al., 2015).

Therefore, this work aims to: (i) investigate the effect of temperature on the C. echinulata
biomass growth and GLA production through the construction of a rigorous kinetic
model; (ii) evaluate the performance of the temperature-shift strategy when up-scaling
the fermentation processes from a 1L to 5L bioreactor; (iii) evaluate the predictive
accuracy and sensitivity of the kinetic model over different bioreactor scales.

2. Methodology

2.1. Experimental setup

In our lab, C. echinulata X-15 was a screened high-yield strain, which was maintained on
potato dextrose agar (PDA) plates at 4 °C and transferred every 3 weeks to PDA plates.
The culture was grown at 28 °C for 2 days and then stored at 4 °C until fermentation.
GLA fermentation was carried out in 1L bioreactors (Infors-2015 Bioprocess controller,
Netherland) containing 0.7L of medium and cultivated at different temperatures (14 °C,
28 °C, and 37 °C) with 10% (v/v) of the seed culture without pH controlled. In the two
temperature-shift experiments, GLA fermentation was carried out in a 5L bioreactor
(Infors-2015 Bioprocess controller, Netherland) containing 3.5L of medium, ultimately
switching the temperature from 37 °C to 14 °C at either 168 hours or 96 hours. All the
control conditions were the same as those in the single temperature experiments, and all
cultivation experiments were performed in triplicate and analysed individually.

2.2. Kinetic model construction

2.2.1. Model structure identification

The Contois model accounts for the effect of cell flocculation and diffusional barriers that
arise in high-density cell cultures. Thus, the Contois model was adopted in this study to
describe biomass growth. Equation (1) simulates the total biomass growth rate, and
Equation (2) simulates the fat-free biomass growth rate, assuming that the fat-free
biomass growth rate is proportional to the total biomass growth rate.

Xr - ¢ ¢ (1)
dt = Hm Koy Xr +C T~ Ha AT

dXB_k _dXT_k_ _ C X X )
dr o Tqr T o (Um C+Xr Key T~ Ha " XT) (2)

Where X7 is total biomass concentration (g L™1), C is glucose concentration (g L™1), u,,
is the maximum specific growth rate (h™1), p is the specific cell death rate (h™1), K, is
the half-saturation constant and k,, is the ratio of fat-free biomass to total biomass (g g~ ).

dC— Y, ( ¢ X X) X 3
dr . feo Hm Ky Xp+C T Ha A7 | —m:Ar 3
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Equation (3) simulates glucose consumption rate, where Y is the yield coefficient from
glucose to biomass (gg™!) and m is the biomass specific maintenance coefficient
(gg'h™).

Finally, GLA accumulation was simulated by adapting the Luedeking-Piret equation to
include a novel GLA consumption term which is used to describe the decay stage of GLA
in experiment shown in Equation (4).

dX; C

ar m'xr—ﬂd'xr)‘i‘kn'xr—kd'm'
Where k,, is the growth-dependent synthesis constant (gg~!), k, is the growth-
independent synthesis constant (g g~th™?1), k, is the specific GLA decay rate (g g~th™1)
and K, is the saturation product constant (g L1) for GLA decay.

=k, - (um : Xr 0

2.2.2. Simulating temperature effects

In order to investigate the temperature dependence of each kinetic parameter, seven
parameters were modelled as a function of temperature (i, K0, Yco, Ko, km» kq and
K,), whilst the remaining three parameters (m, pq, k) where considered temperature
independent. The positive or negative temperature dependence was captured by either
Equation (5), or Equation (6) (Laidler, 1984), respectively, where the former is simply
the standard Arrhenius equation.

B:
;= 4~ exp () (5)
B:
Hi = Ci - Ai T exXp (?l) (6)

Where 4;, B; and (; in the above equations are specific parameters to be fitted for each
kinetic parameter 6; and T is the temperature in Kelvins K. Thus, two or three constants
describe each of the seven temperature-dependent parameters.

2.3. Parameter estimation method
The 24 parameters required by the model were estimated by formulating the nonlinear
least-squares optimisation problem defined by Equation 7, identifying parameter vector
parameters 8 by minimising the objective function (Del Rio-Chanona et al., 2015):

. np (XTn_XTe )2 (Cn—Ce )2 (XBn_XBe )z (XGn_XGe )2
l’nell’lE(H) =Yn=1 X2 =+ 2 A=+ %2 =+ T ™)
Temax émax Bemax Gemax

Where X Top> Ce,» Xp enand X e, ATC the measured concentrations of biomass, substrate,
fat-free biomass and GLA respectively, at each sampling time n. Whilst, X7, Cy,, Xg,,
and X, are the respective concentrations computed by the model at each sampling time

n, andXTemax C XB

> Coman . and X;; emax AT€ the maximum measured concentrations

ema.
and np is the number of sampling points.

This derivative-based nonlinear programming problem (NLP) was solved by adopting the
parameter estimation framework widely employed. Given the high nonlinearity and
stiffness of the system, the differential system of equations was discretised by direct
transcription by orthogonal collocation into a series of nonlinear algebraic equations. The
NLP was then solved using the interior point nonlinear optimisation solver IPOPT
(Wichter & Lorenz T. Biegler, 2006).

2.4. Sensitivity analysis
Although the solution to a parameter estimation problem may provide point estimates that
agree with the data instantaneously, questions about model stability remain unaddressed.
Therefore, model sensitivity to parameter uncertainty was investigated by resampling
each parameter in turn with all others fixed, simulating the state variable trajectories each
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time. These trajectories were then aggregated into the propagated uncertainty bounds
shown later. All the model parameters were assumed to be distributed uniformly between
a lower bound (P,,;,,) and an upper bound (P,,4,) centred on the mean (P04, ), defined

as follows:
Ppin = (1 — %Variation) * Pyean ®
Prax = (1 + %Variation) * Ppean ©)

In total, Latin Hypercube Sampling (LHS) of the input space selected 200 parameter
samples. All code was executed in Python version 3.7 using the SMT 1.0.0, SciPy libraries
and NumPy.

3. Results and discussion
3.1. Results of model construction

Table 1: Parameters values with different operation temperatures

T(°C)  pm(h7) Koo (8L7Y)  Yoo(gg™)  Ko(gg™) km (8871

14 0.115 41.345 1.420 0.700 0.01160

28 0.164 49.586 1.307 0.780 0.003085

37 0.218 55.000 0.591 0.901 0.001173

ka(gg™h™) K, (gL™) g ™) m(gg'h™)  k,(ggth™)

14 0.00352 25.013 0.0017 0.00498 0.00013814
28 0.00480 34277 0.0017 0.00498 0.00013814
37 0.00727 37.888 0.0017 0.00498 0.00013814

The values of the parameter estimates are shown in Table 1.
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Figure 1. Experimental results and simulation fitting results for (a) total biomass, (b)
glucose, (c) fat-free biomass and (d) GLA.

From Figure 1, it is evident that the model accurately captures the bioprocess dynamics
over the different operating temperatures, with the state variables’ mean relative
percentage error falling within 20%. Furthermore, features observed experimentally are
successfully described by the proposed model structure. However, whilst the model
struggles to fit the GLA decay stage at 28 °C, the error remains relatively small.

3.2. Model sensitivity analysis
For a more comprehensive comparison of the model’s sensitivity to each parameter, the
mean relative percentage deviation (MRPD) was measured between the lower and upper
bound for each state variable and operating temperature.
The result of MRPD indicated that the model is more sensitive to B; than either A; or the
remaining temperature-independent parameters, an expected result given that B; modifies
the exponent of the temperature-dependent parameters. Of these, the MRPD is largest for
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By, » Bk, and By in decreasing order, and therefore contribute most to model
uncertainty.

3.3. Effects of temperature on bioprocess kinetics
The effect of temperature on C. echinulate fermentation was studied by inspecting the
temperature correlations captured by fitting Equations (5) and (6).
Table 2. The coefficient of determination (R?) of the optimal parameters fitting as
functions of temperature and the obtained constant (4, B and C).

Parameter R? A B C
Uin 0.99 590.58 -2457.29 N/A
Ko 0.98 1239.43 -966.81 N/A
K, 0.96 18.41 -942.62 N/A
ko 0.99 5.58E-16 8813.01 N/A
kq 0.93 62.24 -2808.45 N/A
K, 0.98 7670.33 -1640.48 N/A
Yeo 0.99 5.60E+10 -7655.47 1.67

From Table 2, it can be seen that the majority of the kinetic parameters follow the standard
Arrhenius relationship between 14 °C and 37 °C. However, whilst k,,, and Y, exhibit the
same trend overall, k,,, decreases exponentially from the offset, unlike Y, which remains
relatively static from 14 °C to 28 °C before plummeting over 28 °C to 37 °C. Since Y is
associated with the efficiency with which glucose is utilised to synthesis biomass
constitutes, the sudden drop in Y, indicates that high temperatures deactivated the
overflow metabolism that previously produced by-product.

3.4. Design of a temperature-shift strategy

A two-stage temperature-shift strategy promises to maximise GLA yield, given the
different optimum temperatures for C. echinulata biomass growth and GLA

accumulation. The bioreactors were operated at 37 °C to maximise biomass density in the
first stage before dropping to 14 °C to maximise GLA accumulation in the second stage.

The scale-up factor is not taken account in the work since the dynamic influence of scaling
up from 1L to 5L can be neglected.
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Figure 2. The experimental results and model prediction results for (a) total biomass, (b)
glucose, (c) fat-free biomass and (d) GLA of temperature-shift strategy at 168hr (A) and
96 hr (B) in SL fermenter.

Figure 2 compares the model predictions and corresponding experimental results when
employing the chosen temperature-shift policy. The state variables were predicted
accurately within 30% error in both cases. Of particular success was the upscaled
temperature-shift experiment, which despite being a first for C. echinulata, achieved a
GLA concentration of 1323 mg L', a 69.6% increase over 780 mg L' attained by the

fixed temperature culture at 14 °C.

4. Conclusion

In this work, a temperature-dependent biokinetic model capable of simulating the
fermentative biomass growth and GLA biosynthesis of C. echinulata was proposed for
the first time. Using experimental data from a 1L bioreactor, the biokinetic parameters
were identified and the prediction accuracy verified over a wide temperature range from

14 °C to 37 °C. Higher cultivation temperatures around 37 °C were found to benefit cell

biomass growth, whilst GLA accumulation favoured lower temperatures around 14 °C.
Thus, a two-stage temperature-shift strategy was designed and tested by optimising
biomass growth and GLA biosynthesis of C. echinulata for the first time. Compared to

fixed temperature cultivation at 14 °C, the optimised two-stage temperature shift strategy
increased GLA production by 69.6% when verified experimentally. The proposed
biokinetic model’s high predictive accuracy when up-scaling the bioreactor from 1L to
5L demonstrates the model’s reliability for continued scale-up of the biotechnology.
However, further studies on the impact of scale-dependent transport phenomena such as
mixing induce shear rate, aeration and eddy size is recommended to improve the
upscaling predictions.
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Abstract

The intensive use of plastic in modern society has accumulated a significant and
damaging quantity of plastic waste. The management ofplastic waste is challenging due
to its un-degradable nature and increasing polluting impact on land, water, and air
systems. Polyethylene terephthalate (PET) is one ofthemostimportant plastic types used
and constitutes a large fraction of plastic waste. The pyrolysis thermochemical conversion
process is an importanttechnique used to convertthe PET into value-added productssuch
as char, oil and gas. This study develops a process simulation model for the pyrolysis of
PET plastic to convert into char, bio-oil and gas. The process flow sheet model is
developed using the Aspen Plus V11® and the impact of pyrolysis temperature and
pressure onthe production of char, pyrolysis oiland gas are investigated, wherea techno-
economic-environmental feasibility is also conducted using Aspen Plus built-in features.
Furthermore, an optimisation is applied, where three sets of optimum operating
parameters other than base caseare generated through maximising the generation of each
pyrolysis product. The base case demonstrates pyrolysis gas, char and oil production
approximately at 330 kg/h, 490 kg/hrand 180kg/hr, respectively at a temperature 0f450
°C and 1 bar. The gas production is favourable at a high temperature of more than 450
°C, in contrast to oil and char. The techno-economic evaluation demonstrates the
optimised capital and operating costs are obtained at a lower temperature with maximum
yields of char and oil at 53% and 28%, respectively. Moreover, the increase in
temperature to optimise gas production demonstrates enhancementin the gas quality and
reduction in capital cost compared to the base case in addition to a reduction in
environmental emissions (86 kg/h CO, emissions). In conclusion, this study provides a
baseline for the utilisation of the pyrolysis process to convert PET into value-added
products.

Keywords: PET, Aspen Plus, Char, Pyrolysis, Techno-economic-environmental
analysis.

1. Introduction

As the global population increases, more waste streams are generated, for which effective
waste management remains an issue. The most critical waste in municipal solid waste
(MSW)is plastic waste, produced 99% fromfossil fuel sources. Since the introduction of
plastic in 1950, approximately 8.3 billion tons of plastic litter have been accumulated,
and only 567 million tons have been recycled. More than 5 billion are disposed through
landfill and only about 756 million tons recycled respectively (hub, 2019). The plastic
production was approximately 393Mt/year in 2016, and it is expected to double in the
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next 20 years (Lebreton and Andrady, 2019). The disposal of plastic waste is a salient
issue as the degradation of plastic takes many years if'it is disposed through landfilling
and emits toxins upon incineration. The state of Qatar generates approximately 1.5
kg/capita/day, which is higher than the average global waste generation approximated at
3kg/capita/day (Miandad et al., 2017). It has been reported that the current 2.5 million
population of Qatar produces approximately MSW 04000 ton/day. Furthermore, plastic
waste was approximately 8.8% ofthe total MSW in Qatar in 2006 (Al-Maaded et al,
2012), and laterincreasing to 13% (Hahladakis and Aljabri, 2019). The consumption of
plastic is approximately 240000 ton, consisting of various plastics suchas HDPE, LDPE,
PP, PET, PS, and othersm, where PET is one ofthe most important types ofplastic, and
is used for packaging, especially for beverages and water bottles (Hahladakis and Aljabr,
2019).

The PET has a 14% share in total plastic waste in Qatar. Although PET is one of the
plastic types thatcan berecycled, it is generally landfilled or incinerated (Hahladakis and
Aljabri, 2019), noting that incineration of PET results in greenhouse gas emissions. In
contrast, its conversion into value added products such as syngas, char and bio-oil through
gasificationand pyrolysis represent sustainable pathways (Anuar Sharuddin et al., 2016).
There has been much work conducted in the pyrolysis of plastics domain (Anuar
Sharuddin et al., 2016). For instance, the pyrolysis of PET in a fixed bed reactoryielded
liquid oil and gaseous fuel in a ratio 0£23.1% and 76.1%, respectively (Cepeliogullar and
Piitiin, 2013). Most studies demonstrate that the pyrolysis of PET produces yields ofoil
and gaseous products in the range of 24-40 wt% and 52-77 wt%, respectively, which
renders PET as an attractive plastic for pyrolysis (Anuar Sharuddin et al., 2016). Although
the pyrolysis of PET is well-investigated, very few studies have reported a techno-
economic and environmental analysis and feasibility, especially for a Qatar case study.
As such, this study aims to develop a process simulation model for the pyrolysis of PET
for the generation of bio-oil, char and gas products, integrated with a sensitivity and
optimisation of process parameters to maximise the yield. Furthermore, the study details
a techno-economic and environmental analysis to investigate the investment and
sustainable potential of PET pyrolysis.

2. Methodology

The approach followed for the process development begins with the pyrolysis model of
plastic feedstockusing Aspen Plus software. The proximate and ultimate analyses of PET
presented in Table 1 are used to define the raw plastic feedstock (Oh et al., 2018). The
base pyrolysis model is then evaluated in terms of economic and environmental
performance. The base case is further optimised by means of sensitivity analyses to
identify the optimum operating conditions that maximise the generation of bio-oil, char
and gas products. The optimum operating conditions are then utilised to benchmark the
different simulation models.

Table 1: Proximate and ultimate analyses ofbiomass feedstock as received basis (Oh et
al., 2018).

Proximate Analysis MC M FC Ash
Y 02 872 2.6 0
C H N S O

Ultimate analysis 612 51 0 0 33.7
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The current model is configured by considering the assumptions of; steady state
operation, uniformity in heat and mass transfer, zero tar formation, and kinetic-free
equilibrium as depictedin the study of AlNouss et al. (2021). The property package and
equationofstate PR-BM is selected for flowsheet development due to its applicability for
hydrocarbon and refinery process (Shahbazet al., 2020). The pyrolysis modelillustrated
in Figure 1 begins with an RYIELD reactor linked with calculator block to convert the
feedstock attributes into conventional components based on the ultimate analysis as given
in Table 1 (Shahbaz et al., 2021). The effluent stream enters the pyrolysis reactor
simulated as RGIBBS to produce the pyrolysis main products. The process propagates
based on Gibbs free energy minimisation by selecting the Gibbs equilibrium reactor
(AlNoussetal.,2020). The hot product is then cooled prior entering a separator to flash
out the pyrolysis gases. The remaining streamenters a solid separator to removethe char
from the bio-oilliquid product.
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Figure 1: Aspen Plus model forplastic (PET) pyrolysis.

The techno-economic and environmental evaluation of the model is conducted using
Aspen’s built-in economic and environmental impact assessment features to estimate the
capital, operating, and raw material costs for all cases in addition to CO, emissions.
Moreover, the sensitivity analyses for the pyrolysis temperature and pressure are
conducted to study their effect onthe productyields. The pyrolysis temperatureis vared
between 150 and 850 °C at a constant pressure of 1 bar to cover the whole range of
conventional pyrolysis process and find the optimum parameters for all three types of
products including char, oil and gas. Whereas, the pressure is varied between 1 and 10
barto observe theeffect of different pressure models onthe products yield by maintaining
the temperature constant at 450 °C. The optimum values and static figures from the
sensitivity analyses are then evaluated to benchmark their economic and environmental
impact performance relative to thebase case.

3. Results and discussion

The results of different PET (plastic) pyrolysis analysis are discussed in this section. The
sensitivity analyses of pyrolysis reactor operating conditions illustrated in Figure 2
demonstratethe variation in the different productyields. FromFigure 2, char production
decreases from 527 kg/hr to 366 kg/hr with the increase in pyrolysis temperature from
150 to 850 °C. A similar trend is deduced for pyrolysis oil with increase in pyrolysis
temperature. Whereas the gas generation is in direct relation with the elevation of
pyrolysis temperature hence its production increases from 181kg/hr to 633 kg/hr. The
increase in pyrolysis temperature yields an increase in thegaseous product from 181 to
633 kg/h. The higher generation of gas relativeto oiland char products fromthe pyrolysis
of PET at a highertemperature 0500 °C is also noticed in otherstudies (Cepeliogullar
and Pitiin, 2013). In another study, the gas yield was about 53.13 % for PET pyrolysis
(FakhrHoseiniand Dastanian, 2013). Whereas, the increase in pressure demonstrates an
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increase in the bio-oil production from 192 to 213, and a decrease in the gaseous and char
yields from 317 and 489 to 303 and 483, respectively. The domination of gas and char
yields as comparedto oilat 1 barof pressure is due to the higher fixed carbon and lower
volatile content in PET plastic (Anuar Sharuddin et al., 2016). Based onthe trend depicted
in Figure 2, three optimumparameters sets are found for each type of product to provide
flexibility for making decision in upscaling and applications listed in table 2.
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Figure 2: Sensitivity analyses trends for temperature and pressure of pyrolysis reactor.

The results fromthe sensitivity analysis are then utilised to evaluate the economic and
environmental performance ofthree cases as summarisedin Table 2. Optimised case 1 is
expected to have higher bio-oiland charyields. Whereas, optimised case 2 is expected to
demonstrate higher gaseous product yield while optimised case 3 is expected to
demonstratehigher bio-oil yield.

Table 2: Optimum parameter cases for Pyrolysis of PET.

Case Base | Optimised1 | Optimised2 | Optimised 3
Pyrolysis Temperature (°C) | 450 150 750 150
Pyrolysis Pressure (bar) 1 1 1 10

The results ofthe economic benchmark for the different optimised cases are illustrated in
Figure 3. The process is analysed based on the capital cost, operational cost, and total
annualised cost in millions USD (M$). The base case illustrates the highest capital cost
(3.421 MS$), while the optimised case 2 illustrates the highestoperating cost (2.255M§$)
and overall annualised cost. The higher operating cost in optimised case 2 is due to the
higherheating load to operate the reactorat 750 °C. The total annualised cost is slightly
higher foroptimised case 2 because of the extra heating load. The optimised case 2 also
demonstrates the highest in terms of gaseous product yield approximated at 59%. The
higher heating yield of gas at high temperature is due to higher carbon conversion and
endothermic reactions as evident fromthe lower volatile matter and higher carbon content
(Anuar Sharuddin et al., 2016). Whereas, thehighest bio-oiland charyields are achieved
in optimised case 3 with values of 28% and 53%, respectively. Although pyrolysis s
usually performed at a lower pressure of 1 bar, investigation of higher pressure pyrolysis
is to determine the maximum pyrolysis oil.
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Figure 3: Techno-economic results of PET pyrolysis process.

The results of the environmental impact benchmark and gas quality for the different
optimised cases are illustrated in Figure 4. The techno-environmental evaluation
demonstrates optimised environmental emissions at a lower temperature of around 150
°C for the optimised cases 1 and 3 compared to thebase case with 106 and 101 kg/h CO,
emissions, respectively. However, the quality of pyrolysis gas is decreased with almost
no hydrogen content. Moreover, the increase in temperature to 750 °C of optimum gas
production (optimised case 2) demonstrates the best enhancement in the gas quality and
the lowest environmental impacts approximated at 86 kg/h CO, emissions.
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Figure 4: Techno-environmental results of PET pyrolysis process.

4. Conclusion:

The generation of value-added products such as char, oil and gas fromthe waste plastic
(PET) don’t contribute to effective PET plastic management only, however it can result
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in environment and economic benefits. For this purpose, a process simulation model for
the pyrolysis of PET is developed through Aspen Plus. The sensitivity and optimisation
of process parameters such as temperature and pressure are conduced to maximise
production. The outcomes indicate thatthe increasein pyrolysis temperature results in an
increase in the gaseous productyield from 181 to 633 kg/h. The other two products; bio-
oil and char, decrease from291 and 527 to approximately 0 and 366 kg/h, respectively.
The three optimised sets of temperature and pressure are found to maximise the yield of
each pyrolysis product. The higher temperature favours the gas production, while oil
generation is found to be maximum for higher pressure. The base case illustrates the
highest capital cost (3.421 MS$), while the optimised case 2 illustrates the highest
operating cost(2.255 MS$), and overall annualised cost with lowest environmental impact
(86 kg/h COz emissions). In conclusion, this study provides a basis for techno-economic-
environmental feasibility which cansupportpolicy makers in making decisions as related
to the conversion of PET to value added products.
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Abstract

Compositions are omnipresent in process engineering, and often directly interact with
process performance. In this work, a Monte Carlo based approach for considering their
impact in the case of fluctuating compositions is presented. Based on experimental data,
the first component — a model for the compositional probability density is targeted. A
variety of descriptive approaches that involve parametric and non-parametric density
estimations is discussed. Finally, for a D-dimensional composition, a multivariate
Gaussian kernel density estimation for a bijective projection on D-1 linearly independent
statically constrained coordinates in combination with boundary reflection is presented
as a suitable approach.

Keywords: Monte Carlo simulation, kernel density estimation, compositional data,
mixed solid waste, reflection

1. Introduction

Process engineers are dealing with compositions all the time. Examples are the chemical
compositions of petroleum or combustion gases, but also compositions in terms of
particle size fractions’ shares. These compositions do not only describe product
properties, but also affect the performance of individual processing steps. For example,
the share of hydrogen in the reacting gas affects the kinetics of CO-methanation
(Kopyscinki, 2010).

Some of these compositions are highly variable. This is especially the case when the input
material stream to a process is (untreated) mixed solid waste (cf. Khodier et al., 2021).
Despite the waste’s variability, its compositions are often only reported in terms of
average values. Such information is not sufficient for calculating process optima, as soon
as their dependence on the composition is non-linear. At the same time, optimizing waste
processing is becoming more important, considering increasing legally required recycling
rates, e.g., due to the Circular Economy Package of the European Union (European
Union, 2018).

Based on these considerations, a concept was elaborated for calculating stationary optima
for the mechanical processing of mixed solid waste (and in general for composition-
dependent processes, with variable compositions): a material model and a process model
are coupled through a Monte Carlo simulation. The material composition is described
through the probability density distribution of compositions. Virtual model batches of
material are created randomly, based on the probability density distribution. The
condition of the processing product is then calculated, using a model for the individual
process. Finally, all virtual processing products are joint, calculating the resulting overall
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product condition. Based on this method, a static optimum of the process can be
determined, and moreover the theoretical potential of dynamic material-adaptive
processing can be evaluated.

Furthermore, a test scheme was designed, for evaluating the accuracy of the method,
based on a lab-scale setup with a circular vibratory screen. The scheme consists of three
experiments: first, a compositionally variable mixture of three model materials is
sampled, taking at least 100 samples, for testing different descriptive approaches for the
probability density distribution. Second, a quadratic regression model for the dependence
of the screening efficiency on the composition is derived from a Design of Experiments-
based test. Finally, five evaluation runs are performed, where compositionally variable
mixtures of the model materials are sampled and screened. The expected compositions
and amounts of the output streams are calculated using the suggested Monte Carlo
approach and validated by a complete manual analysis of the processing products. The
first experiment is covered in this paper, discussing a variety of descriptive approaches
for the compositional probability density distribution, their advantages and limitations.

2. Experimental Data Generation

For evaluating different methods for describing the compositional probability density
distribution, the variability of waste was experimentally simulated by mixing differently
composed mixtures of three granular materials: undersize (with respect to the later used
screen) gravel, undersize plastic particles, and oversize quadratic paper pieces. The choice
reflects the relevance of an undersize fraction’s share on one hand, and the negative
influence of two-dimensional oversize particles on screening efficiency, due to the partial
covering of the screen’s perforation on the other hand (cf. Kaufeld et al., 2017).

The mixed material was then placed on a conveyor belt while ensuring a constant height
of the flowing bulk. Finally, every fifth second, a sample, with a sampling duration of one
second was taken. For designing the sampling process, Pierre Gy’s Theory of Sampling,
and its application on mixed solid waste (Khodier et al., 2020) were considered. In total
148 samples were taken. Their compositions are shown in Figure 1.
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Figure 1: Compositions of the samples.

3. Probability Density Distribution

Compositions are naturally multivariate and constrained: a composition consists of at
least two parts, of which each must be zero or positive, and the sum of all parts is constant
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(usually 100%). Hence, a D-dimensional composition belongs to a (D-1)-dimensional
cartesian subspace of the D-dimensional real space. That subspace is called the
D-dimensional simplex (Pawlowsky-Glahn et al., 2015). For three parts, the visualization
of this subspace is well known in process engineering: the ternary diagram.

The mathematical nature of compositions must always be kept in mind when working
with them. This nature, and also the relevance of correlations in the occurrence of
different compositional parts, requires multivariate models for the probability density
distribution.

3.1. Parametric Distributions

Parametric distributions describe the probability density through an analytical distribution
with a limited number of parameters to be determined. They are hence favourable in terms
of compactness and often require fewer individual samples for a reliable model of a
population’s distribution.

3.1.1. Multivariate Normal Distribution

The most commonly applied parametric distribution is the normal distribution. Its
multivariate extension is the multivariate normal distribution. Strictly speaking, it always
violates the constraints of the simplex, being positive from -oo to +co. Nonetheless, it can
be a good approximation, if, e.g., at least 95% of the probability fall within the simplex.
For the data at hand, the Henze-Zirkler test from the R-package “MVN” (Korkmaz et al.,
2021) was applied, which neglects its multivariate normality. Considering, that
multivariate normality requires univariate normality of each individual dimension (Wang,
2015), the univariate non-normality of the Paper fraction according to the Anderson-
Darling test (MVN package) is at least one reason for that (Plastics and Gravel are
univariate normal each, according to the test).

3.1.2. The Dirichlet Distribution

The Dirichlet distribution is the multivariate extension of the Beta distribution. It is
simplicial by nature (i.e., fulfils the constraints of the simplex) and is generated by closing
(normalizing to the summation constant) a set of independent, gamma-distributed random
variables, with equal scale parameters. Consequently, it is quite inflexible in terms of
fitting data, and hence only seldomly applicable for this purpose (Pawlowsky-Glahn et
al., 2015).

Due to its inflexibility, in combination with the complexity of finding and applying
packages that cover all of parameter estimation, distribution tests, and random number
generation, for such a non-mainstream multivariate probability density function, it is not
further investigated in this work, which targets finding widely applicable approaches.

3.2. Logarithmic and Log-ratio transformations

Many distributions, like the multivariate normal distribution, do not conform with the
constraints of the simplex. For data with a one-sided boundary at zero, e.g., particle sizes,
a log-transformation of the data is an often suitable approach. It can also facilitate dealing
with compositional data, when the majority of compositional parts are much closer to
zero than to one.

The more common approach in the community of compositional data mathematics is
applying a so-called log-ratio transformation. For a D-dimensional composition, usually
(D-1) such log-ratios are calculated, corresponding to the number of degrees of freedom
of the composition, due to the summation constraint. The log-ratios are logarithms of
ratios of compositional parts, or products or sums of compositional parts (Greenacre,
2019), with so-called isometric log-ratios being the state of the art (Weise et al., 2020).
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In the field of waste management, they have already been applied to waste compositions
by Edjabou et al. (2017) and particle size class distributions by Khodier and Sarc (2021).
For the data at hand, though, the most significant limitation of log-ratios is obstructive:
they are not defined for zeros in the numerator or denominator of the ratio. For
multiplicative log-ratios, they are hence not defined, as soon as one compositional part is
zero. For the experimental data in this work, log-ratios involving amalgamations still do
not solve the issue, since two out of three compositional parts include zeros. While there
are zero-replacement approaches to treat that issue (cf. Pawlowsky-Glahn, 2015), their
impacts have proven to be problematic, considering that around one third of the samples
do not contain paper.

3.3. Non-parametric density estimation

While the compactness of parametric distributions is advantageous, due to the identified
issues for the present data and the desired robustness of the modeling approach, non-
parametric density estimation was finally targeted, in particular: kernel density
estimation, with a multivariate Gaussian kernel.

The general kernel density estimator for the univariate case is shown in Equation (1),
where g is the probability density, n is the number of samples, h is the bandwidth, K; is
the kernel function for the sample i, x is the point for which the probability density is
estimated and x; is the value of an individual sample. The kernel function is usually a
non-negative, ideally continuous function, which is symmetrical to the origin. A widely
applied kernel is the standard normal distribution. The more important choice, though, is
the bandwidth, which reflects the amount of smoothing. It is often chosen based on a
least-squares evaluation of the kernel density estimation in comparison to the sample data
(Nedden, 2012).

n

q(x) = nl_hZKi <% (x - xi))

)

The multivariate case, using a multivariate Gaussian kernel is shown in Equation (2),
where the bandwidth matrix H corresponds to the covariance matrix of the multivariate
normal distribution (Wand and Jones, 1993).
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3.3.1. Summation constraint

For compositional data, again the constraints of the simplex must be respected. A reliable
approach for the summation constraint is a bijective projection of the D-dimensional
composition onto (D-1) linearly independent coordinates, as is usually done with the log-
ratio transformations. The authors finally decided to follow a pragmatic approach, that
does not induce issues with zeros, while the individual projected coordinates have static
constraints, being defined from 0 to 1: the first coordinate is the share of one component
in the overall composition. The second is the share of another component in the sub-
composition that contains all components but the first. Continuing this principle, a defined
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representation can be found for all cases, where at least one component is never zero. In
this work, the first coordinate is the percentage of paper in the total composition, and the
second is the percentage of gravel in the non-paper sub-composition.

3.3.2. Boundaries

While the chosen projection guarantees compliance with the summation constraint, each
of the new coordinates is constrained with a minimum of zero and a maximum of 1. An
approach for dealing with this in kernel density estimation is so-called reflection, where
data is reflected in the boundary (cf. Jones, 1993).

3.3.3. Application on the experimental compositional data

Figure 2 shows the non-normalized histogram of the experimental compositional data and
the corresponding bivariate kernel estimate, applying the projection from section 3.3.1
and a lower boundary of -0.00001 and upper boundary of 1.00001 for each dimension.
As the Figure shows, the results are promising, while a detailed evaluation is subject to
further research.
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Figure 2: Non-normalized sample data histogram and kernel estimate of the compositional
distribution of the experimental data

4. Conclusion and Outlook

There is a variety of approaches for estimating the density distribution of compositional
data, including analytical simplicial distributions, non-simplicial distributions of log-ratio
transformations and non-parametric density estimations which are adaptable to simplex
data. For the investigated data, kernel density estimation, using a multivariate Gaussian
kernel, a transformation to shares in sub-compositions and reflection boundaries appears
to be a promising approach, and hence may contribute an essential component to the
targeted Monte Carlo simulation of the processing of compositionally fluctuating bulks.

The in-detail evaluation of the suggested method is still subject to further research.
Furthermore, kernel density estimation, using a Dirichlet kernel (Aitchison and Lauder,
1985) is another interesting approach to be considered. Finally, the Monte Carlo approach
as a whole will soon be evaluated.
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Abstract

Pillow plates are characterised by a high degree of geometrical and manufacturing
flexibility, excellent structural strength, hermetic tightness and high thermo-hydraulic
efficiency. These advantages open up a wide range of possible applications, and in the
last two decades, numerous research studies have been dedicated to the thermo-hydraulic
characteristics of pillow plates. In contrast, operational safety of pillow-plate-based
equipment has gained limited attention. Due to the lack of design equations, the
permissible operating pressure of such equipment is currently determined on the basis of
the burst pressure obtained in time-consuming and cost-intensive experiments. In this
work, we examine whether the burst pressure can be determined with the aid of finite
element simulations. Furthermore, since preliminary studies have shown that the thermal
resistance of pillow-plate heat exchangers can be significantly increased if they are
fabricated from aluminium instead of stainless steel, we checked whether technically
relevant pillow plates can be made of the aluminium alloy EN AW-5083.

Keywords: Pillow plates, Heat exchanger, Finite Element Analysis, Burst pressure

1. Introduction

Along with satisfactory thermal performance, heat exchangers must ensure sufficient
operational safety, while both these criteria influence the equipment design. For
conventional equipment, such as shell-and-tube heat exchangers, a calculation-based and
hence non-destructive verification of the permissible operating pressure is possible by
following established regulatory standards, e.g. AD2000 or ASME code. In contrast,
pillow-plate-based heat exchangers represent a comparatively novel type of heat transfer
equipment that has not yet been fully investigated. Therefore, currently, no appropriate
design equations for the determination of the permissible operating pressure exist, mainly
because of the high geometrical complexity and variability of pillow plates resulting from
the simple fabrication process free of forming tools.

As a first manufacturing step, two superimposed metal sheets are spot-welded by means
of a CNC-controlled laser welding machine, allowing the shape and spacing of the
welding spots to be arbitrary selected. After welding of the edges and joining the nozzles,
the sheets are inflated in a hydroforming process and achieve their characteristic pillow-
like shape. The latter ensures high structural strength, which, along with the fully welded,
hermetically sealed design, represents one of the main advantages of pillow plates. By
arranging several plates in parallel, so-called pillow-plate heat exchangers (PPHX) can
be assembled (cf. Fig. 1). These exchangers offer a flow path through the inner channels
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of the pillow plates and another flow path through the wavy channels between adjacent
plates. The welding spots and the complex, wavy-channel structure cause a periodic
disturbance of the boundary layers, resulting in a high thermo-hydraulic performance of
PPHX. Along with the planar design, pillow plates can also be shaped cylindrically to be
applied as jackets in tempered pipelines and vessels.

SL Longitudinal welding spot pitch
St Transversal welding spot pitch
dgp  Welding spot diameter

Sp Plate thickness

;¢ Inflation height

Soc  Distance of adjacent pillow plates
IC Inner flow channel

ocC Outer flow channel

PPHX Configuration

Figure 1. Periodic sections of a pillow plate (left) and of a PPHX composed of two pillow plates (right), adapted
from Zibart et al., (2021).

Due to the lack of calculation methods, permissible operating pressure of pillow-plate-
based equipment is currently evaluated in dependence on the burst pressure, which has to
be determined experimentally by means of expensive and time-consuming burst tests.
Previous studies were primarily concerned with the investigation and optimisation of the
thermo-hydraulic behaviour of PPHX. Structural mechanics investigations were only
carried out by Piper et al. (2015), with the focus on the correct reproduction of the pillow-
plate geometry by means of FEM simulations. The burst pressure was determined for
only one geometry, while no validation was performed. A comparison with experimental
data obtained by the pillow plate manufacturer BUCO Wirmeaustauscher International
GmbH showed that the simulations by Piper et al. (2015) significantly underestimate the
burst pressure.

This work was aimed at establishing a correct prediction of the burst pressure of pillow
plates using finite element methods which can replace experimental burst pressure
determination. Furthermore, investigations by Zibart et al. (2021) showed that the thermal
resistance of PPHX can be reduced by up to 25% by using aluminium instead of stainless
steel. Therefore, in a second step, it was investigated whether technically relevant pillow
plates can be manufactured from aluminium with regard to permissible operating
pressures and achievable internal channel inflation height.

2. FEM Simulation

The finite element solver ABAQUS (version 2017) by Dassault Systémes was used,
which is well established in both academia and industry. The simulations were carried
out in a transient manner with an explicit temporal discretisation. Since large
displacements are encountered in the course of simulations, the stiffness matrix depends
on geometry. To capture the arising geometric non-linearities, the stiffness matrix is
updated in each time increment. In contrast to our approach, Piper et al. (2015) determined
the stiffness matrix only once in the initialisation step of the simulation. Consequently,
the increase in stiffness of the sheets associated with the formation of the shell-like pillow
plate structure could not be captured in the simulations, and this was probably the main
reason for the significant underestimation of the burst pressure in that work.

Further non-linearities result from the elasto-plastic material behaviour. In this work,
along with the stainless steel AISI304, the most commonly used material for the
manufacturing of pillow plates, the aluminium alloy EN AW-5083 was also considered.
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Compared to other aluminium alloys, it is characterised by comparatively high strength
combined with good forming capabilities. Furthermore, it offers good corrosion
resistance and weldability. Thus, no filler material is required for welding, making EN
AW-5083 ideally suited for laser welding. The non-linear plastic material behaviour
exemplified in Fig. 2 was taken into account in the simulations.
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Figure 2. Flow curves of AISI304 and EN AW-5083 (Ostermann, 2007; Barthelmie, 2017).

For both steel and aluminium alloy, the Young's modulus, Poisson's ratio and yield
strength, which characterise the linear elastic material behaviour, are summarised in
Table 1. The so-called 'Ductile Damage Model' from ABAQUS was used to capture the
bursting process in the simulations. The model parameters were fitted in such a way that
computational elements completely lose their stiffness when they reach the material-
specific elongation at break and are consequently eliminated from the computational
mesh. Thus, cracks arise at the most highly stressed locations, which finally leads to the
bursting of the pillow plate due to further crack growth. In order to decrease the
computational effort, the simulation domain was reduced to the smallest possible
characteristic section of a pillow plate, taking into account symmetries with regard to
geometry and load. The chosen simulation domain has the dimensions s; and 0.5s7. A
mid-cut was performed in the thickness direction of the pillow plate, which separates the
two metal sheets along their contact surfaces in the welded areas. The initial state
represents a welded but still flat sheet as it is before the hydroforming process. The
boundary conditions used are shown in Fig. 3.

Table 1. Elastic material parameters.

Material Young's modulus / [GPa] Poisson's ratio / [-] Yield strength / [MPa]
AISI304 200 0.3 637
EN AW-5083 70.3 0.33 285

Symmetry boundary conditions in x- and y-direction were set at the lateral end faces,
while symmetry boundary conditions in z-direction were specified at the free-cut contact
surfaces of the plates in the welding spot regions. This causes a blockage of the translation
in the respective coordinate direction as well as of the rotations around the other two
coordinate axes. The free surface of the plate between the welding spots, which forms the
inner channel wall of the pillow plate, was subjected to pressure. For the burst pressure
determination, a physical duration time of t,,,, = 1000 s with a time step of At =
0.001 s was simulated. Here, the pressure was increased linearly from p = 0 bar at t =
0 s t0 Ppax, Which corresponds to t,,,,. At the beginning of each simulation, the burst
pressure is not known. Therefore, p,,,, must be determined iteratively, until the condition
DPmax > Paurse 18 fulfilled and mechanical failure of the pillow plate is encountered. Care
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was taken to ensure that p,,,, is only slightly higher than pg,,s;, so that the strain rates
and thus inertia effects are kept as low as possible. To determine the maximum inflation
height, the simulation time was increased to t,,,, = 2000 s, while keeping the time step
at At = 0.001 s. Up to t = 1000 s, pressure increases linearly to p,,,. This is followed
by a static phase until t = 1500 s, in which pressure is kept constant in order to eliminate
inertial effects. In this case, p,,4, Was iteratively determined in such a way that bursting
during the static phase was avoided. Subsequently, pressure was linearly reduced to p =
0 bar at t,,,, in order to remove elastic strains.
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Figure 3. Applied boundary conditions shown on the inner surface of the initially undeformed plate.

Structured hexahedral computational grids were used to achieve a high computational
accuracy combined with high computational efficiency. The ABAQUS specific
computational element of type C3D8R was chosen, as this element type was proven in
the work of Dancette et al. (2012) for the investigation of welding spot failures.

3. Validation

For the validation of the simulations, the pillow plate manufacturer BUCO provided
protocols of burst tests carried out for two geometrically strongly different pillow plates.
The geometry parameters of these plates are summarised in Table 2.

Table 2. Geometries used for validation.

Case 2s; / [mm] st/ [mm] dgsp / [mm] 6p / [mm] Reference
VALI 95 55 10 1 BUCO
VAL2 52 30 11 1.5 BUCO
y Q ] ) Q
y VAL1 >/ VAR ).
\\,\
A P
@ = "’
PBurst,sim = 61.6 bar PBurst,sim = 347 bar
PBurst,exp = 58 bar PBurst,exp = 390 bar
ApBurst,rel ~ +4.8% ApBurst,rel ~—-11%

Figure 4. Results of the FEM simulations carried out for VAL1 and VAL2: the deformed geometries for the
first time step after bursting of the pillow plates.
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Both pillow plates were made of AISI304. The simulation results are illustrated in Fig. 4,
showing the deformed plate geometries in the first time step after bursting. For the VALI
geometry, the simulation with pgy,s¢ sim = 61.6 bar shows an overestimation of the
experimentally determined burst pressure (Dpyrstexp = 58 bar) of approx. 4.8%. The
experimental burst pressure (Dpyrst.exp = 390 bar) for the VAL2 geometry is approx.
11% underestimated by the simulation with pg,.st sim = 347 bar. The agreement
between simulated and measured values can be considered satisfactory for both
geometries, and hence, the performed FEM simulations are successfully validated.

4. Results

After the successful validation of the FEM simulations, the next step was to investigate
whether the aluminium alloy EN AW-5083 would be a suitable material for pillow plates.
In this study, welding spot pitches 2s; and sy matching VAL1 and VAL2 geometries
were chosen, while the welding spot diameter (dgp € {10;11; 12} mm) and the plate
thickness (6p € {1; 1.5; 2} mm) were varied. The burst pressure was found to increase
almost proportionally with increasing welding spot diameter and plate thickness (cf. Fig.
5). This is due to the fact that in the region of the welding spots, the load-bearing material
cross-section depends linearly on dgp and &p. Furthermore, it can be seen that the burst
pressures are significantly higher for smaller welding spot pitches. This stems from the
fact that the number of welding spots per unit area increases. Thus, at equal acting
pressure, the forces affecting each welding spot become smaller and consequently higher
pressures can be withstood. Comparing the results with those of VAL1 and VAL2
geometries, it becomes apparent that the burst pressures are approx. 80% lower than for
the counterpart made of AISI304. Considering the significantly lower tensile strength and
elongation at break of EN AW-5083, this result is not surprising.
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Figure 5. Burst pressure in dependence on the welding spot diameter for 2s; = 95 mm, s; = 55mm, §p €
{1;1.5;2} mm (a), 2s, = 52 mm, s; = 30 mm,§, € {1;1.5; 2} mm (b); filled circles denote geometries
matching VALLI resp. VAL2.

Fig. 6 shows the maximum achievable inflation height (8;¢mqay,) for the investigated
pillow-plate geometries plotted against welding spot diameter. Comparing Fig. 6a with
6b, it can be seen that ;¢ 4, decreases with reducing welding spot pitch, which results
from the decreasing free bending length. Furthermore, 8¢ 145, decreases with increasing
plate thickness due to the growing bending stiffness of the plates. The dependence of the
maximum inflation height on the welding spot diameter is much less pronounced than for
the burst pressure. It is also visible that the trends are different, namely, for 2s; = 52 mm
& sy = 30mm, Ojcmax decreases with increasing dgp, whereas for 25, = 95 mm &
Sy = 55mm, 8¢ mqyx increases with increasing dsp. When considering the thermo-
hydraulic performance of pillow plates, Piper et al. (2016) showed that the thermo-
hydraulic efficiency (heat flowrate divided by required pumping power) for inner channel
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flow depends almost quadratically on §;¢. Small values of §;; mean small effective flow
cross-sections, resulting in high flow velocities and thus high pressure drop. For this
reason, expansions of §;c < 3 mm should be regarded as technically irrelevant. Fig. 6a
shows that with a welding spot pitch of 2s; = 52 mm & sy = 30 mm, technically
relevant pillow plates can only be realised with a plate thickness of 6, = 1 mm and a
further pitch reduction is not useful. For the remaining pillow plate geometries of this
study, which are considered to be technically relevant, a maximum burst pressure of
approx. 60 bar was obtained (cf. Fig. 5, for the geometry with 2s; = 52 mm & sy =
30 mm, 6p = 1 mm, dsp = 13 mm). According to AD2000, a safety factor of 5 must be
taken into account, so that a maximum permissible operating pressure of approx. 12 bar
can be achieved with pillow plates made of EN AW-5083. Thus, pillow plates made of
aluminium are mainly suitable for low-pressure applications, but can offer significant
advantages due to their lower thermal resistance and much lower weight.
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Figure 6. Maximum inflation height in dependence on the welding spot diameter for 2s;, = 95 mm, s; =
55mm, 6p € {1; 1.5;2} mm (a), 2s, = 52 mm, sy = 30 mm, §p € {1;1.5;2} mm (b); filled circles denote
geometries matching VALI resp. VAL2.

5. Conclusions

It was demonstrated that FEM simulations are suitable for predicting the burst pressure
and hence the operating pressure of pillow plates. A validation with experimental data
showed a maximum deviation of 11%. Furthermore, it was found that technically relevant
pillow plates with a burst pressure of up to 60 bar can be manufactured from the
aluminium alloy EN AW-5083, which corresponds to a permissible operating pressure of
approx. 12 bar. Thus, pillow plates made of aluminium alloys can be judged as a good
alternative for low-pressure applications, providing lower thermal resistance and lower
mass compared to steel-made pillow plates.
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Abstract

Brackish water desalination is one of the most promising methods to generate freshwater
for the community in water-scarce regions. The current research proposes a hybrid Multi
Effect Distillation and Thermal Vapor Compression (MED-TVC) and double Reverse
Osmosis (RO) system for brackish water desalination for the Jordanian arid and semi-arid
regions. In this regard, ten effects MED system was coupled with two permeate and
retentate reprocessing designs of RO processes to desalinate brackish water. For this
purpose, the model for the hybrid system developed by the same authors in the past has
been used for simulation. For a given set of brackish water properties, the indicators such
as the freshwater productivity, freshwater salinity, specific energy consumption, and
disposed brine flow rate are used to evaluate the performance of the process in terms of
economics and environment. The results show that freshwater can be produced from
brackish water with high productivity and reduced specific energy consumption and with
reduced brine flow rate into the environment compared to seawater desalination.

Keywords: Brackish Water Desalination; Multi Effect Distillation; Reverse Osmosis;
Productivity; Specific Energy Consumption; Disposed Brine Flow Rate.

1. Introduction

Jordan is basically suffering from water shortage as it is located in a transitional position
between arid and semi-arid climatological zones of mild rainy winter and hot dry summer.
Menzel et al. (2007) stated that Jordan has approximately 90,000 km? of the semi-arid
region stretching from the upper north of the Jordan basin to the south in the Gulf of
Agaba, and from the Mediterranean coast to the Jordanian Highland / Jordanian Plateau.
Furthermore, the growth of population and industrialization besides the climate change
and uneven spatial distribution of water resources with over-exploitation of aquifers have
increased water demands that possibly would cause future water conflict. In such a
complicated situation, the ground and surface water treatments are a long-term and vital
solution to the issue of water scarcity specially for those coastal regions such as Red Sea
region (Afonso et al., 2004). Furthermore, the wastewater reclamation and reuse is
another alternative source of freshwater in arid and semi-arid regions in Jordan (Saidan
et al., 2020).

The techno-economic feasibility of instilling RO system to desalinate brackish water in
the Zarqa basin, Jordan was investigated by Afonso et al. (2004). This study demonstrated
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the success of RO system for providing freshwater. However, the membrane fouling was
one of many challenges in the water desalination. In this regard, Walschot et al. (2020)
discussed in detail the challenges faced by RO desalination in Jordan despite the
increasing utilisation of the process. They stated that RO desalination plants require
higher maintenance than thermal desalination plants (due to fouling propensity) besides
other environmental concerns. On the other hand, the thermal desalination system such
as multi effect distillation is another commercially viable water desalination method
which has been extensively used to generate a vast amount of freshwater, but with higher
energy consumption and higher investment and operational cost compared to RO system
(Filippini et al., 2018). This explains the expansion of water desalination using membrane
technology and thermal processes. Jones et al. (2019) confirmed the existence of 16000
desalination plants around the world which use RO process, Multistage Flash (MSF), and
MED that share 69%, 18%, and 7%, respectively, to produce 95 million m*/day of
freshwater.

The potential of integrating both membrane and thermal technologies in a hybrid system
was assessed by several colleagues and demonstrated its robustness to mitigate the
drawbacks of individual processes and enhance the overall operation (Filippini et al.,
2019). However, the high energy consumption of seawater desalination using the hybrid
system still remains a challenge (Al-hotmani al., 2021). Feria-Diaz et al. (2021)
confirmed an intensive specific energy consumption between 14 to 21 kWh/m? of MED-
TVC system for seawater desalination. However, this is not the case for brackish water
desalination using MED and RO hybrid system. Thus, it is imperative to analyse the
potential of investigating the viability of a hybrid system of MED and double RO
processes for brackish water desalination in arid and semi-arid regions in Jordan due to
lower salinity of feed water compared to seawater. In other words, this research will
introduce a feasible option of water desalination in Jordan compared to seawater
desalination. For the first time, this study attempts to assess the feasibility of constructing
a hybrid system of MED and permeate reprocessing and retentate reprocessing RO
processes to desalinate brackish water in the coastal area of Red Sea in Jordan. The
simulation results of this system including the performance indicators will be compared
against the results of seawater desalination to evaluate the operational, economic, and
environmental perspectives of brackish water desalination.

2. Description of MED-TVC and double RO processes

Fig. 1 shows a schematic diagram of the hybrid system of permeate reprocessing and
retentate reprocessing RO processes (PRRO and RRRO) and MED-TVC system to
desalinate brackish water. The PRRO process is designed as 20, 15, and 8 of pressure
vessels (PVs) in a series where each PV contains eight spiral wound membranes
synthesised by Toray, USA (brand: TM820M-400/SWRO of 37.2 m?). The water is fed
into PRRO process using a high pressure pump of 85% efficiency. The forward MED-
TVC system is designed of ten effects connected to thermal vapor compression (TVC).
The combined brine streams of PRRO and MED-TVC are fed for further refining into the
third process of RRRO. The temperature of the inlet stream of RRRO process is
moderated to a specified temperature using a heat exchanger. The RRRO process is
designed to process high flowrate of brackish water in 40, 30, and 16 PVs configuration.
The fresh water of RRRO process is combined to the product water of PRRO and MED-
TVC to form the final product stream of freshwater. However, the brine stream of RRRO
process represents the brine disposal stream back to the environment.
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3. Modelling of MED-TVC and double RO processes

Al-hotmani et al. (2019) developed a mathematical model for the double RO processes
and MED-TVC to correlate the inlet and outlet variables of each process and the overall
performance indicators of the hybrid system. Some important model equations are given
in Tables 1 and 2.
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Fig. 1. A hybrid system of PRRO+MED-TVC+RRRO processes to desalinate brackish
water

Table 1. Mathematical modelling of MED-TVC system (Filippini et al., 2018)

T]::Ig. Description Equation Unit
1 Feed fl t Mf Ms MTs) kg/
eed flowrate = — s
Qsenslble + Qlutent
2 Sensible heat in the 1st stage Qsensible = Mff cp(T1,x1)dT kl/s
3 | Portion of freshwater b i _ alxb( — )" = x/]
ortion of freshwater by evaporation = Gh—xP1=a)] -
. i
= A 2
4 Estimated area of each stage UssiATons ev,i m
ti
5 Area of each preheater Mf. | cp(t,xf)dt = Upp; Apni Dtiggs m?
tigg
L ithmic t t i i AT, ar
ogarithmic temperature variance in = ——— o
6 pre%)eater P oot log (M) ¢
Tv, — t;
. . . tn —Tw
Logarithmic temperature variance in AT\ogconp = ————— o
7 final condenser oo log (7TW) C
Tv, —tn
8 Temperature and pressure correction TCF = 2e — 8.Tv? — 0.0006.Tv, + 1.0047 °C,
parameters PCF = 2e — 7.TPm? — 0.00009. Pm +1.6101 bar
TCTLE
9 Pressure at vapour temperature Pv = Pm-te 273 15 Z fi bar
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8

Terit
+273.15)-1
10 Pressure at steam temperature Ps = vate( Ts ) Z fi bar
j=1

Table 2. Mathematical modelling of an individual RO process (Filippini et al., 2018)

I}\Elg. Description Equation Unit
AP,
1 Freshwater Flux Q= Ay (Pf - % - P, —m, — np) Am m’/s
2 Solute flux Q5= Byy(Cw = C,) m’/s
Osmotic pressure in high-
3 concentration and m, = 0.76881 C,, m, = 0.7994 C, atm
permeate sides
Pressure droplet for each 6 B
4 membrane and Reynolds AP = 28692210 Ay Q7L p o, — PbnQb atm,
drop.E 2dp Ref! (W tf €)? b= wo R
number
Jw
¥
5 Permeate concentration G, = Le,w ppm
Jw+Bs ek
6 Rejection  and  water Rej = Cf*%) Rec=2 }
recovery rate Cr 3
Esro
_ [(Pf(pzanr) x101325) Qf(plant)]
7 Speciﬁc energy npump Qp(plant)
consumption of PRRO 3600000 kWh/m®
_ (Pr(blockz) x101325) Qf(blaclc3) NERD
Qp(plant)
3600000
] Specific energy - [(Pf(pzam) x101325) Qf(plant)]
consumption of RRRO s.RO ™ Npump Qp(piant) kWh/m?
3600000

4. Simulation and performance evaluation of the brackish water
desalination system using MED-TVC and double RO processes

This section utilises the simulation of MED and double RO process (presented in Figure
1). The brackish water is simultaneously fed to the PRRO and MED-TVC processes at
3000 ppm and 25 °C of salinity and temperature, respectively. The operating pressure and
feed flow rate of PRRO process are 50 atm and 5011.2 m?/day, respectively. For both
cases of seawater desalination and brackish water desalination, the feed flow rate and
brine temperature of MED-TVC system are same (16867.24 m?/day and 40 °C). The brine
salinity for seawater is 60000 ppm for inlet salinity 39000 ppm while for brackish water
is 4615 ppm for inlet salinity of 3000 ppm. Also, the motive steam of TVC is designed at
8 kg/s, 1300 kPa, and 70 °C of steam flow rate, pressure, and temperature, respectively.
The combined brine of MED and PRRO is fed at 50 atm into the RRRO process.
However, the inlet brine temperature of RRRO process is moderated to 25 °C using a heat
exchanger (Fig. 1).

Table 3 shows the simulation results of desalinating brackish water including the most
important performance indicators of the hybrid system of MED-TVC and double RO
process. To justify the potential of this hybrid system, the simulation results of treating
seawater of 39000 ppm at 25 °C are included in Table 3 for the purpose of comparison.
This indicates that brackish water desalination using the hybrid system has a considerable
increase of freshwater productivity of 20996.41 m*/day compared to 8516.66 m*/day of
seawater desalination. This is an approximate growth of 146% leading to the reduction of
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total specific energy consumption by 58.8%. The brackish water desalination of 3000
ppm produces a high quality water of less than 100 ppm compared to 277.87 ppm of
seawater desalination of inlet salinity 39000 ppm besides attaining a high water recovery
0f 95.96%. Moreover, the concern of disposing brine into the environment is significantly
reduced by 93.4%, which highlights a merit of brackish water desalination. The
simulation results indicate the potential of constructing the proposed design of MED and
double RO processes for arid and semi-arid regions in Jordan due to its superiority of
producing freshwater of a high productivity compared to seawater desalination. In turn,
this would be a cost-effective solution to tackle the issue of water shortage in Jordan.

Table 3. Simulation results of the hybrid system for two types of treated water
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5. Conclusions

Water desalination from brackish water source was recognised as one of the most
promising methods to produce freshwater in arid and semi-arid regions of water shortage.
This research attempted to develop a new option of water desalination in Jordan based on
brackish water compared to seawater desalination. Thus, a hybrid system of MED and
double RO processes to desalinate brackish water has been introduced and analysed. The
associated results confirmed the superiority of the proposed system and it looks very
promising option in Jordan. The potential of the proposed hybrid system was assessed via
comparing the simulation results with those obtained for seawater desalination. In turn,
the proposed hybrid system has water recovery of 95.96% with lower energy
consumption of 6.5 kWh/m? compared to seawater desalination option.
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Abstract

Enzymatic esterification reactions of fatty acids with sugars generate non-ionic
biosurfactants widely used in food, pharmaceutical and cosmetic industries, because of
their high capability to reduce surface and interfacial tensions. In turn, mathematical
modeling can be a useful tool, in its different approaches, for the simulation and
optimization of enzymatic processes. Particularly, neural and fuzzy approaches are still
scarcely evaluated for data of producing sugar fatty acid esters. Thus, this study aimed at
using these approaches to model data of enzymatic esterification of fatty acids (oleic and
lauric acids) with xylose, catalyzed by immobilized lipase B from Candida antarctica
(CALB-IM-T2-350) and CALB immobilized on silica magnetic microparticles (SMMPs)
modified with octyl groups (CALB-SMMP-octyl) or octyl+glutaraldehyde moieties
(CALB-SMMP-octyl-glu). Using Matlab Neural Network Toolbox, five artificial neural
networks (ANNSs) were trained to predict the reaction rate, one for each type of biocatalyst
and acid, obtaining R-squared values greater than 0.97. Furthermore, as an additional
effort in neural modeling, two new ANNs were fitted (for two of the biocatalysts), each
one of them incorporating, in its inputs, an option referring to the type of acid. R-squared
values above 0.98 indicated good predictive capability. To carry out the modeling study
by fuzzy inference systems, the Neuro Fuzzy Designer tool from ANFIS (Adaptive
Network-Based Fuzzy Inference System) of Matlab was used. Fuzzy models were built
for each of the three biocatalysts under study (CALB-IM-T2-350, CALB-SMMP-octyl
and CALB-SMMP-octyl-glu), considering as input linguistic variables the type of acid,
the temperature, the reaction time and the substrates molar ratio, to predict the conversion
of the esterification process. Gaussian membership functions and linear output functions
were used, in a Takagi-Sugeno’s fuzzy approach. The fuzzy systems parameters were
fitted by a hybrid parametric optimization method. The results showed that the fuzzy
model outputs were very close to the targets, with RMSE (root mean squared error) values
below 0.006. Finally, to demonstrate the potential of fuzzy modeling to optimize
processes, response surfaces were built for the conversion of xylose as function of
different operating conditions. The fuzzy surfaces indicated that higher values of xylose
conversion are reached after 45 h of reaction, temperatures above 50°C, and at substrates
molar ratio of 1:0.2 (acid:sugar). Thus, the present work presents, in a broad way, the
potential of computational intelligence tools in the study of enzymatic production of
biosurfactants.

Keywords: biosurfactants, artificial neural networks, fuzzy logic.
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1. Introduction

Sugar fatty acid esters (SFAEs) are surfactants mainly applied in food, pharmaceutical
and cosmetic industries (Colla ef al., 2010; Khan; Rathod, 2015). From the process point
of view, different conditions can be applied to produce biosurfactants by heterogeneous
biocatalysts using immobilized lipases. Therefore, the mathematical modeling of
enzymatic reactions can be a useful tool for process simulation and optimization. This
technique allows the prediction of the effects on the process due to changes in operating
conditions, pointing towards factors that most influence the conversion of substrates. In
addition, mathematical modeling can be applied in optimization projects, equipment
sizing, economic feasibility analysis and scale-up (Nelles, 2001). However, in some
situations, when complex phenomenological (white-box) models are not able to fully
describe a certain reaction process, the use of black-box or gray-box models can be an
interesting choice. Besides, rational exploration of the parametric space of a white-box
model can impose a huge load of work (which is usually very time consuming), to
guarantee that the set of mechanistic parameters satisfy chemical/biochemical and
physical meanings (even more when considering possible correlations between them).
Among black-box and gray-box models, stands out Artificial Neural Networks and fuzzy
systems. Thus, the present work deals with the mathematical modeling of enzymatic
syntheses to produce biosurfactants under two distinct approaches: use of artificial neural
networks and the development of a fuzzy model.

2. Methodology

The experimental data for esterification modeling was provided by Lima et al. (2016).
The dataset was acquired based on the syntheses of xylose esters obtained by
esterification with oleic or lauric acid in tert-butyl alcohol. The experiments were
conducted under the following conditions: stirring speed of 300 rpm, 72h of reaction, 1g
of molecular sieve, acid-xylose molar ratio (substrates molar ratio) of 1:0.2 (base case),
load of activity of 37.5 Ug/g.ia and reaction temperatures of 46°C and 55°C. The
biocatalysts employed were immobilized lipase B from Candida antarctica (CALB-IM-
T2-350) and CALB immobilized on silica magnetic microparticles (SMMPs) modified
with octyl groups (CALB-SMMP-octyl) or octyl+glutaraldehyde moieties (CALB-
SMMP-octyl-glu).

2.1. Modeling by artificial neural networks (ANNs)

Initially, five ANNs were trained based on xylose concentration data (mM) along time
(h), one for each type of biocatalyst and acid. Training targets consisted of the
experimental esterification data of sugar consumption rate (mmol.L-'.h"") for both
temperatures (46°C and 55°C). Construction and training of neural networks were
performed using Matlab Neural Network Toolbox. A two-layer feed-forward network
was designed for training, while classical backpropagation learning algorithm was used
to adjust the weights and bias. After several tests, the architecture chosen for networks 1,
2,4 and 5 was one hidden layer of 2 sigmoid neurons, followed by an output layer of a
single linear neuron. Network 3, in turn, contained 5 sigmoid neurons followed by an
output layer of a single linear neuron. Finally, to further study the potential of neural
network modeling, two new ANNs were fitted (for two of the biocatalysts), each one of
them incorporating, in its inputs, an option referring to the type of acid. Thus, the data
initially used in the fit of networks 1, 2, 4 and 5 were grouped according to the type of
biocatalyst, and two new (final) neural networks were obtained (6 and 7, “replacing”
networks 1, 2, 4 and 5).
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2.2. Modeling by fuzzy systems

To model the process using a fuzzy inference system (FIS), the linguistic input variables
chosen were: temperature (T), substrates (acid-sugar) molar ratio (SMR), reaction time
(t) and fatty acid type (FA). Xylose conversion was chosen as the output variable. Aiming
to improve the quality of the FIS adjustment, further data was added from an interpolation
made at 36h.

Matlab fuzzy logic toolbox was used to build the inference systems according to the type
of biocatalyst. For each input variable, the respective linguistic values were identified:
fatty acid (oleic and lauric), temperature (low and high), reaction time (low, medium and
high) and SMR (low, medium and high). All membership functions chosen were Gaussian
type. As the ANFIS (Adaptive Network-Based Fuzzy Inference System) tool used to
generate the final FIS only supports Takagi-Sugeno fuzzy systems, the output was a linear
function of the inputs as shown in Equation 1:

f(FA, T, t,SMR); =a*FA+b*T+c*t+d=*SMR+e (1)
Where “a”, “b”, “c”, “d”, and “e” represent fitting parameters.

For each model (or biocatalyst) 36 fuzzy If-Then rules were stablished based on the
combination of the 10 linguistic values (e.g., Equation 2), where f; is the linear
combination described in Equation 1.

IF FA is oleic and T is low and t is low and SMR is low THEN conversion is f; 2)

For the FIS training phase ANFIS tool was employed. This technique adjusts fuzzy
parameters by mapping inputs and outputs based on process data and a feedforward neural
network with a hybrid learning technique. In the forward pass, the consequent parameters
are calculated by a least square method. In the backward pass, the error is back
propagated, and the premises parameters are updated based on the gradient descent
method.

3. Results and discussion

3.1. Modeling by ANNs

During the neural networks training to predict the rate of xylose consumption in the
biosurfactant synthesis processes, R-quadratic values higher than 0.97 were obtained
(from the comparison between the network output and its targets values), indicating a
very good performance of the networks. Graphics of enzymatic kinetics were drawn from
the output data of the networks. It was verified a very consistent fit of the five ANNs to
the experimental data provided.

Figure 1 shows one of the enzymatic kinetics graphs, drawn from the output data of
network 3, which refers to the syntheses of xylose laurate catalyzed by CALB-SMMP-
octyl at two temperatures. The graph shows the reaction rates calculated from the
experimental data and the rates estimated by the neural network modeling (dotted lines).
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Figure 1: Kinetic modeling of xylose laurate syntheses catalyzed by CALB-SMMP-octyl at two
different temperatures (ANN-3).

It can be observed that reaction rate curve at 55°C presented higher reaction rates than for
the esterification at 46°C, throughout the profile. Therefore, it is indicated the possibility
of acquiring xylose laurate synthesis behavior, reaction rates and sugar concentration by
simple interpolation between the curves.

To further study the potential of neural network modeling, the data used in the fit of
networks 1, 2, 4 and 5 were grouped according to the type of biocatalyst. Therefore, two
new networks were created and trained: ANN-6 (with 5 neurons in the hidden layer,
biocatalyst CALB-IM-T2-350, for oleic and lauric acids at 46 and 55°C) and ANN-7
(with 3 neurons in the hidden layer, biocatalyst CALB-SMMP-octyl-glu for oleic and
lauric acids at 46 and 55°C). Regression analysis for networks 6 and 7 presented R-
squared above 0.98, which suggests very good predictive capability. The kinetic graphs
created after training the networks are shown in Figure 2.
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Figure 2: Kinetic modeling of xylose ester syntheses catalyzed by (A) CALB-IM-T2-350 (ANN-6)
and (B) CALB-SMMP-octyl-glu (ANN-7) at different temperatures and with two fatty acids.

Once more, the modeled neural networks ANN-6 and ANN-7 presented a good fit to the
experimental data. In Figure 2-A, an overlapping of the reaction curves occurred at 46°C
for both acids, indicating that there is no influence regarding the type of fatty acid
employed when the reaction occurs at this temperature. In general, it was possible to
notice higher reaction rates for reactions at 55°C. For the CALB-SMMP-octyl-glu



Computational intelligence applied to the mathematical modeling of enzymatic 143
syntheses of biosurfactants

biocatalyst, indicated in Figure 2-B, the curves at 55°C showed that there was no hard
influence regarding the type of fatty acid.

3.2. Modeling by fuzzy systems

The adjustments of the input membership functions and output linear equation parameters
of FIS were performed by ANFIS. During the testing phase, root mean squared error
(RMSE) values below 0.006 were obtained for all inference systems, proving that the
model outputs were similar to the experimental ones (indicating almost perfect fits).
Proper graphs of xylose conversion along time were plotted (by fixing the type of fatty
acid and the substrates molar ratio in 1:0.2). The graphs in Figure 3 were elaborated
considering experimental esterification data and the predicted values by the fuzzy models
at 46°C, 50°C and 55°C.
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Figure 3: Fuzzy modeling of xylose ester syntheses with (A) oleic acid and CALB-IM-T2-350, (B)
lauric acid and CALB-IM-T2-350, (C) oleic acid and CALB-SMMP-octyl-glu, (D) lauric acid and
CALB-SMMP-octyl-glu, (E) lauric acid and CALB-SMMP-octyl.

Promising results regarding the modeling of the esterification process, by the fuzzy
model, were obtained. It is worth noticing that the intermediate reaction conversion at
50°C was predicted by the fuzzy systems, at which no experimental data was available.

To further demonstrate the potential of fuzzy modeling for optimization of the operating
conditions, response surface graphs were built combining the three input variables
(temperature, reaction time and the substrates molar ratio) in pairs, for each biocatalyst,
separated by fatty acid type. Figure 4 shows the response surfaces from the fuzzy model
referred to the CALB-IM-T2-350 biocatalyst.
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Figure 4: Response surfaces from the fuzzy model referred to xylose esterification with oleic (A,
B, C) and lauric (D, E, F) acids by CALB-IM-T2-350.

It is possible to notice similarities between the response surfaces results with those from
Lima et al. (2016). In general, the highest values of xylose conversion are reached after
45h of reaction, at high temperatures (55°C) and in the lowest condition of SMR (1:0.2 =
5).

4. Conclusions

ANN modeling successfully predicted the behavior of the xylose esterification process in
biosurfactant syntheses for three different biocatalysts. All ANNs presented R-squared
values higher than 0.97, which was translated to reliable mathematical models for the
esterification processes. To expand the computation analysis, fuzzy logic was used to
build fuzzy models of the esterification processes. Results point towards an excellent
prediction of xylose conversion under experimental conditions, with RMSE values below
0.006, as well as under intermediate temperatures. In addition, it was showed the potential
of fuzzy models for optimizing operational conditions as an alternative to the use of
regression models in response surface methodologies.
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Abstract

It is desired to model the effect of three input features, the LPG flow rate, drum rotation speed
and blower speed on the measured temperature profile in a rotating drum coffee roaster of a 30 kg
capacity for operator prediction purposes. The performance of a first-principles model of this
rotating drum coffee roaster (Schwartzberg, 2002) is compared to the performance of a compos-
ite/hybrid empirical model. The hybrid empirical model is composed of two gradient boosted
regression trees and an artificial feedforward neural network which predicts two characteristic
portions of the measured temperature profile by accurate prediction of the minimum in measured
temperature. The first-principles model under-predicts the heat transfer to the coffee beans and as
a result over-predicts the minimum temperature point when compared to true data. The relevant
root mean squared error (RMSE) between the Schwartzberg model and the true measured tem-
perature of an unseen test set of data is calculated as 23.05 as compared to the RMSE between
the hybrid empirical model and the true measured temperature of 9.153. It is recommended that a
larger set of data be used to train the empirical model to improve the generalisation of the model
to new sets of input features.

Keywords: Coffee roaster, empirical modelling, machine learning, applied modelling

1. Introduction

1.1. Background

The process of converting the green arabica coffee bean into the cup of coffee one enjoys involves
the roasting process, which brings to light an abundance of coffee flavours. The construction,
design, and development of roasters and roaster technology alike is something a company located
in South Africa, takes pride specialising in. There is a need for the development of a predictive
model which will accurately predict changes in the temperature profile of the coffee beans due
to changes in the inputs to the system. The inputs are the LPG (liquefied petroleum gas) flow
rate to the burner, the drum rotation speed and the air blower speed. The model will be utilised
in manually operated runs to preemptively adjust the inputs in order to shape the desired bean
temperature profile, which is strongly correlated to the flavours produced. This paper will focus
on the development of a model which generalises well to new sets of input features.

This paper investigates the modelling techniques applicable to the coffee roasting system based
on theoretical first-principles (Schwartzberg, 2002) as well empirical (data-driven) methods such
as linear regression, decision trees, random forests, support-vector machines and neural networks
implemented using the scikit-learn and tensorflow python libraries (Géron, 2019). Comparison is
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made between models based on performance metrics such as root mean squared error (RMSE) on
a validation set of input features.

1.2. The coffee roaster

The coffee roaster of interest consists of a double walled ceramic coated drum, orientated hori-
zontally on a central axis. The drum rotates above an open flame LPG burner. The flame heats the
inlet air as well as the drum. Air is drawn through the roaster by an air blower located at the outlet
of the roaster. As the air is drawn through the drum, smoke, steam, and chaff is removed from the
drum and separated by a cyclone located at the outlet of the roaster. The blower is located at the
top of the cyclone in order to separate out the coffee bean outer-skins (otherwise known as chaff)
as well as additional solids. The gas separated from the emissions in the outlet is then passed to
the stack and released to the environment. It is desired to model the measured bean temperature as
a function of the roaster inputs, namely the LPG flow rate to the burner, the drum rotation speed
and the blower speed.
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Figure 1: Traditional direct heated drum coffee roaster, adapted from Schwartzberg (2002).

The temperature profile shown in Figure 3 is obtained by measurement of the temperature of the
coffee beans within the roaster. One will very quickly observe a local minimum in the curve
followed by a steady rise in temperature. This inverse response is as a result of how the roaster
is operated. Before the beans are released into the roaster drum through a hopper, the roaster
operating temperature is primed to a set-point temperature, measured by a thermocouple located
within the drum. At the point in time when the coffee beans are released into the drum (at the
point t = 0 in Figure 3), the thermocouple within the roaster has reached the steady state priming
temperature. As the room temperature beans begin making contact with the thermocouple, heat
is transferred from the thermocouple to the beans. It is this dynamic lag of measured temperature
which produces the measured temperature profile shown in Figure 3.

1.3. The adapted Schwartzberg model

The following semi-empirical model of the coffee roaster proposes a scalable model for a drum
roaster. This model suggested by Palma et al. (2021) builds upon the model suggested by
Schwartzberg (2002) by allowing for adjustments as a function of the size of the roaster i.e. the
roaster mass and volume. The model can be summarised as follows:



A Practical Guide to Coffee Roaster Modelling 147
Tb: ng*ng+Qbm+Mbd(Qr+)VX) 1)
My, ( 1+X )C},
Tm _ Qg]mu Qbm (2)
mCm
. ki ko
X= DgeXp( Tb+273.15) ®
H, = At~ He oy <— M ) )
H,, R(T, +273.15)
_ '_Tb+FTm) < B (_heAgb(1+F)))
Too= | Toi — ——— 1—ex _— = 5
5 < S 1+F P Ggcpe )
Nomenclature
A Arrhenius constant
Agp air to bean heat transfer surface area
Cp coffee bean specific heat capacity
Cpg air specific heat capacity
Cm metal specific heat capacity
Dy, coffee bean diameter
F ratio of air-metal and air-beans thermal resis-
tance
Gg air (gas) flow rate
he air to beans heat transfer coefficient
H, activation energy
H, cumulative heat of reaction
H, total reaction heat
ki, kp semi-empirical constants
my, mass of a single bean
My, mass of dry bean batch
M, mass of roaster metal
Oap heat transfer from the air to the coffee beans
Oem heat transfer from the air to the roaster metal
Opm heat transfer from the beans to the roaster
metal
(o8 heat production by exothermic reaction
R universal gas constant
T, measured coffee bean temperature
Tyi inlet air temperature
Ty outlet air temperature
T roaster metal temperature
X coffee bean moisture content
A latent heat of vaporisation of water

A notable advantage of the adapted Schwartzberg model is the scalability of the model to different
sized coffee roasters. The adapted Schwartzberg model does however not take into account the
effect of the drum rotation speed on the measured temperature. This is a considerable disadvantage
if the proposed model is to be used for the purposes of process control such as in the case of a
model predictive controller. The semi-empirical constants k; and k, will be chosen as proposed

by Schwartzberg (Schwartzberg, 2002).
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2. Methodology

Developing a realisable model of the coffee roaster which is multiple input — multiple output in
nature can be achieved in one of two distinct approaches. Firstly, a model may be developed which
makes use of first principle mass and energy balances in order to determine the effect of the three
inputs, namely the LPG flow rate to the burner, the drum rotation speed and the blower speed
on the measured temperature within the system. Available literature (Schwartzberg, 2002) will
be utilised to simulate the “first-principles” model. Alternatively, measured temperature and input
feature data sets may be used to develop empirical regression models which may accurately predict
the measured temperature in the coffee roaster. Examples of such modelling techniques include
linear regression, random forests, decision trees and neural networks. The theory behind the inner
workings of these empirical methods will not be covered in this paper. The reader is referred to
the excellent introduction to such topics provided by Géron (2019). These two approaches will be
assessed and compared in order to determine inaccuracies that exist in either approach.

Data from a 30 kg (capacity) drum roaster is available which contains information about 42 runs
(containing a total of 22 149 measurements). The current data acquisition software does not allow
for the recording of total bean mass for each roast. As mentioned, the measured bean temperature
exhibits a local minimum in temperature. The laws of heat transfer would lead one to believe that
this local minimum’s location in time and temperature is strongly correlated to the initial starting
temperature of the roast and the total mass of beans being roasted (assuming a constant specific
heat capacity of beans for different temperatures and coffee bean species). Accurate prediction
of this point in time will allow one to address the non-linear nature of the temperature profile by
splitting the empirical model into two characteristic portions.

Figure 2: Relationship between the observed minimum temperature of the coffee beans and the
associated priming temperature.

Available data from the roaster is plotted in Figure 2 which displays two distinct clusters of data.
The first cluster of minimum times occur between 64—73 seconds from the beginning of each
respective roast. This cluster is strongly correlated to a set of colder priming temperatures (in the
region of 180-190 °C). The second cluster of minimum times occur between 73-90 seconds from
the beginning of respective roast and is strongly correlated to a hotter set of priming temperature
(in the region of 215-240 °C). A gradient boosted regression tree is used to model the relationship
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between the priming temperature and the time at which the local minimum in temperature occurs.
All the test data will be split into two portions, the “downward” portion (the region with a negative
gradient in temperature) and the “upward portion”. A model will be developed for each portion
applying the aforementioned regression techniques. The “downward” and “upward” data-sets will
be split into training (data used to train the regression models) and test sets (data used to validate
the regression models). The performance of each model will be assessed by calculating the RMSE
on the relevant validation sets.

3. Results and Discussion

Upon splitting of the available data into the aforementioned “downward” and “upward” data sets,
the following regression techniques are made use of: gradient-boosted regression trees, linear-
regression, support-vector machines, random-forests and neural networks. The performance of
each model is assessed against a validation data set using the root mean squared error (RMSE),
the calculated performance norms are summarised in Table 1.

Table 1: RMSE of each model evaluated for the each characteristic portion.

Model Downward portion  Upward portion
Linear 18.46 8.428
Gradient boosted regression tree 2.612 5.724
Support-vector machine 12.49 4.386
Random forest 2.659 1.161
Feedforward neural network 6.746 1.150

The results obtained indicate that a composite/hybrid modelling approach can be used to model the
coffee roaster. The proposed hybrid model will be selected on the basis of the RMSE performance
norms of the relevant models on the validation data set. A gradient boosted regression tree will be
used to predict the downward portion of the measured temperature up to the predicted minimum
time (where the local minimum in temperature is predicted to occur in time by use of an additional
gradient boosted regression tree), subsequently the upward portion in measured temperature will
be predicted by use of a feedforward neural network.

A visualisation of the results obtained by predicting the measured coffee bean temperature dur-
ing roasting as a function of the roaster input features is shown in Figure 3. The supplied input
features as shown in Figure 3 did not occur in the training or validation set of data and is typical
of a roasting operation, the LPG input is initially maintained at 100% (an artefact of the priming
process) before stepping down at a later stage. The empirical model predicts the measured bean
temperature exceptionally well on the downward portion by use of a gradient boosted regression
tree. The neural network deviates from the true measured temperature between 80-600 seconds
before coinciding with the true temperature, interestingly a considerable reduction in LPG input
occurs at 600 seconds. The Schwartzberg model was implemented using the semi-empirical con-
stants and heat transfer coefficient approximations provided by Schwartzberg. The Schwartzberg
model seems to model a system in which there is less heat transfer to the beans by the hot air
and/or drum. This can be noted by the local minimum in the Schwartzberg model which occurs
at a later point in time and at a hotter temperature than the true minimum. The relevant RMSE
between the Schwartzberg model and the true measured temperature is 23.05 as compared to the
RMSE between the hybrid model and the true measured temperature of 9.153. The RMSE for the
hybrid model is surprisingly large when one considers the errors calculated in Table 1. This can
be attributed to the size of the data set used (22 149 measurements). Use of a larger data set will
allow the hybrid model to generalise with increased accuracy to unseen input features.
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Figure 3: Comparison of the composite empirical model to the first-principles model.

4. Conclusions and Recommendations

The empirical hybrid model has been successfully developed. The empirical model is composed
of two gradient boosted regression trees and an artificial feedforward neural network which pre-
dicts two characteristic portions of the measured temperature profile by accurate prediction of the
minimum measured temperature. The relevant RMSE between the Schwartzberg model and the
true measured temperature of an unseen test set of data is calculated as 23.05 as compared to the
RMSE between the hybrid empirical model and the true measured temperature of 9.153. It is
recommended that a larger set of data be used to train the empirical model to improve the gener-
alisation of the model to new sets of input features. The methods shown can easily be applied to
unrelated physical system modelling problems. The Schwartzberg model does not incorporate the
effects of drum rotation speed on the measured temperature. It is suggested that with the develop-
ment of an accurate model of the coffee roaster, the use of model-based control algorithms such
as model-predictive control (MPC) be investigated.
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Abstract

The increasing number of microalgae-based applications has contributed for development
of new models to describe the complex interactions taking place in mixed algal-bacterial
wastewater treatment systems. Mathematical models contribute to system optimization in
terms of operation and control. The goal of this work is modeling and simulation of an
anoxic-aerobic algal-bacterial photobioreactor with biomass recycling for wastewater
treatment. Process model and simulation have developed in dynamic simulation software
PROOSIS®. The model was set-up and calibrated with data from a pilot plant treating
synthetic wastewater, located in facilities of University of Valladolid. Simulations have
shown the capability of mathematical model to predict the removal efficiency of nutrients
from wastewater. Removal efficiencies simulated are closely with experimental results
ones.

Keywords: Modeling, Optimization, Simulation, Wastewater treatment.

1. Introduction

In recent years, microalgae-bacteria based technologies for wastewater treatment has
generated a growing interest in scientific community. Microalgae-based technologies for
wastewater treatment were proposed in the 1960s, but till now, remains certain limitations
related with their exploitation at industrial scale. The European Directives concerning
wastewater treatment processes; efficient gestion of nutrients; and transit to low-carbon
economy, have reactivated the interest in microalgae-based technologies and have
motivated the development of large number of improvements and applications (Muioz &
Guieysse, 2006).

The costs associated with mechanical aeration represent 45-75% of the total operational
costs in conventional wastewater treatment plants (WWTPs) (Chae & Kang, 2013). These
costs could be reduced using wastewater treatment systems based in microalgae-bacteria
consortia. In addition, the capacity of microalgae to simultaneously remove carbon (C),
nitrogen (N) and phosphorus (P) via mixotrophic assimilation represents an important
advantage in comparison with aerobic activated sludge or anaerobic digestion
technologies in terms of enhanced nutrient recovery.

The increasing number of microalgae-based applications has contributed for development
of new models to studying of main processes, factors, and variables affecting microalgae
growth in different cultures media, including wastewater (Casagli, et al., 2021), (Sanchez-
Zurano, et al., 2021), (Solimeno, et al., 2019). Recently, design and improvement of
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facilities for optimization of algae biomass yield and adequate depuration of wastewater
has generated a growing interest. In this regard, in (De Godos, et al., 2014), an innovative
anoxic—aerobic algal-bacterial photobioreactor configuration with biomass recycling was
proposed. The configuration described in (De Godos, et al., 2014) was optimized in
(Alcantara, et al., 2015) in order to promote N removal via denitrification and the
development of a rapidly settling algal-bacterial population. Within this framework, the
goal of this work is modeling and simulation for first time the anoxic-aerobic algal-
bacteria photobioreactor for wastewater treatment proposed in (Alcantara, et al., 2015).
In this work, simulation results for the concentration of Total Suspended Solids (TSS)
and ammonium are presented. These values are used to estimate removal efficiencies in
the anoxic-aerobic reactor configuration. Values of TSS and ammonium in effluents are
key indicators for an adequate depuration of wastewaters. Process model and simulation
have developed in dynamic simulation software PROOSIS®.

2. Materials and Methods

2.1. Plant Description

Experimental data were collected from anoxic—aerobic algal-bacterial photobioreactor
configuration with biomass recycling located in facilities of University of Valladolid (Fig.
1). In (Alcantara, et al., 2015), the influence of the Hydraulic Retention Time (HRT),
intensity and regime of light supply, and dissolved O, concentration (DOC) in the
photobioreactor were analyzed in five-stage experimentation.

The aerobic tank (photobioreactor) was an enclosed jacketed 3.5 L glass tank (AFORA,
Spain) with a total working volume of 2.7 L. The photobioreactor was continuously
illuminated by LED lamps. The anoxic reactor consisted of a gas-tight 1 L polyvinyl
chloride tank with a total working volume of 0.9 L maintained in the dark. The synthetic
wastewater (SWW) was fed to the anoxic tank and continuously overflowed by gravity
into the aerobic photobioreactor.

The algal-bacterial broth was continuously recycled at 3 L/d from the photobioreactor to
the anoxic tank. An Imhoff cone with a volume of 1 L and interconnected to the outlet of
the photobioreactor was used as a settler. The algal-bacterial biomass settled was recycled
from the bottom of the settler into the anoxic tank at 0.5 L/d and wasted 3 days a week to
control the algal-bacterial sludge retention time (SRT). A detailed description of the
system, microorganisms and culture conditions, experimental design, and analytic
procedures is provided in (Alcantara, et al., 2015).

2.2. Experiment Design

The design of the experimentation was conducted based on the hypothesis that algal—
bacterial photobioreactors for wastewater treatment can support the oxidation of
ammonium (N-NH}) into NO3/NO3, which can then be easily removed through
denitrification (using the organic matter present in SWW) under anoxic conditions via
internal recycling of the photobioreactor broth (De Godos, et al., 2014). Liquid samples
of 100 mL were drawn three times a week from the SWW storage tank, anoxic tank,
aerobic tank, wastage, and clarified effluent to monitor the concentration of dissolved N
species (total nitrogen (TN), N-NHJ, N-NO3, and N-NO3) and biomass concentration,
expressed as TSS. The data used for simulations were obtained from previous studies in
the Institute of Sustainable Process (University of Valladolid). Data used in this study
were collected from May 2014 to July 2014 (corresponding with two experimentation
stages with different HRT). Data from Stages I and II were selected, because same
conditions of illumination and no oxygen supply are considered in both stages.
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Fig. 1. Schematic of the anoxic-aerobic algal-bacterial photobioreactor configuration

2.3. Modeling

In the last two decades, several microalgae-bacteria models were developed (Reichert, et
al., 2001), (Solimeno, et al., 2017), (Solimeno, et al., 2019), (Casagli, et al., 2021),
(Sanchez-Zurano, et al., 2021). The review of these models has allowed to choose the
model BIO__ALGAE 2 for the present work, since it includes the interactions between
microalgae and bacteria, without presenting excessive complexity. Model BIO_ ALGAE
2 (Solimeno, et al., 2019) has been used to represent the biochemical reactions and
processes that take place in both anoxic and aerobic reactor described in (Alcantara, et
al., 2015). Model BIO_ALGAE 2 uses the common nomenclature of the International
Water Association models and considers 19 components — 6 particulate and 13 dissolved
—implicated as variables in the physical, chemical and biokinetic processes. In (Solimeno,
et al., 2017) those components are described, as well as their main role in the processes
and their interactions with other components.

Settler model is described using the mass-balance expressions of Takacs model (Takacs,
et al.,, 1991). Takacs model is a multi-layer dynamic model for the clarification and
thickening processes. In this work, a 5-layer settler is considered. A description of settler
model used in this work can be found in (Bausa, et al., 2021).

Reactors and settler model are coded in dynamic simulation software PROOSIS®
(Empresarios Agrupados Internacional, 2021).

2.4. Parameter Estimation

Previous to parameter estimation, a sensitivity analysis is realized with the aim of identify
the parameters that have the greatest impact on the model. To this purpose, a subset of
the most influential parameters on model outputs was analyzed.

The approach to solve a parameter estimation problem in terms of optimization considers
that for each value of the vector of parameters 6 (decision variables) the model provides
a prediction of the response of the system in each experiment. For this purpose, a set of
data samples from inputs u(t) and outputs y(t) of process is needed. The same sequence
of process inputs is applied to model. For each time sample t, the prediction error is an
indicator of model goodness. The dynamic optimization problem for the start-up
optimization can be converted into a nonlinear programming (NLP) problem by means
of a control vector parameterization technique and a proper procedure for computing the
cost function. In this work, the SNOPT nonlinear programming algorithm has been used
in the PROOSIS® dynamic simulation environment to solve the optimization problem.
The selected integration method was IDAS. The fair function estimator (Huber, 2014) is
used here as a robust objective function J against measurement outliers and gross errors.
Dynamic optimization problem reads:
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min) (0.6) = Zjen |2~ tog 1+ 2| (1)
Subject to restrictions (2) and (3)

d’;_(:) = f(x(t),u(t),,t) )

9(t) = g(x(t), u(t),0,)
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Where g= (@,--9]-)/ 0., represents the error between available process measurements (0)

and their estimated values 8 limited between user-defined minimum and maximum
values, ¢ € R+ is an user defined fitting parameter to tune the slope for large residues,
and 0, is the media of process measurements.

3. Results

The results of sensitivity analysis in both reactors indicated that model outputs are
especially sensitive to the maximum specific growth rate of microalgae (narc) and
heterotrophic bacteria (py), the decay-rate of microalgae (Kgeaharg) and heterotrophic
bacteria (Kgeath), and the mass transfer coefficient for ammonia (Kis, nu3). Limits for
decision variables and initial values for optimization were established from similar
studies reported in the literature. Values of decision variables resulting from optimization
in both reactors are shown in Table 1. The optimized values of puy and Kgeam 1, are closely
related with calibrated values reported in (Solimeno, et al., 2017) and (Casagli, et al.,
2021), respectively. Value of Kgeath,aLg coincide with value used in (Reichert, et al., 2001)
and (Solimeno, et al., 2017). In sum, all parameter values are within values ranges adopted
in literature for similar facilities. Results of sensitivity analysis and parameter estimation
in settler is described in (Bausa, et al., 2021). Data from first 30 days of stage I were used
for parameter estimation (corresponding with 14 samples). Validation was performed
using data from stage I (days 33 to 47) and stage II (days 47 to 63). Both, parameter
estimation, and model validation were performed using 14 samples of data.

Fig. 2 show simulation results for the concentration of TSS. Fig. 2a) and 2b) represent
data set used for parameter estimation and for validation in anoxic reactor, respectively.
Results for parameter estimation and validation in the aerobic reactor are presented in
Fig. 2¢) and 2d), respectively. Simulation results show model capability to reproduce
dynamic behavior of the system. Fig. 3 presents simulation results for the concentration
of ammonium. Fig. 3a) and 3b) represent data set used for parameter estimation and for
validation in anoxic reactor, respectively. Results for parameter estimation and validation
in the aerobic reactor are presented in Fig. 3¢) and 3d), respectively. Although some
discrepancies are observed in transient behavior prediction for ammonium concentration,
average values (and, consequently, removal efficiencies) are closely with experimental
results. Average values for simulated data are compared with experimental values
reported in (Alcantara, et al., 2015) at steady state during stage I with the aim of evaluate
model capability for prediction. This comparison is presented in Table 2.

Experimental removal efficiency of TSS for anoxic-aerobic configuration during stage I
was roughly 98 %, the estimated value for removal efficiency of TSS was 97,7 %. Both
experimental and estimated data are consistent with the percentage of reduction
established by the European Union (CEE, 1991). Concentrations of ammonium in the
effluent are above the maximum concentration permissible for wastewater discharge into
the environment according to European Directive 91/271/CEE (CEE, 1991) on discharge
of domestic waters. In this context, further research is needed to improve the N-NH}
removal efficiency of the configuration.
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Fig. 3. Experimental and simulated N-NH; concentration in anoxic and aerobic reactor

Table 2. Average values =+ standard deviations at steady state during stage |

Parameter Experimental Simulated
TSS anoxic (mgTSS/L) 2575+ 160 2627 + 148
TSS aerobic (mgTSS/L) 2531+ 191 2392+ 111
N-NH{ anoxic (mgTSS/L)  42+1 41.1+4.5
N-NH{ aerobic (mgTSS/L) 28+l 22.9+7.4
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4. Conclusions

In this paper, modeling of anoxic-aerobic algal-bacterial photobioreactor for wastewater
treatment is presented. Parameter estimation via optimization is realized to fit
experimental and simulated data. The model proved to be effective in reproducing
dynamic behavior of different measured variables. Removal efficiencies simulated are
closely with experimental results ones. Removal efficiency for total suspended solids is
over 95% for experimental and simulation results.
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Abstract

Li-ion batteries (LIBs) are widely adopted in EVs and stationary battery energy storage due to
their superior performance over other battery chemistries. But LIBs come with the risk of thermal
runaway (TR) which can lead to fire and explosion of the LIB. Hence, improving our understand-
ing of TR is key to improving LIB safety. To achieve this, we aim to develop a detailed model
of LIB TR, as existing models are oversimplified and often lead to inaccuracies when compared
to experiments. To build a realistic representation of the reaction network (RN) for LIB TR, we
present a case study on the ethylene carbonate (EC) solvent component of the LIB electrolyte. We
use a RN for EC identified from literature to build a micro-kinetic model and optimize it against
experimental data. Parameters optimisation and sensitivity analysis for a complex RN is made
possible by using Gaussian Processes (GPs). It is found that the only four of the 14 parameters
influence the simulation output significantly. Also, this work highlights areas of GP development
for improved surrogate modelling of this type of problem. From this the methodology can be
scaled to larger networks and can be applied LIB TR models to improve their accuracy, which in
turn will help the development of safer LIBs.

Keywords: Thermal runaway, Gaussian Process, Li-ion battery, Reaction network analysis, Ro-
bust optimization

1. Introduction

Li-ion batteries (LIBs) have become the favoured electrochemical energy storage device in EVs
and stationary applications as they benefit from high energy density and low cost (Keshan et al.,
2016). However, they can undergo the rare but hazardous phenomenon of thermal runaway (TR),
which through exothermic decomposition can lead to fire and explosion (Wang et al., 2012). Im-
proved battery safety is paramount as the use of LIBs is increasing enormously.

Computational modelling is a proven method to aid the design of safer LIBs (Abada et al., 2016;
Bugryniec et al., 2020b,a). However, models used in previous works can be considered oversim-
plified as they do not consider (1) the multi-pathway and interdependent reaction network (RN)
(Wang et al., 2012), or (2) the generation of decomposition products which could be used for
chemical hazard assessment. Also, existing models can be limited to the experimental conditions
on which they are developed. Hence, there is a desire to build a more detailed model of LIB TR
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based on a realistic representation of the RN. In this paper a new approach is developed to meet
this goal.

RNs can be developed by inference of reactants and products from experimental observations,
or from molecular simulations studies (Campion et al., 2005; Hirai and Jinnouchi, 2021).Micro-
kinetic modelling techniques can be applied, which provide a detailed description of the reaction
pathways, including each possible elementary step and reaction intermediate. In this approach,
the kinetic parameters are typically estimated based on a solid theoretical basis and no a priori
assumptions on the rate determining steps are needed (Hermes et al., 2019).

We have previously shown (Milton et al., 2019; Yeardley et al., 2020) that applying Gaussian
Processes (GPs) surrogate modelling to LIB modelling is beneficial due to the efficiency of the GP
prediction technique (Sacks et al., 1989). Further, as the GP is mathematically tractable it allows
sensitivity analysis (SA) and optimisation of the complex RN. The implementation of the GP can
be conducted through two main methods. The first, is by fitting the GP to a heuristic fit of the
computer simulation, providing information about the error between simulation and experimental
data. The second, is to fit multiple GPs to create a direct surrogate model that uses the same input
variables as the computer simulation to predict the same outputs as computer simulation.

The aim of this work is to develop a methodology for the efficient generation of realistic RNs of
LIB TR, from which the optimal and most influential reaction parameters can be determined. To
assess the validity of the aforementioned methodology, an exploratory study has been conducted
to analyse the thermal decomposition of ethylene carbonate (EC) as a model component of the
electrolyte.

2. Methodology

As stated previously, this work focuses on the RN of EC oxidation decomposition. For this work,
the energy diagram from Hirai and Jinnouchi (2021) (containing 3 reaction pathways for the EC
decomposition) is used to define the RN. This size of network provides a suitable problem to test
and validate our proposed methodology. From the energy diagram a micro-kinetic model can be
created. The forward and backward reaction steps are listed in Table 1, for a total of 14 reactions
and 8 species, along with the corresponding activation energies of each step. The micro-kinetic
model (a.k.a. the full order model or FOM) consists of a system of 8 ordinary differential equations
(ODEs) describing the change in concentration of the 8 species. Each ODE is expressed as the
algebraic sum of all relevant reaction rates (R;) corresponding to a given reaction step, where R; is
governed by an Arrhenius equation of the form R; = Aiexp(_Ea.i/RT)H iCj.

To analyse the RN, and to obtain the optimised frequency factors, GPs are applied. To generate
training data for the GP, the desired parameter space of the 14 frequency factors is sampled using
Latin Hypercube sampling, which through the FOM, is used to generate 10000 outputs that are
used for training.

The log base 10 of each input variable is taken before being standardised as the bounds of the
variables extend over several orders of magnitude. In this research both a GP behaving as a direct
surrogate model and a GP predicting a heuristic fit are chosen to analyse the data. A GP is a non-
parametric machine learning technique which takes a 1 x d row vector of inputs x and returns a
Gaussian random variable through calculations using the predictive equations shown in Yeardley
et al. (2020). The difference between the direct surrogate model and the heuristic fit is the output
that the GP predicts. For the surrogate model, numerous GPs are trained to predict the mole
ratio every step in temperature. Whereas, the heuristic fit maps the log of the 14 parameters
to a single output of interest. This output is the root mean squared error (RMSE) between the
experimental and simulated mole ratio over the entire temperature range. In essence, the heuristic
fit GP behaves as a blackbox function using training data to predict the RMSE from the log of the
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Table 1: Calculated activation energies for the forward and backward reactions of EC decomposition ac-
cording to the energy diagram from Hirai and Jinnouchi (2021). The notation R; in brackets identifies each
reaction step.

Activation Energy (eV)

Reaction Forward Reverse
EC +— C,H,0+CO, 1.12 (Ry) 1.86 (Ry)
EC +— C3H505 + C3H;04 0.06 (R3) 1.31 (Ry)
EC +— *C2H503 +C3H;0, 0.20 (Rs) 0.37 (Rg)
C3H50; + C3H;05 <— C,H;0+ CO,(+C;H505) 0.84 (R7) 1.55 (Rg)
C3H;05 +C3H305 +— >"C3H503 +C3H;0, 1.08 (Ry) 0.00 (Ry0)

*CyH;0; +C3H;05 +— C,H;O+ CO,(+C3H305) 021 (Ryp) 158 (Rp)
*C3Hs05 + C3H;05 «— C,H;0+ CO,(+ *C3HsO0;)  0.84 (R13) 156 (Ry4)

model parameters

Both methods require GP learning which uses training data to optimise d + 2 hyperparameters
found in the predictive equations, consisting of A, 6, and o,. This optimisation is completed by
maximising the marginal likelihood p[y|X] using the ROMCOMMA software library (Milton and
Brown, 2019).

The GPs are used for a global sensitivity analysis (GSA) and to optimise the model simulation with
respect to the experimental data from Lamb et al. (2015). For this work, we opted to implement a
GSA using the variance based Sobol’ indices technique (Sobol, 1993, 2001). As previously men-
tioned, GPs are mathematically tractable, therefore, we can compute the semi-analytic evaluation
of complex multi-dimensional integrals resulting in Sobol’ indices which measure the contribution
to the outputs variance attributable to each input parameter. Hence, to understand how the input
parameters impact the model simulations closeness to the experimental data, the GSA required an
output that measures said closeness, resulting in a GP predicting the heuristic fit. Additionally,
the direct surrogate model is required to be able to optimise the parameters throughout the model
simulation as a function of temperature. In this way, the GP is trained to accurately copy the model
simulation and is used to make fast, efficient predictions. Thus, the optimisation of model param-
eters is achieved by minimising the error between the GP predictions and the experimental data.
GPs predict a probability distribution presenting the uncertainty in the predictions. Therefore, the
optimisation should include constraints where the predicted standard deviation (STD) is limited to
be within 2 standardised units from the mean. In this research, we compare both a constrained and
an unconstrained GP for parameter optimisation.

3. Results and Discussion

3.1. GP Validation

Both techniques are tested using the 5-fold cross validation technique. The results of which are
scrutinised by calculating the error metrics between the GP predictions and the model simulation
data. In this work, we conduct a robust validation by calculating three popular error metrics and
by plotting figures to provide a visual understanding of the error. Table 2 shows the coefficient
of determination (R?) and the root mean squared error (RMSE) values for each output. Both di-
agnostics measure a skill score, corresponding to the accuracy of the predicted mean (Al-Taweel,
2018), but with different scales. Further, the predictive distribution is analysed to ensure the GPs
are not predicting with over confidence. This is shown by counting the outliers for any predic-
tion where it’s true standardised value is outside of the predictions 95% uncertainty distribution.
Table 2 presents the outliers of both around the 5% as expected for a normal distribution. How-
ever, the two skill scores show the heuristic fit to have a worse accuracy than the direct surrogate
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Table 2: Error metrics used to validate the GP models.

GP R? RMSE  Percentage of outliers

Heuristic Fit 0486 0486  5.60%
Direct Surrogate Model ~ 0.931  0.279 5.25 %
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Figure 1: a) Validation, standardised value predicted by GP vs standardised value from FOM simulation,
also shown is the linear fit (dashed line, y = 1.102x — 0.041 with R? = 0.931) of the scatter data. b) The
cumulative Sobol indices’ overlaid with first order Sobol indices’ for each of the 14 frequency factors, first
order totals 65.7 %. c¢) Optimisation output, GP predicted mean with error bounds (one STD) for scenarios
where the STD is constrained and unconstrained. d) FOM output using optimised parameters determined by
GP. (Note experimental data is from Lamb et al. (2015))

model as the R? is small and the RMSE is large. Further, Fig. 1(a) shows the correlation of GP
predictions against the outputs of the FOM in a standardised form. The quality of prediction is
shown by the closeness of the fit line to the y = x line, with a coefficient of determination equal to
0.931. However, there are some large residuals, as well as instances of residuals far away from the
straight line.

From this, it can be seen that the GP predicting the heuristic fit is satisfactory and appropriate for
the calculation of Sobol’ indices due to 95% of the true observed values fitting into the predicted
distribution. However, the point estimations for the heuristic fit require further work to increase
accuracy. Hence, the direct surrogate model is used for a parameter optimisation.
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Table 3: Error (RMSE) from predicted output and FOM output (calculated against experimental) for opti-
mised parameters under un/constrained conditions.

Type GP predicted FOM
Best training data - 0.1190
Constrained GP 0.0980 0.1197
Unconstrained GP  0.0821 0.2304

3.2. Sensitivity Analysis

SA of the model output dependent on the 14 frequency factors can be realised by calculation
of the Sobol’ indices. The first order and cumulative Sobol’ indices are presented in Fig. 1(b).
From the first order Sobol’ indices, it can be seen that the frequency factors relating to the initial
decomposition of EC (A;, A3, As) by the forward reactions Ry, R3, Rs are of the most dominant
parameters. This is besides parameter A7, which is the most dominant and relates to the second
stage (forward) reaction from the products of R, and leads to the generation of CO,. Further,
the first order Sobol” indices show that the frequency factors for all the backwards reactions and
forward reactions Rg and above have negligible influence of CO, generation.

From the cumulative Sobol’ indicies in Fig. 1(b) it can be seen that the increase in value is driven
by the interactions from the frequency factors related to the first three forward reactions. The
backwards reactions, with A,, A4, Ag, have little effect on the increase in indices value. A7 has
a great effect on increasing the cumulative Sobol’ indies value, equating to almost 87 % of the
total Sobol’ indices. Where over 50 % of the value is due to interactions with the first 6 frequency
factors. After this, little change is seen in Sobol’ indices until Aj; at which there is an increase to
99 %. From Table 1, the influence of Aj; can be rationalised by the fact that it is a second stage
reaction that leads to CO, generation by a relatively low activation energy. Overall, first order
Sobol’ indices total 65.7 %, thus interaction account for 34.3 %. Hence, it can be seen that the
frequency factors relating to Ry, R3, Rs and Ry, which relate to the forward reaction of the first
stage of EC decomposition and the forward reaction of the decomposition of the products from
Rs, have the most influence on predicted output.

3.3. Parameter Optimisation

The best training data, with the lowest RMSE relative to experimental, was chosen from FOM
simulations, see Table 3. So the aim is to optimise the GP against experimental data to determine
parameters that lead to a smaller RMSE than 0.1190. The results of the direct surrogate model
for parameter optimisation are presented in Figs. 1(c) and 1(d). Fig. 1(c) shows the GP predicted
mean with STD for two scenarios, where the deviation is (1) unconstrained and (2) constrained.
The constraint was applied to minimise the size of the STD around the predicted mean. It can be
seen from Table 3 that the unconstrained GP predicts a smaller RMSE than the constrained GP.
However, when the optimised parameters from the GP are implemented in the FOM the resulting
output (see Fig. 1(d)) leads to RMSEs larger than the GP predicted in both scenarios. Further, the
parameters from the unconstrained GP lead to a much larger RMSE than the best training data,
while the parameters from constrained GP lead to a similar RMSE to the training data.

It is shown that constraining the GP increases the RMSE of the prediction but leads to a GP that
is better at capturing the FOM behaviour. However, as the GPs both predict better than the FOM
output for the same parameters it indicates that our surrogate model is not accurately capturing the
behaviour of the FOM. This may be due to the slight deviation of the correlation plot from the y=x
line (see Fig. 1(a)). Or it may be possible that the FOM is already as close to optimal, due to the
large number of starting point considered, and the GP cannot improve on it. To further refine the
GP to improve the correlation plot, then the follow can be applied: 1) restricting the training data
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to sets with lower RMSE, 2) using both cross-validation and a test set to validate the GP so that
there is a data set purely for testing, 3) optimise against experimental data using the continuous
ranked probability score to account for uncertainty rather than using the RMSE.

4. Conclusion

The modelling of chemical reactions is usefully for calculating reaction barriers, the effects of
catalysts, product yields and analysing theoretical reactions schemes. Here, decomposition of EC
is studied using micro-kinetic modelling. A GP approach is applied for SA and optimisation of
the frequency factors. The SA shows that most of the error between the simulation output and
experimental data comes from 4 of the 14 parameters. The GP, while predicting a mean close to
the simulation, currently does not capture the FOM to a standard required to calculate optimised
model parameters. This work provides lessons for GP development applicable to RN analysis. It
can be used for safer LIB design by applying it to LIB TR models so that the most likely reaction
pathway and production of hazardous species can be predicted.
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Abstract

Hydrogen is considered as a clean energy carrier that can be produced from several
renewable resources. Biomass as an alternative energy resource can be used to produce
hydrogen to substitute fossil fuels. The objective of this work is to propose a coupled
process modelling under Aspen for H, production based on anaerobic digestion for syngas
production and methane transformation to hydrogen based on steam reforming (process
1) and partial oxidation (process 2). The modelling was validated with experimental
results. The modelling has allowed to establish an evaluation of the energetic performance
of each installation with a quantification of the CO, production which is considered as
greenhouse gas. The feed of the process was set equal to 0.33 l/day of cow manure
biomass for both modelling. The results show that the process 1 produced 5.71 I/day of
H> with an energy efficiency of 82.72% and the emission of the CO; is about 12.83 kg
per kg of H, produced. These values are highly advantageous compared to the second
process.

Keywords: biomass, anaerobic digestion, hydrogen, methane, modelling.

1. Introduction

The current production of hydrogen is mainly based on fossil fuels as feedstocks (coal,
natural gas, oil, etc.), and 4% is produced by electrolysis of water [1]. Hydrogen could be
the fuel of the future because of its high energy content, as well as it presents
environmental, economic and social issues, it is considered a clean energy that does not
cause air pollution. The production of hydrogen from renewable sources, in particular
biomass, instead of fossil fuels, is a green way and shows many advantages due to its
availability, abundance and its carbon neutrality.

Anaerobic digestion, also called "methanization", is the transformation of organic
materials into a gas rich in methane and carbon dioxide called biogas containing about 20
to 40% of the energy value of the original biomass. It is carried out in the absence of
oxygen by a complex microbial community in a closed chamber (digester, fermenter or
reactor), and is widely used for the treatment of wet organic waste (80 to 90% moisture)
[2,3].

The different hydrogen production techniques are mainly based on syngas and methane
reforming techniques, such as (i) steam reforming (methane and steam converted to
syngas), (ii) partial oxidation reforming (methane and oxygen converted to syngas), (iii)
autothermal reforming (methane, oxygen and steam converted to syngas), (iv) dry
reforming (methane and carbon dioxide converted to syngas), (v) bi-reforming (methane,
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carbon dioxide and steam converted to syngas), (vi) tri reforming (methane carbon
dioxide, steam and oxygen to syngas).

In the light of these considerations, this work is aimed at studying two different processes
of hydrogen production from biogas. The two main steps involved in these processes are
the production of biogas from biomass by anaerobic digestion and the transformation of
the methane produced to produce pure hydrogen.

2. Process modeling in Aspen Plus

2.1. Process description

The main steps in the production of hydrogen from biogas or methane are shown in the
Figure 1. The bio-digestor model was established and validated by [4]. Steam reforming,
partial oxidation reforming and the autothermal reforming models were validated by
Hajjaji et al. [5] while the bi-reforming, dry reforming and tri-reforming models were
validated by Phan at al. [6].

Steam reforming A

Cobm + nH:0 — (n+%) H4nco
Biomass_ \ o+ ) ; § Pure hydrogen

WGSR )
) > = Metal v
= [ oo - cozvH] ‘ >‘ etal membrane purification |

I
= Partial oxidation

,\‘ Bio-digestion
- Catim + 2 0; ~ (3) H4nCO
L

Bio-gas production  Methane conversion Carbon monoxide conversion Hydrogen purification

Figure 1: Main steps in the production of hydrogen from biogas or methane

The thermodynamic method selected was NRTL (Non-Random Two Liquid) which is
recommended for anaerobic digester simulation [7]. The cow manure is considered as the
feedstock with a loading rate of 0.33 1/days. The first step of anaerobic digestion which
is the hydrolysis of biomass was not modeled due to complexities such as the difficulty
associated with specifying the composition of biomass in terms of its constituents,
therefore, the flow for this process is assumed to be pretreated (hydrolyzed) [6,7]. Two
streams were produced at the outlet of the digester (i) biogas and (ii) undigested slurry
(mixture of solid and liquid phases) which can be used for agricultural purposes.

Steam Reformation of Methane (SRM) is the most industrially applied and commonly
used to produce hydrogen in large quantities. This technique consists in reacting methane
with steam to produce a synthesis gas, in the presence of a nickel-based catalyst, at a high
temperature of 800 to 1000 °C, and at a moderate pressure of about 5 to 25 bars. This
transformation is followed by different operations which lead to the production of
hydrogen and carbon monoxide, carbon dioxide, methane and water [1,8], as shown in
the following reaction system:

CH4+H>0 < CO + 3H»> R.1
CO + H20 < CO2 R.2
CH4+2H-0 « CO2 + 4H>» R.3

The first reaction (R.1) corresponds to the steam reforming, it is endothermic and is
characterized by a ratio H»/CO of about 3 where the second reaction (R.2) corresponds to
the conversion of CO, known as the water gas shift reaction, and it is slightly exothermic.
A desulfurization pre-treatment is usually applied to the feedstock, to avoid poisoning the
catalysts.
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The partial oxidation of methane consists in converting hydrocarbons into hydrogen and
carbon monoxide in the presence of oxygen, carried out at high temperature from 1200 to
1500°C and at high pressure from 20 to 90 bars. The reaction is exothermic and takes
place with or without catalyst depending on the load and the reactor used, this technique
remains however much less common than steam reforming because of its high cost. Shell
and Texaco processes are the most known, the operating conditions for these two
processes involve a temperature of around 1000°C and a pressure of 35 bar [9].
CHi+30: © CO + 2H: 14

CO + H;0 < CO:2+H: 1.5

The CO conversion reaction (Water Gas Shift reaction) carries out the conversion of the
CO existing in the syngas by reaction with steam, this reaction is also the same in all
reforming processes. The WGSR is balanced as follows:
CO + H20 & CO2+H:2 16

This conversion is carried out in two successive stages, the first the conversion at high
temperature which is carried out in HTS reactor (High Temperature Shift) at temperatures
between 350°C and 450°C, then, the conversion at low temperature in a LTS reactor (Low
Temperature Shift) at temperatures between 200°C and 250°C [10].

Metal membranes operate at high temperature and convert catalytically hydrogen gas into
hydrogen atoms that can pass through solids. The atoms recombine on the product side
into molecular hydrogen [11]. These membranes operate at temperatures ranging from
300°C to 600°C and the purified hydrogen exits the separator at an atmospheric pressure
[81(12].

2.2. Process flowsheet and operating conditions

Several blocks were used to achieve this modelling for both processes. The process 1, for
example, is essentially composed of 4 blocks:

¢ Anaerobic digestion section
—L\z =

LD;

Steam reforming section

Digester

WGS section

Combustion section

Figure 2: Flowsheet of hydrogen production from biomass via steam reforming
(i) Reformer block: The process feeds the reformer modeled by the RGIBBS model at
973Kand 10 atm by methane and steam at high pressure (10 atm). The syngas et the at
the exit of the reformer block (REF-S stream) is cooled to 573K to be returned to the
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WGS block. (ii) The Water Gas Shift block: The syngas at 573 K and 10 atm is
converted by steam into a H, and CO, rich gas. The WGS reactor is modeled by the
RSTOIC with a conversion rate of CO equals 0.98. The (WGS-S stream) from this block
is heated to 723 K before being fed into the purification block. (iii) The purification
block: The purification block is modeled by the Sep model under Aspen plus. The gas
leaving the purifier still containing CH4, CO, CO,, H,O and residual H, (PURF-S stream)
is expanded to atmospheric pressure, to be returned to the combustion block. (iv) The
combustion block: The combustion furnace is fed with the gas from the purification
block to provide heat to the reforming reactor. The global flowsheet in the case of process
1 (coupling with steam reforming) is shown in figure 2.

2.3. Process energy analysis
The energy performance of coupled “anaerobic digestion-reforming” processes has been

examined based on several [8,13]:
Dyo ><LI'IVH2

r1biomass = Eq'l
DpiomassXLHV biomass + Weompres+*Wpump
Dy, XLHV i
rlbiogas = 2 z Eq'z
Dpiogas XLHVbiogas + Wcomprest*Wpump
Dp,XLHVH,
Ninethane = Eq.3

DcHy, XLHVcH, + WeomprestWpump
With :
D; : The mass flow rate of i component (hydrogen, biomass, biogas, methane) (kg/s),
processes (kg/s), LHV;: Lower Heating Value of i component (hydrogen, biomass, biogas,
methane) (kJ/kg), W;: Mechanical work of the compressor and pump (kW)
The biomass considered as hydrolyzed cow manure. The LHV of this last was set equal
to 12.47 Ml/kg [14].

3. Results and discussion

The simulations of the "DA-Reforming" processes have been modeled on Aspen Plus,
these models allow to compare the production of hydrogen from biomass via the coupling
of the anaerobic digestion process with the different reforming models.

Table 1: comparison between the two processes

Process Process 1 Process 2

H; (L/day) 5.57 3.58

1] biomass (%0) 30.58 19.67

1] biogas (%) 82.72 47.21

1] Methane (%) 83.24 53.51

Exhaust gas (L/day) 30.06 33.18
CO; (L/day) 5.2 5.2

kg CO; per kg Hz 12.83 19.95

The results given by the simulations carried out show that the process 1 "DA-steam
reforming" is the most productive of hydrogen, this process has the greatest volume flow
in H2 produced, for a feeding of 0.33 V/day of biomass, we obtained 5.57 V/day of
hydrogen produced. The purified biogas containing CH4 (51.97%), CO; (32.07%), H,O
(15.77%), Hz (0.19%) where the presence of CO, and moisture in the biogas is an
advantage or the biogas can be used directly, without the removal of steam because it
promotes the WGS reaction [7], this reduces energy consumption and improves the ratio
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H»/CO, the biogas is reformed with an excess of steam. Figure 3 shows the mass and
energy balance for the two simulations.

Qe Air2 505w
Water Air 0728w Air 1 0505w
o . 0,009 ke
0,005 kgfr 0,012 kg jr 0,003 kg/r 73E-18W H,
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a) Mass and energy balance of the process 1: DA-Steam reforming b) Mass and energy balance of the process 2: DA- partial oxidation

Figure 3: Mass and energy balance for the two process models

based on the energy balance and the different efficiencies shown above, the processl
(DA-steam reforming) has shown more interesting efficiencies compared to process 2
(DA- partial pressure (table 1).

It is necessary to consider the related pollutant emissions for a comparison of the two
coupling processes for hydrogen production from biogas. Table 1 presents a comparison
between the processes in terms of CO, emissions and exhaust gas released into the air
from each process at identical temperatures and pressures. The CO, emissions per kg of
H> produced in both processes show that process 1 emits less CO; than the process for
producing the same amount of H,. Overall, the amount of CO; released is almost the same
for both process and equal to 5.2 L/day.

Conclusion

This study focuses on hydrogen production processes from biogas obtained from
anaerobic digestion of biomass. The overall process consists of two main steps: (1) biogas
production and (2) biogas reforming to generate pure hydrogen adapted from the
literature. The important results of this section are summarized in the following points:

- The process 1 coupling DA and a steam reforming section is the most productive of Ha,
with a flow of H, of 5,57 l/day, for a feed of 0.33 1/day of biomass.

- An energy efficiency I]piogas (hydrogen to biogas) of the processl is about 82.72% which
is the highest.

- The process 1 remains significantly interesting compared to process 2 in terms of
quantity of CO, and gas exhaust released for 1 kg of H, produced

This global model can be improved by replacing the hydrogen separators by a purification
section based on more efficient models for a better estimation of the energy consumed in
the installation. Also, the energy optimization based on the pinch method seems
indispensable followed by an exegetic study for each coupling process to calculate the
exegetic efficiency and to determine the thermodynamic irreversibility.
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Abstract

Carbon capture and utilization (CCU) based chemicals' have become an appealing
strategy towards more sustainable production patterns. Several previous CCU studies
often overlook the variability of renewable power technologies (by assuming average
capacity factors) and focus on single technologies. To enlarge the scope of these studies,
we optimize location-specific renewable energy systems (ES) clustered with CCU,
while accounting for the yearly variability, to evaluate their environmental and
economic performance more accurately. Our approach, based on a mixed-integer linear
programming (MILP) model, coupled with life cycle assessment (LCA) principles, was
applied to evaluate nine locations in the European Union (EU) and considering solar
photovoltaics (PV), wind turbines, pumped hydro storage (PHS), and the interactions
with the national grid. Overall, our tool could complement future assessments,
expanding their scope and boosting the successful industrial implementation of CCU.

Keywords: Life cycle optimization; Energy system; Carbon capture and utilization.

1. Introduction

The fossil-based chemical industry should transition towards a low-carbon future
aligned with the Paris climate agreement target (United Nations, 2016). Notably, even
though the EU has adopted several policies, the envisioned carbon neutrality goal by
2050 is still beyond reach (European Commission, 2019). Thus, reducing the chemical
sector's footprint could aid in achieving the climate mitigation target, which could be
attained by replacing fossil-based resources with renewable carbon. Among the
proposed alternatives, CCU, which requires large amounts of energy (often via an
energy carrier, e.g., electrolytic Hy) to activate the carbon dioxide (CO,), has received
substantial attention (Ioannou et al., 2021). Moreover, by using CO, feedstock captured
directly from the air —while using low-carbon energy (Deutz and Bardow, 2021)—, CCU
could significantly aid the direct atmospheric carbon removal.

Within this general context, the design, location, and operation of the ES, covering the
power demand, strongly affect the performance of the low-carbon chemicals (Ioannou et
al., 2020). At present, LCA assessments of CCU assume a single power technology,
e.g., wind or solar, for Hy production while overlooking energy storage and links with
the power sector. Furthermore, CCU chemicals are often economically inferior relative
to their fossil-based counterparts due to their high energy consumption and the low
capacity factor of the electrolyzer, which is powered by renewable technologies
(Parkinson et al., 2019). Therefore, the variability and availability of renewable power
could act as barriers to the successful implementation of CCU.

Here we develop a MILP model to design an ES-CCU cluster, considering nine EU
locations, delivering an energy demand at a minimum levelized cost of electricity
(LCOE). We integrate the ES with electrolytic Ha, CO> capture, and their transformation
to methanol (MeOH), benefiting the sector's downstream applications. Our analysis
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shows that since the ES's performance can vary significantly within and among
countries, an integrated design of the ES-CCU clusters is key to assessing the chemicals'
production feasibility and viability accurately.

2. Methods

To carry out our analysis, we developed a network model to design location-specific
renewable ES, with energy storage, to minimize the LCOE. The latter aim could aid in
coping with the variability of renewable technologies while attaining reductions in the
cost of the CCU chemicals. The temporal representation is 2015 —on an hourly
discretization—, which is adequate for the scope of the current design study. Hence, our
model's unique feature is that it explicitly considers the hourly synergetic effects of
hybrid ES —and storage— for CCU applications. The proposed methodology is divided
into five steps, described briefly in the following sections: (i) selection of location(s),
(i1) life cycle inventory generation (LCI) —based on assumptions, process simulation
data or other sources—, (iii) model execution to obtain a tailored ES for the location
defined in (i), while delivering the hourly power consumption defined in (ii), (iv)
techno-economic and environmental assessment, and (v) interpretation of results.

2.1. Locations

We focus on three EU countries and three regions within each of them —Germany:
Schwerin, Essen, and Haundorg; Austria: Parndorf, Tulln, and Zwettl; and Spain:
Tarragona, Huelva, and Cartagena. Thus, we create a representative sampling to
interpret the potential behaviour of the location-specific ES-CCU systems.

2.2. LCI of the CO-based MeOH production cluster

We design an ES that supplies the power requirements of a chemical facility, based on
CO; capture and electrolytic H, generation, that produces 11.08 kt y*! of MeOH, acting
as the functional unit. Within this general context, we assume an electrolytic efficiency
of 80 % based on the LHV of H; and consider the co-product oxygen as a burden-free
byproduct. Furthermore, we retrieved from the literature the LCI of the CO,
hydrogenation to MeOH (Gonzalez-Garay et al., 2019) and of the direct air capture
(DAC) process (Fasihi et al., 2019). Finally, the LCI of raw materials and utility inputs
are retrieved from the Ecoinvent V3.5 database (Wernet et al., 2016). Based on the
latter, the hourly delivered power should be 10.84MW (amounting to 94.95 GWh y!),
where 10.00MW is consumed for the generation of electrolytic H,, and the remaining is
used to synthesize MeOH and DAC (0.38 and 0.46MW, respectively). Furthermore, the
facility will require 9.13 GJ of steam to capture 16.06 kt y! of CO,. The remaining
inputs and direct emissions for MeOH production can be found in the original source. A
cradle-to-gate LCA is carried out using the global warming (GW) indicator of the
ReCiPe 2016 Midpoint (H) methodology (Huijbregts et al., 2017).

2.3. Mathematical model

We briefly describe the ES model, expressing parameters with regular letters and
variables with italics. Our model integrates a set of power technologies (solar PV and
wind turbines, i € I), exploiting the complementary strengths to design the hybrid ES
with storage at minimum LCOE —Eq.(1). The LCOE is based on the total annualized cost
(TAC), and the predefined power demand of electrolysis, DAC, and MeOH production
(H¢ + Dy).

TAC
min (LCOE = —) )
ZteT(Ht + Dt)
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The TAC considers the costs of purchasing power —from the national grid—, and the
capital and operational expenses for installing (i) a PHS facility, with installed capacity
Smax (i1) solar PV, with installed capacity CAP;_p, and 3 kW nominal capacity per unit
(NCAP), and (iii) wind turbines, with installed capacity CAP;_,,inq and 3 MW NCAP.

TAC = ¥y Grid, - LCOEy, + Storagecapgx * Crfs * Smax + Zier( (CAPEX,; -
crf; + OPEX;) - CAP;)

, where crf is the annual capital charge. The grid interactions and the PHS are necessary
to satisfy the ES hourly availability, and thus, cope with the intermittent character of the

installed renewables. CAP; is calculated based on the NCAP; of the technology i, and the
respective number of units —integer variable N;.

2

We assume that, within the ES lifespan, the annual local solar irradiation and wind
speed patterns (obtained by "European Commission: PVGIS tool") will remain constant
during the time horizon, and thus, the power generated from a unit i (NP, ) —Eq.(4)—, for
2015 is representative for the upcoming years.

NP,; = f(wind speed, solar irradiation), Vi E Lt € T 4)

The number of renewable units is then connected with the hourly power generation
from the respective renewable source —NP, ;.

P, =NP-N, VieLteT )

An energy balance is defined —Eq.(6)— and expressed in power units since the hourly
representation allows us to omit the At = 1h.

H; + D+ PHS.p: + Z Cur;, = Z P;; + Grid, + PHSy;;, VteT (6)
i€l i€l

The power demand (H.+ D) is covered by the renewable technologies (P;.), by
purchasing power from the grid (Grid.), and by discharging the PHS (PHSy; ;).
Notably, the PHS capacity may not be sufficient to store the excess renewable power
(PHSp, ¢ ) at all times. Thus, we consider power curtailment (Cur; ) to the national grid
with zero cost. We further constrain the curtailment since it cannot physically exceed
the amount delivered from the respective renewable source.

Curyy <P,  Vi€ELteT o

The PHS stored energy (S;) at period t is determined from a second balance —Eq.(8)—,
including the charging and discharging of power, with an efficiency 7y, and a self-
discharge, with a coefficient A,4;. Therefore, due to losses by (i) charging-discharging
efficiency or (ii) curtailment, the model prioritizes the direct use of renewable power.

Se = (1—=2Ag) Seq + PHSch,t—l ‘Ns — PHSai,t-l/ns , vteT>1 ¥

Furthermore, since we consider a yearly base to design the ES —8760 periods—, a
periodic condition is necessary to model the storage facility dimensions appropriately.

Se=1 = Si=8760 )

Subsequently, the highest value of S; is defined as the maximal amount of stored energy
(Smax) —“Eq.(10)—, which is needed for the cost calculations in Eq.(2).
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Se < Smax, VEET (10)

We further define the binary variable y, which restricts the PHS discharging when
charging, and vice versa, while an upper bound, C,,, limits both energy flows.

PHS., <Cs, VtET (11)
PHS., <Cu'Y:, VEtET (12)
PHSy, <Cs, VtET (13)
PHSgi <Cyp-(1—y,), VLET (14)

Subsequently, we assume that the designed PHS facility must have stored power able to
satisfy at least a day of operation —t;=24 h— at all times, whereas we further ensure that
in the first period of the year it can deliver power for at least two days of operation —
t,=48 h. Both of the latter limits affect the PHS design.

S;=2MH+D)-t;, VteT (15)

St=1 = (Hi=q + De=q) " £, (16)

Finally, since the solution for minimum LCOE might be degenerate, we apply a post-
process step to minimize the GW of the ES (CWgs) —Eq.(17)—, subject to not increasing
the minimum cost identified by solving Eq.(1). Please note that the GW of the
renewable technologies GW;¢; should be adjusted to reflect the location-specific
capacity factor.

CWis = (GWyrig * Zeer Grid, + Yier Zeer GW; - Pie)/ Yier(He + Dp) (17)

3. Results and discussion

Focusing on the LCOE (Figure 1, left), we observe that the designed ESs show a
substantial economic enchantment in Spain (reduction by 46.2-59.8 %), followed by
more moderate improvements in Germany (22.7-42.8 %) when compared to the
respective national grid. In contrast, the selected locations in Austria are less appealing
(reduction by 2.9-17.3 %). The ESs' benefits emerge mainly due to the high LCOE of
the national grid —significant in Spain for 2015 and less prominent in Germany and
Austria ("eurostat 2016"). Furthermore, local synergies of wind and solar generation,
and their storage, significantly influence their lower LCOE (see Table 1 and Figure 1,
e.g., Cartagena and Schwerin), as also discussed in other studies (Demirhan et al., 2021;
Fasihi and Breyer, 2020). For Huelva and Haundorg, the hourly wind speed and solar
irradiation characteristics fail to complement each other. Thus, their ES operates
without harvesting wind power, while the national grid supplies a considerable share to
the ES (12.5 and 19.5 %, respectively). Even though both solar and wind power are
being harvested, significant synergies are absent in Essen and the Austrian selected
locations. For the latter regions, we observe a significantly lower supply of power from
the PHS facility and substantial shares from the national grid —32.4-56.4 %-— to attain
the required high availability (Table 1).
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Compared to the national grids, the designed ESs provide significant GW benefits in all
locations (Figure 1, middle). Putting these reductions into perspective, the designed ESs
in Spain reduce the GW by 79.3-90.6 %, 64.4-86.5 % in Germany, and 37.8-59.6 % in
Austria. The latter improvements are attained via high renewables share in the hybrid
ES, i.e., 43.6 to 94.7 % in Zwettel and Cartagena, respectively (see Table 1, accounting
for both the direct and indirect —via PHS— use of renewable power). Notably, the high
shares of grid power at Essen and in the three locations in Austria lead to a more
moderate GW improvement, which influences the CCU performance —as discussed
next. Finally, we observe high power losses for most regions due to the charging-
discharging and curtailment (Table 1). The model's scope could be expanded to
investigate alternatives with a lower curtailment, which we will leave as future work.

Energy sysem Energy sysem combined with CCU
LCOE Global warming potential Relative performance of CO,-based methanol
Cartagena [ 42 3 0.04 0.8 = 17
5 j— i
£ Huelva 56 B3 0.08 03 == 0
&  Taragona B 57 B 0.07
Grid ] 105 | I ) 0.34 04 == 20
Zwettl I 67 . 0.20 [ 23
£ Tulln T 64 = 0.17 —————— 03 )
2 Parndorl I sg == 0.3 YR 22
Grid I 70 ) 0.32 i)
> Haundorg 52 S 016 Dew 0.7 19
2 Essen I 61 | s— ) 16
5 Schwerin I 45 = 0.09 B Cost [
¢ Grid II— 79 e 0.64 O e 18
0 20 40 60 80 100 0.0 0.1 02 0.3 04 05 0.6 07 10 06 -02 02 06 10 14 18 22
LCOE [€/MWHh] GW [tCO 2eq/MWh]

ES-CCU/fossil -based MeOH

Figure 1. LCOE (left) and GW (middle) of the designed ESs compared to the national grid —for
2015. Notably, in 2019 the Spanish grid showed a lower LCOE compared to 2015 (17.1 % less),
whereas the reported LCOE for Germany's and Austria's grid increased by 5.7 and 10.12 %,
respectively, within the same period ("eurostat 2016"). On the right, we provide the relative cost
and GW of the COz-based MeOH compared to the conventional counterpart.

Table 1. ES delivered power shares as a percentage of the total. The percentage of stored
renewable energy is the same as in the ES, e.g., 13.6/86.4 % of solar/wind for Cartagena.

ES delivered power shares in % ES losses as an additional %

Country  Region Solar  Wind PHS Grid Curtailed PHS losses
Cartagena | 9.7 61.9 23.1 53 17.7 6.1

. Huelva 43.6 0.0 439 12.5 8.2 11.5

Spain Tarragona | 40.9  14.6 329 115 9.4 8.7
Zwettl 20.1 20.7 2.8 56.4 1.5 0.8
. Tulln 18.6 279 4.8 48.7 3.0 1.3
Austria— pondorf | 159 382 113 346 4.6 3.0
Haundorg | 42.8 0.0 37.7 19.5 33 9.9
Essen 17.0 40.5 10.1 324 4.8 2.7
Germany  gohwerin | 209 473 212 10.6 9.6 5.6

Finally, green MeOH production based on the designed ESs (Figure 1, right) is
economically unappealing in all selected locations, due to the vast power consumption
for H, production. Furthermore, we show that in two areas, Essen and Zwettl, the GW
of the MeOH is even higher —by 1.6- and 1.2-fold, respectively— compared to the fossil-
based counterpart, and thus, the investigated CCU application is unfavourable. The
latter burdens emerge due to the high shares of grid power in the ES. Compared to the
benchmark, a lower GW for the green MeOH is observed in the remaining regions,
indicating a successful application due to the effective utilization of atmospheric CO».
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Finally, we observe negative GW values for MeOH (on a cradle-to-gate) in Schwerin,
Cartagena, Huelva, and Tarragona, due to the better performance of their ESs.

4. Conclusions

Here we addressed the integrated design of power mix and CCU plants within a single
cluster. In seven out of nine locations, we found that carbon footprint reductions
(compared to fossil methanol) can be attained via CO,-based methanol when location-
specific hybrid ES powers the production. Our results highlight the benefits of hourly
synergetic effects of renewable ES, while providing a roadmap for assessing CCU
chemicals more accurately. An optimal and cost-effective integrated design of ES-CCU
clusters, predominantly based on renewables, could help overcome the renewable's
inherent variability. Notably, our assessment highlighted that even though a renewable-
based ES can provide significant benefits compared to the national grid, these might be,
in cases, insufficient to make CCU environmentally appealing.
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Abstract

This study investigated two artificial intelligence techniques, Swarm Intelligence(SI) and
Artificial Neural Networks(ANN), aiming to overcome the difficulties of simulating
complex processes with unknown reactions and intermediates. These techniques are
incorporated in reaction modeling via mass balances and reaction kinetic models. The
accuracy and the applicability of the resulting models from ANN and SI were compared
in the trained semi-batch reactors and the new continuous flow reactors. The ANN-based
model is recommended when the extrapolation is unnecessary, and the data is high in
volume and variety at the applied space. In this case, no profound reaction knowledge is
required. Otherwise, the SI-based model should be employed, which provides detailed
information of the target process and is constrained by physical meaning parameters.

Keywords: swarm intelligence, artificial neural networks, hybrid models, semi-batch
rea